]> git.proxmox.com Git - qemu.git/blame_incremental - qemu-doc.texi
target-i386: SSE4.2: fix pcmpgtq instruction
[qemu.git] / qemu-doc.texi
... / ...
CommitLineData
1\input texinfo @c -*- texinfo -*-
2@c %**start of header
3@setfilename qemu-doc.info
4
5@documentlanguage en
6@documentencoding UTF-8
7
8@settitle QEMU Emulator User Documentation
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
12
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
19@iftex
20@titlepage
21@sp 7
22@center @titlefont{QEMU Emulator}
23@sp 1
24@center @titlefont{User Documentation}
25@sp 3
26@end titlepage
27@end iftex
28
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
38* QEMU User space emulator::
39* compilation:: Compilation from the sources
40* License::
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
48@chapter Introduction
49
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
55@section Features
56
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
59
60QEMU has two operating modes:
61
62@itemize
63@cindex operating modes
64
65@item
66@cindex system emulation
67Full system emulation. In this mode, QEMU emulates a full system (for
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
71
72@item
73@cindex user mode emulation
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
78
79@end itemize
80
81QEMU can run without a host kernel driver and yet gives acceptable
82performance.
83
84For system emulation, the following hardware targets are supported:
85@itemize
86@cindex emulated target systems
87@cindex supported target systems
88@item PC (x86 or x86_64 processor)
89@item ISA PC (old style PC without PCI bus)
90@item PREP (PowerPC processor)
91@item G3 Beige PowerMac (PowerPC processor)
92@item Mac99 PowerMac (PowerPC processor, in progress)
93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95@item Malta board (32-bit and 64-bit MIPS processors)
96@item MIPS Magnum (64-bit MIPS processor)
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
99@item ARM RealView Emulation/Platform baseboard (ARM)
100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103@item Freescale MCF5208EVB (ColdFire V2).
104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105@item Palm Tungsten|E PDA (OMAP310 processor)
106@item N800 and N810 tablets (OMAP2420 processor)
107@item MusicPal (MV88W8618 ARM processor)
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
112@item Avnet LX60/LX110/LX200 boards (Xtensa)
113@end itemize
114
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119
120@node Installation
121@chapter Installation
122
123If you want to compile QEMU yourself, see @ref{compilation}.
124
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
132@section Linux
133@cindex installation (Linux)
134
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
137
138@node install_windows
139@section Windows
140@cindex installation (Windows)
141
142Download the experimental binary installer at
143@url{http://www.free.oszoo.org/@/download.html}.
144TODO (no longer available)
145
146@node install_mac
147@section Mac OS X
148
149Download the experimental binary installer at
150@url{http://www.free.oszoo.org/@/download.html}.
151TODO (no longer available)
152
153@node QEMU PC System emulator
154@chapter QEMU PC System emulator
155@cindex system emulation (PC)
156
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
165* pcsys_other_devs:: Other Devices
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
168* vnc_security:: VNC security
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
174@section Introduction
175
176@c man begin DESCRIPTION
177
178The QEMU PC System emulator simulates the
179following peripherals:
180
181@itemize @minus
182@item
183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184@item
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
187@item
188PS/2 mouse and keyboard
189@item
1902 PCI IDE interfaces with hard disk and CD-ROM support
191@item
192Floppy disk
193@item
194PCI and ISA network adapters
195@item
196Serial ports
197@item
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
202Intel 82801AA AC97 Audio compatible sound card
203@item
204Intel HD Audio Controller and HDA codec
205@item
206Adlib (OPL2) - Yamaha YM3812 compatible chip
207@item
208Gravis Ultrasound GF1 sound card
209@item
210CS4231A compatible sound card
211@item
212PCI UHCI USB controller and a virtual USB hub.
213@end itemize
214
215SMP is supported with up to 255 CPUs.
216
217Note that adlib, gus and cs4231a are only available when QEMU was
218configured with --audio-card-list option containing the name(s) of
219required card(s).
220
221QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222VGA BIOS.
223
224QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225
226QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
227by Tibor "TS" Schütz.
228
229Note that, by default, GUS shares IRQ(7) with parallel ports and so
230QEMU must be told to not have parallel ports to have working GUS.
231
232@example
233qemu-system-i386 dos.img -soundhw gus -parallel none
234@end example
235
236Alternatively:
237@example
238qemu-system-i386 dos.img -device gus,irq=5
239@end example
240
241Or some other unclaimed IRQ.
242
243CS4231A is the chip used in Windows Sound System and GUSMAX products
244
245@c man end
246
247@node pcsys_quickstart
248@section Quick Start
249@cindex quick start
250
251Download and uncompress the linux image (@file{linux.img}) and type:
252
253@example
254qemu-system-i386 linux.img
255@end example
256
257Linux should boot and give you a prompt.
258
259@node sec_invocation
260@section Invocation
261
262@example
263@c man begin SYNOPSIS
264usage: qemu-system-i386 [options] [@var{disk_image}]
265@c man end
266@end example
267
268@c man begin OPTIONS
269@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270targets do not need a disk image.
271
272@include qemu-options.texi
273
274@c man end
275
276@node pcsys_keys
277@section Keys
278
279@c man begin OPTIONS
280
281During the graphical emulation, you can use special key combinations to change
282modes. The default key mappings are shown below, but if you use @code{-alt-grab}
283then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
284@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
285
286@table @key
287@item Ctrl-Alt-f
288@kindex Ctrl-Alt-f
289Toggle full screen
290
291@item Ctrl-Alt-+
292@kindex Ctrl-Alt-+
293Enlarge the screen
294
295@item Ctrl-Alt--
296@kindex Ctrl-Alt--
297Shrink the screen
298
299@item Ctrl-Alt-u
300@kindex Ctrl-Alt-u
301Restore the screen's un-scaled dimensions
302
303@item Ctrl-Alt-n
304@kindex Ctrl-Alt-n
305Switch to virtual console 'n'. Standard console mappings are:
306@table @emph
307@item 1
308Target system display
309@item 2
310Monitor
311@item 3
312Serial port
313@end table
314
315@item Ctrl-Alt
316@kindex Ctrl-Alt
317Toggle mouse and keyboard grab.
318@end table
319
320@kindex Ctrl-Up
321@kindex Ctrl-Down
322@kindex Ctrl-PageUp
323@kindex Ctrl-PageDown
324In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
325@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
326
327@kindex Ctrl-a h
328During emulation, if you are using the @option{-nographic} option, use
329@key{Ctrl-a h} to get terminal commands:
330
331@table @key
332@item Ctrl-a h
333@kindex Ctrl-a h
334@item Ctrl-a ?
335@kindex Ctrl-a ?
336Print this help
337@item Ctrl-a x
338@kindex Ctrl-a x
339Exit emulator
340@item Ctrl-a s
341@kindex Ctrl-a s
342Save disk data back to file (if -snapshot)
343@item Ctrl-a t
344@kindex Ctrl-a t
345Toggle console timestamps
346@item Ctrl-a b
347@kindex Ctrl-a b
348Send break (magic sysrq in Linux)
349@item Ctrl-a c
350@kindex Ctrl-a c
351Switch between console and monitor
352@item Ctrl-a Ctrl-a
353@kindex Ctrl-a a
354Send Ctrl-a
355@end table
356@c man end
357
358@ignore
359
360@c man begin SEEALSO
361The HTML documentation of QEMU for more precise information and Linux
362user mode emulator invocation.
363@c man end
364
365@c man begin AUTHOR
366Fabrice Bellard
367@c man end
368
369@end ignore
370
371@node pcsys_monitor
372@section QEMU Monitor
373@cindex QEMU monitor
374
375The QEMU monitor is used to give complex commands to the QEMU
376emulator. You can use it to:
377
378@itemize @minus
379
380@item
381Remove or insert removable media images
382(such as CD-ROM or floppies).
383
384@item
385Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
386from a disk file.
387
388@item Inspect the VM state without an external debugger.
389
390@end itemize
391
392@subsection Commands
393
394The following commands are available:
395
396@include qemu-monitor.texi
397
398@subsection Integer expressions
399
400The monitor understands integers expressions for every integer
401argument. You can use register names to get the value of specifics
402CPU registers by prefixing them with @emph{$}.
403
404@node disk_images
405@section Disk Images
406
407Since version 0.6.1, QEMU supports many disk image formats, including
408growable disk images (their size increase as non empty sectors are
409written), compressed and encrypted disk images. Version 0.8.3 added
410the new qcow2 disk image format which is essential to support VM
411snapshots.
412
413@menu
414* disk_images_quickstart:: Quick start for disk image creation
415* disk_images_snapshot_mode:: Snapshot mode
416* vm_snapshots:: VM snapshots
417* qemu_img_invocation:: qemu-img Invocation
418* qemu_nbd_invocation:: qemu-nbd Invocation
419* disk_images_formats:: Disk image file formats
420* host_drives:: Using host drives
421* disk_images_fat_images:: Virtual FAT disk images
422* disk_images_nbd:: NBD access
423* disk_images_sheepdog:: Sheepdog disk images
424* disk_images_iscsi:: iSCSI LUNs
425* disk_images_gluster:: GlusterFS disk images
426@end menu
427
428@node disk_images_quickstart
429@subsection Quick start for disk image creation
430
431You can create a disk image with the command:
432@example
433qemu-img create myimage.img mysize
434@end example
435where @var{myimage.img} is the disk image filename and @var{mysize} is its
436size in kilobytes. You can add an @code{M} suffix to give the size in
437megabytes and a @code{G} suffix for gigabytes.
438
439See @ref{qemu_img_invocation} for more information.
440
441@node disk_images_snapshot_mode
442@subsection Snapshot mode
443
444If you use the option @option{-snapshot}, all disk images are
445considered as read only. When sectors in written, they are written in
446a temporary file created in @file{/tmp}. You can however force the
447write back to the raw disk images by using the @code{commit} monitor
448command (or @key{C-a s} in the serial console).
449
450@node vm_snapshots
451@subsection VM snapshots
452
453VM snapshots are snapshots of the complete virtual machine including
454CPU state, RAM, device state and the content of all the writable
455disks. In order to use VM snapshots, you must have at least one non
456removable and writable block device using the @code{qcow2} disk image
457format. Normally this device is the first virtual hard drive.
458
459Use the monitor command @code{savevm} to create a new VM snapshot or
460replace an existing one. A human readable name can be assigned to each
461snapshot in addition to its numerical ID.
462
463Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
464a VM snapshot. @code{info snapshots} lists the available snapshots
465with their associated information:
466
467@example
468(qemu) info snapshots
469Snapshot devices: hda
470Snapshot list (from hda):
471ID TAG VM SIZE DATE VM CLOCK
4721 start 41M 2006-08-06 12:38:02 00:00:14.954
4732 40M 2006-08-06 12:43:29 00:00:18.633
4743 msys 40M 2006-08-06 12:44:04 00:00:23.514
475@end example
476
477A VM snapshot is made of a VM state info (its size is shown in
478@code{info snapshots}) and a snapshot of every writable disk image.
479The VM state info is stored in the first @code{qcow2} non removable
480and writable block device. The disk image snapshots are stored in
481every disk image. The size of a snapshot in a disk image is difficult
482to evaluate and is not shown by @code{info snapshots} because the
483associated disk sectors are shared among all the snapshots to save
484disk space (otherwise each snapshot would need a full copy of all the
485disk images).
486
487When using the (unrelated) @code{-snapshot} option
488(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
489but they are deleted as soon as you exit QEMU.
490
491VM snapshots currently have the following known limitations:
492@itemize
493@item
494They cannot cope with removable devices if they are removed or
495inserted after a snapshot is done.
496@item
497A few device drivers still have incomplete snapshot support so their
498state is not saved or restored properly (in particular USB).
499@end itemize
500
501@node qemu_img_invocation
502@subsection @code{qemu-img} Invocation
503
504@include qemu-img.texi
505
506@node qemu_nbd_invocation
507@subsection @code{qemu-nbd} Invocation
508
509@include qemu-nbd.texi
510
511@node disk_images_formats
512@subsection Disk image file formats
513
514QEMU supports many image file formats that can be used with VMs as well as with
515any of the tools (like @code{qemu-img}). This includes the preferred formats
516raw and qcow2 as well as formats that are supported for compatibility with
517older QEMU versions or other hypervisors.
518
519Depending on the image format, different options can be passed to
520@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
521This section describes each format and the options that are supported for it.
522
523@table @option
524@item raw
525
526Raw disk image format. This format has the advantage of
527being simple and easily exportable to all other emulators. If your
528file system supports @emph{holes} (for example in ext2 or ext3 on
529Linux or NTFS on Windows), then only the written sectors will reserve
530space. Use @code{qemu-img info} to know the real size used by the
531image or @code{ls -ls} on Unix/Linux.
532
533@item qcow2
534QEMU image format, the most versatile format. Use it to have smaller
535images (useful if your filesystem does not supports holes, for example
536on Windows), optional AES encryption, zlib based compression and
537support of multiple VM snapshots.
538
539Supported options:
540@table @code
541@item compat
542Determines the qcow2 version to use. @code{compat=0.10} uses the traditional
543image format that can be read by any QEMU since 0.10 (this is the default).
544@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
545newer understand. Amongst others, this includes zero clusters, which allow
546efficient copy-on-read for sparse images.
547
548@item backing_file
549File name of a base image (see @option{create} subcommand)
550@item backing_fmt
551Image format of the base image
552@item encryption
553If this option is set to @code{on}, the image is encrypted.
554
555Encryption uses the AES format which is very secure (128 bit keys). Use
556a long password (16 characters) to get maximum protection.
557
558@item cluster_size
559Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
560sizes can improve the image file size whereas larger cluster sizes generally
561provide better performance.
562
563@item preallocation
564Preallocation mode (allowed values: off, metadata). An image with preallocated
565metadata is initially larger but can improve performance when the image needs
566to grow.
567
568@item lazy_refcounts
569If this option is set to @code{on}, reference count updates are postponed with
570the goal of avoiding metadata I/O and improving performance. This is
571particularly interesting with @option{cache=writethrough} which doesn't batch
572metadata updates. The tradeoff is that after a host crash, the reference count
573tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
574check -r all} is required, which may take some time.
575
576This option can only be enabled if @code{compat=1.1} is specified.
577
578@end table
579
580@item qed
581Old QEMU image format with support for backing files and compact image files
582(when your filesystem or transport medium does not support holes).
583
584When converting QED images to qcow2, you might want to consider using the
585@code{lazy_refcounts=on} option to get a more QED-like behaviour.
586
587Supported options:
588@table @code
589@item backing_file
590File name of a base image (see @option{create} subcommand).
591@item backing_fmt
592Image file format of backing file (optional). Useful if the format cannot be
593autodetected because it has no header, like some vhd/vpc files.
594@item cluster_size
595Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
596cluster sizes can improve the image file size whereas larger cluster sizes
597generally provide better performance.
598@item table_size
599Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
600and 16). There is normally no need to change this value but this option can be
601used for performance benchmarking.
602@end table
603
604@item qcow
605Old QEMU image format with support for backing files, compact image files,
606encryption and compression.
607
608Supported options:
609@table @code
610@item backing_file
611File name of a base image (see @option{create} subcommand)
612@item encryption
613If this option is set to @code{on}, the image is encrypted.
614@end table
615
616@item cow
617User Mode Linux Copy On Write image format. It is supported only for
618compatibility with previous versions.
619Supported options:
620@table @code
621@item backing_file
622File name of a base image (see @option{create} subcommand)
623@end table
624
625@item vdi
626VirtualBox 1.1 compatible image format.
627Supported options:
628@table @code
629@item static
630If this option is set to @code{on}, the image is created with metadata
631preallocation.
632@end table
633
634@item vmdk
635VMware 3 and 4 compatible image format.
636
637Supported options:
638@table @code
639@item backing_file
640File name of a base image (see @option{create} subcommand).
641@item compat6
642Create a VMDK version 6 image (instead of version 4)
643@item subformat
644Specifies which VMDK subformat to use. Valid options are
645@code{monolithicSparse} (default),
646@code{monolithicFlat},
647@code{twoGbMaxExtentSparse},
648@code{twoGbMaxExtentFlat} and
649@code{streamOptimized}.
650@end table
651
652@item vpc
653VirtualPC compatible image format (VHD).
654Supported options:
655@table @code
656@item subformat
657Specifies which VHD subformat to use. Valid options are
658@code{dynamic} (default) and @code{fixed}.
659@end table
660@end table
661
662@subsubsection Read-only formats
663More disk image file formats are supported in a read-only mode.
664@table @option
665@item bochs
666Bochs images of @code{growing} type.
667@item cloop
668Linux Compressed Loop image, useful only to reuse directly compressed
669CD-ROM images present for example in the Knoppix CD-ROMs.
670@item dmg
671Apple disk image.
672@item parallels
673Parallels disk image format.
674@end table
675
676
677@node host_drives
678@subsection Using host drives
679
680In addition to disk image files, QEMU can directly access host
681devices. We describe here the usage for QEMU version >= 0.8.3.
682
683@subsubsection Linux
684
685On Linux, you can directly use the host device filename instead of a
686disk image filename provided you have enough privileges to access
687it. For example, use @file{/dev/cdrom} to access to the CDROM or
688@file{/dev/fd0} for the floppy.
689
690@table @code
691@item CD
692You can specify a CDROM device even if no CDROM is loaded. QEMU has
693specific code to detect CDROM insertion or removal. CDROM ejection by
694the guest OS is supported. Currently only data CDs are supported.
695@item Floppy
696You can specify a floppy device even if no floppy is loaded. Floppy
697removal is currently not detected accurately (if you change floppy
698without doing floppy access while the floppy is not loaded, the guest
699OS will think that the same floppy is loaded).
700@item Hard disks
701Hard disks can be used. Normally you must specify the whole disk
702(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
703see it as a partitioned disk. WARNING: unless you know what you do, it
704is better to only make READ-ONLY accesses to the hard disk otherwise
705you may corrupt your host data (use the @option{-snapshot} command
706line option or modify the device permissions accordingly).
707@end table
708
709@subsubsection Windows
710
711@table @code
712@item CD
713The preferred syntax is the drive letter (e.g. @file{d:}). The
714alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
715supported as an alias to the first CDROM drive.
716
717Currently there is no specific code to handle removable media, so it
718is better to use the @code{change} or @code{eject} monitor commands to
719change or eject media.
720@item Hard disks
721Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
722where @var{N} is the drive number (0 is the first hard disk).
723
724WARNING: unless you know what you do, it is better to only make
725READ-ONLY accesses to the hard disk otherwise you may corrupt your
726host data (use the @option{-snapshot} command line so that the
727modifications are written in a temporary file).
728@end table
729
730
731@subsubsection Mac OS X
732
733@file{/dev/cdrom} is an alias to the first CDROM.
734
735Currently there is no specific code to handle removable media, so it
736is better to use the @code{change} or @code{eject} monitor commands to
737change or eject media.
738
739@node disk_images_fat_images
740@subsection Virtual FAT disk images
741
742QEMU can automatically create a virtual FAT disk image from a
743directory tree. In order to use it, just type:
744
745@example
746qemu-system-i386 linux.img -hdb fat:/my_directory
747@end example
748
749Then you access access to all the files in the @file{/my_directory}
750directory without having to copy them in a disk image or to export
751them via SAMBA or NFS. The default access is @emph{read-only}.
752
753Floppies can be emulated with the @code{:floppy:} option:
754
755@example
756qemu-system-i386 linux.img -fda fat:floppy:/my_directory
757@end example
758
759A read/write support is available for testing (beta stage) with the
760@code{:rw:} option:
761
762@example
763qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
764@end example
765
766What you should @emph{never} do:
767@itemize
768@item use non-ASCII filenames ;
769@item use "-snapshot" together with ":rw:" ;
770@item expect it to work when loadvm'ing ;
771@item write to the FAT directory on the host system while accessing it with the guest system.
772@end itemize
773
774@node disk_images_nbd
775@subsection NBD access
776
777QEMU can access directly to block device exported using the Network Block Device
778protocol.
779
780@example
781qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
782@end example
783
784If the NBD server is located on the same host, you can use an unix socket instead
785of an inet socket:
786
787@example
788qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
789@end example
790
791In this case, the block device must be exported using qemu-nbd:
792
793@example
794qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
795@end example
796
797The use of qemu-nbd allows to share a disk between several guests:
798@example
799qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
800@end example
801
802@noindent
803and then you can use it with two guests:
804@example
805qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
806qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
807@end example
808
809If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
810own embedded NBD server), you must specify an export name in the URI:
811@example
812qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
813qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
814@end example
815
816The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
817also available. Here are some example of the older syntax:
818@example
819qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
820qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
821qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
822@end example
823
824@node disk_images_sheepdog
825@subsection Sheepdog disk images
826
827Sheepdog is a distributed storage system for QEMU. It provides highly
828available block level storage volumes that can be attached to
829QEMU-based virtual machines.
830
831You can create a Sheepdog disk image with the command:
832@example
833qemu-img create sheepdog:///@var{image} @var{size}
834@end example
835where @var{image} is the Sheepdog image name and @var{size} is its
836size.
837
838To import the existing @var{filename} to Sheepdog, you can use a
839convert command.
840@example
841qemu-img convert @var{filename} sheepdog:///@var{image}
842@end example
843
844You can boot from the Sheepdog disk image with the command:
845@example
846qemu-system-i386 sheepdog:///@var{image}
847@end example
848
849You can also create a snapshot of the Sheepdog image like qcow2.
850@example
851qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
852@end example
853where @var{tag} is a tag name of the newly created snapshot.
854
855To boot from the Sheepdog snapshot, specify the tag name of the
856snapshot.
857@example
858qemu-system-i386 sheepdog:///@var{image}#@var{tag}
859@end example
860
861You can create a cloned image from the existing snapshot.
862@example
863qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
864@end example
865where @var{base} is a image name of the source snapshot and @var{tag}
866is its tag name.
867
868You can use an unix socket instead of an inet socket:
869
870@example
871qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
872@end example
873
874If the Sheepdog daemon doesn't run on the local host, you need to
875specify one of the Sheepdog servers to connect to.
876@example
877qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
878qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
879@end example
880
881@node disk_images_iscsi
882@subsection iSCSI LUNs
883
884iSCSI is a popular protocol used to access SCSI devices across a computer
885network.
886
887There are two different ways iSCSI devices can be used by QEMU.
888
889The first method is to mount the iSCSI LUN on the host, and make it appear as
890any other ordinary SCSI device on the host and then to access this device as a
891/dev/sd device from QEMU. How to do this differs between host OSes.
892
893The second method involves using the iSCSI initiator that is built into
894QEMU. This provides a mechanism that works the same way regardless of which
895host OS you are running QEMU on. This section will describe this second method
896of using iSCSI together with QEMU.
897
898In QEMU, iSCSI devices are described using special iSCSI URLs
899
900@example
901URL syntax:
902iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
903@end example
904
905Username and password are optional and only used if your target is set up
906using CHAP authentication for access control.
907Alternatively the username and password can also be set via environment
908variables to have these not show up in the process list
909
910@example
911export LIBISCSI_CHAP_USERNAME=<username>
912export LIBISCSI_CHAP_PASSWORD=<password>
913iscsi://<host>/<target-iqn-name>/<lun>
914@end example
915
916Various session related parameters can be set via special options, either
917in a configuration file provided via '-readconfig' or directly on the
918command line.
919
920If the initiator-name is not specified qemu will use a default name
921of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
922virtual machine.
923
924
925@example
926Setting a specific initiator name to use when logging in to the target
927-iscsi initiator-name=iqn.qemu.test:my-initiator
928@end example
929
930@example
931Controlling which type of header digest to negotiate with the target
932-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
933@end example
934
935These can also be set via a configuration file
936@example
937[iscsi]
938 user = "CHAP username"
939 password = "CHAP password"
940 initiator-name = "iqn.qemu.test:my-initiator"
941 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
942 header-digest = "CRC32C"
943@end example
944
945
946Setting the target name allows different options for different targets
947@example
948[iscsi "iqn.target.name"]
949 user = "CHAP username"
950 password = "CHAP password"
951 initiator-name = "iqn.qemu.test:my-initiator"
952 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
953 header-digest = "CRC32C"
954@end example
955
956
957Howto use a configuration file to set iSCSI configuration options:
958@example
959cat >iscsi.conf <<EOF
960[iscsi]
961 user = "me"
962 password = "my password"
963 initiator-name = "iqn.qemu.test:my-initiator"
964 header-digest = "CRC32C"
965EOF
966
967qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
968 -readconfig iscsi.conf
969@end example
970
971
972Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
973@example
974This example shows how to set up an iSCSI target with one CDROM and one DISK
975using the Linux STGT software target. This target is available on Red Hat based
976systems as the package 'scsi-target-utils'.
977
978tgtd --iscsi portal=127.0.0.1:3260
979tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
980tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
981 -b /IMAGES/disk.img --device-type=disk
982tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
983 -b /IMAGES/cd.iso --device-type=cd
984tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
985
986qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
987 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
988 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
989@end example
990
991@node disk_images_gluster
992@subsection GlusterFS disk images
993
994GlusterFS is an user space distributed file system.
995
996You can boot from the GlusterFS disk image with the command:
997@example
998qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
999@end example
1000
1001@var{gluster} is the protocol.
1002
1003@var{transport} specifies the transport type used to connect to gluster
1004management daemon (glusterd). Valid transport types are
1005tcp, unix and rdma. If a transport type isn't specified, then tcp
1006type is assumed.
1007
1008@var{server} specifies the server where the volume file specification for
1009the given volume resides. This can be either hostname, ipv4 address
1010or ipv6 address. ipv6 address needs to be within square brackets [ ].
1011If transport type is unix, then @var{server} field should not be specifed.
1012Instead @var{socket} field needs to be populated with the path to unix domain
1013socket.
1014
1015@var{port} is the port number on which glusterd is listening. This is optional
1016and if not specified, QEMU will send 0 which will make gluster to use the
1017default port. If the transport type is unix, then @var{port} should not be
1018specified.
1019
1020@var{volname} is the name of the gluster volume which contains the disk image.
1021
1022@var{image} is the path to the actual disk image that resides on gluster volume.
1023
1024You can create a GlusterFS disk image with the command:
1025@example
1026qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1027@end example
1028
1029Examples
1030@example
1031qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1032qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1033qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1034qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1035qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1036qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1037qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1038qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1039@end example
1040
1041@node pcsys_network
1042@section Network emulation
1043
1044QEMU can simulate several network cards (PCI or ISA cards on the PC
1045target) and can connect them to an arbitrary number of Virtual Local
1046Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1047VLAN. VLAN can be connected between separate instances of QEMU to
1048simulate large networks. For simpler usage, a non privileged user mode
1049network stack can replace the TAP device to have a basic network
1050connection.
1051
1052@subsection VLANs
1053
1054QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1055connection between several network devices. These devices can be for
1056example QEMU virtual Ethernet cards or virtual Host ethernet devices
1057(TAP devices).
1058
1059@subsection Using TAP network interfaces
1060
1061This is the standard way to connect QEMU to a real network. QEMU adds
1062a virtual network device on your host (called @code{tapN}), and you
1063can then configure it as if it was a real ethernet card.
1064
1065@subsubsection Linux host
1066
1067As an example, you can download the @file{linux-test-xxx.tar.gz}
1068archive and copy the script @file{qemu-ifup} in @file{/etc} and
1069configure properly @code{sudo} so that the command @code{ifconfig}
1070contained in @file{qemu-ifup} can be executed as root. You must verify
1071that your host kernel supports the TAP network interfaces: the
1072device @file{/dev/net/tun} must be present.
1073
1074See @ref{sec_invocation} to have examples of command lines using the
1075TAP network interfaces.
1076
1077@subsubsection Windows host
1078
1079There is a virtual ethernet driver for Windows 2000/XP systems, called
1080TAP-Win32. But it is not included in standard QEMU for Windows,
1081so you will need to get it separately. It is part of OpenVPN package,
1082so download OpenVPN from : @url{http://openvpn.net/}.
1083
1084@subsection Using the user mode network stack
1085
1086By using the option @option{-net user} (default configuration if no
1087@option{-net} option is specified), QEMU uses a completely user mode
1088network stack (you don't need root privilege to use the virtual
1089network). The virtual network configuration is the following:
1090
1091@example
1092
1093 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1094 | (10.0.2.2)
1095 |
1096 ----> DNS server (10.0.2.3)
1097 |
1098 ----> SMB server (10.0.2.4)
1099@end example
1100
1101The QEMU VM behaves as if it was behind a firewall which blocks all
1102incoming connections. You can use a DHCP client to automatically
1103configure the network in the QEMU VM. The DHCP server assign addresses
1104to the hosts starting from 10.0.2.15.
1105
1106In order to check that the user mode network is working, you can ping
1107the address 10.0.2.2 and verify that you got an address in the range
110810.0.2.x from the QEMU virtual DHCP server.
1109
1110Note that @code{ping} is not supported reliably to the internet as it
1111would require root privileges. It means you can only ping the local
1112router (10.0.2.2).
1113
1114When using the built-in TFTP server, the router is also the TFTP
1115server.
1116
1117When using the @option{-redir} option, TCP or UDP connections can be
1118redirected from the host to the guest. It allows for example to
1119redirect X11, telnet or SSH connections.
1120
1121@subsection Connecting VLANs between QEMU instances
1122
1123Using the @option{-net socket} option, it is possible to make VLANs
1124that span several QEMU instances. See @ref{sec_invocation} to have a
1125basic example.
1126
1127@node pcsys_other_devs
1128@section Other Devices
1129
1130@subsection Inter-VM Shared Memory device
1131
1132With KVM enabled on a Linux host, a shared memory device is available. Guests
1133map a POSIX shared memory region into the guest as a PCI device that enables
1134zero-copy communication to the application level of the guests. The basic
1135syntax is:
1136
1137@example
1138qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
1139@end example
1140
1141If desired, interrupts can be sent between guest VMs accessing the same shared
1142memory region. Interrupt support requires using a shared memory server and
1143using a chardev socket to connect to it. The code for the shared memory server
1144is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1145memory server is:
1146
1147@example
1148qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1149 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1150qemu-system-i386 -chardev socket,path=<path>,id=<id>
1151@end example
1152
1153When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1154using the same server to communicate via interrupts. Guests can read their
1155VM ID from a device register (see example code). Since receiving the shared
1156memory region from the server is asynchronous, there is a (small) chance the
1157guest may boot before the shared memory is attached. To allow an application
1158to ensure shared memory is attached, the VM ID register will return -1 (an
1159invalid VM ID) until the memory is attached. Once the shared memory is
1160attached, the VM ID will return the guest's valid VM ID. With these semantics,
1161the guest application can check to ensure the shared memory is attached to the
1162guest before proceeding.
1163
1164The @option{role} argument can be set to either master or peer and will affect
1165how the shared memory is migrated. With @option{role=master}, the guest will
1166copy the shared memory on migration to the destination host. With
1167@option{role=peer}, the guest will not be able to migrate with the device attached.
1168With the @option{peer} case, the device should be detached and then reattached
1169after migration using the PCI hotplug support.
1170
1171@node direct_linux_boot
1172@section Direct Linux Boot
1173
1174This section explains how to launch a Linux kernel inside QEMU without
1175having to make a full bootable image. It is very useful for fast Linux
1176kernel testing.
1177
1178The syntax is:
1179@example
1180qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1181@end example
1182
1183Use @option{-kernel} to provide the Linux kernel image and
1184@option{-append} to give the kernel command line arguments. The
1185@option{-initrd} option can be used to provide an INITRD image.
1186
1187When using the direct Linux boot, a disk image for the first hard disk
1188@file{hda} is required because its boot sector is used to launch the
1189Linux kernel.
1190
1191If you do not need graphical output, you can disable it and redirect
1192the virtual serial port and the QEMU monitor to the console with the
1193@option{-nographic} option. The typical command line is:
1194@example
1195qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1196 -append "root=/dev/hda console=ttyS0" -nographic
1197@end example
1198
1199Use @key{Ctrl-a c} to switch between the serial console and the
1200monitor (@pxref{pcsys_keys}).
1201
1202@node pcsys_usb
1203@section USB emulation
1204
1205QEMU emulates a PCI UHCI USB controller. You can virtually plug
1206virtual USB devices or real host USB devices (experimental, works only
1207on Linux hosts). QEMU will automatically create and connect virtual USB hubs
1208as necessary to connect multiple USB devices.
1209
1210@menu
1211* usb_devices::
1212* host_usb_devices::
1213@end menu
1214@node usb_devices
1215@subsection Connecting USB devices
1216
1217USB devices can be connected with the @option{-usbdevice} commandline option
1218or the @code{usb_add} monitor command. Available devices are:
1219
1220@table @code
1221@item mouse
1222Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1223@item tablet
1224Pointer device that uses absolute coordinates (like a touchscreen).
1225This means QEMU is able to report the mouse position without having
1226to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1227@item disk:@var{file}
1228Mass storage device based on @var{file} (@pxref{disk_images})
1229@item host:@var{bus.addr}
1230Pass through the host device identified by @var{bus.addr}
1231(Linux only)
1232@item host:@var{vendor_id:product_id}
1233Pass through the host device identified by @var{vendor_id:product_id}
1234(Linux only)
1235@item wacom-tablet
1236Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1237above but it can be used with the tslib library because in addition to touch
1238coordinates it reports touch pressure.
1239@item keyboard
1240Standard USB keyboard. Will override the PS/2 keyboard (if present).
1241@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1242Serial converter. This emulates an FTDI FT232BM chip connected to host character
1243device @var{dev}. The available character devices are the same as for the
1244@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1245used to override the default 0403:6001. For instance,
1246@example
1247usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1248@end example
1249will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1250serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1251@item braille
1252Braille device. This will use BrlAPI to display the braille output on a real
1253or fake device.
1254@item net:@var{options}
1255Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1256specifies NIC options as with @code{-net nic,}@var{options} (see description).
1257For instance, user-mode networking can be used with
1258@example
1259qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1260@end example
1261Currently this cannot be used in machines that support PCI NICs.
1262@item bt[:@var{hci-type}]
1263Bluetooth dongle whose type is specified in the same format as with
1264the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1265no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1266This USB device implements the USB Transport Layer of HCI. Example
1267usage:
1268@example
1269qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1270@end example
1271@end table
1272
1273@node host_usb_devices
1274@subsection Using host USB devices on a Linux host
1275
1276WARNING: this is an experimental feature. QEMU will slow down when
1277using it. USB devices requiring real time streaming (i.e. USB Video
1278Cameras) are not supported yet.
1279
1280@enumerate
1281@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1282is actually using the USB device. A simple way to do that is simply to
1283disable the corresponding kernel module by renaming it from @file{mydriver.o}
1284to @file{mydriver.o.disabled}.
1285
1286@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1287@example
1288ls /proc/bus/usb
1289001 devices drivers
1290@end example
1291
1292@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1293@example
1294chown -R myuid /proc/bus/usb
1295@end example
1296
1297@item Launch QEMU and do in the monitor:
1298@example
1299info usbhost
1300 Device 1.2, speed 480 Mb/s
1301 Class 00: USB device 1234:5678, USB DISK
1302@end example
1303You should see the list of the devices you can use (Never try to use
1304hubs, it won't work).
1305
1306@item Add the device in QEMU by using:
1307@example
1308usb_add host:1234:5678
1309@end example
1310
1311Normally the guest OS should report that a new USB device is
1312plugged. You can use the option @option{-usbdevice} to do the same.
1313
1314@item Now you can try to use the host USB device in QEMU.
1315
1316@end enumerate
1317
1318When relaunching QEMU, you may have to unplug and plug again the USB
1319device to make it work again (this is a bug).
1320
1321@node vnc_security
1322@section VNC security
1323
1324The VNC server capability provides access to the graphical console
1325of the guest VM across the network. This has a number of security
1326considerations depending on the deployment scenarios.
1327
1328@menu
1329* vnc_sec_none::
1330* vnc_sec_password::
1331* vnc_sec_certificate::
1332* vnc_sec_certificate_verify::
1333* vnc_sec_certificate_pw::
1334* vnc_sec_sasl::
1335* vnc_sec_certificate_sasl::
1336* vnc_generate_cert::
1337* vnc_setup_sasl::
1338@end menu
1339@node vnc_sec_none
1340@subsection Without passwords
1341
1342The simplest VNC server setup does not include any form of authentication.
1343For this setup it is recommended to restrict it to listen on a UNIX domain
1344socket only. For example
1345
1346@example
1347qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1348@end example
1349
1350This ensures that only users on local box with read/write access to that
1351path can access the VNC server. To securely access the VNC server from a
1352remote machine, a combination of netcat+ssh can be used to provide a secure
1353tunnel.
1354
1355@node vnc_sec_password
1356@subsection With passwords
1357
1358The VNC protocol has limited support for password based authentication. Since
1359the protocol limits passwords to 8 characters it should not be considered
1360to provide high security. The password can be fairly easily brute-forced by
1361a client making repeat connections. For this reason, a VNC server using password
1362authentication should be restricted to only listen on the loopback interface
1363or UNIX domain sockets. Password authentication is not supported when operating
1364in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1365authentication is requested with the @code{password} option, and then once QEMU
1366is running the password is set with the monitor. Until the monitor is used to
1367set the password all clients will be rejected.
1368
1369@example
1370qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1371(qemu) change vnc password
1372Password: ********
1373(qemu)
1374@end example
1375
1376@node vnc_sec_certificate
1377@subsection With x509 certificates
1378
1379The QEMU VNC server also implements the VeNCrypt extension allowing use of
1380TLS for encryption of the session, and x509 certificates for authentication.
1381The use of x509 certificates is strongly recommended, because TLS on its
1382own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1383support provides a secure session, but no authentication. This allows any
1384client to connect, and provides an encrypted session.
1385
1386@example
1387qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1388@end example
1389
1390In the above example @code{/etc/pki/qemu} should contain at least three files,
1391@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1392users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1393NB the @code{server-key.pem} file should be protected with file mode 0600 to
1394only be readable by the user owning it.
1395
1396@node vnc_sec_certificate_verify
1397@subsection With x509 certificates and client verification
1398
1399Certificates can also provide a means to authenticate the client connecting.
1400The server will request that the client provide a certificate, which it will
1401then validate against the CA certificate. This is a good choice if deploying
1402in an environment with a private internal certificate authority.
1403
1404@example
1405qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1406@end example
1407
1408
1409@node vnc_sec_certificate_pw
1410@subsection With x509 certificates, client verification and passwords
1411
1412Finally, the previous method can be combined with VNC password authentication
1413to provide two layers of authentication for clients.
1414
1415@example
1416qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1417(qemu) change vnc password
1418Password: ********
1419(qemu)
1420@end example
1421
1422
1423@node vnc_sec_sasl
1424@subsection With SASL authentication
1425
1426The SASL authentication method is a VNC extension, that provides an
1427easily extendable, pluggable authentication method. This allows for
1428integration with a wide range of authentication mechanisms, such as
1429PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1430The strength of the authentication depends on the exact mechanism
1431configured. If the chosen mechanism also provides a SSF layer, then
1432it will encrypt the datastream as well.
1433
1434Refer to the later docs on how to choose the exact SASL mechanism
1435used for authentication, but assuming use of one supporting SSF,
1436then QEMU can be launched with:
1437
1438@example
1439qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1440@end example
1441
1442@node vnc_sec_certificate_sasl
1443@subsection With x509 certificates and SASL authentication
1444
1445If the desired SASL authentication mechanism does not supported
1446SSF layers, then it is strongly advised to run it in combination
1447with TLS and x509 certificates. This provides securely encrypted
1448data stream, avoiding risk of compromising of the security
1449credentials. This can be enabled, by combining the 'sasl' option
1450with the aforementioned TLS + x509 options:
1451
1452@example
1453qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1454@end example
1455
1456
1457@node vnc_generate_cert
1458@subsection Generating certificates for VNC
1459
1460The GNU TLS packages provides a command called @code{certtool} which can
1461be used to generate certificates and keys in PEM format. At a minimum it
1462is necessary to setup a certificate authority, and issue certificates to
1463each server. If using certificates for authentication, then each client
1464will also need to be issued a certificate. The recommendation is for the
1465server to keep its certificates in either @code{/etc/pki/qemu} or for
1466unprivileged users in @code{$HOME/.pki/qemu}.
1467
1468@menu
1469* vnc_generate_ca::
1470* vnc_generate_server::
1471* vnc_generate_client::
1472@end menu
1473@node vnc_generate_ca
1474@subsubsection Setup the Certificate Authority
1475
1476This step only needs to be performed once per organization / organizational
1477unit. First the CA needs a private key. This key must be kept VERY secret
1478and secure. If this key is compromised the entire trust chain of the certificates
1479issued with it is lost.
1480
1481@example
1482# certtool --generate-privkey > ca-key.pem
1483@end example
1484
1485A CA needs to have a public certificate. For simplicity it can be a self-signed
1486certificate, or one issue by a commercial certificate issuing authority. To
1487generate a self-signed certificate requires one core piece of information, the
1488name of the organization.
1489
1490@example
1491# cat > ca.info <<EOF
1492cn = Name of your organization
1493ca
1494cert_signing_key
1495EOF
1496# certtool --generate-self-signed \
1497 --load-privkey ca-key.pem
1498 --template ca.info \
1499 --outfile ca-cert.pem
1500@end example
1501
1502The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1503TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1504
1505@node vnc_generate_server
1506@subsubsection Issuing server certificates
1507
1508Each server (or host) needs to be issued with a key and certificate. When connecting
1509the certificate is sent to the client which validates it against the CA certificate.
1510The core piece of information for a server certificate is the hostname. This should
1511be the fully qualified hostname that the client will connect with, since the client
1512will typically also verify the hostname in the certificate. On the host holding the
1513secure CA private key:
1514
1515@example
1516# cat > server.info <<EOF
1517organization = Name of your organization
1518cn = server.foo.example.com
1519tls_www_server
1520encryption_key
1521signing_key
1522EOF
1523# certtool --generate-privkey > server-key.pem
1524# certtool --generate-certificate \
1525 --load-ca-certificate ca-cert.pem \
1526 --load-ca-privkey ca-key.pem \
1527 --load-privkey server server-key.pem \
1528 --template server.info \
1529 --outfile server-cert.pem
1530@end example
1531
1532The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1533to the server for which they were generated. The @code{server-key.pem} is security
1534sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1535
1536@node vnc_generate_client
1537@subsubsection Issuing client certificates
1538
1539If the QEMU VNC server is to use the @code{x509verify} option to validate client
1540certificates as its authentication mechanism, each client also needs to be issued
1541a certificate. The client certificate contains enough metadata to uniquely identify
1542the client, typically organization, state, city, building, etc. On the host holding
1543the secure CA private key:
1544
1545@example
1546# cat > client.info <<EOF
1547country = GB
1548state = London
1549locality = London
1550organiazation = Name of your organization
1551cn = client.foo.example.com
1552tls_www_client
1553encryption_key
1554signing_key
1555EOF
1556# certtool --generate-privkey > client-key.pem
1557# certtool --generate-certificate \
1558 --load-ca-certificate ca-cert.pem \
1559 --load-ca-privkey ca-key.pem \
1560 --load-privkey client-key.pem \
1561 --template client.info \
1562 --outfile client-cert.pem
1563@end example
1564
1565The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1566copied to the client for which they were generated.
1567
1568
1569@node vnc_setup_sasl
1570
1571@subsection Configuring SASL mechanisms
1572
1573The following documentation assumes use of the Cyrus SASL implementation on a
1574Linux host, but the principals should apply to any other SASL impl. When SASL
1575is enabled, the mechanism configuration will be loaded from system default
1576SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1577unprivileged user, an environment variable SASL_CONF_PATH can be used
1578to make it search alternate locations for the service config.
1579
1580The default configuration might contain
1581
1582@example
1583mech_list: digest-md5
1584sasldb_path: /etc/qemu/passwd.db
1585@end example
1586
1587This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1588Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1589in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1590command. While this mechanism is easy to configure and use, it is not
1591considered secure by modern standards, so only suitable for developers /
1592ad-hoc testing.
1593
1594A more serious deployment might use Kerberos, which is done with the 'gssapi'
1595mechanism
1596
1597@example
1598mech_list: gssapi
1599keytab: /etc/qemu/krb5.tab
1600@end example
1601
1602For this to work the administrator of your KDC must generate a Kerberos
1603principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1604replacing 'somehost.example.com' with the fully qualified host name of the
1605machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1606
1607Other configurations will be left as an exercise for the reader. It should
1608be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1609encryption. For all other mechanisms, VNC should always be configured to
1610use TLS and x509 certificates to protect security credentials from snooping.
1611
1612@node gdb_usage
1613@section GDB usage
1614
1615QEMU has a primitive support to work with gdb, so that you can do
1616'Ctrl-C' while the virtual machine is running and inspect its state.
1617
1618In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1619gdb connection:
1620@example
1621qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1622 -append "root=/dev/hda"
1623Connected to host network interface: tun0
1624Waiting gdb connection on port 1234
1625@end example
1626
1627Then launch gdb on the 'vmlinux' executable:
1628@example
1629> gdb vmlinux
1630@end example
1631
1632In gdb, connect to QEMU:
1633@example
1634(gdb) target remote localhost:1234
1635@end example
1636
1637Then you can use gdb normally. For example, type 'c' to launch the kernel:
1638@example
1639(gdb) c
1640@end example
1641
1642Here are some useful tips in order to use gdb on system code:
1643
1644@enumerate
1645@item
1646Use @code{info reg} to display all the CPU registers.
1647@item
1648Use @code{x/10i $eip} to display the code at the PC position.
1649@item
1650Use @code{set architecture i8086} to dump 16 bit code. Then use
1651@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1652@end enumerate
1653
1654Advanced debugging options:
1655
1656The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1657@table @code
1658@item maintenance packet qqemu.sstepbits
1659
1660This will display the MASK bits used to control the single stepping IE:
1661@example
1662(gdb) maintenance packet qqemu.sstepbits
1663sending: "qqemu.sstepbits"
1664received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1665@end example
1666@item maintenance packet qqemu.sstep
1667
1668This will display the current value of the mask used when single stepping IE:
1669@example
1670(gdb) maintenance packet qqemu.sstep
1671sending: "qqemu.sstep"
1672received: "0x7"
1673@end example
1674@item maintenance packet Qqemu.sstep=HEX_VALUE
1675
1676This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1677@example
1678(gdb) maintenance packet Qqemu.sstep=0x5
1679sending: "qemu.sstep=0x5"
1680received: "OK"
1681@end example
1682@end table
1683
1684@node pcsys_os_specific
1685@section Target OS specific information
1686
1687@subsection Linux
1688
1689To have access to SVGA graphic modes under X11, use the @code{vesa} or
1690the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1691color depth in the guest and the host OS.
1692
1693When using a 2.6 guest Linux kernel, you should add the option
1694@code{clock=pit} on the kernel command line because the 2.6 Linux
1695kernels make very strict real time clock checks by default that QEMU
1696cannot simulate exactly.
1697
1698When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1699not activated because QEMU is slower with this patch. The QEMU
1700Accelerator Module is also much slower in this case. Earlier Fedora
1701Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1702patch by default. Newer kernels don't have it.
1703
1704@subsection Windows
1705
1706If you have a slow host, using Windows 95 is better as it gives the
1707best speed. Windows 2000 is also a good choice.
1708
1709@subsubsection SVGA graphic modes support
1710
1711QEMU emulates a Cirrus Logic GD5446 Video
1712card. All Windows versions starting from Windows 95 should recognize
1713and use this graphic card. For optimal performances, use 16 bit color
1714depth in the guest and the host OS.
1715
1716If you are using Windows XP as guest OS and if you want to use high
1717resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
17181280x1024x16), then you should use the VESA VBE virtual graphic card
1719(option @option{-std-vga}).
1720
1721@subsubsection CPU usage reduction
1722
1723Windows 9x does not correctly use the CPU HLT
1724instruction. The result is that it takes host CPU cycles even when
1725idle. You can install the utility from
1726@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1727problem. Note that no such tool is needed for NT, 2000 or XP.
1728
1729@subsubsection Windows 2000 disk full problem
1730
1731Windows 2000 has a bug which gives a disk full problem during its
1732installation. When installing it, use the @option{-win2k-hack} QEMU
1733option to enable a specific workaround. After Windows 2000 is
1734installed, you no longer need this option (this option slows down the
1735IDE transfers).
1736
1737@subsubsection Windows 2000 shutdown
1738
1739Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1740can. It comes from the fact that Windows 2000 does not automatically
1741use the APM driver provided by the BIOS.
1742
1743In order to correct that, do the following (thanks to Struan
1744Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1745Add/Troubleshoot a device => Add a new device & Next => No, select the
1746hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1747(again) a few times. Now the driver is installed and Windows 2000 now
1748correctly instructs QEMU to shutdown at the appropriate moment.
1749
1750@subsubsection Share a directory between Unix and Windows
1751
1752See @ref{sec_invocation} about the help of the option @option{-smb}.
1753
1754@subsubsection Windows XP security problem
1755
1756Some releases of Windows XP install correctly but give a security
1757error when booting:
1758@example
1759A problem is preventing Windows from accurately checking the
1760license for this computer. Error code: 0x800703e6.
1761@end example
1762
1763The workaround is to install a service pack for XP after a boot in safe
1764mode. Then reboot, and the problem should go away. Since there is no
1765network while in safe mode, its recommended to download the full
1766installation of SP1 or SP2 and transfer that via an ISO or using the
1767vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1768
1769@subsection MS-DOS and FreeDOS
1770
1771@subsubsection CPU usage reduction
1772
1773DOS does not correctly use the CPU HLT instruction. The result is that
1774it takes host CPU cycles even when idle. You can install the utility
1775from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1776problem.
1777
1778@node QEMU System emulator for non PC targets
1779@chapter QEMU System emulator for non PC targets
1780
1781QEMU is a generic emulator and it emulates many non PC
1782machines. Most of the options are similar to the PC emulator. The
1783differences are mentioned in the following sections.
1784
1785@menu
1786* PowerPC System emulator::
1787* Sparc32 System emulator::
1788* Sparc64 System emulator::
1789* MIPS System emulator::
1790* ARM System emulator::
1791* ColdFire System emulator::
1792* Cris System emulator::
1793* Microblaze System emulator::
1794* SH4 System emulator::
1795* Xtensa System emulator::
1796@end menu
1797
1798@node PowerPC System emulator
1799@section PowerPC System emulator
1800@cindex system emulation (PowerPC)
1801
1802Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1803or PowerMac PowerPC system.
1804
1805QEMU emulates the following PowerMac peripherals:
1806
1807@itemize @minus
1808@item
1809UniNorth or Grackle PCI Bridge
1810@item
1811PCI VGA compatible card with VESA Bochs Extensions
1812@item
18132 PMAC IDE interfaces with hard disk and CD-ROM support
1814@item
1815NE2000 PCI adapters
1816@item
1817Non Volatile RAM
1818@item
1819VIA-CUDA with ADB keyboard and mouse.
1820@end itemize
1821
1822QEMU emulates the following PREP peripherals:
1823
1824@itemize @minus
1825@item
1826PCI Bridge
1827@item
1828PCI VGA compatible card with VESA Bochs Extensions
1829@item
18302 IDE interfaces with hard disk and CD-ROM support
1831@item
1832Floppy disk
1833@item
1834NE2000 network adapters
1835@item
1836Serial port
1837@item
1838PREP Non Volatile RAM
1839@item
1840PC compatible keyboard and mouse.
1841@end itemize
1842
1843QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1844@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1845
1846Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1847for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1848v2) portable firmware implementation. The goal is to implement a 100%
1849IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1850
1851@c man begin OPTIONS
1852
1853The following options are specific to the PowerPC emulation:
1854
1855@table @option
1856
1857@item -g @var{W}x@var{H}[x@var{DEPTH}]
1858
1859Set the initial VGA graphic mode. The default is 800x600x15.
1860
1861@item -prom-env @var{string}
1862
1863Set OpenBIOS variables in NVRAM, for example:
1864
1865@example
1866qemu-system-ppc -prom-env 'auto-boot?=false' \
1867 -prom-env 'boot-device=hd:2,\yaboot' \
1868 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1869@end example
1870
1871These variables are not used by Open Hack'Ware.
1872
1873@end table
1874
1875@c man end
1876
1877
1878More information is available at
1879@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1880
1881@node Sparc32 System emulator
1882@section Sparc32 System emulator
1883@cindex system emulation (Sparc32)
1884
1885Use the executable @file{qemu-system-sparc} to simulate the following
1886Sun4m architecture machines:
1887@itemize @minus
1888@item
1889SPARCstation 4
1890@item
1891SPARCstation 5
1892@item
1893SPARCstation 10
1894@item
1895SPARCstation 20
1896@item
1897SPARCserver 600MP
1898@item
1899SPARCstation LX
1900@item
1901SPARCstation Voyager
1902@item
1903SPARCclassic
1904@item
1905SPARCbook
1906@end itemize
1907
1908The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1909but Linux limits the number of usable CPUs to 4.
1910
1911It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1912SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1913emulators are not usable yet.
1914
1915QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1916
1917@itemize @minus
1918@item
1919IOMMU or IO-UNITs
1920@item
1921TCX Frame buffer
1922@item
1923Lance (Am7990) Ethernet
1924@item
1925Non Volatile RAM M48T02/M48T08
1926@item
1927Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1928and power/reset logic
1929@item
1930ESP SCSI controller with hard disk and CD-ROM support
1931@item
1932Floppy drive (not on SS-600MP)
1933@item
1934CS4231 sound device (only on SS-5, not working yet)
1935@end itemize
1936
1937The number of peripherals is fixed in the architecture. Maximum
1938memory size depends on the machine type, for SS-5 it is 256MB and for
1939others 2047MB.
1940
1941Since version 0.8.2, QEMU uses OpenBIOS
1942@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1943firmware implementation. The goal is to implement a 100% IEEE
19441275-1994 (referred to as Open Firmware) compliant firmware.
1945
1946A sample Linux 2.6 series kernel and ram disk image are available on
1947the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1948some kernel versions work. Please note that currently Solaris kernels
1949don't work probably due to interface issues between OpenBIOS and
1950Solaris.
1951
1952@c man begin OPTIONS
1953
1954The following options are specific to the Sparc32 emulation:
1955
1956@table @option
1957
1958@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1959
1960Set the initial TCX graphic mode. The default is 1024x768x8, currently
1961the only other possible mode is 1024x768x24.
1962
1963@item -prom-env @var{string}
1964
1965Set OpenBIOS variables in NVRAM, for example:
1966
1967@example
1968qemu-system-sparc -prom-env 'auto-boot?=false' \
1969 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1970@end example
1971
1972@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1973
1974Set the emulated machine type. Default is SS-5.
1975
1976@end table
1977
1978@c man end
1979
1980@node Sparc64 System emulator
1981@section Sparc64 System emulator
1982@cindex system emulation (Sparc64)
1983
1984Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1985(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1986Niagara (T1) machine. The emulator is not usable for anything yet, but
1987it can launch some kernels.
1988
1989QEMU emulates the following peripherals:
1990
1991@itemize @minus
1992@item
1993UltraSparc IIi APB PCI Bridge
1994@item
1995PCI VGA compatible card with VESA Bochs Extensions
1996@item
1997PS/2 mouse and keyboard
1998@item
1999Non Volatile RAM M48T59
2000@item
2001PC-compatible serial ports
2002@item
20032 PCI IDE interfaces with hard disk and CD-ROM support
2004@item
2005Floppy disk
2006@end itemize
2007
2008@c man begin OPTIONS
2009
2010The following options are specific to the Sparc64 emulation:
2011
2012@table @option
2013
2014@item -prom-env @var{string}
2015
2016Set OpenBIOS variables in NVRAM, for example:
2017
2018@example
2019qemu-system-sparc64 -prom-env 'auto-boot?=false'
2020@end example
2021
2022@item -M [sun4u|sun4v|Niagara]
2023
2024Set the emulated machine type. The default is sun4u.
2025
2026@end table
2027
2028@c man end
2029
2030@node MIPS System emulator
2031@section MIPS System emulator
2032@cindex system emulation (MIPS)
2033
2034Four executables cover simulation of 32 and 64-bit MIPS systems in
2035both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2036@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2037Five different machine types are emulated:
2038
2039@itemize @minus
2040@item
2041A generic ISA PC-like machine "mips"
2042@item
2043The MIPS Malta prototype board "malta"
2044@item
2045An ACER Pica "pica61". This machine needs the 64-bit emulator.
2046@item
2047MIPS emulator pseudo board "mipssim"
2048@item
2049A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2050@end itemize
2051
2052The generic emulation is supported by Debian 'Etch' and is able to
2053install Debian into a virtual disk image. The following devices are
2054emulated:
2055
2056@itemize @minus
2057@item
2058A range of MIPS CPUs, default is the 24Kf
2059@item
2060PC style serial port
2061@item
2062PC style IDE disk
2063@item
2064NE2000 network card
2065@end itemize
2066
2067The Malta emulation supports the following devices:
2068
2069@itemize @minus
2070@item
2071Core board with MIPS 24Kf CPU and Galileo system controller
2072@item
2073PIIX4 PCI/USB/SMbus controller
2074@item
2075The Multi-I/O chip's serial device
2076@item
2077PCI network cards (PCnet32 and others)
2078@item
2079Malta FPGA serial device
2080@item
2081Cirrus (default) or any other PCI VGA graphics card
2082@end itemize
2083
2084The ACER Pica emulation supports:
2085
2086@itemize @minus
2087@item
2088MIPS R4000 CPU
2089@item
2090PC-style IRQ and DMA controllers
2091@item
2092PC Keyboard
2093@item
2094IDE controller
2095@end itemize
2096
2097The mipssim pseudo board emulation provides an environment similar
2098to what the proprietary MIPS emulator uses for running Linux.
2099It supports:
2100
2101@itemize @minus
2102@item
2103A range of MIPS CPUs, default is the 24Kf
2104@item
2105PC style serial port
2106@item
2107MIPSnet network emulation
2108@end itemize
2109
2110The MIPS Magnum R4000 emulation supports:
2111
2112@itemize @minus
2113@item
2114MIPS R4000 CPU
2115@item
2116PC-style IRQ controller
2117@item
2118PC Keyboard
2119@item
2120SCSI controller
2121@item
2122G364 framebuffer
2123@end itemize
2124
2125
2126@node ARM System emulator
2127@section ARM System emulator
2128@cindex system emulation (ARM)
2129
2130Use the executable @file{qemu-system-arm} to simulate a ARM
2131machine. The ARM Integrator/CP board is emulated with the following
2132devices:
2133
2134@itemize @minus
2135@item
2136ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2137@item
2138Two PL011 UARTs
2139@item
2140SMC 91c111 Ethernet adapter
2141@item
2142PL110 LCD controller
2143@item
2144PL050 KMI with PS/2 keyboard and mouse.
2145@item
2146PL181 MultiMedia Card Interface with SD card.
2147@end itemize
2148
2149The ARM Versatile baseboard is emulated with the following devices:
2150
2151@itemize @minus
2152@item
2153ARM926E, ARM1136 or Cortex-A8 CPU
2154@item
2155PL190 Vectored Interrupt Controller
2156@item
2157Four PL011 UARTs
2158@item
2159SMC 91c111 Ethernet adapter
2160@item
2161PL110 LCD controller
2162@item
2163PL050 KMI with PS/2 keyboard and mouse.
2164@item
2165PCI host bridge. Note the emulated PCI bridge only provides access to
2166PCI memory space. It does not provide access to PCI IO space.
2167This means some devices (eg. ne2k_pci NIC) are not usable, and others
2168(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2169mapped control registers.
2170@item
2171PCI OHCI USB controller.
2172@item
2173LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2174@item
2175PL181 MultiMedia Card Interface with SD card.
2176@end itemize
2177
2178Several variants of the ARM RealView baseboard are emulated,
2179including the EB, PB-A8 and PBX-A9. Due to interactions with the
2180bootloader, only certain Linux kernel configurations work out
2181of the box on these boards.
2182
2183Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2184enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2185should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2186disabled and expect 1024M RAM.
2187
2188The following devices are emulated:
2189
2190@itemize @minus
2191@item
2192ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2193@item
2194ARM AMBA Generic/Distributed Interrupt Controller
2195@item
2196Four PL011 UARTs
2197@item
2198SMC 91c111 or SMSC LAN9118 Ethernet adapter
2199@item
2200PL110 LCD controller
2201@item
2202PL050 KMI with PS/2 keyboard and mouse
2203@item
2204PCI host bridge
2205@item
2206PCI OHCI USB controller
2207@item
2208LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2209@item
2210PL181 MultiMedia Card Interface with SD card.
2211@end itemize
2212
2213The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2214and "Terrier") emulation includes the following peripherals:
2215
2216@itemize @minus
2217@item
2218Intel PXA270 System-on-chip (ARM V5TE core)
2219@item
2220NAND Flash memory
2221@item
2222IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2223@item
2224On-chip OHCI USB controller
2225@item
2226On-chip LCD controller
2227@item
2228On-chip Real Time Clock
2229@item
2230TI ADS7846 touchscreen controller on SSP bus
2231@item
2232Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2233@item
2234GPIO-connected keyboard controller and LEDs
2235@item
2236Secure Digital card connected to PXA MMC/SD host
2237@item
2238Three on-chip UARTs
2239@item
2240WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2241@end itemize
2242
2243The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2244following elements:
2245
2246@itemize @minus
2247@item
2248Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2249@item
2250ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2251@item
2252On-chip LCD controller
2253@item
2254On-chip Real Time Clock
2255@item
2256TI TSC2102i touchscreen controller / analog-digital converter / Audio
2257CODEC, connected through MicroWire and I@math{^2}S busses
2258@item
2259GPIO-connected matrix keypad
2260@item
2261Secure Digital card connected to OMAP MMC/SD host
2262@item
2263Three on-chip UARTs
2264@end itemize
2265
2266Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2267emulation supports the following elements:
2268
2269@itemize @minus
2270@item
2271Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2272@item
2273RAM and non-volatile OneNAND Flash memories
2274@item
2275Display connected to EPSON remote framebuffer chip and OMAP on-chip
2276display controller and a LS041y3 MIPI DBI-C controller
2277@item
2278TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2279driven through SPI bus
2280@item
2281National Semiconductor LM8323-controlled qwerty keyboard driven
2282through I@math{^2}C bus
2283@item
2284Secure Digital card connected to OMAP MMC/SD host
2285@item
2286Three OMAP on-chip UARTs and on-chip STI debugging console
2287@item
2288A Bluetooth(R) transceiver and HCI connected to an UART
2289@item
2290Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2291TUSB6010 chip - only USB host mode is supported
2292@item
2293TI TMP105 temperature sensor driven through I@math{^2}C bus
2294@item
2295TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2296@item
2297Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2298through CBUS
2299@end itemize
2300
2301The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2302devices:
2303
2304@itemize @minus
2305@item
2306Cortex-M3 CPU core.
2307@item
230864k Flash and 8k SRAM.
2309@item
2310Timers, UARTs, ADC and I@math{^2}C interface.
2311@item
2312OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2313@end itemize
2314
2315The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2316devices:
2317
2318@itemize @minus
2319@item
2320Cortex-M3 CPU core.
2321@item
2322256k Flash and 64k SRAM.
2323@item
2324Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2325@item
2326OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2327@end itemize
2328
2329The Freecom MusicPal internet radio emulation includes the following
2330elements:
2331
2332@itemize @minus
2333@item
2334Marvell MV88W8618 ARM core.
2335@item
233632 MB RAM, 256 KB SRAM, 8 MB flash.
2337@item
2338Up to 2 16550 UARTs
2339@item
2340MV88W8xx8 Ethernet controller
2341@item
2342MV88W8618 audio controller, WM8750 CODEC and mixer
2343@item
2344128×64 display with brightness control
2345@item
23462 buttons, 2 navigation wheels with button function
2347@end itemize
2348
2349The Siemens SX1 models v1 and v2 (default) basic emulation.
2350The emulation includes the following elements:
2351
2352@itemize @minus
2353@item
2354Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2355@item
2356ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2357V1
23581 Flash of 16MB and 1 Flash of 8MB
2359V2
23601 Flash of 32MB
2361@item
2362On-chip LCD controller
2363@item
2364On-chip Real Time Clock
2365@item
2366Secure Digital card connected to OMAP MMC/SD host
2367@item
2368Three on-chip UARTs
2369@end itemize
2370
2371A Linux 2.6 test image is available on the QEMU web site. More
2372information is available in the QEMU mailing-list archive.
2373
2374@c man begin OPTIONS
2375
2376The following options are specific to the ARM emulation:
2377
2378@table @option
2379
2380@item -semihosting
2381Enable semihosting syscall emulation.
2382
2383On ARM this implements the "Angel" interface.
2384
2385Note that this allows guest direct access to the host filesystem,
2386so should only be used with trusted guest OS.
2387
2388@end table
2389
2390@node ColdFire System emulator
2391@section ColdFire System emulator
2392@cindex system emulation (ColdFire)
2393@cindex system emulation (M68K)
2394
2395Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2396The emulator is able to boot a uClinux kernel.
2397
2398The M5208EVB emulation includes the following devices:
2399
2400@itemize @minus
2401@item
2402MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2403@item
2404Three Two on-chip UARTs.
2405@item
2406Fast Ethernet Controller (FEC)
2407@end itemize
2408
2409The AN5206 emulation includes the following devices:
2410
2411@itemize @minus
2412@item
2413MCF5206 ColdFire V2 Microprocessor.
2414@item
2415Two on-chip UARTs.
2416@end itemize
2417
2418@c man begin OPTIONS
2419
2420The following options are specific to the ColdFire emulation:
2421
2422@table @option
2423
2424@item -semihosting
2425Enable semihosting syscall emulation.
2426
2427On M68K this implements the "ColdFire GDB" interface used by libgloss.
2428
2429Note that this allows guest direct access to the host filesystem,
2430so should only be used with trusted guest OS.
2431
2432@end table
2433
2434@node Cris System emulator
2435@section Cris System emulator
2436@cindex system emulation (Cris)
2437
2438TODO
2439
2440@node Microblaze System emulator
2441@section Microblaze System emulator
2442@cindex system emulation (Microblaze)
2443
2444TODO
2445
2446@node SH4 System emulator
2447@section SH4 System emulator
2448@cindex system emulation (SH4)
2449
2450TODO
2451
2452@node Xtensa System emulator
2453@section Xtensa System emulator
2454@cindex system emulation (Xtensa)
2455
2456Two executables cover simulation of both Xtensa endian options,
2457@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2458Two different machine types are emulated:
2459
2460@itemize @minus
2461@item
2462Xtensa emulator pseudo board "sim"
2463@item
2464Avnet LX60/LX110/LX200 board
2465@end itemize
2466
2467The sim pseudo board emulation provides an environment similar
2468to one provided by the proprietary Tensilica ISS.
2469It supports:
2470
2471@itemize @minus
2472@item
2473A range of Xtensa CPUs, default is the DC232B
2474@item
2475Console and filesystem access via semihosting calls
2476@end itemize
2477
2478The Avnet LX60/LX110/LX200 emulation supports:
2479
2480@itemize @minus
2481@item
2482A range of Xtensa CPUs, default is the DC232B
2483@item
248416550 UART
2485@item
2486OpenCores 10/100 Mbps Ethernet MAC
2487@end itemize
2488
2489@c man begin OPTIONS
2490
2491The following options are specific to the Xtensa emulation:
2492
2493@table @option
2494
2495@item -semihosting
2496Enable semihosting syscall emulation.
2497
2498Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2499Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2500
2501Note that this allows guest direct access to the host filesystem,
2502so should only be used with trusted guest OS.
2503
2504@end table
2505@node QEMU User space emulator
2506@chapter QEMU User space emulator
2507
2508@menu
2509* Supported Operating Systems ::
2510* Linux User space emulator::
2511* BSD User space emulator ::
2512@end menu
2513
2514@node Supported Operating Systems
2515@section Supported Operating Systems
2516
2517The following OS are supported in user space emulation:
2518
2519@itemize @minus
2520@item
2521Linux (referred as qemu-linux-user)
2522@item
2523BSD (referred as qemu-bsd-user)
2524@end itemize
2525
2526@node Linux User space emulator
2527@section Linux User space emulator
2528
2529@menu
2530* Quick Start::
2531* Wine launch::
2532* Command line options::
2533* Other binaries::
2534@end menu
2535
2536@node Quick Start
2537@subsection Quick Start
2538
2539In order to launch a Linux process, QEMU needs the process executable
2540itself and all the target (x86) dynamic libraries used by it.
2541
2542@itemize
2543
2544@item On x86, you can just try to launch any process by using the native
2545libraries:
2546
2547@example
2548qemu-i386 -L / /bin/ls
2549@end example
2550
2551@code{-L /} tells that the x86 dynamic linker must be searched with a
2552@file{/} prefix.
2553
2554@item Since QEMU is also a linux process, you can launch QEMU with
2555QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2556
2557@example
2558qemu-i386 -L / qemu-i386 -L / /bin/ls
2559@end example
2560
2561@item On non x86 CPUs, you need first to download at least an x86 glibc
2562(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2563@code{LD_LIBRARY_PATH} is not set:
2564
2565@example
2566unset LD_LIBRARY_PATH
2567@end example
2568
2569Then you can launch the precompiled @file{ls} x86 executable:
2570
2571@example
2572qemu-i386 tests/i386/ls
2573@end example
2574You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2575QEMU is automatically launched by the Linux kernel when you try to
2576launch x86 executables. It requires the @code{binfmt_misc} module in the
2577Linux kernel.
2578
2579@item The x86 version of QEMU is also included. You can try weird things such as:
2580@example
2581qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2582 /usr/local/qemu-i386/bin/ls-i386
2583@end example
2584
2585@end itemize
2586
2587@node Wine launch
2588@subsection Wine launch
2589
2590@itemize
2591
2592@item Ensure that you have a working QEMU with the x86 glibc
2593distribution (see previous section). In order to verify it, you must be
2594able to do:
2595
2596@example
2597qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2598@end example
2599
2600@item Download the binary x86 Wine install
2601(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2602
2603@item Configure Wine on your account. Look at the provided script
2604@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2605@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2606
2607@item Then you can try the example @file{putty.exe}:
2608
2609@example
2610qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2611 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2612@end example
2613
2614@end itemize
2615
2616@node Command line options
2617@subsection Command line options
2618
2619@example
2620usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2621@end example
2622
2623@table @option
2624@item -h
2625Print the help
2626@item -L path
2627Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2628@item -s size
2629Set the x86 stack size in bytes (default=524288)
2630@item -cpu model
2631Select CPU model (-cpu help for list and additional feature selection)
2632@item -ignore-environment
2633Start with an empty environment. Without this option,
2634the initial environment is a copy of the caller's environment.
2635@item -E @var{var}=@var{value}
2636Set environment @var{var} to @var{value}.
2637@item -U @var{var}
2638Remove @var{var} from the environment.
2639@item -B offset
2640Offset guest address by the specified number of bytes. This is useful when
2641the address region required by guest applications is reserved on the host.
2642This option is currently only supported on some hosts.
2643@item -R size
2644Pre-allocate a guest virtual address space of the given size (in bytes).
2645"G", "M", and "k" suffixes may be used when specifying the size.
2646@end table
2647
2648Debug options:
2649
2650@table @option
2651@item -d item1,...
2652Activate logging of the specified items (use '-d help' for a list of log items)
2653@item -p pagesize
2654Act as if the host page size was 'pagesize' bytes
2655@item -g port
2656Wait gdb connection to port
2657@item -singlestep
2658Run the emulation in single step mode.
2659@end table
2660
2661Environment variables:
2662
2663@table @env
2664@item QEMU_STRACE
2665Print system calls and arguments similar to the 'strace' program
2666(NOTE: the actual 'strace' program will not work because the user
2667space emulator hasn't implemented ptrace). At the moment this is
2668incomplete. All system calls that don't have a specific argument
2669format are printed with information for six arguments. Many
2670flag-style arguments don't have decoders and will show up as numbers.
2671@end table
2672
2673@node Other binaries
2674@subsection Other binaries
2675
2676@cindex user mode (Alpha)
2677@command{qemu-alpha} TODO.
2678
2679@cindex user mode (ARM)
2680@command{qemu-armeb} TODO.
2681
2682@cindex user mode (ARM)
2683@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2684binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2685configurations), and arm-uclinux bFLT format binaries.
2686
2687@cindex user mode (ColdFire)
2688@cindex user mode (M68K)
2689@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2690(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2691coldfire uClinux bFLT format binaries.
2692
2693The binary format is detected automatically.
2694
2695@cindex user mode (Cris)
2696@command{qemu-cris} TODO.
2697
2698@cindex user mode (i386)
2699@command{qemu-i386} TODO.
2700@command{qemu-x86_64} TODO.
2701
2702@cindex user mode (Microblaze)
2703@command{qemu-microblaze} TODO.
2704
2705@cindex user mode (MIPS)
2706@command{qemu-mips} TODO.
2707@command{qemu-mipsel} TODO.
2708
2709@cindex user mode (PowerPC)
2710@command{qemu-ppc64abi32} TODO.
2711@command{qemu-ppc64} TODO.
2712@command{qemu-ppc} TODO.
2713
2714@cindex user mode (SH4)
2715@command{qemu-sh4eb} TODO.
2716@command{qemu-sh4} TODO.
2717
2718@cindex user mode (SPARC)
2719@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2720
2721@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2722(Sparc64 CPU, 32 bit ABI).
2723
2724@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2725SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2726
2727@node BSD User space emulator
2728@section BSD User space emulator
2729
2730@menu
2731* BSD Status::
2732* BSD Quick Start::
2733* BSD Command line options::
2734@end menu
2735
2736@node BSD Status
2737@subsection BSD Status
2738
2739@itemize @minus
2740@item
2741target Sparc64 on Sparc64: Some trivial programs work.
2742@end itemize
2743
2744@node BSD Quick Start
2745@subsection Quick Start
2746
2747In order to launch a BSD process, QEMU needs the process executable
2748itself and all the target dynamic libraries used by it.
2749
2750@itemize
2751
2752@item On Sparc64, you can just try to launch any process by using the native
2753libraries:
2754
2755@example
2756qemu-sparc64 /bin/ls
2757@end example
2758
2759@end itemize
2760
2761@node BSD Command line options
2762@subsection Command line options
2763
2764@example
2765usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2766@end example
2767
2768@table @option
2769@item -h
2770Print the help
2771@item -L path
2772Set the library root path (default=/)
2773@item -s size
2774Set the stack size in bytes (default=524288)
2775@item -ignore-environment
2776Start with an empty environment. Without this option,
2777the initial environment is a copy of the caller's environment.
2778@item -E @var{var}=@var{value}
2779Set environment @var{var} to @var{value}.
2780@item -U @var{var}
2781Remove @var{var} from the environment.
2782@item -bsd type
2783Set the type of the emulated BSD Operating system. Valid values are
2784FreeBSD, NetBSD and OpenBSD (default).
2785@end table
2786
2787Debug options:
2788
2789@table @option
2790@item -d item1,...
2791Activate logging of the specified items (use '-d help' for a list of log items)
2792@item -p pagesize
2793Act as if the host page size was 'pagesize' bytes
2794@item -singlestep
2795Run the emulation in single step mode.
2796@end table
2797
2798@node compilation
2799@chapter Compilation from the sources
2800
2801@menu
2802* Linux/Unix::
2803* Windows::
2804* Cross compilation for Windows with Linux::
2805* Mac OS X::
2806* Make targets::
2807@end menu
2808
2809@node Linux/Unix
2810@section Linux/Unix
2811
2812@subsection Compilation
2813
2814First you must decompress the sources:
2815@example
2816cd /tmp
2817tar zxvf qemu-x.y.z.tar.gz
2818cd qemu-x.y.z
2819@end example
2820
2821Then you configure QEMU and build it (usually no options are needed):
2822@example
2823./configure
2824make
2825@end example
2826
2827Then type as root user:
2828@example
2829make install
2830@end example
2831to install QEMU in @file{/usr/local}.
2832
2833@node Windows
2834@section Windows
2835
2836@itemize
2837@item Install the current versions of MSYS and MinGW from
2838@url{http://www.mingw.org/}. You can find detailed installation
2839instructions in the download section and the FAQ.
2840
2841@item Download
2842the MinGW development library of SDL 1.2.x
2843(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2844@url{http://www.libsdl.org}. Unpack it in a temporary place and
2845edit the @file{sdl-config} script so that it gives the
2846correct SDL directory when invoked.
2847
2848@item Install the MinGW version of zlib and make sure
2849@file{zlib.h} and @file{libz.dll.a} are in
2850MinGW's default header and linker search paths.
2851
2852@item Extract the current version of QEMU.
2853
2854@item Start the MSYS shell (file @file{msys.bat}).
2855
2856@item Change to the QEMU directory. Launch @file{./configure} and
2857@file{make}. If you have problems using SDL, verify that
2858@file{sdl-config} can be launched from the MSYS command line.
2859
2860@item You can install QEMU in @file{Program Files/QEMU} by typing
2861@file{make install}. Don't forget to copy @file{SDL.dll} in
2862@file{Program Files/QEMU}.
2863
2864@end itemize
2865
2866@node Cross compilation for Windows with Linux
2867@section Cross compilation for Windows with Linux
2868
2869@itemize
2870@item
2871Install the MinGW cross compilation tools available at
2872@url{http://www.mingw.org/}.
2873
2874@item Download
2875the MinGW development library of SDL 1.2.x
2876(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2877@url{http://www.libsdl.org}. Unpack it in a temporary place and
2878edit the @file{sdl-config} script so that it gives the
2879correct SDL directory when invoked. Set up the @code{PATH} environment
2880variable so that @file{sdl-config} can be launched by
2881the QEMU configuration script.
2882
2883@item Install the MinGW version of zlib and make sure
2884@file{zlib.h} and @file{libz.dll.a} are in
2885MinGW's default header and linker search paths.
2886
2887@item
2888Configure QEMU for Windows cross compilation:
2889@example
2890PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2891@end example
2892The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2893MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2894We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2895use --cross-prefix to specify the name of the cross compiler.
2896You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
2897
2898Under Fedora Linux, you can run:
2899@example
2900yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2901@end example
2902to get a suitable cross compilation environment.
2903
2904@item You can install QEMU in the installation directory by typing
2905@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2906installation directory.
2907
2908@end itemize
2909
2910Wine can be used to launch the resulting qemu-system-i386.exe
2911and all other qemu-system-@var{target}.exe compiled for Win32.
2912
2913@node Mac OS X
2914@section Mac OS X
2915
2916The Mac OS X patches are not fully merged in QEMU, so you should look
2917at the QEMU mailing list archive to have all the necessary
2918information.
2919
2920@node Make targets
2921@section Make targets
2922
2923@table @code
2924
2925@item make
2926@item make all
2927Make everything which is typically needed.
2928
2929@item install
2930TODO
2931
2932@item install-doc
2933TODO
2934
2935@item make clean
2936Remove most files which were built during make.
2937
2938@item make distclean
2939Remove everything which was built during make.
2940
2941@item make dvi
2942@item make html
2943@item make info
2944@item make pdf
2945Create documentation in dvi, html, info or pdf format.
2946
2947@item make cscope
2948TODO
2949
2950@item make defconfig
2951(Re-)create some build configuration files.
2952User made changes will be overwritten.
2953
2954@item tar
2955@item tarbin
2956TODO
2957
2958@end table
2959
2960@node License
2961@appendix License
2962
2963QEMU is a trademark of Fabrice Bellard.
2964
2965QEMU is released under the GNU General Public License (TODO: add link).
2966Parts of QEMU have specific licenses, see file LICENSE.
2967
2968TODO (refer to file LICENSE, include it, include the GPL?)
2969
2970@node Index
2971@appendix Index
2972@menu
2973* Concept Index::
2974* Function Index::
2975* Keystroke Index::
2976* Program Index::
2977* Data Type Index::
2978* Variable Index::
2979@end menu
2980
2981@node Concept Index
2982@section Concept Index
2983This is the main index. Should we combine all keywords in one index? TODO
2984@printindex cp
2985
2986@node Function Index
2987@section Function Index
2988This index could be used for command line options and monitor functions.
2989@printindex fn
2990
2991@node Keystroke Index
2992@section Keystroke Index
2993
2994This is a list of all keystrokes which have a special function
2995in system emulation.
2996
2997@printindex ky
2998
2999@node Program Index
3000@section Program Index
3001@printindex pg
3002
3003@node Data Type Index
3004@section Data Type Index
3005
3006This index could be used for qdev device names and options.
3007
3008@printindex tp
3009
3010@node Variable Index
3011@section Variable Index
3012@printindex vr
3013
3014@bye