]> git.proxmox.com Git - qemu.git/blame_incremental - vl.c
kvm: Rework dirty bitmap synchronization
[qemu.git] / vl.c
... / ...
CommitLineData
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <signal.h>
27#include <time.h>
28#include <errno.h>
29#include <sys/time.h>
30#include <zlib.h>
31
32/* Needed early for HOST_BSD etc. */
33#include "config-host.h"
34
35#ifndef _WIN32
36#include <pwd.h>
37#include <sys/times.h>
38#include <sys/wait.h>
39#include <termios.h>
40#include <sys/mman.h>
41#include <sys/ioctl.h>
42#include <sys/resource.h>
43#include <sys/socket.h>
44#include <netinet/in.h>
45#include <net/if.h>
46#if defined(__NetBSD__)
47#include <net/if_tap.h>
48#endif
49#ifdef __linux__
50#include <linux/if_tun.h>
51#endif
52#include <arpa/inet.h>
53#include <dirent.h>
54#include <netdb.h>
55#include <sys/select.h>
56#ifdef HOST_BSD
57#include <sys/stat.h>
58#if defined(__FreeBSD__) || defined(__DragonFly__)
59#include <libutil.h>
60#else
61#include <util.h>
62#endif
63#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64#include <freebsd/stdlib.h>
65#else
66#ifdef __linux__
67#include <pty.h>
68#include <malloc.h>
69#include <linux/rtc.h>
70
71/* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73/* #include <linux/hpet.h> */
74#include "hpet.h"
75
76#include <linux/ppdev.h>
77#include <linux/parport.h>
78#endif
79#ifdef __sun__
80#include <sys/stat.h>
81#include <sys/ethernet.h>
82#include <sys/sockio.h>
83#include <netinet/arp.h>
84#include <netinet/in.h>
85#include <netinet/in_systm.h>
86#include <netinet/ip.h>
87#include <netinet/ip_icmp.h> // must come after ip.h
88#include <netinet/udp.h>
89#include <netinet/tcp.h>
90#include <net/if.h>
91#include <syslog.h>
92#include <stropts.h>
93#endif
94#endif
95#endif
96
97#if defined(__OpenBSD__)
98#include <util.h>
99#endif
100
101#if defined(CONFIG_VDE)
102#include <libvdeplug.h>
103#endif
104
105#ifdef _WIN32
106#include <windows.h>
107#include <malloc.h>
108#include <sys/timeb.h>
109#include <mmsystem.h>
110#define getopt_long_only getopt_long
111#define memalign(align, size) malloc(size)
112#endif
113
114#ifdef CONFIG_SDL
115#ifdef __APPLE__
116#include <SDL/SDL.h>
117int qemu_main(int argc, char **argv, char **envp);
118int main(int argc, char **argv)
119{
120 qemu_main(argc, argv, NULL);
121}
122#undef main
123#define main qemu_main
124#endif
125#endif /* CONFIG_SDL */
126
127#ifdef CONFIG_COCOA
128#undef main
129#define main qemu_main
130#endif /* CONFIG_COCOA */
131
132#include "hw/hw.h"
133#include "hw/boards.h"
134#include "hw/usb.h"
135#include "hw/pcmcia.h"
136#include "hw/pc.h"
137#include "hw/audiodev.h"
138#include "hw/isa.h"
139#include "hw/baum.h"
140#include "hw/bt.h"
141#include "hw/watchdog.h"
142#include "hw/smbios.h"
143#include "hw/xen.h"
144#include "bt-host.h"
145#include "net.h"
146#include "monitor.h"
147#include "console.h"
148#include "sysemu.h"
149#include "gdbstub.h"
150#include "qemu-timer.h"
151#include "qemu-char.h"
152#include "cache-utils.h"
153#include "block.h"
154#include "dma.h"
155#include "audio/audio.h"
156#include "migration.h"
157#include "kvm.h"
158#include "balloon.h"
159#include "qemu-option.h"
160
161#include "disas.h"
162
163#include "exec-all.h"
164
165#include "qemu_socket.h"
166
167#if defined(CONFIG_SLIRP)
168#include "libslirp.h"
169#endif
170
171//#define DEBUG_UNUSED_IOPORT
172//#define DEBUG_IOPORT
173//#define DEBUG_NET
174//#define DEBUG_SLIRP
175
176
177#ifdef DEBUG_IOPORT
178# define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
179#else
180# define LOG_IOPORT(...) do { } while (0)
181#endif
182
183#define DEFAULT_RAM_SIZE 128
184
185/* Max number of USB devices that can be specified on the commandline. */
186#define MAX_USB_CMDLINE 8
187
188/* Max number of bluetooth switches on the commandline. */
189#define MAX_BT_CMDLINE 10
190
191/* XXX: use a two level table to limit memory usage */
192#define MAX_IOPORTS 65536
193
194const char *bios_dir = CONFIG_QEMU_SHAREDIR;
195const char *bios_name = NULL;
196static void *ioport_opaque[MAX_IOPORTS];
197static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
198static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
199/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
200 to store the VM snapshots */
201DriveInfo drives_table[MAX_DRIVES+1];
202int nb_drives;
203enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
204static DisplayState *display_state;
205DisplayType display_type = DT_DEFAULT;
206const char* keyboard_layout = NULL;
207int64_t ticks_per_sec;
208ram_addr_t ram_size;
209int nb_nics;
210NICInfo nd_table[MAX_NICS];
211int vm_running;
212static int autostart;
213static int rtc_utc = 1;
214static int rtc_date_offset = -1; /* -1 means no change */
215int cirrus_vga_enabled = 1;
216int std_vga_enabled = 0;
217int vmsvga_enabled = 0;
218int xenfb_enabled = 0;
219#ifdef TARGET_SPARC
220int graphic_width = 1024;
221int graphic_height = 768;
222int graphic_depth = 8;
223#else
224int graphic_width = 800;
225int graphic_height = 600;
226int graphic_depth = 15;
227#endif
228static int full_screen = 0;
229#ifdef CONFIG_SDL
230static int no_frame = 0;
231#endif
232int no_quit = 0;
233CharDriverState *serial_hds[MAX_SERIAL_PORTS];
234CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
235CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
236#ifdef TARGET_I386
237int win2k_install_hack = 0;
238int rtc_td_hack = 0;
239#endif
240int usb_enabled = 0;
241int singlestep = 0;
242int smp_cpus = 1;
243const char *vnc_display;
244int acpi_enabled = 1;
245int no_hpet = 0;
246int fd_bootchk = 1;
247int no_reboot = 0;
248int no_shutdown = 0;
249int cursor_hide = 1;
250int graphic_rotate = 0;
251#ifndef _WIN32
252int daemonize = 0;
253#endif
254WatchdogTimerModel *watchdog = NULL;
255int watchdog_action = WDT_RESET;
256const char *option_rom[MAX_OPTION_ROMS];
257int nb_option_roms;
258int semihosting_enabled = 0;
259#ifdef TARGET_ARM
260int old_param = 0;
261#endif
262const char *qemu_name;
263int alt_grab = 0;
264#if defined(TARGET_SPARC) || defined(TARGET_PPC)
265unsigned int nb_prom_envs = 0;
266const char *prom_envs[MAX_PROM_ENVS];
267#endif
268int nb_drives_opt;
269struct drive_opt drives_opt[MAX_DRIVES];
270
271int nb_numa_nodes;
272uint64_t node_mem[MAX_NODES];
273uint64_t node_cpumask[MAX_NODES];
274
275static CPUState *cur_cpu;
276static CPUState *next_cpu;
277static int timer_alarm_pending = 1;
278/* Conversion factor from emulated instructions to virtual clock ticks. */
279static int icount_time_shift;
280/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
281#define MAX_ICOUNT_SHIFT 10
282/* Compensate for varying guest execution speed. */
283static int64_t qemu_icount_bias;
284static QEMUTimer *icount_rt_timer;
285static QEMUTimer *icount_vm_timer;
286static QEMUTimer *nographic_timer;
287
288uint8_t qemu_uuid[16];
289
290/***********************************************************/
291/* x86 ISA bus support */
292
293target_phys_addr_t isa_mem_base = 0;
294PicState2 *isa_pic;
295
296static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
297static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
298
299static uint32_t ioport_read(int index, uint32_t address)
300{
301 static IOPortReadFunc *default_func[3] = {
302 default_ioport_readb,
303 default_ioport_readw,
304 default_ioport_readl
305 };
306 IOPortReadFunc *func = ioport_read_table[index][address];
307 if (!func)
308 func = default_func[index];
309 return func(ioport_opaque[address], address);
310}
311
312static void ioport_write(int index, uint32_t address, uint32_t data)
313{
314 static IOPortWriteFunc *default_func[3] = {
315 default_ioport_writeb,
316 default_ioport_writew,
317 default_ioport_writel
318 };
319 IOPortWriteFunc *func = ioport_write_table[index][address];
320 if (!func)
321 func = default_func[index];
322 func(ioport_opaque[address], address, data);
323}
324
325static uint32_t default_ioport_readb(void *opaque, uint32_t address)
326{
327#ifdef DEBUG_UNUSED_IOPORT
328 fprintf(stderr, "unused inb: port=0x%04x\n", address);
329#endif
330 return 0xff;
331}
332
333static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
334{
335#ifdef DEBUG_UNUSED_IOPORT
336 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
337#endif
338}
339
340/* default is to make two byte accesses */
341static uint32_t default_ioport_readw(void *opaque, uint32_t address)
342{
343 uint32_t data;
344 data = ioport_read(0, address);
345 address = (address + 1) & (MAX_IOPORTS - 1);
346 data |= ioport_read(0, address) << 8;
347 return data;
348}
349
350static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
351{
352 ioport_write(0, address, data & 0xff);
353 address = (address + 1) & (MAX_IOPORTS - 1);
354 ioport_write(0, address, (data >> 8) & 0xff);
355}
356
357static uint32_t default_ioport_readl(void *opaque, uint32_t address)
358{
359#ifdef DEBUG_UNUSED_IOPORT
360 fprintf(stderr, "unused inl: port=0x%04x\n", address);
361#endif
362 return 0xffffffff;
363}
364
365static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
366{
367#ifdef DEBUG_UNUSED_IOPORT
368 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
369#endif
370}
371
372/* size is the word size in byte */
373int register_ioport_read(int start, int length, int size,
374 IOPortReadFunc *func, void *opaque)
375{
376 int i, bsize;
377
378 if (size == 1) {
379 bsize = 0;
380 } else if (size == 2) {
381 bsize = 1;
382 } else if (size == 4) {
383 bsize = 2;
384 } else {
385 hw_error("register_ioport_read: invalid size");
386 return -1;
387 }
388 for(i = start; i < start + length; i += size) {
389 ioport_read_table[bsize][i] = func;
390 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
391 hw_error("register_ioport_read: invalid opaque");
392 ioport_opaque[i] = opaque;
393 }
394 return 0;
395}
396
397/* size is the word size in byte */
398int register_ioport_write(int start, int length, int size,
399 IOPortWriteFunc *func, void *opaque)
400{
401 int i, bsize;
402
403 if (size == 1) {
404 bsize = 0;
405 } else if (size == 2) {
406 bsize = 1;
407 } else if (size == 4) {
408 bsize = 2;
409 } else {
410 hw_error("register_ioport_write: invalid size");
411 return -1;
412 }
413 for(i = start; i < start + length; i += size) {
414 ioport_write_table[bsize][i] = func;
415 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
416 hw_error("register_ioport_write: invalid opaque");
417 ioport_opaque[i] = opaque;
418 }
419 return 0;
420}
421
422void isa_unassign_ioport(int start, int length)
423{
424 int i;
425
426 for(i = start; i < start + length; i++) {
427 ioport_read_table[0][i] = default_ioport_readb;
428 ioport_read_table[1][i] = default_ioport_readw;
429 ioport_read_table[2][i] = default_ioport_readl;
430
431 ioport_write_table[0][i] = default_ioport_writeb;
432 ioport_write_table[1][i] = default_ioport_writew;
433 ioport_write_table[2][i] = default_ioport_writel;
434
435 ioport_opaque[i] = NULL;
436 }
437}
438
439/***********************************************************/
440
441void cpu_outb(CPUState *env, int addr, int val)
442{
443 LOG_IOPORT("outb: %04x %02x\n", addr, val);
444 ioport_write(0, addr, val);
445#ifdef CONFIG_KQEMU
446 if (env)
447 env->last_io_time = cpu_get_time_fast();
448#endif
449}
450
451void cpu_outw(CPUState *env, int addr, int val)
452{
453 LOG_IOPORT("outw: %04x %04x\n", addr, val);
454 ioport_write(1, addr, val);
455#ifdef CONFIG_KQEMU
456 if (env)
457 env->last_io_time = cpu_get_time_fast();
458#endif
459}
460
461void cpu_outl(CPUState *env, int addr, int val)
462{
463 LOG_IOPORT("outl: %04x %08x\n", addr, val);
464 ioport_write(2, addr, val);
465#ifdef CONFIG_KQEMU
466 if (env)
467 env->last_io_time = cpu_get_time_fast();
468#endif
469}
470
471int cpu_inb(CPUState *env, int addr)
472{
473 int val;
474 val = ioport_read(0, addr);
475 LOG_IOPORT("inb : %04x %02x\n", addr, val);
476#ifdef CONFIG_KQEMU
477 if (env)
478 env->last_io_time = cpu_get_time_fast();
479#endif
480 return val;
481}
482
483int cpu_inw(CPUState *env, int addr)
484{
485 int val;
486 val = ioport_read(1, addr);
487 LOG_IOPORT("inw : %04x %04x\n", addr, val);
488#ifdef CONFIG_KQEMU
489 if (env)
490 env->last_io_time = cpu_get_time_fast();
491#endif
492 return val;
493}
494
495int cpu_inl(CPUState *env, int addr)
496{
497 int val;
498 val = ioport_read(2, addr);
499 LOG_IOPORT("inl : %04x %08x\n", addr, val);
500#ifdef CONFIG_KQEMU
501 if (env)
502 env->last_io_time = cpu_get_time_fast();
503#endif
504 return val;
505}
506
507/***********************************************************/
508void hw_error(const char *fmt, ...)
509{
510 va_list ap;
511 CPUState *env;
512
513 va_start(ap, fmt);
514 fprintf(stderr, "qemu: hardware error: ");
515 vfprintf(stderr, fmt, ap);
516 fprintf(stderr, "\n");
517 for(env = first_cpu; env != NULL; env = env->next_cpu) {
518 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
519#ifdef TARGET_I386
520 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
521#else
522 cpu_dump_state(env, stderr, fprintf, 0);
523#endif
524 }
525 va_end(ap);
526 abort();
527}
528
529/***************/
530/* ballooning */
531
532static QEMUBalloonEvent *qemu_balloon_event;
533void *qemu_balloon_event_opaque;
534
535void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
536{
537 qemu_balloon_event = func;
538 qemu_balloon_event_opaque = opaque;
539}
540
541void qemu_balloon(ram_addr_t target)
542{
543 if (qemu_balloon_event)
544 qemu_balloon_event(qemu_balloon_event_opaque, target);
545}
546
547ram_addr_t qemu_balloon_status(void)
548{
549 if (qemu_balloon_event)
550 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
551 return 0;
552}
553
554/***********************************************************/
555/* keyboard/mouse */
556
557static QEMUPutKBDEvent *qemu_put_kbd_event;
558static void *qemu_put_kbd_event_opaque;
559static QEMUPutMouseEntry *qemu_put_mouse_event_head;
560static QEMUPutMouseEntry *qemu_put_mouse_event_current;
561
562void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
563{
564 qemu_put_kbd_event_opaque = opaque;
565 qemu_put_kbd_event = func;
566}
567
568QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
569 void *opaque, int absolute,
570 const char *name)
571{
572 QEMUPutMouseEntry *s, *cursor;
573
574 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
575
576 s->qemu_put_mouse_event = func;
577 s->qemu_put_mouse_event_opaque = opaque;
578 s->qemu_put_mouse_event_absolute = absolute;
579 s->qemu_put_mouse_event_name = qemu_strdup(name);
580 s->next = NULL;
581
582 if (!qemu_put_mouse_event_head) {
583 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
584 return s;
585 }
586
587 cursor = qemu_put_mouse_event_head;
588 while (cursor->next != NULL)
589 cursor = cursor->next;
590
591 cursor->next = s;
592 qemu_put_mouse_event_current = s;
593
594 return s;
595}
596
597void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
598{
599 QEMUPutMouseEntry *prev = NULL, *cursor;
600
601 if (!qemu_put_mouse_event_head || entry == NULL)
602 return;
603
604 cursor = qemu_put_mouse_event_head;
605 while (cursor != NULL && cursor != entry) {
606 prev = cursor;
607 cursor = cursor->next;
608 }
609
610 if (cursor == NULL) // does not exist or list empty
611 return;
612 else if (prev == NULL) { // entry is head
613 qemu_put_mouse_event_head = cursor->next;
614 if (qemu_put_mouse_event_current == entry)
615 qemu_put_mouse_event_current = cursor->next;
616 qemu_free(entry->qemu_put_mouse_event_name);
617 qemu_free(entry);
618 return;
619 }
620
621 prev->next = entry->next;
622
623 if (qemu_put_mouse_event_current == entry)
624 qemu_put_mouse_event_current = prev;
625
626 qemu_free(entry->qemu_put_mouse_event_name);
627 qemu_free(entry);
628}
629
630void kbd_put_keycode(int keycode)
631{
632 if (qemu_put_kbd_event) {
633 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
634 }
635}
636
637void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
638{
639 QEMUPutMouseEvent *mouse_event;
640 void *mouse_event_opaque;
641 int width;
642
643 if (!qemu_put_mouse_event_current) {
644 return;
645 }
646
647 mouse_event =
648 qemu_put_mouse_event_current->qemu_put_mouse_event;
649 mouse_event_opaque =
650 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
651
652 if (mouse_event) {
653 if (graphic_rotate) {
654 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
655 width = 0x7fff;
656 else
657 width = graphic_width - 1;
658 mouse_event(mouse_event_opaque,
659 width - dy, dx, dz, buttons_state);
660 } else
661 mouse_event(mouse_event_opaque,
662 dx, dy, dz, buttons_state);
663 }
664}
665
666int kbd_mouse_is_absolute(void)
667{
668 if (!qemu_put_mouse_event_current)
669 return 0;
670
671 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
672}
673
674void do_info_mice(Monitor *mon)
675{
676 QEMUPutMouseEntry *cursor;
677 int index = 0;
678
679 if (!qemu_put_mouse_event_head) {
680 monitor_printf(mon, "No mouse devices connected\n");
681 return;
682 }
683
684 monitor_printf(mon, "Mouse devices available:\n");
685 cursor = qemu_put_mouse_event_head;
686 while (cursor != NULL) {
687 monitor_printf(mon, "%c Mouse #%d: %s\n",
688 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
689 index, cursor->qemu_put_mouse_event_name);
690 index++;
691 cursor = cursor->next;
692 }
693}
694
695void do_mouse_set(Monitor *mon, int index)
696{
697 QEMUPutMouseEntry *cursor;
698 int i = 0;
699
700 if (!qemu_put_mouse_event_head) {
701 monitor_printf(mon, "No mouse devices connected\n");
702 return;
703 }
704
705 cursor = qemu_put_mouse_event_head;
706 while (cursor != NULL && index != i) {
707 i++;
708 cursor = cursor->next;
709 }
710
711 if (cursor != NULL)
712 qemu_put_mouse_event_current = cursor;
713 else
714 monitor_printf(mon, "Mouse at given index not found\n");
715}
716
717/* compute with 96 bit intermediate result: (a*b)/c */
718uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
719{
720 union {
721 uint64_t ll;
722 struct {
723#ifdef WORDS_BIGENDIAN
724 uint32_t high, low;
725#else
726 uint32_t low, high;
727#endif
728 } l;
729 } u, res;
730 uint64_t rl, rh;
731
732 u.ll = a;
733 rl = (uint64_t)u.l.low * (uint64_t)b;
734 rh = (uint64_t)u.l.high * (uint64_t)b;
735 rh += (rl >> 32);
736 res.l.high = rh / c;
737 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
738 return res.ll;
739}
740
741/***********************************************************/
742/* real time host monotonic timer */
743
744#define QEMU_TIMER_BASE 1000000000LL
745
746#ifdef WIN32
747
748static int64_t clock_freq;
749
750static void init_get_clock(void)
751{
752 LARGE_INTEGER freq;
753 int ret;
754 ret = QueryPerformanceFrequency(&freq);
755 if (ret == 0) {
756 fprintf(stderr, "Could not calibrate ticks\n");
757 exit(1);
758 }
759 clock_freq = freq.QuadPart;
760}
761
762static int64_t get_clock(void)
763{
764 LARGE_INTEGER ti;
765 QueryPerformanceCounter(&ti);
766 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
767}
768
769#else
770
771static int use_rt_clock;
772
773static void init_get_clock(void)
774{
775 use_rt_clock = 0;
776#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
777 || defined(__DragonFly__)
778 {
779 struct timespec ts;
780 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
781 use_rt_clock = 1;
782 }
783 }
784#endif
785}
786
787static int64_t get_clock(void)
788{
789#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
790 || defined(__DragonFly__)
791 if (use_rt_clock) {
792 struct timespec ts;
793 clock_gettime(CLOCK_MONOTONIC, &ts);
794 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
795 } else
796#endif
797 {
798 /* XXX: using gettimeofday leads to problems if the date
799 changes, so it should be avoided. */
800 struct timeval tv;
801 gettimeofday(&tv, NULL);
802 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
803 }
804}
805#endif
806
807/* Return the virtual CPU time, based on the instruction counter. */
808static int64_t cpu_get_icount(void)
809{
810 int64_t icount;
811 CPUState *env = cpu_single_env;;
812 icount = qemu_icount;
813 if (env) {
814 if (!can_do_io(env))
815 fprintf(stderr, "Bad clock read\n");
816 icount -= (env->icount_decr.u16.low + env->icount_extra);
817 }
818 return qemu_icount_bias + (icount << icount_time_shift);
819}
820
821/***********************************************************/
822/* guest cycle counter */
823
824static int64_t cpu_ticks_prev;
825static int64_t cpu_ticks_offset;
826static int64_t cpu_clock_offset;
827static int cpu_ticks_enabled;
828
829/* return the host CPU cycle counter and handle stop/restart */
830int64_t cpu_get_ticks(void)
831{
832 if (use_icount) {
833 return cpu_get_icount();
834 }
835 if (!cpu_ticks_enabled) {
836 return cpu_ticks_offset;
837 } else {
838 int64_t ticks;
839 ticks = cpu_get_real_ticks();
840 if (cpu_ticks_prev > ticks) {
841 /* Note: non increasing ticks may happen if the host uses
842 software suspend */
843 cpu_ticks_offset += cpu_ticks_prev - ticks;
844 }
845 cpu_ticks_prev = ticks;
846 return ticks + cpu_ticks_offset;
847 }
848}
849
850/* return the host CPU monotonic timer and handle stop/restart */
851static int64_t cpu_get_clock(void)
852{
853 int64_t ti;
854 if (!cpu_ticks_enabled) {
855 return cpu_clock_offset;
856 } else {
857 ti = get_clock();
858 return ti + cpu_clock_offset;
859 }
860}
861
862/* enable cpu_get_ticks() */
863void cpu_enable_ticks(void)
864{
865 if (!cpu_ticks_enabled) {
866 cpu_ticks_offset -= cpu_get_real_ticks();
867 cpu_clock_offset -= get_clock();
868 cpu_ticks_enabled = 1;
869 }
870}
871
872/* disable cpu_get_ticks() : the clock is stopped. You must not call
873 cpu_get_ticks() after that. */
874void cpu_disable_ticks(void)
875{
876 if (cpu_ticks_enabled) {
877 cpu_ticks_offset = cpu_get_ticks();
878 cpu_clock_offset = cpu_get_clock();
879 cpu_ticks_enabled = 0;
880 }
881}
882
883/***********************************************************/
884/* timers */
885
886#define QEMU_TIMER_REALTIME 0
887#define QEMU_TIMER_VIRTUAL 1
888
889struct QEMUClock {
890 int type;
891 /* XXX: add frequency */
892};
893
894struct QEMUTimer {
895 QEMUClock *clock;
896 int64_t expire_time;
897 QEMUTimerCB *cb;
898 void *opaque;
899 struct QEMUTimer *next;
900};
901
902struct qemu_alarm_timer {
903 char const *name;
904 unsigned int flags;
905
906 int (*start)(struct qemu_alarm_timer *t);
907 void (*stop)(struct qemu_alarm_timer *t);
908 void (*rearm)(struct qemu_alarm_timer *t);
909 void *priv;
910};
911
912#define ALARM_FLAG_DYNTICKS 0x1
913#define ALARM_FLAG_EXPIRED 0x2
914
915static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
916{
917 return t && (t->flags & ALARM_FLAG_DYNTICKS);
918}
919
920static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
921{
922 if (!alarm_has_dynticks(t))
923 return;
924
925 t->rearm(t);
926}
927
928/* TODO: MIN_TIMER_REARM_US should be optimized */
929#define MIN_TIMER_REARM_US 250
930
931static struct qemu_alarm_timer *alarm_timer;
932
933#ifdef _WIN32
934
935struct qemu_alarm_win32 {
936 MMRESULT timerId;
937 unsigned int period;
938} alarm_win32_data = {0, -1};
939
940static int win32_start_timer(struct qemu_alarm_timer *t);
941static void win32_stop_timer(struct qemu_alarm_timer *t);
942static void win32_rearm_timer(struct qemu_alarm_timer *t);
943
944#else
945
946static int unix_start_timer(struct qemu_alarm_timer *t);
947static void unix_stop_timer(struct qemu_alarm_timer *t);
948
949#ifdef __linux__
950
951static int dynticks_start_timer(struct qemu_alarm_timer *t);
952static void dynticks_stop_timer(struct qemu_alarm_timer *t);
953static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
954
955static int hpet_start_timer(struct qemu_alarm_timer *t);
956static void hpet_stop_timer(struct qemu_alarm_timer *t);
957
958static int rtc_start_timer(struct qemu_alarm_timer *t);
959static void rtc_stop_timer(struct qemu_alarm_timer *t);
960
961#endif /* __linux__ */
962
963#endif /* _WIN32 */
964
965/* Correlation between real and virtual time is always going to be
966 fairly approximate, so ignore small variation.
967 When the guest is idle real and virtual time will be aligned in
968 the IO wait loop. */
969#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
970
971static void icount_adjust(void)
972{
973 int64_t cur_time;
974 int64_t cur_icount;
975 int64_t delta;
976 static int64_t last_delta;
977 /* If the VM is not running, then do nothing. */
978 if (!vm_running)
979 return;
980
981 cur_time = cpu_get_clock();
982 cur_icount = qemu_get_clock(vm_clock);
983 delta = cur_icount - cur_time;
984 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
985 if (delta > 0
986 && last_delta + ICOUNT_WOBBLE < delta * 2
987 && icount_time_shift > 0) {
988 /* The guest is getting too far ahead. Slow time down. */
989 icount_time_shift--;
990 }
991 if (delta < 0
992 && last_delta - ICOUNT_WOBBLE > delta * 2
993 && icount_time_shift < MAX_ICOUNT_SHIFT) {
994 /* The guest is getting too far behind. Speed time up. */
995 icount_time_shift++;
996 }
997 last_delta = delta;
998 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
999}
1000
1001static void icount_adjust_rt(void * opaque)
1002{
1003 qemu_mod_timer(icount_rt_timer,
1004 qemu_get_clock(rt_clock) + 1000);
1005 icount_adjust();
1006}
1007
1008static void icount_adjust_vm(void * opaque)
1009{
1010 qemu_mod_timer(icount_vm_timer,
1011 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1012 icount_adjust();
1013}
1014
1015static void init_icount_adjust(void)
1016{
1017 /* Have both realtime and virtual time triggers for speed adjustment.
1018 The realtime trigger catches emulated time passing too slowly,
1019 the virtual time trigger catches emulated time passing too fast.
1020 Realtime triggers occur even when idle, so use them less frequently
1021 than VM triggers. */
1022 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1023 qemu_mod_timer(icount_rt_timer,
1024 qemu_get_clock(rt_clock) + 1000);
1025 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1026 qemu_mod_timer(icount_vm_timer,
1027 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1028}
1029
1030static struct qemu_alarm_timer alarm_timers[] = {
1031#ifndef _WIN32
1032#ifdef __linux__
1033 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1034 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1035 /* HPET - if available - is preferred */
1036 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1037 /* ...otherwise try RTC */
1038 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1039#endif
1040 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1041#else
1042 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1043 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1044 {"win32", 0, win32_start_timer,
1045 win32_stop_timer, NULL, &alarm_win32_data},
1046#endif
1047 {NULL, }
1048};
1049
1050static void show_available_alarms(void)
1051{
1052 int i;
1053
1054 printf("Available alarm timers, in order of precedence:\n");
1055 for (i = 0; alarm_timers[i].name; i++)
1056 printf("%s\n", alarm_timers[i].name);
1057}
1058
1059static void configure_alarms(char const *opt)
1060{
1061 int i;
1062 int cur = 0;
1063 int count = ARRAY_SIZE(alarm_timers) - 1;
1064 char *arg;
1065 char *name;
1066 struct qemu_alarm_timer tmp;
1067
1068 if (!strcmp(opt, "?")) {
1069 show_available_alarms();
1070 exit(0);
1071 }
1072
1073 arg = strdup(opt);
1074
1075 /* Reorder the array */
1076 name = strtok(arg, ",");
1077 while (name) {
1078 for (i = 0; i < count && alarm_timers[i].name; i++) {
1079 if (!strcmp(alarm_timers[i].name, name))
1080 break;
1081 }
1082
1083 if (i == count) {
1084 fprintf(stderr, "Unknown clock %s\n", name);
1085 goto next;
1086 }
1087
1088 if (i < cur)
1089 /* Ignore */
1090 goto next;
1091
1092 /* Swap */
1093 tmp = alarm_timers[i];
1094 alarm_timers[i] = alarm_timers[cur];
1095 alarm_timers[cur] = tmp;
1096
1097 cur++;
1098next:
1099 name = strtok(NULL, ",");
1100 }
1101
1102 free(arg);
1103
1104 if (cur) {
1105 /* Disable remaining timers */
1106 for (i = cur; i < count; i++)
1107 alarm_timers[i].name = NULL;
1108 } else {
1109 show_available_alarms();
1110 exit(1);
1111 }
1112}
1113
1114QEMUClock *rt_clock;
1115QEMUClock *vm_clock;
1116
1117static QEMUTimer *active_timers[2];
1118
1119static QEMUClock *qemu_new_clock(int type)
1120{
1121 QEMUClock *clock;
1122 clock = qemu_mallocz(sizeof(QEMUClock));
1123 clock->type = type;
1124 return clock;
1125}
1126
1127QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1128{
1129 QEMUTimer *ts;
1130
1131 ts = qemu_mallocz(sizeof(QEMUTimer));
1132 ts->clock = clock;
1133 ts->cb = cb;
1134 ts->opaque = opaque;
1135 return ts;
1136}
1137
1138void qemu_free_timer(QEMUTimer *ts)
1139{
1140 qemu_free(ts);
1141}
1142
1143/* stop a timer, but do not dealloc it */
1144void qemu_del_timer(QEMUTimer *ts)
1145{
1146 QEMUTimer **pt, *t;
1147
1148 /* NOTE: this code must be signal safe because
1149 qemu_timer_expired() can be called from a signal. */
1150 pt = &active_timers[ts->clock->type];
1151 for(;;) {
1152 t = *pt;
1153 if (!t)
1154 break;
1155 if (t == ts) {
1156 *pt = t->next;
1157 break;
1158 }
1159 pt = &t->next;
1160 }
1161}
1162
1163/* modify the current timer so that it will be fired when current_time
1164 >= expire_time. The corresponding callback will be called. */
1165void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1166{
1167 QEMUTimer **pt, *t;
1168
1169 qemu_del_timer(ts);
1170
1171 /* add the timer in the sorted list */
1172 /* NOTE: this code must be signal safe because
1173 qemu_timer_expired() can be called from a signal. */
1174 pt = &active_timers[ts->clock->type];
1175 for(;;) {
1176 t = *pt;
1177 if (!t)
1178 break;
1179 if (t->expire_time > expire_time)
1180 break;
1181 pt = &t->next;
1182 }
1183 ts->expire_time = expire_time;
1184 ts->next = *pt;
1185 *pt = ts;
1186
1187 /* Rearm if necessary */
1188 if (pt == &active_timers[ts->clock->type]) {
1189 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1190 qemu_rearm_alarm_timer(alarm_timer);
1191 }
1192 /* Interrupt execution to force deadline recalculation. */
1193 if (use_icount)
1194 qemu_notify_event();
1195 }
1196}
1197
1198int qemu_timer_pending(QEMUTimer *ts)
1199{
1200 QEMUTimer *t;
1201 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1202 if (t == ts)
1203 return 1;
1204 }
1205 return 0;
1206}
1207
1208static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1209{
1210 if (!timer_head)
1211 return 0;
1212 return (timer_head->expire_time <= current_time);
1213}
1214
1215static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1216{
1217 QEMUTimer *ts;
1218
1219 for(;;) {
1220 ts = *ptimer_head;
1221 if (!ts || ts->expire_time > current_time)
1222 break;
1223 /* remove timer from the list before calling the callback */
1224 *ptimer_head = ts->next;
1225 ts->next = NULL;
1226
1227 /* run the callback (the timer list can be modified) */
1228 ts->cb(ts->opaque);
1229 }
1230}
1231
1232int64_t qemu_get_clock(QEMUClock *clock)
1233{
1234 switch(clock->type) {
1235 case QEMU_TIMER_REALTIME:
1236 return get_clock() / 1000000;
1237 default:
1238 case QEMU_TIMER_VIRTUAL:
1239 if (use_icount) {
1240 return cpu_get_icount();
1241 } else {
1242 return cpu_get_clock();
1243 }
1244 }
1245}
1246
1247static void init_timers(void)
1248{
1249 init_get_clock();
1250 ticks_per_sec = QEMU_TIMER_BASE;
1251 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1252 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1253}
1254
1255/* save a timer */
1256void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1257{
1258 uint64_t expire_time;
1259
1260 if (qemu_timer_pending(ts)) {
1261 expire_time = ts->expire_time;
1262 } else {
1263 expire_time = -1;
1264 }
1265 qemu_put_be64(f, expire_time);
1266}
1267
1268void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1269{
1270 uint64_t expire_time;
1271
1272 expire_time = qemu_get_be64(f);
1273 if (expire_time != -1) {
1274 qemu_mod_timer(ts, expire_time);
1275 } else {
1276 qemu_del_timer(ts);
1277 }
1278}
1279
1280static void timer_save(QEMUFile *f, void *opaque)
1281{
1282 if (cpu_ticks_enabled) {
1283 hw_error("cannot save state if virtual timers are running");
1284 }
1285 qemu_put_be64(f, cpu_ticks_offset);
1286 qemu_put_be64(f, ticks_per_sec);
1287 qemu_put_be64(f, cpu_clock_offset);
1288}
1289
1290static int timer_load(QEMUFile *f, void *opaque, int version_id)
1291{
1292 if (version_id != 1 && version_id != 2)
1293 return -EINVAL;
1294 if (cpu_ticks_enabled) {
1295 return -EINVAL;
1296 }
1297 cpu_ticks_offset=qemu_get_be64(f);
1298 ticks_per_sec=qemu_get_be64(f);
1299 if (version_id == 2) {
1300 cpu_clock_offset=qemu_get_be64(f);
1301 }
1302 return 0;
1303}
1304
1305static void qemu_event_increment(void);
1306
1307#ifdef _WIN32
1308static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1309 DWORD_PTR dwUser, DWORD_PTR dw1,
1310 DWORD_PTR dw2)
1311#else
1312static void host_alarm_handler(int host_signum)
1313#endif
1314{
1315#if 0
1316#define DISP_FREQ 1000
1317 {
1318 static int64_t delta_min = INT64_MAX;
1319 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1320 static int count;
1321 ti = qemu_get_clock(vm_clock);
1322 if (last_clock != 0) {
1323 delta = ti - last_clock;
1324 if (delta < delta_min)
1325 delta_min = delta;
1326 if (delta > delta_max)
1327 delta_max = delta;
1328 delta_cum += delta;
1329 if (++count == DISP_FREQ) {
1330 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1331 muldiv64(delta_min, 1000000, ticks_per_sec),
1332 muldiv64(delta_max, 1000000, ticks_per_sec),
1333 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1334 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1335 count = 0;
1336 delta_min = INT64_MAX;
1337 delta_max = 0;
1338 delta_cum = 0;
1339 }
1340 }
1341 last_clock = ti;
1342 }
1343#endif
1344 if (alarm_has_dynticks(alarm_timer) ||
1345 (!use_icount &&
1346 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1347 qemu_get_clock(vm_clock))) ||
1348 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1349 qemu_get_clock(rt_clock))) {
1350 qemu_event_increment();
1351 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1352
1353#ifndef CONFIG_IOTHREAD
1354 if (next_cpu) {
1355 /* stop the currently executing cpu because a timer occured */
1356 cpu_exit(next_cpu);
1357#ifdef CONFIG_KQEMU
1358 if (next_cpu->kqemu_enabled) {
1359 kqemu_cpu_interrupt(next_cpu);
1360 }
1361#endif
1362 }
1363#endif
1364 timer_alarm_pending = 1;
1365 qemu_notify_event();
1366 }
1367}
1368
1369static int64_t qemu_next_deadline(void)
1370{
1371 int64_t delta;
1372
1373 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1374 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1375 qemu_get_clock(vm_clock);
1376 } else {
1377 /* To avoid problems with overflow limit this to 2^32. */
1378 delta = INT32_MAX;
1379 }
1380
1381 if (delta < 0)
1382 delta = 0;
1383
1384 return delta;
1385}
1386
1387#if defined(__linux__) || defined(_WIN32)
1388static uint64_t qemu_next_deadline_dyntick(void)
1389{
1390 int64_t delta;
1391 int64_t rtdelta;
1392
1393 if (use_icount)
1394 delta = INT32_MAX;
1395 else
1396 delta = (qemu_next_deadline() + 999) / 1000;
1397
1398 if (active_timers[QEMU_TIMER_REALTIME]) {
1399 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1400 qemu_get_clock(rt_clock))*1000;
1401 if (rtdelta < delta)
1402 delta = rtdelta;
1403 }
1404
1405 if (delta < MIN_TIMER_REARM_US)
1406 delta = MIN_TIMER_REARM_US;
1407
1408 return delta;
1409}
1410#endif
1411
1412#ifndef _WIN32
1413
1414/* Sets a specific flag */
1415static int fcntl_setfl(int fd, int flag)
1416{
1417 int flags;
1418
1419 flags = fcntl(fd, F_GETFL);
1420 if (flags == -1)
1421 return -errno;
1422
1423 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1424 return -errno;
1425
1426 return 0;
1427}
1428
1429#if defined(__linux__)
1430
1431#define RTC_FREQ 1024
1432
1433static void enable_sigio_timer(int fd)
1434{
1435 struct sigaction act;
1436
1437 /* timer signal */
1438 sigfillset(&act.sa_mask);
1439 act.sa_flags = 0;
1440 act.sa_handler = host_alarm_handler;
1441
1442 sigaction(SIGIO, &act, NULL);
1443 fcntl_setfl(fd, O_ASYNC);
1444 fcntl(fd, F_SETOWN, getpid());
1445}
1446
1447static int hpet_start_timer(struct qemu_alarm_timer *t)
1448{
1449 struct hpet_info info;
1450 int r, fd;
1451
1452 fd = open("/dev/hpet", O_RDONLY);
1453 if (fd < 0)
1454 return -1;
1455
1456 /* Set frequency */
1457 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1458 if (r < 0) {
1459 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1460 "error, but for better emulation accuracy type:\n"
1461 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1462 goto fail;
1463 }
1464
1465 /* Check capabilities */
1466 r = ioctl(fd, HPET_INFO, &info);
1467 if (r < 0)
1468 goto fail;
1469
1470 /* Enable periodic mode */
1471 r = ioctl(fd, HPET_EPI, 0);
1472 if (info.hi_flags && (r < 0))
1473 goto fail;
1474
1475 /* Enable interrupt */
1476 r = ioctl(fd, HPET_IE_ON, 0);
1477 if (r < 0)
1478 goto fail;
1479
1480 enable_sigio_timer(fd);
1481 t->priv = (void *)(long)fd;
1482
1483 return 0;
1484fail:
1485 close(fd);
1486 return -1;
1487}
1488
1489static void hpet_stop_timer(struct qemu_alarm_timer *t)
1490{
1491 int fd = (long)t->priv;
1492
1493 close(fd);
1494}
1495
1496static int rtc_start_timer(struct qemu_alarm_timer *t)
1497{
1498 int rtc_fd;
1499 unsigned long current_rtc_freq = 0;
1500
1501 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1502 if (rtc_fd < 0)
1503 return -1;
1504 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1505 if (current_rtc_freq != RTC_FREQ &&
1506 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1507 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1508 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1509 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1510 goto fail;
1511 }
1512 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1513 fail:
1514 close(rtc_fd);
1515 return -1;
1516 }
1517
1518 enable_sigio_timer(rtc_fd);
1519
1520 t->priv = (void *)(long)rtc_fd;
1521
1522 return 0;
1523}
1524
1525static void rtc_stop_timer(struct qemu_alarm_timer *t)
1526{
1527 int rtc_fd = (long)t->priv;
1528
1529 close(rtc_fd);
1530}
1531
1532static int dynticks_start_timer(struct qemu_alarm_timer *t)
1533{
1534 struct sigevent ev;
1535 timer_t host_timer;
1536 struct sigaction act;
1537
1538 sigfillset(&act.sa_mask);
1539 act.sa_flags = 0;
1540 act.sa_handler = host_alarm_handler;
1541
1542 sigaction(SIGALRM, &act, NULL);
1543
1544 /*
1545 * Initialize ev struct to 0 to avoid valgrind complaining
1546 * about uninitialized data in timer_create call
1547 */
1548 memset(&ev, 0, sizeof(ev));
1549 ev.sigev_value.sival_int = 0;
1550 ev.sigev_notify = SIGEV_SIGNAL;
1551 ev.sigev_signo = SIGALRM;
1552
1553 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1554 perror("timer_create");
1555
1556 /* disable dynticks */
1557 fprintf(stderr, "Dynamic Ticks disabled\n");
1558
1559 return -1;
1560 }
1561
1562 t->priv = (void *)(long)host_timer;
1563
1564 return 0;
1565}
1566
1567static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1568{
1569 timer_t host_timer = (timer_t)(long)t->priv;
1570
1571 timer_delete(host_timer);
1572}
1573
1574static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1575{
1576 timer_t host_timer = (timer_t)(long)t->priv;
1577 struct itimerspec timeout;
1578 int64_t nearest_delta_us = INT64_MAX;
1579 int64_t current_us;
1580
1581 if (!active_timers[QEMU_TIMER_REALTIME] &&
1582 !active_timers[QEMU_TIMER_VIRTUAL])
1583 return;
1584
1585 nearest_delta_us = qemu_next_deadline_dyntick();
1586
1587 /* check whether a timer is already running */
1588 if (timer_gettime(host_timer, &timeout)) {
1589 perror("gettime");
1590 fprintf(stderr, "Internal timer error: aborting\n");
1591 exit(1);
1592 }
1593 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1594 if (current_us && current_us <= nearest_delta_us)
1595 return;
1596
1597 timeout.it_interval.tv_sec = 0;
1598 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1599 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1600 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1601 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1602 perror("settime");
1603 fprintf(stderr, "Internal timer error: aborting\n");
1604 exit(1);
1605 }
1606}
1607
1608#endif /* defined(__linux__) */
1609
1610static int unix_start_timer(struct qemu_alarm_timer *t)
1611{
1612 struct sigaction act;
1613 struct itimerval itv;
1614 int err;
1615
1616 /* timer signal */
1617 sigfillset(&act.sa_mask);
1618 act.sa_flags = 0;
1619 act.sa_handler = host_alarm_handler;
1620
1621 sigaction(SIGALRM, &act, NULL);
1622
1623 itv.it_interval.tv_sec = 0;
1624 /* for i386 kernel 2.6 to get 1 ms */
1625 itv.it_interval.tv_usec = 999;
1626 itv.it_value.tv_sec = 0;
1627 itv.it_value.tv_usec = 10 * 1000;
1628
1629 err = setitimer(ITIMER_REAL, &itv, NULL);
1630 if (err)
1631 return -1;
1632
1633 return 0;
1634}
1635
1636static void unix_stop_timer(struct qemu_alarm_timer *t)
1637{
1638 struct itimerval itv;
1639
1640 memset(&itv, 0, sizeof(itv));
1641 setitimer(ITIMER_REAL, &itv, NULL);
1642}
1643
1644#endif /* !defined(_WIN32) */
1645
1646
1647#ifdef _WIN32
1648
1649static int win32_start_timer(struct qemu_alarm_timer *t)
1650{
1651 TIMECAPS tc;
1652 struct qemu_alarm_win32 *data = t->priv;
1653 UINT flags;
1654
1655 memset(&tc, 0, sizeof(tc));
1656 timeGetDevCaps(&tc, sizeof(tc));
1657
1658 if (data->period < tc.wPeriodMin)
1659 data->period = tc.wPeriodMin;
1660
1661 timeBeginPeriod(data->period);
1662
1663 flags = TIME_CALLBACK_FUNCTION;
1664 if (alarm_has_dynticks(t))
1665 flags |= TIME_ONESHOT;
1666 else
1667 flags |= TIME_PERIODIC;
1668
1669 data->timerId = timeSetEvent(1, // interval (ms)
1670 data->period, // resolution
1671 host_alarm_handler, // function
1672 (DWORD)t, // parameter
1673 flags);
1674
1675 if (!data->timerId) {
1676 perror("Failed to initialize win32 alarm timer");
1677 timeEndPeriod(data->period);
1678 return -1;
1679 }
1680
1681 return 0;
1682}
1683
1684static void win32_stop_timer(struct qemu_alarm_timer *t)
1685{
1686 struct qemu_alarm_win32 *data = t->priv;
1687
1688 timeKillEvent(data->timerId);
1689 timeEndPeriod(data->period);
1690}
1691
1692static void win32_rearm_timer(struct qemu_alarm_timer *t)
1693{
1694 struct qemu_alarm_win32 *data = t->priv;
1695 uint64_t nearest_delta_us;
1696
1697 if (!active_timers[QEMU_TIMER_REALTIME] &&
1698 !active_timers[QEMU_TIMER_VIRTUAL])
1699 return;
1700
1701 nearest_delta_us = qemu_next_deadline_dyntick();
1702 nearest_delta_us /= 1000;
1703
1704 timeKillEvent(data->timerId);
1705
1706 data->timerId = timeSetEvent(1,
1707 data->period,
1708 host_alarm_handler,
1709 (DWORD)t,
1710 TIME_ONESHOT | TIME_PERIODIC);
1711
1712 if (!data->timerId) {
1713 perror("Failed to re-arm win32 alarm timer");
1714
1715 timeEndPeriod(data->period);
1716 exit(1);
1717 }
1718}
1719
1720#endif /* _WIN32 */
1721
1722static int init_timer_alarm(void)
1723{
1724 struct qemu_alarm_timer *t = NULL;
1725 int i, err = -1;
1726
1727 for (i = 0; alarm_timers[i].name; i++) {
1728 t = &alarm_timers[i];
1729
1730 err = t->start(t);
1731 if (!err)
1732 break;
1733 }
1734
1735 if (err) {
1736 err = -ENOENT;
1737 goto fail;
1738 }
1739
1740 alarm_timer = t;
1741
1742 return 0;
1743
1744fail:
1745 return err;
1746}
1747
1748static void quit_timers(void)
1749{
1750 alarm_timer->stop(alarm_timer);
1751 alarm_timer = NULL;
1752}
1753
1754/***********************************************************/
1755/* host time/date access */
1756void qemu_get_timedate(struct tm *tm, int offset)
1757{
1758 time_t ti;
1759 struct tm *ret;
1760
1761 time(&ti);
1762 ti += offset;
1763 if (rtc_date_offset == -1) {
1764 if (rtc_utc)
1765 ret = gmtime(&ti);
1766 else
1767 ret = localtime(&ti);
1768 } else {
1769 ti -= rtc_date_offset;
1770 ret = gmtime(&ti);
1771 }
1772
1773 memcpy(tm, ret, sizeof(struct tm));
1774}
1775
1776int qemu_timedate_diff(struct tm *tm)
1777{
1778 time_t seconds;
1779
1780 if (rtc_date_offset == -1)
1781 if (rtc_utc)
1782 seconds = mktimegm(tm);
1783 else
1784 seconds = mktime(tm);
1785 else
1786 seconds = mktimegm(tm) + rtc_date_offset;
1787
1788 return seconds - time(NULL);
1789}
1790
1791#ifdef _WIN32
1792static void socket_cleanup(void)
1793{
1794 WSACleanup();
1795}
1796
1797static int socket_init(void)
1798{
1799 WSADATA Data;
1800 int ret, err;
1801
1802 ret = WSAStartup(MAKEWORD(2,2), &Data);
1803 if (ret != 0) {
1804 err = WSAGetLastError();
1805 fprintf(stderr, "WSAStartup: %d\n", err);
1806 return -1;
1807 }
1808 atexit(socket_cleanup);
1809 return 0;
1810}
1811#endif
1812
1813int get_param_value(char *buf, int buf_size,
1814 const char *tag, const char *str)
1815{
1816 const char *p;
1817 char option[128];
1818
1819 p = str;
1820 for(;;) {
1821 p = get_opt_name(option, sizeof(option), p, '=');
1822 if (*p != '=')
1823 break;
1824 p++;
1825 if (!strcmp(tag, option)) {
1826 (void)get_opt_value(buf, buf_size, p);
1827 return strlen(buf);
1828 } else {
1829 p = get_opt_value(NULL, 0, p);
1830 }
1831 if (*p != ',')
1832 break;
1833 p++;
1834 }
1835 return 0;
1836}
1837
1838int check_params(const char * const *params, const char *str)
1839{
1840 int name_buf_size = 1;
1841 const char *p;
1842 char *name_buf;
1843 int i, len;
1844 int ret = 0;
1845
1846 for (i = 0; params[i] != NULL; i++) {
1847 len = strlen(params[i]) + 1;
1848 if (len > name_buf_size) {
1849 name_buf_size = len;
1850 }
1851 }
1852 name_buf = qemu_malloc(name_buf_size);
1853
1854 p = str;
1855 while (*p != '\0') {
1856 p = get_opt_name(name_buf, name_buf_size, p, '=');
1857 if (*p != '=') {
1858 ret = -1;
1859 break;
1860 }
1861 p++;
1862 for(i = 0; params[i] != NULL; i++)
1863 if (!strcmp(params[i], name_buf))
1864 break;
1865 if (params[i] == NULL) {
1866 ret = -1;
1867 break;
1868 }
1869 p = get_opt_value(NULL, 0, p);
1870 if (*p != ',')
1871 break;
1872 p++;
1873 }
1874
1875 qemu_free(name_buf);
1876 return ret;
1877}
1878
1879/***********************************************************/
1880/* Bluetooth support */
1881static int nb_hcis;
1882static int cur_hci;
1883static struct HCIInfo *hci_table[MAX_NICS];
1884
1885static struct bt_vlan_s {
1886 struct bt_scatternet_s net;
1887 int id;
1888 struct bt_vlan_s *next;
1889} *first_bt_vlan;
1890
1891/* find or alloc a new bluetooth "VLAN" */
1892static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1893{
1894 struct bt_vlan_s **pvlan, *vlan;
1895 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1896 if (vlan->id == id)
1897 return &vlan->net;
1898 }
1899 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1900 vlan->id = id;
1901 pvlan = &first_bt_vlan;
1902 while (*pvlan != NULL)
1903 pvlan = &(*pvlan)->next;
1904 *pvlan = vlan;
1905 return &vlan->net;
1906}
1907
1908static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1909{
1910}
1911
1912static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1913{
1914 return -ENOTSUP;
1915}
1916
1917static struct HCIInfo null_hci = {
1918 .cmd_send = null_hci_send,
1919 .sco_send = null_hci_send,
1920 .acl_send = null_hci_send,
1921 .bdaddr_set = null_hci_addr_set,
1922};
1923
1924struct HCIInfo *qemu_next_hci(void)
1925{
1926 if (cur_hci == nb_hcis)
1927 return &null_hci;
1928
1929 return hci_table[cur_hci++];
1930}
1931
1932static struct HCIInfo *hci_init(const char *str)
1933{
1934 char *endp;
1935 struct bt_scatternet_s *vlan = 0;
1936
1937 if (!strcmp(str, "null"))
1938 /* null */
1939 return &null_hci;
1940 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1941 /* host[:hciN] */
1942 return bt_host_hci(str[4] ? str + 5 : "hci0");
1943 else if (!strncmp(str, "hci", 3)) {
1944 /* hci[,vlan=n] */
1945 if (str[3]) {
1946 if (!strncmp(str + 3, ",vlan=", 6)) {
1947 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1948 if (*endp)
1949 vlan = 0;
1950 }
1951 } else
1952 vlan = qemu_find_bt_vlan(0);
1953 if (vlan)
1954 return bt_new_hci(vlan);
1955 }
1956
1957 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1958
1959 return 0;
1960}
1961
1962static int bt_hci_parse(const char *str)
1963{
1964 struct HCIInfo *hci;
1965 bdaddr_t bdaddr;
1966
1967 if (nb_hcis >= MAX_NICS) {
1968 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1969 return -1;
1970 }
1971
1972 hci = hci_init(str);
1973 if (!hci)
1974 return -1;
1975
1976 bdaddr.b[0] = 0x52;
1977 bdaddr.b[1] = 0x54;
1978 bdaddr.b[2] = 0x00;
1979 bdaddr.b[3] = 0x12;
1980 bdaddr.b[4] = 0x34;
1981 bdaddr.b[5] = 0x56 + nb_hcis;
1982 hci->bdaddr_set(hci, bdaddr.b);
1983
1984 hci_table[nb_hcis++] = hci;
1985
1986 return 0;
1987}
1988
1989static void bt_vhci_add(int vlan_id)
1990{
1991 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1992
1993 if (!vlan->slave)
1994 fprintf(stderr, "qemu: warning: adding a VHCI to "
1995 "an empty scatternet %i\n", vlan_id);
1996
1997 bt_vhci_init(bt_new_hci(vlan));
1998}
1999
2000static struct bt_device_s *bt_device_add(const char *opt)
2001{
2002 struct bt_scatternet_s *vlan;
2003 int vlan_id = 0;
2004 char *endp = strstr(opt, ",vlan=");
2005 int len = (endp ? endp - opt : strlen(opt)) + 1;
2006 char devname[10];
2007
2008 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2009
2010 if (endp) {
2011 vlan_id = strtol(endp + 6, &endp, 0);
2012 if (*endp) {
2013 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2014 return 0;
2015 }
2016 }
2017
2018 vlan = qemu_find_bt_vlan(vlan_id);
2019
2020 if (!vlan->slave)
2021 fprintf(stderr, "qemu: warning: adding a slave device to "
2022 "an empty scatternet %i\n", vlan_id);
2023
2024 if (!strcmp(devname, "keyboard"))
2025 return bt_keyboard_init(vlan);
2026
2027 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2028 return 0;
2029}
2030
2031static int bt_parse(const char *opt)
2032{
2033 const char *endp, *p;
2034 int vlan;
2035
2036 if (strstart(opt, "hci", &endp)) {
2037 if (!*endp || *endp == ',') {
2038 if (*endp)
2039 if (!strstart(endp, ",vlan=", 0))
2040 opt = endp + 1;
2041
2042 return bt_hci_parse(opt);
2043 }
2044 } else if (strstart(opt, "vhci", &endp)) {
2045 if (!*endp || *endp == ',') {
2046 if (*endp) {
2047 if (strstart(endp, ",vlan=", &p)) {
2048 vlan = strtol(p, (char **) &endp, 0);
2049 if (*endp) {
2050 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2051 return 1;
2052 }
2053 } else {
2054 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2055 return 1;
2056 }
2057 } else
2058 vlan = 0;
2059
2060 bt_vhci_add(vlan);
2061 return 0;
2062 }
2063 } else if (strstart(opt, "device:", &endp))
2064 return !bt_device_add(endp);
2065
2066 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2067 return 1;
2068}
2069
2070/***********************************************************/
2071/* QEMU Block devices */
2072
2073#define HD_ALIAS "index=%d,media=disk"
2074#define CDROM_ALIAS "index=2,media=cdrom"
2075#define FD_ALIAS "index=%d,if=floppy"
2076#define PFLASH_ALIAS "if=pflash"
2077#define MTD_ALIAS "if=mtd"
2078#define SD_ALIAS "index=0,if=sd"
2079
2080static int drive_opt_get_free_idx(void)
2081{
2082 int index;
2083
2084 for (index = 0; index < MAX_DRIVES; index++)
2085 if (!drives_opt[index].used) {
2086 drives_opt[index].used = 1;
2087 return index;
2088 }
2089
2090 return -1;
2091}
2092
2093static int drive_get_free_idx(void)
2094{
2095 int index;
2096
2097 for (index = 0; index < MAX_DRIVES; index++)
2098 if (!drives_table[index].used) {
2099 drives_table[index].used = 1;
2100 return index;
2101 }
2102
2103 return -1;
2104}
2105
2106int drive_add(const char *file, const char *fmt, ...)
2107{
2108 va_list ap;
2109 int index = drive_opt_get_free_idx();
2110
2111 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2112 fprintf(stderr, "qemu: too many drives\n");
2113 return -1;
2114 }
2115
2116 drives_opt[index].file = file;
2117 va_start(ap, fmt);
2118 vsnprintf(drives_opt[index].opt,
2119 sizeof(drives_opt[0].opt), fmt, ap);
2120 va_end(ap);
2121
2122 nb_drives_opt++;
2123 return index;
2124}
2125
2126void drive_remove(int index)
2127{
2128 drives_opt[index].used = 0;
2129 nb_drives_opt--;
2130}
2131
2132int drive_get_index(BlockInterfaceType type, int bus, int unit)
2133{
2134 int index;
2135
2136 /* seek interface, bus and unit */
2137
2138 for (index = 0; index < MAX_DRIVES; index++)
2139 if (drives_table[index].type == type &&
2140 drives_table[index].bus == bus &&
2141 drives_table[index].unit == unit &&
2142 drives_table[index].used)
2143 return index;
2144
2145 return -1;
2146}
2147
2148int drive_get_max_bus(BlockInterfaceType type)
2149{
2150 int max_bus;
2151 int index;
2152
2153 max_bus = -1;
2154 for (index = 0; index < nb_drives; index++) {
2155 if(drives_table[index].type == type &&
2156 drives_table[index].bus > max_bus)
2157 max_bus = drives_table[index].bus;
2158 }
2159 return max_bus;
2160}
2161
2162const char *drive_get_serial(BlockDriverState *bdrv)
2163{
2164 int index;
2165
2166 for (index = 0; index < nb_drives; index++)
2167 if (drives_table[index].bdrv == bdrv)
2168 return drives_table[index].serial;
2169
2170 return "\0";
2171}
2172
2173BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2174{
2175 int index;
2176
2177 for (index = 0; index < nb_drives; index++)
2178 if (drives_table[index].bdrv == bdrv)
2179 return drives_table[index].onerror;
2180
2181 return BLOCK_ERR_STOP_ENOSPC;
2182}
2183
2184static void bdrv_format_print(void *opaque, const char *name)
2185{
2186 fprintf(stderr, " %s", name);
2187}
2188
2189void drive_uninit(BlockDriverState *bdrv)
2190{
2191 int i;
2192
2193 for (i = 0; i < MAX_DRIVES; i++)
2194 if (drives_table[i].bdrv == bdrv) {
2195 drives_table[i].bdrv = NULL;
2196 drives_table[i].used = 0;
2197 drive_remove(drives_table[i].drive_opt_idx);
2198 nb_drives--;
2199 break;
2200 }
2201}
2202
2203int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2204{
2205 char buf[128];
2206 char file[1024];
2207 char devname[128];
2208 char serial[21];
2209 const char *mediastr = "";
2210 BlockInterfaceType type;
2211 enum { MEDIA_DISK, MEDIA_CDROM } media;
2212 int bus_id, unit_id;
2213 int cyls, heads, secs, translation;
2214 BlockDriverState *bdrv;
2215 BlockDriver *drv = NULL;
2216 QEMUMachine *machine = opaque;
2217 int max_devs;
2218 int index;
2219 int cache;
2220 int bdrv_flags, onerror;
2221 int drives_table_idx;
2222 char *str = arg->opt;
2223 static const char * const params[] = { "bus", "unit", "if", "index",
2224 "cyls", "heads", "secs", "trans",
2225 "media", "snapshot", "file",
2226 "cache", "format", "serial", "werror",
2227 NULL };
2228
2229 if (check_params(params, str) < 0) {
2230 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2231 buf, str);
2232 return -1;
2233 }
2234
2235 file[0] = 0;
2236 cyls = heads = secs = 0;
2237 bus_id = 0;
2238 unit_id = -1;
2239 translation = BIOS_ATA_TRANSLATION_AUTO;
2240 index = -1;
2241 cache = 3;
2242
2243 if (machine->use_scsi) {
2244 type = IF_SCSI;
2245 max_devs = MAX_SCSI_DEVS;
2246 pstrcpy(devname, sizeof(devname), "scsi");
2247 } else {
2248 type = IF_IDE;
2249 max_devs = MAX_IDE_DEVS;
2250 pstrcpy(devname, sizeof(devname), "ide");
2251 }
2252 media = MEDIA_DISK;
2253
2254 /* extract parameters */
2255
2256 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2257 bus_id = strtol(buf, NULL, 0);
2258 if (bus_id < 0) {
2259 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2260 return -1;
2261 }
2262 }
2263
2264 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2265 unit_id = strtol(buf, NULL, 0);
2266 if (unit_id < 0) {
2267 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2268 return -1;
2269 }
2270 }
2271
2272 if (get_param_value(buf, sizeof(buf), "if", str)) {
2273 pstrcpy(devname, sizeof(devname), buf);
2274 if (!strcmp(buf, "ide")) {
2275 type = IF_IDE;
2276 max_devs = MAX_IDE_DEVS;
2277 } else if (!strcmp(buf, "scsi")) {
2278 type = IF_SCSI;
2279 max_devs = MAX_SCSI_DEVS;
2280 } else if (!strcmp(buf, "floppy")) {
2281 type = IF_FLOPPY;
2282 max_devs = 0;
2283 } else if (!strcmp(buf, "pflash")) {
2284 type = IF_PFLASH;
2285 max_devs = 0;
2286 } else if (!strcmp(buf, "mtd")) {
2287 type = IF_MTD;
2288 max_devs = 0;
2289 } else if (!strcmp(buf, "sd")) {
2290 type = IF_SD;
2291 max_devs = 0;
2292 } else if (!strcmp(buf, "virtio")) {
2293 type = IF_VIRTIO;
2294 max_devs = 0;
2295 } else if (!strcmp(buf, "xen")) {
2296 type = IF_XEN;
2297 max_devs = 0;
2298 } else {
2299 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2300 return -1;
2301 }
2302 }
2303
2304 if (get_param_value(buf, sizeof(buf), "index", str)) {
2305 index = strtol(buf, NULL, 0);
2306 if (index < 0) {
2307 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2308 return -1;
2309 }
2310 }
2311
2312 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2313 cyls = strtol(buf, NULL, 0);
2314 }
2315
2316 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2317 heads = strtol(buf, NULL, 0);
2318 }
2319
2320 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2321 secs = strtol(buf, NULL, 0);
2322 }
2323
2324 if (cyls || heads || secs) {
2325 if (cyls < 1 || cyls > 16383) {
2326 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2327 return -1;
2328 }
2329 if (heads < 1 || heads > 16) {
2330 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2331 return -1;
2332 }
2333 if (secs < 1 || secs > 63) {
2334 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2335 return -1;
2336 }
2337 }
2338
2339 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2340 if (!cyls) {
2341 fprintf(stderr,
2342 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2343 str);
2344 return -1;
2345 }
2346 if (!strcmp(buf, "none"))
2347 translation = BIOS_ATA_TRANSLATION_NONE;
2348 else if (!strcmp(buf, "lba"))
2349 translation = BIOS_ATA_TRANSLATION_LBA;
2350 else if (!strcmp(buf, "auto"))
2351 translation = BIOS_ATA_TRANSLATION_AUTO;
2352 else {
2353 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2354 return -1;
2355 }
2356 }
2357
2358 if (get_param_value(buf, sizeof(buf), "media", str)) {
2359 if (!strcmp(buf, "disk")) {
2360 media = MEDIA_DISK;
2361 } else if (!strcmp(buf, "cdrom")) {
2362 if (cyls || secs || heads) {
2363 fprintf(stderr,
2364 "qemu: '%s' invalid physical CHS format\n", str);
2365 return -1;
2366 }
2367 media = MEDIA_CDROM;
2368 } else {
2369 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2370 return -1;
2371 }
2372 }
2373
2374 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2375 if (!strcmp(buf, "on"))
2376 snapshot = 1;
2377 else if (!strcmp(buf, "off"))
2378 snapshot = 0;
2379 else {
2380 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2381 return -1;
2382 }
2383 }
2384
2385 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2386 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2387 cache = 0;
2388 else if (!strcmp(buf, "writethrough"))
2389 cache = 1;
2390 else if (!strcmp(buf, "writeback"))
2391 cache = 2;
2392 else {
2393 fprintf(stderr, "qemu: invalid cache option\n");
2394 return -1;
2395 }
2396 }
2397
2398 if (get_param_value(buf, sizeof(buf), "format", str)) {
2399 if (strcmp(buf, "?") == 0) {
2400 fprintf(stderr, "qemu: Supported formats:");
2401 bdrv_iterate_format(bdrv_format_print, NULL);
2402 fprintf(stderr, "\n");
2403 return -1;
2404 }
2405 drv = bdrv_find_format(buf);
2406 if (!drv) {
2407 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2408 return -1;
2409 }
2410 }
2411
2412 if (arg->file == NULL)
2413 get_param_value(file, sizeof(file), "file", str);
2414 else
2415 pstrcpy(file, sizeof(file), arg->file);
2416
2417 if (!get_param_value(serial, sizeof(serial), "serial", str))
2418 memset(serial, 0, sizeof(serial));
2419
2420 onerror = BLOCK_ERR_STOP_ENOSPC;
2421 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2422 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2423 fprintf(stderr, "werror is no supported by this format\n");
2424 return -1;
2425 }
2426 if (!strcmp(buf, "ignore"))
2427 onerror = BLOCK_ERR_IGNORE;
2428 else if (!strcmp(buf, "enospc"))
2429 onerror = BLOCK_ERR_STOP_ENOSPC;
2430 else if (!strcmp(buf, "stop"))
2431 onerror = BLOCK_ERR_STOP_ANY;
2432 else if (!strcmp(buf, "report"))
2433 onerror = BLOCK_ERR_REPORT;
2434 else {
2435 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2436 return -1;
2437 }
2438 }
2439
2440 /* compute bus and unit according index */
2441
2442 if (index != -1) {
2443 if (bus_id != 0 || unit_id != -1) {
2444 fprintf(stderr,
2445 "qemu: '%s' index cannot be used with bus and unit\n", str);
2446 return -1;
2447 }
2448 if (max_devs == 0)
2449 {
2450 unit_id = index;
2451 bus_id = 0;
2452 } else {
2453 unit_id = index % max_devs;
2454 bus_id = index / max_devs;
2455 }
2456 }
2457
2458 /* if user doesn't specify a unit_id,
2459 * try to find the first free
2460 */
2461
2462 if (unit_id == -1) {
2463 unit_id = 0;
2464 while (drive_get_index(type, bus_id, unit_id) != -1) {
2465 unit_id++;
2466 if (max_devs && unit_id >= max_devs) {
2467 unit_id -= max_devs;
2468 bus_id++;
2469 }
2470 }
2471 }
2472
2473 /* check unit id */
2474
2475 if (max_devs && unit_id >= max_devs) {
2476 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2477 str, unit_id, max_devs - 1);
2478 return -1;
2479 }
2480
2481 /*
2482 * ignore multiple definitions
2483 */
2484
2485 if (drive_get_index(type, bus_id, unit_id) != -1)
2486 return -2;
2487
2488 /* init */
2489
2490 if (type == IF_IDE || type == IF_SCSI)
2491 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2492 if (max_devs)
2493 snprintf(buf, sizeof(buf), "%s%i%s%i",
2494 devname, bus_id, mediastr, unit_id);
2495 else
2496 snprintf(buf, sizeof(buf), "%s%s%i",
2497 devname, mediastr, unit_id);
2498 bdrv = bdrv_new(buf);
2499 drives_table_idx = drive_get_free_idx();
2500 drives_table[drives_table_idx].bdrv = bdrv;
2501 drives_table[drives_table_idx].type = type;
2502 drives_table[drives_table_idx].bus = bus_id;
2503 drives_table[drives_table_idx].unit = unit_id;
2504 drives_table[drives_table_idx].onerror = onerror;
2505 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2506 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2507 nb_drives++;
2508
2509 switch(type) {
2510 case IF_IDE:
2511 case IF_SCSI:
2512 case IF_XEN:
2513 switch(media) {
2514 case MEDIA_DISK:
2515 if (cyls != 0) {
2516 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2517 bdrv_set_translation_hint(bdrv, translation);
2518 }
2519 break;
2520 case MEDIA_CDROM:
2521 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2522 break;
2523 }
2524 break;
2525 case IF_SD:
2526 /* FIXME: This isn't really a floppy, but it's a reasonable
2527 approximation. */
2528 case IF_FLOPPY:
2529 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2530 break;
2531 case IF_PFLASH:
2532 case IF_MTD:
2533 case IF_VIRTIO:
2534 break;
2535 case IF_COUNT:
2536 abort();
2537 }
2538 if (!file[0])
2539 return -2;
2540 bdrv_flags = 0;
2541 if (snapshot) {
2542 bdrv_flags |= BDRV_O_SNAPSHOT;
2543 cache = 2; /* always use write-back with snapshot */
2544 }
2545 if (cache == 0) /* no caching */
2546 bdrv_flags |= BDRV_O_NOCACHE;
2547 else if (cache == 2) /* write-back */
2548 bdrv_flags |= BDRV_O_CACHE_WB;
2549 else if (cache == 3) /* not specified */
2550 bdrv_flags |= BDRV_O_CACHE_DEF;
2551 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2552 fprintf(stderr, "qemu: could not open disk image %s\n",
2553 file);
2554 return -1;
2555 }
2556 if (bdrv_key_required(bdrv))
2557 autostart = 0;
2558 return drives_table_idx;
2559}
2560
2561static void numa_add(const char *optarg)
2562{
2563 char option[128];
2564 char *endptr;
2565 unsigned long long value, endvalue;
2566 int nodenr;
2567
2568 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2569 if (!strcmp(option, "node")) {
2570 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2571 nodenr = nb_numa_nodes;
2572 } else {
2573 nodenr = strtoull(option, NULL, 10);
2574 }
2575
2576 if (get_param_value(option, 128, "mem", optarg) == 0) {
2577 node_mem[nodenr] = 0;
2578 } else {
2579 value = strtoull(option, &endptr, 0);
2580 switch (*endptr) {
2581 case 0: case 'M': case 'm':
2582 value <<= 20;
2583 break;
2584 case 'G': case 'g':
2585 value <<= 30;
2586 break;
2587 }
2588 node_mem[nodenr] = value;
2589 }
2590 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2591 node_cpumask[nodenr] = 0;
2592 } else {
2593 value = strtoull(option, &endptr, 10);
2594 if (value >= 64) {
2595 value = 63;
2596 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2597 } else {
2598 if (*endptr == '-') {
2599 endvalue = strtoull(endptr+1, &endptr, 10);
2600 if (endvalue >= 63) {
2601 endvalue = 62;
2602 fprintf(stderr,
2603 "only 63 CPUs in NUMA mode supported.\n");
2604 }
2605 value = (1 << (endvalue + 1)) - (1 << value);
2606 } else {
2607 value = 1 << value;
2608 }
2609 }
2610 node_cpumask[nodenr] = value;
2611 }
2612 nb_numa_nodes++;
2613 }
2614 return;
2615}
2616
2617/***********************************************************/
2618/* USB devices */
2619
2620static USBPort *used_usb_ports;
2621static USBPort *free_usb_ports;
2622
2623/* ??? Maybe change this to register a hub to keep track of the topology. */
2624void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2625 usb_attachfn attach)
2626{
2627 port->opaque = opaque;
2628 port->index = index;
2629 port->attach = attach;
2630 port->next = free_usb_ports;
2631 free_usb_ports = port;
2632}
2633
2634int usb_device_add_dev(USBDevice *dev)
2635{
2636 USBPort *port;
2637
2638 /* Find a USB port to add the device to. */
2639 port = free_usb_ports;
2640 if (!port->next) {
2641 USBDevice *hub;
2642
2643 /* Create a new hub and chain it on. */
2644 free_usb_ports = NULL;
2645 port->next = used_usb_ports;
2646 used_usb_ports = port;
2647
2648 hub = usb_hub_init(VM_USB_HUB_SIZE);
2649 usb_attach(port, hub);
2650 port = free_usb_ports;
2651 }
2652
2653 free_usb_ports = port->next;
2654 port->next = used_usb_ports;
2655 used_usb_ports = port;
2656 usb_attach(port, dev);
2657 return 0;
2658}
2659
2660static void usb_msd_password_cb(void *opaque, int err)
2661{
2662 USBDevice *dev = opaque;
2663
2664 if (!err)
2665 usb_device_add_dev(dev);
2666 else
2667 dev->handle_destroy(dev);
2668}
2669
2670static int usb_device_add(const char *devname, int is_hotplug)
2671{
2672 const char *p;
2673 USBDevice *dev;
2674
2675 if (!free_usb_ports)
2676 return -1;
2677
2678 if (strstart(devname, "host:", &p)) {
2679 dev = usb_host_device_open(p);
2680 } else if (!strcmp(devname, "mouse")) {
2681 dev = usb_mouse_init();
2682 } else if (!strcmp(devname, "tablet")) {
2683 dev = usb_tablet_init();
2684 } else if (!strcmp(devname, "keyboard")) {
2685 dev = usb_keyboard_init();
2686 } else if (strstart(devname, "disk:", &p)) {
2687 BlockDriverState *bs;
2688
2689 dev = usb_msd_init(p);
2690 if (!dev)
2691 return -1;
2692 bs = usb_msd_get_bdrv(dev);
2693 if (bdrv_key_required(bs)) {
2694 autostart = 0;
2695 if (is_hotplug) {
2696 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2697 dev);
2698 return 0;
2699 }
2700 }
2701 } else if (!strcmp(devname, "wacom-tablet")) {
2702 dev = usb_wacom_init();
2703 } else if (strstart(devname, "serial:", &p)) {
2704 dev = usb_serial_init(p);
2705#ifdef CONFIG_BRLAPI
2706 } else if (!strcmp(devname, "braille")) {
2707 dev = usb_baum_init();
2708#endif
2709 } else if (strstart(devname, "net:", &p)) {
2710 int nic = nb_nics;
2711
2712 if (net_client_init("nic", p) < 0)
2713 return -1;
2714 nd_table[nic].model = "usb";
2715 dev = usb_net_init(&nd_table[nic]);
2716 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2717 dev = usb_bt_init(devname[2] ? hci_init(p) :
2718 bt_new_hci(qemu_find_bt_vlan(0)));
2719 } else {
2720 return -1;
2721 }
2722 if (!dev)
2723 return -1;
2724
2725 return usb_device_add_dev(dev);
2726}
2727
2728int usb_device_del_addr(int bus_num, int addr)
2729{
2730 USBPort *port;
2731 USBPort **lastp;
2732 USBDevice *dev;
2733
2734 if (!used_usb_ports)
2735 return -1;
2736
2737 if (bus_num != 0)
2738 return -1;
2739
2740 lastp = &used_usb_ports;
2741 port = used_usb_ports;
2742 while (port && port->dev->addr != addr) {
2743 lastp = &port->next;
2744 port = port->next;
2745 }
2746
2747 if (!port)
2748 return -1;
2749
2750 dev = port->dev;
2751 *lastp = port->next;
2752 usb_attach(port, NULL);
2753 dev->handle_destroy(dev);
2754 port->next = free_usb_ports;
2755 free_usb_ports = port;
2756 return 0;
2757}
2758
2759static int usb_device_del(const char *devname)
2760{
2761 int bus_num, addr;
2762 const char *p;
2763
2764 if (strstart(devname, "host:", &p))
2765 return usb_host_device_close(p);
2766
2767 if (!used_usb_ports)
2768 return -1;
2769
2770 p = strchr(devname, '.');
2771 if (!p)
2772 return -1;
2773 bus_num = strtoul(devname, NULL, 0);
2774 addr = strtoul(p + 1, NULL, 0);
2775
2776 return usb_device_del_addr(bus_num, addr);
2777}
2778
2779void do_usb_add(Monitor *mon, const char *devname)
2780{
2781 usb_device_add(devname, 1);
2782}
2783
2784void do_usb_del(Monitor *mon, const char *devname)
2785{
2786 usb_device_del(devname);
2787}
2788
2789void usb_info(Monitor *mon)
2790{
2791 USBDevice *dev;
2792 USBPort *port;
2793 const char *speed_str;
2794
2795 if (!usb_enabled) {
2796 monitor_printf(mon, "USB support not enabled\n");
2797 return;
2798 }
2799
2800 for (port = used_usb_ports; port; port = port->next) {
2801 dev = port->dev;
2802 if (!dev)
2803 continue;
2804 switch(dev->speed) {
2805 case USB_SPEED_LOW:
2806 speed_str = "1.5";
2807 break;
2808 case USB_SPEED_FULL:
2809 speed_str = "12";
2810 break;
2811 case USB_SPEED_HIGH:
2812 speed_str = "480";
2813 break;
2814 default:
2815 speed_str = "?";
2816 break;
2817 }
2818 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2819 0, dev->addr, speed_str, dev->devname);
2820 }
2821}
2822
2823/***********************************************************/
2824/* PCMCIA/Cardbus */
2825
2826static struct pcmcia_socket_entry_s {
2827 PCMCIASocket *socket;
2828 struct pcmcia_socket_entry_s *next;
2829} *pcmcia_sockets = 0;
2830
2831void pcmcia_socket_register(PCMCIASocket *socket)
2832{
2833 struct pcmcia_socket_entry_s *entry;
2834
2835 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2836 entry->socket = socket;
2837 entry->next = pcmcia_sockets;
2838 pcmcia_sockets = entry;
2839}
2840
2841void pcmcia_socket_unregister(PCMCIASocket *socket)
2842{
2843 struct pcmcia_socket_entry_s *entry, **ptr;
2844
2845 ptr = &pcmcia_sockets;
2846 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2847 if (entry->socket == socket) {
2848 *ptr = entry->next;
2849 qemu_free(entry);
2850 }
2851}
2852
2853void pcmcia_info(Monitor *mon)
2854{
2855 struct pcmcia_socket_entry_s *iter;
2856
2857 if (!pcmcia_sockets)
2858 monitor_printf(mon, "No PCMCIA sockets\n");
2859
2860 for (iter = pcmcia_sockets; iter; iter = iter->next)
2861 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2862 iter->socket->attached ? iter->socket->card_string :
2863 "Empty");
2864}
2865
2866/***********************************************************/
2867/* register display */
2868
2869struct DisplayAllocator default_allocator = {
2870 defaultallocator_create_displaysurface,
2871 defaultallocator_resize_displaysurface,
2872 defaultallocator_free_displaysurface
2873};
2874
2875void register_displaystate(DisplayState *ds)
2876{
2877 DisplayState **s;
2878 s = &display_state;
2879 while (*s != NULL)
2880 s = &(*s)->next;
2881 ds->next = NULL;
2882 *s = ds;
2883}
2884
2885DisplayState *get_displaystate(void)
2886{
2887 return display_state;
2888}
2889
2890DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2891{
2892 if(ds->allocator == &default_allocator) ds->allocator = da;
2893 return ds->allocator;
2894}
2895
2896/* dumb display */
2897
2898static void dumb_display_init(void)
2899{
2900 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2901 ds->allocator = &default_allocator;
2902 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2903 register_displaystate(ds);
2904}
2905
2906/***********************************************************/
2907/* I/O handling */
2908
2909typedef struct IOHandlerRecord {
2910 int fd;
2911 IOCanRWHandler *fd_read_poll;
2912 IOHandler *fd_read;
2913 IOHandler *fd_write;
2914 int deleted;
2915 void *opaque;
2916 /* temporary data */
2917 struct pollfd *ufd;
2918 struct IOHandlerRecord *next;
2919} IOHandlerRecord;
2920
2921static IOHandlerRecord *first_io_handler;
2922
2923/* XXX: fd_read_poll should be suppressed, but an API change is
2924 necessary in the character devices to suppress fd_can_read(). */
2925int qemu_set_fd_handler2(int fd,
2926 IOCanRWHandler *fd_read_poll,
2927 IOHandler *fd_read,
2928 IOHandler *fd_write,
2929 void *opaque)
2930{
2931 IOHandlerRecord **pioh, *ioh;
2932
2933 if (!fd_read && !fd_write) {
2934 pioh = &first_io_handler;
2935 for(;;) {
2936 ioh = *pioh;
2937 if (ioh == NULL)
2938 break;
2939 if (ioh->fd == fd) {
2940 ioh->deleted = 1;
2941 break;
2942 }
2943 pioh = &ioh->next;
2944 }
2945 } else {
2946 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2947 if (ioh->fd == fd)
2948 goto found;
2949 }
2950 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2951 ioh->next = first_io_handler;
2952 first_io_handler = ioh;
2953 found:
2954 ioh->fd = fd;
2955 ioh->fd_read_poll = fd_read_poll;
2956 ioh->fd_read = fd_read;
2957 ioh->fd_write = fd_write;
2958 ioh->opaque = opaque;
2959 ioh->deleted = 0;
2960 }
2961 return 0;
2962}
2963
2964int qemu_set_fd_handler(int fd,
2965 IOHandler *fd_read,
2966 IOHandler *fd_write,
2967 void *opaque)
2968{
2969 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2970}
2971
2972#ifdef _WIN32
2973/***********************************************************/
2974/* Polling handling */
2975
2976typedef struct PollingEntry {
2977 PollingFunc *func;
2978 void *opaque;
2979 struct PollingEntry *next;
2980} PollingEntry;
2981
2982static PollingEntry *first_polling_entry;
2983
2984int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2985{
2986 PollingEntry **ppe, *pe;
2987 pe = qemu_mallocz(sizeof(PollingEntry));
2988 pe->func = func;
2989 pe->opaque = opaque;
2990 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2991 *ppe = pe;
2992 return 0;
2993}
2994
2995void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2996{
2997 PollingEntry **ppe, *pe;
2998 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2999 pe = *ppe;
3000 if (pe->func == func && pe->opaque == opaque) {
3001 *ppe = pe->next;
3002 qemu_free(pe);
3003 break;
3004 }
3005 }
3006}
3007
3008/***********************************************************/
3009/* Wait objects support */
3010typedef struct WaitObjects {
3011 int num;
3012 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3013 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3014 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3015} WaitObjects;
3016
3017static WaitObjects wait_objects = {0};
3018
3019int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3020{
3021 WaitObjects *w = &wait_objects;
3022
3023 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3024 return -1;
3025 w->events[w->num] = handle;
3026 w->func[w->num] = func;
3027 w->opaque[w->num] = opaque;
3028 w->num++;
3029 return 0;
3030}
3031
3032void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3033{
3034 int i, found;
3035 WaitObjects *w = &wait_objects;
3036
3037 found = 0;
3038 for (i = 0; i < w->num; i++) {
3039 if (w->events[i] == handle)
3040 found = 1;
3041 if (found) {
3042 w->events[i] = w->events[i + 1];
3043 w->func[i] = w->func[i + 1];
3044 w->opaque[i] = w->opaque[i + 1];
3045 }
3046 }
3047 if (found)
3048 w->num--;
3049}
3050#endif
3051
3052/***********************************************************/
3053/* ram save/restore */
3054
3055static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3056{
3057 int v;
3058
3059 v = qemu_get_byte(f);
3060 switch(v) {
3061 case 0:
3062 if (qemu_get_buffer(f, buf, len) != len)
3063 return -EIO;
3064 break;
3065 case 1:
3066 v = qemu_get_byte(f);
3067 memset(buf, v, len);
3068 break;
3069 default:
3070 return -EINVAL;
3071 }
3072
3073 if (qemu_file_has_error(f))
3074 return -EIO;
3075
3076 return 0;
3077}
3078
3079static int ram_load_v1(QEMUFile *f, void *opaque)
3080{
3081 int ret;
3082 ram_addr_t i;
3083
3084 if (qemu_get_be32(f) != last_ram_offset)
3085 return -EINVAL;
3086 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3087 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3088 if (ret)
3089 return ret;
3090 }
3091 return 0;
3092}
3093
3094#define BDRV_HASH_BLOCK_SIZE 1024
3095#define IOBUF_SIZE 4096
3096#define RAM_CBLOCK_MAGIC 0xfabe
3097
3098typedef struct RamDecompressState {
3099 z_stream zstream;
3100 QEMUFile *f;
3101 uint8_t buf[IOBUF_SIZE];
3102} RamDecompressState;
3103
3104static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3105{
3106 int ret;
3107 memset(s, 0, sizeof(*s));
3108 s->f = f;
3109 ret = inflateInit(&s->zstream);
3110 if (ret != Z_OK)
3111 return -1;
3112 return 0;
3113}
3114
3115static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3116{
3117 int ret, clen;
3118
3119 s->zstream.avail_out = len;
3120 s->zstream.next_out = buf;
3121 while (s->zstream.avail_out > 0) {
3122 if (s->zstream.avail_in == 0) {
3123 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3124 return -1;
3125 clen = qemu_get_be16(s->f);
3126 if (clen > IOBUF_SIZE)
3127 return -1;
3128 qemu_get_buffer(s->f, s->buf, clen);
3129 s->zstream.avail_in = clen;
3130 s->zstream.next_in = s->buf;
3131 }
3132 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3133 if (ret != Z_OK && ret != Z_STREAM_END) {
3134 return -1;
3135 }
3136 }
3137 return 0;
3138}
3139
3140static void ram_decompress_close(RamDecompressState *s)
3141{
3142 inflateEnd(&s->zstream);
3143}
3144
3145#define RAM_SAVE_FLAG_FULL 0x01
3146#define RAM_SAVE_FLAG_COMPRESS 0x02
3147#define RAM_SAVE_FLAG_MEM_SIZE 0x04
3148#define RAM_SAVE_FLAG_PAGE 0x08
3149#define RAM_SAVE_FLAG_EOS 0x10
3150
3151static int is_dup_page(uint8_t *page, uint8_t ch)
3152{
3153 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3154 uint32_t *array = (uint32_t *)page;
3155 int i;
3156
3157 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3158 if (array[i] != val)
3159 return 0;
3160 }
3161
3162 return 1;
3163}
3164
3165static int ram_save_block(QEMUFile *f)
3166{
3167 static ram_addr_t current_addr = 0;
3168 ram_addr_t saved_addr = current_addr;
3169 ram_addr_t addr = 0;
3170 int found = 0;
3171
3172 while (addr < last_ram_offset) {
3173 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3174 uint8_t *p;
3175
3176 cpu_physical_memory_reset_dirty(current_addr,
3177 current_addr + TARGET_PAGE_SIZE,
3178 MIGRATION_DIRTY_FLAG);
3179
3180 p = qemu_get_ram_ptr(current_addr);
3181
3182 if (is_dup_page(p, *p)) {
3183 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3184 qemu_put_byte(f, *p);
3185 } else {
3186 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3187 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3188 }
3189
3190 found = 1;
3191 break;
3192 }
3193 addr += TARGET_PAGE_SIZE;
3194 current_addr = (saved_addr + addr) % last_ram_offset;
3195 }
3196
3197 return found;
3198}
3199
3200static ram_addr_t ram_save_threshold = 10;
3201static uint64_t bytes_transferred = 0;
3202
3203static ram_addr_t ram_save_remaining(void)
3204{
3205 ram_addr_t addr;
3206 ram_addr_t count = 0;
3207
3208 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3209 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3210 count++;
3211 }
3212
3213 return count;
3214}
3215
3216uint64_t ram_bytes_remaining(void)
3217{
3218 return ram_save_remaining() * TARGET_PAGE_SIZE;
3219}
3220
3221uint64_t ram_bytes_transferred(void)
3222{
3223 return bytes_transferred;
3224}
3225
3226uint64_t ram_bytes_total(void)
3227{
3228 return last_ram_offset;
3229}
3230
3231static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3232{
3233 ram_addr_t addr;
3234
3235 if (stage == 1) {
3236 /* Make sure all dirty bits are set */
3237 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3238 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3239 cpu_physical_memory_set_dirty(addr);
3240 }
3241
3242 /* Enable dirty memory tracking */
3243 cpu_physical_memory_set_dirty_tracking(1);
3244
3245 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3246 }
3247
3248 while (!qemu_file_rate_limit(f)) {
3249 int ret;
3250
3251 ret = ram_save_block(f);
3252 bytes_transferred += ret * TARGET_PAGE_SIZE;
3253 if (ret == 0) /* no more blocks */
3254 break;
3255 }
3256
3257 /* try transferring iterative blocks of memory */
3258
3259 if (stage == 3) {
3260
3261 /* flush all remaining blocks regardless of rate limiting */
3262 while (ram_save_block(f) != 0) {
3263 bytes_transferred += TARGET_PAGE_SIZE;
3264 }
3265 cpu_physical_memory_set_dirty_tracking(0);
3266 }
3267
3268 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3269
3270 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3271}
3272
3273static int ram_load_dead(QEMUFile *f, void *opaque)
3274{
3275 RamDecompressState s1, *s = &s1;
3276 uint8_t buf[10];
3277 ram_addr_t i;
3278
3279 if (ram_decompress_open(s, f) < 0)
3280 return -EINVAL;
3281 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3282 if (ram_decompress_buf(s, buf, 1) < 0) {
3283 fprintf(stderr, "Error while reading ram block header\n");
3284 goto error;
3285 }
3286 if (buf[0] == 0) {
3287 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3288 BDRV_HASH_BLOCK_SIZE) < 0) {
3289 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3290 goto error;
3291 }
3292 } else {
3293 error:
3294 printf("Error block header\n");
3295 return -EINVAL;
3296 }
3297 }
3298 ram_decompress_close(s);
3299
3300 return 0;
3301}
3302
3303static int ram_load(QEMUFile *f, void *opaque, int version_id)
3304{
3305 ram_addr_t addr;
3306 int flags;
3307
3308 if (version_id == 1)
3309 return ram_load_v1(f, opaque);
3310
3311 if (version_id == 2) {
3312 if (qemu_get_be32(f) != last_ram_offset)
3313 return -EINVAL;
3314 return ram_load_dead(f, opaque);
3315 }
3316
3317 if (version_id != 3)
3318 return -EINVAL;
3319
3320 do {
3321 addr = qemu_get_be64(f);
3322
3323 flags = addr & ~TARGET_PAGE_MASK;
3324 addr &= TARGET_PAGE_MASK;
3325
3326 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3327 if (addr != last_ram_offset)
3328 return -EINVAL;
3329 }
3330
3331 if (flags & RAM_SAVE_FLAG_FULL) {
3332 if (ram_load_dead(f, opaque) < 0)
3333 return -EINVAL;
3334 }
3335
3336 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3337 uint8_t ch = qemu_get_byte(f);
3338 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3339 } else if (flags & RAM_SAVE_FLAG_PAGE)
3340 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3341 } while (!(flags & RAM_SAVE_FLAG_EOS));
3342
3343 return 0;
3344}
3345
3346void qemu_service_io(void)
3347{
3348 qemu_notify_event();
3349}
3350
3351/***********************************************************/
3352/* bottom halves (can be seen as timers which expire ASAP) */
3353
3354struct QEMUBH {
3355 QEMUBHFunc *cb;
3356 void *opaque;
3357 int scheduled;
3358 int idle;
3359 int deleted;
3360 QEMUBH *next;
3361};
3362
3363static QEMUBH *first_bh = NULL;
3364
3365QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3366{
3367 QEMUBH *bh;
3368 bh = qemu_mallocz(sizeof(QEMUBH));
3369 bh->cb = cb;
3370 bh->opaque = opaque;
3371 bh->next = first_bh;
3372 first_bh = bh;
3373 return bh;
3374}
3375
3376int qemu_bh_poll(void)
3377{
3378 QEMUBH *bh, **bhp;
3379 int ret;
3380
3381 ret = 0;
3382 for (bh = first_bh; bh; bh = bh->next) {
3383 if (!bh->deleted && bh->scheduled) {
3384 bh->scheduled = 0;
3385 if (!bh->idle)
3386 ret = 1;
3387 bh->idle = 0;
3388 bh->cb(bh->opaque);
3389 }
3390 }
3391
3392 /* remove deleted bhs */
3393 bhp = &first_bh;
3394 while (*bhp) {
3395 bh = *bhp;
3396 if (bh->deleted) {
3397 *bhp = bh->next;
3398 qemu_free(bh);
3399 } else
3400 bhp = &bh->next;
3401 }
3402
3403 return ret;
3404}
3405
3406void qemu_bh_schedule_idle(QEMUBH *bh)
3407{
3408 if (bh->scheduled)
3409 return;
3410 bh->scheduled = 1;
3411 bh->idle = 1;
3412}
3413
3414void qemu_bh_schedule(QEMUBH *bh)
3415{
3416 if (bh->scheduled)
3417 return;
3418 bh->scheduled = 1;
3419 bh->idle = 0;
3420 /* stop the currently executing CPU to execute the BH ASAP */
3421 qemu_notify_event();
3422}
3423
3424void qemu_bh_cancel(QEMUBH *bh)
3425{
3426 bh->scheduled = 0;
3427}
3428
3429void qemu_bh_delete(QEMUBH *bh)
3430{
3431 bh->scheduled = 0;
3432 bh->deleted = 1;
3433}
3434
3435static void qemu_bh_update_timeout(int *timeout)
3436{
3437 QEMUBH *bh;
3438
3439 for (bh = first_bh; bh; bh = bh->next) {
3440 if (!bh->deleted && bh->scheduled) {
3441 if (bh->idle) {
3442 /* idle bottom halves will be polled at least
3443 * every 10ms */
3444 *timeout = MIN(10, *timeout);
3445 } else {
3446 /* non-idle bottom halves will be executed
3447 * immediately */
3448 *timeout = 0;
3449 break;
3450 }
3451 }
3452 }
3453}
3454
3455/***********************************************************/
3456/* machine registration */
3457
3458static QEMUMachine *first_machine = NULL;
3459QEMUMachine *current_machine = NULL;
3460
3461int qemu_register_machine(QEMUMachine *m)
3462{
3463 QEMUMachine **pm;
3464 pm = &first_machine;
3465 while (*pm != NULL)
3466 pm = &(*pm)->next;
3467 m->next = NULL;
3468 *pm = m;
3469 return 0;
3470}
3471
3472static QEMUMachine *find_machine(const char *name)
3473{
3474 QEMUMachine *m;
3475
3476 for(m = first_machine; m != NULL; m = m->next) {
3477 if (!strcmp(m->name, name))
3478 return m;
3479 }
3480 return NULL;
3481}
3482
3483static QEMUMachine *find_default_machine(void)
3484{
3485 QEMUMachine *m;
3486
3487 for(m = first_machine; m != NULL; m = m->next) {
3488 if (m->is_default) {
3489 return m;
3490 }
3491 }
3492 return NULL;
3493}
3494
3495/***********************************************************/
3496/* main execution loop */
3497
3498static void gui_update(void *opaque)
3499{
3500 uint64_t interval = GUI_REFRESH_INTERVAL;
3501 DisplayState *ds = opaque;
3502 DisplayChangeListener *dcl = ds->listeners;
3503
3504 dpy_refresh(ds);
3505
3506 while (dcl != NULL) {
3507 if (dcl->gui_timer_interval &&
3508 dcl->gui_timer_interval < interval)
3509 interval = dcl->gui_timer_interval;
3510 dcl = dcl->next;
3511 }
3512 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3513}
3514
3515static void nographic_update(void *opaque)
3516{
3517 uint64_t interval = GUI_REFRESH_INTERVAL;
3518
3519 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3520}
3521
3522struct vm_change_state_entry {
3523 VMChangeStateHandler *cb;
3524 void *opaque;
3525 LIST_ENTRY (vm_change_state_entry) entries;
3526};
3527
3528static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3529
3530VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3531 void *opaque)
3532{
3533 VMChangeStateEntry *e;
3534
3535 e = qemu_mallocz(sizeof (*e));
3536
3537 e->cb = cb;
3538 e->opaque = opaque;
3539 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3540 return e;
3541}
3542
3543void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3544{
3545 LIST_REMOVE (e, entries);
3546 qemu_free (e);
3547}
3548
3549static void vm_state_notify(int running, int reason)
3550{
3551 VMChangeStateEntry *e;
3552
3553 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3554 e->cb(e->opaque, running, reason);
3555 }
3556}
3557
3558static void resume_all_vcpus(void);
3559static void pause_all_vcpus(void);
3560
3561void vm_start(void)
3562{
3563 if (!vm_running) {
3564 cpu_enable_ticks();
3565 vm_running = 1;
3566 vm_state_notify(1, 0);
3567 qemu_rearm_alarm_timer(alarm_timer);
3568 resume_all_vcpus();
3569 }
3570}
3571
3572/* reset/shutdown handler */
3573
3574typedef struct QEMUResetEntry {
3575 QEMUResetHandler *func;
3576 void *opaque;
3577 struct QEMUResetEntry *next;
3578} QEMUResetEntry;
3579
3580static QEMUResetEntry *first_reset_entry;
3581static int reset_requested;
3582static int shutdown_requested;
3583static int powerdown_requested;
3584static int debug_requested;
3585static int vmstop_requested;
3586
3587int qemu_shutdown_requested(void)
3588{
3589 int r = shutdown_requested;
3590 shutdown_requested = 0;
3591 return r;
3592}
3593
3594int qemu_reset_requested(void)
3595{
3596 int r = reset_requested;
3597 reset_requested = 0;
3598 return r;
3599}
3600
3601int qemu_powerdown_requested(void)
3602{
3603 int r = powerdown_requested;
3604 powerdown_requested = 0;
3605 return r;
3606}
3607
3608static int qemu_debug_requested(void)
3609{
3610 int r = debug_requested;
3611 debug_requested = 0;
3612 return r;
3613}
3614
3615static int qemu_vmstop_requested(void)
3616{
3617 int r = vmstop_requested;
3618 vmstop_requested = 0;
3619 return r;
3620}
3621
3622static void do_vm_stop(int reason)
3623{
3624 if (vm_running) {
3625 cpu_disable_ticks();
3626 vm_running = 0;
3627 pause_all_vcpus();
3628 vm_state_notify(0, reason);
3629 }
3630}
3631
3632void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3633{
3634 QEMUResetEntry **pre, *re;
3635
3636 pre = &first_reset_entry;
3637 while (*pre != NULL)
3638 pre = &(*pre)->next;
3639 re = qemu_mallocz(sizeof(QEMUResetEntry));
3640 re->func = func;
3641 re->opaque = opaque;
3642 re->next = NULL;
3643 *pre = re;
3644}
3645
3646void qemu_system_reset(void)
3647{
3648 QEMUResetEntry *re;
3649
3650 /* reset all devices */
3651 for(re = first_reset_entry; re != NULL; re = re->next) {
3652 re->func(re->opaque);
3653 }
3654 if (kvm_enabled())
3655 kvm_sync_vcpus();
3656}
3657
3658void qemu_system_reset_request(void)
3659{
3660 if (no_reboot) {
3661 shutdown_requested = 1;
3662 } else {
3663 reset_requested = 1;
3664 }
3665 qemu_notify_event();
3666}
3667
3668void qemu_system_shutdown_request(void)
3669{
3670 shutdown_requested = 1;
3671 qemu_notify_event();
3672}
3673
3674void qemu_system_powerdown_request(void)
3675{
3676 powerdown_requested = 1;
3677 qemu_notify_event();
3678}
3679
3680#ifdef CONFIG_IOTHREAD
3681static void qemu_system_vmstop_request(int reason)
3682{
3683 vmstop_requested = reason;
3684 qemu_notify_event();
3685}
3686#endif
3687
3688#ifndef _WIN32
3689static int io_thread_fd = -1;
3690
3691static void qemu_event_increment(void)
3692{
3693 static const char byte = 0;
3694
3695 if (io_thread_fd == -1)
3696 return;
3697
3698 write(io_thread_fd, &byte, sizeof(byte));
3699}
3700
3701static void qemu_event_read(void *opaque)
3702{
3703 int fd = (unsigned long)opaque;
3704 ssize_t len;
3705
3706 /* Drain the notify pipe */
3707 do {
3708 char buffer[512];
3709 len = read(fd, buffer, sizeof(buffer));
3710 } while ((len == -1 && errno == EINTR) || len > 0);
3711}
3712
3713static int qemu_event_init(void)
3714{
3715 int err;
3716 int fds[2];
3717
3718 err = pipe(fds);
3719 if (err == -1)
3720 return -errno;
3721
3722 err = fcntl_setfl(fds[0], O_NONBLOCK);
3723 if (err < 0)
3724 goto fail;
3725
3726 err = fcntl_setfl(fds[1], O_NONBLOCK);
3727 if (err < 0)
3728 goto fail;
3729
3730 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3731 (void *)(unsigned long)fds[0]);
3732
3733 io_thread_fd = fds[1];
3734 return 0;
3735
3736fail:
3737 close(fds[0]);
3738 close(fds[1]);
3739 return err;
3740}
3741#else
3742HANDLE qemu_event_handle;
3743
3744static void dummy_event_handler(void *opaque)
3745{
3746}
3747
3748static int qemu_event_init(void)
3749{
3750 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3751 if (!qemu_event_handle) {
3752 perror("Failed CreateEvent");
3753 return -1;
3754 }
3755 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3756 return 0;
3757}
3758
3759static void qemu_event_increment(void)
3760{
3761 SetEvent(qemu_event_handle);
3762}
3763#endif
3764
3765static int cpu_can_run(CPUState *env)
3766{
3767 if (env->stop)
3768 return 0;
3769 if (env->stopped)
3770 return 0;
3771 return 1;
3772}
3773
3774#ifndef CONFIG_IOTHREAD
3775static int qemu_init_main_loop(void)
3776{
3777 return qemu_event_init();
3778}
3779
3780void qemu_init_vcpu(void *_env)
3781{
3782 CPUState *env = _env;
3783
3784 if (kvm_enabled())
3785 kvm_init_vcpu(env);
3786 return;
3787}
3788
3789int qemu_cpu_self(void *env)
3790{
3791 return 1;
3792}
3793
3794static void resume_all_vcpus(void)
3795{
3796}
3797
3798static void pause_all_vcpus(void)
3799{
3800}
3801
3802void qemu_cpu_kick(void *env)
3803{
3804 return;
3805}
3806
3807void qemu_notify_event(void)
3808{
3809 CPUState *env = cpu_single_env;
3810
3811 if (env) {
3812 cpu_exit(env);
3813#ifdef USE_KQEMU
3814 if (env->kqemu_enabled)
3815 kqemu_cpu_interrupt(env);
3816#endif
3817 }
3818}
3819
3820#define qemu_mutex_lock_iothread() do { } while (0)
3821#define qemu_mutex_unlock_iothread() do { } while (0)
3822
3823void vm_stop(int reason)
3824{
3825 do_vm_stop(reason);
3826}
3827
3828#else /* CONFIG_IOTHREAD */
3829
3830#include "qemu-thread.h"
3831
3832QemuMutex qemu_global_mutex;
3833static QemuMutex qemu_fair_mutex;
3834
3835static QemuThread io_thread;
3836
3837static QemuThread *tcg_cpu_thread;
3838static QemuCond *tcg_halt_cond;
3839
3840static int qemu_system_ready;
3841/* cpu creation */
3842static QemuCond qemu_cpu_cond;
3843/* system init */
3844static QemuCond qemu_system_cond;
3845static QemuCond qemu_pause_cond;
3846
3847static void block_io_signals(void);
3848static void unblock_io_signals(void);
3849static int tcg_has_work(void);
3850
3851static int qemu_init_main_loop(void)
3852{
3853 int ret;
3854
3855 ret = qemu_event_init();
3856 if (ret)
3857 return ret;
3858
3859 qemu_cond_init(&qemu_pause_cond);
3860 qemu_mutex_init(&qemu_fair_mutex);
3861 qemu_mutex_init(&qemu_global_mutex);
3862 qemu_mutex_lock(&qemu_global_mutex);
3863
3864 unblock_io_signals();
3865 qemu_thread_self(&io_thread);
3866
3867 return 0;
3868}
3869
3870static void qemu_wait_io_event(CPUState *env)
3871{
3872 while (!tcg_has_work())
3873 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3874
3875 qemu_mutex_unlock(&qemu_global_mutex);
3876
3877 /*
3878 * Users of qemu_global_mutex can be starved, having no chance
3879 * to acquire it since this path will get to it first.
3880 * So use another lock to provide fairness.
3881 */
3882 qemu_mutex_lock(&qemu_fair_mutex);
3883 qemu_mutex_unlock(&qemu_fair_mutex);
3884
3885 qemu_mutex_lock(&qemu_global_mutex);
3886 if (env->stop) {
3887 env->stop = 0;
3888 env->stopped = 1;
3889 qemu_cond_signal(&qemu_pause_cond);
3890 }
3891}
3892
3893static int qemu_cpu_exec(CPUState *env);
3894
3895static void *kvm_cpu_thread_fn(void *arg)
3896{
3897 CPUState *env = arg;
3898
3899 block_io_signals();
3900 qemu_thread_self(env->thread);
3901
3902 /* signal CPU creation */
3903 qemu_mutex_lock(&qemu_global_mutex);
3904 env->created = 1;
3905 qemu_cond_signal(&qemu_cpu_cond);
3906
3907 /* and wait for machine initialization */
3908 while (!qemu_system_ready)
3909 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3910
3911 while (1) {
3912 if (cpu_can_run(env))
3913 qemu_cpu_exec(env);
3914 qemu_wait_io_event(env);
3915 }
3916
3917 return NULL;
3918}
3919
3920static void tcg_cpu_exec(void);
3921
3922static void *tcg_cpu_thread_fn(void *arg)
3923{
3924 CPUState *env = arg;
3925
3926 block_io_signals();
3927 qemu_thread_self(env->thread);
3928
3929 /* signal CPU creation */
3930 qemu_mutex_lock(&qemu_global_mutex);
3931 for (env = first_cpu; env != NULL; env = env->next_cpu)
3932 env->created = 1;
3933 qemu_cond_signal(&qemu_cpu_cond);
3934
3935 /* and wait for machine initialization */
3936 while (!qemu_system_ready)
3937 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3938
3939 while (1) {
3940 tcg_cpu_exec();
3941 qemu_wait_io_event(cur_cpu);
3942 }
3943
3944 return NULL;
3945}
3946
3947void qemu_cpu_kick(void *_env)
3948{
3949 CPUState *env = _env;
3950 qemu_cond_broadcast(env->halt_cond);
3951 if (kvm_enabled())
3952 qemu_thread_signal(env->thread, SIGUSR1);
3953}
3954
3955int qemu_cpu_self(void *env)
3956{
3957 return (cpu_single_env != NULL);
3958}
3959
3960static void cpu_signal(int sig)
3961{
3962 if (cpu_single_env)
3963 cpu_exit(cpu_single_env);
3964}
3965
3966static void block_io_signals(void)
3967{
3968 sigset_t set;
3969 struct sigaction sigact;
3970
3971 sigemptyset(&set);
3972 sigaddset(&set, SIGUSR2);
3973 sigaddset(&set, SIGIO);
3974 sigaddset(&set, SIGALRM);
3975 pthread_sigmask(SIG_BLOCK, &set, NULL);
3976
3977 sigemptyset(&set);
3978 sigaddset(&set, SIGUSR1);
3979 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3980
3981 memset(&sigact, 0, sizeof(sigact));
3982 sigact.sa_handler = cpu_signal;
3983 sigaction(SIGUSR1, &sigact, NULL);
3984}
3985
3986static void unblock_io_signals(void)
3987{
3988 sigset_t set;
3989
3990 sigemptyset(&set);
3991 sigaddset(&set, SIGUSR2);
3992 sigaddset(&set, SIGIO);
3993 sigaddset(&set, SIGALRM);
3994 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3995
3996 sigemptyset(&set);
3997 sigaddset(&set, SIGUSR1);
3998 pthread_sigmask(SIG_BLOCK, &set, NULL);
3999}
4000
4001static void qemu_signal_lock(unsigned int msecs)
4002{
4003 qemu_mutex_lock(&qemu_fair_mutex);
4004
4005 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4006 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4007 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4008 break;
4009 }
4010 qemu_mutex_unlock(&qemu_fair_mutex);
4011}
4012
4013static void qemu_mutex_lock_iothread(void)
4014{
4015 if (kvm_enabled()) {
4016 qemu_mutex_lock(&qemu_fair_mutex);
4017 qemu_mutex_lock(&qemu_global_mutex);
4018 qemu_mutex_unlock(&qemu_fair_mutex);
4019 } else
4020 qemu_signal_lock(100);
4021}
4022
4023static void qemu_mutex_unlock_iothread(void)
4024{
4025 qemu_mutex_unlock(&qemu_global_mutex);
4026}
4027
4028static int all_vcpus_paused(void)
4029{
4030 CPUState *penv = first_cpu;
4031
4032 while (penv) {
4033 if (!penv->stopped)
4034 return 0;
4035 penv = (CPUState *)penv->next_cpu;
4036 }
4037
4038 return 1;
4039}
4040
4041static void pause_all_vcpus(void)
4042{
4043 CPUState *penv = first_cpu;
4044
4045 while (penv) {
4046 penv->stop = 1;
4047 qemu_thread_signal(penv->thread, SIGUSR1);
4048 qemu_cpu_kick(penv);
4049 penv = (CPUState *)penv->next_cpu;
4050 }
4051
4052 while (!all_vcpus_paused()) {
4053 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4054 penv = first_cpu;
4055 while (penv) {
4056 qemu_thread_signal(penv->thread, SIGUSR1);
4057 penv = (CPUState *)penv->next_cpu;
4058 }
4059 }
4060}
4061
4062static void resume_all_vcpus(void)
4063{
4064 CPUState *penv = first_cpu;
4065
4066 while (penv) {
4067 penv->stop = 0;
4068 penv->stopped = 0;
4069 qemu_thread_signal(penv->thread, SIGUSR1);
4070 qemu_cpu_kick(penv);
4071 penv = (CPUState *)penv->next_cpu;
4072 }
4073}
4074
4075static void tcg_init_vcpu(void *_env)
4076{
4077 CPUState *env = _env;
4078 /* share a single thread for all cpus with TCG */
4079 if (!tcg_cpu_thread) {
4080 env->thread = qemu_mallocz(sizeof(QemuThread));
4081 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4082 qemu_cond_init(env->halt_cond);
4083 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4084 while (env->created == 0)
4085 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4086 tcg_cpu_thread = env->thread;
4087 tcg_halt_cond = env->halt_cond;
4088 } else {
4089 env->thread = tcg_cpu_thread;
4090 env->halt_cond = tcg_halt_cond;
4091 }
4092}
4093
4094static void kvm_start_vcpu(CPUState *env)
4095{
4096 kvm_init_vcpu(env);
4097 env->thread = qemu_mallocz(sizeof(QemuThread));
4098 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4099 qemu_cond_init(env->halt_cond);
4100 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4101 while (env->created == 0)
4102 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4103}
4104
4105void qemu_init_vcpu(void *_env)
4106{
4107 CPUState *env = _env;
4108
4109 if (kvm_enabled())
4110 kvm_start_vcpu(env);
4111 else
4112 tcg_init_vcpu(env);
4113}
4114
4115void qemu_notify_event(void)
4116{
4117 qemu_event_increment();
4118}
4119
4120void vm_stop(int reason)
4121{
4122 QemuThread me;
4123 qemu_thread_self(&me);
4124
4125 if (!qemu_thread_equal(&me, &io_thread)) {
4126 qemu_system_vmstop_request(reason);
4127 /*
4128 * FIXME: should not return to device code in case
4129 * vm_stop() has been requested.
4130 */
4131 if (cpu_single_env) {
4132 cpu_exit(cpu_single_env);
4133 cpu_single_env->stop = 1;
4134 }
4135 return;
4136 }
4137 do_vm_stop(reason);
4138}
4139
4140#endif
4141
4142
4143#ifdef _WIN32
4144static void host_main_loop_wait(int *timeout)
4145{
4146 int ret, ret2, i;
4147 PollingEntry *pe;
4148
4149
4150 /* XXX: need to suppress polling by better using win32 events */
4151 ret = 0;
4152 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4153 ret |= pe->func(pe->opaque);
4154 }
4155 if (ret == 0) {
4156 int err;
4157 WaitObjects *w = &wait_objects;
4158
4159 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4160 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4161 if (w->func[ret - WAIT_OBJECT_0])
4162 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4163
4164 /* Check for additional signaled events */
4165 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4166
4167 /* Check if event is signaled */
4168 ret2 = WaitForSingleObject(w->events[i], 0);
4169 if(ret2 == WAIT_OBJECT_0) {
4170 if (w->func[i])
4171 w->func[i](w->opaque[i]);
4172 } else if (ret2 == WAIT_TIMEOUT) {
4173 } else {
4174 err = GetLastError();
4175 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4176 }
4177 }
4178 } else if (ret == WAIT_TIMEOUT) {
4179 } else {
4180 err = GetLastError();
4181 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4182 }
4183 }
4184
4185 *timeout = 0;
4186}
4187#else
4188static void host_main_loop_wait(int *timeout)
4189{
4190}
4191#endif
4192
4193void main_loop_wait(int timeout)
4194{
4195 IOHandlerRecord *ioh;
4196 fd_set rfds, wfds, xfds;
4197 int ret, nfds;
4198 struct timeval tv;
4199
4200 qemu_bh_update_timeout(&timeout);
4201
4202 host_main_loop_wait(&timeout);
4203
4204 /* poll any events */
4205 /* XXX: separate device handlers from system ones */
4206 nfds = -1;
4207 FD_ZERO(&rfds);
4208 FD_ZERO(&wfds);
4209 FD_ZERO(&xfds);
4210 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4211 if (ioh->deleted)
4212 continue;
4213 if (ioh->fd_read &&
4214 (!ioh->fd_read_poll ||
4215 ioh->fd_read_poll(ioh->opaque) != 0)) {
4216 FD_SET(ioh->fd, &rfds);
4217 if (ioh->fd > nfds)
4218 nfds = ioh->fd;
4219 }
4220 if (ioh->fd_write) {
4221 FD_SET(ioh->fd, &wfds);
4222 if (ioh->fd > nfds)
4223 nfds = ioh->fd;
4224 }
4225 }
4226
4227 tv.tv_sec = timeout / 1000;
4228 tv.tv_usec = (timeout % 1000) * 1000;
4229
4230#if defined(CONFIG_SLIRP)
4231 if (slirp_is_inited()) {
4232 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4233 }
4234#endif
4235 qemu_mutex_unlock_iothread();
4236 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4237 qemu_mutex_lock_iothread();
4238 if (ret > 0) {
4239 IOHandlerRecord **pioh;
4240
4241 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4242 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4243 ioh->fd_read(ioh->opaque);
4244 }
4245 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4246 ioh->fd_write(ioh->opaque);
4247 }
4248 }
4249
4250 /* remove deleted IO handlers */
4251 pioh = &first_io_handler;
4252 while (*pioh) {
4253 ioh = *pioh;
4254 if (ioh->deleted) {
4255 *pioh = ioh->next;
4256 qemu_free(ioh);
4257 } else
4258 pioh = &ioh->next;
4259 }
4260 }
4261#if defined(CONFIG_SLIRP)
4262 if (slirp_is_inited()) {
4263 if (ret < 0) {
4264 FD_ZERO(&rfds);
4265 FD_ZERO(&wfds);
4266 FD_ZERO(&xfds);
4267 }
4268 slirp_select_poll(&rfds, &wfds, &xfds);
4269 }
4270#endif
4271
4272 /* rearm timer, if not periodic */
4273 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4274 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4275 qemu_rearm_alarm_timer(alarm_timer);
4276 }
4277
4278 /* vm time timers */
4279 if (vm_running) {
4280 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4281 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4282 qemu_get_clock(vm_clock));
4283 }
4284
4285 /* real time timers */
4286 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4287 qemu_get_clock(rt_clock));
4288
4289 /* Check bottom-halves last in case any of the earlier events triggered
4290 them. */
4291 qemu_bh_poll();
4292
4293}
4294
4295static int qemu_cpu_exec(CPUState *env)
4296{
4297 int ret;
4298#ifdef CONFIG_PROFILER
4299 int64_t ti;
4300#endif
4301
4302#ifdef CONFIG_PROFILER
4303 ti = profile_getclock();
4304#endif
4305 if (use_icount) {
4306 int64_t count;
4307 int decr;
4308 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4309 env->icount_decr.u16.low = 0;
4310 env->icount_extra = 0;
4311 count = qemu_next_deadline();
4312 count = (count + (1 << icount_time_shift) - 1)
4313 >> icount_time_shift;
4314 qemu_icount += count;
4315 decr = (count > 0xffff) ? 0xffff : count;
4316 count -= decr;
4317 env->icount_decr.u16.low = decr;
4318 env->icount_extra = count;
4319 }
4320 ret = cpu_exec(env);
4321#ifdef CONFIG_PROFILER
4322 qemu_time += profile_getclock() - ti;
4323#endif
4324 if (use_icount) {
4325 /* Fold pending instructions back into the
4326 instruction counter, and clear the interrupt flag. */
4327 qemu_icount -= (env->icount_decr.u16.low
4328 + env->icount_extra);
4329 env->icount_decr.u32 = 0;
4330 env->icount_extra = 0;
4331 }
4332 return ret;
4333}
4334
4335static void tcg_cpu_exec(void)
4336{
4337 int ret = 0;
4338
4339 if (next_cpu == NULL)
4340 next_cpu = first_cpu;
4341 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4342 CPUState *env = cur_cpu = next_cpu;
4343
4344 if (!vm_running)
4345 break;
4346 if (timer_alarm_pending) {
4347 timer_alarm_pending = 0;
4348 break;
4349 }
4350 if (cpu_can_run(env))
4351 ret = qemu_cpu_exec(env);
4352 if (ret == EXCP_DEBUG) {
4353 gdb_set_stop_cpu(env);
4354 debug_requested = 1;
4355 break;
4356 }
4357 }
4358}
4359
4360static int cpu_has_work(CPUState *env)
4361{
4362 if (env->stop)
4363 return 1;
4364 if (env->stopped)
4365 return 0;
4366 if (!env->halted)
4367 return 1;
4368 if (qemu_cpu_has_work(env))
4369 return 1;
4370 return 0;
4371}
4372
4373static int tcg_has_work(void)
4374{
4375 CPUState *env;
4376
4377 for (env = first_cpu; env != NULL; env = env->next_cpu)
4378 if (cpu_has_work(env))
4379 return 1;
4380 return 0;
4381}
4382
4383static int qemu_calculate_timeout(void)
4384{
4385 int timeout;
4386
4387 if (!vm_running)
4388 timeout = 5000;
4389 else if (tcg_has_work())
4390 timeout = 0;
4391 else if (!use_icount)
4392 timeout = 5000;
4393 else {
4394 /* XXX: use timeout computed from timers */
4395 int64_t add;
4396 int64_t delta;
4397 /* Advance virtual time to the next event. */
4398 if (use_icount == 1) {
4399 /* When not using an adaptive execution frequency
4400 we tend to get badly out of sync with real time,
4401 so just delay for a reasonable amount of time. */
4402 delta = 0;
4403 } else {
4404 delta = cpu_get_icount() - cpu_get_clock();
4405 }
4406 if (delta > 0) {
4407 /* If virtual time is ahead of real time then just
4408 wait for IO. */
4409 timeout = (delta / 1000000) + 1;
4410 } else {
4411 /* Wait for either IO to occur or the next
4412 timer event. */
4413 add = qemu_next_deadline();
4414 /* We advance the timer before checking for IO.
4415 Limit the amount we advance so that early IO
4416 activity won't get the guest too far ahead. */
4417 if (add > 10000000)
4418 add = 10000000;
4419 delta += add;
4420 add = (add + (1 << icount_time_shift) - 1)
4421 >> icount_time_shift;
4422 qemu_icount += add;
4423 timeout = delta / 1000000;
4424 if (timeout < 0)
4425 timeout = 0;
4426 }
4427 }
4428
4429 return timeout;
4430}
4431
4432static int vm_can_run(void)
4433{
4434 if (powerdown_requested)
4435 return 0;
4436 if (reset_requested)
4437 return 0;
4438 if (shutdown_requested)
4439 return 0;
4440 if (debug_requested)
4441 return 0;
4442 return 1;
4443}
4444
4445static void main_loop(void)
4446{
4447 int r;
4448
4449#ifdef CONFIG_IOTHREAD
4450 qemu_system_ready = 1;
4451 qemu_cond_broadcast(&qemu_system_cond);
4452#endif
4453
4454 for (;;) {
4455 do {
4456#ifdef CONFIG_PROFILER
4457 int64_t ti;
4458#endif
4459#ifndef CONFIG_IOTHREAD
4460 tcg_cpu_exec();
4461#endif
4462#ifdef CONFIG_PROFILER
4463 ti = profile_getclock();
4464#endif
4465#ifdef CONFIG_IOTHREAD
4466 main_loop_wait(1000);
4467#else
4468 main_loop_wait(qemu_calculate_timeout());
4469#endif
4470#ifdef CONFIG_PROFILER
4471 dev_time += profile_getclock() - ti;
4472#endif
4473 } while (vm_can_run());
4474
4475 if (qemu_debug_requested())
4476 vm_stop(EXCP_DEBUG);
4477 if (qemu_shutdown_requested()) {
4478 if (no_shutdown) {
4479 vm_stop(0);
4480 no_shutdown = 0;
4481 } else
4482 break;
4483 }
4484 if (qemu_reset_requested()) {
4485 pause_all_vcpus();
4486 qemu_system_reset();
4487 resume_all_vcpus();
4488 }
4489 if (qemu_powerdown_requested())
4490 qemu_system_powerdown();
4491 if ((r = qemu_vmstop_requested()))
4492 vm_stop(r);
4493 }
4494 pause_all_vcpus();
4495}
4496
4497static void version(void)
4498{
4499 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4500}
4501
4502static void help(int exitcode)
4503{
4504 version();
4505 printf("usage: %s [options] [disk_image]\n"
4506 "\n"
4507 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4508 "\n"
4509#define DEF(option, opt_arg, opt_enum, opt_help) \
4510 opt_help
4511#define DEFHEADING(text) stringify(text) "\n"
4512#include "qemu-options.h"
4513#undef DEF
4514#undef DEFHEADING
4515#undef GEN_DOCS
4516 "\n"
4517 "During emulation, the following keys are useful:\n"
4518 "ctrl-alt-f toggle full screen\n"
4519 "ctrl-alt-n switch to virtual console 'n'\n"
4520 "ctrl-alt toggle mouse and keyboard grab\n"
4521 "\n"
4522 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4523 ,
4524 "qemu",
4525 DEFAULT_RAM_SIZE,
4526#ifndef _WIN32
4527 DEFAULT_NETWORK_SCRIPT,
4528 DEFAULT_NETWORK_DOWN_SCRIPT,
4529#endif
4530 DEFAULT_GDBSTUB_PORT,
4531 "/tmp/qemu.log");
4532 exit(exitcode);
4533}
4534
4535#define HAS_ARG 0x0001
4536
4537enum {
4538#define DEF(option, opt_arg, opt_enum, opt_help) \
4539 opt_enum,
4540#define DEFHEADING(text)
4541#include "qemu-options.h"
4542#undef DEF
4543#undef DEFHEADING
4544#undef GEN_DOCS
4545};
4546
4547typedef struct QEMUOption {
4548 const char *name;
4549 int flags;
4550 int index;
4551} QEMUOption;
4552
4553static const QEMUOption qemu_options[] = {
4554 { "h", 0, QEMU_OPTION_h },
4555#define DEF(option, opt_arg, opt_enum, opt_help) \
4556 { option, opt_arg, opt_enum },
4557#define DEFHEADING(text)
4558#include "qemu-options.h"
4559#undef DEF
4560#undef DEFHEADING
4561#undef GEN_DOCS
4562 { NULL },
4563};
4564
4565#ifdef HAS_AUDIO
4566struct soundhw soundhw[] = {
4567#ifdef HAS_AUDIO_CHOICE
4568#if defined(TARGET_I386) || defined(TARGET_MIPS)
4569 {
4570 "pcspk",
4571 "PC speaker",
4572 0,
4573 1,
4574 { .init_isa = pcspk_audio_init }
4575 },
4576#endif
4577
4578#ifdef CONFIG_SB16
4579 {
4580 "sb16",
4581 "Creative Sound Blaster 16",
4582 0,
4583 1,
4584 { .init_isa = SB16_init }
4585 },
4586#endif
4587
4588#ifdef CONFIG_CS4231A
4589 {
4590 "cs4231a",
4591 "CS4231A",
4592 0,
4593 1,
4594 { .init_isa = cs4231a_init }
4595 },
4596#endif
4597
4598#ifdef CONFIG_ADLIB
4599 {
4600 "adlib",
4601#ifdef HAS_YMF262
4602 "Yamaha YMF262 (OPL3)",
4603#else
4604 "Yamaha YM3812 (OPL2)",
4605#endif
4606 0,
4607 1,
4608 { .init_isa = Adlib_init }
4609 },
4610#endif
4611
4612#ifdef CONFIG_GUS
4613 {
4614 "gus",
4615 "Gravis Ultrasound GF1",
4616 0,
4617 1,
4618 { .init_isa = GUS_init }
4619 },
4620#endif
4621
4622#ifdef CONFIG_AC97
4623 {
4624 "ac97",
4625 "Intel 82801AA AC97 Audio",
4626 0,
4627 0,
4628 { .init_pci = ac97_init }
4629 },
4630#endif
4631
4632#ifdef CONFIG_ES1370
4633 {
4634 "es1370",
4635 "ENSONIQ AudioPCI ES1370",
4636 0,
4637 0,
4638 { .init_pci = es1370_init }
4639 },
4640#endif
4641
4642#endif /* HAS_AUDIO_CHOICE */
4643
4644 { NULL, NULL, 0, 0, { NULL } }
4645};
4646
4647static void select_soundhw (const char *optarg)
4648{
4649 struct soundhw *c;
4650
4651 if (*optarg == '?') {
4652 show_valid_cards:
4653
4654 printf ("Valid sound card names (comma separated):\n");
4655 for (c = soundhw; c->name; ++c) {
4656 printf ("%-11s %s\n", c->name, c->descr);
4657 }
4658 printf ("\n-soundhw all will enable all of the above\n");
4659 exit (*optarg != '?');
4660 }
4661 else {
4662 size_t l;
4663 const char *p;
4664 char *e;
4665 int bad_card = 0;
4666
4667 if (!strcmp (optarg, "all")) {
4668 for (c = soundhw; c->name; ++c) {
4669 c->enabled = 1;
4670 }
4671 return;
4672 }
4673
4674 p = optarg;
4675 while (*p) {
4676 e = strchr (p, ',');
4677 l = !e ? strlen (p) : (size_t) (e - p);
4678
4679 for (c = soundhw; c->name; ++c) {
4680 if (!strncmp (c->name, p, l)) {
4681 c->enabled = 1;
4682 break;
4683 }
4684 }
4685
4686 if (!c->name) {
4687 if (l > 80) {
4688 fprintf (stderr,
4689 "Unknown sound card name (too big to show)\n");
4690 }
4691 else {
4692 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4693 (int) l, p);
4694 }
4695 bad_card = 1;
4696 }
4697 p += l + (e != NULL);
4698 }
4699
4700 if (bad_card)
4701 goto show_valid_cards;
4702 }
4703}
4704#endif
4705
4706static void select_vgahw (const char *p)
4707{
4708 const char *opts;
4709
4710 cirrus_vga_enabled = 0;
4711 std_vga_enabled = 0;
4712 vmsvga_enabled = 0;
4713 xenfb_enabled = 0;
4714 if (strstart(p, "std", &opts)) {
4715 std_vga_enabled = 1;
4716 } else if (strstart(p, "cirrus", &opts)) {
4717 cirrus_vga_enabled = 1;
4718 } else if (strstart(p, "vmware", &opts)) {
4719 vmsvga_enabled = 1;
4720 } else if (strstart(p, "xenfb", &opts)) {
4721 xenfb_enabled = 1;
4722 } else if (!strstart(p, "none", &opts)) {
4723 invalid_vga:
4724 fprintf(stderr, "Unknown vga type: %s\n", p);
4725 exit(1);
4726 }
4727 while (*opts) {
4728 const char *nextopt;
4729
4730 if (strstart(opts, ",retrace=", &nextopt)) {
4731 opts = nextopt;
4732 if (strstart(opts, "dumb", &nextopt))
4733 vga_retrace_method = VGA_RETRACE_DUMB;
4734 else if (strstart(opts, "precise", &nextopt))
4735 vga_retrace_method = VGA_RETRACE_PRECISE;
4736 else goto invalid_vga;
4737 } else goto invalid_vga;
4738 opts = nextopt;
4739 }
4740}
4741
4742#ifdef _WIN32
4743static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4744{
4745 exit(STATUS_CONTROL_C_EXIT);
4746 return TRUE;
4747}
4748#endif
4749
4750int qemu_uuid_parse(const char *str, uint8_t *uuid)
4751{
4752 int ret;
4753
4754 if(strlen(str) != 36)
4755 return -1;
4756
4757 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4758 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4759 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4760
4761 if(ret != 16)
4762 return -1;
4763
4764#ifdef TARGET_I386
4765 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4766#endif
4767
4768 return 0;
4769}
4770
4771#define MAX_NET_CLIENTS 32
4772
4773#ifndef _WIN32
4774
4775static void termsig_handler(int signal)
4776{
4777 qemu_system_shutdown_request();
4778}
4779
4780static void termsig_setup(void)
4781{
4782 struct sigaction act;
4783
4784 memset(&act, 0, sizeof(act));
4785 act.sa_handler = termsig_handler;
4786 sigaction(SIGINT, &act, NULL);
4787 sigaction(SIGHUP, &act, NULL);
4788 sigaction(SIGTERM, &act, NULL);
4789}
4790
4791#endif
4792
4793int main(int argc, char **argv, char **envp)
4794{
4795 const char *gdbstub_dev = NULL;
4796 uint32_t boot_devices_bitmap = 0;
4797 int i;
4798 int snapshot, linux_boot, net_boot;
4799 const char *initrd_filename;
4800 const char *kernel_filename, *kernel_cmdline;
4801 const char *boot_devices = "";
4802 DisplayState *ds;
4803 DisplayChangeListener *dcl;
4804 int cyls, heads, secs, translation;
4805 const char *net_clients[MAX_NET_CLIENTS];
4806 int nb_net_clients;
4807 const char *bt_opts[MAX_BT_CMDLINE];
4808 int nb_bt_opts;
4809 int hda_index;
4810 int optind;
4811 const char *r, *optarg;
4812 CharDriverState *monitor_hd = NULL;
4813 const char *monitor_device;
4814 const char *serial_devices[MAX_SERIAL_PORTS];
4815 int serial_device_index;
4816 const char *parallel_devices[MAX_PARALLEL_PORTS];
4817 int parallel_device_index;
4818 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4819 int virtio_console_index;
4820 const char *loadvm = NULL;
4821 QEMUMachine *machine;
4822 const char *cpu_model;
4823 const char *usb_devices[MAX_USB_CMDLINE];
4824 int usb_devices_index;
4825#ifndef _WIN32
4826 int fds[2];
4827#endif
4828 int tb_size;
4829 const char *pid_file = NULL;
4830 const char *incoming = NULL;
4831#ifndef _WIN32
4832 int fd = 0;
4833 struct passwd *pwd = NULL;
4834 const char *chroot_dir = NULL;
4835 const char *run_as = NULL;
4836#endif
4837 CPUState *env;
4838 int show_vnc_port = 0;
4839
4840 qemu_cache_utils_init(envp);
4841
4842 LIST_INIT (&vm_change_state_head);
4843#ifndef _WIN32
4844 {
4845 struct sigaction act;
4846 sigfillset(&act.sa_mask);
4847 act.sa_flags = 0;
4848 act.sa_handler = SIG_IGN;
4849 sigaction(SIGPIPE, &act, NULL);
4850 }
4851#else
4852 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4853 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4854 QEMU to run on a single CPU */
4855 {
4856 HANDLE h;
4857 DWORD mask, smask;
4858 int i;
4859 h = GetCurrentProcess();
4860 if (GetProcessAffinityMask(h, &mask, &smask)) {
4861 for(i = 0; i < 32; i++) {
4862 if (mask & (1 << i))
4863 break;
4864 }
4865 if (i != 32) {
4866 mask = 1 << i;
4867 SetProcessAffinityMask(h, mask);
4868 }
4869 }
4870 }
4871#endif
4872
4873 module_call_init(MODULE_INIT_MACHINE);
4874 machine = find_default_machine();
4875 cpu_model = NULL;
4876 initrd_filename = NULL;
4877 ram_size = 0;
4878 snapshot = 0;
4879 kernel_filename = NULL;
4880 kernel_cmdline = "";
4881 cyls = heads = secs = 0;
4882 translation = BIOS_ATA_TRANSLATION_AUTO;
4883 monitor_device = "vc:80Cx24C";
4884
4885 serial_devices[0] = "vc:80Cx24C";
4886 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4887 serial_devices[i] = NULL;
4888 serial_device_index = 0;
4889
4890 parallel_devices[0] = "vc:80Cx24C";
4891 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4892 parallel_devices[i] = NULL;
4893 parallel_device_index = 0;
4894
4895 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4896 virtio_consoles[i] = NULL;
4897 virtio_console_index = 0;
4898
4899 for (i = 0; i < MAX_NODES; i++) {
4900 node_mem[i] = 0;
4901 node_cpumask[i] = 0;
4902 }
4903
4904 usb_devices_index = 0;
4905
4906 nb_net_clients = 0;
4907 nb_bt_opts = 0;
4908 nb_drives = 0;
4909 nb_drives_opt = 0;
4910 nb_numa_nodes = 0;
4911 hda_index = -1;
4912
4913 nb_nics = 0;
4914
4915 tb_size = 0;
4916 autostart= 1;
4917
4918 register_watchdogs();
4919
4920 optind = 1;
4921 for(;;) {
4922 if (optind >= argc)
4923 break;
4924 r = argv[optind];
4925 if (r[0] != '-') {
4926 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4927 } else {
4928 const QEMUOption *popt;
4929
4930 optind++;
4931 /* Treat --foo the same as -foo. */
4932 if (r[1] == '-')
4933 r++;
4934 popt = qemu_options;
4935 for(;;) {
4936 if (!popt->name) {
4937 fprintf(stderr, "%s: invalid option -- '%s'\n",
4938 argv[0], r);
4939 exit(1);
4940 }
4941 if (!strcmp(popt->name, r + 1))
4942 break;
4943 popt++;
4944 }
4945 if (popt->flags & HAS_ARG) {
4946 if (optind >= argc) {
4947 fprintf(stderr, "%s: option '%s' requires an argument\n",
4948 argv[0], r);
4949 exit(1);
4950 }
4951 optarg = argv[optind++];
4952 } else {
4953 optarg = NULL;
4954 }
4955
4956 switch(popt->index) {
4957 case QEMU_OPTION_M:
4958 machine = find_machine(optarg);
4959 if (!machine) {
4960 QEMUMachine *m;
4961 printf("Supported machines are:\n");
4962 for(m = first_machine; m != NULL; m = m->next) {
4963 printf("%-10s %s%s\n",
4964 m->name, m->desc,
4965 m->is_default ? " (default)" : "");
4966 }
4967 exit(*optarg != '?');
4968 }
4969 break;
4970 case QEMU_OPTION_cpu:
4971 /* hw initialization will check this */
4972 if (*optarg == '?') {
4973/* XXX: implement xxx_cpu_list for targets that still miss it */
4974#if defined(cpu_list)
4975 cpu_list(stdout, &fprintf);
4976#endif
4977 exit(0);
4978 } else {
4979 cpu_model = optarg;
4980 }
4981 break;
4982 case QEMU_OPTION_initrd:
4983 initrd_filename = optarg;
4984 break;
4985 case QEMU_OPTION_hda:
4986 if (cyls == 0)
4987 hda_index = drive_add(optarg, HD_ALIAS, 0);
4988 else
4989 hda_index = drive_add(optarg, HD_ALIAS
4990 ",cyls=%d,heads=%d,secs=%d%s",
4991 0, cyls, heads, secs,
4992 translation == BIOS_ATA_TRANSLATION_LBA ?
4993 ",trans=lba" :
4994 translation == BIOS_ATA_TRANSLATION_NONE ?
4995 ",trans=none" : "");
4996 break;
4997 case QEMU_OPTION_hdb:
4998 case QEMU_OPTION_hdc:
4999 case QEMU_OPTION_hdd:
5000 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5001 break;
5002 case QEMU_OPTION_drive:
5003 drive_add(NULL, "%s", optarg);
5004 break;
5005 case QEMU_OPTION_mtdblock:
5006 drive_add(optarg, MTD_ALIAS);
5007 break;
5008 case QEMU_OPTION_sd:
5009 drive_add(optarg, SD_ALIAS);
5010 break;
5011 case QEMU_OPTION_pflash:
5012 drive_add(optarg, PFLASH_ALIAS);
5013 break;
5014 case QEMU_OPTION_snapshot:
5015 snapshot = 1;
5016 break;
5017 case QEMU_OPTION_hdachs:
5018 {
5019 const char *p;
5020 p = optarg;
5021 cyls = strtol(p, (char **)&p, 0);
5022 if (cyls < 1 || cyls > 16383)
5023 goto chs_fail;
5024 if (*p != ',')
5025 goto chs_fail;
5026 p++;
5027 heads = strtol(p, (char **)&p, 0);
5028 if (heads < 1 || heads > 16)
5029 goto chs_fail;
5030 if (*p != ',')
5031 goto chs_fail;
5032 p++;
5033 secs = strtol(p, (char **)&p, 0);
5034 if (secs < 1 || secs > 63)
5035 goto chs_fail;
5036 if (*p == ',') {
5037 p++;
5038 if (!strcmp(p, "none"))
5039 translation = BIOS_ATA_TRANSLATION_NONE;
5040 else if (!strcmp(p, "lba"))
5041 translation = BIOS_ATA_TRANSLATION_LBA;
5042 else if (!strcmp(p, "auto"))
5043 translation = BIOS_ATA_TRANSLATION_AUTO;
5044 else
5045 goto chs_fail;
5046 } else if (*p != '\0') {
5047 chs_fail:
5048 fprintf(stderr, "qemu: invalid physical CHS format\n");
5049 exit(1);
5050 }
5051 if (hda_index != -1)
5052 snprintf(drives_opt[hda_index].opt,
5053 sizeof(drives_opt[hda_index].opt),
5054 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5055 0, cyls, heads, secs,
5056 translation == BIOS_ATA_TRANSLATION_LBA ?
5057 ",trans=lba" :
5058 translation == BIOS_ATA_TRANSLATION_NONE ?
5059 ",trans=none" : "");
5060 }
5061 break;
5062 case QEMU_OPTION_numa:
5063 if (nb_numa_nodes >= MAX_NODES) {
5064 fprintf(stderr, "qemu: too many NUMA nodes\n");
5065 exit(1);
5066 }
5067 numa_add(optarg);
5068 break;
5069 case QEMU_OPTION_nographic:
5070 display_type = DT_NOGRAPHIC;
5071 break;
5072#ifdef CONFIG_CURSES
5073 case QEMU_OPTION_curses:
5074 display_type = DT_CURSES;
5075 break;
5076#endif
5077 case QEMU_OPTION_portrait:
5078 graphic_rotate = 1;
5079 break;
5080 case QEMU_OPTION_kernel:
5081 kernel_filename = optarg;
5082 break;
5083 case QEMU_OPTION_append:
5084 kernel_cmdline = optarg;
5085 break;
5086 case QEMU_OPTION_cdrom:
5087 drive_add(optarg, CDROM_ALIAS);
5088 break;
5089 case QEMU_OPTION_boot:
5090 boot_devices = optarg;
5091 /* We just do some generic consistency checks */
5092 {
5093 /* Could easily be extended to 64 devices if needed */
5094 const char *p;
5095
5096 boot_devices_bitmap = 0;
5097 for (p = boot_devices; *p != '\0'; p++) {
5098 /* Allowed boot devices are:
5099 * a b : floppy disk drives
5100 * c ... f : IDE disk drives
5101 * g ... m : machine implementation dependant drives
5102 * n ... p : network devices
5103 * It's up to each machine implementation to check
5104 * if the given boot devices match the actual hardware
5105 * implementation and firmware features.
5106 */
5107 if (*p < 'a' || *p > 'q') {
5108 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5109 exit(1);
5110 }
5111 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5112 fprintf(stderr,
5113 "Boot device '%c' was given twice\n",*p);
5114 exit(1);
5115 }
5116 boot_devices_bitmap |= 1 << (*p - 'a');
5117 }
5118 }
5119 break;
5120 case QEMU_OPTION_fda:
5121 case QEMU_OPTION_fdb:
5122 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5123 break;
5124#ifdef TARGET_I386
5125 case QEMU_OPTION_no_fd_bootchk:
5126 fd_bootchk = 0;
5127 break;
5128#endif
5129 case QEMU_OPTION_net:
5130 if (nb_net_clients >= MAX_NET_CLIENTS) {
5131 fprintf(stderr, "qemu: too many network clients\n");
5132 exit(1);
5133 }
5134 net_clients[nb_net_clients] = optarg;
5135 nb_net_clients++;
5136 break;
5137#ifdef CONFIG_SLIRP
5138 case QEMU_OPTION_tftp:
5139 tftp_prefix = optarg;
5140 break;
5141 case QEMU_OPTION_bootp:
5142 bootp_filename = optarg;
5143 break;
5144#ifndef _WIN32
5145 case QEMU_OPTION_smb:
5146 net_slirp_smb(optarg);
5147 break;
5148#endif
5149 case QEMU_OPTION_redir:
5150 net_slirp_redir(NULL, optarg);
5151 break;
5152#endif
5153 case QEMU_OPTION_bt:
5154 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5155 fprintf(stderr, "qemu: too many bluetooth options\n");
5156 exit(1);
5157 }
5158 bt_opts[nb_bt_opts++] = optarg;
5159 break;
5160#ifdef HAS_AUDIO
5161 case QEMU_OPTION_audio_help:
5162 AUD_help ();
5163 exit (0);
5164 break;
5165 case QEMU_OPTION_soundhw:
5166 select_soundhw (optarg);
5167 break;
5168#endif
5169 case QEMU_OPTION_h:
5170 help(0);
5171 break;
5172 case QEMU_OPTION_version:
5173 version();
5174 exit(0);
5175 break;
5176 case QEMU_OPTION_m: {
5177 uint64_t value;
5178 char *ptr;
5179
5180 value = strtoul(optarg, &ptr, 10);
5181 switch (*ptr) {
5182 case 0: case 'M': case 'm':
5183 value <<= 20;
5184 break;
5185 case 'G': case 'g':
5186 value <<= 30;
5187 break;
5188 default:
5189 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5190 exit(1);
5191 }
5192
5193 /* On 32-bit hosts, QEMU is limited by virtual address space */
5194 if (value > (2047 << 20)
5195#ifndef CONFIG_KQEMU
5196 && HOST_LONG_BITS == 32
5197#endif
5198 ) {
5199 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5200 exit(1);
5201 }
5202 if (value != (uint64_t)(ram_addr_t)value) {
5203 fprintf(stderr, "qemu: ram size too large\n");
5204 exit(1);
5205 }
5206 ram_size = value;
5207 break;
5208 }
5209 case QEMU_OPTION_d:
5210 {
5211 int mask;
5212 const CPULogItem *item;
5213
5214 mask = cpu_str_to_log_mask(optarg);
5215 if (!mask) {
5216 printf("Log items (comma separated):\n");
5217 for(item = cpu_log_items; item->mask != 0; item++) {
5218 printf("%-10s %s\n", item->name, item->help);
5219 }
5220 exit(1);
5221 }
5222 cpu_set_log(mask);
5223 }
5224 break;
5225 case QEMU_OPTION_s:
5226 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5227 break;
5228 case QEMU_OPTION_gdb:
5229 gdbstub_dev = optarg;
5230 break;
5231 case QEMU_OPTION_L:
5232 bios_dir = optarg;
5233 break;
5234 case QEMU_OPTION_bios:
5235 bios_name = optarg;
5236 break;
5237 case QEMU_OPTION_singlestep:
5238 singlestep = 1;
5239 break;
5240 case QEMU_OPTION_S:
5241 autostart = 0;
5242 break;
5243#ifndef _WIN32
5244 case QEMU_OPTION_k:
5245 keyboard_layout = optarg;
5246 break;
5247#endif
5248 case QEMU_OPTION_localtime:
5249 rtc_utc = 0;
5250 break;
5251 case QEMU_OPTION_vga:
5252 select_vgahw (optarg);
5253 break;
5254#if defined(TARGET_PPC) || defined(TARGET_SPARC)
5255 case QEMU_OPTION_g:
5256 {
5257 const char *p;
5258 int w, h, depth;
5259 p = optarg;
5260 w = strtol(p, (char **)&p, 10);
5261 if (w <= 0) {
5262 graphic_error:
5263 fprintf(stderr, "qemu: invalid resolution or depth\n");
5264 exit(1);
5265 }
5266 if (*p != 'x')
5267 goto graphic_error;
5268 p++;
5269 h = strtol(p, (char **)&p, 10);
5270 if (h <= 0)
5271 goto graphic_error;
5272 if (*p == 'x') {
5273 p++;
5274 depth = strtol(p, (char **)&p, 10);
5275 if (depth != 8 && depth != 15 && depth != 16 &&
5276 depth != 24 && depth != 32)
5277 goto graphic_error;
5278 } else if (*p == '\0') {
5279 depth = graphic_depth;
5280 } else {
5281 goto graphic_error;
5282 }
5283
5284 graphic_width = w;
5285 graphic_height = h;
5286 graphic_depth = depth;
5287 }
5288 break;
5289#endif
5290 case QEMU_OPTION_echr:
5291 {
5292 char *r;
5293 term_escape_char = strtol(optarg, &r, 0);
5294 if (r == optarg)
5295 printf("Bad argument to echr\n");
5296 break;
5297 }
5298 case QEMU_OPTION_monitor:
5299 monitor_device = optarg;
5300 break;
5301 case QEMU_OPTION_serial:
5302 if (serial_device_index >= MAX_SERIAL_PORTS) {
5303 fprintf(stderr, "qemu: too many serial ports\n");
5304 exit(1);
5305 }
5306 serial_devices[serial_device_index] = optarg;
5307 serial_device_index++;
5308 break;
5309 case QEMU_OPTION_watchdog:
5310 i = select_watchdog(optarg);
5311 if (i > 0)
5312 exit (i == 1 ? 1 : 0);
5313 break;
5314 case QEMU_OPTION_watchdog_action:
5315 if (select_watchdog_action(optarg) == -1) {
5316 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5317 exit(1);
5318 }
5319 break;
5320 case QEMU_OPTION_virtiocon:
5321 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5322 fprintf(stderr, "qemu: too many virtio consoles\n");
5323 exit(1);
5324 }
5325 virtio_consoles[virtio_console_index] = optarg;
5326 virtio_console_index++;
5327 break;
5328 case QEMU_OPTION_parallel:
5329 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5330 fprintf(stderr, "qemu: too many parallel ports\n");
5331 exit(1);
5332 }
5333 parallel_devices[parallel_device_index] = optarg;
5334 parallel_device_index++;
5335 break;
5336 case QEMU_OPTION_loadvm:
5337 loadvm = optarg;
5338 break;
5339 case QEMU_OPTION_full_screen:
5340 full_screen = 1;
5341 break;
5342#ifdef CONFIG_SDL
5343 case QEMU_OPTION_no_frame:
5344 no_frame = 1;
5345 break;
5346 case QEMU_OPTION_alt_grab:
5347 alt_grab = 1;
5348 break;
5349 case QEMU_OPTION_no_quit:
5350 no_quit = 1;
5351 break;
5352 case QEMU_OPTION_sdl:
5353 display_type = DT_SDL;
5354 break;
5355#endif
5356 case QEMU_OPTION_pidfile:
5357 pid_file = optarg;
5358 break;
5359#ifdef TARGET_I386
5360 case QEMU_OPTION_win2k_hack:
5361 win2k_install_hack = 1;
5362 break;
5363 case QEMU_OPTION_rtc_td_hack:
5364 rtc_td_hack = 1;
5365 break;
5366 case QEMU_OPTION_acpitable:
5367 if(acpi_table_add(optarg) < 0) {
5368 fprintf(stderr, "Wrong acpi table provided\n");
5369 exit(1);
5370 }
5371 break;
5372 case QEMU_OPTION_smbios:
5373 if(smbios_entry_add(optarg) < 0) {
5374 fprintf(stderr, "Wrong smbios provided\n");
5375 exit(1);
5376 }
5377 break;
5378#endif
5379#ifdef CONFIG_KQEMU
5380 case QEMU_OPTION_no_kqemu:
5381 kqemu_allowed = 0;
5382 break;
5383 case QEMU_OPTION_kernel_kqemu:
5384 kqemu_allowed = 2;
5385 break;
5386#endif
5387#ifdef CONFIG_KVM
5388 case QEMU_OPTION_enable_kvm:
5389 kvm_allowed = 1;
5390#ifdef CONFIG_KQEMU
5391 kqemu_allowed = 0;
5392#endif
5393 break;
5394#endif
5395 case QEMU_OPTION_usb:
5396 usb_enabled = 1;
5397 break;
5398 case QEMU_OPTION_usbdevice:
5399 usb_enabled = 1;
5400 if (usb_devices_index >= MAX_USB_CMDLINE) {
5401 fprintf(stderr, "Too many USB devices\n");
5402 exit(1);
5403 }
5404 usb_devices[usb_devices_index] = optarg;
5405 usb_devices_index++;
5406 break;
5407 case QEMU_OPTION_smp:
5408 smp_cpus = atoi(optarg);
5409 if (smp_cpus < 1) {
5410 fprintf(stderr, "Invalid number of CPUs\n");
5411 exit(1);
5412 }
5413 break;
5414 case QEMU_OPTION_vnc:
5415 display_type = DT_VNC;
5416 vnc_display = optarg;
5417 break;
5418#ifdef TARGET_I386
5419 case QEMU_OPTION_no_acpi:
5420 acpi_enabled = 0;
5421 break;
5422 case QEMU_OPTION_no_hpet:
5423 no_hpet = 1;
5424 break;
5425#endif
5426 case QEMU_OPTION_no_reboot:
5427 no_reboot = 1;
5428 break;
5429 case QEMU_OPTION_no_shutdown:
5430 no_shutdown = 1;
5431 break;
5432 case QEMU_OPTION_show_cursor:
5433 cursor_hide = 0;
5434 break;
5435 case QEMU_OPTION_uuid:
5436 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5437 fprintf(stderr, "Fail to parse UUID string."
5438 " Wrong format.\n");
5439 exit(1);
5440 }
5441 break;
5442#ifndef _WIN32
5443 case QEMU_OPTION_daemonize:
5444 daemonize = 1;
5445 break;
5446#endif
5447 case QEMU_OPTION_option_rom:
5448 if (nb_option_roms >= MAX_OPTION_ROMS) {
5449 fprintf(stderr, "Too many option ROMs\n");
5450 exit(1);
5451 }
5452 option_rom[nb_option_roms] = optarg;
5453 nb_option_roms++;
5454 break;
5455#if defined(TARGET_ARM) || defined(TARGET_M68K)
5456 case QEMU_OPTION_semihosting:
5457 semihosting_enabled = 1;
5458 break;
5459#endif
5460 case QEMU_OPTION_name:
5461 qemu_name = optarg;
5462 break;
5463#if defined(TARGET_SPARC) || defined(TARGET_PPC)
5464 case QEMU_OPTION_prom_env:
5465 if (nb_prom_envs >= MAX_PROM_ENVS) {
5466 fprintf(stderr, "Too many prom variables\n");
5467 exit(1);
5468 }
5469 prom_envs[nb_prom_envs] = optarg;
5470 nb_prom_envs++;
5471 break;
5472#endif
5473#ifdef TARGET_ARM
5474 case QEMU_OPTION_old_param:
5475 old_param = 1;
5476 break;
5477#endif
5478 case QEMU_OPTION_clock:
5479 configure_alarms(optarg);
5480 break;
5481 case QEMU_OPTION_startdate:
5482 {
5483 struct tm tm;
5484 time_t rtc_start_date;
5485 if (!strcmp(optarg, "now")) {
5486 rtc_date_offset = -1;
5487 } else {
5488 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5489 &tm.tm_year,
5490 &tm.tm_mon,
5491 &tm.tm_mday,
5492 &tm.tm_hour,
5493 &tm.tm_min,
5494 &tm.tm_sec) == 6) {
5495 /* OK */
5496 } else if (sscanf(optarg, "%d-%d-%d",
5497 &tm.tm_year,
5498 &tm.tm_mon,
5499 &tm.tm_mday) == 3) {
5500 tm.tm_hour = 0;
5501 tm.tm_min = 0;
5502 tm.tm_sec = 0;
5503 } else {
5504 goto date_fail;
5505 }
5506 tm.tm_year -= 1900;
5507 tm.tm_mon--;
5508 rtc_start_date = mktimegm(&tm);
5509 if (rtc_start_date == -1) {
5510 date_fail:
5511 fprintf(stderr, "Invalid date format. Valid format are:\n"
5512 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5513 exit(1);
5514 }
5515 rtc_date_offset = time(NULL) - rtc_start_date;
5516 }
5517 }
5518 break;
5519 case QEMU_OPTION_tb_size:
5520 tb_size = strtol(optarg, NULL, 0);
5521 if (tb_size < 0)
5522 tb_size = 0;
5523 break;
5524 case QEMU_OPTION_icount:
5525 use_icount = 1;
5526 if (strcmp(optarg, "auto") == 0) {
5527 icount_time_shift = -1;
5528 } else {
5529 icount_time_shift = strtol(optarg, NULL, 0);
5530 }
5531 break;
5532 case QEMU_OPTION_incoming:
5533 incoming = optarg;
5534 break;
5535#ifndef _WIN32
5536 case QEMU_OPTION_chroot:
5537 chroot_dir = optarg;
5538 break;
5539 case QEMU_OPTION_runas:
5540 run_as = optarg;
5541 break;
5542#endif
5543#ifdef CONFIG_XEN
5544 case QEMU_OPTION_xen_domid:
5545 xen_domid = atoi(optarg);
5546 break;
5547 case QEMU_OPTION_xen_create:
5548 xen_mode = XEN_CREATE;
5549 break;
5550 case QEMU_OPTION_xen_attach:
5551 xen_mode = XEN_ATTACH;
5552 break;
5553#endif
5554 }
5555 }
5556 }
5557
5558#if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5559 if (kvm_allowed && kqemu_allowed) {
5560 fprintf(stderr,
5561 "You can not enable both KVM and kqemu at the same time\n");
5562 exit(1);
5563 }
5564#endif
5565
5566 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5567 if (smp_cpus > machine->max_cpus) {
5568 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5569 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5570 machine->max_cpus);
5571 exit(1);
5572 }
5573
5574 if (display_type == DT_NOGRAPHIC) {
5575 if (serial_device_index == 0)
5576 serial_devices[0] = "stdio";
5577 if (parallel_device_index == 0)
5578 parallel_devices[0] = "null";
5579 if (strncmp(monitor_device, "vc", 2) == 0)
5580 monitor_device = "stdio";
5581 }
5582
5583#ifndef _WIN32
5584 if (daemonize) {
5585 pid_t pid;
5586
5587 if (pipe(fds) == -1)
5588 exit(1);
5589
5590 pid = fork();
5591 if (pid > 0) {
5592 uint8_t status;
5593 ssize_t len;
5594
5595 close(fds[1]);
5596
5597 again:
5598 len = read(fds[0], &status, 1);
5599 if (len == -1 && (errno == EINTR))
5600 goto again;
5601
5602 if (len != 1)
5603 exit(1);
5604 else if (status == 1) {
5605 fprintf(stderr, "Could not acquire pidfile\n");
5606 exit(1);
5607 } else
5608 exit(0);
5609 } else if (pid < 0)
5610 exit(1);
5611
5612 setsid();
5613
5614 pid = fork();
5615 if (pid > 0)
5616 exit(0);
5617 else if (pid < 0)
5618 exit(1);
5619
5620 umask(027);
5621
5622 signal(SIGTSTP, SIG_IGN);
5623 signal(SIGTTOU, SIG_IGN);
5624 signal(SIGTTIN, SIG_IGN);
5625 }
5626
5627 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5628 if (daemonize) {
5629 uint8_t status = 1;
5630 write(fds[1], &status, 1);
5631 } else
5632 fprintf(stderr, "Could not acquire pid file\n");
5633 exit(1);
5634 }
5635#endif
5636
5637#ifdef CONFIG_KQEMU
5638 if (smp_cpus > 1)
5639 kqemu_allowed = 0;
5640#endif
5641 if (qemu_init_main_loop()) {
5642 fprintf(stderr, "qemu_init_main_loop failed\n");
5643 exit(1);
5644 }
5645 linux_boot = (kernel_filename != NULL);
5646 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5647
5648 if (!linux_boot && *kernel_cmdline != '\0') {
5649 fprintf(stderr, "-append only allowed with -kernel option\n");
5650 exit(1);
5651 }
5652
5653 if (!linux_boot && initrd_filename != NULL) {
5654 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5655 exit(1);
5656 }
5657
5658 /* boot to floppy or the default cd if no hard disk defined yet */
5659 if (!boot_devices[0]) {
5660 boot_devices = "cad";
5661 }
5662 setvbuf(stdout, NULL, _IOLBF, 0);
5663
5664 init_timers();
5665 if (init_timer_alarm() < 0) {
5666 fprintf(stderr, "could not initialize alarm timer\n");
5667 exit(1);
5668 }
5669 if (use_icount && icount_time_shift < 0) {
5670 use_icount = 2;
5671 /* 125MIPS seems a reasonable initial guess at the guest speed.
5672 It will be corrected fairly quickly anyway. */
5673 icount_time_shift = 3;
5674 init_icount_adjust();
5675 }
5676
5677#ifdef _WIN32
5678 socket_init();
5679#endif
5680
5681 /* init network clients */
5682 if (nb_net_clients == 0) {
5683 /* if no clients, we use a default config */
5684 net_clients[nb_net_clients++] = "nic";
5685#ifdef CONFIG_SLIRP
5686 net_clients[nb_net_clients++] = "user";
5687#endif
5688 }
5689
5690 for(i = 0;i < nb_net_clients; i++) {
5691 if (net_client_parse(net_clients[i]) < 0)
5692 exit(1);
5693 }
5694 net_client_check();
5695
5696#ifdef TARGET_I386
5697 /* XXX: this should be moved in the PC machine instantiation code */
5698 if (net_boot != 0) {
5699 int netroms = 0;
5700 for (i = 0; i < nb_nics && i < 4; i++) {
5701 const char *model = nd_table[i].model;
5702 char buf[1024];
5703 if (net_boot & (1 << i)) {
5704 if (model == NULL)
5705 model = "ne2k_pci";
5706 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5707 if (get_image_size(buf) > 0) {
5708 if (nb_option_roms >= MAX_OPTION_ROMS) {
5709 fprintf(stderr, "Too many option ROMs\n");
5710 exit(1);
5711 }
5712 option_rom[nb_option_roms] = strdup(buf);
5713 nb_option_roms++;
5714 netroms++;
5715 }
5716 }
5717 }
5718 if (netroms == 0) {
5719 fprintf(stderr, "No valid PXE rom found for network device\n");
5720 exit(1);
5721 }
5722 }
5723#endif
5724
5725 /* init the bluetooth world */
5726 for (i = 0; i < nb_bt_opts; i++)
5727 if (bt_parse(bt_opts[i]))
5728 exit(1);
5729
5730 /* init the memory */
5731 if (ram_size == 0)
5732 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5733
5734#ifdef CONFIG_KQEMU
5735 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5736 guest ram allocation. It needs to go away. */
5737 if (kqemu_allowed) {
5738 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5739 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5740 if (!kqemu_phys_ram_base) {
5741 fprintf(stderr, "Could not allocate physical memory\n");
5742 exit(1);
5743 }
5744 }
5745#endif
5746
5747 /* init the dynamic translator */
5748 cpu_exec_init_all(tb_size * 1024 * 1024);
5749
5750 bdrv_init();
5751 dma_helper_init();
5752
5753 /* we always create the cdrom drive, even if no disk is there */
5754
5755 if (nb_drives_opt < MAX_DRIVES)
5756 drive_add(NULL, CDROM_ALIAS);
5757
5758 /* we always create at least one floppy */
5759
5760 if (nb_drives_opt < MAX_DRIVES)
5761 drive_add(NULL, FD_ALIAS, 0);
5762
5763 /* we always create one sd slot, even if no card is in it */
5764
5765 if (nb_drives_opt < MAX_DRIVES)
5766 drive_add(NULL, SD_ALIAS);
5767
5768 /* open the virtual block devices */
5769
5770 for(i = 0; i < nb_drives_opt; i++)
5771 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5772 exit(1);
5773
5774 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5775 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5776
5777#ifndef _WIN32
5778 /* must be after terminal init, SDL library changes signal handlers */
5779 termsig_setup();
5780#endif
5781
5782 /* Maintain compatibility with multiple stdio monitors */
5783 if (!strcmp(monitor_device,"stdio")) {
5784 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5785 const char *devname = serial_devices[i];
5786 if (devname && !strcmp(devname,"mon:stdio")) {
5787 monitor_device = NULL;
5788 break;
5789 } else if (devname && !strcmp(devname,"stdio")) {
5790 monitor_device = NULL;
5791 serial_devices[i] = "mon:stdio";
5792 break;
5793 }
5794 }
5795 }
5796
5797 if (nb_numa_nodes > 0) {
5798 int i;
5799
5800 if (nb_numa_nodes > smp_cpus) {
5801 nb_numa_nodes = smp_cpus;
5802 }
5803
5804 /* If no memory size if given for any node, assume the default case
5805 * and distribute the available memory equally across all nodes
5806 */
5807 for (i = 0; i < nb_numa_nodes; i++) {
5808 if (node_mem[i] != 0)
5809 break;
5810 }
5811 if (i == nb_numa_nodes) {
5812 uint64_t usedmem = 0;
5813
5814 /* On Linux, the each node's border has to be 8MB aligned,
5815 * the final node gets the rest.
5816 */
5817 for (i = 0; i < nb_numa_nodes - 1; i++) {
5818 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5819 usedmem += node_mem[i];
5820 }
5821 node_mem[i] = ram_size - usedmem;
5822 }
5823
5824 for (i = 0; i < nb_numa_nodes; i++) {
5825 if (node_cpumask[i] != 0)
5826 break;
5827 }
5828 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5829 * must cope with this anyway, because there are BIOSes out there in
5830 * real machines which also use this scheme.
5831 */
5832 if (i == nb_numa_nodes) {
5833 for (i = 0; i < smp_cpus; i++) {
5834 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5835 }
5836 }
5837 }
5838
5839 if (kvm_enabled()) {
5840 int ret;
5841
5842 ret = kvm_init(smp_cpus);
5843 if (ret < 0) {
5844 fprintf(stderr, "failed to initialize KVM\n");
5845 exit(1);
5846 }
5847 }
5848
5849 if (monitor_device) {
5850 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5851 if (!monitor_hd) {
5852 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5853 exit(1);
5854 }
5855 }
5856
5857 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5858 const char *devname = serial_devices[i];
5859 if (devname && strcmp(devname, "none")) {
5860 char label[32];
5861 snprintf(label, sizeof(label), "serial%d", i);
5862 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5863 if (!serial_hds[i]) {
5864 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5865 devname);
5866 exit(1);
5867 }
5868 }
5869 }
5870
5871 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5872 const char *devname = parallel_devices[i];
5873 if (devname && strcmp(devname, "none")) {
5874 char label[32];
5875 snprintf(label, sizeof(label), "parallel%d", i);
5876 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5877 if (!parallel_hds[i]) {
5878 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5879 devname);
5880 exit(1);
5881 }
5882 }
5883 }
5884
5885 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5886 const char *devname = virtio_consoles[i];
5887 if (devname && strcmp(devname, "none")) {
5888 char label[32];
5889 snprintf(label, sizeof(label), "virtcon%d", i);
5890 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5891 if (!virtcon_hds[i]) {
5892 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5893 devname);
5894 exit(1);
5895 }
5896 }
5897 }
5898
5899 module_call_init(MODULE_INIT_DEVICE);
5900
5901 machine->init(ram_size, boot_devices,
5902 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5903
5904
5905 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5906 for (i = 0; i < nb_numa_nodes; i++) {
5907 if (node_cpumask[i] & (1 << env->cpu_index)) {
5908 env->numa_node = i;
5909 }
5910 }
5911 }
5912
5913 current_machine = machine;
5914
5915 /* Set KVM's vcpu state to qemu's initial CPUState. */
5916 if (kvm_enabled()) {
5917 int ret;
5918
5919 ret = kvm_sync_vcpus();
5920 if (ret < 0) {
5921 fprintf(stderr, "failed to initialize vcpus\n");
5922 exit(1);
5923 }
5924 }
5925
5926 /* init USB devices */
5927 if (usb_enabled) {
5928 for(i = 0; i < usb_devices_index; i++) {
5929 if (usb_device_add(usb_devices[i], 0) < 0) {
5930 fprintf(stderr, "Warning: could not add USB device %s\n",
5931 usb_devices[i]);
5932 }
5933 }
5934 }
5935
5936 if (!display_state)
5937 dumb_display_init();
5938 /* just use the first displaystate for the moment */
5939 ds = display_state;
5940
5941 if (display_type == DT_DEFAULT) {
5942#if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5943 display_type = DT_SDL;
5944#else
5945 display_type = DT_VNC;
5946 vnc_display = "localhost:0,to=99";
5947 show_vnc_port = 1;
5948#endif
5949 }
5950
5951
5952 switch (display_type) {
5953 case DT_NOGRAPHIC:
5954 break;
5955#if defined(CONFIG_CURSES)
5956 case DT_CURSES:
5957 curses_display_init(ds, full_screen);
5958 break;
5959#endif
5960#if defined(CONFIG_SDL)
5961 case DT_SDL:
5962 sdl_display_init(ds, full_screen, no_frame);
5963 break;
5964#elif defined(CONFIG_COCOA)
5965 case DT_SDL:
5966 cocoa_display_init(ds, full_screen);
5967 break;
5968#endif
5969 case DT_VNC:
5970 vnc_display_init(ds);
5971 if (vnc_display_open(ds, vnc_display) < 0)
5972 exit(1);
5973
5974 if (show_vnc_port) {
5975 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5976 }
5977 break;
5978 default:
5979 break;
5980 }
5981 dpy_resize(ds);
5982
5983 dcl = ds->listeners;
5984 while (dcl != NULL) {
5985 if (dcl->dpy_refresh != NULL) {
5986 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5987 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5988 }
5989 dcl = dcl->next;
5990 }
5991
5992 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5993 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5994 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5995 }
5996
5997 text_consoles_set_display(display_state);
5998 qemu_chr_initial_reset();
5999
6000 if (monitor_device && monitor_hd)
6001 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6002
6003 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6004 const char *devname = serial_devices[i];
6005 if (devname && strcmp(devname, "none")) {
6006 char label[32];
6007 snprintf(label, sizeof(label), "serial%d", i);
6008 if (strstart(devname, "vc", 0))
6009 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6010 }
6011 }
6012
6013 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6014 const char *devname = parallel_devices[i];
6015 if (devname && strcmp(devname, "none")) {
6016 char label[32];
6017 snprintf(label, sizeof(label), "parallel%d", i);
6018 if (strstart(devname, "vc", 0))
6019 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6020 }
6021 }
6022
6023 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6024 const char *devname = virtio_consoles[i];
6025 if (virtcon_hds[i] && devname) {
6026 char label[32];
6027 snprintf(label, sizeof(label), "virtcon%d", i);
6028 if (strstart(devname, "vc", 0))
6029 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6030 }
6031 }
6032
6033 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6034 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6035 gdbstub_dev);
6036 exit(1);
6037 }
6038
6039 if (loadvm)
6040 do_loadvm(cur_mon, loadvm);
6041
6042 if (incoming) {
6043 autostart = 0; /* fixme how to deal with -daemonize */
6044 qemu_start_incoming_migration(incoming);
6045 }
6046
6047 if (autostart)
6048 vm_start();
6049
6050#ifndef _WIN32
6051 if (daemonize) {
6052 uint8_t status = 0;
6053 ssize_t len;
6054
6055 again1:
6056 len = write(fds[1], &status, 1);
6057 if (len == -1 && (errno == EINTR))
6058 goto again1;
6059
6060 if (len != 1)
6061 exit(1);
6062
6063 chdir("/");
6064 TFR(fd = open("/dev/null", O_RDWR));
6065 if (fd == -1)
6066 exit(1);
6067 }
6068
6069 if (run_as) {
6070 pwd = getpwnam(run_as);
6071 if (!pwd) {
6072 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6073 exit(1);
6074 }
6075 }
6076
6077 if (chroot_dir) {
6078 if (chroot(chroot_dir) < 0) {
6079 fprintf(stderr, "chroot failed\n");
6080 exit(1);
6081 }
6082 chdir("/");
6083 }
6084
6085 if (run_as) {
6086 if (setgid(pwd->pw_gid) < 0) {
6087 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6088 exit(1);
6089 }
6090 if (setuid(pwd->pw_uid) < 0) {
6091 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6092 exit(1);
6093 }
6094 if (setuid(0) != -1) {
6095 fprintf(stderr, "Dropping privileges failed\n");
6096 exit(1);
6097 }
6098 }
6099
6100 if (daemonize) {
6101 dup2(fd, 0);
6102 dup2(fd, 1);
6103 dup2(fd, 2);
6104
6105 close(fd);
6106 }
6107#endif
6108
6109 main_loop();
6110 quit_timers();
6111 net_cleanup();
6112
6113 return 0;
6114}