]> git.proxmox.com Git - qemu.git/blame_incremental - qemu-doc.texi
msix: Introduce vector notifiers
[qemu.git] / qemu-doc.texi
... / ...
CommitLineData
1\input texinfo @c -*- texinfo -*-
2@c %**start of header
3@setfilename qemu-doc.info
4
5@documentlanguage en
6@documentencoding UTF-8
7
8@settitle QEMU Emulator User Documentation
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
12
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
19@iftex
20@titlepage
21@sp 7
22@center @titlefont{QEMU Emulator}
23@sp 1
24@center @titlefont{User Documentation}
25@sp 3
26@end titlepage
27@end iftex
28
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
38* QEMU User space emulator::
39* compilation:: Compilation from the sources
40* License::
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
48@chapter Introduction
49
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
55@section Features
56
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
59
60QEMU has two operating modes:
61
62@itemize
63@cindex operating modes
64
65@item
66@cindex system emulation
67Full system emulation. In this mode, QEMU emulates a full system (for
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
71
72@item
73@cindex user mode emulation
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
78
79@end itemize
80
81QEMU can run without an host kernel driver and yet gives acceptable
82performance.
83
84For system emulation, the following hardware targets are supported:
85@itemize
86@cindex emulated target systems
87@cindex supported target systems
88@item PC (x86 or x86_64 processor)
89@item ISA PC (old style PC without PCI bus)
90@item PREP (PowerPC processor)
91@item G3 Beige PowerMac (PowerPC processor)
92@item Mac99 PowerMac (PowerPC processor, in progress)
93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95@item Malta board (32-bit and 64-bit MIPS processors)
96@item MIPS Magnum (64-bit MIPS processor)
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
99@item ARM RealView Emulation/Platform baseboard (ARM)
100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103@item Freescale MCF5208EVB (ColdFire V2).
104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105@item Palm Tungsten|E PDA (OMAP310 processor)
106@item N800 and N810 tablets (OMAP2420 processor)
107@item MusicPal (MV88W8618 ARM processor)
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
112@item Avnet LX60/LX110/LX200 boards (Xtensa)
113@end itemize
114
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119
120@node Installation
121@chapter Installation
122
123If you want to compile QEMU yourself, see @ref{compilation}.
124
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
132@section Linux
133@cindex installation (Linux)
134
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
137
138@node install_windows
139@section Windows
140@cindex installation (Windows)
141
142Download the experimental binary installer at
143@url{http://www.free.oszoo.org/@/download.html}.
144TODO (no longer available)
145
146@node install_mac
147@section Mac OS X
148
149Download the experimental binary installer at
150@url{http://www.free.oszoo.org/@/download.html}.
151TODO (no longer available)
152
153@node QEMU PC System emulator
154@chapter QEMU PC System emulator
155@cindex system emulation (PC)
156
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
165* pcsys_other_devs:: Other Devices
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
168* vnc_security:: VNC security
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
174@section Introduction
175
176@c man begin DESCRIPTION
177
178The QEMU PC System emulator simulates the
179following peripherals:
180
181@itemize @minus
182@item
183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184@item
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
187@item
188PS/2 mouse and keyboard
189@item
1902 PCI IDE interfaces with hard disk and CD-ROM support
191@item
192Floppy disk
193@item
194PCI and ISA network adapters
195@item
196Serial ports
197@item
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
202Intel 82801AA AC97 Audio compatible sound card
203@item
204Intel HD Audio Controller and HDA codec
205@item
206Adlib (OPL2) - Yamaha YM3812 compatible chip
207@item
208Gravis Ultrasound GF1 sound card
209@item
210CS4231A compatible sound card
211@item
212PCI UHCI USB controller and a virtual USB hub.
213@end itemize
214
215SMP is supported with up to 255 CPUs.
216
217Note that adlib, gus and cs4231a are only available when QEMU was
218configured with --audio-card-list option containing the name(s) of
219required card(s).
220
221QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222VGA BIOS.
223
224QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225
226QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
227by Tibor "TS" Schütz.
228
229Note that, by default, GUS shares IRQ(7) with parallel ports and so
230qemu must be told to not have parallel ports to have working GUS
231
232@example
233qemu dos.img -soundhw gus -parallel none
234@end example
235
236Alternatively:
237@example
238qemu dos.img -device gus,irq=5
239@end example
240
241Or some other unclaimed IRQ.
242
243CS4231A is the chip used in Windows Sound System and GUSMAX products
244
245@c man end
246
247@node pcsys_quickstart
248@section Quick Start
249@cindex quick start
250
251Download and uncompress the linux image (@file{linux.img}) and type:
252
253@example
254qemu linux.img
255@end example
256
257Linux should boot and give you a prompt.
258
259@node sec_invocation
260@section Invocation
261
262@example
263@c man begin SYNOPSIS
264usage: qemu [options] [@var{disk_image}]
265@c man end
266@end example
267
268@c man begin OPTIONS
269@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270targets do not need a disk image.
271
272@include qemu-options.texi
273
274@c man end
275
276@node pcsys_keys
277@section Keys
278
279@c man begin OPTIONS
280
281During the graphical emulation, you can use special key combinations to change
282modes. The default key mappings are shown below, but if you use @code{-alt-grab}
283then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
284@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
285
286@table @key
287@item Ctrl-Alt-f
288@kindex Ctrl-Alt-f
289Toggle full screen
290
291@item Ctrl-Alt-+
292@kindex Ctrl-Alt-+
293Enlarge the screen
294
295@item Ctrl-Alt--
296@kindex Ctrl-Alt--
297Shrink the screen
298
299@item Ctrl-Alt-u
300@kindex Ctrl-Alt-u
301Restore the screen's un-scaled dimensions
302
303@item Ctrl-Alt-n
304@kindex Ctrl-Alt-n
305Switch to virtual console 'n'. Standard console mappings are:
306@table @emph
307@item 1
308Target system display
309@item 2
310Monitor
311@item 3
312Serial port
313@end table
314
315@item Ctrl-Alt
316@kindex Ctrl-Alt
317Toggle mouse and keyboard grab.
318@end table
319
320@kindex Ctrl-Up
321@kindex Ctrl-Down
322@kindex Ctrl-PageUp
323@kindex Ctrl-PageDown
324In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
325@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
326
327@kindex Ctrl-a h
328During emulation, if you are using the @option{-nographic} option, use
329@key{Ctrl-a h} to get terminal commands:
330
331@table @key
332@item Ctrl-a h
333@kindex Ctrl-a h
334@item Ctrl-a ?
335@kindex Ctrl-a ?
336Print this help
337@item Ctrl-a x
338@kindex Ctrl-a x
339Exit emulator
340@item Ctrl-a s
341@kindex Ctrl-a s
342Save disk data back to file (if -snapshot)
343@item Ctrl-a t
344@kindex Ctrl-a t
345Toggle console timestamps
346@item Ctrl-a b
347@kindex Ctrl-a b
348Send break (magic sysrq in Linux)
349@item Ctrl-a c
350@kindex Ctrl-a c
351Switch between console and monitor
352@item Ctrl-a Ctrl-a
353@kindex Ctrl-a a
354Send Ctrl-a
355@end table
356@c man end
357
358@ignore
359
360@c man begin SEEALSO
361The HTML documentation of QEMU for more precise information and Linux
362user mode emulator invocation.
363@c man end
364
365@c man begin AUTHOR
366Fabrice Bellard
367@c man end
368
369@end ignore
370
371@node pcsys_monitor
372@section QEMU Monitor
373@cindex QEMU monitor
374
375The QEMU monitor is used to give complex commands to the QEMU
376emulator. You can use it to:
377
378@itemize @minus
379
380@item
381Remove or insert removable media images
382(such as CD-ROM or floppies).
383
384@item
385Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
386from a disk file.
387
388@item Inspect the VM state without an external debugger.
389
390@end itemize
391
392@subsection Commands
393
394The following commands are available:
395
396@include qemu-monitor.texi
397
398@subsection Integer expressions
399
400The monitor understands integers expressions for every integer
401argument. You can use register names to get the value of specifics
402CPU registers by prefixing them with @emph{$}.
403
404@node disk_images
405@section Disk Images
406
407Since version 0.6.1, QEMU supports many disk image formats, including
408growable disk images (their size increase as non empty sectors are
409written), compressed and encrypted disk images. Version 0.8.3 added
410the new qcow2 disk image format which is essential to support VM
411snapshots.
412
413@menu
414* disk_images_quickstart:: Quick start for disk image creation
415* disk_images_snapshot_mode:: Snapshot mode
416* vm_snapshots:: VM snapshots
417* qemu_img_invocation:: qemu-img Invocation
418* qemu_nbd_invocation:: qemu-nbd Invocation
419* host_drives:: Using host drives
420* disk_images_fat_images:: Virtual FAT disk images
421* disk_images_nbd:: NBD access
422* disk_images_sheepdog:: Sheepdog disk images
423* disk_images_iscsi:: iSCSI LUNs
424@end menu
425
426@node disk_images_quickstart
427@subsection Quick start for disk image creation
428
429You can create a disk image with the command:
430@example
431qemu-img create myimage.img mysize
432@end example
433where @var{myimage.img} is the disk image filename and @var{mysize} is its
434size in kilobytes. You can add an @code{M} suffix to give the size in
435megabytes and a @code{G} suffix for gigabytes.
436
437See @ref{qemu_img_invocation} for more information.
438
439@node disk_images_snapshot_mode
440@subsection Snapshot mode
441
442If you use the option @option{-snapshot}, all disk images are
443considered as read only. When sectors in written, they are written in
444a temporary file created in @file{/tmp}. You can however force the
445write back to the raw disk images by using the @code{commit} monitor
446command (or @key{C-a s} in the serial console).
447
448@node vm_snapshots
449@subsection VM snapshots
450
451VM snapshots are snapshots of the complete virtual machine including
452CPU state, RAM, device state and the content of all the writable
453disks. In order to use VM snapshots, you must have at least one non
454removable and writable block device using the @code{qcow2} disk image
455format. Normally this device is the first virtual hard drive.
456
457Use the monitor command @code{savevm} to create a new VM snapshot or
458replace an existing one. A human readable name can be assigned to each
459snapshot in addition to its numerical ID.
460
461Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
462a VM snapshot. @code{info snapshots} lists the available snapshots
463with their associated information:
464
465@example
466(qemu) info snapshots
467Snapshot devices: hda
468Snapshot list (from hda):
469ID TAG VM SIZE DATE VM CLOCK
4701 start 41M 2006-08-06 12:38:02 00:00:14.954
4712 40M 2006-08-06 12:43:29 00:00:18.633
4723 msys 40M 2006-08-06 12:44:04 00:00:23.514
473@end example
474
475A VM snapshot is made of a VM state info (its size is shown in
476@code{info snapshots}) and a snapshot of every writable disk image.
477The VM state info is stored in the first @code{qcow2} non removable
478and writable block device. The disk image snapshots are stored in
479every disk image. The size of a snapshot in a disk image is difficult
480to evaluate and is not shown by @code{info snapshots} because the
481associated disk sectors are shared among all the snapshots to save
482disk space (otherwise each snapshot would need a full copy of all the
483disk images).
484
485When using the (unrelated) @code{-snapshot} option
486(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
487but they are deleted as soon as you exit QEMU.
488
489VM snapshots currently have the following known limitations:
490@itemize
491@item
492They cannot cope with removable devices if they are removed or
493inserted after a snapshot is done.
494@item
495A few device drivers still have incomplete snapshot support so their
496state is not saved or restored properly (in particular USB).
497@end itemize
498
499@node qemu_img_invocation
500@subsection @code{qemu-img} Invocation
501
502@include qemu-img.texi
503
504@node qemu_nbd_invocation
505@subsection @code{qemu-nbd} Invocation
506
507@include qemu-nbd.texi
508
509@node host_drives
510@subsection Using host drives
511
512In addition to disk image files, QEMU can directly access host
513devices. We describe here the usage for QEMU version >= 0.8.3.
514
515@subsubsection Linux
516
517On Linux, you can directly use the host device filename instead of a
518disk image filename provided you have enough privileges to access
519it. For example, use @file{/dev/cdrom} to access to the CDROM or
520@file{/dev/fd0} for the floppy.
521
522@table @code
523@item CD
524You can specify a CDROM device even if no CDROM is loaded. QEMU has
525specific code to detect CDROM insertion or removal. CDROM ejection by
526the guest OS is supported. Currently only data CDs are supported.
527@item Floppy
528You can specify a floppy device even if no floppy is loaded. Floppy
529removal is currently not detected accurately (if you change floppy
530without doing floppy access while the floppy is not loaded, the guest
531OS will think that the same floppy is loaded).
532@item Hard disks
533Hard disks can be used. Normally you must specify the whole disk
534(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
535see it as a partitioned disk. WARNING: unless you know what you do, it
536is better to only make READ-ONLY accesses to the hard disk otherwise
537you may corrupt your host data (use the @option{-snapshot} command
538line option or modify the device permissions accordingly).
539@end table
540
541@subsubsection Windows
542
543@table @code
544@item CD
545The preferred syntax is the drive letter (e.g. @file{d:}). The
546alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
547supported as an alias to the first CDROM drive.
548
549Currently there is no specific code to handle removable media, so it
550is better to use the @code{change} or @code{eject} monitor commands to
551change or eject media.
552@item Hard disks
553Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
554where @var{N} is the drive number (0 is the first hard disk).
555
556WARNING: unless you know what you do, it is better to only make
557READ-ONLY accesses to the hard disk otherwise you may corrupt your
558host data (use the @option{-snapshot} command line so that the
559modifications are written in a temporary file).
560@end table
561
562
563@subsubsection Mac OS X
564
565@file{/dev/cdrom} is an alias to the first CDROM.
566
567Currently there is no specific code to handle removable media, so it
568is better to use the @code{change} or @code{eject} monitor commands to
569change or eject media.
570
571@node disk_images_fat_images
572@subsection Virtual FAT disk images
573
574QEMU can automatically create a virtual FAT disk image from a
575directory tree. In order to use it, just type:
576
577@example
578qemu linux.img -hdb fat:/my_directory
579@end example
580
581Then you access access to all the files in the @file{/my_directory}
582directory without having to copy them in a disk image or to export
583them via SAMBA or NFS. The default access is @emph{read-only}.
584
585Floppies can be emulated with the @code{:floppy:} option:
586
587@example
588qemu linux.img -fda fat:floppy:/my_directory
589@end example
590
591A read/write support is available for testing (beta stage) with the
592@code{:rw:} option:
593
594@example
595qemu linux.img -fda fat:floppy:rw:/my_directory
596@end example
597
598What you should @emph{never} do:
599@itemize
600@item use non-ASCII filenames ;
601@item use "-snapshot" together with ":rw:" ;
602@item expect it to work when loadvm'ing ;
603@item write to the FAT directory on the host system while accessing it with the guest system.
604@end itemize
605
606@node disk_images_nbd
607@subsection NBD access
608
609QEMU can access directly to block device exported using the Network Block Device
610protocol.
611
612@example
613qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
614@end example
615
616If the NBD server is located on the same host, you can use an unix socket instead
617of an inet socket:
618
619@example
620qemu linux.img -hdb nbd:unix:/tmp/my_socket
621@end example
622
623In this case, the block device must be exported using qemu-nbd:
624
625@example
626qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
627@end example
628
629The use of qemu-nbd allows to share a disk between several guests:
630@example
631qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
632@end example
633
634and then you can use it with two guests:
635@example
636qemu linux1.img -hdb nbd:unix:/tmp/my_socket
637qemu linux2.img -hdb nbd:unix:/tmp/my_socket
638@end example
639
640If the nbd-server uses named exports (since NBD 2.9.18), you must use the
641"exportname" option:
642@example
643qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
644qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
645@end example
646
647@node disk_images_sheepdog
648@subsection Sheepdog disk images
649
650Sheepdog is a distributed storage system for QEMU. It provides highly
651available block level storage volumes that can be attached to
652QEMU-based virtual machines.
653
654You can create a Sheepdog disk image with the command:
655@example
656qemu-img create sheepdog:@var{image} @var{size}
657@end example
658where @var{image} is the Sheepdog image name and @var{size} is its
659size.
660
661To import the existing @var{filename} to Sheepdog, you can use a
662convert command.
663@example
664qemu-img convert @var{filename} sheepdog:@var{image}
665@end example
666
667You can boot from the Sheepdog disk image with the command:
668@example
669qemu sheepdog:@var{image}
670@end example
671
672You can also create a snapshot of the Sheepdog image like qcow2.
673@example
674qemu-img snapshot -c @var{tag} sheepdog:@var{image}
675@end example
676where @var{tag} is a tag name of the newly created snapshot.
677
678To boot from the Sheepdog snapshot, specify the tag name of the
679snapshot.
680@example
681qemu sheepdog:@var{image}:@var{tag}
682@end example
683
684You can create a cloned image from the existing snapshot.
685@example
686qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
687@end example
688where @var{base} is a image name of the source snapshot and @var{tag}
689is its tag name.
690
691If the Sheepdog daemon doesn't run on the local host, you need to
692specify one of the Sheepdog servers to connect to.
693@example
694qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
695qemu sheepdog:@var{hostname}:@var{port}:@var{image}
696@end example
697
698@node disk_images_iscsi
699@subsection iSCSI LUNs
700
701iSCSI is a popular protocol used to access SCSI devices across a computer
702network.
703
704There are two different ways iSCSI devices can be used by QEMU.
705
706The first method is to mount the iSCSI LUN on the host, and make it appear as
707any other ordinary SCSI device on the host and then to access this device as a
708/dev/sd device from QEMU. How to do this differs between host OSes.
709
710The second method involves using the iSCSI initiator that is built into
711QEMU. This provides a mechanism that works the same way regardless of which
712host OS you are running QEMU on. This section will describe this second method
713of using iSCSI together with QEMU.
714
715In QEMU, iSCSI devices are described using special iSCSI URLs
716
717@example
718URL syntax:
719iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
720@end example
721
722Username and password are optional and only used if your target is set up
723using CHAP authentication for access control.
724Alternatively the username and password can also be set via environment
725variables to have these not show up in the process list
726
727@example
728export LIBISCSI_CHAP_USERNAME=<username>
729export LIBISCSI_CHAP_PASSWORD=<password>
730iscsi://<host>/<target-iqn-name>/<lun>
731@end example
732
733Various session related parameters can be set via special options, either
734in a configuration file provided via '-readconfig' or directly on the
735command line.
736
737@example
738Setting a specific initiator name to use when logging in to the target
739-iscsi initiator-name=iqn.qemu.test:my-initiator
740@end example
741
742@example
743Controlling which type of header digest to negotiate with the target
744-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
745@end example
746
747These can also be set via a configuration file
748@example
749[iscsi]
750 user = "CHAP username"
751 password = "CHAP password"
752 initiator-name = "iqn.qemu.test:my-initiator"
753 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
754 header-digest = "CRC32C"
755@end example
756
757
758Setting the target name allows different options for different targets
759@example
760[iscsi "iqn.target.name"]
761 user = "CHAP username"
762 password = "CHAP password"
763 initiator-name = "iqn.qemu.test:my-initiator"
764 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
765 header-digest = "CRC32C"
766@end example
767
768
769Howto use a configuration file to set iSCSI configuration options:
770@example
771cat >iscsi.conf <<EOF
772[iscsi]
773 user = "me"
774 password = "my password"
775 initiator-name = "iqn.qemu.test:my-initiator"
776 header-digest = "CRC32C"
777EOF
778
779qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
780 -readconfig iscsi.conf
781@end example
782
783
784Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
785@example
786This example shows how to set up an iSCSI target with one CDROM and one DISK
787using the Linux STGT software target. This target is available on Red Hat based
788systems as the package 'scsi-target-utils'.
789
790tgtd --iscsi portal=127.0.0.1:3260
791tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
792tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
793 -b /IMAGES/disk.img --device-type=disk
794tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
795 -b /IMAGES/cd.iso --device-type=cd
796tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
797
798qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
799 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
800 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
801@end example
802
803
804
805@node pcsys_network
806@section Network emulation
807
808QEMU can simulate several network cards (PCI or ISA cards on the PC
809target) and can connect them to an arbitrary number of Virtual Local
810Area Networks (VLANs). Host TAP devices can be connected to any QEMU
811VLAN. VLAN can be connected between separate instances of QEMU to
812simulate large networks. For simpler usage, a non privileged user mode
813network stack can replace the TAP device to have a basic network
814connection.
815
816@subsection VLANs
817
818QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
819connection between several network devices. These devices can be for
820example QEMU virtual Ethernet cards or virtual Host ethernet devices
821(TAP devices).
822
823@subsection Using TAP network interfaces
824
825This is the standard way to connect QEMU to a real network. QEMU adds
826a virtual network device on your host (called @code{tapN}), and you
827can then configure it as if it was a real ethernet card.
828
829@subsubsection Linux host
830
831As an example, you can download the @file{linux-test-xxx.tar.gz}
832archive and copy the script @file{qemu-ifup} in @file{/etc} and
833configure properly @code{sudo} so that the command @code{ifconfig}
834contained in @file{qemu-ifup} can be executed as root. You must verify
835that your host kernel supports the TAP network interfaces: the
836device @file{/dev/net/tun} must be present.
837
838See @ref{sec_invocation} to have examples of command lines using the
839TAP network interfaces.
840
841@subsubsection Windows host
842
843There is a virtual ethernet driver for Windows 2000/XP systems, called
844TAP-Win32. But it is not included in standard QEMU for Windows,
845so you will need to get it separately. It is part of OpenVPN package,
846so download OpenVPN from : @url{http://openvpn.net/}.
847
848@subsection Using the user mode network stack
849
850By using the option @option{-net user} (default configuration if no
851@option{-net} option is specified), QEMU uses a completely user mode
852network stack (you don't need root privilege to use the virtual
853network). The virtual network configuration is the following:
854
855@example
856
857 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
858 | (10.0.2.2)
859 |
860 ----> DNS server (10.0.2.3)
861 |
862 ----> SMB server (10.0.2.4)
863@end example
864
865The QEMU VM behaves as if it was behind a firewall which blocks all
866incoming connections. You can use a DHCP client to automatically
867configure the network in the QEMU VM. The DHCP server assign addresses
868to the hosts starting from 10.0.2.15.
869
870In order to check that the user mode network is working, you can ping
871the address 10.0.2.2 and verify that you got an address in the range
87210.0.2.x from the QEMU virtual DHCP server.
873
874Note that @code{ping} is not supported reliably to the internet as it
875would require root privileges. It means you can only ping the local
876router (10.0.2.2).
877
878When using the built-in TFTP server, the router is also the TFTP
879server.
880
881When using the @option{-redir} option, TCP or UDP connections can be
882redirected from the host to the guest. It allows for example to
883redirect X11, telnet or SSH connections.
884
885@subsection Connecting VLANs between QEMU instances
886
887Using the @option{-net socket} option, it is possible to make VLANs
888that span several QEMU instances. See @ref{sec_invocation} to have a
889basic example.
890
891@node pcsys_other_devs
892@section Other Devices
893
894@subsection Inter-VM Shared Memory device
895
896With KVM enabled on a Linux host, a shared memory device is available. Guests
897map a POSIX shared memory region into the guest as a PCI device that enables
898zero-copy communication to the application level of the guests. The basic
899syntax is:
900
901@example
902qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
903@end example
904
905If desired, interrupts can be sent between guest VMs accessing the same shared
906memory region. Interrupt support requires using a shared memory server and
907using a chardev socket to connect to it. The code for the shared memory server
908is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
909memory server is:
910
911@example
912qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
913 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
914qemu -chardev socket,path=<path>,id=<id>
915@end example
916
917When using the server, the guest will be assigned a VM ID (>=0) that allows guests
918using the same server to communicate via interrupts. Guests can read their
919VM ID from a device register (see example code). Since receiving the shared
920memory region from the server is asynchronous, there is a (small) chance the
921guest may boot before the shared memory is attached. To allow an application
922to ensure shared memory is attached, the VM ID register will return -1 (an
923invalid VM ID) until the memory is attached. Once the shared memory is
924attached, the VM ID will return the guest's valid VM ID. With these semantics,
925the guest application can check to ensure the shared memory is attached to the
926guest before proceeding.
927
928The @option{role} argument can be set to either master or peer and will affect
929how the shared memory is migrated. With @option{role=master}, the guest will
930copy the shared memory on migration to the destination host. With
931@option{role=peer}, the guest will not be able to migrate with the device attached.
932With the @option{peer} case, the device should be detached and then reattached
933after migration using the PCI hotplug support.
934
935@node direct_linux_boot
936@section Direct Linux Boot
937
938This section explains how to launch a Linux kernel inside QEMU without
939having to make a full bootable image. It is very useful for fast Linux
940kernel testing.
941
942The syntax is:
943@example
944qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
945@end example
946
947Use @option{-kernel} to provide the Linux kernel image and
948@option{-append} to give the kernel command line arguments. The
949@option{-initrd} option can be used to provide an INITRD image.
950
951When using the direct Linux boot, a disk image for the first hard disk
952@file{hda} is required because its boot sector is used to launch the
953Linux kernel.
954
955If you do not need graphical output, you can disable it and redirect
956the virtual serial port and the QEMU monitor to the console with the
957@option{-nographic} option. The typical command line is:
958@example
959qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
960 -append "root=/dev/hda console=ttyS0" -nographic
961@end example
962
963Use @key{Ctrl-a c} to switch between the serial console and the
964monitor (@pxref{pcsys_keys}).
965
966@node pcsys_usb
967@section USB emulation
968
969QEMU emulates a PCI UHCI USB controller. You can virtually plug
970virtual USB devices or real host USB devices (experimental, works only
971on Linux hosts). QEMU will automatically create and connect virtual USB hubs
972as necessary to connect multiple USB devices.
973
974@menu
975* usb_devices::
976* host_usb_devices::
977@end menu
978@node usb_devices
979@subsection Connecting USB devices
980
981USB devices can be connected with the @option{-usbdevice} commandline option
982or the @code{usb_add} monitor command. Available devices are:
983
984@table @code
985@item mouse
986Virtual Mouse. This will override the PS/2 mouse emulation when activated.
987@item tablet
988Pointer device that uses absolute coordinates (like a touchscreen).
989This means qemu is able to report the mouse position without having
990to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
991@item disk:@var{file}
992Mass storage device based on @var{file} (@pxref{disk_images})
993@item host:@var{bus.addr}
994Pass through the host device identified by @var{bus.addr}
995(Linux only)
996@item host:@var{vendor_id:product_id}
997Pass through the host device identified by @var{vendor_id:product_id}
998(Linux only)
999@item wacom-tablet
1000Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1001above but it can be used with the tslib library because in addition to touch
1002coordinates it reports touch pressure.
1003@item keyboard
1004Standard USB keyboard. Will override the PS/2 keyboard (if present).
1005@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1006Serial converter. This emulates an FTDI FT232BM chip connected to host character
1007device @var{dev}. The available character devices are the same as for the
1008@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1009used to override the default 0403:6001. For instance,
1010@example
1011usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1012@end example
1013will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1014serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1015@item braille
1016Braille device. This will use BrlAPI to display the braille output on a real
1017or fake device.
1018@item net:@var{options}
1019Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1020specifies NIC options as with @code{-net nic,}@var{options} (see description).
1021For instance, user-mode networking can be used with
1022@example
1023qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1024@end example
1025Currently this cannot be used in machines that support PCI NICs.
1026@item bt[:@var{hci-type}]
1027Bluetooth dongle whose type is specified in the same format as with
1028the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1029no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1030This USB device implements the USB Transport Layer of HCI. Example
1031usage:
1032@example
1033qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1034@end example
1035@end table
1036
1037@node host_usb_devices
1038@subsection Using host USB devices on a Linux host
1039
1040WARNING: this is an experimental feature. QEMU will slow down when
1041using it. USB devices requiring real time streaming (i.e. USB Video
1042Cameras) are not supported yet.
1043
1044@enumerate
1045@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1046is actually using the USB device. A simple way to do that is simply to
1047disable the corresponding kernel module by renaming it from @file{mydriver.o}
1048to @file{mydriver.o.disabled}.
1049
1050@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1051@example
1052ls /proc/bus/usb
1053001 devices drivers
1054@end example
1055
1056@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1057@example
1058chown -R myuid /proc/bus/usb
1059@end example
1060
1061@item Launch QEMU and do in the monitor:
1062@example
1063info usbhost
1064 Device 1.2, speed 480 Mb/s
1065 Class 00: USB device 1234:5678, USB DISK
1066@end example
1067You should see the list of the devices you can use (Never try to use
1068hubs, it won't work).
1069
1070@item Add the device in QEMU by using:
1071@example
1072usb_add host:1234:5678
1073@end example
1074
1075Normally the guest OS should report that a new USB device is
1076plugged. You can use the option @option{-usbdevice} to do the same.
1077
1078@item Now you can try to use the host USB device in QEMU.
1079
1080@end enumerate
1081
1082When relaunching QEMU, you may have to unplug and plug again the USB
1083device to make it work again (this is a bug).
1084
1085@node vnc_security
1086@section VNC security
1087
1088The VNC server capability provides access to the graphical console
1089of the guest VM across the network. This has a number of security
1090considerations depending on the deployment scenarios.
1091
1092@menu
1093* vnc_sec_none::
1094* vnc_sec_password::
1095* vnc_sec_certificate::
1096* vnc_sec_certificate_verify::
1097* vnc_sec_certificate_pw::
1098* vnc_sec_sasl::
1099* vnc_sec_certificate_sasl::
1100* vnc_generate_cert::
1101* vnc_setup_sasl::
1102@end menu
1103@node vnc_sec_none
1104@subsection Without passwords
1105
1106The simplest VNC server setup does not include any form of authentication.
1107For this setup it is recommended to restrict it to listen on a UNIX domain
1108socket only. For example
1109
1110@example
1111qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1112@end example
1113
1114This ensures that only users on local box with read/write access to that
1115path can access the VNC server. To securely access the VNC server from a
1116remote machine, a combination of netcat+ssh can be used to provide a secure
1117tunnel.
1118
1119@node vnc_sec_password
1120@subsection With passwords
1121
1122The VNC protocol has limited support for password based authentication. Since
1123the protocol limits passwords to 8 characters it should not be considered
1124to provide high security. The password can be fairly easily brute-forced by
1125a client making repeat connections. For this reason, a VNC server using password
1126authentication should be restricted to only listen on the loopback interface
1127or UNIX domain sockets. Password authentication is requested with the @code{password}
1128option, and then once QEMU is running the password is set with the monitor. Until
1129the monitor is used to set the password all clients will be rejected.
1130
1131@example
1132qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1133(qemu) change vnc password
1134Password: ********
1135(qemu)
1136@end example
1137
1138@node vnc_sec_certificate
1139@subsection With x509 certificates
1140
1141The QEMU VNC server also implements the VeNCrypt extension allowing use of
1142TLS for encryption of the session, and x509 certificates for authentication.
1143The use of x509 certificates is strongly recommended, because TLS on its
1144own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1145support provides a secure session, but no authentication. This allows any
1146client to connect, and provides an encrypted session.
1147
1148@example
1149qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1150@end example
1151
1152In the above example @code{/etc/pki/qemu} should contain at least three files,
1153@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1154users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1155NB the @code{server-key.pem} file should be protected with file mode 0600 to
1156only be readable by the user owning it.
1157
1158@node vnc_sec_certificate_verify
1159@subsection With x509 certificates and client verification
1160
1161Certificates can also provide a means to authenticate the client connecting.
1162The server will request that the client provide a certificate, which it will
1163then validate against the CA certificate. This is a good choice if deploying
1164in an environment with a private internal certificate authority.
1165
1166@example
1167qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1168@end example
1169
1170
1171@node vnc_sec_certificate_pw
1172@subsection With x509 certificates, client verification and passwords
1173
1174Finally, the previous method can be combined with VNC password authentication
1175to provide two layers of authentication for clients.
1176
1177@example
1178qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1179(qemu) change vnc password
1180Password: ********
1181(qemu)
1182@end example
1183
1184
1185@node vnc_sec_sasl
1186@subsection With SASL authentication
1187
1188The SASL authentication method is a VNC extension, that provides an
1189easily extendable, pluggable authentication method. This allows for
1190integration with a wide range of authentication mechanisms, such as
1191PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1192The strength of the authentication depends on the exact mechanism
1193configured. If the chosen mechanism also provides a SSF layer, then
1194it will encrypt the datastream as well.
1195
1196Refer to the later docs on how to choose the exact SASL mechanism
1197used for authentication, but assuming use of one supporting SSF,
1198then QEMU can be launched with:
1199
1200@example
1201qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1202@end example
1203
1204@node vnc_sec_certificate_sasl
1205@subsection With x509 certificates and SASL authentication
1206
1207If the desired SASL authentication mechanism does not supported
1208SSF layers, then it is strongly advised to run it in combination
1209with TLS and x509 certificates. This provides securely encrypted
1210data stream, avoiding risk of compromising of the security
1211credentials. This can be enabled, by combining the 'sasl' option
1212with the aforementioned TLS + x509 options:
1213
1214@example
1215qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1216@end example
1217
1218
1219@node vnc_generate_cert
1220@subsection Generating certificates for VNC
1221
1222The GNU TLS packages provides a command called @code{certtool} which can
1223be used to generate certificates and keys in PEM format. At a minimum it
1224is necessary to setup a certificate authority, and issue certificates to
1225each server. If using certificates for authentication, then each client
1226will also need to be issued a certificate. The recommendation is for the
1227server to keep its certificates in either @code{/etc/pki/qemu} or for
1228unprivileged users in @code{$HOME/.pki/qemu}.
1229
1230@menu
1231* vnc_generate_ca::
1232* vnc_generate_server::
1233* vnc_generate_client::
1234@end menu
1235@node vnc_generate_ca
1236@subsubsection Setup the Certificate Authority
1237
1238This step only needs to be performed once per organization / organizational
1239unit. First the CA needs a private key. This key must be kept VERY secret
1240and secure. If this key is compromised the entire trust chain of the certificates
1241issued with it is lost.
1242
1243@example
1244# certtool --generate-privkey > ca-key.pem
1245@end example
1246
1247A CA needs to have a public certificate. For simplicity it can be a self-signed
1248certificate, or one issue by a commercial certificate issuing authority. To
1249generate a self-signed certificate requires one core piece of information, the
1250name of the organization.
1251
1252@example
1253# cat > ca.info <<EOF
1254cn = Name of your organization
1255ca
1256cert_signing_key
1257EOF
1258# certtool --generate-self-signed \
1259 --load-privkey ca-key.pem
1260 --template ca.info \
1261 --outfile ca-cert.pem
1262@end example
1263
1264The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1265TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1266
1267@node vnc_generate_server
1268@subsubsection Issuing server certificates
1269
1270Each server (or host) needs to be issued with a key and certificate. When connecting
1271the certificate is sent to the client which validates it against the CA certificate.
1272The core piece of information for a server certificate is the hostname. This should
1273be the fully qualified hostname that the client will connect with, since the client
1274will typically also verify the hostname in the certificate. On the host holding the
1275secure CA private key:
1276
1277@example
1278# cat > server.info <<EOF
1279organization = Name of your organization
1280cn = server.foo.example.com
1281tls_www_server
1282encryption_key
1283signing_key
1284EOF
1285# certtool --generate-privkey > server-key.pem
1286# certtool --generate-certificate \
1287 --load-ca-certificate ca-cert.pem \
1288 --load-ca-privkey ca-key.pem \
1289 --load-privkey server server-key.pem \
1290 --template server.info \
1291 --outfile server-cert.pem
1292@end example
1293
1294The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1295to the server for which they were generated. The @code{server-key.pem} is security
1296sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1297
1298@node vnc_generate_client
1299@subsubsection Issuing client certificates
1300
1301If the QEMU VNC server is to use the @code{x509verify} option to validate client
1302certificates as its authentication mechanism, each client also needs to be issued
1303a certificate. The client certificate contains enough metadata to uniquely identify
1304the client, typically organization, state, city, building, etc. On the host holding
1305the secure CA private key:
1306
1307@example
1308# cat > client.info <<EOF
1309country = GB
1310state = London
1311locality = London
1312organiazation = Name of your organization
1313cn = client.foo.example.com
1314tls_www_client
1315encryption_key
1316signing_key
1317EOF
1318# certtool --generate-privkey > client-key.pem
1319# certtool --generate-certificate \
1320 --load-ca-certificate ca-cert.pem \
1321 --load-ca-privkey ca-key.pem \
1322 --load-privkey client-key.pem \
1323 --template client.info \
1324 --outfile client-cert.pem
1325@end example
1326
1327The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1328copied to the client for which they were generated.
1329
1330
1331@node vnc_setup_sasl
1332
1333@subsection Configuring SASL mechanisms
1334
1335The following documentation assumes use of the Cyrus SASL implementation on a
1336Linux host, but the principals should apply to any other SASL impl. When SASL
1337is enabled, the mechanism configuration will be loaded from system default
1338SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1339unprivileged user, an environment variable SASL_CONF_PATH can be used
1340to make it search alternate locations for the service config.
1341
1342The default configuration might contain
1343
1344@example
1345mech_list: digest-md5
1346sasldb_path: /etc/qemu/passwd.db
1347@end example
1348
1349This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1350Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1351in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1352command. While this mechanism is easy to configure and use, it is not
1353considered secure by modern standards, so only suitable for developers /
1354ad-hoc testing.
1355
1356A more serious deployment might use Kerberos, which is done with the 'gssapi'
1357mechanism
1358
1359@example
1360mech_list: gssapi
1361keytab: /etc/qemu/krb5.tab
1362@end example
1363
1364For this to work the administrator of your KDC must generate a Kerberos
1365principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1366replacing 'somehost.example.com' with the fully qualified host name of the
1367machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1368
1369Other configurations will be left as an exercise for the reader. It should
1370be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1371encryption. For all other mechanisms, VNC should always be configured to
1372use TLS and x509 certificates to protect security credentials from snooping.
1373
1374@node gdb_usage
1375@section GDB usage
1376
1377QEMU has a primitive support to work with gdb, so that you can do
1378'Ctrl-C' while the virtual machine is running and inspect its state.
1379
1380In order to use gdb, launch qemu with the '-s' option. It will wait for a
1381gdb connection:
1382@example
1383> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1384 -append "root=/dev/hda"
1385Connected to host network interface: tun0
1386Waiting gdb connection on port 1234
1387@end example
1388
1389Then launch gdb on the 'vmlinux' executable:
1390@example
1391> gdb vmlinux
1392@end example
1393
1394In gdb, connect to QEMU:
1395@example
1396(gdb) target remote localhost:1234
1397@end example
1398
1399Then you can use gdb normally. For example, type 'c' to launch the kernel:
1400@example
1401(gdb) c
1402@end example
1403
1404Here are some useful tips in order to use gdb on system code:
1405
1406@enumerate
1407@item
1408Use @code{info reg} to display all the CPU registers.
1409@item
1410Use @code{x/10i $eip} to display the code at the PC position.
1411@item
1412Use @code{set architecture i8086} to dump 16 bit code. Then use
1413@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1414@end enumerate
1415
1416Advanced debugging options:
1417
1418The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1419@table @code
1420@item maintenance packet qqemu.sstepbits
1421
1422This will display the MASK bits used to control the single stepping IE:
1423@example
1424(gdb) maintenance packet qqemu.sstepbits
1425sending: "qqemu.sstepbits"
1426received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1427@end example
1428@item maintenance packet qqemu.sstep
1429
1430This will display the current value of the mask used when single stepping IE:
1431@example
1432(gdb) maintenance packet qqemu.sstep
1433sending: "qqemu.sstep"
1434received: "0x7"
1435@end example
1436@item maintenance packet Qqemu.sstep=HEX_VALUE
1437
1438This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1439@example
1440(gdb) maintenance packet Qqemu.sstep=0x5
1441sending: "qemu.sstep=0x5"
1442received: "OK"
1443@end example
1444@end table
1445
1446@node pcsys_os_specific
1447@section Target OS specific information
1448
1449@subsection Linux
1450
1451To have access to SVGA graphic modes under X11, use the @code{vesa} or
1452the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1453color depth in the guest and the host OS.
1454
1455When using a 2.6 guest Linux kernel, you should add the option
1456@code{clock=pit} on the kernel command line because the 2.6 Linux
1457kernels make very strict real time clock checks by default that QEMU
1458cannot simulate exactly.
1459
1460When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1461not activated because QEMU is slower with this patch. The QEMU
1462Accelerator Module is also much slower in this case. Earlier Fedora
1463Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1464patch by default. Newer kernels don't have it.
1465
1466@subsection Windows
1467
1468If you have a slow host, using Windows 95 is better as it gives the
1469best speed. Windows 2000 is also a good choice.
1470
1471@subsubsection SVGA graphic modes support
1472
1473QEMU emulates a Cirrus Logic GD5446 Video
1474card. All Windows versions starting from Windows 95 should recognize
1475and use this graphic card. For optimal performances, use 16 bit color
1476depth in the guest and the host OS.
1477
1478If you are using Windows XP as guest OS and if you want to use high
1479resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
14801280x1024x16), then you should use the VESA VBE virtual graphic card
1481(option @option{-std-vga}).
1482
1483@subsubsection CPU usage reduction
1484
1485Windows 9x does not correctly use the CPU HLT
1486instruction. The result is that it takes host CPU cycles even when
1487idle. You can install the utility from
1488@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1489problem. Note that no such tool is needed for NT, 2000 or XP.
1490
1491@subsubsection Windows 2000 disk full problem
1492
1493Windows 2000 has a bug which gives a disk full problem during its
1494installation. When installing it, use the @option{-win2k-hack} QEMU
1495option to enable a specific workaround. After Windows 2000 is
1496installed, you no longer need this option (this option slows down the
1497IDE transfers).
1498
1499@subsubsection Windows 2000 shutdown
1500
1501Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1502can. It comes from the fact that Windows 2000 does not automatically
1503use the APM driver provided by the BIOS.
1504
1505In order to correct that, do the following (thanks to Struan
1506Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1507Add/Troubleshoot a device => Add a new device & Next => No, select the
1508hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1509(again) a few times. Now the driver is installed and Windows 2000 now
1510correctly instructs QEMU to shutdown at the appropriate moment.
1511
1512@subsubsection Share a directory between Unix and Windows
1513
1514See @ref{sec_invocation} about the help of the option @option{-smb}.
1515
1516@subsubsection Windows XP security problem
1517
1518Some releases of Windows XP install correctly but give a security
1519error when booting:
1520@example
1521A problem is preventing Windows from accurately checking the
1522license for this computer. Error code: 0x800703e6.
1523@end example
1524
1525The workaround is to install a service pack for XP after a boot in safe
1526mode. Then reboot, and the problem should go away. Since there is no
1527network while in safe mode, its recommended to download the full
1528installation of SP1 or SP2 and transfer that via an ISO or using the
1529vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1530
1531@subsection MS-DOS and FreeDOS
1532
1533@subsubsection CPU usage reduction
1534
1535DOS does not correctly use the CPU HLT instruction. The result is that
1536it takes host CPU cycles even when idle. You can install the utility
1537from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1538problem.
1539
1540@node QEMU System emulator for non PC targets
1541@chapter QEMU System emulator for non PC targets
1542
1543QEMU is a generic emulator and it emulates many non PC
1544machines. Most of the options are similar to the PC emulator. The
1545differences are mentioned in the following sections.
1546
1547@menu
1548* PowerPC System emulator::
1549* Sparc32 System emulator::
1550* Sparc64 System emulator::
1551* MIPS System emulator::
1552* ARM System emulator::
1553* ColdFire System emulator::
1554* Cris System emulator::
1555* Microblaze System emulator::
1556* SH4 System emulator::
1557* Xtensa System emulator::
1558@end menu
1559
1560@node PowerPC System emulator
1561@section PowerPC System emulator
1562@cindex system emulation (PowerPC)
1563
1564Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1565or PowerMac PowerPC system.
1566
1567QEMU emulates the following PowerMac peripherals:
1568
1569@itemize @minus
1570@item
1571UniNorth or Grackle PCI Bridge
1572@item
1573PCI VGA compatible card with VESA Bochs Extensions
1574@item
15752 PMAC IDE interfaces with hard disk and CD-ROM support
1576@item
1577NE2000 PCI adapters
1578@item
1579Non Volatile RAM
1580@item
1581VIA-CUDA with ADB keyboard and mouse.
1582@end itemize
1583
1584QEMU emulates the following PREP peripherals:
1585
1586@itemize @minus
1587@item
1588PCI Bridge
1589@item
1590PCI VGA compatible card with VESA Bochs Extensions
1591@item
15922 IDE interfaces with hard disk and CD-ROM support
1593@item
1594Floppy disk
1595@item
1596NE2000 network adapters
1597@item
1598Serial port
1599@item
1600PREP Non Volatile RAM
1601@item
1602PC compatible keyboard and mouse.
1603@end itemize
1604
1605QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1606@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1607
1608Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1609for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1610v2) portable firmware implementation. The goal is to implement a 100%
1611IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1612
1613@c man begin OPTIONS
1614
1615The following options are specific to the PowerPC emulation:
1616
1617@table @option
1618
1619@item -g @var{W}x@var{H}[x@var{DEPTH}]
1620
1621Set the initial VGA graphic mode. The default is 800x600x15.
1622
1623@item -prom-env @var{string}
1624
1625Set OpenBIOS variables in NVRAM, for example:
1626
1627@example
1628qemu-system-ppc -prom-env 'auto-boot?=false' \
1629 -prom-env 'boot-device=hd:2,\yaboot' \
1630 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1631@end example
1632
1633These variables are not used by Open Hack'Ware.
1634
1635@end table
1636
1637@c man end
1638
1639
1640More information is available at
1641@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1642
1643@node Sparc32 System emulator
1644@section Sparc32 System emulator
1645@cindex system emulation (Sparc32)
1646
1647Use the executable @file{qemu-system-sparc} to simulate the following
1648Sun4m architecture machines:
1649@itemize @minus
1650@item
1651SPARCstation 4
1652@item
1653SPARCstation 5
1654@item
1655SPARCstation 10
1656@item
1657SPARCstation 20
1658@item
1659SPARCserver 600MP
1660@item
1661SPARCstation LX
1662@item
1663SPARCstation Voyager
1664@item
1665SPARCclassic
1666@item
1667SPARCbook
1668@end itemize
1669
1670The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1671but Linux limits the number of usable CPUs to 4.
1672
1673It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1674SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1675emulators are not usable yet.
1676
1677QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1678
1679@itemize @minus
1680@item
1681IOMMU or IO-UNITs
1682@item
1683TCX Frame buffer
1684@item
1685Lance (Am7990) Ethernet
1686@item
1687Non Volatile RAM M48T02/M48T08
1688@item
1689Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1690and power/reset logic
1691@item
1692ESP SCSI controller with hard disk and CD-ROM support
1693@item
1694Floppy drive (not on SS-600MP)
1695@item
1696CS4231 sound device (only on SS-5, not working yet)
1697@end itemize
1698
1699The number of peripherals is fixed in the architecture. Maximum
1700memory size depends on the machine type, for SS-5 it is 256MB and for
1701others 2047MB.
1702
1703Since version 0.8.2, QEMU uses OpenBIOS
1704@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1705firmware implementation. The goal is to implement a 100% IEEE
17061275-1994 (referred to as Open Firmware) compliant firmware.
1707
1708A sample Linux 2.6 series kernel and ram disk image are available on
1709the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1710some kernel versions work. Please note that currently Solaris kernels
1711don't work probably due to interface issues between OpenBIOS and
1712Solaris.
1713
1714@c man begin OPTIONS
1715
1716The following options are specific to the Sparc32 emulation:
1717
1718@table @option
1719
1720@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1721
1722Set the initial TCX graphic mode. The default is 1024x768x8, currently
1723the only other possible mode is 1024x768x24.
1724
1725@item -prom-env @var{string}
1726
1727Set OpenBIOS variables in NVRAM, for example:
1728
1729@example
1730qemu-system-sparc -prom-env 'auto-boot?=false' \
1731 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1732@end example
1733
1734@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1735
1736Set the emulated machine type. Default is SS-5.
1737
1738@end table
1739
1740@c man end
1741
1742@node Sparc64 System emulator
1743@section Sparc64 System emulator
1744@cindex system emulation (Sparc64)
1745
1746Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1747(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1748Niagara (T1) machine. The emulator is not usable for anything yet, but
1749it can launch some kernels.
1750
1751QEMU emulates the following peripherals:
1752
1753@itemize @minus
1754@item
1755UltraSparc IIi APB PCI Bridge
1756@item
1757PCI VGA compatible card with VESA Bochs Extensions
1758@item
1759PS/2 mouse and keyboard
1760@item
1761Non Volatile RAM M48T59
1762@item
1763PC-compatible serial ports
1764@item
17652 PCI IDE interfaces with hard disk and CD-ROM support
1766@item
1767Floppy disk
1768@end itemize
1769
1770@c man begin OPTIONS
1771
1772The following options are specific to the Sparc64 emulation:
1773
1774@table @option
1775
1776@item -prom-env @var{string}
1777
1778Set OpenBIOS variables in NVRAM, for example:
1779
1780@example
1781qemu-system-sparc64 -prom-env 'auto-boot?=false'
1782@end example
1783
1784@item -M [sun4u|sun4v|Niagara]
1785
1786Set the emulated machine type. The default is sun4u.
1787
1788@end table
1789
1790@c man end
1791
1792@node MIPS System emulator
1793@section MIPS System emulator
1794@cindex system emulation (MIPS)
1795
1796Four executables cover simulation of 32 and 64-bit MIPS systems in
1797both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1798@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1799Five different machine types are emulated:
1800
1801@itemize @minus
1802@item
1803A generic ISA PC-like machine "mips"
1804@item
1805The MIPS Malta prototype board "malta"
1806@item
1807An ACER Pica "pica61". This machine needs the 64-bit emulator.
1808@item
1809MIPS emulator pseudo board "mipssim"
1810@item
1811A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1812@end itemize
1813
1814The generic emulation is supported by Debian 'Etch' and is able to
1815install Debian into a virtual disk image. The following devices are
1816emulated:
1817
1818@itemize @minus
1819@item
1820A range of MIPS CPUs, default is the 24Kf
1821@item
1822PC style serial port
1823@item
1824PC style IDE disk
1825@item
1826NE2000 network card
1827@end itemize
1828
1829The Malta emulation supports the following devices:
1830
1831@itemize @minus
1832@item
1833Core board with MIPS 24Kf CPU and Galileo system controller
1834@item
1835PIIX4 PCI/USB/SMbus controller
1836@item
1837The Multi-I/O chip's serial device
1838@item
1839PCI network cards (PCnet32 and others)
1840@item
1841Malta FPGA serial device
1842@item
1843Cirrus (default) or any other PCI VGA graphics card
1844@end itemize
1845
1846The ACER Pica emulation supports:
1847
1848@itemize @minus
1849@item
1850MIPS R4000 CPU
1851@item
1852PC-style IRQ and DMA controllers
1853@item
1854PC Keyboard
1855@item
1856IDE controller
1857@end itemize
1858
1859The mipssim pseudo board emulation provides an environment similar
1860to what the proprietary MIPS emulator uses for running Linux.
1861It supports:
1862
1863@itemize @minus
1864@item
1865A range of MIPS CPUs, default is the 24Kf
1866@item
1867PC style serial port
1868@item
1869MIPSnet network emulation
1870@end itemize
1871
1872The MIPS Magnum R4000 emulation supports:
1873
1874@itemize @minus
1875@item
1876MIPS R4000 CPU
1877@item
1878PC-style IRQ controller
1879@item
1880PC Keyboard
1881@item
1882SCSI controller
1883@item
1884G364 framebuffer
1885@end itemize
1886
1887
1888@node ARM System emulator
1889@section ARM System emulator
1890@cindex system emulation (ARM)
1891
1892Use the executable @file{qemu-system-arm} to simulate a ARM
1893machine. The ARM Integrator/CP board is emulated with the following
1894devices:
1895
1896@itemize @minus
1897@item
1898ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1899@item
1900Two PL011 UARTs
1901@item
1902SMC 91c111 Ethernet adapter
1903@item
1904PL110 LCD controller
1905@item
1906PL050 KMI with PS/2 keyboard and mouse.
1907@item
1908PL181 MultiMedia Card Interface with SD card.
1909@end itemize
1910
1911The ARM Versatile baseboard is emulated with the following devices:
1912
1913@itemize @minus
1914@item
1915ARM926E, ARM1136 or Cortex-A8 CPU
1916@item
1917PL190 Vectored Interrupt Controller
1918@item
1919Four PL011 UARTs
1920@item
1921SMC 91c111 Ethernet adapter
1922@item
1923PL110 LCD controller
1924@item
1925PL050 KMI with PS/2 keyboard and mouse.
1926@item
1927PCI host bridge. Note the emulated PCI bridge only provides access to
1928PCI memory space. It does not provide access to PCI IO space.
1929This means some devices (eg. ne2k_pci NIC) are not usable, and others
1930(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1931mapped control registers.
1932@item
1933PCI OHCI USB controller.
1934@item
1935LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1936@item
1937PL181 MultiMedia Card Interface with SD card.
1938@end itemize
1939
1940Several variants of the ARM RealView baseboard are emulated,
1941including the EB, PB-A8 and PBX-A9. Due to interactions with the
1942bootloader, only certain Linux kernel configurations work out
1943of the box on these boards.
1944
1945Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1946enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
1947should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1948disabled and expect 1024M RAM.
1949
1950The following devices are emulated:
1951
1952@itemize @minus
1953@item
1954ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1955@item
1956ARM AMBA Generic/Distributed Interrupt Controller
1957@item
1958Four PL011 UARTs
1959@item
1960SMC 91c111 or SMSC LAN9118 Ethernet adapter
1961@item
1962PL110 LCD controller
1963@item
1964PL050 KMI with PS/2 keyboard and mouse
1965@item
1966PCI host bridge
1967@item
1968PCI OHCI USB controller
1969@item
1970LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1971@item
1972PL181 MultiMedia Card Interface with SD card.
1973@end itemize
1974
1975The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1976and "Terrier") emulation includes the following peripherals:
1977
1978@itemize @minus
1979@item
1980Intel PXA270 System-on-chip (ARM V5TE core)
1981@item
1982NAND Flash memory
1983@item
1984IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1985@item
1986On-chip OHCI USB controller
1987@item
1988On-chip LCD controller
1989@item
1990On-chip Real Time Clock
1991@item
1992TI ADS7846 touchscreen controller on SSP bus
1993@item
1994Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1995@item
1996GPIO-connected keyboard controller and LEDs
1997@item
1998Secure Digital card connected to PXA MMC/SD host
1999@item
2000Three on-chip UARTs
2001@item
2002WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2003@end itemize
2004
2005The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2006following elements:
2007
2008@itemize @minus
2009@item
2010Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2011@item
2012ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2013@item
2014On-chip LCD controller
2015@item
2016On-chip Real Time Clock
2017@item
2018TI TSC2102i touchscreen controller / analog-digital converter / Audio
2019CODEC, connected through MicroWire and I@math{^2}S busses
2020@item
2021GPIO-connected matrix keypad
2022@item
2023Secure Digital card connected to OMAP MMC/SD host
2024@item
2025Three on-chip UARTs
2026@end itemize
2027
2028Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2029emulation supports the following elements:
2030
2031@itemize @minus
2032@item
2033Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2034@item
2035RAM and non-volatile OneNAND Flash memories
2036@item
2037Display connected to EPSON remote framebuffer chip and OMAP on-chip
2038display controller and a LS041y3 MIPI DBI-C controller
2039@item
2040TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2041driven through SPI bus
2042@item
2043National Semiconductor LM8323-controlled qwerty keyboard driven
2044through I@math{^2}C bus
2045@item
2046Secure Digital card connected to OMAP MMC/SD host
2047@item
2048Three OMAP on-chip UARTs and on-chip STI debugging console
2049@item
2050A Bluetooth(R) transceiver and HCI connected to an UART
2051@item
2052Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2053TUSB6010 chip - only USB host mode is supported
2054@item
2055TI TMP105 temperature sensor driven through I@math{^2}C bus
2056@item
2057TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2058@item
2059Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2060through CBUS
2061@end itemize
2062
2063The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2064devices:
2065
2066@itemize @minus
2067@item
2068Cortex-M3 CPU core.
2069@item
207064k Flash and 8k SRAM.
2071@item
2072Timers, UARTs, ADC and I@math{^2}C interface.
2073@item
2074OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2075@end itemize
2076
2077The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2078devices:
2079
2080@itemize @minus
2081@item
2082Cortex-M3 CPU core.
2083@item
2084256k Flash and 64k SRAM.
2085@item
2086Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2087@item
2088OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2089@end itemize
2090
2091The Freecom MusicPal internet radio emulation includes the following
2092elements:
2093
2094@itemize @minus
2095@item
2096Marvell MV88W8618 ARM core.
2097@item
209832 MB RAM, 256 KB SRAM, 8 MB flash.
2099@item
2100Up to 2 16550 UARTs
2101@item
2102MV88W8xx8 Ethernet controller
2103@item
2104MV88W8618 audio controller, WM8750 CODEC and mixer
2105@item
2106128×64 display with brightness control
2107@item
21082 buttons, 2 navigation wheels with button function
2109@end itemize
2110
2111The Siemens SX1 models v1 and v2 (default) basic emulation.
2112The emulation includes the following elements:
2113
2114@itemize @minus
2115@item
2116Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2117@item
2118ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2119V1
21201 Flash of 16MB and 1 Flash of 8MB
2121V2
21221 Flash of 32MB
2123@item
2124On-chip LCD controller
2125@item
2126On-chip Real Time Clock
2127@item
2128Secure Digital card connected to OMAP MMC/SD host
2129@item
2130Three on-chip UARTs
2131@end itemize
2132
2133A Linux 2.6 test image is available on the QEMU web site. More
2134information is available in the QEMU mailing-list archive.
2135
2136@c man begin OPTIONS
2137
2138The following options are specific to the ARM emulation:
2139
2140@table @option
2141
2142@item -semihosting
2143Enable semihosting syscall emulation.
2144
2145On ARM this implements the "Angel" interface.
2146
2147Note that this allows guest direct access to the host filesystem,
2148so should only be used with trusted guest OS.
2149
2150@end table
2151
2152@node ColdFire System emulator
2153@section ColdFire System emulator
2154@cindex system emulation (ColdFire)
2155@cindex system emulation (M68K)
2156
2157Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2158The emulator is able to boot a uClinux kernel.
2159
2160The M5208EVB emulation includes the following devices:
2161
2162@itemize @minus
2163@item
2164MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2165@item
2166Three Two on-chip UARTs.
2167@item
2168Fast Ethernet Controller (FEC)
2169@end itemize
2170
2171The AN5206 emulation includes the following devices:
2172
2173@itemize @minus
2174@item
2175MCF5206 ColdFire V2 Microprocessor.
2176@item
2177Two on-chip UARTs.
2178@end itemize
2179
2180@c man begin OPTIONS
2181
2182The following options are specific to the ColdFire emulation:
2183
2184@table @option
2185
2186@item -semihosting
2187Enable semihosting syscall emulation.
2188
2189On M68K this implements the "ColdFire GDB" interface used by libgloss.
2190
2191Note that this allows guest direct access to the host filesystem,
2192so should only be used with trusted guest OS.
2193
2194@end table
2195
2196@node Cris System emulator
2197@section Cris System emulator
2198@cindex system emulation (Cris)
2199
2200TODO
2201
2202@node Microblaze System emulator
2203@section Microblaze System emulator
2204@cindex system emulation (Microblaze)
2205
2206TODO
2207
2208@node SH4 System emulator
2209@section SH4 System emulator
2210@cindex system emulation (SH4)
2211
2212TODO
2213
2214@node Xtensa System emulator
2215@section Xtensa System emulator
2216@cindex system emulation (Xtensa)
2217
2218Two executables cover simulation of both Xtensa endian options,
2219@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2220Two different machine types are emulated:
2221
2222@itemize @minus
2223@item
2224Xtensa emulator pseudo board "sim"
2225@item
2226Avnet LX60/LX110/LX200 board
2227@end itemize
2228
2229The sim pseudo board emulation provides an environment similar
2230to one provided by the proprietary Tensilica ISS.
2231It supports:
2232
2233@itemize @minus
2234@item
2235A range of Xtensa CPUs, default is the DC232B
2236@item
2237Console and filesystem access via semihosting calls
2238@end itemize
2239
2240The Avnet LX60/LX110/LX200 emulation supports:
2241
2242@itemize @minus
2243@item
2244A range of Xtensa CPUs, default is the DC232B
2245@item
224616550 UART
2247@item
2248OpenCores 10/100 Mbps Ethernet MAC
2249@end itemize
2250
2251@c man begin OPTIONS
2252
2253The following options are specific to the Xtensa emulation:
2254
2255@table @option
2256
2257@item -semihosting
2258Enable semihosting syscall emulation.
2259
2260Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2261Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2262
2263Note that this allows guest direct access to the host filesystem,
2264so should only be used with trusted guest OS.
2265
2266@end table
2267@node QEMU User space emulator
2268@chapter QEMU User space emulator
2269
2270@menu
2271* Supported Operating Systems ::
2272* Linux User space emulator::
2273* BSD User space emulator ::
2274@end menu
2275
2276@node Supported Operating Systems
2277@section Supported Operating Systems
2278
2279The following OS are supported in user space emulation:
2280
2281@itemize @minus
2282@item
2283Linux (referred as qemu-linux-user)
2284@item
2285BSD (referred as qemu-bsd-user)
2286@end itemize
2287
2288@node Linux User space emulator
2289@section Linux User space emulator
2290
2291@menu
2292* Quick Start::
2293* Wine launch::
2294* Command line options::
2295* Other binaries::
2296@end menu
2297
2298@node Quick Start
2299@subsection Quick Start
2300
2301In order to launch a Linux process, QEMU needs the process executable
2302itself and all the target (x86) dynamic libraries used by it.
2303
2304@itemize
2305
2306@item On x86, you can just try to launch any process by using the native
2307libraries:
2308
2309@example
2310qemu-i386 -L / /bin/ls
2311@end example
2312
2313@code{-L /} tells that the x86 dynamic linker must be searched with a
2314@file{/} prefix.
2315
2316@item Since QEMU is also a linux process, you can launch qemu with
2317qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2318
2319@example
2320qemu-i386 -L / qemu-i386 -L / /bin/ls
2321@end example
2322
2323@item On non x86 CPUs, you need first to download at least an x86 glibc
2324(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2325@code{LD_LIBRARY_PATH} is not set:
2326
2327@example
2328unset LD_LIBRARY_PATH
2329@end example
2330
2331Then you can launch the precompiled @file{ls} x86 executable:
2332
2333@example
2334qemu-i386 tests/i386/ls
2335@end example
2336You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2337QEMU is automatically launched by the Linux kernel when you try to
2338launch x86 executables. It requires the @code{binfmt_misc} module in the
2339Linux kernel.
2340
2341@item The x86 version of QEMU is also included. You can try weird things such as:
2342@example
2343qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2344 /usr/local/qemu-i386/bin/ls-i386
2345@end example
2346
2347@end itemize
2348
2349@node Wine launch
2350@subsection Wine launch
2351
2352@itemize
2353
2354@item Ensure that you have a working QEMU with the x86 glibc
2355distribution (see previous section). In order to verify it, you must be
2356able to do:
2357
2358@example
2359qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2360@end example
2361
2362@item Download the binary x86 Wine install
2363(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2364
2365@item Configure Wine on your account. Look at the provided script
2366@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2367@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2368
2369@item Then you can try the example @file{putty.exe}:
2370
2371@example
2372qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2373 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2374@end example
2375
2376@end itemize
2377
2378@node Command line options
2379@subsection Command line options
2380
2381@example
2382usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2383@end example
2384
2385@table @option
2386@item -h
2387Print the help
2388@item -L path
2389Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2390@item -s size
2391Set the x86 stack size in bytes (default=524288)
2392@item -cpu model
2393Select CPU model (-cpu ? for list and additional feature selection)
2394@item -ignore-environment
2395Start with an empty environment. Without this option,
2396the initial environment is a copy of the caller's environment.
2397@item -E @var{var}=@var{value}
2398Set environment @var{var} to @var{value}.
2399@item -U @var{var}
2400Remove @var{var} from the environment.
2401@item -B offset
2402Offset guest address by the specified number of bytes. This is useful when
2403the address region required by guest applications is reserved on the host.
2404This option is currently only supported on some hosts.
2405@item -R size
2406Pre-allocate a guest virtual address space of the given size (in bytes).
2407"G", "M", and "k" suffixes may be used when specifying the size.
2408@end table
2409
2410Debug options:
2411
2412@table @option
2413@item -d
2414Activate log (logfile=/tmp/qemu.log)
2415@item -p pagesize
2416Act as if the host page size was 'pagesize' bytes
2417@item -g port
2418Wait gdb connection to port
2419@item -singlestep
2420Run the emulation in single step mode.
2421@end table
2422
2423Environment variables:
2424
2425@table @env
2426@item QEMU_STRACE
2427Print system calls and arguments similar to the 'strace' program
2428(NOTE: the actual 'strace' program will not work because the user
2429space emulator hasn't implemented ptrace). At the moment this is
2430incomplete. All system calls that don't have a specific argument
2431format are printed with information for six arguments. Many
2432flag-style arguments don't have decoders and will show up as numbers.
2433@end table
2434
2435@node Other binaries
2436@subsection Other binaries
2437
2438@cindex user mode (Alpha)
2439@command{qemu-alpha} TODO.
2440
2441@cindex user mode (ARM)
2442@command{qemu-armeb} TODO.
2443
2444@cindex user mode (ARM)
2445@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2446binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2447configurations), and arm-uclinux bFLT format binaries.
2448
2449@cindex user mode (ColdFire)
2450@cindex user mode (M68K)
2451@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2452(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2453coldfire uClinux bFLT format binaries.
2454
2455The binary format is detected automatically.
2456
2457@cindex user mode (Cris)
2458@command{qemu-cris} TODO.
2459
2460@cindex user mode (i386)
2461@command{qemu-i386} TODO.
2462@command{qemu-x86_64} TODO.
2463
2464@cindex user mode (Microblaze)
2465@command{qemu-microblaze} TODO.
2466
2467@cindex user mode (MIPS)
2468@command{qemu-mips} TODO.
2469@command{qemu-mipsel} TODO.
2470
2471@cindex user mode (PowerPC)
2472@command{qemu-ppc64abi32} TODO.
2473@command{qemu-ppc64} TODO.
2474@command{qemu-ppc} TODO.
2475
2476@cindex user mode (SH4)
2477@command{qemu-sh4eb} TODO.
2478@command{qemu-sh4} TODO.
2479
2480@cindex user mode (SPARC)
2481@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2482
2483@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2484(Sparc64 CPU, 32 bit ABI).
2485
2486@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2487SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2488
2489@node BSD User space emulator
2490@section BSD User space emulator
2491
2492@menu
2493* BSD Status::
2494* BSD Quick Start::
2495* BSD Command line options::
2496@end menu
2497
2498@node BSD Status
2499@subsection BSD Status
2500
2501@itemize @minus
2502@item
2503target Sparc64 on Sparc64: Some trivial programs work.
2504@end itemize
2505
2506@node BSD Quick Start
2507@subsection Quick Start
2508
2509In order to launch a BSD process, QEMU needs the process executable
2510itself and all the target dynamic libraries used by it.
2511
2512@itemize
2513
2514@item On Sparc64, you can just try to launch any process by using the native
2515libraries:
2516
2517@example
2518qemu-sparc64 /bin/ls
2519@end example
2520
2521@end itemize
2522
2523@node BSD Command line options
2524@subsection Command line options
2525
2526@example
2527usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2528@end example
2529
2530@table @option
2531@item -h
2532Print the help
2533@item -L path
2534Set the library root path (default=/)
2535@item -s size
2536Set the stack size in bytes (default=524288)
2537@item -ignore-environment
2538Start with an empty environment. Without this option,
2539the initial environment is a copy of the caller's environment.
2540@item -E @var{var}=@var{value}
2541Set environment @var{var} to @var{value}.
2542@item -U @var{var}
2543Remove @var{var} from the environment.
2544@item -bsd type
2545Set the type of the emulated BSD Operating system. Valid values are
2546FreeBSD, NetBSD and OpenBSD (default).
2547@end table
2548
2549Debug options:
2550
2551@table @option
2552@item -d
2553Activate log (logfile=/tmp/qemu.log)
2554@item -p pagesize
2555Act as if the host page size was 'pagesize' bytes
2556@item -singlestep
2557Run the emulation in single step mode.
2558@end table
2559
2560@node compilation
2561@chapter Compilation from the sources
2562
2563@menu
2564* Linux/Unix::
2565* Windows::
2566* Cross compilation for Windows with Linux::
2567* Mac OS X::
2568* Make targets::
2569@end menu
2570
2571@node Linux/Unix
2572@section Linux/Unix
2573
2574@subsection Compilation
2575
2576First you must decompress the sources:
2577@example
2578cd /tmp
2579tar zxvf qemu-x.y.z.tar.gz
2580cd qemu-x.y.z
2581@end example
2582
2583Then you configure QEMU and build it (usually no options are needed):
2584@example
2585./configure
2586make
2587@end example
2588
2589Then type as root user:
2590@example
2591make install
2592@end example
2593to install QEMU in @file{/usr/local}.
2594
2595@node Windows
2596@section Windows
2597
2598@itemize
2599@item Install the current versions of MSYS and MinGW from
2600@url{http://www.mingw.org/}. You can find detailed installation
2601instructions in the download section and the FAQ.
2602
2603@item Download
2604the MinGW development library of SDL 1.2.x
2605(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2606@url{http://www.libsdl.org}. Unpack it in a temporary place and
2607edit the @file{sdl-config} script so that it gives the
2608correct SDL directory when invoked.
2609
2610@item Install the MinGW version of zlib and make sure
2611@file{zlib.h} and @file{libz.dll.a} are in
2612MinGW's default header and linker search paths.
2613
2614@item Extract the current version of QEMU.
2615
2616@item Start the MSYS shell (file @file{msys.bat}).
2617
2618@item Change to the QEMU directory. Launch @file{./configure} and
2619@file{make}. If you have problems using SDL, verify that
2620@file{sdl-config} can be launched from the MSYS command line.
2621
2622@item You can install QEMU in @file{Program Files/QEMU} by typing
2623@file{make install}. Don't forget to copy @file{SDL.dll} in
2624@file{Program Files/QEMU}.
2625
2626@end itemize
2627
2628@node Cross compilation for Windows with Linux
2629@section Cross compilation for Windows with Linux
2630
2631@itemize
2632@item
2633Install the MinGW cross compilation tools available at
2634@url{http://www.mingw.org/}.
2635
2636@item Download
2637the MinGW development library of SDL 1.2.x
2638(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2639@url{http://www.libsdl.org}. Unpack it in a temporary place and
2640edit the @file{sdl-config} script so that it gives the
2641correct SDL directory when invoked. Set up the @code{PATH} environment
2642variable so that @file{sdl-config} can be launched by
2643the QEMU configuration script.
2644
2645@item Install the MinGW version of zlib and make sure
2646@file{zlib.h} and @file{libz.dll.a} are in
2647MinGW's default header and linker search paths.
2648
2649@item
2650Configure QEMU for Windows cross compilation:
2651@example
2652PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2653@end example
2654The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2655MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2656We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2657use --cross-prefix to specify the name of the cross compiler.
2658You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
2659
2660Under Fedora Linux, you can run:
2661@example
2662yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2663@end example
2664to get a suitable cross compilation environment.
2665
2666@item You can install QEMU in the installation directory by typing
2667@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2668installation directory.
2669
2670@end itemize
2671
2672Wine can be used to launch the resulting qemu.exe compiled for Win32.
2673
2674@node Mac OS X
2675@section Mac OS X
2676
2677The Mac OS X patches are not fully merged in QEMU, so you should look
2678at the QEMU mailing list archive to have all the necessary
2679information.
2680
2681@node Make targets
2682@section Make targets
2683
2684@table @code
2685
2686@item make
2687@item make all
2688Make everything which is typically needed.
2689
2690@item install
2691TODO
2692
2693@item install-doc
2694TODO
2695
2696@item make clean
2697Remove most files which were built during make.
2698
2699@item make distclean
2700Remove everything which was built during make.
2701
2702@item make dvi
2703@item make html
2704@item make info
2705@item make pdf
2706Create documentation in dvi, html, info or pdf format.
2707
2708@item make cscope
2709TODO
2710
2711@item make defconfig
2712(Re-)create some build configuration files.
2713User made changes will be overwritten.
2714
2715@item tar
2716@item tarbin
2717TODO
2718
2719@end table
2720
2721@node License
2722@appendix License
2723
2724QEMU is a trademark of Fabrice Bellard.
2725
2726QEMU is released under the GNU General Public License (TODO: add link).
2727Parts of QEMU have specific licenses, see file LICENSE.
2728
2729TODO (refer to file LICENSE, include it, include the GPL?)
2730
2731@node Index
2732@appendix Index
2733@menu
2734* Concept Index::
2735* Function Index::
2736* Keystroke Index::
2737* Program Index::
2738* Data Type Index::
2739* Variable Index::
2740@end menu
2741
2742@node Concept Index
2743@section Concept Index
2744This is the main index. Should we combine all keywords in one index? TODO
2745@printindex cp
2746
2747@node Function Index
2748@section Function Index
2749This index could be used for command line options and monitor functions.
2750@printindex fn
2751
2752@node Keystroke Index
2753@section Keystroke Index
2754
2755This is a list of all keystrokes which have a special function
2756in system emulation.
2757
2758@printindex ky
2759
2760@node Program Index
2761@section Program Index
2762@printindex pg
2763
2764@node Data Type Index
2765@section Data Type Index
2766
2767This index could be used for qdev device names and options.
2768
2769@printindex tp
2770
2771@node Variable Index
2772@section Variable Index
2773@printindex vr
2774
2775@bye