]> git.proxmox.com Git - qemu.git/blame_incremental - vl.c
net: Avoid gcc'ism in net_host_device_add
[qemu.git] / vl.c
... / ...
CommitLineData
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <signal.h>
27#include <time.h>
28#include <errno.h>
29#include <sys/time.h>
30#include <zlib.h>
31
32/* Needed early for HOST_BSD etc. */
33#include "config-host.h"
34
35#ifndef _WIN32
36#include <pwd.h>
37#include <sys/times.h>
38#include <sys/wait.h>
39#include <termios.h>
40#include <sys/mman.h>
41#include <sys/ioctl.h>
42#include <sys/resource.h>
43#include <sys/socket.h>
44#include <netinet/in.h>
45#include <net/if.h>
46#if defined(__NetBSD__)
47#include <net/if_tap.h>
48#endif
49#ifdef __linux__
50#include <linux/if_tun.h>
51#endif
52#include <arpa/inet.h>
53#include <dirent.h>
54#include <netdb.h>
55#include <sys/select.h>
56#ifdef HOST_BSD
57#include <sys/stat.h>
58#if defined(__FreeBSD__) || defined(__DragonFly__)
59#include <libutil.h>
60#else
61#include <util.h>
62#endif
63#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64#include <freebsd/stdlib.h>
65#else
66#ifdef __linux__
67#include <pty.h>
68#include <malloc.h>
69#include <linux/rtc.h>
70
71/* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73/* #include <linux/hpet.h> */
74#include "hpet.h"
75
76#include <linux/ppdev.h>
77#include <linux/parport.h>
78#endif
79#ifdef __sun__
80#include <sys/stat.h>
81#include <sys/ethernet.h>
82#include <sys/sockio.h>
83#include <netinet/arp.h>
84#include <netinet/in.h>
85#include <netinet/in_systm.h>
86#include <netinet/ip.h>
87#include <netinet/ip_icmp.h> // must come after ip.h
88#include <netinet/udp.h>
89#include <netinet/tcp.h>
90#include <net/if.h>
91#include <syslog.h>
92#include <stropts.h>
93#endif
94#endif
95#endif
96
97#if defined(__OpenBSD__)
98#include <util.h>
99#endif
100
101#if defined(CONFIG_VDE)
102#include <libvdeplug.h>
103#endif
104
105#ifdef _WIN32
106#include <windows.h>
107#include <malloc.h>
108#include <sys/timeb.h>
109#include <mmsystem.h>
110#define getopt_long_only getopt_long
111#define memalign(align, size) malloc(size)
112#endif
113
114#ifdef CONFIG_SDL
115#ifdef __APPLE__
116#include <SDL/SDL.h>
117int qemu_main(int argc, char **argv, char **envp);
118int main(int argc, char **argv)
119{
120 qemu_main(argc, argv, NULL);
121}
122#undef main
123#define main qemu_main
124#endif
125#endif /* CONFIG_SDL */
126
127#ifdef CONFIG_COCOA
128#undef main
129#define main qemu_main
130#endif /* CONFIG_COCOA */
131
132#include "hw/hw.h"
133#include "hw/boards.h"
134#include "hw/usb.h"
135#include "hw/pcmcia.h"
136#include "hw/pc.h"
137#include "hw/audiodev.h"
138#include "hw/isa.h"
139#include "hw/baum.h"
140#include "hw/bt.h"
141#include "hw/smbios.h"
142#include "hw/xen.h"
143#include "bt-host.h"
144#include "net.h"
145#include "monitor.h"
146#include "console.h"
147#include "sysemu.h"
148#include "gdbstub.h"
149#include "qemu-timer.h"
150#include "qemu-char.h"
151#include "cache-utils.h"
152#include "block.h"
153#include "dma.h"
154#include "audio/audio.h"
155#include "migration.h"
156#include "kvm.h"
157#include "balloon.h"
158
159#include "disas.h"
160
161#include "exec-all.h"
162
163#include "qemu_socket.h"
164
165#if defined(CONFIG_SLIRP)
166#include "libslirp.h"
167#endif
168
169//#define DEBUG_UNUSED_IOPORT
170//#define DEBUG_IOPORT
171//#define DEBUG_NET
172//#define DEBUG_SLIRP
173
174
175#ifdef DEBUG_IOPORT
176# define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
177#else
178# define LOG_IOPORT(...) do { } while (0)
179#endif
180
181#define DEFAULT_RAM_SIZE 128
182
183/* Max number of USB devices that can be specified on the commandline. */
184#define MAX_USB_CMDLINE 8
185
186/* Max number of bluetooth switches on the commandline. */
187#define MAX_BT_CMDLINE 10
188
189/* XXX: use a two level table to limit memory usage */
190#define MAX_IOPORTS 65536
191
192const char *bios_dir = CONFIG_QEMU_SHAREDIR;
193const char *bios_name = NULL;
194static void *ioport_opaque[MAX_IOPORTS];
195static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
196static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
197/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
198 to store the VM snapshots */
199DriveInfo drives_table[MAX_DRIVES+1];
200int nb_drives;
201static int vga_ram_size;
202enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
203static DisplayState *display_state;
204int nographic;
205static int curses;
206static int sdl;
207const char* keyboard_layout = NULL;
208int64_t ticks_per_sec;
209ram_addr_t ram_size;
210int nb_nics;
211NICInfo nd_table[MAX_NICS];
212int vm_running;
213static int autostart;
214static int rtc_utc = 1;
215static int rtc_date_offset = -1; /* -1 means no change */
216int cirrus_vga_enabled = 1;
217int std_vga_enabled = 0;
218int vmsvga_enabled = 0;
219int xenfb_enabled = 0;
220#ifdef TARGET_SPARC
221int graphic_width = 1024;
222int graphic_height = 768;
223int graphic_depth = 8;
224#else
225int graphic_width = 800;
226int graphic_height = 600;
227int graphic_depth = 15;
228#endif
229static int full_screen = 0;
230#ifdef CONFIG_SDL
231static int no_frame = 0;
232#endif
233int no_quit = 0;
234CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237#ifdef TARGET_I386
238int win2k_install_hack = 0;
239int rtc_td_hack = 0;
240#endif
241int usb_enabled = 0;
242int singlestep = 0;
243int smp_cpus = 1;
244const char *vnc_display;
245int acpi_enabled = 1;
246int no_hpet = 0;
247int fd_bootchk = 1;
248int no_reboot = 0;
249int no_shutdown = 0;
250int cursor_hide = 1;
251int graphic_rotate = 0;
252#ifndef _WIN32
253int daemonize = 0;
254#endif
255const char *option_rom[MAX_OPTION_ROMS];
256int nb_option_roms;
257int semihosting_enabled = 0;
258#ifdef TARGET_ARM
259int old_param = 0;
260#endif
261const char *qemu_name;
262int alt_grab = 0;
263#if defined(TARGET_SPARC) || defined(TARGET_PPC)
264unsigned int nb_prom_envs = 0;
265const char *prom_envs[MAX_PROM_ENVS];
266#endif
267int nb_drives_opt;
268struct drive_opt drives_opt[MAX_DRIVES];
269
270int nb_numa_nodes;
271uint64_t node_mem[MAX_NODES];
272uint64_t node_cpumask[MAX_NODES];
273
274static CPUState *cur_cpu;
275static CPUState *next_cpu;
276static int timer_alarm_pending = 1;
277/* Conversion factor from emulated instructions to virtual clock ticks. */
278static int icount_time_shift;
279/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
280#define MAX_ICOUNT_SHIFT 10
281/* Compensate for varying guest execution speed. */
282static int64_t qemu_icount_bias;
283static QEMUTimer *icount_rt_timer;
284static QEMUTimer *icount_vm_timer;
285static QEMUTimer *nographic_timer;
286
287uint8_t qemu_uuid[16];
288
289/***********************************************************/
290/* x86 ISA bus support */
291
292target_phys_addr_t isa_mem_base = 0;
293PicState2 *isa_pic;
294
295static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
296static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
297
298static uint32_t ioport_read(int index, uint32_t address)
299{
300 static IOPortReadFunc *default_func[3] = {
301 default_ioport_readb,
302 default_ioport_readw,
303 default_ioport_readl
304 };
305 IOPortReadFunc *func = ioport_read_table[index][address];
306 if (!func)
307 func = default_func[index];
308 return func(ioport_opaque[address], address);
309}
310
311static void ioport_write(int index, uint32_t address, uint32_t data)
312{
313 static IOPortWriteFunc *default_func[3] = {
314 default_ioport_writeb,
315 default_ioport_writew,
316 default_ioport_writel
317 };
318 IOPortWriteFunc *func = ioport_write_table[index][address];
319 if (!func)
320 func = default_func[index];
321 func(ioport_opaque[address], address, data);
322}
323
324static uint32_t default_ioport_readb(void *opaque, uint32_t address)
325{
326#ifdef DEBUG_UNUSED_IOPORT
327 fprintf(stderr, "unused inb: port=0x%04x\n", address);
328#endif
329 return 0xff;
330}
331
332static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
333{
334#ifdef DEBUG_UNUSED_IOPORT
335 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
336#endif
337}
338
339/* default is to make two byte accesses */
340static uint32_t default_ioport_readw(void *opaque, uint32_t address)
341{
342 uint32_t data;
343 data = ioport_read(0, address);
344 address = (address + 1) & (MAX_IOPORTS - 1);
345 data |= ioport_read(0, address) << 8;
346 return data;
347}
348
349static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
350{
351 ioport_write(0, address, data & 0xff);
352 address = (address + 1) & (MAX_IOPORTS - 1);
353 ioport_write(0, address, (data >> 8) & 0xff);
354}
355
356static uint32_t default_ioport_readl(void *opaque, uint32_t address)
357{
358#ifdef DEBUG_UNUSED_IOPORT
359 fprintf(stderr, "unused inl: port=0x%04x\n", address);
360#endif
361 return 0xffffffff;
362}
363
364static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
365{
366#ifdef DEBUG_UNUSED_IOPORT
367 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
368#endif
369}
370
371/* size is the word size in byte */
372int register_ioport_read(int start, int length, int size,
373 IOPortReadFunc *func, void *opaque)
374{
375 int i, bsize;
376
377 if (size == 1) {
378 bsize = 0;
379 } else if (size == 2) {
380 bsize = 1;
381 } else if (size == 4) {
382 bsize = 2;
383 } else {
384 hw_error("register_ioport_read: invalid size");
385 return -1;
386 }
387 for(i = start; i < start + length; i += size) {
388 ioport_read_table[bsize][i] = func;
389 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
390 hw_error("register_ioport_read: invalid opaque");
391 ioport_opaque[i] = opaque;
392 }
393 return 0;
394}
395
396/* size is the word size in byte */
397int register_ioport_write(int start, int length, int size,
398 IOPortWriteFunc *func, void *opaque)
399{
400 int i, bsize;
401
402 if (size == 1) {
403 bsize = 0;
404 } else if (size == 2) {
405 bsize = 1;
406 } else if (size == 4) {
407 bsize = 2;
408 } else {
409 hw_error("register_ioport_write: invalid size");
410 return -1;
411 }
412 for(i = start; i < start + length; i += size) {
413 ioport_write_table[bsize][i] = func;
414 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
415 hw_error("register_ioport_write: invalid opaque");
416 ioport_opaque[i] = opaque;
417 }
418 return 0;
419}
420
421void isa_unassign_ioport(int start, int length)
422{
423 int i;
424
425 for(i = start; i < start + length; i++) {
426 ioport_read_table[0][i] = default_ioport_readb;
427 ioport_read_table[1][i] = default_ioport_readw;
428 ioport_read_table[2][i] = default_ioport_readl;
429
430 ioport_write_table[0][i] = default_ioport_writeb;
431 ioport_write_table[1][i] = default_ioport_writew;
432 ioport_write_table[2][i] = default_ioport_writel;
433
434 ioport_opaque[i] = NULL;
435 }
436}
437
438/***********************************************************/
439
440void cpu_outb(CPUState *env, int addr, int val)
441{
442 LOG_IOPORT("outb: %04x %02x\n", addr, val);
443 ioport_write(0, addr, val);
444#ifdef CONFIG_KQEMU
445 if (env)
446 env->last_io_time = cpu_get_time_fast();
447#endif
448}
449
450void cpu_outw(CPUState *env, int addr, int val)
451{
452 LOG_IOPORT("outw: %04x %04x\n", addr, val);
453 ioport_write(1, addr, val);
454#ifdef CONFIG_KQEMU
455 if (env)
456 env->last_io_time = cpu_get_time_fast();
457#endif
458}
459
460void cpu_outl(CPUState *env, int addr, int val)
461{
462 LOG_IOPORT("outl: %04x %08x\n", addr, val);
463 ioport_write(2, addr, val);
464#ifdef CONFIG_KQEMU
465 if (env)
466 env->last_io_time = cpu_get_time_fast();
467#endif
468}
469
470int cpu_inb(CPUState *env, int addr)
471{
472 int val;
473 val = ioport_read(0, addr);
474 LOG_IOPORT("inb : %04x %02x\n", addr, val);
475#ifdef CONFIG_KQEMU
476 if (env)
477 env->last_io_time = cpu_get_time_fast();
478#endif
479 return val;
480}
481
482int cpu_inw(CPUState *env, int addr)
483{
484 int val;
485 val = ioport_read(1, addr);
486 LOG_IOPORT("inw : %04x %04x\n", addr, val);
487#ifdef CONFIG_KQEMU
488 if (env)
489 env->last_io_time = cpu_get_time_fast();
490#endif
491 return val;
492}
493
494int cpu_inl(CPUState *env, int addr)
495{
496 int val;
497 val = ioport_read(2, addr);
498 LOG_IOPORT("inl : %04x %08x\n", addr, val);
499#ifdef CONFIG_KQEMU
500 if (env)
501 env->last_io_time = cpu_get_time_fast();
502#endif
503 return val;
504}
505
506/***********************************************************/
507void hw_error(const char *fmt, ...)
508{
509 va_list ap;
510 CPUState *env;
511
512 va_start(ap, fmt);
513 fprintf(stderr, "qemu: hardware error: ");
514 vfprintf(stderr, fmt, ap);
515 fprintf(stderr, "\n");
516 for(env = first_cpu; env != NULL; env = env->next_cpu) {
517 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
518#ifdef TARGET_I386
519 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
520#else
521 cpu_dump_state(env, stderr, fprintf, 0);
522#endif
523 }
524 va_end(ap);
525 abort();
526}
527
528/***************/
529/* ballooning */
530
531static QEMUBalloonEvent *qemu_balloon_event;
532void *qemu_balloon_event_opaque;
533
534void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
535{
536 qemu_balloon_event = func;
537 qemu_balloon_event_opaque = opaque;
538}
539
540void qemu_balloon(ram_addr_t target)
541{
542 if (qemu_balloon_event)
543 qemu_balloon_event(qemu_balloon_event_opaque, target);
544}
545
546ram_addr_t qemu_balloon_status(void)
547{
548 if (qemu_balloon_event)
549 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
550 return 0;
551}
552
553/***********************************************************/
554/* keyboard/mouse */
555
556static QEMUPutKBDEvent *qemu_put_kbd_event;
557static void *qemu_put_kbd_event_opaque;
558static QEMUPutMouseEntry *qemu_put_mouse_event_head;
559static QEMUPutMouseEntry *qemu_put_mouse_event_current;
560
561void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
562{
563 qemu_put_kbd_event_opaque = opaque;
564 qemu_put_kbd_event = func;
565}
566
567QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
568 void *opaque, int absolute,
569 const char *name)
570{
571 QEMUPutMouseEntry *s, *cursor;
572
573 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
574
575 s->qemu_put_mouse_event = func;
576 s->qemu_put_mouse_event_opaque = opaque;
577 s->qemu_put_mouse_event_absolute = absolute;
578 s->qemu_put_mouse_event_name = qemu_strdup(name);
579 s->next = NULL;
580
581 if (!qemu_put_mouse_event_head) {
582 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
583 return s;
584 }
585
586 cursor = qemu_put_mouse_event_head;
587 while (cursor->next != NULL)
588 cursor = cursor->next;
589
590 cursor->next = s;
591 qemu_put_mouse_event_current = s;
592
593 return s;
594}
595
596void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
597{
598 QEMUPutMouseEntry *prev = NULL, *cursor;
599
600 if (!qemu_put_mouse_event_head || entry == NULL)
601 return;
602
603 cursor = qemu_put_mouse_event_head;
604 while (cursor != NULL && cursor != entry) {
605 prev = cursor;
606 cursor = cursor->next;
607 }
608
609 if (cursor == NULL) // does not exist or list empty
610 return;
611 else if (prev == NULL) { // entry is head
612 qemu_put_mouse_event_head = cursor->next;
613 if (qemu_put_mouse_event_current == entry)
614 qemu_put_mouse_event_current = cursor->next;
615 qemu_free(entry->qemu_put_mouse_event_name);
616 qemu_free(entry);
617 return;
618 }
619
620 prev->next = entry->next;
621
622 if (qemu_put_mouse_event_current == entry)
623 qemu_put_mouse_event_current = prev;
624
625 qemu_free(entry->qemu_put_mouse_event_name);
626 qemu_free(entry);
627}
628
629void kbd_put_keycode(int keycode)
630{
631 if (qemu_put_kbd_event) {
632 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
633 }
634}
635
636void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
637{
638 QEMUPutMouseEvent *mouse_event;
639 void *mouse_event_opaque;
640 int width;
641
642 if (!qemu_put_mouse_event_current) {
643 return;
644 }
645
646 mouse_event =
647 qemu_put_mouse_event_current->qemu_put_mouse_event;
648 mouse_event_opaque =
649 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
650
651 if (mouse_event) {
652 if (graphic_rotate) {
653 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
654 width = 0x7fff;
655 else
656 width = graphic_width - 1;
657 mouse_event(mouse_event_opaque,
658 width - dy, dx, dz, buttons_state);
659 } else
660 mouse_event(mouse_event_opaque,
661 dx, dy, dz, buttons_state);
662 }
663}
664
665int kbd_mouse_is_absolute(void)
666{
667 if (!qemu_put_mouse_event_current)
668 return 0;
669
670 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
671}
672
673void do_info_mice(Monitor *mon)
674{
675 QEMUPutMouseEntry *cursor;
676 int index = 0;
677
678 if (!qemu_put_mouse_event_head) {
679 monitor_printf(mon, "No mouse devices connected\n");
680 return;
681 }
682
683 monitor_printf(mon, "Mouse devices available:\n");
684 cursor = qemu_put_mouse_event_head;
685 while (cursor != NULL) {
686 monitor_printf(mon, "%c Mouse #%d: %s\n",
687 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
688 index, cursor->qemu_put_mouse_event_name);
689 index++;
690 cursor = cursor->next;
691 }
692}
693
694void do_mouse_set(Monitor *mon, int index)
695{
696 QEMUPutMouseEntry *cursor;
697 int i = 0;
698
699 if (!qemu_put_mouse_event_head) {
700 monitor_printf(mon, "No mouse devices connected\n");
701 return;
702 }
703
704 cursor = qemu_put_mouse_event_head;
705 while (cursor != NULL && index != i) {
706 i++;
707 cursor = cursor->next;
708 }
709
710 if (cursor != NULL)
711 qemu_put_mouse_event_current = cursor;
712 else
713 monitor_printf(mon, "Mouse at given index not found\n");
714}
715
716/* compute with 96 bit intermediate result: (a*b)/c */
717uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
718{
719 union {
720 uint64_t ll;
721 struct {
722#ifdef WORDS_BIGENDIAN
723 uint32_t high, low;
724#else
725 uint32_t low, high;
726#endif
727 } l;
728 } u, res;
729 uint64_t rl, rh;
730
731 u.ll = a;
732 rl = (uint64_t)u.l.low * (uint64_t)b;
733 rh = (uint64_t)u.l.high * (uint64_t)b;
734 rh += (rl >> 32);
735 res.l.high = rh / c;
736 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
737 return res.ll;
738}
739
740/***********************************************************/
741/* real time host monotonic timer */
742
743#define QEMU_TIMER_BASE 1000000000LL
744
745#ifdef WIN32
746
747static int64_t clock_freq;
748
749static void init_get_clock(void)
750{
751 LARGE_INTEGER freq;
752 int ret;
753 ret = QueryPerformanceFrequency(&freq);
754 if (ret == 0) {
755 fprintf(stderr, "Could not calibrate ticks\n");
756 exit(1);
757 }
758 clock_freq = freq.QuadPart;
759}
760
761static int64_t get_clock(void)
762{
763 LARGE_INTEGER ti;
764 QueryPerformanceCounter(&ti);
765 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
766}
767
768#else
769
770static int use_rt_clock;
771
772static void init_get_clock(void)
773{
774 use_rt_clock = 0;
775#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
776 || defined(__DragonFly__)
777 {
778 struct timespec ts;
779 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
780 use_rt_clock = 1;
781 }
782 }
783#endif
784}
785
786static int64_t get_clock(void)
787{
788#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
789 || defined(__DragonFly__)
790 if (use_rt_clock) {
791 struct timespec ts;
792 clock_gettime(CLOCK_MONOTONIC, &ts);
793 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
794 } else
795#endif
796 {
797 /* XXX: using gettimeofday leads to problems if the date
798 changes, so it should be avoided. */
799 struct timeval tv;
800 gettimeofday(&tv, NULL);
801 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
802 }
803}
804#endif
805
806/* Return the virtual CPU time, based on the instruction counter. */
807static int64_t cpu_get_icount(void)
808{
809 int64_t icount;
810 CPUState *env = cpu_single_env;;
811 icount = qemu_icount;
812 if (env) {
813 if (!can_do_io(env))
814 fprintf(stderr, "Bad clock read\n");
815 icount -= (env->icount_decr.u16.low + env->icount_extra);
816 }
817 return qemu_icount_bias + (icount << icount_time_shift);
818}
819
820/***********************************************************/
821/* guest cycle counter */
822
823static int64_t cpu_ticks_prev;
824static int64_t cpu_ticks_offset;
825static int64_t cpu_clock_offset;
826static int cpu_ticks_enabled;
827
828/* return the host CPU cycle counter and handle stop/restart */
829int64_t cpu_get_ticks(void)
830{
831 if (use_icount) {
832 return cpu_get_icount();
833 }
834 if (!cpu_ticks_enabled) {
835 return cpu_ticks_offset;
836 } else {
837 int64_t ticks;
838 ticks = cpu_get_real_ticks();
839 if (cpu_ticks_prev > ticks) {
840 /* Note: non increasing ticks may happen if the host uses
841 software suspend */
842 cpu_ticks_offset += cpu_ticks_prev - ticks;
843 }
844 cpu_ticks_prev = ticks;
845 return ticks + cpu_ticks_offset;
846 }
847}
848
849/* return the host CPU monotonic timer and handle stop/restart */
850static int64_t cpu_get_clock(void)
851{
852 int64_t ti;
853 if (!cpu_ticks_enabled) {
854 return cpu_clock_offset;
855 } else {
856 ti = get_clock();
857 return ti + cpu_clock_offset;
858 }
859}
860
861/* enable cpu_get_ticks() */
862void cpu_enable_ticks(void)
863{
864 if (!cpu_ticks_enabled) {
865 cpu_ticks_offset -= cpu_get_real_ticks();
866 cpu_clock_offset -= get_clock();
867 cpu_ticks_enabled = 1;
868 }
869}
870
871/* disable cpu_get_ticks() : the clock is stopped. You must not call
872 cpu_get_ticks() after that. */
873void cpu_disable_ticks(void)
874{
875 if (cpu_ticks_enabled) {
876 cpu_ticks_offset = cpu_get_ticks();
877 cpu_clock_offset = cpu_get_clock();
878 cpu_ticks_enabled = 0;
879 }
880}
881
882/***********************************************************/
883/* timers */
884
885#define QEMU_TIMER_REALTIME 0
886#define QEMU_TIMER_VIRTUAL 1
887
888struct QEMUClock {
889 int type;
890 /* XXX: add frequency */
891};
892
893struct QEMUTimer {
894 QEMUClock *clock;
895 int64_t expire_time;
896 QEMUTimerCB *cb;
897 void *opaque;
898 struct QEMUTimer *next;
899};
900
901struct qemu_alarm_timer {
902 char const *name;
903 unsigned int flags;
904
905 int (*start)(struct qemu_alarm_timer *t);
906 void (*stop)(struct qemu_alarm_timer *t);
907 void (*rearm)(struct qemu_alarm_timer *t);
908 void *priv;
909};
910
911#define ALARM_FLAG_DYNTICKS 0x1
912#define ALARM_FLAG_EXPIRED 0x2
913
914static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
915{
916 return t->flags & ALARM_FLAG_DYNTICKS;
917}
918
919static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
920{
921 if (!alarm_has_dynticks(t))
922 return;
923
924 t->rearm(t);
925}
926
927/* TODO: MIN_TIMER_REARM_US should be optimized */
928#define MIN_TIMER_REARM_US 250
929
930static struct qemu_alarm_timer *alarm_timer;
931
932#ifdef _WIN32
933
934struct qemu_alarm_win32 {
935 MMRESULT timerId;
936 unsigned int period;
937} alarm_win32_data = {0, -1};
938
939static int win32_start_timer(struct qemu_alarm_timer *t);
940static void win32_stop_timer(struct qemu_alarm_timer *t);
941static void win32_rearm_timer(struct qemu_alarm_timer *t);
942
943#else
944
945static int unix_start_timer(struct qemu_alarm_timer *t);
946static void unix_stop_timer(struct qemu_alarm_timer *t);
947
948#ifdef __linux__
949
950static int dynticks_start_timer(struct qemu_alarm_timer *t);
951static void dynticks_stop_timer(struct qemu_alarm_timer *t);
952static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
953
954static int hpet_start_timer(struct qemu_alarm_timer *t);
955static void hpet_stop_timer(struct qemu_alarm_timer *t);
956
957static int rtc_start_timer(struct qemu_alarm_timer *t);
958static void rtc_stop_timer(struct qemu_alarm_timer *t);
959
960#endif /* __linux__ */
961
962#endif /* _WIN32 */
963
964/* Correlation between real and virtual time is always going to be
965 fairly approximate, so ignore small variation.
966 When the guest is idle real and virtual time will be aligned in
967 the IO wait loop. */
968#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
969
970static void icount_adjust(void)
971{
972 int64_t cur_time;
973 int64_t cur_icount;
974 int64_t delta;
975 static int64_t last_delta;
976 /* If the VM is not running, then do nothing. */
977 if (!vm_running)
978 return;
979
980 cur_time = cpu_get_clock();
981 cur_icount = qemu_get_clock(vm_clock);
982 delta = cur_icount - cur_time;
983 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
984 if (delta > 0
985 && last_delta + ICOUNT_WOBBLE < delta * 2
986 && icount_time_shift > 0) {
987 /* The guest is getting too far ahead. Slow time down. */
988 icount_time_shift--;
989 }
990 if (delta < 0
991 && last_delta - ICOUNT_WOBBLE > delta * 2
992 && icount_time_shift < MAX_ICOUNT_SHIFT) {
993 /* The guest is getting too far behind. Speed time up. */
994 icount_time_shift++;
995 }
996 last_delta = delta;
997 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
998}
999
1000static void icount_adjust_rt(void * opaque)
1001{
1002 qemu_mod_timer(icount_rt_timer,
1003 qemu_get_clock(rt_clock) + 1000);
1004 icount_adjust();
1005}
1006
1007static void icount_adjust_vm(void * opaque)
1008{
1009 qemu_mod_timer(icount_vm_timer,
1010 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1011 icount_adjust();
1012}
1013
1014static void init_icount_adjust(void)
1015{
1016 /* Have both realtime and virtual time triggers for speed adjustment.
1017 The realtime trigger catches emulated time passing too slowly,
1018 the virtual time trigger catches emulated time passing too fast.
1019 Realtime triggers occur even when idle, so use them less frequently
1020 than VM triggers. */
1021 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1022 qemu_mod_timer(icount_rt_timer,
1023 qemu_get_clock(rt_clock) + 1000);
1024 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1025 qemu_mod_timer(icount_vm_timer,
1026 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1027}
1028
1029static struct qemu_alarm_timer alarm_timers[] = {
1030#ifndef _WIN32
1031#ifdef __linux__
1032 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1033 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1034 /* HPET - if available - is preferred */
1035 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1036 /* ...otherwise try RTC */
1037 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1038#endif
1039 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1040#else
1041 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1042 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1043 {"win32", 0, win32_start_timer,
1044 win32_stop_timer, NULL, &alarm_win32_data},
1045#endif
1046 {NULL, }
1047};
1048
1049static void show_available_alarms(void)
1050{
1051 int i;
1052
1053 printf("Available alarm timers, in order of precedence:\n");
1054 for (i = 0; alarm_timers[i].name; i++)
1055 printf("%s\n", alarm_timers[i].name);
1056}
1057
1058static void configure_alarms(char const *opt)
1059{
1060 int i;
1061 int cur = 0;
1062 int count = ARRAY_SIZE(alarm_timers) - 1;
1063 char *arg;
1064 char *name;
1065 struct qemu_alarm_timer tmp;
1066
1067 if (!strcmp(opt, "?")) {
1068 show_available_alarms();
1069 exit(0);
1070 }
1071
1072 arg = strdup(opt);
1073
1074 /* Reorder the array */
1075 name = strtok(arg, ",");
1076 while (name) {
1077 for (i = 0; i < count && alarm_timers[i].name; i++) {
1078 if (!strcmp(alarm_timers[i].name, name))
1079 break;
1080 }
1081
1082 if (i == count) {
1083 fprintf(stderr, "Unknown clock %s\n", name);
1084 goto next;
1085 }
1086
1087 if (i < cur)
1088 /* Ignore */
1089 goto next;
1090
1091 /* Swap */
1092 tmp = alarm_timers[i];
1093 alarm_timers[i] = alarm_timers[cur];
1094 alarm_timers[cur] = tmp;
1095
1096 cur++;
1097next:
1098 name = strtok(NULL, ",");
1099 }
1100
1101 free(arg);
1102
1103 if (cur) {
1104 /* Disable remaining timers */
1105 for (i = cur; i < count; i++)
1106 alarm_timers[i].name = NULL;
1107 } else {
1108 show_available_alarms();
1109 exit(1);
1110 }
1111}
1112
1113QEMUClock *rt_clock;
1114QEMUClock *vm_clock;
1115
1116static QEMUTimer *active_timers[2];
1117
1118static QEMUClock *qemu_new_clock(int type)
1119{
1120 QEMUClock *clock;
1121 clock = qemu_mallocz(sizeof(QEMUClock));
1122 clock->type = type;
1123 return clock;
1124}
1125
1126QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1127{
1128 QEMUTimer *ts;
1129
1130 ts = qemu_mallocz(sizeof(QEMUTimer));
1131 ts->clock = clock;
1132 ts->cb = cb;
1133 ts->opaque = opaque;
1134 return ts;
1135}
1136
1137void qemu_free_timer(QEMUTimer *ts)
1138{
1139 qemu_free(ts);
1140}
1141
1142/* stop a timer, but do not dealloc it */
1143void qemu_del_timer(QEMUTimer *ts)
1144{
1145 QEMUTimer **pt, *t;
1146
1147 /* NOTE: this code must be signal safe because
1148 qemu_timer_expired() can be called from a signal. */
1149 pt = &active_timers[ts->clock->type];
1150 for(;;) {
1151 t = *pt;
1152 if (!t)
1153 break;
1154 if (t == ts) {
1155 *pt = t->next;
1156 break;
1157 }
1158 pt = &t->next;
1159 }
1160}
1161
1162/* modify the current timer so that it will be fired when current_time
1163 >= expire_time. The corresponding callback will be called. */
1164void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1165{
1166 QEMUTimer **pt, *t;
1167
1168 qemu_del_timer(ts);
1169
1170 /* add the timer in the sorted list */
1171 /* NOTE: this code must be signal safe because
1172 qemu_timer_expired() can be called from a signal. */
1173 pt = &active_timers[ts->clock->type];
1174 for(;;) {
1175 t = *pt;
1176 if (!t)
1177 break;
1178 if (t->expire_time > expire_time)
1179 break;
1180 pt = &t->next;
1181 }
1182 ts->expire_time = expire_time;
1183 ts->next = *pt;
1184 *pt = ts;
1185
1186 /* Rearm if necessary */
1187 if (pt == &active_timers[ts->clock->type]) {
1188 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1189 qemu_rearm_alarm_timer(alarm_timer);
1190 }
1191 /* Interrupt execution to force deadline recalculation. */
1192 if (use_icount)
1193 qemu_notify_event();
1194 }
1195}
1196
1197int qemu_timer_pending(QEMUTimer *ts)
1198{
1199 QEMUTimer *t;
1200 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1201 if (t == ts)
1202 return 1;
1203 }
1204 return 0;
1205}
1206
1207static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1208{
1209 if (!timer_head)
1210 return 0;
1211 return (timer_head->expire_time <= current_time);
1212}
1213
1214static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1215{
1216 QEMUTimer *ts;
1217
1218 for(;;) {
1219 ts = *ptimer_head;
1220 if (!ts || ts->expire_time > current_time)
1221 break;
1222 /* remove timer from the list before calling the callback */
1223 *ptimer_head = ts->next;
1224 ts->next = NULL;
1225
1226 /* run the callback (the timer list can be modified) */
1227 ts->cb(ts->opaque);
1228 }
1229}
1230
1231int64_t qemu_get_clock(QEMUClock *clock)
1232{
1233 switch(clock->type) {
1234 case QEMU_TIMER_REALTIME:
1235 return get_clock() / 1000000;
1236 default:
1237 case QEMU_TIMER_VIRTUAL:
1238 if (use_icount) {
1239 return cpu_get_icount();
1240 } else {
1241 return cpu_get_clock();
1242 }
1243 }
1244}
1245
1246static void init_timers(void)
1247{
1248 init_get_clock();
1249 ticks_per_sec = QEMU_TIMER_BASE;
1250 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1251 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1252}
1253
1254/* save a timer */
1255void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1256{
1257 uint64_t expire_time;
1258
1259 if (qemu_timer_pending(ts)) {
1260 expire_time = ts->expire_time;
1261 } else {
1262 expire_time = -1;
1263 }
1264 qemu_put_be64(f, expire_time);
1265}
1266
1267void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1268{
1269 uint64_t expire_time;
1270
1271 expire_time = qemu_get_be64(f);
1272 if (expire_time != -1) {
1273 qemu_mod_timer(ts, expire_time);
1274 } else {
1275 qemu_del_timer(ts);
1276 }
1277}
1278
1279static void timer_save(QEMUFile *f, void *opaque)
1280{
1281 if (cpu_ticks_enabled) {
1282 hw_error("cannot save state if virtual timers are running");
1283 }
1284 qemu_put_be64(f, cpu_ticks_offset);
1285 qemu_put_be64(f, ticks_per_sec);
1286 qemu_put_be64(f, cpu_clock_offset);
1287}
1288
1289static int timer_load(QEMUFile *f, void *opaque, int version_id)
1290{
1291 if (version_id != 1 && version_id != 2)
1292 return -EINVAL;
1293 if (cpu_ticks_enabled) {
1294 return -EINVAL;
1295 }
1296 cpu_ticks_offset=qemu_get_be64(f);
1297 ticks_per_sec=qemu_get_be64(f);
1298 if (version_id == 2) {
1299 cpu_clock_offset=qemu_get_be64(f);
1300 }
1301 return 0;
1302}
1303
1304static void qemu_event_increment(void);
1305
1306#ifdef _WIN32
1307static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1308 DWORD_PTR dwUser, DWORD_PTR dw1,
1309 DWORD_PTR dw2)
1310#else
1311static void host_alarm_handler(int host_signum)
1312#endif
1313{
1314#if 0
1315#define DISP_FREQ 1000
1316 {
1317 static int64_t delta_min = INT64_MAX;
1318 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1319 static int count;
1320 ti = qemu_get_clock(vm_clock);
1321 if (last_clock != 0) {
1322 delta = ti - last_clock;
1323 if (delta < delta_min)
1324 delta_min = delta;
1325 if (delta > delta_max)
1326 delta_max = delta;
1327 delta_cum += delta;
1328 if (++count == DISP_FREQ) {
1329 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1330 muldiv64(delta_min, 1000000, ticks_per_sec),
1331 muldiv64(delta_max, 1000000, ticks_per_sec),
1332 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1333 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1334 count = 0;
1335 delta_min = INT64_MAX;
1336 delta_max = 0;
1337 delta_cum = 0;
1338 }
1339 }
1340 last_clock = ti;
1341 }
1342#endif
1343 if (alarm_has_dynticks(alarm_timer) ||
1344 (!use_icount &&
1345 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1346 qemu_get_clock(vm_clock))) ||
1347 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1348 qemu_get_clock(rt_clock))) {
1349 qemu_event_increment();
1350 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1351
1352#ifndef CONFIG_IOTHREAD
1353 if (next_cpu) {
1354 /* stop the currently executing cpu because a timer occured */
1355 cpu_exit(next_cpu);
1356#ifdef CONFIG_KQEMU
1357 if (next_cpu->kqemu_enabled) {
1358 kqemu_cpu_interrupt(next_cpu);
1359 }
1360#endif
1361 }
1362#endif
1363 timer_alarm_pending = 1;
1364 qemu_notify_event();
1365 }
1366}
1367
1368static int64_t qemu_next_deadline(void)
1369{
1370 int64_t delta;
1371
1372 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1373 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1374 qemu_get_clock(vm_clock);
1375 } else {
1376 /* To avoid problems with overflow limit this to 2^32. */
1377 delta = INT32_MAX;
1378 }
1379
1380 if (delta < 0)
1381 delta = 0;
1382
1383 return delta;
1384}
1385
1386#if defined(__linux__) || defined(_WIN32)
1387static uint64_t qemu_next_deadline_dyntick(void)
1388{
1389 int64_t delta;
1390 int64_t rtdelta;
1391
1392 if (use_icount)
1393 delta = INT32_MAX;
1394 else
1395 delta = (qemu_next_deadline() + 999) / 1000;
1396
1397 if (active_timers[QEMU_TIMER_REALTIME]) {
1398 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1399 qemu_get_clock(rt_clock))*1000;
1400 if (rtdelta < delta)
1401 delta = rtdelta;
1402 }
1403
1404 if (delta < MIN_TIMER_REARM_US)
1405 delta = MIN_TIMER_REARM_US;
1406
1407 return delta;
1408}
1409#endif
1410
1411#ifndef _WIN32
1412
1413/* Sets a specific flag */
1414static int fcntl_setfl(int fd, int flag)
1415{
1416 int flags;
1417
1418 flags = fcntl(fd, F_GETFL);
1419 if (flags == -1)
1420 return -errno;
1421
1422 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1423 return -errno;
1424
1425 return 0;
1426}
1427
1428#if defined(__linux__)
1429
1430#define RTC_FREQ 1024
1431
1432static void enable_sigio_timer(int fd)
1433{
1434 struct sigaction act;
1435
1436 /* timer signal */
1437 sigfillset(&act.sa_mask);
1438 act.sa_flags = 0;
1439 act.sa_handler = host_alarm_handler;
1440
1441 sigaction(SIGIO, &act, NULL);
1442 fcntl_setfl(fd, O_ASYNC);
1443 fcntl(fd, F_SETOWN, getpid());
1444}
1445
1446static int hpet_start_timer(struct qemu_alarm_timer *t)
1447{
1448 struct hpet_info info;
1449 int r, fd;
1450
1451 fd = open("/dev/hpet", O_RDONLY);
1452 if (fd < 0)
1453 return -1;
1454
1455 /* Set frequency */
1456 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1457 if (r < 0) {
1458 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1459 "error, but for better emulation accuracy type:\n"
1460 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1461 goto fail;
1462 }
1463
1464 /* Check capabilities */
1465 r = ioctl(fd, HPET_INFO, &info);
1466 if (r < 0)
1467 goto fail;
1468
1469 /* Enable periodic mode */
1470 r = ioctl(fd, HPET_EPI, 0);
1471 if (info.hi_flags && (r < 0))
1472 goto fail;
1473
1474 /* Enable interrupt */
1475 r = ioctl(fd, HPET_IE_ON, 0);
1476 if (r < 0)
1477 goto fail;
1478
1479 enable_sigio_timer(fd);
1480 t->priv = (void *)(long)fd;
1481
1482 return 0;
1483fail:
1484 close(fd);
1485 return -1;
1486}
1487
1488static void hpet_stop_timer(struct qemu_alarm_timer *t)
1489{
1490 int fd = (long)t->priv;
1491
1492 close(fd);
1493}
1494
1495static int rtc_start_timer(struct qemu_alarm_timer *t)
1496{
1497 int rtc_fd;
1498 unsigned long current_rtc_freq = 0;
1499
1500 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1501 if (rtc_fd < 0)
1502 return -1;
1503 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1504 if (current_rtc_freq != RTC_FREQ &&
1505 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1506 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1507 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1508 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1509 goto fail;
1510 }
1511 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1512 fail:
1513 close(rtc_fd);
1514 return -1;
1515 }
1516
1517 enable_sigio_timer(rtc_fd);
1518
1519 t->priv = (void *)(long)rtc_fd;
1520
1521 return 0;
1522}
1523
1524static void rtc_stop_timer(struct qemu_alarm_timer *t)
1525{
1526 int rtc_fd = (long)t->priv;
1527
1528 close(rtc_fd);
1529}
1530
1531static int dynticks_start_timer(struct qemu_alarm_timer *t)
1532{
1533 struct sigevent ev;
1534 timer_t host_timer;
1535 struct sigaction act;
1536
1537 sigfillset(&act.sa_mask);
1538 act.sa_flags = 0;
1539 act.sa_handler = host_alarm_handler;
1540
1541 sigaction(SIGALRM, &act, NULL);
1542
1543 ev.sigev_value.sival_int = 0;
1544 ev.sigev_notify = SIGEV_SIGNAL;
1545 ev.sigev_signo = SIGALRM;
1546
1547 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1548 perror("timer_create");
1549
1550 /* disable dynticks */
1551 fprintf(stderr, "Dynamic Ticks disabled\n");
1552
1553 return -1;
1554 }
1555
1556 t->priv = (void *)(long)host_timer;
1557
1558 return 0;
1559}
1560
1561static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1562{
1563 timer_t host_timer = (timer_t)(long)t->priv;
1564
1565 timer_delete(host_timer);
1566}
1567
1568static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1569{
1570 timer_t host_timer = (timer_t)(long)t->priv;
1571 struct itimerspec timeout;
1572 int64_t nearest_delta_us = INT64_MAX;
1573 int64_t current_us;
1574
1575 if (!active_timers[QEMU_TIMER_REALTIME] &&
1576 !active_timers[QEMU_TIMER_VIRTUAL])
1577 return;
1578
1579 nearest_delta_us = qemu_next_deadline_dyntick();
1580
1581 /* check whether a timer is already running */
1582 if (timer_gettime(host_timer, &timeout)) {
1583 perror("gettime");
1584 fprintf(stderr, "Internal timer error: aborting\n");
1585 exit(1);
1586 }
1587 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1588 if (current_us && current_us <= nearest_delta_us)
1589 return;
1590
1591 timeout.it_interval.tv_sec = 0;
1592 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1593 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1594 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1595 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1596 perror("settime");
1597 fprintf(stderr, "Internal timer error: aborting\n");
1598 exit(1);
1599 }
1600}
1601
1602#endif /* defined(__linux__) */
1603
1604static int unix_start_timer(struct qemu_alarm_timer *t)
1605{
1606 struct sigaction act;
1607 struct itimerval itv;
1608 int err;
1609
1610 /* timer signal */
1611 sigfillset(&act.sa_mask);
1612 act.sa_flags = 0;
1613 act.sa_handler = host_alarm_handler;
1614
1615 sigaction(SIGALRM, &act, NULL);
1616
1617 itv.it_interval.tv_sec = 0;
1618 /* for i386 kernel 2.6 to get 1 ms */
1619 itv.it_interval.tv_usec = 999;
1620 itv.it_value.tv_sec = 0;
1621 itv.it_value.tv_usec = 10 * 1000;
1622
1623 err = setitimer(ITIMER_REAL, &itv, NULL);
1624 if (err)
1625 return -1;
1626
1627 return 0;
1628}
1629
1630static void unix_stop_timer(struct qemu_alarm_timer *t)
1631{
1632 struct itimerval itv;
1633
1634 memset(&itv, 0, sizeof(itv));
1635 setitimer(ITIMER_REAL, &itv, NULL);
1636}
1637
1638#endif /* !defined(_WIN32) */
1639
1640
1641#ifdef _WIN32
1642
1643static int win32_start_timer(struct qemu_alarm_timer *t)
1644{
1645 TIMECAPS tc;
1646 struct qemu_alarm_win32 *data = t->priv;
1647 UINT flags;
1648
1649 memset(&tc, 0, sizeof(tc));
1650 timeGetDevCaps(&tc, sizeof(tc));
1651
1652 if (data->period < tc.wPeriodMin)
1653 data->period = tc.wPeriodMin;
1654
1655 timeBeginPeriod(data->period);
1656
1657 flags = TIME_CALLBACK_FUNCTION;
1658 if (alarm_has_dynticks(t))
1659 flags |= TIME_ONESHOT;
1660 else
1661 flags |= TIME_PERIODIC;
1662
1663 data->timerId = timeSetEvent(1, // interval (ms)
1664 data->period, // resolution
1665 host_alarm_handler, // function
1666 (DWORD)t, // parameter
1667 flags);
1668
1669 if (!data->timerId) {
1670 perror("Failed to initialize win32 alarm timer");
1671 timeEndPeriod(data->period);
1672 return -1;
1673 }
1674
1675 return 0;
1676}
1677
1678static void win32_stop_timer(struct qemu_alarm_timer *t)
1679{
1680 struct qemu_alarm_win32 *data = t->priv;
1681
1682 timeKillEvent(data->timerId);
1683 timeEndPeriod(data->period);
1684}
1685
1686static void win32_rearm_timer(struct qemu_alarm_timer *t)
1687{
1688 struct qemu_alarm_win32 *data = t->priv;
1689 uint64_t nearest_delta_us;
1690
1691 if (!active_timers[QEMU_TIMER_REALTIME] &&
1692 !active_timers[QEMU_TIMER_VIRTUAL])
1693 return;
1694
1695 nearest_delta_us = qemu_next_deadline_dyntick();
1696 nearest_delta_us /= 1000;
1697
1698 timeKillEvent(data->timerId);
1699
1700 data->timerId = timeSetEvent(1,
1701 data->period,
1702 host_alarm_handler,
1703 (DWORD)t,
1704 TIME_ONESHOT | TIME_PERIODIC);
1705
1706 if (!data->timerId) {
1707 perror("Failed to re-arm win32 alarm timer");
1708
1709 timeEndPeriod(data->period);
1710 exit(1);
1711 }
1712}
1713
1714#endif /* _WIN32 */
1715
1716static int init_timer_alarm(void)
1717{
1718 struct qemu_alarm_timer *t = NULL;
1719 int i, err = -1;
1720
1721 for (i = 0; alarm_timers[i].name; i++) {
1722 t = &alarm_timers[i];
1723
1724 err = t->start(t);
1725 if (!err)
1726 break;
1727 }
1728
1729 if (err) {
1730 err = -ENOENT;
1731 goto fail;
1732 }
1733
1734 alarm_timer = t;
1735
1736 return 0;
1737
1738fail:
1739 return err;
1740}
1741
1742static void quit_timers(void)
1743{
1744 alarm_timer->stop(alarm_timer);
1745 alarm_timer = NULL;
1746}
1747
1748/***********************************************************/
1749/* host time/date access */
1750void qemu_get_timedate(struct tm *tm, int offset)
1751{
1752 time_t ti;
1753 struct tm *ret;
1754
1755 time(&ti);
1756 ti += offset;
1757 if (rtc_date_offset == -1) {
1758 if (rtc_utc)
1759 ret = gmtime(&ti);
1760 else
1761 ret = localtime(&ti);
1762 } else {
1763 ti -= rtc_date_offset;
1764 ret = gmtime(&ti);
1765 }
1766
1767 memcpy(tm, ret, sizeof(struct tm));
1768}
1769
1770int qemu_timedate_diff(struct tm *tm)
1771{
1772 time_t seconds;
1773
1774 if (rtc_date_offset == -1)
1775 if (rtc_utc)
1776 seconds = mktimegm(tm);
1777 else
1778 seconds = mktime(tm);
1779 else
1780 seconds = mktimegm(tm) + rtc_date_offset;
1781
1782 return seconds - time(NULL);
1783}
1784
1785#ifdef _WIN32
1786static void socket_cleanup(void)
1787{
1788 WSACleanup();
1789}
1790
1791static int socket_init(void)
1792{
1793 WSADATA Data;
1794 int ret, err;
1795
1796 ret = WSAStartup(MAKEWORD(2,2), &Data);
1797 if (ret != 0) {
1798 err = WSAGetLastError();
1799 fprintf(stderr, "WSAStartup: %d\n", err);
1800 return -1;
1801 }
1802 atexit(socket_cleanup);
1803 return 0;
1804}
1805#endif
1806
1807const char *get_opt_name(char *buf, int buf_size, const char *p, char delim)
1808{
1809 char *q;
1810
1811 q = buf;
1812 while (*p != '\0' && *p != delim) {
1813 if (q && (q - buf) < buf_size - 1)
1814 *q++ = *p;
1815 p++;
1816 }
1817 if (q)
1818 *q = '\0';
1819
1820 return p;
1821}
1822
1823const char *get_opt_value(char *buf, int buf_size, const char *p)
1824{
1825 char *q;
1826
1827 q = buf;
1828 while (*p != '\0') {
1829 if (*p == ',') {
1830 if (*(p + 1) != ',')
1831 break;
1832 p++;
1833 }
1834 if (q && (q - buf) < buf_size - 1)
1835 *q++ = *p;
1836 p++;
1837 }
1838 if (q)
1839 *q = '\0';
1840
1841 return p;
1842}
1843
1844int get_param_value(char *buf, int buf_size,
1845 const char *tag, const char *str)
1846{
1847 const char *p;
1848 char option[128];
1849
1850 p = str;
1851 for(;;) {
1852 p = get_opt_name(option, sizeof(option), p, '=');
1853 if (*p != '=')
1854 break;
1855 p++;
1856 if (!strcmp(tag, option)) {
1857 (void)get_opt_value(buf, buf_size, p);
1858 return strlen(buf);
1859 } else {
1860 p = get_opt_value(NULL, 0, p);
1861 }
1862 if (*p != ',')
1863 break;
1864 p++;
1865 }
1866 return 0;
1867}
1868
1869int check_params(char *buf, int buf_size,
1870 const char * const *params, const char *str)
1871{
1872 const char *p;
1873 int i;
1874
1875 p = str;
1876 while (*p != '\0') {
1877 p = get_opt_name(buf, buf_size, p, '=');
1878 if (*p != '=')
1879 return -1;
1880 p++;
1881 for(i = 0; params[i] != NULL; i++)
1882 if (!strcmp(params[i], buf))
1883 break;
1884 if (params[i] == NULL)
1885 return -1;
1886 p = get_opt_value(NULL, 0, p);
1887 if (*p != ',')
1888 break;
1889 p++;
1890 }
1891 return 0;
1892}
1893
1894/***********************************************************/
1895/* Bluetooth support */
1896static int nb_hcis;
1897static int cur_hci;
1898static struct HCIInfo *hci_table[MAX_NICS];
1899
1900static struct bt_vlan_s {
1901 struct bt_scatternet_s net;
1902 int id;
1903 struct bt_vlan_s *next;
1904} *first_bt_vlan;
1905
1906/* find or alloc a new bluetooth "VLAN" */
1907static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1908{
1909 struct bt_vlan_s **pvlan, *vlan;
1910 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1911 if (vlan->id == id)
1912 return &vlan->net;
1913 }
1914 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1915 vlan->id = id;
1916 pvlan = &first_bt_vlan;
1917 while (*pvlan != NULL)
1918 pvlan = &(*pvlan)->next;
1919 *pvlan = vlan;
1920 return &vlan->net;
1921}
1922
1923static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1924{
1925}
1926
1927static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1928{
1929 return -ENOTSUP;
1930}
1931
1932static struct HCIInfo null_hci = {
1933 .cmd_send = null_hci_send,
1934 .sco_send = null_hci_send,
1935 .acl_send = null_hci_send,
1936 .bdaddr_set = null_hci_addr_set,
1937};
1938
1939struct HCIInfo *qemu_next_hci(void)
1940{
1941 if (cur_hci == nb_hcis)
1942 return &null_hci;
1943
1944 return hci_table[cur_hci++];
1945}
1946
1947static struct HCIInfo *hci_init(const char *str)
1948{
1949 char *endp;
1950 struct bt_scatternet_s *vlan = 0;
1951
1952 if (!strcmp(str, "null"))
1953 /* null */
1954 return &null_hci;
1955 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1956 /* host[:hciN] */
1957 return bt_host_hci(str[4] ? str + 5 : "hci0");
1958 else if (!strncmp(str, "hci", 3)) {
1959 /* hci[,vlan=n] */
1960 if (str[3]) {
1961 if (!strncmp(str + 3, ",vlan=", 6)) {
1962 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1963 if (*endp)
1964 vlan = 0;
1965 }
1966 } else
1967 vlan = qemu_find_bt_vlan(0);
1968 if (vlan)
1969 return bt_new_hci(vlan);
1970 }
1971
1972 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1973
1974 return 0;
1975}
1976
1977static int bt_hci_parse(const char *str)
1978{
1979 struct HCIInfo *hci;
1980 bdaddr_t bdaddr;
1981
1982 if (nb_hcis >= MAX_NICS) {
1983 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1984 return -1;
1985 }
1986
1987 hci = hci_init(str);
1988 if (!hci)
1989 return -1;
1990
1991 bdaddr.b[0] = 0x52;
1992 bdaddr.b[1] = 0x54;
1993 bdaddr.b[2] = 0x00;
1994 bdaddr.b[3] = 0x12;
1995 bdaddr.b[4] = 0x34;
1996 bdaddr.b[5] = 0x56 + nb_hcis;
1997 hci->bdaddr_set(hci, bdaddr.b);
1998
1999 hci_table[nb_hcis++] = hci;
2000
2001 return 0;
2002}
2003
2004static void bt_vhci_add(int vlan_id)
2005{
2006 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2007
2008 if (!vlan->slave)
2009 fprintf(stderr, "qemu: warning: adding a VHCI to "
2010 "an empty scatternet %i\n", vlan_id);
2011
2012 bt_vhci_init(bt_new_hci(vlan));
2013}
2014
2015static struct bt_device_s *bt_device_add(const char *opt)
2016{
2017 struct bt_scatternet_s *vlan;
2018 int vlan_id = 0;
2019 char *endp = strstr(opt, ",vlan=");
2020 int len = (endp ? endp - opt : strlen(opt)) + 1;
2021 char devname[10];
2022
2023 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2024
2025 if (endp) {
2026 vlan_id = strtol(endp + 6, &endp, 0);
2027 if (*endp) {
2028 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2029 return 0;
2030 }
2031 }
2032
2033 vlan = qemu_find_bt_vlan(vlan_id);
2034
2035 if (!vlan->slave)
2036 fprintf(stderr, "qemu: warning: adding a slave device to "
2037 "an empty scatternet %i\n", vlan_id);
2038
2039 if (!strcmp(devname, "keyboard"))
2040 return bt_keyboard_init(vlan);
2041
2042 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2043 return 0;
2044}
2045
2046static int bt_parse(const char *opt)
2047{
2048 const char *endp, *p;
2049 int vlan;
2050
2051 if (strstart(opt, "hci", &endp)) {
2052 if (!*endp || *endp == ',') {
2053 if (*endp)
2054 if (!strstart(endp, ",vlan=", 0))
2055 opt = endp + 1;
2056
2057 return bt_hci_parse(opt);
2058 }
2059 } else if (strstart(opt, "vhci", &endp)) {
2060 if (!*endp || *endp == ',') {
2061 if (*endp) {
2062 if (strstart(endp, ",vlan=", &p)) {
2063 vlan = strtol(p, (char **) &endp, 0);
2064 if (*endp) {
2065 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2066 return 1;
2067 }
2068 } else {
2069 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2070 return 1;
2071 }
2072 } else
2073 vlan = 0;
2074
2075 bt_vhci_add(vlan);
2076 return 0;
2077 }
2078 } else if (strstart(opt, "device:", &endp))
2079 return !bt_device_add(endp);
2080
2081 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2082 return 1;
2083}
2084
2085/***********************************************************/
2086/* QEMU Block devices */
2087
2088#define HD_ALIAS "index=%d,media=disk"
2089#define CDROM_ALIAS "index=2,media=cdrom"
2090#define FD_ALIAS "index=%d,if=floppy"
2091#define PFLASH_ALIAS "if=pflash"
2092#define MTD_ALIAS "if=mtd"
2093#define SD_ALIAS "index=0,if=sd"
2094
2095static int drive_opt_get_free_idx(void)
2096{
2097 int index;
2098
2099 for (index = 0; index < MAX_DRIVES; index++)
2100 if (!drives_opt[index].used) {
2101 drives_opt[index].used = 1;
2102 return index;
2103 }
2104
2105 return -1;
2106}
2107
2108static int drive_get_free_idx(void)
2109{
2110 int index;
2111
2112 for (index = 0; index < MAX_DRIVES; index++)
2113 if (!drives_table[index].used) {
2114 drives_table[index].used = 1;
2115 return index;
2116 }
2117
2118 return -1;
2119}
2120
2121int drive_add(const char *file, const char *fmt, ...)
2122{
2123 va_list ap;
2124 int index = drive_opt_get_free_idx();
2125
2126 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2127 fprintf(stderr, "qemu: too many drives\n");
2128 return -1;
2129 }
2130
2131 drives_opt[index].file = file;
2132 va_start(ap, fmt);
2133 vsnprintf(drives_opt[index].opt,
2134 sizeof(drives_opt[0].opt), fmt, ap);
2135 va_end(ap);
2136
2137 nb_drives_opt++;
2138 return index;
2139}
2140
2141void drive_remove(int index)
2142{
2143 drives_opt[index].used = 0;
2144 nb_drives_opt--;
2145}
2146
2147int drive_get_index(BlockInterfaceType type, int bus, int unit)
2148{
2149 int index;
2150
2151 /* seek interface, bus and unit */
2152
2153 for (index = 0; index < MAX_DRIVES; index++)
2154 if (drives_table[index].type == type &&
2155 drives_table[index].bus == bus &&
2156 drives_table[index].unit == unit &&
2157 drives_table[index].used)
2158 return index;
2159
2160 return -1;
2161}
2162
2163int drive_get_max_bus(BlockInterfaceType type)
2164{
2165 int max_bus;
2166 int index;
2167
2168 max_bus = -1;
2169 for (index = 0; index < nb_drives; index++) {
2170 if(drives_table[index].type == type &&
2171 drives_table[index].bus > max_bus)
2172 max_bus = drives_table[index].bus;
2173 }
2174 return max_bus;
2175}
2176
2177const char *drive_get_serial(BlockDriverState *bdrv)
2178{
2179 int index;
2180
2181 for (index = 0; index < nb_drives; index++)
2182 if (drives_table[index].bdrv == bdrv)
2183 return drives_table[index].serial;
2184
2185 return "\0";
2186}
2187
2188BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2189{
2190 int index;
2191
2192 for (index = 0; index < nb_drives; index++)
2193 if (drives_table[index].bdrv == bdrv)
2194 return drives_table[index].onerror;
2195
2196 return BLOCK_ERR_STOP_ENOSPC;
2197}
2198
2199static void bdrv_format_print(void *opaque, const char *name)
2200{
2201 fprintf(stderr, " %s", name);
2202}
2203
2204void drive_uninit(BlockDriverState *bdrv)
2205{
2206 int i;
2207
2208 for (i = 0; i < MAX_DRIVES; i++)
2209 if (drives_table[i].bdrv == bdrv) {
2210 drives_table[i].bdrv = NULL;
2211 drives_table[i].used = 0;
2212 drive_remove(drives_table[i].drive_opt_idx);
2213 nb_drives--;
2214 break;
2215 }
2216}
2217
2218int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2219{
2220 char buf[128];
2221 char file[1024];
2222 char devname[128];
2223 char serial[21];
2224 const char *mediastr = "";
2225 BlockInterfaceType type;
2226 enum { MEDIA_DISK, MEDIA_CDROM } media;
2227 int bus_id, unit_id;
2228 int cyls, heads, secs, translation;
2229 BlockDriverState *bdrv;
2230 BlockDriver *drv = NULL;
2231 QEMUMachine *machine = opaque;
2232 int max_devs;
2233 int index;
2234 int cache;
2235 int bdrv_flags, onerror;
2236 int drives_table_idx;
2237 char *str = arg->opt;
2238 static const char * const params[] = { "bus", "unit", "if", "index",
2239 "cyls", "heads", "secs", "trans",
2240 "media", "snapshot", "file",
2241 "cache", "format", "serial", "werror",
2242 NULL };
2243
2244 if (check_params(buf, sizeof(buf), params, str) < 0) {
2245 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2246 buf, str);
2247 return -1;
2248 }
2249
2250 file[0] = 0;
2251 cyls = heads = secs = 0;
2252 bus_id = 0;
2253 unit_id = -1;
2254 translation = BIOS_ATA_TRANSLATION_AUTO;
2255 index = -1;
2256 cache = 3;
2257
2258 if (machine->use_scsi) {
2259 type = IF_SCSI;
2260 max_devs = MAX_SCSI_DEVS;
2261 pstrcpy(devname, sizeof(devname), "scsi");
2262 } else {
2263 type = IF_IDE;
2264 max_devs = MAX_IDE_DEVS;
2265 pstrcpy(devname, sizeof(devname), "ide");
2266 }
2267 media = MEDIA_DISK;
2268
2269 /* extract parameters */
2270
2271 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2272 bus_id = strtol(buf, NULL, 0);
2273 if (bus_id < 0) {
2274 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2275 return -1;
2276 }
2277 }
2278
2279 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2280 unit_id = strtol(buf, NULL, 0);
2281 if (unit_id < 0) {
2282 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2283 return -1;
2284 }
2285 }
2286
2287 if (get_param_value(buf, sizeof(buf), "if", str)) {
2288 pstrcpy(devname, sizeof(devname), buf);
2289 if (!strcmp(buf, "ide")) {
2290 type = IF_IDE;
2291 max_devs = MAX_IDE_DEVS;
2292 } else if (!strcmp(buf, "scsi")) {
2293 type = IF_SCSI;
2294 max_devs = MAX_SCSI_DEVS;
2295 } else if (!strcmp(buf, "floppy")) {
2296 type = IF_FLOPPY;
2297 max_devs = 0;
2298 } else if (!strcmp(buf, "pflash")) {
2299 type = IF_PFLASH;
2300 max_devs = 0;
2301 } else if (!strcmp(buf, "mtd")) {
2302 type = IF_MTD;
2303 max_devs = 0;
2304 } else if (!strcmp(buf, "sd")) {
2305 type = IF_SD;
2306 max_devs = 0;
2307 } else if (!strcmp(buf, "virtio")) {
2308 type = IF_VIRTIO;
2309 max_devs = 0;
2310 } else if (!strcmp(buf, "xen")) {
2311 type = IF_XEN;
2312 max_devs = 0;
2313 } else {
2314 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2315 return -1;
2316 }
2317 }
2318
2319 if (get_param_value(buf, sizeof(buf), "index", str)) {
2320 index = strtol(buf, NULL, 0);
2321 if (index < 0) {
2322 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2323 return -1;
2324 }
2325 }
2326
2327 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2328 cyls = strtol(buf, NULL, 0);
2329 }
2330
2331 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2332 heads = strtol(buf, NULL, 0);
2333 }
2334
2335 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2336 secs = strtol(buf, NULL, 0);
2337 }
2338
2339 if (cyls || heads || secs) {
2340 if (cyls < 1 || cyls > 16383) {
2341 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2342 return -1;
2343 }
2344 if (heads < 1 || heads > 16) {
2345 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2346 return -1;
2347 }
2348 if (secs < 1 || secs > 63) {
2349 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2350 return -1;
2351 }
2352 }
2353
2354 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2355 if (!cyls) {
2356 fprintf(stderr,
2357 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2358 str);
2359 return -1;
2360 }
2361 if (!strcmp(buf, "none"))
2362 translation = BIOS_ATA_TRANSLATION_NONE;
2363 else if (!strcmp(buf, "lba"))
2364 translation = BIOS_ATA_TRANSLATION_LBA;
2365 else if (!strcmp(buf, "auto"))
2366 translation = BIOS_ATA_TRANSLATION_AUTO;
2367 else {
2368 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2369 return -1;
2370 }
2371 }
2372
2373 if (get_param_value(buf, sizeof(buf), "media", str)) {
2374 if (!strcmp(buf, "disk")) {
2375 media = MEDIA_DISK;
2376 } else if (!strcmp(buf, "cdrom")) {
2377 if (cyls || secs || heads) {
2378 fprintf(stderr,
2379 "qemu: '%s' invalid physical CHS format\n", str);
2380 return -1;
2381 }
2382 media = MEDIA_CDROM;
2383 } else {
2384 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2385 return -1;
2386 }
2387 }
2388
2389 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2390 if (!strcmp(buf, "on"))
2391 snapshot = 1;
2392 else if (!strcmp(buf, "off"))
2393 snapshot = 0;
2394 else {
2395 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2396 return -1;
2397 }
2398 }
2399
2400 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2401 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2402 cache = 0;
2403 else if (!strcmp(buf, "writethrough"))
2404 cache = 1;
2405 else if (!strcmp(buf, "writeback"))
2406 cache = 2;
2407 else {
2408 fprintf(stderr, "qemu: invalid cache option\n");
2409 return -1;
2410 }
2411 }
2412
2413 if (get_param_value(buf, sizeof(buf), "format", str)) {
2414 if (strcmp(buf, "?") == 0) {
2415 fprintf(stderr, "qemu: Supported formats:");
2416 bdrv_iterate_format(bdrv_format_print, NULL);
2417 fprintf(stderr, "\n");
2418 return -1;
2419 }
2420 drv = bdrv_find_format(buf);
2421 if (!drv) {
2422 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2423 return -1;
2424 }
2425 }
2426
2427 if (arg->file == NULL)
2428 get_param_value(file, sizeof(file), "file", str);
2429 else
2430 pstrcpy(file, sizeof(file), arg->file);
2431
2432 if (!get_param_value(serial, sizeof(serial), "serial", str))
2433 memset(serial, 0, sizeof(serial));
2434
2435 onerror = BLOCK_ERR_STOP_ENOSPC;
2436 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2437 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2438 fprintf(stderr, "werror is no supported by this format\n");
2439 return -1;
2440 }
2441 if (!strcmp(buf, "ignore"))
2442 onerror = BLOCK_ERR_IGNORE;
2443 else if (!strcmp(buf, "enospc"))
2444 onerror = BLOCK_ERR_STOP_ENOSPC;
2445 else if (!strcmp(buf, "stop"))
2446 onerror = BLOCK_ERR_STOP_ANY;
2447 else if (!strcmp(buf, "report"))
2448 onerror = BLOCK_ERR_REPORT;
2449 else {
2450 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2451 return -1;
2452 }
2453 }
2454
2455 /* compute bus and unit according index */
2456
2457 if (index != -1) {
2458 if (bus_id != 0 || unit_id != -1) {
2459 fprintf(stderr,
2460 "qemu: '%s' index cannot be used with bus and unit\n", str);
2461 return -1;
2462 }
2463 if (max_devs == 0)
2464 {
2465 unit_id = index;
2466 bus_id = 0;
2467 } else {
2468 unit_id = index % max_devs;
2469 bus_id = index / max_devs;
2470 }
2471 }
2472
2473 /* if user doesn't specify a unit_id,
2474 * try to find the first free
2475 */
2476
2477 if (unit_id == -1) {
2478 unit_id = 0;
2479 while (drive_get_index(type, bus_id, unit_id) != -1) {
2480 unit_id++;
2481 if (max_devs && unit_id >= max_devs) {
2482 unit_id -= max_devs;
2483 bus_id++;
2484 }
2485 }
2486 }
2487
2488 /* check unit id */
2489
2490 if (max_devs && unit_id >= max_devs) {
2491 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2492 str, unit_id, max_devs - 1);
2493 return -1;
2494 }
2495
2496 /*
2497 * ignore multiple definitions
2498 */
2499
2500 if (drive_get_index(type, bus_id, unit_id) != -1)
2501 return -2;
2502
2503 /* init */
2504
2505 if (type == IF_IDE || type == IF_SCSI)
2506 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2507 if (max_devs)
2508 snprintf(buf, sizeof(buf), "%s%i%s%i",
2509 devname, bus_id, mediastr, unit_id);
2510 else
2511 snprintf(buf, sizeof(buf), "%s%s%i",
2512 devname, mediastr, unit_id);
2513 bdrv = bdrv_new(buf);
2514 drives_table_idx = drive_get_free_idx();
2515 drives_table[drives_table_idx].bdrv = bdrv;
2516 drives_table[drives_table_idx].type = type;
2517 drives_table[drives_table_idx].bus = bus_id;
2518 drives_table[drives_table_idx].unit = unit_id;
2519 drives_table[drives_table_idx].onerror = onerror;
2520 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2521 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2522 nb_drives++;
2523
2524 switch(type) {
2525 case IF_IDE:
2526 case IF_SCSI:
2527 case IF_XEN:
2528 switch(media) {
2529 case MEDIA_DISK:
2530 if (cyls != 0) {
2531 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2532 bdrv_set_translation_hint(bdrv, translation);
2533 }
2534 break;
2535 case MEDIA_CDROM:
2536 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2537 break;
2538 }
2539 break;
2540 case IF_SD:
2541 /* FIXME: This isn't really a floppy, but it's a reasonable
2542 approximation. */
2543 case IF_FLOPPY:
2544 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2545 break;
2546 case IF_PFLASH:
2547 case IF_MTD:
2548 case IF_VIRTIO:
2549 break;
2550 }
2551 if (!file[0])
2552 return -2;
2553 bdrv_flags = 0;
2554 if (snapshot) {
2555 bdrv_flags |= BDRV_O_SNAPSHOT;
2556 cache = 2; /* always use write-back with snapshot */
2557 }
2558 if (cache == 0) /* no caching */
2559 bdrv_flags |= BDRV_O_NOCACHE;
2560 else if (cache == 2) /* write-back */
2561 bdrv_flags |= BDRV_O_CACHE_WB;
2562 else if (cache == 3) /* not specified */
2563 bdrv_flags |= BDRV_O_CACHE_DEF;
2564 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2565 fprintf(stderr, "qemu: could not open disk image %s\n",
2566 file);
2567 return -1;
2568 }
2569 if (bdrv_key_required(bdrv))
2570 autostart = 0;
2571 return drives_table_idx;
2572}
2573
2574static void numa_add(const char *optarg)
2575{
2576 char option[128];
2577 char *endptr;
2578 unsigned long long value, endvalue;
2579 int nodenr;
2580
2581 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2582 if (!strcmp(option, "node")) {
2583 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2584 nodenr = nb_numa_nodes;
2585 } else {
2586 nodenr = strtoull(option, NULL, 10);
2587 }
2588
2589 if (get_param_value(option, 128, "mem", optarg) == 0) {
2590 node_mem[nodenr] = 0;
2591 } else {
2592 value = strtoull(option, &endptr, 0);
2593 switch (*endptr) {
2594 case 0: case 'M': case 'm':
2595 value <<= 20;
2596 break;
2597 case 'G': case 'g':
2598 value <<= 30;
2599 break;
2600 }
2601 node_mem[nodenr] = value;
2602 }
2603 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2604 node_cpumask[nodenr] = 0;
2605 } else {
2606 value = strtoull(option, &endptr, 10);
2607 if (value >= 64) {
2608 value = 63;
2609 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2610 } else {
2611 if (*endptr == '-') {
2612 endvalue = strtoull(endptr+1, &endptr, 10);
2613 if (endvalue >= 63) {
2614 endvalue = 62;
2615 fprintf(stderr,
2616 "only 63 CPUs in NUMA mode supported.\n");
2617 }
2618 value = (1 << (endvalue + 1)) - (1 << value);
2619 } else {
2620 value = 1 << value;
2621 }
2622 }
2623 node_cpumask[nodenr] = value;
2624 }
2625 nb_numa_nodes++;
2626 }
2627 return;
2628}
2629
2630/***********************************************************/
2631/* USB devices */
2632
2633static USBPort *used_usb_ports;
2634static USBPort *free_usb_ports;
2635
2636/* ??? Maybe change this to register a hub to keep track of the topology. */
2637void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2638 usb_attachfn attach)
2639{
2640 port->opaque = opaque;
2641 port->index = index;
2642 port->attach = attach;
2643 port->next = free_usb_ports;
2644 free_usb_ports = port;
2645}
2646
2647int usb_device_add_dev(USBDevice *dev)
2648{
2649 USBPort *port;
2650
2651 /* Find a USB port to add the device to. */
2652 port = free_usb_ports;
2653 if (!port->next) {
2654 USBDevice *hub;
2655
2656 /* Create a new hub and chain it on. */
2657 free_usb_ports = NULL;
2658 port->next = used_usb_ports;
2659 used_usb_ports = port;
2660
2661 hub = usb_hub_init(VM_USB_HUB_SIZE);
2662 usb_attach(port, hub);
2663 port = free_usb_ports;
2664 }
2665
2666 free_usb_ports = port->next;
2667 port->next = used_usb_ports;
2668 used_usb_ports = port;
2669 usb_attach(port, dev);
2670 return 0;
2671}
2672
2673static void usb_msd_password_cb(void *opaque, int err)
2674{
2675 USBDevice *dev = opaque;
2676
2677 if (!err)
2678 usb_device_add_dev(dev);
2679 else
2680 dev->handle_destroy(dev);
2681}
2682
2683static int usb_device_add(const char *devname, int is_hotplug)
2684{
2685 const char *p;
2686 USBDevice *dev;
2687
2688 if (!free_usb_ports)
2689 return -1;
2690
2691 if (strstart(devname, "host:", &p)) {
2692 dev = usb_host_device_open(p);
2693 } else if (!strcmp(devname, "mouse")) {
2694 dev = usb_mouse_init();
2695 } else if (!strcmp(devname, "tablet")) {
2696 dev = usb_tablet_init();
2697 } else if (!strcmp(devname, "keyboard")) {
2698 dev = usb_keyboard_init();
2699 } else if (strstart(devname, "disk:", &p)) {
2700 BlockDriverState *bs;
2701
2702 dev = usb_msd_init(p);
2703 if (!dev)
2704 return -1;
2705 bs = usb_msd_get_bdrv(dev);
2706 if (bdrv_key_required(bs)) {
2707 autostart = 0;
2708 if (is_hotplug) {
2709 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2710 dev);
2711 return 0;
2712 }
2713 }
2714 } else if (!strcmp(devname, "wacom-tablet")) {
2715 dev = usb_wacom_init();
2716 } else if (strstart(devname, "serial:", &p)) {
2717 dev = usb_serial_init(p);
2718#ifdef CONFIG_BRLAPI
2719 } else if (!strcmp(devname, "braille")) {
2720 dev = usb_baum_init();
2721#endif
2722 } else if (strstart(devname, "net:", &p)) {
2723 int nic = nb_nics;
2724
2725 if (net_client_init("nic", p) < 0)
2726 return -1;
2727 nd_table[nic].model = "usb";
2728 dev = usb_net_init(&nd_table[nic]);
2729 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2730 dev = usb_bt_init(devname[2] ? hci_init(p) :
2731 bt_new_hci(qemu_find_bt_vlan(0)));
2732 } else {
2733 return -1;
2734 }
2735 if (!dev)
2736 return -1;
2737
2738 return usb_device_add_dev(dev);
2739}
2740
2741int usb_device_del_addr(int bus_num, int addr)
2742{
2743 USBPort *port;
2744 USBPort **lastp;
2745 USBDevice *dev;
2746
2747 if (!used_usb_ports)
2748 return -1;
2749
2750 if (bus_num != 0)
2751 return -1;
2752
2753 lastp = &used_usb_ports;
2754 port = used_usb_ports;
2755 while (port && port->dev->addr != addr) {
2756 lastp = &port->next;
2757 port = port->next;
2758 }
2759
2760 if (!port)
2761 return -1;
2762
2763 dev = port->dev;
2764 *lastp = port->next;
2765 usb_attach(port, NULL);
2766 dev->handle_destroy(dev);
2767 port->next = free_usb_ports;
2768 free_usb_ports = port;
2769 return 0;
2770}
2771
2772static int usb_device_del(const char *devname)
2773{
2774 int bus_num, addr;
2775 const char *p;
2776
2777 if (strstart(devname, "host:", &p))
2778 return usb_host_device_close(p);
2779
2780 if (!used_usb_ports)
2781 return -1;
2782
2783 p = strchr(devname, '.');
2784 if (!p)
2785 return -1;
2786 bus_num = strtoul(devname, NULL, 0);
2787 addr = strtoul(p + 1, NULL, 0);
2788
2789 return usb_device_del_addr(bus_num, addr);
2790}
2791
2792void do_usb_add(Monitor *mon, const char *devname)
2793{
2794 usb_device_add(devname, 1);
2795}
2796
2797void do_usb_del(Monitor *mon, const char *devname)
2798{
2799 usb_device_del(devname);
2800}
2801
2802void usb_info(Monitor *mon)
2803{
2804 USBDevice *dev;
2805 USBPort *port;
2806 const char *speed_str;
2807
2808 if (!usb_enabled) {
2809 monitor_printf(mon, "USB support not enabled\n");
2810 return;
2811 }
2812
2813 for (port = used_usb_ports; port; port = port->next) {
2814 dev = port->dev;
2815 if (!dev)
2816 continue;
2817 switch(dev->speed) {
2818 case USB_SPEED_LOW:
2819 speed_str = "1.5";
2820 break;
2821 case USB_SPEED_FULL:
2822 speed_str = "12";
2823 break;
2824 case USB_SPEED_HIGH:
2825 speed_str = "480";
2826 break;
2827 default:
2828 speed_str = "?";
2829 break;
2830 }
2831 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2832 0, dev->addr, speed_str, dev->devname);
2833 }
2834}
2835
2836/***********************************************************/
2837/* PCMCIA/Cardbus */
2838
2839static struct pcmcia_socket_entry_s {
2840 struct pcmcia_socket_s *socket;
2841 struct pcmcia_socket_entry_s *next;
2842} *pcmcia_sockets = 0;
2843
2844void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2845{
2846 struct pcmcia_socket_entry_s *entry;
2847
2848 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2849 entry->socket = socket;
2850 entry->next = pcmcia_sockets;
2851 pcmcia_sockets = entry;
2852}
2853
2854void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2855{
2856 struct pcmcia_socket_entry_s *entry, **ptr;
2857
2858 ptr = &pcmcia_sockets;
2859 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2860 if (entry->socket == socket) {
2861 *ptr = entry->next;
2862 qemu_free(entry);
2863 }
2864}
2865
2866void pcmcia_info(Monitor *mon)
2867{
2868 struct pcmcia_socket_entry_s *iter;
2869
2870 if (!pcmcia_sockets)
2871 monitor_printf(mon, "No PCMCIA sockets\n");
2872
2873 for (iter = pcmcia_sockets; iter; iter = iter->next)
2874 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2875 iter->socket->attached ? iter->socket->card_string :
2876 "Empty");
2877}
2878
2879/***********************************************************/
2880/* register display */
2881
2882struct DisplayAllocator default_allocator = {
2883 defaultallocator_create_displaysurface,
2884 defaultallocator_resize_displaysurface,
2885 defaultallocator_free_displaysurface
2886};
2887
2888void register_displaystate(DisplayState *ds)
2889{
2890 DisplayState **s;
2891 s = &display_state;
2892 while (*s != NULL)
2893 s = &(*s)->next;
2894 ds->next = NULL;
2895 *s = ds;
2896}
2897
2898DisplayState *get_displaystate(void)
2899{
2900 return display_state;
2901}
2902
2903DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2904{
2905 if(ds->allocator == &default_allocator) ds->allocator = da;
2906 return ds->allocator;
2907}
2908
2909/* dumb display */
2910
2911static void dumb_display_init(void)
2912{
2913 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2914 ds->allocator = &default_allocator;
2915 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2916 register_displaystate(ds);
2917}
2918
2919/***********************************************************/
2920/* I/O handling */
2921
2922typedef struct IOHandlerRecord {
2923 int fd;
2924 IOCanRWHandler *fd_read_poll;
2925 IOHandler *fd_read;
2926 IOHandler *fd_write;
2927 int deleted;
2928 void *opaque;
2929 /* temporary data */
2930 struct pollfd *ufd;
2931 struct IOHandlerRecord *next;
2932} IOHandlerRecord;
2933
2934static IOHandlerRecord *first_io_handler;
2935
2936/* XXX: fd_read_poll should be suppressed, but an API change is
2937 necessary in the character devices to suppress fd_can_read(). */
2938int qemu_set_fd_handler2(int fd,
2939 IOCanRWHandler *fd_read_poll,
2940 IOHandler *fd_read,
2941 IOHandler *fd_write,
2942 void *opaque)
2943{
2944 IOHandlerRecord **pioh, *ioh;
2945
2946 if (!fd_read && !fd_write) {
2947 pioh = &first_io_handler;
2948 for(;;) {
2949 ioh = *pioh;
2950 if (ioh == NULL)
2951 break;
2952 if (ioh->fd == fd) {
2953 ioh->deleted = 1;
2954 break;
2955 }
2956 pioh = &ioh->next;
2957 }
2958 } else {
2959 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2960 if (ioh->fd == fd)
2961 goto found;
2962 }
2963 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2964 ioh->next = first_io_handler;
2965 first_io_handler = ioh;
2966 found:
2967 ioh->fd = fd;
2968 ioh->fd_read_poll = fd_read_poll;
2969 ioh->fd_read = fd_read;
2970 ioh->fd_write = fd_write;
2971 ioh->opaque = opaque;
2972 ioh->deleted = 0;
2973 }
2974 return 0;
2975}
2976
2977int qemu_set_fd_handler(int fd,
2978 IOHandler *fd_read,
2979 IOHandler *fd_write,
2980 void *opaque)
2981{
2982 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2983}
2984
2985#ifdef _WIN32
2986/***********************************************************/
2987/* Polling handling */
2988
2989typedef struct PollingEntry {
2990 PollingFunc *func;
2991 void *opaque;
2992 struct PollingEntry *next;
2993} PollingEntry;
2994
2995static PollingEntry *first_polling_entry;
2996
2997int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2998{
2999 PollingEntry **ppe, *pe;
3000 pe = qemu_mallocz(sizeof(PollingEntry));
3001 pe->func = func;
3002 pe->opaque = opaque;
3003 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3004 *ppe = pe;
3005 return 0;
3006}
3007
3008void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3009{
3010 PollingEntry **ppe, *pe;
3011 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3012 pe = *ppe;
3013 if (pe->func == func && pe->opaque == opaque) {
3014 *ppe = pe->next;
3015 qemu_free(pe);
3016 break;
3017 }
3018 }
3019}
3020
3021/***********************************************************/
3022/* Wait objects support */
3023typedef struct WaitObjects {
3024 int num;
3025 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3026 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3027 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3028} WaitObjects;
3029
3030static WaitObjects wait_objects = {0};
3031
3032int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3033{
3034 WaitObjects *w = &wait_objects;
3035
3036 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3037 return -1;
3038 w->events[w->num] = handle;
3039 w->func[w->num] = func;
3040 w->opaque[w->num] = opaque;
3041 w->num++;
3042 return 0;
3043}
3044
3045void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3046{
3047 int i, found;
3048 WaitObjects *w = &wait_objects;
3049
3050 found = 0;
3051 for (i = 0; i < w->num; i++) {
3052 if (w->events[i] == handle)
3053 found = 1;
3054 if (found) {
3055 w->events[i] = w->events[i + 1];
3056 w->func[i] = w->func[i + 1];
3057 w->opaque[i] = w->opaque[i + 1];
3058 }
3059 }
3060 if (found)
3061 w->num--;
3062}
3063#endif
3064
3065/***********************************************************/
3066/* ram save/restore */
3067
3068static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3069{
3070 int v;
3071
3072 v = qemu_get_byte(f);
3073 switch(v) {
3074 case 0:
3075 if (qemu_get_buffer(f, buf, len) != len)
3076 return -EIO;
3077 break;
3078 case 1:
3079 v = qemu_get_byte(f);
3080 memset(buf, v, len);
3081 break;
3082 default:
3083 return -EINVAL;
3084 }
3085
3086 if (qemu_file_has_error(f))
3087 return -EIO;
3088
3089 return 0;
3090}
3091
3092static int ram_load_v1(QEMUFile *f, void *opaque)
3093{
3094 int ret;
3095 ram_addr_t i;
3096
3097 if (qemu_get_be32(f) != last_ram_offset)
3098 return -EINVAL;
3099 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3100 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3101 if (ret)
3102 return ret;
3103 }
3104 return 0;
3105}
3106
3107#define BDRV_HASH_BLOCK_SIZE 1024
3108#define IOBUF_SIZE 4096
3109#define RAM_CBLOCK_MAGIC 0xfabe
3110
3111typedef struct RamDecompressState {
3112 z_stream zstream;
3113 QEMUFile *f;
3114 uint8_t buf[IOBUF_SIZE];
3115} RamDecompressState;
3116
3117static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3118{
3119 int ret;
3120 memset(s, 0, sizeof(*s));
3121 s->f = f;
3122 ret = inflateInit(&s->zstream);
3123 if (ret != Z_OK)
3124 return -1;
3125 return 0;
3126}
3127
3128static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3129{
3130 int ret, clen;
3131
3132 s->zstream.avail_out = len;
3133 s->zstream.next_out = buf;
3134 while (s->zstream.avail_out > 0) {
3135 if (s->zstream.avail_in == 0) {
3136 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3137 return -1;
3138 clen = qemu_get_be16(s->f);
3139 if (clen > IOBUF_SIZE)
3140 return -1;
3141 qemu_get_buffer(s->f, s->buf, clen);
3142 s->zstream.avail_in = clen;
3143 s->zstream.next_in = s->buf;
3144 }
3145 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3146 if (ret != Z_OK && ret != Z_STREAM_END) {
3147 return -1;
3148 }
3149 }
3150 return 0;
3151}
3152
3153static void ram_decompress_close(RamDecompressState *s)
3154{
3155 inflateEnd(&s->zstream);
3156}
3157
3158#define RAM_SAVE_FLAG_FULL 0x01
3159#define RAM_SAVE_FLAG_COMPRESS 0x02
3160#define RAM_SAVE_FLAG_MEM_SIZE 0x04
3161#define RAM_SAVE_FLAG_PAGE 0x08
3162#define RAM_SAVE_FLAG_EOS 0x10
3163
3164static int is_dup_page(uint8_t *page, uint8_t ch)
3165{
3166 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3167 uint32_t *array = (uint32_t *)page;
3168 int i;
3169
3170 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3171 if (array[i] != val)
3172 return 0;
3173 }
3174
3175 return 1;
3176}
3177
3178static int ram_save_block(QEMUFile *f)
3179{
3180 static ram_addr_t current_addr = 0;
3181 ram_addr_t saved_addr = current_addr;
3182 ram_addr_t addr = 0;
3183 int found = 0;
3184
3185 while (addr < last_ram_offset) {
3186 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3187 uint8_t *p;
3188
3189 cpu_physical_memory_reset_dirty(current_addr,
3190 current_addr + TARGET_PAGE_SIZE,
3191 MIGRATION_DIRTY_FLAG);
3192
3193 p = qemu_get_ram_ptr(current_addr);
3194
3195 if (is_dup_page(p, *p)) {
3196 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3197 qemu_put_byte(f, *p);
3198 } else {
3199 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3200 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3201 }
3202
3203 found = 1;
3204 break;
3205 }
3206 addr += TARGET_PAGE_SIZE;
3207 current_addr = (saved_addr + addr) % last_ram_offset;
3208 }
3209
3210 return found;
3211}
3212
3213static ram_addr_t ram_save_threshold = 10;
3214
3215static ram_addr_t ram_save_remaining(void)
3216{
3217 ram_addr_t addr;
3218 ram_addr_t count = 0;
3219
3220 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3221 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3222 count++;
3223 }
3224
3225 return count;
3226}
3227
3228static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3229{
3230 ram_addr_t addr;
3231
3232 if (stage == 1) {
3233 /* Make sure all dirty bits are set */
3234 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3235 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3236 cpu_physical_memory_set_dirty(addr);
3237 }
3238
3239 /* Enable dirty memory tracking */
3240 cpu_physical_memory_set_dirty_tracking(1);
3241
3242 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3243 }
3244
3245 while (!qemu_file_rate_limit(f)) {
3246 int ret;
3247
3248 ret = ram_save_block(f);
3249 if (ret == 0) /* no more blocks */
3250 break;
3251 }
3252
3253 /* try transferring iterative blocks of memory */
3254
3255 if (stage == 3) {
3256
3257 /* flush all remaining blocks regardless of rate limiting */
3258 while (ram_save_block(f) != 0);
3259 cpu_physical_memory_set_dirty_tracking(0);
3260 }
3261
3262 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3263
3264 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3265}
3266
3267static int ram_load_dead(QEMUFile *f, void *opaque)
3268{
3269 RamDecompressState s1, *s = &s1;
3270 uint8_t buf[10];
3271 ram_addr_t i;
3272
3273 if (ram_decompress_open(s, f) < 0)
3274 return -EINVAL;
3275 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3276 if (ram_decompress_buf(s, buf, 1) < 0) {
3277 fprintf(stderr, "Error while reading ram block header\n");
3278 goto error;
3279 }
3280 if (buf[0] == 0) {
3281 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3282 BDRV_HASH_BLOCK_SIZE) < 0) {
3283 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3284 goto error;
3285 }
3286 } else {
3287 error:
3288 printf("Error block header\n");
3289 return -EINVAL;
3290 }
3291 }
3292 ram_decompress_close(s);
3293
3294 return 0;
3295}
3296
3297static int ram_load(QEMUFile *f, void *opaque, int version_id)
3298{
3299 ram_addr_t addr;
3300 int flags;
3301
3302 if (version_id == 1)
3303 return ram_load_v1(f, opaque);
3304
3305 if (version_id == 2) {
3306 if (qemu_get_be32(f) != last_ram_offset)
3307 return -EINVAL;
3308 return ram_load_dead(f, opaque);
3309 }
3310
3311 if (version_id != 3)
3312 return -EINVAL;
3313
3314 do {
3315 addr = qemu_get_be64(f);
3316
3317 flags = addr & ~TARGET_PAGE_MASK;
3318 addr &= TARGET_PAGE_MASK;
3319
3320 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3321 if (addr != last_ram_offset)
3322 return -EINVAL;
3323 }
3324
3325 if (flags & RAM_SAVE_FLAG_FULL) {
3326 if (ram_load_dead(f, opaque) < 0)
3327 return -EINVAL;
3328 }
3329
3330 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3331 uint8_t ch = qemu_get_byte(f);
3332 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3333 } else if (flags & RAM_SAVE_FLAG_PAGE)
3334 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3335 } while (!(flags & RAM_SAVE_FLAG_EOS));
3336
3337 return 0;
3338}
3339
3340void qemu_service_io(void)
3341{
3342 qemu_notify_event();
3343}
3344
3345/***********************************************************/
3346/* bottom halves (can be seen as timers which expire ASAP) */
3347
3348struct QEMUBH {
3349 QEMUBHFunc *cb;
3350 void *opaque;
3351 int scheduled;
3352 int idle;
3353 int deleted;
3354 QEMUBH *next;
3355};
3356
3357static QEMUBH *first_bh = NULL;
3358
3359QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3360{
3361 QEMUBH *bh;
3362 bh = qemu_mallocz(sizeof(QEMUBH));
3363 bh->cb = cb;
3364 bh->opaque = opaque;
3365 bh->next = first_bh;
3366 first_bh = bh;
3367 return bh;
3368}
3369
3370int qemu_bh_poll(void)
3371{
3372 QEMUBH *bh, **bhp;
3373 int ret;
3374
3375 ret = 0;
3376 for (bh = first_bh; bh; bh = bh->next) {
3377 if (!bh->deleted && bh->scheduled) {
3378 bh->scheduled = 0;
3379 if (!bh->idle)
3380 ret = 1;
3381 bh->idle = 0;
3382 bh->cb(bh->opaque);
3383 }
3384 }
3385
3386 /* remove deleted bhs */
3387 bhp = &first_bh;
3388 while (*bhp) {
3389 bh = *bhp;
3390 if (bh->deleted) {
3391 *bhp = bh->next;
3392 qemu_free(bh);
3393 } else
3394 bhp = &bh->next;
3395 }
3396
3397 return ret;
3398}
3399
3400void qemu_bh_schedule_idle(QEMUBH *bh)
3401{
3402 if (bh->scheduled)
3403 return;
3404 bh->scheduled = 1;
3405 bh->idle = 1;
3406}
3407
3408void qemu_bh_schedule(QEMUBH *bh)
3409{
3410 if (bh->scheduled)
3411 return;
3412 bh->scheduled = 1;
3413 bh->idle = 0;
3414 /* stop the currently executing CPU to execute the BH ASAP */
3415 qemu_notify_event();
3416}
3417
3418void qemu_bh_cancel(QEMUBH *bh)
3419{
3420 bh->scheduled = 0;
3421}
3422
3423void qemu_bh_delete(QEMUBH *bh)
3424{
3425 bh->scheduled = 0;
3426 bh->deleted = 1;
3427}
3428
3429static void qemu_bh_update_timeout(int *timeout)
3430{
3431 QEMUBH *bh;
3432
3433 for (bh = first_bh; bh; bh = bh->next) {
3434 if (!bh->deleted && bh->scheduled) {
3435 if (bh->idle) {
3436 /* idle bottom halves will be polled at least
3437 * every 10ms */
3438 *timeout = MIN(10, *timeout);
3439 } else {
3440 /* non-idle bottom halves will be executed
3441 * immediately */
3442 *timeout = 0;
3443 break;
3444 }
3445 }
3446 }
3447}
3448
3449/***********************************************************/
3450/* machine registration */
3451
3452static QEMUMachine *first_machine = NULL;
3453QEMUMachine *current_machine = NULL;
3454
3455int qemu_register_machine(QEMUMachine *m)
3456{
3457 QEMUMachine **pm;
3458 pm = &first_machine;
3459 while (*pm != NULL)
3460 pm = &(*pm)->next;
3461 m->next = NULL;
3462 *pm = m;
3463 return 0;
3464}
3465
3466static QEMUMachine *find_machine(const char *name)
3467{
3468 QEMUMachine *m;
3469
3470 for(m = first_machine; m != NULL; m = m->next) {
3471 if (!strcmp(m->name, name))
3472 return m;
3473 }
3474 return NULL;
3475}
3476
3477/***********************************************************/
3478/* main execution loop */
3479
3480static void gui_update(void *opaque)
3481{
3482 uint64_t interval = GUI_REFRESH_INTERVAL;
3483 DisplayState *ds = opaque;
3484 DisplayChangeListener *dcl = ds->listeners;
3485
3486 dpy_refresh(ds);
3487
3488 while (dcl != NULL) {
3489 if (dcl->gui_timer_interval &&
3490 dcl->gui_timer_interval < interval)
3491 interval = dcl->gui_timer_interval;
3492 dcl = dcl->next;
3493 }
3494 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3495}
3496
3497static void nographic_update(void *opaque)
3498{
3499 uint64_t interval = GUI_REFRESH_INTERVAL;
3500
3501 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3502}
3503
3504struct vm_change_state_entry {
3505 VMChangeStateHandler *cb;
3506 void *opaque;
3507 LIST_ENTRY (vm_change_state_entry) entries;
3508};
3509
3510static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3511
3512VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3513 void *opaque)
3514{
3515 VMChangeStateEntry *e;
3516
3517 e = qemu_mallocz(sizeof (*e));
3518
3519 e->cb = cb;
3520 e->opaque = opaque;
3521 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3522 return e;
3523}
3524
3525void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3526{
3527 LIST_REMOVE (e, entries);
3528 qemu_free (e);
3529}
3530
3531static void vm_state_notify(int running, int reason)
3532{
3533 VMChangeStateEntry *e;
3534
3535 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3536 e->cb(e->opaque, running, reason);
3537 }
3538}
3539
3540static void resume_all_vcpus(void);
3541static void pause_all_vcpus(void);
3542
3543void vm_start(void)
3544{
3545 if (!vm_running) {
3546 cpu_enable_ticks();
3547 vm_running = 1;
3548 vm_state_notify(1, 0);
3549 qemu_rearm_alarm_timer(alarm_timer);
3550 resume_all_vcpus();
3551 }
3552}
3553
3554/* reset/shutdown handler */
3555
3556typedef struct QEMUResetEntry {
3557 QEMUResetHandler *func;
3558 void *opaque;
3559 struct QEMUResetEntry *next;
3560} QEMUResetEntry;
3561
3562static QEMUResetEntry *first_reset_entry;
3563static int reset_requested;
3564static int shutdown_requested;
3565static int powerdown_requested;
3566static int debug_requested;
3567static int vmstop_requested;
3568
3569int qemu_shutdown_requested(void)
3570{
3571 int r = shutdown_requested;
3572 shutdown_requested = 0;
3573 return r;
3574}
3575
3576int qemu_reset_requested(void)
3577{
3578 int r = reset_requested;
3579 reset_requested = 0;
3580 return r;
3581}
3582
3583int qemu_powerdown_requested(void)
3584{
3585 int r = powerdown_requested;
3586 powerdown_requested = 0;
3587 return r;
3588}
3589
3590static int qemu_debug_requested(void)
3591{
3592 int r = debug_requested;
3593 debug_requested = 0;
3594 return r;
3595}
3596
3597static int qemu_vmstop_requested(void)
3598{
3599 int r = vmstop_requested;
3600 vmstop_requested = 0;
3601 return r;
3602}
3603
3604static void do_vm_stop(int reason)
3605{
3606 if (vm_running) {
3607 cpu_disable_ticks();
3608 vm_running = 0;
3609 pause_all_vcpus();
3610 vm_state_notify(0, reason);
3611 }
3612}
3613
3614void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3615{
3616 QEMUResetEntry **pre, *re;
3617
3618 pre = &first_reset_entry;
3619 while (*pre != NULL)
3620 pre = &(*pre)->next;
3621 re = qemu_mallocz(sizeof(QEMUResetEntry));
3622 re->func = func;
3623 re->opaque = opaque;
3624 re->next = NULL;
3625 *pre = re;
3626}
3627
3628void qemu_system_reset(void)
3629{
3630 QEMUResetEntry *re;
3631
3632 /* reset all devices */
3633 for(re = first_reset_entry; re != NULL; re = re->next) {
3634 re->func(re->opaque);
3635 }
3636 if (kvm_enabled())
3637 kvm_sync_vcpus();
3638}
3639
3640void qemu_system_reset_request(void)
3641{
3642 if (no_reboot) {
3643 shutdown_requested = 1;
3644 } else {
3645 reset_requested = 1;
3646 }
3647 qemu_notify_event();
3648}
3649
3650void qemu_system_shutdown_request(void)
3651{
3652 shutdown_requested = 1;
3653 qemu_notify_event();
3654}
3655
3656void qemu_system_powerdown_request(void)
3657{
3658 powerdown_requested = 1;
3659 qemu_notify_event();
3660}
3661
3662#ifdef CONFIG_IOTHREAD
3663static void qemu_system_vmstop_request(int reason)
3664{
3665 vmstop_requested = reason;
3666 qemu_notify_event();
3667}
3668#endif
3669
3670#ifndef _WIN32
3671static int io_thread_fd = -1;
3672
3673static void qemu_event_increment(void)
3674{
3675 static const char byte = 0;
3676
3677 if (io_thread_fd == -1)
3678 return;
3679
3680 write(io_thread_fd, &byte, sizeof(byte));
3681}
3682
3683static void qemu_event_read(void *opaque)
3684{
3685 int fd = (unsigned long)opaque;
3686 ssize_t len;
3687
3688 /* Drain the notify pipe */
3689 do {
3690 char buffer[512];
3691 len = read(fd, buffer, sizeof(buffer));
3692 } while ((len == -1 && errno == EINTR) || len > 0);
3693}
3694
3695static int qemu_event_init(void)
3696{
3697 int err;
3698 int fds[2];
3699
3700 err = pipe(fds);
3701 if (err == -1)
3702 return -errno;
3703
3704 err = fcntl_setfl(fds[0], O_NONBLOCK);
3705 if (err < 0)
3706 goto fail;
3707
3708 err = fcntl_setfl(fds[1], O_NONBLOCK);
3709 if (err < 0)
3710 goto fail;
3711
3712 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3713 (void *)(unsigned long)fds[0]);
3714
3715 io_thread_fd = fds[1];
3716 return 0;
3717
3718fail:
3719 close(fds[0]);
3720 close(fds[1]);
3721 return err;
3722}
3723#else
3724HANDLE qemu_event_handle;
3725
3726static void dummy_event_handler(void *opaque)
3727{
3728}
3729
3730static int qemu_event_init(void)
3731{
3732 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3733 if (!qemu_event_handle) {
3734 perror("Failed CreateEvent");
3735 return -1;
3736 }
3737 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3738 return 0;
3739}
3740
3741static void qemu_event_increment(void)
3742{
3743 SetEvent(qemu_event_handle);
3744}
3745#endif
3746
3747static int cpu_can_run(CPUState *env)
3748{
3749 if (env->stop)
3750 return 0;
3751 if (env->stopped)
3752 return 0;
3753 return 1;
3754}
3755
3756#ifndef CONFIG_IOTHREAD
3757static int qemu_init_main_loop(void)
3758{
3759 return qemu_event_init();
3760}
3761
3762void qemu_init_vcpu(void *_env)
3763{
3764 CPUState *env = _env;
3765
3766 if (kvm_enabled())
3767 kvm_init_vcpu(env);
3768 return;
3769}
3770
3771int qemu_cpu_self(void *env)
3772{
3773 return 1;
3774}
3775
3776static void resume_all_vcpus(void)
3777{
3778}
3779
3780static void pause_all_vcpus(void)
3781{
3782}
3783
3784void qemu_cpu_kick(void *env)
3785{
3786 return;
3787}
3788
3789void qemu_notify_event(void)
3790{
3791 CPUState *env = cpu_single_env;
3792
3793 if (env) {
3794 cpu_exit(env);
3795#ifdef USE_KQEMU
3796 if (env->kqemu_enabled)
3797 kqemu_cpu_interrupt(env);
3798#endif
3799 }
3800}
3801
3802#define qemu_mutex_lock_iothread() do { } while (0)
3803#define qemu_mutex_unlock_iothread() do { } while (0)
3804
3805void vm_stop(int reason)
3806{
3807 do_vm_stop(reason);
3808}
3809
3810#else /* CONFIG_IOTHREAD */
3811
3812#include "qemu-thread.h"
3813
3814QemuMutex qemu_global_mutex;
3815static QemuMutex qemu_fair_mutex;
3816
3817static QemuThread io_thread;
3818
3819static QemuThread *tcg_cpu_thread;
3820static QemuCond *tcg_halt_cond;
3821
3822static int qemu_system_ready;
3823/* cpu creation */
3824static QemuCond qemu_cpu_cond;
3825/* system init */
3826static QemuCond qemu_system_cond;
3827static QemuCond qemu_pause_cond;
3828
3829static void block_io_signals(void);
3830static void unblock_io_signals(void);
3831static int tcg_has_work(void);
3832
3833static int qemu_init_main_loop(void)
3834{
3835 int ret;
3836
3837 ret = qemu_event_init();
3838 if (ret)
3839 return ret;
3840
3841 qemu_cond_init(&qemu_pause_cond);
3842 qemu_mutex_init(&qemu_fair_mutex);
3843 qemu_mutex_init(&qemu_global_mutex);
3844 qemu_mutex_lock(&qemu_global_mutex);
3845
3846 unblock_io_signals();
3847 qemu_thread_self(&io_thread);
3848
3849 return 0;
3850}
3851
3852static void qemu_wait_io_event(CPUState *env)
3853{
3854 while (!tcg_has_work())
3855 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3856
3857 qemu_mutex_unlock(&qemu_global_mutex);
3858
3859 /*
3860 * Users of qemu_global_mutex can be starved, having no chance
3861 * to acquire it since this path will get to it first.
3862 * So use another lock to provide fairness.
3863 */
3864 qemu_mutex_lock(&qemu_fair_mutex);
3865 qemu_mutex_unlock(&qemu_fair_mutex);
3866
3867 qemu_mutex_lock(&qemu_global_mutex);
3868 if (env->stop) {
3869 env->stop = 0;
3870 env->stopped = 1;
3871 qemu_cond_signal(&qemu_pause_cond);
3872 }
3873}
3874
3875static int qemu_cpu_exec(CPUState *env);
3876
3877static void *kvm_cpu_thread_fn(void *arg)
3878{
3879 CPUState *env = arg;
3880
3881 block_io_signals();
3882 qemu_thread_self(env->thread);
3883
3884 /* signal CPU creation */
3885 qemu_mutex_lock(&qemu_global_mutex);
3886 env->created = 1;
3887 qemu_cond_signal(&qemu_cpu_cond);
3888
3889 /* and wait for machine initialization */
3890 while (!qemu_system_ready)
3891 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3892
3893 while (1) {
3894 if (cpu_can_run(env))
3895 qemu_cpu_exec(env);
3896 qemu_wait_io_event(env);
3897 }
3898
3899 return NULL;
3900}
3901
3902static void tcg_cpu_exec(void);
3903
3904static void *tcg_cpu_thread_fn(void *arg)
3905{
3906 CPUState *env = arg;
3907
3908 block_io_signals();
3909 qemu_thread_self(env->thread);
3910
3911 /* signal CPU creation */
3912 qemu_mutex_lock(&qemu_global_mutex);
3913 for (env = first_cpu; env != NULL; env = env->next_cpu)
3914 env->created = 1;
3915 qemu_cond_signal(&qemu_cpu_cond);
3916
3917 /* and wait for machine initialization */
3918 while (!qemu_system_ready)
3919 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3920
3921 while (1) {
3922 tcg_cpu_exec();
3923 qemu_wait_io_event(cur_cpu);
3924 }
3925
3926 return NULL;
3927}
3928
3929void qemu_cpu_kick(void *_env)
3930{
3931 CPUState *env = _env;
3932 qemu_cond_broadcast(env->halt_cond);
3933 if (kvm_enabled())
3934 qemu_thread_signal(env->thread, SIGUSR1);
3935}
3936
3937int qemu_cpu_self(void *env)
3938{
3939 return (cpu_single_env != NULL);
3940}
3941
3942static void cpu_signal(int sig)
3943{
3944 if (cpu_single_env)
3945 cpu_exit(cpu_single_env);
3946}
3947
3948static void block_io_signals(void)
3949{
3950 sigset_t set;
3951 struct sigaction sigact;
3952
3953 sigemptyset(&set);
3954 sigaddset(&set, SIGUSR2);
3955 sigaddset(&set, SIGIO);
3956 sigaddset(&set, SIGALRM);
3957 pthread_sigmask(SIG_BLOCK, &set, NULL);
3958
3959 sigemptyset(&set);
3960 sigaddset(&set, SIGUSR1);
3961 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3962
3963 memset(&sigact, 0, sizeof(sigact));
3964 sigact.sa_handler = cpu_signal;
3965 sigaction(SIGUSR1, &sigact, NULL);
3966}
3967
3968static void unblock_io_signals(void)
3969{
3970 sigset_t set;
3971
3972 sigemptyset(&set);
3973 sigaddset(&set, SIGUSR2);
3974 sigaddset(&set, SIGIO);
3975 sigaddset(&set, SIGALRM);
3976 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3977
3978 sigemptyset(&set);
3979 sigaddset(&set, SIGUSR1);
3980 pthread_sigmask(SIG_BLOCK, &set, NULL);
3981}
3982
3983static void qemu_signal_lock(unsigned int msecs)
3984{
3985 qemu_mutex_lock(&qemu_fair_mutex);
3986
3987 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3988 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3989 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3990 break;
3991 }
3992 qemu_mutex_unlock(&qemu_fair_mutex);
3993}
3994
3995static void qemu_mutex_lock_iothread(void)
3996{
3997 if (kvm_enabled()) {
3998 qemu_mutex_lock(&qemu_fair_mutex);
3999 qemu_mutex_lock(&qemu_global_mutex);
4000 qemu_mutex_unlock(&qemu_fair_mutex);
4001 } else
4002 qemu_signal_lock(100);
4003}
4004
4005static void qemu_mutex_unlock_iothread(void)
4006{
4007 qemu_mutex_unlock(&qemu_global_mutex);
4008}
4009
4010static int all_vcpus_paused(void)
4011{
4012 CPUState *penv = first_cpu;
4013
4014 while (penv) {
4015 if (!penv->stopped)
4016 return 0;
4017 penv = (CPUState *)penv->next_cpu;
4018 }
4019
4020 return 1;
4021}
4022
4023static void pause_all_vcpus(void)
4024{
4025 CPUState *penv = first_cpu;
4026
4027 while (penv) {
4028 penv->stop = 1;
4029 qemu_thread_signal(penv->thread, SIGUSR1);
4030 qemu_cpu_kick(penv);
4031 penv = (CPUState *)penv->next_cpu;
4032 }
4033
4034 while (!all_vcpus_paused()) {
4035 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4036 penv = first_cpu;
4037 while (penv) {
4038 qemu_thread_signal(penv->thread, SIGUSR1);
4039 penv = (CPUState *)penv->next_cpu;
4040 }
4041 }
4042}
4043
4044static void resume_all_vcpus(void)
4045{
4046 CPUState *penv = first_cpu;
4047
4048 while (penv) {
4049 penv->stop = 0;
4050 penv->stopped = 0;
4051 qemu_thread_signal(penv->thread, SIGUSR1);
4052 qemu_cpu_kick(penv);
4053 penv = (CPUState *)penv->next_cpu;
4054 }
4055}
4056
4057static void tcg_init_vcpu(void *_env)
4058{
4059 CPUState *env = _env;
4060 /* share a single thread for all cpus with TCG */
4061 if (!tcg_cpu_thread) {
4062 env->thread = qemu_mallocz(sizeof(QemuThread));
4063 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4064 qemu_cond_init(env->halt_cond);
4065 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4066 while (env->created == 0)
4067 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4068 tcg_cpu_thread = env->thread;
4069 tcg_halt_cond = env->halt_cond;
4070 } else {
4071 env->thread = tcg_cpu_thread;
4072 env->halt_cond = tcg_halt_cond;
4073 }
4074}
4075
4076static void kvm_start_vcpu(CPUState *env)
4077{
4078 kvm_init_vcpu(env);
4079 env->thread = qemu_mallocz(sizeof(QemuThread));
4080 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4081 qemu_cond_init(env->halt_cond);
4082 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4083 while (env->created == 0)
4084 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4085}
4086
4087void qemu_init_vcpu(void *_env)
4088{
4089 CPUState *env = _env;
4090
4091 if (kvm_enabled())
4092 kvm_start_vcpu(env);
4093 else
4094 tcg_init_vcpu(env);
4095}
4096
4097void qemu_notify_event(void)
4098{
4099 qemu_event_increment();
4100}
4101
4102void vm_stop(int reason)
4103{
4104 QemuThread me;
4105 qemu_thread_self(&me);
4106
4107 if (!qemu_thread_equal(&me, &io_thread)) {
4108 qemu_system_vmstop_request(reason);
4109 /*
4110 * FIXME: should not return to device code in case
4111 * vm_stop() has been requested.
4112 */
4113 if (cpu_single_env) {
4114 cpu_exit(cpu_single_env);
4115 cpu_single_env->stop = 1;
4116 }
4117 return;
4118 }
4119 do_vm_stop(reason);
4120}
4121
4122#endif
4123
4124
4125#ifdef _WIN32
4126static void host_main_loop_wait(int *timeout)
4127{
4128 int ret, ret2, i;
4129 PollingEntry *pe;
4130
4131
4132 /* XXX: need to suppress polling by better using win32 events */
4133 ret = 0;
4134 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4135 ret |= pe->func(pe->opaque);
4136 }
4137 if (ret == 0) {
4138 int err;
4139 WaitObjects *w = &wait_objects;
4140
4141 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4142 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4143 if (w->func[ret - WAIT_OBJECT_0])
4144 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4145
4146 /* Check for additional signaled events */
4147 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4148
4149 /* Check if event is signaled */
4150 ret2 = WaitForSingleObject(w->events[i], 0);
4151 if(ret2 == WAIT_OBJECT_0) {
4152 if (w->func[i])
4153 w->func[i](w->opaque[i]);
4154 } else if (ret2 == WAIT_TIMEOUT) {
4155 } else {
4156 err = GetLastError();
4157 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4158 }
4159 }
4160 } else if (ret == WAIT_TIMEOUT) {
4161 } else {
4162 err = GetLastError();
4163 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4164 }
4165 }
4166
4167 *timeout = 0;
4168}
4169#else
4170static void host_main_loop_wait(int *timeout)
4171{
4172}
4173#endif
4174
4175void main_loop_wait(int timeout)
4176{
4177 IOHandlerRecord *ioh;
4178 fd_set rfds, wfds, xfds;
4179 int ret, nfds;
4180 struct timeval tv;
4181
4182 qemu_bh_update_timeout(&timeout);
4183
4184 host_main_loop_wait(&timeout);
4185
4186 /* poll any events */
4187 /* XXX: separate device handlers from system ones */
4188 nfds = -1;
4189 FD_ZERO(&rfds);
4190 FD_ZERO(&wfds);
4191 FD_ZERO(&xfds);
4192 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4193 if (ioh->deleted)
4194 continue;
4195 if (ioh->fd_read &&
4196 (!ioh->fd_read_poll ||
4197 ioh->fd_read_poll(ioh->opaque) != 0)) {
4198 FD_SET(ioh->fd, &rfds);
4199 if (ioh->fd > nfds)
4200 nfds = ioh->fd;
4201 }
4202 if (ioh->fd_write) {
4203 FD_SET(ioh->fd, &wfds);
4204 if (ioh->fd > nfds)
4205 nfds = ioh->fd;
4206 }
4207 }
4208
4209 tv.tv_sec = timeout / 1000;
4210 tv.tv_usec = (timeout % 1000) * 1000;
4211
4212#if defined(CONFIG_SLIRP)
4213 if (slirp_is_inited()) {
4214 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4215 }
4216#endif
4217 qemu_mutex_unlock_iothread();
4218 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4219 qemu_mutex_lock_iothread();
4220 if (ret > 0) {
4221 IOHandlerRecord **pioh;
4222
4223 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4224 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4225 ioh->fd_read(ioh->opaque);
4226 }
4227 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4228 ioh->fd_write(ioh->opaque);
4229 }
4230 }
4231
4232 /* remove deleted IO handlers */
4233 pioh = &first_io_handler;
4234 while (*pioh) {
4235 ioh = *pioh;
4236 if (ioh->deleted) {
4237 *pioh = ioh->next;
4238 qemu_free(ioh);
4239 } else
4240 pioh = &ioh->next;
4241 }
4242 }
4243#if defined(CONFIG_SLIRP)
4244 if (slirp_is_inited()) {
4245 if (ret < 0) {
4246 FD_ZERO(&rfds);
4247 FD_ZERO(&wfds);
4248 FD_ZERO(&xfds);
4249 }
4250 slirp_select_poll(&rfds, &wfds, &xfds);
4251 }
4252#endif
4253
4254 /* rearm timer, if not periodic */
4255 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4256 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4257 qemu_rearm_alarm_timer(alarm_timer);
4258 }
4259
4260 /* vm time timers */
4261 if (vm_running) {
4262 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4263 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4264 qemu_get_clock(vm_clock));
4265 }
4266
4267 /* real time timers */
4268 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4269 qemu_get_clock(rt_clock));
4270
4271 /* Check bottom-halves last in case any of the earlier events triggered
4272 them. */
4273 qemu_bh_poll();
4274
4275}
4276
4277static int qemu_cpu_exec(CPUState *env)
4278{
4279 int ret;
4280#ifdef CONFIG_PROFILER
4281 int64_t ti;
4282#endif
4283
4284#ifdef CONFIG_PROFILER
4285 ti = profile_getclock();
4286#endif
4287 if (use_icount) {
4288 int64_t count;
4289 int decr;
4290 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4291 env->icount_decr.u16.low = 0;
4292 env->icount_extra = 0;
4293 count = qemu_next_deadline();
4294 count = (count + (1 << icount_time_shift) - 1)
4295 >> icount_time_shift;
4296 qemu_icount += count;
4297 decr = (count > 0xffff) ? 0xffff : count;
4298 count -= decr;
4299 env->icount_decr.u16.low = decr;
4300 env->icount_extra = count;
4301 }
4302 ret = cpu_exec(env);
4303#ifdef CONFIG_PROFILER
4304 qemu_time += profile_getclock() - ti;
4305#endif
4306 if (use_icount) {
4307 /* Fold pending instructions back into the
4308 instruction counter, and clear the interrupt flag. */
4309 qemu_icount -= (env->icount_decr.u16.low
4310 + env->icount_extra);
4311 env->icount_decr.u32 = 0;
4312 env->icount_extra = 0;
4313 }
4314 return ret;
4315}
4316
4317static void tcg_cpu_exec(void)
4318{
4319 int ret = 0;
4320
4321 if (next_cpu == NULL)
4322 next_cpu = first_cpu;
4323 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4324 CPUState *env = cur_cpu = next_cpu;
4325
4326 if (!vm_running)
4327 break;
4328 if (timer_alarm_pending) {
4329 timer_alarm_pending = 0;
4330 break;
4331 }
4332 if (cpu_can_run(env))
4333 ret = qemu_cpu_exec(env);
4334 if (ret == EXCP_DEBUG) {
4335 gdb_set_stop_cpu(env);
4336 debug_requested = 1;
4337 break;
4338 }
4339 }
4340}
4341
4342static int cpu_has_work(CPUState *env)
4343{
4344 if (env->stop)
4345 return 1;
4346 if (env->stopped)
4347 return 0;
4348 if (!env->halted)
4349 return 1;
4350 if (qemu_cpu_has_work(env))
4351 return 1;
4352 return 0;
4353}
4354
4355static int tcg_has_work(void)
4356{
4357 CPUState *env;
4358
4359 for (env = first_cpu; env != NULL; env = env->next_cpu)
4360 if (cpu_has_work(env))
4361 return 1;
4362 return 0;
4363}
4364
4365static int qemu_calculate_timeout(void)
4366{
4367 int timeout;
4368
4369 if (!vm_running)
4370 timeout = 5000;
4371 else if (tcg_has_work())
4372 timeout = 0;
4373 else if (!use_icount)
4374 timeout = 5000;
4375 else {
4376 /* XXX: use timeout computed from timers */
4377 int64_t add;
4378 int64_t delta;
4379 /* Advance virtual time to the next event. */
4380 if (use_icount == 1) {
4381 /* When not using an adaptive execution frequency
4382 we tend to get badly out of sync with real time,
4383 so just delay for a reasonable amount of time. */
4384 delta = 0;
4385 } else {
4386 delta = cpu_get_icount() - cpu_get_clock();
4387 }
4388 if (delta > 0) {
4389 /* If virtual time is ahead of real time then just
4390 wait for IO. */
4391 timeout = (delta / 1000000) + 1;
4392 } else {
4393 /* Wait for either IO to occur or the next
4394 timer event. */
4395 add = qemu_next_deadline();
4396 /* We advance the timer before checking for IO.
4397 Limit the amount we advance so that early IO
4398 activity won't get the guest too far ahead. */
4399 if (add > 10000000)
4400 add = 10000000;
4401 delta += add;
4402 add = (add + (1 << icount_time_shift) - 1)
4403 >> icount_time_shift;
4404 qemu_icount += add;
4405 timeout = delta / 1000000;
4406 if (timeout < 0)
4407 timeout = 0;
4408 }
4409 }
4410
4411 return timeout;
4412}
4413
4414static int vm_can_run(void)
4415{
4416 if (powerdown_requested)
4417 return 0;
4418 if (reset_requested)
4419 return 0;
4420 if (shutdown_requested)
4421 return 0;
4422 if (debug_requested)
4423 return 0;
4424 return 1;
4425}
4426
4427static void main_loop(void)
4428{
4429 int r;
4430
4431#ifdef CONFIG_IOTHREAD
4432 qemu_system_ready = 1;
4433 qemu_cond_broadcast(&qemu_system_cond);
4434#endif
4435
4436 for (;;) {
4437 do {
4438#ifdef CONFIG_PROFILER
4439 int64_t ti;
4440#endif
4441#ifndef CONFIG_IOTHREAD
4442 tcg_cpu_exec();
4443#endif
4444#ifdef CONFIG_PROFILER
4445 ti = profile_getclock();
4446#endif
4447#ifdef CONFIG_IOTHREAD
4448 main_loop_wait(1000);
4449#else
4450 main_loop_wait(qemu_calculate_timeout());
4451#endif
4452#ifdef CONFIG_PROFILER
4453 dev_time += profile_getclock() - ti;
4454#endif
4455 } while (vm_can_run());
4456
4457 if (qemu_debug_requested())
4458 vm_stop(EXCP_DEBUG);
4459 if (qemu_shutdown_requested()) {
4460 if (no_shutdown) {
4461 vm_stop(0);
4462 no_shutdown = 0;
4463 } else
4464 break;
4465 }
4466 if (qemu_reset_requested()) {
4467 pause_all_vcpus();
4468 qemu_system_reset();
4469 resume_all_vcpus();
4470 }
4471 if (qemu_powerdown_requested())
4472 qemu_system_powerdown();
4473 if ((r = qemu_vmstop_requested()))
4474 vm_stop(r);
4475 }
4476 pause_all_vcpus();
4477}
4478
4479static void version(void)
4480{
4481 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4482}
4483
4484static void help(int exitcode)
4485{
4486 version();
4487 printf("usage: %s [options] [disk_image]\n"
4488 "\n"
4489 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4490 "\n"
4491#define DEF(option, opt_arg, opt_enum, opt_help) \
4492 opt_help
4493#define DEFHEADING(text) stringify(text) "\n"
4494#include "qemu-options.h"
4495#undef DEF
4496#undef DEFHEADING
4497#undef GEN_DOCS
4498 "\n"
4499 "During emulation, the following keys are useful:\n"
4500 "ctrl-alt-f toggle full screen\n"
4501 "ctrl-alt-n switch to virtual console 'n'\n"
4502 "ctrl-alt toggle mouse and keyboard grab\n"
4503 "\n"
4504 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4505 ,
4506 "qemu",
4507 DEFAULT_RAM_SIZE,
4508#ifndef _WIN32
4509 DEFAULT_NETWORK_SCRIPT,
4510 DEFAULT_NETWORK_DOWN_SCRIPT,
4511#endif
4512 DEFAULT_GDBSTUB_PORT,
4513 "/tmp/qemu.log");
4514 exit(exitcode);
4515}
4516
4517#define HAS_ARG 0x0001
4518
4519enum {
4520#define DEF(option, opt_arg, opt_enum, opt_help) \
4521 opt_enum,
4522#define DEFHEADING(text)
4523#include "qemu-options.h"
4524#undef DEF
4525#undef DEFHEADING
4526#undef GEN_DOCS
4527};
4528
4529typedef struct QEMUOption {
4530 const char *name;
4531 int flags;
4532 int index;
4533} QEMUOption;
4534
4535static const QEMUOption qemu_options[] = {
4536 { "h", 0, QEMU_OPTION_h },
4537#define DEF(option, opt_arg, opt_enum, opt_help) \
4538 { option, opt_arg, opt_enum },
4539#define DEFHEADING(text)
4540#include "qemu-options.h"
4541#undef DEF
4542#undef DEFHEADING
4543#undef GEN_DOCS
4544 { NULL },
4545};
4546
4547#ifdef HAS_AUDIO
4548struct soundhw soundhw[] = {
4549#ifdef HAS_AUDIO_CHOICE
4550#if defined(TARGET_I386) || defined(TARGET_MIPS)
4551 {
4552 "pcspk",
4553 "PC speaker",
4554 0,
4555 1,
4556 { .init_isa = pcspk_audio_init }
4557 },
4558#endif
4559
4560#ifdef CONFIG_SB16
4561 {
4562 "sb16",
4563 "Creative Sound Blaster 16",
4564 0,
4565 1,
4566 { .init_isa = SB16_init }
4567 },
4568#endif
4569
4570#ifdef CONFIG_CS4231A
4571 {
4572 "cs4231a",
4573 "CS4231A",
4574 0,
4575 1,
4576 { .init_isa = cs4231a_init }
4577 },
4578#endif
4579
4580#ifdef CONFIG_ADLIB
4581 {
4582 "adlib",
4583#ifdef HAS_YMF262
4584 "Yamaha YMF262 (OPL3)",
4585#else
4586 "Yamaha YM3812 (OPL2)",
4587#endif
4588 0,
4589 1,
4590 { .init_isa = Adlib_init }
4591 },
4592#endif
4593
4594#ifdef CONFIG_GUS
4595 {
4596 "gus",
4597 "Gravis Ultrasound GF1",
4598 0,
4599 1,
4600 { .init_isa = GUS_init }
4601 },
4602#endif
4603
4604#ifdef CONFIG_AC97
4605 {
4606 "ac97",
4607 "Intel 82801AA AC97 Audio",
4608 0,
4609 0,
4610 { .init_pci = ac97_init }
4611 },
4612#endif
4613
4614#ifdef CONFIG_ES1370
4615 {
4616 "es1370",
4617 "ENSONIQ AudioPCI ES1370",
4618 0,
4619 0,
4620 { .init_pci = es1370_init }
4621 },
4622#endif
4623
4624#endif /* HAS_AUDIO_CHOICE */
4625
4626 { NULL, NULL, 0, 0, { NULL } }
4627};
4628
4629static void select_soundhw (const char *optarg)
4630{
4631 struct soundhw *c;
4632
4633 if (*optarg == '?') {
4634 show_valid_cards:
4635
4636 printf ("Valid sound card names (comma separated):\n");
4637 for (c = soundhw; c->name; ++c) {
4638 printf ("%-11s %s\n", c->name, c->descr);
4639 }
4640 printf ("\n-soundhw all will enable all of the above\n");
4641 exit (*optarg != '?');
4642 }
4643 else {
4644 size_t l;
4645 const char *p;
4646 char *e;
4647 int bad_card = 0;
4648
4649 if (!strcmp (optarg, "all")) {
4650 for (c = soundhw; c->name; ++c) {
4651 c->enabled = 1;
4652 }
4653 return;
4654 }
4655
4656 p = optarg;
4657 while (*p) {
4658 e = strchr (p, ',');
4659 l = !e ? strlen (p) : (size_t) (e - p);
4660
4661 for (c = soundhw; c->name; ++c) {
4662 if (!strncmp (c->name, p, l)) {
4663 c->enabled = 1;
4664 break;
4665 }
4666 }
4667
4668 if (!c->name) {
4669 if (l > 80) {
4670 fprintf (stderr,
4671 "Unknown sound card name (too big to show)\n");
4672 }
4673 else {
4674 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4675 (int) l, p);
4676 }
4677 bad_card = 1;
4678 }
4679 p += l + (e != NULL);
4680 }
4681
4682 if (bad_card)
4683 goto show_valid_cards;
4684 }
4685}
4686#endif
4687
4688static void select_vgahw (const char *p)
4689{
4690 const char *opts;
4691
4692 cirrus_vga_enabled = 0;
4693 std_vga_enabled = 0;
4694 vmsvga_enabled = 0;
4695 xenfb_enabled = 0;
4696 if (strstart(p, "std", &opts)) {
4697 std_vga_enabled = 1;
4698 } else if (strstart(p, "cirrus", &opts)) {
4699 cirrus_vga_enabled = 1;
4700 } else if (strstart(p, "vmware", &opts)) {
4701 vmsvga_enabled = 1;
4702 } else if (strstart(p, "xenfb", &opts)) {
4703 xenfb_enabled = 1;
4704 } else if (!strstart(p, "none", &opts)) {
4705 invalid_vga:
4706 fprintf(stderr, "Unknown vga type: %s\n", p);
4707 exit(1);
4708 }
4709 while (*opts) {
4710 const char *nextopt;
4711
4712 if (strstart(opts, ",retrace=", &nextopt)) {
4713 opts = nextopt;
4714 if (strstart(opts, "dumb", &nextopt))
4715 vga_retrace_method = VGA_RETRACE_DUMB;
4716 else if (strstart(opts, "precise", &nextopt))
4717 vga_retrace_method = VGA_RETRACE_PRECISE;
4718 else goto invalid_vga;
4719 } else goto invalid_vga;
4720 opts = nextopt;
4721 }
4722}
4723
4724#ifdef _WIN32
4725static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4726{
4727 exit(STATUS_CONTROL_C_EXIT);
4728 return TRUE;
4729}
4730#endif
4731
4732int qemu_uuid_parse(const char *str, uint8_t *uuid)
4733{
4734 int ret;
4735
4736 if(strlen(str) != 36)
4737 return -1;
4738
4739 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4740 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4741 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4742
4743 if(ret != 16)
4744 return -1;
4745
4746#ifdef TARGET_I386
4747 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4748#endif
4749
4750 return 0;
4751}
4752
4753#define MAX_NET_CLIENTS 32
4754
4755#ifndef _WIN32
4756
4757static void termsig_handler(int signal)
4758{
4759 qemu_system_shutdown_request();
4760}
4761
4762static void termsig_setup(void)
4763{
4764 struct sigaction act;
4765
4766 memset(&act, 0, sizeof(act));
4767 act.sa_handler = termsig_handler;
4768 sigaction(SIGINT, &act, NULL);
4769 sigaction(SIGHUP, &act, NULL);
4770 sigaction(SIGTERM, &act, NULL);
4771}
4772
4773#endif
4774
4775int main(int argc, char **argv, char **envp)
4776{
4777#ifdef CONFIG_GDBSTUB
4778 const char *gdbstub_dev = NULL;
4779#endif
4780 uint32_t boot_devices_bitmap = 0;
4781 int i;
4782 int snapshot, linux_boot, net_boot;
4783 const char *initrd_filename;
4784 const char *kernel_filename, *kernel_cmdline;
4785 const char *boot_devices = "";
4786 DisplayState *ds;
4787 DisplayChangeListener *dcl;
4788 int cyls, heads, secs, translation;
4789 const char *net_clients[MAX_NET_CLIENTS];
4790 int nb_net_clients;
4791 const char *bt_opts[MAX_BT_CMDLINE];
4792 int nb_bt_opts;
4793 int hda_index;
4794 int optind;
4795 const char *r, *optarg;
4796 CharDriverState *monitor_hd = NULL;
4797 const char *monitor_device;
4798 const char *serial_devices[MAX_SERIAL_PORTS];
4799 int serial_device_index;
4800 const char *parallel_devices[MAX_PARALLEL_PORTS];
4801 int parallel_device_index;
4802 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4803 int virtio_console_index;
4804 const char *loadvm = NULL;
4805 QEMUMachine *machine;
4806 const char *cpu_model;
4807 const char *usb_devices[MAX_USB_CMDLINE];
4808 int usb_devices_index;
4809#ifndef _WIN32
4810 int fds[2];
4811#endif
4812 int tb_size;
4813 const char *pid_file = NULL;
4814 const char *incoming = NULL;
4815#ifndef _WIN32
4816 int fd = 0;
4817 struct passwd *pwd = NULL;
4818 const char *chroot_dir = NULL;
4819 const char *run_as = NULL;
4820#endif
4821 CPUState *env;
4822
4823 qemu_cache_utils_init(envp);
4824
4825 LIST_INIT (&vm_change_state_head);
4826#ifndef _WIN32
4827 {
4828 struct sigaction act;
4829 sigfillset(&act.sa_mask);
4830 act.sa_flags = 0;
4831 act.sa_handler = SIG_IGN;
4832 sigaction(SIGPIPE, &act, NULL);
4833 }
4834#else
4835 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4836 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4837 QEMU to run on a single CPU */
4838 {
4839 HANDLE h;
4840 DWORD mask, smask;
4841 int i;
4842 h = GetCurrentProcess();
4843 if (GetProcessAffinityMask(h, &mask, &smask)) {
4844 for(i = 0; i < 32; i++) {
4845 if (mask & (1 << i))
4846 break;
4847 }
4848 if (i != 32) {
4849 mask = 1 << i;
4850 SetProcessAffinityMask(h, mask);
4851 }
4852 }
4853 }
4854#endif
4855
4856 register_machines();
4857 machine = first_machine;
4858 cpu_model = NULL;
4859 initrd_filename = NULL;
4860 ram_size = 0;
4861 vga_ram_size = VGA_RAM_SIZE;
4862 snapshot = 0;
4863 nographic = 0;
4864 curses = 0;
4865 kernel_filename = NULL;
4866 kernel_cmdline = "";
4867 cyls = heads = secs = 0;
4868 translation = BIOS_ATA_TRANSLATION_AUTO;
4869 monitor_device = "vc:80Cx24C";
4870
4871 serial_devices[0] = "vc:80Cx24C";
4872 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4873 serial_devices[i] = NULL;
4874 serial_device_index = 0;
4875
4876 parallel_devices[0] = "vc:80Cx24C";
4877 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4878 parallel_devices[i] = NULL;
4879 parallel_device_index = 0;
4880
4881 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4882 virtio_consoles[i] = NULL;
4883 virtio_console_index = 0;
4884
4885 for (i = 0; i < MAX_NODES; i++) {
4886 node_mem[i] = 0;
4887 node_cpumask[i] = 0;
4888 }
4889
4890 usb_devices_index = 0;
4891
4892 nb_net_clients = 0;
4893 nb_bt_opts = 0;
4894 nb_drives = 0;
4895 nb_drives_opt = 0;
4896 nb_numa_nodes = 0;
4897 hda_index = -1;
4898
4899 nb_nics = 0;
4900
4901 tb_size = 0;
4902 autostart= 1;
4903
4904 optind = 1;
4905 for(;;) {
4906 if (optind >= argc)
4907 break;
4908 r = argv[optind];
4909 if (r[0] != '-') {
4910 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4911 } else {
4912 const QEMUOption *popt;
4913
4914 optind++;
4915 /* Treat --foo the same as -foo. */
4916 if (r[1] == '-')
4917 r++;
4918 popt = qemu_options;
4919 for(;;) {
4920 if (!popt->name) {
4921 fprintf(stderr, "%s: invalid option -- '%s'\n",
4922 argv[0], r);
4923 exit(1);
4924 }
4925 if (!strcmp(popt->name, r + 1))
4926 break;
4927 popt++;
4928 }
4929 if (popt->flags & HAS_ARG) {
4930 if (optind >= argc) {
4931 fprintf(stderr, "%s: option '%s' requires an argument\n",
4932 argv[0], r);
4933 exit(1);
4934 }
4935 optarg = argv[optind++];
4936 } else {
4937 optarg = NULL;
4938 }
4939
4940 switch(popt->index) {
4941 case QEMU_OPTION_M:
4942 machine = find_machine(optarg);
4943 if (!machine) {
4944 QEMUMachine *m;
4945 printf("Supported machines are:\n");
4946 for(m = first_machine; m != NULL; m = m->next) {
4947 printf("%-10s %s%s\n",
4948 m->name, m->desc,
4949 m == first_machine ? " (default)" : "");
4950 }
4951 exit(*optarg != '?');
4952 }
4953 break;
4954 case QEMU_OPTION_cpu:
4955 /* hw initialization will check this */
4956 if (*optarg == '?') {
4957/* XXX: implement xxx_cpu_list for targets that still miss it */
4958#if defined(cpu_list)
4959 cpu_list(stdout, &fprintf);
4960#endif
4961 exit(0);
4962 } else {
4963 cpu_model = optarg;
4964 }
4965 break;
4966 case QEMU_OPTION_initrd:
4967 initrd_filename = optarg;
4968 break;
4969 case QEMU_OPTION_hda:
4970 if (cyls == 0)
4971 hda_index = drive_add(optarg, HD_ALIAS, 0);
4972 else
4973 hda_index = drive_add(optarg, HD_ALIAS
4974 ",cyls=%d,heads=%d,secs=%d%s",
4975 0, cyls, heads, secs,
4976 translation == BIOS_ATA_TRANSLATION_LBA ?
4977 ",trans=lba" :
4978 translation == BIOS_ATA_TRANSLATION_NONE ?
4979 ",trans=none" : "");
4980 break;
4981 case QEMU_OPTION_hdb:
4982 case QEMU_OPTION_hdc:
4983 case QEMU_OPTION_hdd:
4984 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4985 break;
4986 case QEMU_OPTION_drive:
4987 drive_add(NULL, "%s", optarg);
4988 break;
4989 case QEMU_OPTION_mtdblock:
4990 drive_add(optarg, MTD_ALIAS);
4991 break;
4992 case QEMU_OPTION_sd:
4993 drive_add(optarg, SD_ALIAS);
4994 break;
4995 case QEMU_OPTION_pflash:
4996 drive_add(optarg, PFLASH_ALIAS);
4997 break;
4998 case QEMU_OPTION_snapshot:
4999 snapshot = 1;
5000 break;
5001 case QEMU_OPTION_hdachs:
5002 {
5003 const char *p;
5004 p = optarg;
5005 cyls = strtol(p, (char **)&p, 0);
5006 if (cyls < 1 || cyls > 16383)
5007 goto chs_fail;
5008 if (*p != ',')
5009 goto chs_fail;
5010 p++;
5011 heads = strtol(p, (char **)&p, 0);
5012 if (heads < 1 || heads > 16)
5013 goto chs_fail;
5014 if (*p != ',')
5015 goto chs_fail;
5016 p++;
5017 secs = strtol(p, (char **)&p, 0);
5018 if (secs < 1 || secs > 63)
5019 goto chs_fail;
5020 if (*p == ',') {
5021 p++;
5022 if (!strcmp(p, "none"))
5023 translation = BIOS_ATA_TRANSLATION_NONE;
5024 else if (!strcmp(p, "lba"))
5025 translation = BIOS_ATA_TRANSLATION_LBA;
5026 else if (!strcmp(p, "auto"))
5027 translation = BIOS_ATA_TRANSLATION_AUTO;
5028 else
5029 goto chs_fail;
5030 } else if (*p != '\0') {
5031 chs_fail:
5032 fprintf(stderr, "qemu: invalid physical CHS format\n");
5033 exit(1);
5034 }
5035 if (hda_index != -1)
5036 snprintf(drives_opt[hda_index].opt,
5037 sizeof(drives_opt[hda_index].opt),
5038 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5039 0, cyls, heads, secs,
5040 translation == BIOS_ATA_TRANSLATION_LBA ?
5041 ",trans=lba" :
5042 translation == BIOS_ATA_TRANSLATION_NONE ?
5043 ",trans=none" : "");
5044 }
5045 break;
5046 case QEMU_OPTION_numa:
5047 if (nb_numa_nodes >= MAX_NODES) {
5048 fprintf(stderr, "qemu: too many NUMA nodes\n");
5049 exit(1);
5050 }
5051 numa_add(optarg);
5052 break;
5053 case QEMU_OPTION_nographic:
5054 nographic = 1;
5055 break;
5056#ifdef CONFIG_CURSES
5057 case QEMU_OPTION_curses:
5058 curses = 1;
5059 break;
5060#endif
5061 case QEMU_OPTION_portrait:
5062 graphic_rotate = 1;
5063 break;
5064 case QEMU_OPTION_kernel:
5065 kernel_filename = optarg;
5066 break;
5067 case QEMU_OPTION_append:
5068 kernel_cmdline = optarg;
5069 break;
5070 case QEMU_OPTION_cdrom:
5071 drive_add(optarg, CDROM_ALIAS);
5072 break;
5073 case QEMU_OPTION_boot:
5074 boot_devices = optarg;
5075 /* We just do some generic consistency checks */
5076 {
5077 /* Could easily be extended to 64 devices if needed */
5078 const char *p;
5079
5080 boot_devices_bitmap = 0;
5081 for (p = boot_devices; *p != '\0'; p++) {
5082 /* Allowed boot devices are:
5083 * a b : floppy disk drives
5084 * c ... f : IDE disk drives
5085 * g ... m : machine implementation dependant drives
5086 * n ... p : network devices
5087 * It's up to each machine implementation to check
5088 * if the given boot devices match the actual hardware
5089 * implementation and firmware features.
5090 */
5091 if (*p < 'a' || *p > 'q') {
5092 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5093 exit(1);
5094 }
5095 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5096 fprintf(stderr,
5097 "Boot device '%c' was given twice\n",*p);
5098 exit(1);
5099 }
5100 boot_devices_bitmap |= 1 << (*p - 'a');
5101 }
5102 }
5103 break;
5104 case QEMU_OPTION_fda:
5105 case QEMU_OPTION_fdb:
5106 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5107 break;
5108#ifdef TARGET_I386
5109 case QEMU_OPTION_no_fd_bootchk:
5110 fd_bootchk = 0;
5111 break;
5112#endif
5113 case QEMU_OPTION_net:
5114 if (nb_net_clients >= MAX_NET_CLIENTS) {
5115 fprintf(stderr, "qemu: too many network clients\n");
5116 exit(1);
5117 }
5118 net_clients[nb_net_clients] = optarg;
5119 nb_net_clients++;
5120 break;
5121#ifdef CONFIG_SLIRP
5122 case QEMU_OPTION_tftp:
5123 tftp_prefix = optarg;
5124 break;
5125 case QEMU_OPTION_bootp:
5126 bootp_filename = optarg;
5127 break;
5128#ifndef _WIN32
5129 case QEMU_OPTION_smb:
5130 net_slirp_smb(optarg);
5131 break;
5132#endif
5133 case QEMU_OPTION_redir:
5134 net_slirp_redir(NULL, optarg);
5135 break;
5136#endif
5137 case QEMU_OPTION_bt:
5138 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5139 fprintf(stderr, "qemu: too many bluetooth options\n");
5140 exit(1);
5141 }
5142 bt_opts[nb_bt_opts++] = optarg;
5143 break;
5144#ifdef HAS_AUDIO
5145 case QEMU_OPTION_audio_help:
5146 AUD_help ();
5147 exit (0);
5148 break;
5149 case QEMU_OPTION_soundhw:
5150 select_soundhw (optarg);
5151 break;
5152#endif
5153 case QEMU_OPTION_h:
5154 help(0);
5155 break;
5156 case QEMU_OPTION_version:
5157 version();
5158 exit(0);
5159 break;
5160 case QEMU_OPTION_m: {
5161 uint64_t value;
5162 char *ptr;
5163
5164 value = strtoul(optarg, &ptr, 10);
5165 switch (*ptr) {
5166 case 0: case 'M': case 'm':
5167 value <<= 20;
5168 break;
5169 case 'G': case 'g':
5170 value <<= 30;
5171 break;
5172 default:
5173 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5174 exit(1);
5175 }
5176
5177 /* On 32-bit hosts, QEMU is limited by virtual address space */
5178 if (value > (2047 << 20)
5179#ifndef CONFIG_KQEMU
5180 && HOST_LONG_BITS == 32
5181#endif
5182 ) {
5183 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5184 exit(1);
5185 }
5186 if (value != (uint64_t)(ram_addr_t)value) {
5187 fprintf(stderr, "qemu: ram size too large\n");
5188 exit(1);
5189 }
5190 ram_size = value;
5191 break;
5192 }
5193 case QEMU_OPTION_d:
5194 {
5195 int mask;
5196 const CPULogItem *item;
5197
5198 mask = cpu_str_to_log_mask(optarg);
5199 if (!mask) {
5200 printf("Log items (comma separated):\n");
5201 for(item = cpu_log_items; item->mask != 0; item++) {
5202 printf("%-10s %s\n", item->name, item->help);
5203 }
5204 exit(1);
5205 }
5206 cpu_set_log(mask);
5207 }
5208 break;
5209#ifdef CONFIG_GDBSTUB
5210 case QEMU_OPTION_s:
5211 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5212 break;
5213 case QEMU_OPTION_gdb:
5214 gdbstub_dev = optarg;
5215 break;
5216#endif
5217 case QEMU_OPTION_L:
5218 bios_dir = optarg;
5219 break;
5220 case QEMU_OPTION_bios:
5221 bios_name = optarg;
5222 break;
5223 case QEMU_OPTION_singlestep:
5224 singlestep = 1;
5225 break;
5226 case QEMU_OPTION_S:
5227 autostart = 0;
5228 break;
5229#ifndef _WIN32
5230 case QEMU_OPTION_k:
5231 keyboard_layout = optarg;
5232 break;
5233#endif
5234 case QEMU_OPTION_localtime:
5235 rtc_utc = 0;
5236 break;
5237 case QEMU_OPTION_vga:
5238 select_vgahw (optarg);
5239 break;
5240#if defined(TARGET_PPC) || defined(TARGET_SPARC)
5241 case QEMU_OPTION_g:
5242 {
5243 const char *p;
5244 int w, h, depth;
5245 p = optarg;
5246 w = strtol(p, (char **)&p, 10);
5247 if (w <= 0) {
5248 graphic_error:
5249 fprintf(stderr, "qemu: invalid resolution or depth\n");
5250 exit(1);
5251 }
5252 if (*p != 'x')
5253 goto graphic_error;
5254 p++;
5255 h = strtol(p, (char **)&p, 10);
5256 if (h <= 0)
5257 goto graphic_error;
5258 if (*p == 'x') {
5259 p++;
5260 depth = strtol(p, (char **)&p, 10);
5261 if (depth != 8 && depth != 15 && depth != 16 &&
5262 depth != 24 && depth != 32)
5263 goto graphic_error;
5264 } else if (*p == '\0') {
5265 depth = graphic_depth;
5266 } else {
5267 goto graphic_error;
5268 }
5269
5270 graphic_width = w;
5271 graphic_height = h;
5272 graphic_depth = depth;
5273 }
5274 break;
5275#endif
5276 case QEMU_OPTION_echr:
5277 {
5278 char *r;
5279 term_escape_char = strtol(optarg, &r, 0);
5280 if (r == optarg)
5281 printf("Bad argument to echr\n");
5282 break;
5283 }
5284 case QEMU_OPTION_monitor:
5285 monitor_device = optarg;
5286 break;
5287 case QEMU_OPTION_serial:
5288 if (serial_device_index >= MAX_SERIAL_PORTS) {
5289 fprintf(stderr, "qemu: too many serial ports\n");
5290 exit(1);
5291 }
5292 serial_devices[serial_device_index] = optarg;
5293 serial_device_index++;
5294 break;
5295 case QEMU_OPTION_virtiocon:
5296 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5297 fprintf(stderr, "qemu: too many virtio consoles\n");
5298 exit(1);
5299 }
5300 virtio_consoles[virtio_console_index] = optarg;
5301 virtio_console_index++;
5302 break;
5303 case QEMU_OPTION_parallel:
5304 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5305 fprintf(stderr, "qemu: too many parallel ports\n");
5306 exit(1);
5307 }
5308 parallel_devices[parallel_device_index] = optarg;
5309 parallel_device_index++;
5310 break;
5311 case QEMU_OPTION_loadvm:
5312 loadvm = optarg;
5313 break;
5314 case QEMU_OPTION_full_screen:
5315 full_screen = 1;
5316 break;
5317#ifdef CONFIG_SDL
5318 case QEMU_OPTION_no_frame:
5319 no_frame = 1;
5320 break;
5321 case QEMU_OPTION_alt_grab:
5322 alt_grab = 1;
5323 break;
5324 case QEMU_OPTION_no_quit:
5325 no_quit = 1;
5326 break;
5327 case QEMU_OPTION_sdl:
5328 sdl = 1;
5329 break;
5330#endif
5331 case QEMU_OPTION_pidfile:
5332 pid_file = optarg;
5333 break;
5334#ifdef TARGET_I386
5335 case QEMU_OPTION_win2k_hack:
5336 win2k_install_hack = 1;
5337 break;
5338 case QEMU_OPTION_rtc_td_hack:
5339 rtc_td_hack = 1;
5340 break;
5341 case QEMU_OPTION_acpitable:
5342 if(acpi_table_add(optarg) < 0) {
5343 fprintf(stderr, "Wrong acpi table provided\n");
5344 exit(1);
5345 }
5346 break;
5347 case QEMU_OPTION_smbios:
5348 if(smbios_entry_add(optarg) < 0) {
5349 fprintf(stderr, "Wrong smbios provided\n");
5350 exit(1);
5351 }
5352 break;
5353#endif
5354#ifdef CONFIG_KQEMU
5355 case QEMU_OPTION_no_kqemu:
5356 kqemu_allowed = 0;
5357 break;
5358 case QEMU_OPTION_kernel_kqemu:
5359 kqemu_allowed = 2;
5360 break;
5361#endif
5362#ifdef CONFIG_KVM
5363 case QEMU_OPTION_enable_kvm:
5364 kvm_allowed = 1;
5365#ifdef CONFIG_KQEMU
5366 kqemu_allowed = 0;
5367#endif
5368 break;
5369#endif
5370 case QEMU_OPTION_usb:
5371 usb_enabled = 1;
5372 break;
5373 case QEMU_OPTION_usbdevice:
5374 usb_enabled = 1;
5375 if (usb_devices_index >= MAX_USB_CMDLINE) {
5376 fprintf(stderr, "Too many USB devices\n");
5377 exit(1);
5378 }
5379 usb_devices[usb_devices_index] = optarg;
5380 usb_devices_index++;
5381 break;
5382 case QEMU_OPTION_smp:
5383 smp_cpus = atoi(optarg);
5384 if (smp_cpus < 1) {
5385 fprintf(stderr, "Invalid number of CPUs\n");
5386 exit(1);
5387 }
5388 break;
5389 case QEMU_OPTION_vnc:
5390 vnc_display = optarg;
5391 break;
5392#ifdef TARGET_I386
5393 case QEMU_OPTION_no_acpi:
5394 acpi_enabled = 0;
5395 break;
5396 case QEMU_OPTION_no_hpet:
5397 no_hpet = 1;
5398 break;
5399#endif
5400 case QEMU_OPTION_no_reboot:
5401 no_reboot = 1;
5402 break;
5403 case QEMU_OPTION_no_shutdown:
5404 no_shutdown = 1;
5405 break;
5406 case QEMU_OPTION_show_cursor:
5407 cursor_hide = 0;
5408 break;
5409 case QEMU_OPTION_uuid:
5410 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5411 fprintf(stderr, "Fail to parse UUID string."
5412 " Wrong format.\n");
5413 exit(1);
5414 }
5415 break;
5416#ifndef _WIN32
5417 case QEMU_OPTION_daemonize:
5418 daemonize = 1;
5419 break;
5420#endif
5421 case QEMU_OPTION_option_rom:
5422 if (nb_option_roms >= MAX_OPTION_ROMS) {
5423 fprintf(stderr, "Too many option ROMs\n");
5424 exit(1);
5425 }
5426 option_rom[nb_option_roms] = optarg;
5427 nb_option_roms++;
5428 break;
5429#if defined(TARGET_ARM) || defined(TARGET_M68K)
5430 case QEMU_OPTION_semihosting:
5431 semihosting_enabled = 1;
5432 break;
5433#endif
5434 case QEMU_OPTION_name:
5435 qemu_name = optarg;
5436 break;
5437#if defined(TARGET_SPARC) || defined(TARGET_PPC)
5438 case QEMU_OPTION_prom_env:
5439 if (nb_prom_envs >= MAX_PROM_ENVS) {
5440 fprintf(stderr, "Too many prom variables\n");
5441 exit(1);
5442 }
5443 prom_envs[nb_prom_envs] = optarg;
5444 nb_prom_envs++;
5445 break;
5446#endif
5447#ifdef TARGET_ARM
5448 case QEMU_OPTION_old_param:
5449 old_param = 1;
5450 break;
5451#endif
5452 case QEMU_OPTION_clock:
5453 configure_alarms(optarg);
5454 break;
5455 case QEMU_OPTION_startdate:
5456 {
5457 struct tm tm;
5458 time_t rtc_start_date;
5459 if (!strcmp(optarg, "now")) {
5460 rtc_date_offset = -1;
5461 } else {
5462 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5463 &tm.tm_year,
5464 &tm.tm_mon,
5465 &tm.tm_mday,
5466 &tm.tm_hour,
5467 &tm.tm_min,
5468 &tm.tm_sec) == 6) {
5469 /* OK */
5470 } else if (sscanf(optarg, "%d-%d-%d",
5471 &tm.tm_year,
5472 &tm.tm_mon,
5473 &tm.tm_mday) == 3) {
5474 tm.tm_hour = 0;
5475 tm.tm_min = 0;
5476 tm.tm_sec = 0;
5477 } else {
5478 goto date_fail;
5479 }
5480 tm.tm_year -= 1900;
5481 tm.tm_mon--;
5482 rtc_start_date = mktimegm(&tm);
5483 if (rtc_start_date == -1) {
5484 date_fail:
5485 fprintf(stderr, "Invalid date format. Valid format are:\n"
5486 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5487 exit(1);
5488 }
5489 rtc_date_offset = time(NULL) - rtc_start_date;
5490 }
5491 }
5492 break;
5493 case QEMU_OPTION_tb_size:
5494 tb_size = strtol(optarg, NULL, 0);
5495 if (tb_size < 0)
5496 tb_size = 0;
5497 break;
5498 case QEMU_OPTION_icount:
5499 use_icount = 1;
5500 if (strcmp(optarg, "auto") == 0) {
5501 icount_time_shift = -1;
5502 } else {
5503 icount_time_shift = strtol(optarg, NULL, 0);
5504 }
5505 break;
5506 case QEMU_OPTION_incoming:
5507 incoming = optarg;
5508 break;
5509#ifndef _WIN32
5510 case QEMU_OPTION_chroot:
5511 chroot_dir = optarg;
5512 break;
5513 case QEMU_OPTION_runas:
5514 run_as = optarg;
5515 break;
5516#endif
5517#ifdef CONFIG_XEN
5518 case QEMU_OPTION_xen_domid:
5519 xen_domid = atoi(optarg);
5520 break;
5521 case QEMU_OPTION_xen_create:
5522 xen_mode = XEN_CREATE;
5523 break;
5524 case QEMU_OPTION_xen_attach:
5525 xen_mode = XEN_ATTACH;
5526 break;
5527#endif
5528 }
5529 }
5530 }
5531
5532#if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5533 if (kvm_allowed && kqemu_allowed) {
5534 fprintf(stderr,
5535 "You can not enable both KVM and kqemu at the same time\n");
5536 exit(1);
5537 }
5538#endif
5539
5540 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5541 if (smp_cpus > machine->max_cpus) {
5542 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5543 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5544 machine->max_cpus);
5545 exit(1);
5546 }
5547
5548 if (nographic) {
5549 if (serial_device_index == 0)
5550 serial_devices[0] = "stdio";
5551 if (parallel_device_index == 0)
5552 parallel_devices[0] = "null";
5553 if (strncmp(monitor_device, "vc", 2) == 0)
5554 monitor_device = "stdio";
5555 }
5556
5557#ifndef _WIN32
5558 if (daemonize) {
5559 pid_t pid;
5560
5561 if (pipe(fds) == -1)
5562 exit(1);
5563
5564 pid = fork();
5565 if (pid > 0) {
5566 uint8_t status;
5567 ssize_t len;
5568
5569 close(fds[1]);
5570
5571 again:
5572 len = read(fds[0], &status, 1);
5573 if (len == -1 && (errno == EINTR))
5574 goto again;
5575
5576 if (len != 1)
5577 exit(1);
5578 else if (status == 1) {
5579 fprintf(stderr, "Could not acquire pidfile\n");
5580 exit(1);
5581 } else
5582 exit(0);
5583 } else if (pid < 0)
5584 exit(1);
5585
5586 setsid();
5587
5588 pid = fork();
5589 if (pid > 0)
5590 exit(0);
5591 else if (pid < 0)
5592 exit(1);
5593
5594 umask(027);
5595
5596 signal(SIGTSTP, SIG_IGN);
5597 signal(SIGTTOU, SIG_IGN);
5598 signal(SIGTTIN, SIG_IGN);
5599 }
5600
5601 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5602 if (daemonize) {
5603 uint8_t status = 1;
5604 write(fds[1], &status, 1);
5605 } else
5606 fprintf(stderr, "Could not acquire pid file\n");
5607 exit(1);
5608 }
5609#endif
5610
5611#ifdef CONFIG_KQEMU
5612 if (smp_cpus > 1)
5613 kqemu_allowed = 0;
5614#endif
5615 if (qemu_init_main_loop()) {
5616 fprintf(stderr, "qemu_init_main_loop failed\n");
5617 exit(1);
5618 }
5619 linux_boot = (kernel_filename != NULL);
5620 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5621
5622 if (!linux_boot && *kernel_cmdline != '\0') {
5623 fprintf(stderr, "-append only allowed with -kernel option\n");
5624 exit(1);
5625 }
5626
5627 if (!linux_boot && initrd_filename != NULL) {
5628 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5629 exit(1);
5630 }
5631
5632 /* boot to floppy or the default cd if no hard disk defined yet */
5633 if (!boot_devices[0]) {
5634 boot_devices = "cad";
5635 }
5636 setvbuf(stdout, NULL, _IOLBF, 0);
5637
5638 init_timers();
5639 if (init_timer_alarm() < 0) {
5640 fprintf(stderr, "could not initialize alarm timer\n");
5641 exit(1);
5642 }
5643 if (use_icount && icount_time_shift < 0) {
5644 use_icount = 2;
5645 /* 125MIPS seems a reasonable initial guess at the guest speed.
5646 It will be corrected fairly quickly anyway. */
5647 icount_time_shift = 3;
5648 init_icount_adjust();
5649 }
5650
5651#ifdef _WIN32
5652 socket_init();
5653#endif
5654
5655 /* init network clients */
5656 if (nb_net_clients == 0) {
5657 /* if no clients, we use a default config */
5658 net_clients[nb_net_clients++] = "nic";
5659#ifdef CONFIG_SLIRP
5660 net_clients[nb_net_clients++] = "user";
5661#endif
5662 }
5663
5664 for(i = 0;i < nb_net_clients; i++) {
5665 if (net_client_parse(net_clients[i]) < 0)
5666 exit(1);
5667 }
5668 net_client_check();
5669
5670#ifdef TARGET_I386
5671 /* XXX: this should be moved in the PC machine instantiation code */
5672 if (net_boot != 0) {
5673 int netroms = 0;
5674 for (i = 0; i < nb_nics && i < 4; i++) {
5675 const char *model = nd_table[i].model;
5676 char buf[1024];
5677 if (net_boot & (1 << i)) {
5678 if (model == NULL)
5679 model = "ne2k_pci";
5680 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5681 if (get_image_size(buf) > 0) {
5682 if (nb_option_roms >= MAX_OPTION_ROMS) {
5683 fprintf(stderr, "Too many option ROMs\n");
5684 exit(1);
5685 }
5686 option_rom[nb_option_roms] = strdup(buf);
5687 nb_option_roms++;
5688 netroms++;
5689 }
5690 }
5691 }
5692 if (netroms == 0) {
5693 fprintf(stderr, "No valid PXE rom found for network device\n");
5694 exit(1);
5695 }
5696 }
5697#endif
5698
5699 /* init the bluetooth world */
5700 for (i = 0; i < nb_bt_opts; i++)
5701 if (bt_parse(bt_opts[i]))
5702 exit(1);
5703
5704 /* init the memory */
5705 if (ram_size == 0)
5706 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5707
5708#ifdef CONFIG_KQEMU
5709 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5710 guest ram allocation. It needs to go away. */
5711 if (kqemu_allowed) {
5712 kqemu_phys_ram_size = ram_size + VGA_RAM_SIZE + 4 * 1024 * 1024;
5713 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5714 if (!kqemu_phys_ram_base) {
5715 fprintf(stderr, "Could not allocate physical memory\n");
5716 exit(1);
5717 }
5718 }
5719#endif
5720
5721 /* init the dynamic translator */
5722 cpu_exec_init_all(tb_size * 1024 * 1024);
5723
5724 bdrv_init();
5725 dma_helper_init();
5726
5727 /* we always create the cdrom drive, even if no disk is there */
5728
5729 if (nb_drives_opt < MAX_DRIVES)
5730 drive_add(NULL, CDROM_ALIAS);
5731
5732 /* we always create at least one floppy */
5733
5734 if (nb_drives_opt < MAX_DRIVES)
5735 drive_add(NULL, FD_ALIAS, 0);
5736
5737 /* we always create one sd slot, even if no card is in it */
5738
5739 if (nb_drives_opt < MAX_DRIVES)
5740 drive_add(NULL, SD_ALIAS);
5741
5742 /* open the virtual block devices */
5743
5744 for(i = 0; i < nb_drives_opt; i++)
5745 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5746 exit(1);
5747
5748 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5749 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5750
5751#ifndef _WIN32
5752 /* must be after terminal init, SDL library changes signal handlers */
5753 termsig_setup();
5754#endif
5755
5756 /* Maintain compatibility with multiple stdio monitors */
5757 if (!strcmp(monitor_device,"stdio")) {
5758 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5759 const char *devname = serial_devices[i];
5760 if (devname && !strcmp(devname,"mon:stdio")) {
5761 monitor_device = NULL;
5762 break;
5763 } else if (devname && !strcmp(devname,"stdio")) {
5764 monitor_device = NULL;
5765 serial_devices[i] = "mon:stdio";
5766 break;
5767 }
5768 }
5769 }
5770
5771 if (nb_numa_nodes > 0) {
5772 int i;
5773
5774 if (nb_numa_nodes > smp_cpus) {
5775 nb_numa_nodes = smp_cpus;
5776 }
5777
5778 /* If no memory size if given for any node, assume the default case
5779 * and distribute the available memory equally across all nodes
5780 */
5781 for (i = 0; i < nb_numa_nodes; i++) {
5782 if (node_mem[i] != 0)
5783 break;
5784 }
5785 if (i == nb_numa_nodes) {
5786 uint64_t usedmem = 0;
5787
5788 /* On Linux, the each node's border has to be 8MB aligned,
5789 * the final node gets the rest.
5790 */
5791 for (i = 0; i < nb_numa_nodes - 1; i++) {
5792 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5793 usedmem += node_mem[i];
5794 }
5795 node_mem[i] = ram_size - usedmem;
5796 }
5797
5798 for (i = 0; i < nb_numa_nodes; i++) {
5799 if (node_cpumask[i] != 0)
5800 break;
5801 }
5802 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5803 * must cope with this anyway, because there are BIOSes out there in
5804 * real machines which also use this scheme.
5805 */
5806 if (i == nb_numa_nodes) {
5807 for (i = 0; i < smp_cpus; i++) {
5808 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5809 }
5810 }
5811 }
5812
5813 if (kvm_enabled()) {
5814 int ret;
5815
5816 ret = kvm_init(smp_cpus);
5817 if (ret < 0) {
5818 fprintf(stderr, "failed to initialize KVM\n");
5819 exit(1);
5820 }
5821 }
5822
5823 if (monitor_device) {
5824 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5825 if (!monitor_hd) {
5826 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5827 exit(1);
5828 }
5829 }
5830
5831 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5832 const char *devname = serial_devices[i];
5833 if (devname && strcmp(devname, "none")) {
5834 char label[32];
5835 snprintf(label, sizeof(label), "serial%d", i);
5836 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5837 if (!serial_hds[i]) {
5838 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5839 devname);
5840 exit(1);
5841 }
5842 }
5843 }
5844
5845 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5846 const char *devname = parallel_devices[i];
5847 if (devname && strcmp(devname, "none")) {
5848 char label[32];
5849 snprintf(label, sizeof(label), "parallel%d", i);
5850 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5851 if (!parallel_hds[i]) {
5852 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5853 devname);
5854 exit(1);
5855 }
5856 }
5857 }
5858
5859 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5860 const char *devname = virtio_consoles[i];
5861 if (devname && strcmp(devname, "none")) {
5862 char label[32];
5863 snprintf(label, sizeof(label), "virtcon%d", i);
5864 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5865 if (!virtcon_hds[i]) {
5866 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5867 devname);
5868 exit(1);
5869 }
5870 }
5871 }
5872
5873 machine->init(ram_size, vga_ram_size, boot_devices,
5874 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5875
5876
5877 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5878 for (i = 0; i < nb_numa_nodes; i++) {
5879 if (node_cpumask[i] & (1 << env->cpu_index)) {
5880 env->numa_node = i;
5881 }
5882 }
5883 }
5884
5885 current_machine = machine;
5886
5887 /* Set KVM's vcpu state to qemu's initial CPUState. */
5888 if (kvm_enabled()) {
5889 int ret;
5890
5891 ret = kvm_sync_vcpus();
5892 if (ret < 0) {
5893 fprintf(stderr, "failed to initialize vcpus\n");
5894 exit(1);
5895 }
5896 }
5897
5898 /* init USB devices */
5899 if (usb_enabled) {
5900 for(i = 0; i < usb_devices_index; i++) {
5901 if (usb_device_add(usb_devices[i], 0) < 0) {
5902 fprintf(stderr, "Warning: could not add USB device %s\n",
5903 usb_devices[i]);
5904 }
5905 }
5906 }
5907
5908 if (!display_state)
5909 dumb_display_init();
5910 /* just use the first displaystate for the moment */
5911 ds = display_state;
5912 /* terminal init */
5913 if (nographic) {
5914 if (curses) {
5915 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5916 exit(1);
5917 }
5918 } else {
5919#if defined(CONFIG_CURSES)
5920 if (curses) {
5921 /* At the moment curses cannot be used with other displays */
5922 curses_display_init(ds, full_screen);
5923 } else
5924#endif
5925 {
5926 if (vnc_display != NULL) {
5927 vnc_display_init(ds);
5928 if (vnc_display_open(ds, vnc_display) < 0)
5929 exit(1);
5930 }
5931#if defined(CONFIG_SDL)
5932 if (sdl || !vnc_display)
5933 sdl_display_init(ds, full_screen, no_frame);
5934#elif defined(CONFIG_COCOA)
5935 if (sdl || !vnc_display)
5936 cocoa_display_init(ds, full_screen);
5937#endif
5938 }
5939 }
5940 dpy_resize(ds);
5941
5942 dcl = ds->listeners;
5943 while (dcl != NULL) {
5944 if (dcl->dpy_refresh != NULL) {
5945 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5946 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5947 }
5948 dcl = dcl->next;
5949 }
5950
5951 if (nographic || (vnc_display && !sdl)) {
5952 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5953 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5954 }
5955
5956 text_consoles_set_display(display_state);
5957 qemu_chr_initial_reset();
5958
5959 if (monitor_device && monitor_hd)
5960 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5961
5962 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5963 const char *devname = serial_devices[i];
5964 if (devname && strcmp(devname, "none")) {
5965 char label[32];
5966 snprintf(label, sizeof(label), "serial%d", i);
5967 if (strstart(devname, "vc", 0))
5968 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5969 }
5970 }
5971
5972 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5973 const char *devname = parallel_devices[i];
5974 if (devname && strcmp(devname, "none")) {
5975 char label[32];
5976 snprintf(label, sizeof(label), "parallel%d", i);
5977 if (strstart(devname, "vc", 0))
5978 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5979 }
5980 }
5981
5982 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5983 const char *devname = virtio_consoles[i];
5984 if (virtcon_hds[i] && devname) {
5985 char label[32];
5986 snprintf(label, sizeof(label), "virtcon%d", i);
5987 if (strstart(devname, "vc", 0))
5988 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5989 }
5990 }
5991
5992#ifdef CONFIG_GDBSTUB
5993 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5994 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5995 gdbstub_dev);
5996 exit(1);
5997 }
5998#endif
5999
6000 if (loadvm)
6001 do_loadvm(cur_mon, loadvm);
6002
6003 if (incoming) {
6004 autostart = 0; /* fixme how to deal with -daemonize */
6005 qemu_start_incoming_migration(incoming);
6006 }
6007
6008 if (autostart)
6009 vm_start();
6010
6011#ifndef _WIN32
6012 if (daemonize) {
6013 uint8_t status = 0;
6014 ssize_t len;
6015
6016 again1:
6017 len = write(fds[1], &status, 1);
6018 if (len == -1 && (errno == EINTR))
6019 goto again1;
6020
6021 if (len != 1)
6022 exit(1);
6023
6024 chdir("/");
6025 TFR(fd = open("/dev/null", O_RDWR));
6026 if (fd == -1)
6027 exit(1);
6028 }
6029
6030 if (run_as) {
6031 pwd = getpwnam(run_as);
6032 if (!pwd) {
6033 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6034 exit(1);
6035 }
6036 }
6037
6038 if (chroot_dir) {
6039 if (chroot(chroot_dir) < 0) {
6040 fprintf(stderr, "chroot failed\n");
6041 exit(1);
6042 }
6043 chdir("/");
6044 }
6045
6046 if (run_as) {
6047 if (setgid(pwd->pw_gid) < 0) {
6048 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6049 exit(1);
6050 }
6051 if (setuid(pwd->pw_uid) < 0) {
6052 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6053 exit(1);
6054 }
6055 if (setuid(0) != -1) {
6056 fprintf(stderr, "Dropping privileges failed\n");
6057 exit(1);
6058 }
6059 }
6060
6061 if (daemonize) {
6062 dup2(fd, 0);
6063 dup2(fd, 1);
6064 dup2(fd, 2);
6065
6066 close(fd);
6067 }
6068#endif
6069
6070 main_loop();
6071 quit_timers();
6072 net_cleanup();
6073
6074 return 0;
6075}