]> git.proxmox.com Git - qemu.git/blame_incremental - qemu-doc.texi
Avoid gcc warnings
[qemu.git] / qemu-doc.texi
... / ...
CommitLineData
1\input texinfo @c -*- texinfo -*-
2@c %**start of header
3@setfilename qemu-doc.info
4@settitle QEMU Emulator User Documentation
5@exampleindent 0
6@paragraphindent 0
7@c %**end of header
8
9@iftex
10@titlepage
11@sp 7
12@center @titlefont{QEMU Emulator}
13@sp 1
14@center @titlefont{User Documentation}
15@sp 3
16@end titlepage
17@end iftex
18
19@ifnottex
20@node Top
21@top
22
23@menu
24* Introduction::
25* Installation::
26* QEMU PC System emulator::
27* QEMU System emulator for non PC targets::
28* QEMU User space emulator::
29* compilation:: Compilation from the sources
30* Index::
31@end menu
32@end ifnottex
33
34@contents
35
36@node Introduction
37@chapter Introduction
38
39@menu
40* intro_features:: Features
41@end menu
42
43@node intro_features
44@section Features
45
46QEMU is a FAST! processor emulator using dynamic translation to
47achieve good emulation speed.
48
49QEMU has two operating modes:
50
51@itemize @minus
52
53@item
54Full system emulation. In this mode, QEMU emulates a full system (for
55example a PC), including one or several processors and various
56peripherals. It can be used to launch different Operating Systems
57without rebooting the PC or to debug system code.
58
59@item
60User mode emulation. In this mode, QEMU can launch
61processes compiled for one CPU on another CPU. It can be used to
62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63to ease cross-compilation and cross-debugging.
64
65@end itemize
66
67QEMU can run without an host kernel driver and yet gives acceptable
68performance.
69
70For system emulation, the following hardware targets are supported:
71@itemize
72@item PC (x86 or x86_64 processor)
73@item ISA PC (old style PC without PCI bus)
74@item PREP (PowerPC processor)
75@item G3 BW PowerMac (PowerPC processor)
76@item Mac99 PowerMac (PowerPC processor, in progress)
77@item Sun4m (32-bit Sparc processor)
78@item Sun4u (64-bit Sparc processor, in progress)
79@item Malta board (32-bit MIPS processor)
80@item ARM Integrator/CP (ARM926E, 1026E or 946E processor)
81@item ARM Versatile baseboard (ARM926E)
82@item ARM RealView Emulation baseboard (ARM926EJ-S)
83@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84@item Freescale MCF5208EVB (ColdFire V2).
85@item Arnewsh MCF5206 evaluation board (ColdFire V2).
86@end itemize
87
88For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
89
90@node Installation
91@chapter Installation
92
93If you want to compile QEMU yourself, see @ref{compilation}.
94
95@menu
96* install_linux:: Linux
97* install_windows:: Windows
98* install_mac:: Macintosh
99@end menu
100
101@node install_linux
102@section Linux
103
104If a precompiled package is available for your distribution - you just
105have to install it. Otherwise, see @ref{compilation}.
106
107@node install_windows
108@section Windows
109
110Download the experimental binary installer at
111@url{http://www.free.oszoo.org/@/download.html}.
112
113@node install_mac
114@section Mac OS X
115
116Download the experimental binary installer at
117@url{http://www.free.oszoo.org/@/download.html}.
118
119@node QEMU PC System emulator
120@chapter QEMU PC System emulator
121
122@menu
123* pcsys_introduction:: Introduction
124* pcsys_quickstart:: Quick Start
125* sec_invocation:: Invocation
126* pcsys_keys:: Keys
127* pcsys_monitor:: QEMU Monitor
128* disk_images:: Disk Images
129* pcsys_network:: Network emulation
130* direct_linux_boot:: Direct Linux Boot
131* pcsys_usb:: USB emulation
132* vnc_security:: VNC security
133* gdb_usage:: GDB usage
134* pcsys_os_specific:: Target OS specific information
135@end menu
136
137@node pcsys_introduction
138@section Introduction
139
140@c man begin DESCRIPTION
141
142The QEMU PC System emulator simulates the
143following peripherals:
144
145@itemize @minus
146@item
147i440FX host PCI bridge and PIIX3 PCI to ISA bridge
148@item
149Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
150extensions (hardware level, including all non standard modes).
151@item
152PS/2 mouse and keyboard
153@item
1542 PCI IDE interfaces with hard disk and CD-ROM support
155@item
156Floppy disk
157@item
158PCI/ISA PCI network adapters
159@item
160Serial ports
161@item
162Creative SoundBlaster 16 sound card
163@item
164ENSONIQ AudioPCI ES1370 sound card
165@item
166Adlib(OPL2) - Yamaha YM3812 compatible chip
167@item
168PCI UHCI USB controller and a virtual USB hub.
169@end itemize
170
171SMP is supported with up to 255 CPUs.
172
173Note that adlib is only available when QEMU was configured with
174-enable-adlib
175
176QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
177VGA BIOS.
178
179QEMU uses YM3812 emulation by Tatsuyuki Satoh.
180
181@c man end
182
183@node pcsys_quickstart
184@section Quick Start
185
186Download and uncompress the linux image (@file{linux.img}) and type:
187
188@example
189qemu linux.img
190@end example
191
192Linux should boot and give you a prompt.
193
194@node sec_invocation
195@section Invocation
196
197@example
198@c man begin SYNOPSIS
199usage: qemu [options] [disk_image]
200@c man end
201@end example
202
203@c man begin OPTIONS
204@var{disk_image} is a raw hard disk image for IDE hard disk 0.
205
206General options:
207@table @option
208@item -M machine
209Select the emulated machine (@code{-M ?} for list)
210
211@item -fda file
212@item -fdb file
213Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
214use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
215
216@item -hda file
217@item -hdb file
218@item -hdc file
219@item -hdd file
220Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
221
222@item -cdrom file
223Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
224@option{-cdrom} at the same time). You can use the host CD-ROM by
225using @file{/dev/cdrom} as filename (@pxref{host_drives}).
226
227@item -boot [a|c|d|n]
228Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
229is the default.
230
231@item -snapshot
232Write to temporary files instead of disk image files. In this case,
233the raw disk image you use is not written back. You can however force
234the write back by pressing @key{C-a s} (@pxref{disk_images}).
235
236@item -no-fd-bootchk
237Disable boot signature checking for floppy disks in Bochs BIOS. It may
238be needed to boot from old floppy disks.
239
240@item -m megs
241Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
242
243@item -smp n
244Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
245CPUs are supported.
246
247@item -audio-help
248
249Will show the audio subsystem help: list of drivers, tunable
250parameters.
251
252@item -soundhw card1,card2,... or -soundhw all
253
254Enable audio and selected sound hardware. Use ? to print all
255available sound hardware.
256
257@example
258qemu -soundhw sb16,adlib hda
259qemu -soundhw es1370 hda
260qemu -soundhw all hda
261qemu -soundhw ?
262@end example
263
264@item -localtime
265Set the real time clock to local time (the default is to UTC
266time). This option is needed to have correct date in MS-DOS or
267Windows.
268
269@item -pidfile file
270Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
271from a script.
272
273@item -daemonize
274Daemonize the QEMU process after initialization. QEMU will not detach from
275standard IO until it is ready to receive connections on any of its devices.
276This option is a useful way for external programs to launch QEMU without having
277to cope with initialization race conditions.
278
279@item -win2k-hack
280Use it when installing Windows 2000 to avoid a disk full bug. After
281Windows 2000 is installed, you no longer need this option (this option
282slows down the IDE transfers).
283
284@item -option-rom file
285Load the contents of file as an option ROM. This option is useful to load
286things like EtherBoot.
287
288@item -name string
289Sets the name of the guest. This name will be display in the SDL window
290caption. The name will also be used for the VNC server.
291
292@end table
293
294Display options:
295@table @option
296
297@item -nographic
298
299Normally, QEMU uses SDL to display the VGA output. With this option,
300you can totally disable graphical output so that QEMU is a simple
301command line application. The emulated serial port is redirected on
302the console. Therefore, you can still use QEMU to debug a Linux kernel
303with a serial console.
304
305@item -no-frame
306
307Do not use decorations for SDL windows and start them using the whole
308available screen space. This makes the using QEMU in a dedicated desktop
309workspace more convenient.
310
311@item -full-screen
312Start in full screen.
313
314@item -vnc display[,option[,option[,...]]]
315
316Normally, QEMU uses SDL to display the VGA output. With this option,
317you can have QEMU listen on VNC display @var{display} and redirect the VGA
318display over the VNC session. It is very useful to enable the usb
319tablet device when using this option (option @option{-usbdevice
320tablet}). When using the VNC display, you must use the @option{-k}
321parameter to set the keyboard layout if you are not using en-us. Valid
322syntax for the @var{display} is
323
324@table @code
325
326@item @var{interface:d}
327
328TCP connections will only be allowed from @var{interface} on display @var{d}.
329By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
330be omitted in which case the server will bind to all interfaces.
331
332@item @var{unix:path}
333
334Connections will be allowed over UNIX domain sockets where @var{path} is the
335location of a unix socket to listen for connections on.
336
337@item @var{none}
338
339VNC is initialized by not started. The monitor @code{change} command can be used
340to later start the VNC server.
341
342@end table
343
344Following the @var{display} value there may be one or more @var{option} flags
345separated by commas. Valid options are
346
347@table @code
348
349@item @var{password}
350
351Require that password based authentication is used for client connections.
352The password must be set separately using the @code{change} command in the
353@ref{pcsys_monitor}
354
355@item @var{tls}
356
357Require that client use TLS when communicating with the VNC server. This
358uses anonymous TLS credentials so is susceptible to a man-in-the-middle
359attack. It is recommended that this option be combined with either the
360@var{x509} or @var{x509verify} options.
361
362@item @var{x509=/path/to/certificate/dir}
363
364Valid if @var{tls} is specified. Require that x509 credentials are used
365for negotiating the TLS session. The server will send its x509 certificate
366to the client. It is recommended that a password be set on the VNC server
367to provide authentication of the client when this is used. The path following
368this option specifies where the x509 certificates are to be loaded from.
369See the @ref{vnc_security} section for details on generating certificates.
370
371@item @var{x509verify=/path/to/certificate/dir}
372
373Valid if @var{tls} is specified. Require that x509 credentials are used
374for negotiating the TLS session. The server will send its x509 certificate
375to the client, and request that the client send its own x509 certificate.
376The server will validate the client's certificate against the CA certificate,
377and reject clients when validation fails. If the certificate authority is
378trusted, this is a sufficient authentication mechanism. You may still wish
379to set a password on the VNC server as a second authentication layer. The
380path following this option specifies where the x509 certificates are to
381be loaded from. See the @ref{vnc_security} section for details on generating
382certificates.
383
384@end table
385
386@item -k language
387
388Use keyboard layout @var{language} (for example @code{fr} for
389French). This option is only needed where it is not easy to get raw PC
390keycodes (e.g. on Macs, with some X11 servers or with a VNC
391display). You don't normally need to use it on PC/Linux or PC/Windows
392hosts.
393
394The available layouts are:
395@example
396ar de-ch es fo fr-ca hu ja mk no pt-br sv
397da en-gb et fr fr-ch is lt nl pl ru th
398de en-us fi fr-be hr it lv nl-be pt sl tr
399@end example
400
401The default is @code{en-us}.
402
403@end table
404
405USB options:
406@table @option
407
408@item -usb
409Enable the USB driver (will be the default soon)
410
411@item -usbdevice devname
412Add the USB device @var{devname}. @xref{usb_devices}.
413@end table
414
415Network options:
416
417@table @option
418
419@item -net nic[,vlan=n][,macaddr=addr][,model=type]
420Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
421= 0 is the default). The NIC is an ne2k_pci by default on the PC
422target. Optionally, the MAC address can be changed. If no
423@option{-net} option is specified, a single NIC is created.
424Qemu can emulate several different models of network card.
425Valid values for @var{type} are
426@code{i82551}, @code{i82557b}, @code{i82559er},
427@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
428@code{smc91c111}, @code{lance} and @code{mcf_fec}.
429Not all devices are supported on all targets. Use -net nic,model=?
430for a list of available devices for your target.
431
432@item -net user[,vlan=n][,hostname=name]
433Use the user mode network stack which requires no administrator
434privilege to run. @option{hostname=name} can be used to specify the client
435hostname reported by the builtin DHCP server.
436
437@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
438Connect the host TAP network interface @var{name} to VLAN @var{n} and
439use the network script @var{file} to configure it. The default
440network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
441disable script execution. If @var{name} is not
442provided, the OS automatically provides one. @option{fd=h} can be
443used to specify the handle of an already opened host TAP interface. Example:
444
445@example
446qemu linux.img -net nic -net tap
447@end example
448
449More complicated example (two NICs, each one connected to a TAP device)
450@example
451qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
452 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
453@end example
454
455
456@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
457
458Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
459machine using a TCP socket connection. If @option{listen} is
460specified, QEMU waits for incoming connections on @var{port}
461(@var{host} is optional). @option{connect} is used to connect to
462another QEMU instance using the @option{listen} option. @option{fd=h}
463specifies an already opened TCP socket.
464
465Example:
466@example
467# launch a first QEMU instance
468qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
469 -net socket,listen=:1234
470# connect the VLAN 0 of this instance to the VLAN 0
471# of the first instance
472qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
473 -net socket,connect=127.0.0.1:1234
474@end example
475
476@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
477
478Create a VLAN @var{n} shared with another QEMU virtual
479machines using a UDP multicast socket, effectively making a bus for
480every QEMU with same multicast address @var{maddr} and @var{port}.
481NOTES:
482@enumerate
483@item
484Several QEMU can be running on different hosts and share same bus (assuming
485correct multicast setup for these hosts).
486@item
487mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
488@url{http://user-mode-linux.sf.net}.
489@item
490Use @option{fd=h} to specify an already opened UDP multicast socket.
491@end enumerate
492
493Example:
494@example
495# launch one QEMU instance
496qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
497 -net socket,mcast=230.0.0.1:1234
498# launch another QEMU instance on same "bus"
499qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
500 -net socket,mcast=230.0.0.1:1234
501# launch yet another QEMU instance on same "bus"
502qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
503 -net socket,mcast=230.0.0.1:1234
504@end example
505
506Example (User Mode Linux compat.):
507@example
508# launch QEMU instance (note mcast address selected
509# is UML's default)
510qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
511 -net socket,mcast=239.192.168.1:1102
512# launch UML
513/path/to/linux ubd0=/path/to/root_fs eth0=mcast
514@end example
515
516@item -net none
517Indicate that no network devices should be configured. It is used to
518override the default configuration (@option{-net nic -net user}) which
519is activated if no @option{-net} options are provided.
520
521@item -tftp dir
522When using the user mode network stack, activate a built-in TFTP
523server. The files in @var{dir} will be exposed as the root of a TFTP server.
524The TFTP client on the guest must be configured in binary mode (use the command
525@code{bin} of the Unix TFTP client). The host IP address on the guest is as
526usual 10.0.2.2.
527
528@item -bootp file
529When using the user mode network stack, broadcast @var{file} as the BOOTP
530filename. In conjunction with @option{-tftp}, this can be used to network boot
531a guest from a local directory.
532
533Example (using pxelinux):
534@example
535qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
536@end example
537
538@item -smb dir
539When using the user mode network stack, activate a built-in SMB
540server so that Windows OSes can access to the host files in @file{dir}
541transparently.
542
543In the guest Windows OS, the line:
544@example
54510.0.2.4 smbserver
546@end example
547must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
548or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
549
550Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
551
552Note that a SAMBA server must be installed on the host OS in
553@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
5542.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
555
556@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
557
558When using the user mode network stack, redirect incoming TCP or UDP
559connections to the host port @var{host-port} to the guest
560@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
561is not specified, its value is 10.0.2.15 (default address given by the
562built-in DHCP server).
563
564For example, to redirect host X11 connection from screen 1 to guest
565screen 0, use the following:
566
567@example
568# on the host
569qemu -redir tcp:6001::6000 [...]
570# this host xterm should open in the guest X11 server
571xterm -display :1
572@end example
573
574To redirect telnet connections from host port 5555 to telnet port on
575the guest, use the following:
576
577@example
578# on the host
579qemu -redir tcp:5555::23 [...]
580telnet localhost 5555
581@end example
582
583Then when you use on the host @code{telnet localhost 5555}, you
584connect to the guest telnet server.
585
586@end table
587
588Linux boot specific: When using these options, you can use a given
589Linux kernel without installing it in the disk image. It can be useful
590for easier testing of various kernels.
591
592@table @option
593
594@item -kernel bzImage
595Use @var{bzImage} as kernel image.
596
597@item -append cmdline
598Use @var{cmdline} as kernel command line
599
600@item -initrd file
601Use @var{file} as initial ram disk.
602
603@end table
604
605Debug/Expert options:
606@table @option
607
608@item -serial dev
609Redirect the virtual serial port to host character device
610@var{dev}. The default device is @code{vc} in graphical mode and
611@code{stdio} in non graphical mode.
612
613This option can be used several times to simulate up to 4 serials
614ports.
615
616Use @code{-serial none} to disable all serial ports.
617
618Available character devices are:
619@table @code
620@item vc[:WxH]
621Virtual console. Optionally, a width and height can be given in pixel with
622@example
623vc:800x600
624@end example
625It is also possible to specify width or height in characters:
626@example
627vc:80Cx24C
628@end example
629@item pty
630[Linux only] Pseudo TTY (a new PTY is automatically allocated)
631@item none
632No device is allocated.
633@item null
634void device
635@item /dev/XXX
636[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
637parameters are set according to the emulated ones.
638@item /dev/parportN
639[Linux only, parallel port only] Use host parallel port
640@var{N}. Currently SPP and EPP parallel port features can be used.
641@item file:filename
642Write output to filename. No character can be read.
643@item stdio
644[Unix only] standard input/output
645@item pipe:filename
646name pipe @var{filename}
647@item COMn
648[Windows only] Use host serial port @var{n}
649@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
650This implements UDP Net Console. When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}. When not using a specified @var{src_port} a random port is automatically chosen.
651
652If you just want a simple readonly console you can use @code{netcat} or
653@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
654@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
655will appear in the netconsole session.
656
657If you plan to send characters back via netconsole or you want to stop
658and start qemu a lot of times, you should have qemu use the same
659source port each time by using something like @code{-serial
660udp::4555@@:4556} to qemu. Another approach is to use a patched
661version of netcat which can listen to a TCP port and send and receive
662characters via udp. If you have a patched version of netcat which
663activates telnet remote echo and single char transfer, then you can
664use the following options to step up a netcat redirector to allow
665telnet on port 5555 to access the qemu port.
666@table @code
667@item Qemu Options:
668-serial udp::4555@@:4556
669@item netcat options:
670-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
671@item telnet options:
672localhost 5555
673@end table
674
675
676@item tcp:[host]:port[,server][,nowait][,nodelay]
677The TCP Net Console has two modes of operation. It can send the serial
678I/O to a location or wait for a connection from a location. By default
679the TCP Net Console is sent to @var{host} at the @var{port}. If you use
680the @var{server} option QEMU will wait for a client socket application
681to connect to the port before continuing, unless the @code{nowait}
682option was specified. The @code{nodelay} option disables the Nagle buffering
683algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
684one TCP connection at a time is accepted. You can use @code{telnet} to
685connect to the corresponding character device.
686@table @code
687@item Example to send tcp console to 192.168.0.2 port 4444
688-serial tcp:192.168.0.2:4444
689@item Example to listen and wait on port 4444 for connection
690-serial tcp::4444,server
691@item Example to not wait and listen on ip 192.168.0.100 port 4444
692-serial tcp:192.168.0.100:4444,server,nowait
693@end table
694
695@item telnet:host:port[,server][,nowait][,nodelay]
696The telnet protocol is used instead of raw tcp sockets. The options
697work the same as if you had specified @code{-serial tcp}. The
698difference is that the port acts like a telnet server or client using
699telnet option negotiation. This will also allow you to send the
700MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
701sequence. Typically in unix telnet you do it with Control-] and then
702type "send break" followed by pressing the enter key.
703
704@item unix:path[,server][,nowait]
705A unix domain socket is used instead of a tcp socket. The option works the
706same as if you had specified @code{-serial tcp} except the unix domain socket
707@var{path} is used for connections.
708
709@item mon:dev_string
710This is a special option to allow the monitor to be multiplexed onto
711another serial port. The monitor is accessed with key sequence of
712@key{Control-a} and then pressing @key{c}. See monitor access
713@ref{pcsys_keys} in the -nographic section for more keys.
714@var{dev_string} should be any one of the serial devices specified
715above. An example to multiplex the monitor onto a telnet server
716listening on port 4444 would be:
717@table @code
718@item -serial mon:telnet::4444,server,nowait
719@end table
720
721@end table
722
723@item -parallel dev
724Redirect the virtual parallel port to host device @var{dev} (same
725devices as the serial port). On Linux hosts, @file{/dev/parportN} can
726be used to use hardware devices connected on the corresponding host
727parallel port.
728
729This option can be used several times to simulate up to 3 parallel
730ports.
731
732Use @code{-parallel none} to disable all parallel ports.
733
734@item -monitor dev
735Redirect the monitor to host device @var{dev} (same devices as the
736serial port).
737The default device is @code{vc} in graphical mode and @code{stdio} in
738non graphical mode.
739
740@item -echr numeric_ascii_value
741Change the escape character used for switching to the monitor when using
742monitor and serial sharing. The default is @code{0x01} when using the
743@code{-nographic} option. @code{0x01} is equal to pressing
744@code{Control-a}. You can select a different character from the ascii
745control keys where 1 through 26 map to Control-a through Control-z. For
746instance you could use the either of the following to change the escape
747character to Control-t.
748@table @code
749@item -echr 0x14
750@item -echr 20
751@end table
752
753@item -s
754Wait gdb connection to port 1234 (@pxref{gdb_usage}).
755@item -p port
756Change gdb connection port. @var{port} can be either a decimal number
757to specify a TCP port, or a host device (same devices as the serial port).
758@item -S
759Do not start CPU at startup (you must type 'c' in the monitor).
760@item -d
761Output log in /tmp/qemu.log
762@item -hdachs c,h,s,[,t]
763Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
764@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
765translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
766all those parameters. This option is useful for old MS-DOS disk
767images.
768
769@item -L path
770Set the directory for the BIOS, VGA BIOS and keymaps.
771
772@item -std-vga
773Simulate a standard VGA card with Bochs VBE extensions (default is
774Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
775VBE extensions (e.g. Windows XP) and if you want to use high
776resolution modes (>= 1280x1024x16) then you should use this option.
777
778@item -no-acpi
779Disable ACPI (Advanced Configuration and Power Interface) support. Use
780it if your guest OS complains about ACPI problems (PC target machine
781only).
782
783@item -no-reboot
784Exit instead of rebooting.
785
786@item -loadvm file
787Start right away with a saved state (@code{loadvm} in monitor)
788
789@item -semihosting
790Enable semihosting syscall emulation (ARM and M68K target machines only).
791
792On ARM this implements the "Angel" interface.
793On M68K this implements the "ColdFire GDB" interface used by libgloss.
794
795Note that this allows guest direct access to the host filesystem,
796so should only be used with trusted guest OS.
797@end table
798
799@c man end
800
801@node pcsys_keys
802@section Keys
803
804@c man begin OPTIONS
805
806During the graphical emulation, you can use the following keys:
807@table @key
808@item Ctrl-Alt-f
809Toggle full screen
810
811@item Ctrl-Alt-n
812Switch to virtual console 'n'. Standard console mappings are:
813@table @emph
814@item 1
815Target system display
816@item 2
817Monitor
818@item 3
819Serial port
820@end table
821
822@item Ctrl-Alt
823Toggle mouse and keyboard grab.
824@end table
825
826In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
827@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
828
829During emulation, if you are using the @option{-nographic} option, use
830@key{Ctrl-a h} to get terminal commands:
831
832@table @key
833@item Ctrl-a h
834Print this help
835@item Ctrl-a x
836Exit emulator
837@item Ctrl-a s
838Save disk data back to file (if -snapshot)
839@item Ctrl-a t
840toggle console timestamps
841@item Ctrl-a b
842Send break (magic sysrq in Linux)
843@item Ctrl-a c
844Switch between console and monitor
845@item Ctrl-a Ctrl-a
846Send Ctrl-a
847@end table
848@c man end
849
850@ignore
851
852@c man begin SEEALSO
853The HTML documentation of QEMU for more precise information and Linux
854user mode emulator invocation.
855@c man end
856
857@c man begin AUTHOR
858Fabrice Bellard
859@c man end
860
861@end ignore
862
863@node pcsys_monitor
864@section QEMU Monitor
865
866The QEMU monitor is used to give complex commands to the QEMU
867emulator. You can use it to:
868
869@itemize @minus
870
871@item
872Remove or insert removable media images
873(such as CD-ROM or floppies)
874
875@item
876Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
877from a disk file.
878
879@item Inspect the VM state without an external debugger.
880
881@end itemize
882
883@subsection Commands
884
885The following commands are available:
886
887@table @option
888
889@item help or ? [cmd]
890Show the help for all commands or just for command @var{cmd}.
891
892@item commit
893Commit changes to the disk images (if -snapshot is used)
894
895@item info subcommand
896show various information about the system state
897
898@table @option
899@item info network
900show the various VLANs and the associated devices
901@item info block
902show the block devices
903@item info registers
904show the cpu registers
905@item info history
906show the command line history
907@item info pci
908show emulated PCI device
909@item info usb
910show USB devices plugged on the virtual USB hub
911@item info usbhost
912show all USB host devices
913@item info capture
914show information about active capturing
915@item info snapshots
916show list of VM snapshots
917@item info mice
918show which guest mouse is receiving events
919@end table
920
921@item q or quit
922Quit the emulator.
923
924@item eject [-f] device
925Eject a removable medium (use -f to force it).
926
927@item change device setting
928
929Change the configuration of a device
930
931@table @option
932@item change @var{diskdevice} @var{filename}
933Change the medium for a removable disk device to point to @var{filename}. eg
934
935@example
936(qemu) change cdrom /path/to/some.iso
937@end example
938
939@item change vnc @var{display,options}
940Change the configuration of the VNC server. The valid syntax for @var{display}
941and @var{options} are described at @ref{sec_invocation}. eg
942
943@example
944(qemu) change vnc localhost:1
945@end example
946
947@item change vnc password
948
949Change the password associated with the VNC server. The monitor will prompt for
950the new password to be entered. VNC passwords are only significant upto 8 letters.
951eg.
952
953@example
954(qemu) change vnc password
955Password: ********
956@end example
957
958@end table
959
960@item screendump filename
961Save screen into PPM image @var{filename}.
962
963@item mouse_move dx dy [dz]
964Move the active mouse to the specified coordinates @var{dx} @var{dy}
965with optional scroll axis @var{dz}.
966
967@item mouse_button val
968Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
969
970@item mouse_set index
971Set which mouse device receives events at given @var{index}, index
972can be obtained with
973@example
974info mice
975@end example
976
977@item wavcapture filename [frequency [bits [channels]]]
978Capture audio into @var{filename}. Using sample rate @var{frequency}
979bits per sample @var{bits} and number of channels @var{channels}.
980
981Defaults:
982@itemize @minus
983@item Sample rate = 44100 Hz - CD quality
984@item Bits = 16
985@item Number of channels = 2 - Stereo
986@end itemize
987
988@item stopcapture index
989Stop capture with a given @var{index}, index can be obtained with
990@example
991info capture
992@end example
993
994@item log item1[,...]
995Activate logging of the specified items to @file{/tmp/qemu.log}.
996
997@item savevm [tag|id]
998Create a snapshot of the whole virtual machine. If @var{tag} is
999provided, it is used as human readable identifier. If there is already
1000a snapshot with the same tag or ID, it is replaced. More info at
1001@ref{vm_snapshots}.
1002
1003@item loadvm tag|id
1004Set the whole virtual machine to the snapshot identified by the tag
1005@var{tag} or the unique snapshot ID @var{id}.
1006
1007@item delvm tag|id
1008Delete the snapshot identified by @var{tag} or @var{id}.
1009
1010@item stop
1011Stop emulation.
1012
1013@item c or cont
1014Resume emulation.
1015
1016@item gdbserver [port]
1017Start gdbserver session (default port=1234)
1018
1019@item x/fmt addr
1020Virtual memory dump starting at @var{addr}.
1021
1022@item xp /fmt addr
1023Physical memory dump starting at @var{addr}.
1024
1025@var{fmt} is a format which tells the command how to format the
1026data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1027
1028@table @var
1029@item count
1030is the number of items to be dumped.
1031
1032@item format
1033can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1034c (char) or i (asm instruction).
1035
1036@item size
1037can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1038@code{h} or @code{w} can be specified with the @code{i} format to
1039respectively select 16 or 32 bit code instruction size.
1040
1041@end table
1042
1043Examples:
1044@itemize
1045@item
1046Dump 10 instructions at the current instruction pointer:
1047@example
1048(qemu) x/10i $eip
10490x90107063: ret
10500x90107064: sti
10510x90107065: lea 0x0(%esi,1),%esi
10520x90107069: lea 0x0(%edi,1),%edi
10530x90107070: ret
10540x90107071: jmp 0x90107080
10550x90107073: nop
10560x90107074: nop
10570x90107075: nop
10580x90107076: nop
1059@end example
1060
1061@item
1062Dump 80 16 bit values at the start of the video memory.
1063@smallexample
1064(qemu) xp/80hx 0xb8000
10650x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
10660x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
10670x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
10680x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
10690x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
10700x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
10710x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
10720x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
10730x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
10740x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1075@end smallexample
1076@end itemize
1077
1078@item p or print/fmt expr
1079
1080Print expression value. Only the @var{format} part of @var{fmt} is
1081used.
1082
1083@item sendkey keys
1084
1085Send @var{keys} to the emulator. Use @code{-} to press several keys
1086simultaneously. Example:
1087@example
1088sendkey ctrl-alt-f1
1089@end example
1090
1091This command is useful to send keys that your graphical user interface
1092intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1093
1094@item system_reset
1095
1096Reset the system.
1097
1098@item usb_add devname
1099
1100Add the USB device @var{devname}. For details of available devices see
1101@ref{usb_devices}
1102
1103@item usb_del devname
1104
1105Remove the USB device @var{devname} from the QEMU virtual USB
1106hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1107command @code{info usb} to see the devices you can remove.
1108
1109@end table
1110
1111@subsection Integer expressions
1112
1113The monitor understands integers expressions for every integer
1114argument. You can use register names to get the value of specifics
1115CPU registers by prefixing them with @emph{$}.
1116
1117@node disk_images
1118@section Disk Images
1119
1120Since version 0.6.1, QEMU supports many disk image formats, including
1121growable disk images (their size increase as non empty sectors are
1122written), compressed and encrypted disk images. Version 0.8.3 added
1123the new qcow2 disk image format which is essential to support VM
1124snapshots.
1125
1126@menu
1127* disk_images_quickstart:: Quick start for disk image creation
1128* disk_images_snapshot_mode:: Snapshot mode
1129* vm_snapshots:: VM snapshots
1130* qemu_img_invocation:: qemu-img Invocation
1131* host_drives:: Using host drives
1132* disk_images_fat_images:: Virtual FAT disk images
1133@end menu
1134
1135@node disk_images_quickstart
1136@subsection Quick start for disk image creation
1137
1138You can create a disk image with the command:
1139@example
1140qemu-img create myimage.img mysize
1141@end example
1142where @var{myimage.img} is the disk image filename and @var{mysize} is its
1143size in kilobytes. You can add an @code{M} suffix to give the size in
1144megabytes and a @code{G} suffix for gigabytes.
1145
1146See @ref{qemu_img_invocation} for more information.
1147
1148@node disk_images_snapshot_mode
1149@subsection Snapshot mode
1150
1151If you use the option @option{-snapshot}, all disk images are
1152considered as read only. When sectors in written, they are written in
1153a temporary file created in @file{/tmp}. You can however force the
1154write back to the raw disk images by using the @code{commit} monitor
1155command (or @key{C-a s} in the serial console).
1156
1157@node vm_snapshots
1158@subsection VM snapshots
1159
1160VM snapshots are snapshots of the complete virtual machine including
1161CPU state, RAM, device state and the content of all the writable
1162disks. In order to use VM snapshots, you must have at least one non
1163removable and writable block device using the @code{qcow2} disk image
1164format. Normally this device is the first virtual hard drive.
1165
1166Use the monitor command @code{savevm} to create a new VM snapshot or
1167replace an existing one. A human readable name can be assigned to each
1168snapshot in addition to its numerical ID.
1169
1170Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1171a VM snapshot. @code{info snapshots} lists the available snapshots
1172with their associated information:
1173
1174@example
1175(qemu) info snapshots
1176Snapshot devices: hda
1177Snapshot list (from hda):
1178ID TAG VM SIZE DATE VM CLOCK
11791 start 41M 2006-08-06 12:38:02 00:00:14.954
11802 40M 2006-08-06 12:43:29 00:00:18.633
11813 msys 40M 2006-08-06 12:44:04 00:00:23.514
1182@end example
1183
1184A VM snapshot is made of a VM state info (its size is shown in
1185@code{info snapshots}) and a snapshot of every writable disk image.
1186The VM state info is stored in the first @code{qcow2} non removable
1187and writable block device. The disk image snapshots are stored in
1188every disk image. The size of a snapshot in a disk image is difficult
1189to evaluate and is not shown by @code{info snapshots} because the
1190associated disk sectors are shared among all the snapshots to save
1191disk space (otherwise each snapshot would need a full copy of all the
1192disk images).
1193
1194When using the (unrelated) @code{-snapshot} option
1195(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1196but they are deleted as soon as you exit QEMU.
1197
1198VM snapshots currently have the following known limitations:
1199@itemize
1200@item
1201They cannot cope with removable devices if they are removed or
1202inserted after a snapshot is done.
1203@item
1204A few device drivers still have incomplete snapshot support so their
1205state is not saved or restored properly (in particular USB).
1206@end itemize
1207
1208@node qemu_img_invocation
1209@subsection @code{qemu-img} Invocation
1210
1211@include qemu-img.texi
1212
1213@node host_drives
1214@subsection Using host drives
1215
1216In addition to disk image files, QEMU can directly access host
1217devices. We describe here the usage for QEMU version >= 0.8.3.
1218
1219@subsubsection Linux
1220
1221On Linux, you can directly use the host device filename instead of a
1222disk image filename provided you have enough privileges to access
1223it. For example, use @file{/dev/cdrom} to access to the CDROM or
1224@file{/dev/fd0} for the floppy.
1225
1226@table @code
1227@item CD
1228You can specify a CDROM device even if no CDROM is loaded. QEMU has
1229specific code to detect CDROM insertion or removal. CDROM ejection by
1230the guest OS is supported. Currently only data CDs are supported.
1231@item Floppy
1232You can specify a floppy device even if no floppy is loaded. Floppy
1233removal is currently not detected accurately (if you change floppy
1234without doing floppy access while the floppy is not loaded, the guest
1235OS will think that the same floppy is loaded).
1236@item Hard disks
1237Hard disks can be used. Normally you must specify the whole disk
1238(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1239see it as a partitioned disk. WARNING: unless you know what you do, it
1240is better to only make READ-ONLY accesses to the hard disk otherwise
1241you may corrupt your host data (use the @option{-snapshot} command
1242line option or modify the device permissions accordingly).
1243@end table
1244
1245@subsubsection Windows
1246
1247@table @code
1248@item CD
1249The preferred syntax is the drive letter (e.g. @file{d:}). The
1250alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1251supported as an alias to the first CDROM drive.
1252
1253Currently there is no specific code to handle removable media, so it
1254is better to use the @code{change} or @code{eject} monitor commands to
1255change or eject media.
1256@item Hard disks
1257Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1258where @var{N} is the drive number (0 is the first hard disk).
1259
1260WARNING: unless you know what you do, it is better to only make
1261READ-ONLY accesses to the hard disk otherwise you may corrupt your
1262host data (use the @option{-snapshot} command line so that the
1263modifications are written in a temporary file).
1264@end table
1265
1266
1267@subsubsection Mac OS X
1268
1269@file{/dev/cdrom} is an alias to the first CDROM.
1270
1271Currently there is no specific code to handle removable media, so it
1272is better to use the @code{change} or @code{eject} monitor commands to
1273change or eject media.
1274
1275@node disk_images_fat_images
1276@subsection Virtual FAT disk images
1277
1278QEMU can automatically create a virtual FAT disk image from a
1279directory tree. In order to use it, just type:
1280
1281@example
1282qemu linux.img -hdb fat:/my_directory
1283@end example
1284
1285Then you access access to all the files in the @file{/my_directory}
1286directory without having to copy them in a disk image or to export
1287them via SAMBA or NFS. The default access is @emph{read-only}.
1288
1289Floppies can be emulated with the @code{:floppy:} option:
1290
1291@example
1292qemu linux.img -fda fat:floppy:/my_directory
1293@end example
1294
1295A read/write support is available for testing (beta stage) with the
1296@code{:rw:} option:
1297
1298@example
1299qemu linux.img -fda fat:floppy:rw:/my_directory
1300@end example
1301
1302What you should @emph{never} do:
1303@itemize
1304@item use non-ASCII filenames ;
1305@item use "-snapshot" together with ":rw:" ;
1306@item expect it to work when loadvm'ing ;
1307@item write to the FAT directory on the host system while accessing it with the guest system.
1308@end itemize
1309
1310@node pcsys_network
1311@section Network emulation
1312
1313QEMU can simulate several network cards (PCI or ISA cards on the PC
1314target) and can connect them to an arbitrary number of Virtual Local
1315Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1316VLAN. VLAN can be connected between separate instances of QEMU to
1317simulate large networks. For simpler usage, a non privileged user mode
1318network stack can replace the TAP device to have a basic network
1319connection.
1320
1321@subsection VLANs
1322
1323QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1324connection between several network devices. These devices can be for
1325example QEMU virtual Ethernet cards or virtual Host ethernet devices
1326(TAP devices).
1327
1328@subsection Using TAP network interfaces
1329
1330This is the standard way to connect QEMU to a real network. QEMU adds
1331a virtual network device on your host (called @code{tapN}), and you
1332can then configure it as if it was a real ethernet card.
1333
1334@subsubsection Linux host
1335
1336As an example, you can download the @file{linux-test-xxx.tar.gz}
1337archive and copy the script @file{qemu-ifup} in @file{/etc} and
1338configure properly @code{sudo} so that the command @code{ifconfig}
1339contained in @file{qemu-ifup} can be executed as root. You must verify
1340that your host kernel supports the TAP network interfaces: the
1341device @file{/dev/net/tun} must be present.
1342
1343See @ref{sec_invocation} to have examples of command lines using the
1344TAP network interfaces.
1345
1346@subsubsection Windows host
1347
1348There is a virtual ethernet driver for Windows 2000/XP systems, called
1349TAP-Win32. But it is not included in standard QEMU for Windows,
1350so you will need to get it separately. It is part of OpenVPN package,
1351so download OpenVPN from : @url{http://openvpn.net/}.
1352
1353@subsection Using the user mode network stack
1354
1355By using the option @option{-net user} (default configuration if no
1356@option{-net} option is specified), QEMU uses a completely user mode
1357network stack (you don't need root privilege to use the virtual
1358network). The virtual network configuration is the following:
1359
1360@example
1361
1362 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1363 | (10.0.2.2)
1364 |
1365 ----> DNS server (10.0.2.3)
1366 |
1367 ----> SMB server (10.0.2.4)
1368@end example
1369
1370The QEMU VM behaves as if it was behind a firewall which blocks all
1371incoming connections. You can use a DHCP client to automatically
1372configure the network in the QEMU VM. The DHCP server assign addresses
1373to the hosts starting from 10.0.2.15.
1374
1375In order to check that the user mode network is working, you can ping
1376the address 10.0.2.2 and verify that you got an address in the range
137710.0.2.x from the QEMU virtual DHCP server.
1378
1379Note that @code{ping} is not supported reliably to the internet as it
1380would require root privileges. It means you can only ping the local
1381router (10.0.2.2).
1382
1383When using the built-in TFTP server, the router is also the TFTP
1384server.
1385
1386When using the @option{-redir} option, TCP or UDP connections can be
1387redirected from the host to the guest. It allows for example to
1388redirect X11, telnet or SSH connections.
1389
1390@subsection Connecting VLANs between QEMU instances
1391
1392Using the @option{-net socket} option, it is possible to make VLANs
1393that span several QEMU instances. See @ref{sec_invocation} to have a
1394basic example.
1395
1396@node direct_linux_boot
1397@section Direct Linux Boot
1398
1399This section explains how to launch a Linux kernel inside QEMU without
1400having to make a full bootable image. It is very useful for fast Linux
1401kernel testing.
1402
1403The syntax is:
1404@example
1405qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1406@end example
1407
1408Use @option{-kernel} to provide the Linux kernel image and
1409@option{-append} to give the kernel command line arguments. The
1410@option{-initrd} option can be used to provide an INITRD image.
1411
1412When using the direct Linux boot, a disk image for the first hard disk
1413@file{hda} is required because its boot sector is used to launch the
1414Linux kernel.
1415
1416If you do not need graphical output, you can disable it and redirect
1417the virtual serial port and the QEMU monitor to the console with the
1418@option{-nographic} option. The typical command line is:
1419@example
1420qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1421 -append "root=/dev/hda console=ttyS0" -nographic
1422@end example
1423
1424Use @key{Ctrl-a c} to switch between the serial console and the
1425monitor (@pxref{pcsys_keys}).
1426
1427@node pcsys_usb
1428@section USB emulation
1429
1430QEMU emulates a PCI UHCI USB controller. You can virtually plug
1431virtual USB devices or real host USB devices (experimental, works only
1432on Linux hosts). Qemu will automatically create and connect virtual USB hubs
1433as necessary to connect multiple USB devices.
1434
1435@menu
1436* usb_devices::
1437* host_usb_devices::
1438@end menu
1439@node usb_devices
1440@subsection Connecting USB devices
1441
1442USB devices can be connected with the @option{-usbdevice} commandline option
1443or the @code{usb_add} monitor command. Available devices are:
1444
1445@table @var
1446@item @code{mouse}
1447Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1448@item @code{tablet}
1449Pointer device that uses absolute coordinates (like a touchscreen).
1450This means qemu is able to report the mouse position without having
1451to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1452@item @code{disk:file}
1453Mass storage device based on @var{file} (@pxref{disk_images})
1454@item @code{host:bus.addr}
1455Pass through the host device identified by @var{bus.addr}
1456(Linux only)
1457@item @code{host:vendor_id:product_id}
1458Pass through the host device identified by @var{vendor_id:product_id}
1459(Linux only)
1460@item @code{wacom-tablet}
1461Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1462above but it can be used with the tslib library because in addition to touch
1463coordinates it reports touch pressure.
1464@item @code{keyboard}
1465Standard USB keyboard. Will override the PS/2 keyboard (if present).
1466@end table
1467
1468@node host_usb_devices
1469@subsection Using host USB devices on a Linux host
1470
1471WARNING: this is an experimental feature. QEMU will slow down when
1472using it. USB devices requiring real time streaming (i.e. USB Video
1473Cameras) are not supported yet.
1474
1475@enumerate
1476@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1477is actually using the USB device. A simple way to do that is simply to
1478disable the corresponding kernel module by renaming it from @file{mydriver.o}
1479to @file{mydriver.o.disabled}.
1480
1481@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1482@example
1483ls /proc/bus/usb
1484001 devices drivers
1485@end example
1486
1487@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1488@example
1489chown -R myuid /proc/bus/usb
1490@end example
1491
1492@item Launch QEMU and do in the monitor:
1493@example
1494info usbhost
1495 Device 1.2, speed 480 Mb/s
1496 Class 00: USB device 1234:5678, USB DISK
1497@end example
1498You should see the list of the devices you can use (Never try to use
1499hubs, it won't work).
1500
1501@item Add the device in QEMU by using:
1502@example
1503usb_add host:1234:5678
1504@end example
1505
1506Normally the guest OS should report that a new USB device is
1507plugged. You can use the option @option{-usbdevice} to do the same.
1508
1509@item Now you can try to use the host USB device in QEMU.
1510
1511@end enumerate
1512
1513When relaunching QEMU, you may have to unplug and plug again the USB
1514device to make it work again (this is a bug).
1515
1516@node vnc_security
1517@section VNC security
1518
1519The VNC server capability provides access to the graphical console
1520of the guest VM across the network. This has a number of security
1521considerations depending on the deployment scenarios.
1522
1523@menu
1524* vnc_sec_none::
1525* vnc_sec_password::
1526* vnc_sec_certificate::
1527* vnc_sec_certificate_verify::
1528* vnc_sec_certificate_pw::
1529* vnc_generate_cert::
1530@end menu
1531@node vnc_sec_none
1532@subsection Without passwords
1533
1534The simplest VNC server setup does not include any form of authentication.
1535For this setup it is recommended to restrict it to listen on a UNIX domain
1536socket only. For example
1537
1538@example
1539qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1540@end example
1541
1542This ensures that only users on local box with read/write access to that
1543path can access the VNC server. To securely access the VNC server from a
1544remote machine, a combination of netcat+ssh can be used to provide a secure
1545tunnel.
1546
1547@node vnc_sec_password
1548@subsection With passwords
1549
1550The VNC protocol has limited support for password based authentication. Since
1551the protocol limits passwords to 8 characters it should not be considered
1552to provide high security. The password can be fairly easily brute-forced by
1553a client making repeat connections. For this reason, a VNC server using password
1554authentication should be restricted to only listen on the loopback interface
1555or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1556option, and then once QEMU is running the password is set with the monitor. Until
1557the monitor is used to set the password all clients will be rejected.
1558
1559@example
1560qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1561(qemu) change vnc password
1562Password: ********
1563(qemu)
1564@end example
1565
1566@node vnc_sec_certificate
1567@subsection With x509 certificates
1568
1569The QEMU VNC server also implements the VeNCrypt extension allowing use of
1570TLS for encryption of the session, and x509 certificates for authentication.
1571The use of x509 certificates is strongly recommended, because TLS on its
1572own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1573support provides a secure session, but no authentication. This allows any
1574client to connect, and provides an encrypted session.
1575
1576@example
1577qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1578@end example
1579
1580In the above example @code{/etc/pki/qemu} should contain at least three files,
1581@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1582users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1583NB the @code{server-key.pem} file should be protected with file mode 0600 to
1584only be readable by the user owning it.
1585
1586@node vnc_sec_certificate_verify
1587@subsection With x509 certificates and client verification
1588
1589Certificates can also provide a means to authenticate the client connecting.
1590The server will request that the client provide a certificate, which it will
1591then validate against the CA certificate. This is a good choice if deploying
1592in an environment with a private internal certificate authority.
1593
1594@example
1595qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1596@end example
1597
1598
1599@node vnc_sec_certificate_pw
1600@subsection With x509 certificates, client verification and passwords
1601
1602Finally, the previous method can be combined with VNC password authentication
1603to provide two layers of authentication for clients.
1604
1605@example
1606qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1607(qemu) change vnc password
1608Password: ********
1609(qemu)
1610@end example
1611
1612@node vnc_generate_cert
1613@subsection Generating certificates for VNC
1614
1615The GNU TLS packages provides a command called @code{certtool} which can
1616be used to generate certificates and keys in PEM format. At a minimum it
1617is neccessary to setup a certificate authority, and issue certificates to
1618each server. If using certificates for authentication, then each client
1619will also need to be issued a certificate. The recommendation is for the
1620server to keep its certificates in either @code{/etc/pki/qemu} or for
1621unprivileged users in @code{$HOME/.pki/qemu}.
1622
1623@menu
1624* vnc_generate_ca::
1625* vnc_generate_server::
1626* vnc_generate_client::
1627@end menu
1628@node vnc_generate_ca
1629@subsubsection Setup the Certificate Authority
1630
1631This step only needs to be performed once per organization / organizational
1632unit. First the CA needs a private key. This key must be kept VERY secret
1633and secure. If this key is compromised the entire trust chain of the certificates
1634issued with it is lost.
1635
1636@example
1637# certtool --generate-privkey > ca-key.pem
1638@end example
1639
1640A CA needs to have a public certificate. For simplicity it can be a self-signed
1641certificate, or one issue by a commercial certificate issuing authority. To
1642generate a self-signed certificate requires one core piece of information, the
1643name of the organization.
1644
1645@example
1646# cat > ca.info <<EOF
1647cn = Name of your organization
1648ca
1649cert_signing_key
1650EOF
1651# certtool --generate-self-signed \
1652 --load-privkey ca-key.pem
1653 --template ca.info \
1654 --outfile ca-cert.pem
1655@end example
1656
1657The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1658TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1659
1660@node vnc_generate_server
1661@subsubsection Issuing server certificates
1662
1663Each server (or host) needs to be issued with a key and certificate. When connecting
1664the certificate is sent to the client which validates it against the CA certificate.
1665The core piece of information for a server certificate is the hostname. This should
1666be the fully qualified hostname that the client will connect with, since the client
1667will typically also verify the hostname in the certificate. On the host holding the
1668secure CA private key:
1669
1670@example
1671# cat > server.info <<EOF
1672organization = Name of your organization
1673cn = server.foo.example.com
1674tls_www_server
1675encryption_key
1676signing_key
1677EOF
1678# certtool --generate-privkey > server-key.pem
1679# certtool --generate-certificate \
1680 --load-ca-certificate ca-cert.pem \
1681 --load-ca-privkey ca-key.pem \
1682 --load-privkey server server-key.pem \
1683 --template server.info \
1684 --outfile server-cert.pem
1685@end example
1686
1687The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1688to the server for which they were generated. The @code{server-key.pem} is security
1689sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1690
1691@node vnc_generate_client
1692@subsubsection Issuing client certificates
1693
1694If the QEMU VNC server is to use the @code{x509verify} option to validate client
1695certificates as its authentication mechanism, each client also needs to be issued
1696a certificate. The client certificate contains enough metadata to uniquely identify
1697the client, typically organization, state, city, building, etc. On the host holding
1698the secure CA private key:
1699
1700@example
1701# cat > client.info <<EOF
1702country = GB
1703state = London
1704locality = London
1705organiazation = Name of your organization
1706cn = client.foo.example.com
1707tls_www_client
1708encryption_key
1709signing_key
1710EOF
1711# certtool --generate-privkey > client-key.pem
1712# certtool --generate-certificate \
1713 --load-ca-certificate ca-cert.pem \
1714 --load-ca-privkey ca-key.pem \
1715 --load-privkey client-key.pem \
1716 --template client.info \
1717 --outfile client-cert.pem
1718@end example
1719
1720The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1721copied to the client for which they were generated.
1722
1723@node gdb_usage
1724@section GDB usage
1725
1726QEMU has a primitive support to work with gdb, so that you can do
1727'Ctrl-C' while the virtual machine is running and inspect its state.
1728
1729In order to use gdb, launch qemu with the '-s' option. It will wait for a
1730gdb connection:
1731@example
1732> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1733 -append "root=/dev/hda"
1734Connected to host network interface: tun0
1735Waiting gdb connection on port 1234
1736@end example
1737
1738Then launch gdb on the 'vmlinux' executable:
1739@example
1740> gdb vmlinux
1741@end example
1742
1743In gdb, connect to QEMU:
1744@example
1745(gdb) target remote localhost:1234
1746@end example
1747
1748Then you can use gdb normally. For example, type 'c' to launch the kernel:
1749@example
1750(gdb) c
1751@end example
1752
1753Here are some useful tips in order to use gdb on system code:
1754
1755@enumerate
1756@item
1757Use @code{info reg} to display all the CPU registers.
1758@item
1759Use @code{x/10i $eip} to display the code at the PC position.
1760@item
1761Use @code{set architecture i8086} to dump 16 bit code. Then use
1762@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1763@end enumerate
1764
1765@node pcsys_os_specific
1766@section Target OS specific information
1767
1768@subsection Linux
1769
1770To have access to SVGA graphic modes under X11, use the @code{vesa} or
1771the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1772color depth in the guest and the host OS.
1773
1774When using a 2.6 guest Linux kernel, you should add the option
1775@code{clock=pit} on the kernel command line because the 2.6 Linux
1776kernels make very strict real time clock checks by default that QEMU
1777cannot simulate exactly.
1778
1779When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1780not activated because QEMU is slower with this patch. The QEMU
1781Accelerator Module is also much slower in this case. Earlier Fedora
1782Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1783patch by default. Newer kernels don't have it.
1784
1785@subsection Windows
1786
1787If you have a slow host, using Windows 95 is better as it gives the
1788best speed. Windows 2000 is also a good choice.
1789
1790@subsubsection SVGA graphic modes support
1791
1792QEMU emulates a Cirrus Logic GD5446 Video
1793card. All Windows versions starting from Windows 95 should recognize
1794and use this graphic card. For optimal performances, use 16 bit color
1795depth in the guest and the host OS.
1796
1797If you are using Windows XP as guest OS and if you want to use high
1798resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
17991280x1024x16), then you should use the VESA VBE virtual graphic card
1800(option @option{-std-vga}).
1801
1802@subsubsection CPU usage reduction
1803
1804Windows 9x does not correctly use the CPU HLT
1805instruction. The result is that it takes host CPU cycles even when
1806idle. You can install the utility from
1807@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1808problem. Note that no such tool is needed for NT, 2000 or XP.
1809
1810@subsubsection Windows 2000 disk full problem
1811
1812Windows 2000 has a bug which gives a disk full problem during its
1813installation. When installing it, use the @option{-win2k-hack} QEMU
1814option to enable a specific workaround. After Windows 2000 is
1815installed, you no longer need this option (this option slows down the
1816IDE transfers).
1817
1818@subsubsection Windows 2000 shutdown
1819
1820Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1821can. It comes from the fact that Windows 2000 does not automatically
1822use the APM driver provided by the BIOS.
1823
1824In order to correct that, do the following (thanks to Struan
1825Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1826Add/Troubleshoot a device => Add a new device & Next => No, select the
1827hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1828(again) a few times. Now the driver is installed and Windows 2000 now
1829correctly instructs QEMU to shutdown at the appropriate moment.
1830
1831@subsubsection Share a directory between Unix and Windows
1832
1833See @ref{sec_invocation} about the help of the option @option{-smb}.
1834
1835@subsubsection Windows XP security problem
1836
1837Some releases of Windows XP install correctly but give a security
1838error when booting:
1839@example
1840A problem is preventing Windows from accurately checking the
1841license for this computer. Error code: 0x800703e6.
1842@end example
1843
1844The workaround is to install a service pack for XP after a boot in safe
1845mode. Then reboot, and the problem should go away. Since there is no
1846network while in safe mode, its recommended to download the full
1847installation of SP1 or SP2 and transfer that via an ISO or using the
1848vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1849
1850@subsection MS-DOS and FreeDOS
1851
1852@subsubsection CPU usage reduction
1853
1854DOS does not correctly use the CPU HLT instruction. The result is that
1855it takes host CPU cycles even when idle. You can install the utility
1856from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1857problem.
1858
1859@node QEMU System emulator for non PC targets
1860@chapter QEMU System emulator for non PC targets
1861
1862QEMU is a generic emulator and it emulates many non PC
1863machines. Most of the options are similar to the PC emulator. The
1864differences are mentioned in the following sections.
1865
1866@menu
1867* QEMU PowerPC System emulator::
1868* Sparc32 System emulator::
1869* Sparc64 System emulator::
1870* MIPS System emulator::
1871* ARM System emulator::
1872* ColdFire System emulator::
1873@end menu
1874
1875@node QEMU PowerPC System emulator
1876@section QEMU PowerPC System emulator
1877
1878Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1879or PowerMac PowerPC system.
1880
1881QEMU emulates the following PowerMac peripherals:
1882
1883@itemize @minus
1884@item
1885UniNorth PCI Bridge
1886@item
1887PCI VGA compatible card with VESA Bochs Extensions
1888@item
18892 PMAC IDE interfaces with hard disk and CD-ROM support
1890@item
1891NE2000 PCI adapters
1892@item
1893Non Volatile RAM
1894@item
1895VIA-CUDA with ADB keyboard and mouse.
1896@end itemize
1897
1898QEMU emulates the following PREP peripherals:
1899
1900@itemize @minus
1901@item
1902PCI Bridge
1903@item
1904PCI VGA compatible card with VESA Bochs Extensions
1905@item
19062 IDE interfaces with hard disk and CD-ROM support
1907@item
1908Floppy disk
1909@item
1910NE2000 network adapters
1911@item
1912Serial port
1913@item
1914PREP Non Volatile RAM
1915@item
1916PC compatible keyboard and mouse.
1917@end itemize
1918
1919QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1920@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1921
1922@c man begin OPTIONS
1923
1924The following options are specific to the PowerPC emulation:
1925
1926@table @option
1927
1928@item -g WxH[xDEPTH]
1929
1930Set the initial VGA graphic mode. The default is 800x600x15.
1931
1932@end table
1933
1934@c man end
1935
1936
1937More information is available at
1938@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1939
1940@node Sparc32 System emulator
1941@section Sparc32 System emulator
1942
1943Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1944or SparcStation 10 (sun4m architecture). The emulation is somewhat complete.
1945
1946QEMU emulates the following sun4m peripherals:
1947
1948@itemize @minus
1949@item
1950IOMMU
1951@item
1952TCX Frame buffer
1953@item
1954Lance (Am7990) Ethernet
1955@item
1956Non Volatile RAM M48T08
1957@item
1958Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1959and power/reset logic
1960@item
1961ESP SCSI controller with hard disk and CD-ROM support
1962@item
1963Floppy drive
1964@item
1965CS4231 sound device (only on SS-5, not working yet)
1966@end itemize
1967
1968The number of peripherals is fixed in the architecture.
1969
1970Since version 0.8.2, QEMU uses OpenBIOS
1971@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1972firmware implementation. The goal is to implement a 100% IEEE
19731275-1994 (referred to as Open Firmware) compliant firmware.
1974
1975A sample Linux 2.6 series kernel and ram disk image are available on
1976the QEMU web site. Please note that currently NetBSD, OpenBSD or
1977Solaris kernels don't work.
1978
1979@c man begin OPTIONS
1980
1981The following options are specific to the Sparc32 emulation:
1982
1983@table @option
1984
1985@item -g WxHx[xDEPTH]
1986
1987Set the initial TCX graphic mode. The default is 1024x768x8, currently
1988the only other possible mode is 1024x768x24.
1989
1990@item -prom-env string
1991
1992Set OpenBIOS variables in NVRAM, for example:
1993
1994@example
1995qemu-system-sparc -prom-env 'auto-boot?=false' \
1996 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1997@end example
1998
1999@item -M [SS-5|SS-10]
2000
2001Set the emulated machine type. Default is SS-5.
2002
2003@end table
2004
2005@c man end
2006
2007@node Sparc64 System emulator
2008@section Sparc64 System emulator
2009
2010Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2011The emulator is not usable for anything yet.
2012
2013QEMU emulates the following sun4u peripherals:
2014
2015@itemize @minus
2016@item
2017UltraSparc IIi APB PCI Bridge
2018@item
2019PCI VGA compatible card with VESA Bochs Extensions
2020@item
2021Non Volatile RAM M48T59
2022@item
2023PC-compatible serial ports
2024@end itemize
2025
2026@node MIPS System emulator
2027@section MIPS System emulator
2028
2029Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
2030Three different machine types are emulated:
2031
2032@itemize @minus
2033@item
2034A generic ISA PC-like machine "mips"
2035@item
2036The MIPS Malta prototype board "malta"
2037@item
2038An ACER Pica "pica61"
2039@item
2040MIPS emulator pseudo board "mipssim"
2041@end itemize
2042
2043The generic emulation is supported by Debian 'Etch' and is able to
2044install Debian into a virtual disk image. The following devices are
2045emulated:
2046
2047@itemize @minus
2048@item
2049A range of MIPS CPUs, default is the 24Kf
2050@item
2051PC style serial port
2052@item
2053PC style IDE disk
2054@item
2055NE2000 network card
2056@end itemize
2057
2058The Malta emulation supports the following devices:
2059
2060@itemize @minus
2061@item
2062Core board with MIPS 24Kf CPU and Galileo system controller
2063@item
2064PIIX4 PCI/USB/SMbus controller
2065@item
2066The Multi-I/O chip's serial device
2067@item
2068PCnet32 PCI network card
2069@item
2070Malta FPGA serial device
2071@item
2072Cirrus VGA graphics card
2073@end itemize
2074
2075The ACER Pica emulation supports:
2076
2077@itemize @minus
2078@item
2079MIPS R4000 CPU
2080@item
2081PC-style IRQ and DMA controllers
2082@item
2083PC Keyboard
2084@item
2085IDE controller
2086@end itemize
2087
2088The mipssim pseudo board emulation provides an environment similiar
2089to what the proprietary MIPS emulator uses for running Linux.
2090It supports:
2091
2092@itemize @minus
2093@item
2094A range of MIPS CPUs, default is the 24Kf
2095@item
2096PC style serial port
2097@item
2098MIPSnet network emulation
2099@end itemize
2100
2101@node ARM System emulator
2102@section ARM System emulator
2103
2104Use the executable @file{qemu-system-arm} to simulate a ARM
2105machine. The ARM Integrator/CP board is emulated with the following
2106devices:
2107
2108@itemize @minus
2109@item
2110ARM926E, ARM1026E or ARM946E CPU
2111@item
2112Two PL011 UARTs
2113@item
2114SMC 91c111 Ethernet adapter
2115@item
2116PL110 LCD controller
2117@item
2118PL050 KMI with PS/2 keyboard and mouse.
2119@item
2120PL181 MultiMedia Card Interface with SD card.
2121@end itemize
2122
2123The ARM Versatile baseboard is emulated with the following devices:
2124
2125@itemize @minus
2126@item
2127ARM926E CPU
2128@item
2129PL190 Vectored Interrupt Controller
2130@item
2131Four PL011 UARTs
2132@item
2133SMC 91c111 Ethernet adapter
2134@item
2135PL110 LCD controller
2136@item
2137PL050 KMI with PS/2 keyboard and mouse.
2138@item
2139PCI host bridge. Note the emulated PCI bridge only provides access to
2140PCI memory space. It does not provide access to PCI IO space.
2141This means some devices (eg. ne2k_pci NIC) are not usable, and others
2142(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2143mapped control registers.
2144@item
2145PCI OHCI USB controller.
2146@item
2147LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2148@item
2149PL181 MultiMedia Card Interface with SD card.
2150@end itemize
2151
2152The ARM RealView Emulation baseboard is emulated with the following devices:
2153
2154@itemize @minus
2155@item
2156ARM926E CPU
2157@item
2158ARM AMBA Generic/Distributed Interrupt Controller
2159@item
2160Four PL011 UARTs
2161@item
2162SMC 91c111 Ethernet adapter
2163@item
2164PL110 LCD controller
2165@item
2166PL050 KMI with PS/2 keyboard and mouse
2167@item
2168PCI host bridge
2169@item
2170PCI OHCI USB controller
2171@item
2172LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2173@item
2174PL181 MultiMedia Card Interface with SD card.
2175@end itemize
2176
2177The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2178and "Terrier") emulation includes the following peripherals:
2179
2180@itemize @minus
2181@item
2182Intel PXA270 System-on-chip (ARM V5TE core)
2183@item
2184NAND Flash memory
2185@item
2186IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2187@item
2188On-chip OHCI USB controller
2189@item
2190On-chip LCD controller
2191@item
2192On-chip Real Time Clock
2193@item
2194TI ADS7846 touchscreen controller on SSP bus
2195@item
2196Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2197@item
2198GPIO-connected keyboard controller and LEDs
2199@item
2200Secure Digital card connected to PXA MMC/SD host
2201@item
2202Three on-chip UARTs
2203@item
2204WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2205@end itemize
2206
2207A Linux 2.6 test image is available on the QEMU web site. More
2208information is available in the QEMU mailing-list archive.
2209
2210@node ColdFire System emulator
2211@section ColdFire System emulator
2212
2213Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2214The emulator is able to boot a uClinux kernel.
2215
2216The M5208EVB emulation includes the following devices:
2217
2218@itemize @minus
2219@item
2220MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2221@item
2222Three Two on-chip UARTs.
2223@item
2224Fast Ethernet Controller (FEC)
2225@end itemize
2226
2227The AN5206 emulation includes the following devices:
2228
2229@itemize @minus
2230@item
2231MCF5206 ColdFire V2 Microprocessor.
2232@item
2233Two on-chip UARTs.
2234@end itemize
2235
2236@node QEMU User space emulator
2237@chapter QEMU User space emulator
2238
2239@menu
2240* Supported Operating Systems ::
2241* Linux User space emulator::
2242* Mac OS X/Darwin User space emulator ::
2243@end menu
2244
2245@node Supported Operating Systems
2246@section Supported Operating Systems
2247
2248The following OS are supported in user space emulation:
2249
2250@itemize @minus
2251@item
2252Linux (referred as qemu-linux-user)
2253@item
2254Mac OS X/Darwin (referred as qemu-darwin-user)
2255@end itemize
2256
2257@node Linux User space emulator
2258@section Linux User space emulator
2259
2260@menu
2261* Quick Start::
2262* Wine launch::
2263* Command line options::
2264* Other binaries::
2265@end menu
2266
2267@node Quick Start
2268@subsection Quick Start
2269
2270In order to launch a Linux process, QEMU needs the process executable
2271itself and all the target (x86) dynamic libraries used by it.
2272
2273@itemize
2274
2275@item On x86, you can just try to launch any process by using the native
2276libraries:
2277
2278@example
2279qemu-i386 -L / /bin/ls
2280@end example
2281
2282@code{-L /} tells that the x86 dynamic linker must be searched with a
2283@file{/} prefix.
2284
2285@item Since QEMU is also a linux process, you can launch qemu with
2286qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2287
2288@example
2289qemu-i386 -L / qemu-i386 -L / /bin/ls
2290@end example
2291
2292@item On non x86 CPUs, you need first to download at least an x86 glibc
2293(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2294@code{LD_LIBRARY_PATH} is not set:
2295
2296@example
2297unset LD_LIBRARY_PATH
2298@end example
2299
2300Then you can launch the precompiled @file{ls} x86 executable:
2301
2302@example
2303qemu-i386 tests/i386/ls
2304@end example
2305You can look at @file{qemu-binfmt-conf.sh} so that
2306QEMU is automatically launched by the Linux kernel when you try to
2307launch x86 executables. It requires the @code{binfmt_misc} module in the
2308Linux kernel.
2309
2310@item The x86 version of QEMU is also included. You can try weird things such as:
2311@example
2312qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2313 /usr/local/qemu-i386/bin/ls-i386
2314@end example
2315
2316@end itemize
2317
2318@node Wine launch
2319@subsection Wine launch
2320
2321@itemize
2322
2323@item Ensure that you have a working QEMU with the x86 glibc
2324distribution (see previous section). In order to verify it, you must be
2325able to do:
2326
2327@example
2328qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2329@end example
2330
2331@item Download the binary x86 Wine install
2332(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2333
2334@item Configure Wine on your account. Look at the provided script
2335@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2336@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2337
2338@item Then you can try the example @file{putty.exe}:
2339
2340@example
2341qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2342 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2343@end example
2344
2345@end itemize
2346
2347@node Command line options
2348@subsection Command line options
2349
2350@example
2351usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2352@end example
2353
2354@table @option
2355@item -h
2356Print the help
2357@item -L path
2358Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2359@item -s size
2360Set the x86 stack size in bytes (default=524288)
2361@end table
2362
2363Debug options:
2364
2365@table @option
2366@item -d
2367Activate log (logfile=/tmp/qemu.log)
2368@item -p pagesize
2369Act as if the host page size was 'pagesize' bytes
2370@end table
2371
2372@node Other binaries
2373@subsection Other binaries
2374
2375@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2376binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2377configurations), and arm-uclinux bFLT format binaries.
2378
2379@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2380(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2381coldfire uClinux bFLT format binaries.
2382
2383The binary format is detected automatically.
2384
2385@node Mac OS X/Darwin User space emulator
2386@section Mac OS X/Darwin User space emulator
2387
2388@menu
2389* Mac OS X/Darwin Status::
2390* Mac OS X/Darwin Quick Start::
2391* Mac OS X/Darwin Command line options::
2392@end menu
2393
2394@node Mac OS X/Darwin Status
2395@subsection Mac OS X/Darwin Status
2396
2397@itemize @minus
2398@item
2399target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2400@item
2401target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2402@item
2403target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2404@item
2405target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2406@end itemize
2407
2408[1] If you're host commpage can be executed by qemu.
2409
2410@node Mac OS X/Darwin Quick Start
2411@subsection Quick Start
2412
2413In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2414itself and all the target dynamic libraries used by it. If you don't have the FAT
2415libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2416CD or compile them by hand.
2417
2418@itemize
2419
2420@item On x86, you can just try to launch any process by using the native
2421libraries:
2422
2423@example
2424qemu-i386 /bin/ls
2425@end example
2426
2427or to run the ppc version of the executable:
2428
2429@example
2430qemu-ppc /bin/ls
2431@end example
2432
2433@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2434are installed:
2435
2436@example
2437qemu-i386 -L /opt/x86_root/ /bin/ls
2438@end example
2439
2440@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2441@file{/opt/x86_root/usr/bin/dyld}.
2442
2443@end itemize
2444
2445@node Mac OS X/Darwin Command line options
2446@subsection Command line options
2447
2448@example
2449usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2450@end example
2451
2452@table @option
2453@item -h
2454Print the help
2455@item -L path
2456Set the library root path (default=/)
2457@item -s size
2458Set the stack size in bytes (default=524288)
2459@end table
2460
2461Debug options:
2462
2463@table @option
2464@item -d
2465Activate log (logfile=/tmp/qemu.log)
2466@item -p pagesize
2467Act as if the host page size was 'pagesize' bytes
2468@end table
2469
2470@node compilation
2471@chapter Compilation from the sources
2472
2473@menu
2474* Linux/Unix::
2475* Windows::
2476* Cross compilation for Windows with Linux::
2477* Mac OS X::
2478@end menu
2479
2480@node Linux/Unix
2481@section Linux/Unix
2482
2483@subsection Compilation
2484
2485First you must decompress the sources:
2486@example
2487cd /tmp
2488tar zxvf qemu-x.y.z.tar.gz
2489cd qemu-x.y.z
2490@end example
2491
2492Then you configure QEMU and build it (usually no options are needed):
2493@example
2494./configure
2495make
2496@end example
2497
2498Then type as root user:
2499@example
2500make install
2501@end example
2502to install QEMU in @file{/usr/local}.
2503
2504@subsection GCC version
2505
2506In order to compile QEMU successfully, it is very important that you
2507have the right tools. The most important one is gcc. On most hosts and
2508in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2509Linux distribution includes a gcc 4.x compiler, you can usually
2510install an older version (it is invoked by @code{gcc32} or
2511@code{gcc34}). The QEMU configure script automatically probes for
2512these older versions so that usually you don't have to do anything.
2513
2514@node Windows
2515@section Windows
2516
2517@itemize
2518@item Install the current versions of MSYS and MinGW from
2519@url{http://www.mingw.org/}. You can find detailed installation
2520instructions in the download section and the FAQ.
2521
2522@item Download
2523the MinGW development library of SDL 1.2.x
2524(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2525@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2526unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2527directory. Edit the @file{sdl-config} script so that it gives the
2528correct SDL directory when invoked.
2529
2530@item Extract the current version of QEMU.
2531
2532@item Start the MSYS shell (file @file{msys.bat}).
2533
2534@item Change to the QEMU directory. Launch @file{./configure} and
2535@file{make}. If you have problems using SDL, verify that
2536@file{sdl-config} can be launched from the MSYS command line.
2537
2538@item You can install QEMU in @file{Program Files/Qemu} by typing
2539@file{make install}. Don't forget to copy @file{SDL.dll} in
2540@file{Program Files/Qemu}.
2541
2542@end itemize
2543
2544@node Cross compilation for Windows with Linux
2545@section Cross compilation for Windows with Linux
2546
2547@itemize
2548@item
2549Install the MinGW cross compilation tools available at
2550@url{http://www.mingw.org/}.
2551
2552@item
2553Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2554unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2555variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2556the QEMU configuration script.
2557
2558@item
2559Configure QEMU for Windows cross compilation:
2560@example
2561./configure --enable-mingw32
2562@end example
2563If necessary, you can change the cross-prefix according to the prefix
2564chosen for the MinGW tools with --cross-prefix. You can also use
2565--prefix to set the Win32 install path.
2566
2567@item You can install QEMU in the installation directory by typing
2568@file{make install}. Don't forget to copy @file{SDL.dll} in the
2569installation directory.
2570
2571@end itemize
2572
2573Note: Currently, Wine does not seem able to launch
2574QEMU for Win32.
2575
2576@node Mac OS X
2577@section Mac OS X
2578
2579The Mac OS X patches are not fully merged in QEMU, so you should look
2580at the QEMU mailing list archive to have all the necessary
2581information.
2582
2583@node Index
2584@chapter Index
2585@printindex cp
2586
2587@bye