]> git.proxmox.com Git - qemu.git/blame_incremental - vl.c
USB OHCI: add support for big endian targets
[qemu.git] / vl.c
... / ...
CommitLineData
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24#include "hw/hw.h"
25#include "hw/boards.h"
26#include "hw/usb.h"
27#include "hw/pcmcia.h"
28#include "hw/pc.h"
29#include "hw/audiodev.h"
30#include "hw/isa.h"
31#include "hw/baum.h"
32#include "hw/bt.h"
33#include "net.h"
34#include "console.h"
35#include "sysemu.h"
36#include "gdbstub.h"
37#include "qemu-timer.h"
38#include "qemu-char.h"
39#include "cache-utils.h"
40#include "block.h"
41#include "audio/audio.h"
42#include "migration.h"
43#include "kvm.h"
44#include "balloon.h"
45
46#include <unistd.h>
47#include <fcntl.h>
48#include <signal.h>
49#include <time.h>
50#include <errno.h>
51#include <sys/time.h>
52#include <zlib.h>
53
54#ifndef _WIN32
55#include <sys/times.h>
56#include <sys/wait.h>
57#include <termios.h>
58#include <sys/mman.h>
59#include <sys/ioctl.h>
60#include <sys/resource.h>
61#include <sys/socket.h>
62#include <netinet/in.h>
63#include <net/if.h>
64#if defined(__NetBSD__)
65#include <net/if_tap.h>
66#endif
67#ifdef __linux__
68#include <linux/if_tun.h>
69#endif
70#include <arpa/inet.h>
71#include <dirent.h>
72#include <netdb.h>
73#include <sys/select.h>
74#ifdef _BSD
75#include <sys/stat.h>
76#ifdef __FreeBSD__
77#include <libutil.h>
78#else
79#include <util.h>
80#endif
81#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
82#include <freebsd/stdlib.h>
83#else
84#ifdef __linux__
85#include <pty.h>
86#include <malloc.h>
87#include <linux/rtc.h>
88
89/* For the benefit of older linux systems which don't supply it,
90 we use a local copy of hpet.h. */
91/* #include <linux/hpet.h> */
92#include "hpet.h"
93
94#include <linux/ppdev.h>
95#include <linux/parport.h>
96#endif
97#ifdef __sun__
98#include <sys/stat.h>
99#include <sys/ethernet.h>
100#include <sys/sockio.h>
101#include <netinet/arp.h>
102#include <netinet/in.h>
103#include <netinet/in_systm.h>
104#include <netinet/ip.h>
105#include <netinet/ip_icmp.h> // must come after ip.h
106#include <netinet/udp.h>
107#include <netinet/tcp.h>
108#include <net/if.h>
109#include <syslog.h>
110#include <stropts.h>
111#endif
112#endif
113#endif
114
115#include "qemu_socket.h"
116
117#if defined(CONFIG_SLIRP)
118#include "libslirp.h"
119#endif
120
121#if defined(__OpenBSD__)
122#include <util.h>
123#endif
124
125#if defined(CONFIG_VDE)
126#include <libvdeplug.h>
127#endif
128
129#ifdef _WIN32
130#include <malloc.h>
131#include <sys/timeb.h>
132#include <mmsystem.h>
133#define getopt_long_only getopt_long
134#define memalign(align, size) malloc(size)
135#endif
136
137#ifdef CONFIG_SDL
138#ifdef __APPLE__
139#include <SDL/SDL.h>
140#endif
141#endif /* CONFIG_SDL */
142
143#ifdef CONFIG_COCOA
144#undef main
145#define main qemu_main
146#endif /* CONFIG_COCOA */
147
148#include "disas.h"
149
150#include "exec-all.h"
151
152//#define DEBUG_UNUSED_IOPORT
153//#define DEBUG_IOPORT
154//#define DEBUG_NET
155//#define DEBUG_SLIRP
156
157
158#ifdef DEBUG_IOPORT
159# define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
160#else
161# define LOG_IOPORT(...) do { } while (0)
162#endif
163
164#ifdef TARGET_PPC
165#define DEFAULT_RAM_SIZE 144
166#else
167#define DEFAULT_RAM_SIZE 128
168#endif
169
170/* Max number of USB devices that can be specified on the commandline. */
171#define MAX_USB_CMDLINE 8
172
173/* Max number of bluetooth switches on the commandline. */
174#define MAX_BT_CMDLINE 10
175
176/* XXX: use a two level table to limit memory usage */
177#define MAX_IOPORTS 65536
178
179const char *bios_dir = CONFIG_QEMU_SHAREDIR;
180const char *bios_name = NULL;
181static void *ioport_opaque[MAX_IOPORTS];
182static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
183static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
184/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
185 to store the VM snapshots */
186DriveInfo drives_table[MAX_DRIVES+1];
187int nb_drives;
188static int vga_ram_size;
189enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
190static DisplayState *display_state;
191int nographic;
192static int curses;
193static int sdl;
194const char* keyboard_layout = NULL;
195int64_t ticks_per_sec;
196ram_addr_t ram_size;
197int nb_nics;
198NICInfo nd_table[MAX_NICS];
199int vm_running;
200static int rtc_utc = 1;
201static int rtc_date_offset = -1; /* -1 means no change */
202int cirrus_vga_enabled = 1;
203int std_vga_enabled = 0;
204int vmsvga_enabled = 0;
205#ifdef TARGET_SPARC
206int graphic_width = 1024;
207int graphic_height = 768;
208int graphic_depth = 8;
209#else
210int graphic_width = 800;
211int graphic_height = 600;
212int graphic_depth = 15;
213#endif
214static int full_screen = 0;
215#ifdef CONFIG_SDL
216static int no_frame = 0;
217#endif
218int no_quit = 0;
219CharDriverState *serial_hds[MAX_SERIAL_PORTS];
220CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
221CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
222#ifdef TARGET_I386
223int win2k_install_hack = 0;
224int rtc_td_hack = 0;
225#endif
226int usb_enabled = 0;
227int smp_cpus = 1;
228const char *vnc_display;
229int acpi_enabled = 1;
230int no_hpet = 0;
231int fd_bootchk = 1;
232int no_reboot = 0;
233int no_shutdown = 0;
234int cursor_hide = 1;
235int graphic_rotate = 0;
236int daemonize = 0;
237const char *option_rom[MAX_OPTION_ROMS];
238int nb_option_roms;
239int semihosting_enabled = 0;
240#ifdef TARGET_ARM
241int old_param = 0;
242#endif
243const char *qemu_name;
244int alt_grab = 0;
245#if defined(TARGET_SPARC) || defined(TARGET_PPC)
246unsigned int nb_prom_envs = 0;
247const char *prom_envs[MAX_PROM_ENVS];
248#endif
249static int nb_drives_opt;
250static struct drive_opt {
251 const char *file;
252 char opt[1024];
253} drives_opt[MAX_DRIVES];
254
255static CPUState *cur_cpu;
256static CPUState *next_cpu;
257static int event_pending = 1;
258/* Conversion factor from emulated instructions to virtual clock ticks. */
259static int icount_time_shift;
260/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
261#define MAX_ICOUNT_SHIFT 10
262/* Compensate for varying guest execution speed. */
263static int64_t qemu_icount_bias;
264static QEMUTimer *icount_rt_timer;
265static QEMUTimer *icount_vm_timer;
266
267uint8_t qemu_uuid[16];
268
269/***********************************************************/
270/* x86 ISA bus support */
271
272target_phys_addr_t isa_mem_base = 0;
273PicState2 *isa_pic;
274
275static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
276static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
277
278static uint32_t ioport_read(int index, uint32_t address)
279{
280 static IOPortReadFunc *default_func[3] = {
281 default_ioport_readb,
282 default_ioport_readw,
283 default_ioport_readl
284 };
285 IOPortReadFunc *func = ioport_read_table[index][address];
286 if (!func)
287 func = default_func[index];
288 return func(ioport_opaque[address], address);
289}
290
291static void ioport_write(int index, uint32_t address, uint32_t data)
292{
293 static IOPortWriteFunc *default_func[3] = {
294 default_ioport_writeb,
295 default_ioport_writew,
296 default_ioport_writel
297 };
298 IOPortWriteFunc *func = ioport_write_table[index][address];
299 if (!func)
300 func = default_func[index];
301 func(ioport_opaque[address], address, data);
302}
303
304static uint32_t default_ioport_readb(void *opaque, uint32_t address)
305{
306#ifdef DEBUG_UNUSED_IOPORT
307 fprintf(stderr, "unused inb: port=0x%04x\n", address);
308#endif
309 return 0xff;
310}
311
312static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
313{
314#ifdef DEBUG_UNUSED_IOPORT
315 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
316#endif
317}
318
319/* default is to make two byte accesses */
320static uint32_t default_ioport_readw(void *opaque, uint32_t address)
321{
322 uint32_t data;
323 data = ioport_read(0, address);
324 address = (address + 1) & (MAX_IOPORTS - 1);
325 data |= ioport_read(0, address) << 8;
326 return data;
327}
328
329static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
330{
331 ioport_write(0, address, data & 0xff);
332 address = (address + 1) & (MAX_IOPORTS - 1);
333 ioport_write(0, address, (data >> 8) & 0xff);
334}
335
336static uint32_t default_ioport_readl(void *opaque, uint32_t address)
337{
338#ifdef DEBUG_UNUSED_IOPORT
339 fprintf(stderr, "unused inl: port=0x%04x\n", address);
340#endif
341 return 0xffffffff;
342}
343
344static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
345{
346#ifdef DEBUG_UNUSED_IOPORT
347 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
348#endif
349}
350
351/* size is the word size in byte */
352int register_ioport_read(int start, int length, int size,
353 IOPortReadFunc *func, void *opaque)
354{
355 int i, bsize;
356
357 if (size == 1) {
358 bsize = 0;
359 } else if (size == 2) {
360 bsize = 1;
361 } else if (size == 4) {
362 bsize = 2;
363 } else {
364 hw_error("register_ioport_read: invalid size");
365 return -1;
366 }
367 for(i = start; i < start + length; i += size) {
368 ioport_read_table[bsize][i] = func;
369 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
370 hw_error("register_ioport_read: invalid opaque");
371 ioport_opaque[i] = opaque;
372 }
373 return 0;
374}
375
376/* size is the word size in byte */
377int register_ioport_write(int start, int length, int size,
378 IOPortWriteFunc *func, void *opaque)
379{
380 int i, bsize;
381
382 if (size == 1) {
383 bsize = 0;
384 } else if (size == 2) {
385 bsize = 1;
386 } else if (size == 4) {
387 bsize = 2;
388 } else {
389 hw_error("register_ioport_write: invalid size");
390 return -1;
391 }
392 for(i = start; i < start + length; i += size) {
393 ioport_write_table[bsize][i] = func;
394 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
395 hw_error("register_ioport_write: invalid opaque");
396 ioport_opaque[i] = opaque;
397 }
398 return 0;
399}
400
401void isa_unassign_ioport(int start, int length)
402{
403 int i;
404
405 for(i = start; i < start + length; i++) {
406 ioport_read_table[0][i] = default_ioport_readb;
407 ioport_read_table[1][i] = default_ioport_readw;
408 ioport_read_table[2][i] = default_ioport_readl;
409
410 ioport_write_table[0][i] = default_ioport_writeb;
411 ioport_write_table[1][i] = default_ioport_writew;
412 ioport_write_table[2][i] = default_ioport_writel;
413 }
414}
415
416/***********************************************************/
417
418void cpu_outb(CPUState *env, int addr, int val)
419{
420 LOG_IOPORT("outb: %04x %02x\n", addr, val);
421 ioport_write(0, addr, val);
422#ifdef USE_KQEMU
423 if (env)
424 env->last_io_time = cpu_get_time_fast();
425#endif
426}
427
428void cpu_outw(CPUState *env, int addr, int val)
429{
430 LOG_IOPORT("outw: %04x %04x\n", addr, val);
431 ioport_write(1, addr, val);
432#ifdef USE_KQEMU
433 if (env)
434 env->last_io_time = cpu_get_time_fast();
435#endif
436}
437
438void cpu_outl(CPUState *env, int addr, int val)
439{
440 LOG_IOPORT("outl: %04x %08x\n", addr, val);
441 ioport_write(2, addr, val);
442#ifdef USE_KQEMU
443 if (env)
444 env->last_io_time = cpu_get_time_fast();
445#endif
446}
447
448int cpu_inb(CPUState *env, int addr)
449{
450 int val;
451 val = ioport_read(0, addr);
452 LOG_IOPORT("inb : %04x %02x\n", addr, val);
453#ifdef USE_KQEMU
454 if (env)
455 env->last_io_time = cpu_get_time_fast();
456#endif
457 return val;
458}
459
460int cpu_inw(CPUState *env, int addr)
461{
462 int val;
463 val = ioport_read(1, addr);
464 LOG_IOPORT("inw : %04x %04x\n", addr, val);
465#ifdef USE_KQEMU
466 if (env)
467 env->last_io_time = cpu_get_time_fast();
468#endif
469 return val;
470}
471
472int cpu_inl(CPUState *env, int addr)
473{
474 int val;
475 val = ioport_read(2, addr);
476 LOG_IOPORT("inl : %04x %08x\n", addr, val);
477#ifdef USE_KQEMU
478 if (env)
479 env->last_io_time = cpu_get_time_fast();
480#endif
481 return val;
482}
483
484/***********************************************************/
485void hw_error(const char *fmt, ...)
486{
487 va_list ap;
488 CPUState *env;
489
490 va_start(ap, fmt);
491 fprintf(stderr, "qemu: hardware error: ");
492 vfprintf(stderr, fmt, ap);
493 fprintf(stderr, "\n");
494 for(env = first_cpu; env != NULL; env = env->next_cpu) {
495 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
496#ifdef TARGET_I386
497 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
498#else
499 cpu_dump_state(env, stderr, fprintf, 0);
500#endif
501 }
502 va_end(ap);
503 abort();
504}
505
506/***************/
507/* ballooning */
508
509static QEMUBalloonEvent *qemu_balloon_event;
510void *qemu_balloon_event_opaque;
511
512void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
513{
514 qemu_balloon_event = func;
515 qemu_balloon_event_opaque = opaque;
516}
517
518void qemu_balloon(ram_addr_t target)
519{
520 if (qemu_balloon_event)
521 qemu_balloon_event(qemu_balloon_event_opaque, target);
522}
523
524ram_addr_t qemu_balloon_status(void)
525{
526 if (qemu_balloon_event)
527 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
528 return 0;
529}
530
531/***********************************************************/
532/* keyboard/mouse */
533
534static QEMUPutKBDEvent *qemu_put_kbd_event;
535static void *qemu_put_kbd_event_opaque;
536static QEMUPutMouseEntry *qemu_put_mouse_event_head;
537static QEMUPutMouseEntry *qemu_put_mouse_event_current;
538
539void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
540{
541 qemu_put_kbd_event_opaque = opaque;
542 qemu_put_kbd_event = func;
543}
544
545QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
546 void *opaque, int absolute,
547 const char *name)
548{
549 QEMUPutMouseEntry *s, *cursor;
550
551 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
552 if (!s)
553 return NULL;
554
555 s->qemu_put_mouse_event = func;
556 s->qemu_put_mouse_event_opaque = opaque;
557 s->qemu_put_mouse_event_absolute = absolute;
558 s->qemu_put_mouse_event_name = qemu_strdup(name);
559 s->next = NULL;
560
561 if (!qemu_put_mouse_event_head) {
562 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
563 return s;
564 }
565
566 cursor = qemu_put_mouse_event_head;
567 while (cursor->next != NULL)
568 cursor = cursor->next;
569
570 cursor->next = s;
571 qemu_put_mouse_event_current = s;
572
573 return s;
574}
575
576void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
577{
578 QEMUPutMouseEntry *prev = NULL, *cursor;
579
580 if (!qemu_put_mouse_event_head || entry == NULL)
581 return;
582
583 cursor = qemu_put_mouse_event_head;
584 while (cursor != NULL && cursor != entry) {
585 prev = cursor;
586 cursor = cursor->next;
587 }
588
589 if (cursor == NULL) // does not exist or list empty
590 return;
591 else if (prev == NULL) { // entry is head
592 qemu_put_mouse_event_head = cursor->next;
593 if (qemu_put_mouse_event_current == entry)
594 qemu_put_mouse_event_current = cursor->next;
595 qemu_free(entry->qemu_put_mouse_event_name);
596 qemu_free(entry);
597 return;
598 }
599
600 prev->next = entry->next;
601
602 if (qemu_put_mouse_event_current == entry)
603 qemu_put_mouse_event_current = prev;
604
605 qemu_free(entry->qemu_put_mouse_event_name);
606 qemu_free(entry);
607}
608
609void kbd_put_keycode(int keycode)
610{
611 if (qemu_put_kbd_event) {
612 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
613 }
614}
615
616void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
617{
618 QEMUPutMouseEvent *mouse_event;
619 void *mouse_event_opaque;
620 int width;
621
622 if (!qemu_put_mouse_event_current) {
623 return;
624 }
625
626 mouse_event =
627 qemu_put_mouse_event_current->qemu_put_mouse_event;
628 mouse_event_opaque =
629 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
630
631 if (mouse_event) {
632 if (graphic_rotate) {
633 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
634 width = 0x7fff;
635 else
636 width = graphic_width - 1;
637 mouse_event(mouse_event_opaque,
638 width - dy, dx, dz, buttons_state);
639 } else
640 mouse_event(mouse_event_opaque,
641 dx, dy, dz, buttons_state);
642 }
643}
644
645int kbd_mouse_is_absolute(void)
646{
647 if (!qemu_put_mouse_event_current)
648 return 0;
649
650 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
651}
652
653void do_info_mice(void)
654{
655 QEMUPutMouseEntry *cursor;
656 int index = 0;
657
658 if (!qemu_put_mouse_event_head) {
659 term_printf("No mouse devices connected\n");
660 return;
661 }
662
663 term_printf("Mouse devices available:\n");
664 cursor = qemu_put_mouse_event_head;
665 while (cursor != NULL) {
666 term_printf("%c Mouse #%d: %s\n",
667 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
668 index, cursor->qemu_put_mouse_event_name);
669 index++;
670 cursor = cursor->next;
671 }
672}
673
674void do_mouse_set(int index)
675{
676 QEMUPutMouseEntry *cursor;
677 int i = 0;
678
679 if (!qemu_put_mouse_event_head) {
680 term_printf("No mouse devices connected\n");
681 return;
682 }
683
684 cursor = qemu_put_mouse_event_head;
685 while (cursor != NULL && index != i) {
686 i++;
687 cursor = cursor->next;
688 }
689
690 if (cursor != NULL)
691 qemu_put_mouse_event_current = cursor;
692 else
693 term_printf("Mouse at given index not found\n");
694}
695
696/* compute with 96 bit intermediate result: (a*b)/c */
697uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
698{
699 union {
700 uint64_t ll;
701 struct {
702#ifdef WORDS_BIGENDIAN
703 uint32_t high, low;
704#else
705 uint32_t low, high;
706#endif
707 } l;
708 } u, res;
709 uint64_t rl, rh;
710
711 u.ll = a;
712 rl = (uint64_t)u.l.low * (uint64_t)b;
713 rh = (uint64_t)u.l.high * (uint64_t)b;
714 rh += (rl >> 32);
715 res.l.high = rh / c;
716 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
717 return res.ll;
718}
719
720/***********************************************************/
721/* real time host monotonic timer */
722
723#define QEMU_TIMER_BASE 1000000000LL
724
725#ifdef WIN32
726
727static int64_t clock_freq;
728
729static void init_get_clock(void)
730{
731 LARGE_INTEGER freq;
732 int ret;
733 ret = QueryPerformanceFrequency(&freq);
734 if (ret == 0) {
735 fprintf(stderr, "Could not calibrate ticks\n");
736 exit(1);
737 }
738 clock_freq = freq.QuadPart;
739}
740
741static int64_t get_clock(void)
742{
743 LARGE_INTEGER ti;
744 QueryPerformanceCounter(&ti);
745 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
746}
747
748#else
749
750static int use_rt_clock;
751
752static void init_get_clock(void)
753{
754 use_rt_clock = 0;
755#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
756 {
757 struct timespec ts;
758 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
759 use_rt_clock = 1;
760 }
761 }
762#endif
763}
764
765static int64_t get_clock(void)
766{
767#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
768 if (use_rt_clock) {
769 struct timespec ts;
770 clock_gettime(CLOCK_MONOTONIC, &ts);
771 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
772 } else
773#endif
774 {
775 /* XXX: using gettimeofday leads to problems if the date
776 changes, so it should be avoided. */
777 struct timeval tv;
778 gettimeofday(&tv, NULL);
779 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
780 }
781}
782#endif
783
784/* Return the virtual CPU time, based on the instruction counter. */
785static int64_t cpu_get_icount(void)
786{
787 int64_t icount;
788 CPUState *env = cpu_single_env;;
789 icount = qemu_icount;
790 if (env) {
791 if (!can_do_io(env))
792 fprintf(stderr, "Bad clock read\n");
793 icount -= (env->icount_decr.u16.low + env->icount_extra);
794 }
795 return qemu_icount_bias + (icount << icount_time_shift);
796}
797
798/***********************************************************/
799/* guest cycle counter */
800
801static int64_t cpu_ticks_prev;
802static int64_t cpu_ticks_offset;
803static int64_t cpu_clock_offset;
804static int cpu_ticks_enabled;
805
806/* return the host CPU cycle counter and handle stop/restart */
807int64_t cpu_get_ticks(void)
808{
809 if (use_icount) {
810 return cpu_get_icount();
811 }
812 if (!cpu_ticks_enabled) {
813 return cpu_ticks_offset;
814 } else {
815 int64_t ticks;
816 ticks = cpu_get_real_ticks();
817 if (cpu_ticks_prev > ticks) {
818 /* Note: non increasing ticks may happen if the host uses
819 software suspend */
820 cpu_ticks_offset += cpu_ticks_prev - ticks;
821 }
822 cpu_ticks_prev = ticks;
823 return ticks + cpu_ticks_offset;
824 }
825}
826
827/* return the host CPU monotonic timer and handle stop/restart */
828static int64_t cpu_get_clock(void)
829{
830 int64_t ti;
831 if (!cpu_ticks_enabled) {
832 return cpu_clock_offset;
833 } else {
834 ti = get_clock();
835 return ti + cpu_clock_offset;
836 }
837}
838
839/* enable cpu_get_ticks() */
840void cpu_enable_ticks(void)
841{
842 if (!cpu_ticks_enabled) {
843 cpu_ticks_offset -= cpu_get_real_ticks();
844 cpu_clock_offset -= get_clock();
845 cpu_ticks_enabled = 1;
846 }
847}
848
849/* disable cpu_get_ticks() : the clock is stopped. You must not call
850 cpu_get_ticks() after that. */
851void cpu_disable_ticks(void)
852{
853 if (cpu_ticks_enabled) {
854 cpu_ticks_offset = cpu_get_ticks();
855 cpu_clock_offset = cpu_get_clock();
856 cpu_ticks_enabled = 0;
857 }
858}
859
860/***********************************************************/
861/* timers */
862
863#define QEMU_TIMER_REALTIME 0
864#define QEMU_TIMER_VIRTUAL 1
865
866struct QEMUClock {
867 int type;
868 /* XXX: add frequency */
869};
870
871struct QEMUTimer {
872 QEMUClock *clock;
873 int64_t expire_time;
874 QEMUTimerCB *cb;
875 void *opaque;
876 struct QEMUTimer *next;
877};
878
879struct qemu_alarm_timer {
880 char const *name;
881 unsigned int flags;
882
883 int (*start)(struct qemu_alarm_timer *t);
884 void (*stop)(struct qemu_alarm_timer *t);
885 void (*rearm)(struct qemu_alarm_timer *t);
886 void *priv;
887};
888
889#define ALARM_FLAG_DYNTICKS 0x1
890#define ALARM_FLAG_EXPIRED 0x2
891
892static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
893{
894 return t->flags & ALARM_FLAG_DYNTICKS;
895}
896
897static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
898{
899 if (!alarm_has_dynticks(t))
900 return;
901
902 t->rearm(t);
903}
904
905/* TODO: MIN_TIMER_REARM_US should be optimized */
906#define MIN_TIMER_REARM_US 250
907
908static struct qemu_alarm_timer *alarm_timer;
909#ifndef _WIN32
910static int alarm_timer_rfd, alarm_timer_wfd;
911#endif
912
913#ifdef _WIN32
914
915struct qemu_alarm_win32 {
916 MMRESULT timerId;
917 HANDLE host_alarm;
918 unsigned int period;
919} alarm_win32_data = {0, NULL, -1};
920
921static int win32_start_timer(struct qemu_alarm_timer *t);
922static void win32_stop_timer(struct qemu_alarm_timer *t);
923static void win32_rearm_timer(struct qemu_alarm_timer *t);
924
925#else
926
927static int unix_start_timer(struct qemu_alarm_timer *t);
928static void unix_stop_timer(struct qemu_alarm_timer *t);
929
930#ifdef __linux__
931
932static int dynticks_start_timer(struct qemu_alarm_timer *t);
933static void dynticks_stop_timer(struct qemu_alarm_timer *t);
934static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
935
936static int hpet_start_timer(struct qemu_alarm_timer *t);
937static void hpet_stop_timer(struct qemu_alarm_timer *t);
938
939static int rtc_start_timer(struct qemu_alarm_timer *t);
940static void rtc_stop_timer(struct qemu_alarm_timer *t);
941
942#endif /* __linux__ */
943
944#endif /* _WIN32 */
945
946/* Correlation between real and virtual time is always going to be
947 fairly approximate, so ignore small variation.
948 When the guest is idle real and virtual time will be aligned in
949 the IO wait loop. */
950#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
951
952static void icount_adjust(void)
953{
954 int64_t cur_time;
955 int64_t cur_icount;
956 int64_t delta;
957 static int64_t last_delta;
958 /* If the VM is not running, then do nothing. */
959 if (!vm_running)
960 return;
961
962 cur_time = cpu_get_clock();
963 cur_icount = qemu_get_clock(vm_clock);
964 delta = cur_icount - cur_time;
965 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
966 if (delta > 0
967 && last_delta + ICOUNT_WOBBLE < delta * 2
968 && icount_time_shift > 0) {
969 /* The guest is getting too far ahead. Slow time down. */
970 icount_time_shift--;
971 }
972 if (delta < 0
973 && last_delta - ICOUNT_WOBBLE > delta * 2
974 && icount_time_shift < MAX_ICOUNT_SHIFT) {
975 /* The guest is getting too far behind. Speed time up. */
976 icount_time_shift++;
977 }
978 last_delta = delta;
979 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
980}
981
982static void icount_adjust_rt(void * opaque)
983{
984 qemu_mod_timer(icount_rt_timer,
985 qemu_get_clock(rt_clock) + 1000);
986 icount_adjust();
987}
988
989static void icount_adjust_vm(void * opaque)
990{
991 qemu_mod_timer(icount_vm_timer,
992 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
993 icount_adjust();
994}
995
996static void init_icount_adjust(void)
997{
998 /* Have both realtime and virtual time triggers for speed adjustment.
999 The realtime trigger catches emulated time passing too slowly,
1000 the virtual time trigger catches emulated time passing too fast.
1001 Realtime triggers occur even when idle, so use them less frequently
1002 than VM triggers. */
1003 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1004 qemu_mod_timer(icount_rt_timer,
1005 qemu_get_clock(rt_clock) + 1000);
1006 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1007 qemu_mod_timer(icount_vm_timer,
1008 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1009}
1010
1011static struct qemu_alarm_timer alarm_timers[] = {
1012#ifndef _WIN32
1013#ifdef __linux__
1014 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1015 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1016 /* HPET - if available - is preferred */
1017 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1018 /* ...otherwise try RTC */
1019 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1020#endif
1021 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1022#else
1023 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1024 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1025 {"win32", 0, win32_start_timer,
1026 win32_stop_timer, NULL, &alarm_win32_data},
1027#endif
1028 {NULL, }
1029};
1030
1031static void show_available_alarms(void)
1032{
1033 int i;
1034
1035 printf("Available alarm timers, in order of precedence:\n");
1036 for (i = 0; alarm_timers[i].name; i++)
1037 printf("%s\n", alarm_timers[i].name);
1038}
1039
1040static void configure_alarms(char const *opt)
1041{
1042 int i;
1043 int cur = 0;
1044 int count = ARRAY_SIZE(alarm_timers) - 1;
1045 char *arg;
1046 char *name;
1047 struct qemu_alarm_timer tmp;
1048
1049 if (!strcmp(opt, "?")) {
1050 show_available_alarms();
1051 exit(0);
1052 }
1053
1054 arg = strdup(opt);
1055
1056 /* Reorder the array */
1057 name = strtok(arg, ",");
1058 while (name) {
1059 for (i = 0; i < count && alarm_timers[i].name; i++) {
1060 if (!strcmp(alarm_timers[i].name, name))
1061 break;
1062 }
1063
1064 if (i == count) {
1065 fprintf(stderr, "Unknown clock %s\n", name);
1066 goto next;
1067 }
1068
1069 if (i < cur)
1070 /* Ignore */
1071 goto next;
1072
1073 /* Swap */
1074 tmp = alarm_timers[i];
1075 alarm_timers[i] = alarm_timers[cur];
1076 alarm_timers[cur] = tmp;
1077
1078 cur++;
1079next:
1080 name = strtok(NULL, ",");
1081 }
1082
1083 free(arg);
1084
1085 if (cur) {
1086 /* Disable remaining timers */
1087 for (i = cur; i < count; i++)
1088 alarm_timers[i].name = NULL;
1089 } else {
1090 show_available_alarms();
1091 exit(1);
1092 }
1093}
1094
1095QEMUClock *rt_clock;
1096QEMUClock *vm_clock;
1097
1098static QEMUTimer *active_timers[2];
1099
1100static QEMUClock *qemu_new_clock(int type)
1101{
1102 QEMUClock *clock;
1103 clock = qemu_mallocz(sizeof(QEMUClock));
1104 if (!clock)
1105 return NULL;
1106 clock->type = type;
1107 return clock;
1108}
1109
1110QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1111{
1112 QEMUTimer *ts;
1113
1114 ts = qemu_mallocz(sizeof(QEMUTimer));
1115 ts->clock = clock;
1116 ts->cb = cb;
1117 ts->opaque = opaque;
1118 return ts;
1119}
1120
1121void qemu_free_timer(QEMUTimer *ts)
1122{
1123 qemu_free(ts);
1124}
1125
1126/* stop a timer, but do not dealloc it */
1127void qemu_del_timer(QEMUTimer *ts)
1128{
1129 QEMUTimer **pt, *t;
1130
1131 /* NOTE: this code must be signal safe because
1132 qemu_timer_expired() can be called from a signal. */
1133 pt = &active_timers[ts->clock->type];
1134 for(;;) {
1135 t = *pt;
1136 if (!t)
1137 break;
1138 if (t == ts) {
1139 *pt = t->next;
1140 break;
1141 }
1142 pt = &t->next;
1143 }
1144}
1145
1146/* modify the current timer so that it will be fired when current_time
1147 >= expire_time. The corresponding callback will be called. */
1148void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1149{
1150 QEMUTimer **pt, *t;
1151
1152 qemu_del_timer(ts);
1153
1154 /* add the timer in the sorted list */
1155 /* NOTE: this code must be signal safe because
1156 qemu_timer_expired() can be called from a signal. */
1157 pt = &active_timers[ts->clock->type];
1158 for(;;) {
1159 t = *pt;
1160 if (!t)
1161 break;
1162 if (t->expire_time > expire_time)
1163 break;
1164 pt = &t->next;
1165 }
1166 ts->expire_time = expire_time;
1167 ts->next = *pt;
1168 *pt = ts;
1169
1170 /* Rearm if necessary */
1171 if (pt == &active_timers[ts->clock->type]) {
1172 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1173 qemu_rearm_alarm_timer(alarm_timer);
1174 }
1175 /* Interrupt execution to force deadline recalculation. */
1176 if (use_icount && cpu_single_env) {
1177 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1178 }
1179 }
1180}
1181
1182int qemu_timer_pending(QEMUTimer *ts)
1183{
1184 QEMUTimer *t;
1185 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1186 if (t == ts)
1187 return 1;
1188 }
1189 return 0;
1190}
1191
1192static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1193{
1194 if (!timer_head)
1195 return 0;
1196 return (timer_head->expire_time <= current_time);
1197}
1198
1199static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1200{
1201 QEMUTimer *ts;
1202
1203 for(;;) {
1204 ts = *ptimer_head;
1205 if (!ts || ts->expire_time > current_time)
1206 break;
1207 /* remove timer from the list before calling the callback */
1208 *ptimer_head = ts->next;
1209 ts->next = NULL;
1210
1211 /* run the callback (the timer list can be modified) */
1212 ts->cb(ts->opaque);
1213 }
1214}
1215
1216int64_t qemu_get_clock(QEMUClock *clock)
1217{
1218 switch(clock->type) {
1219 case QEMU_TIMER_REALTIME:
1220 return get_clock() / 1000000;
1221 default:
1222 case QEMU_TIMER_VIRTUAL:
1223 if (use_icount) {
1224 return cpu_get_icount();
1225 } else {
1226 return cpu_get_clock();
1227 }
1228 }
1229}
1230
1231static void init_timers(void)
1232{
1233 init_get_clock();
1234 ticks_per_sec = QEMU_TIMER_BASE;
1235 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1236 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1237}
1238
1239/* save a timer */
1240void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1241{
1242 uint64_t expire_time;
1243
1244 if (qemu_timer_pending(ts)) {
1245 expire_time = ts->expire_time;
1246 } else {
1247 expire_time = -1;
1248 }
1249 qemu_put_be64(f, expire_time);
1250}
1251
1252void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1253{
1254 uint64_t expire_time;
1255
1256 expire_time = qemu_get_be64(f);
1257 if (expire_time != -1) {
1258 qemu_mod_timer(ts, expire_time);
1259 } else {
1260 qemu_del_timer(ts);
1261 }
1262}
1263
1264static void timer_save(QEMUFile *f, void *opaque)
1265{
1266 if (cpu_ticks_enabled) {
1267 hw_error("cannot save state if virtual timers are running");
1268 }
1269 qemu_put_be64(f, cpu_ticks_offset);
1270 qemu_put_be64(f, ticks_per_sec);
1271 qemu_put_be64(f, cpu_clock_offset);
1272}
1273
1274static int timer_load(QEMUFile *f, void *opaque, int version_id)
1275{
1276 if (version_id != 1 && version_id != 2)
1277 return -EINVAL;
1278 if (cpu_ticks_enabled) {
1279 return -EINVAL;
1280 }
1281 cpu_ticks_offset=qemu_get_be64(f);
1282 ticks_per_sec=qemu_get_be64(f);
1283 if (version_id == 2) {
1284 cpu_clock_offset=qemu_get_be64(f);
1285 }
1286 return 0;
1287}
1288
1289#ifdef _WIN32
1290void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1291 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1292#else
1293static void host_alarm_handler(int host_signum)
1294#endif
1295{
1296#if 0
1297#define DISP_FREQ 1000
1298 {
1299 static int64_t delta_min = INT64_MAX;
1300 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1301 static int count;
1302 ti = qemu_get_clock(vm_clock);
1303 if (last_clock != 0) {
1304 delta = ti - last_clock;
1305 if (delta < delta_min)
1306 delta_min = delta;
1307 if (delta > delta_max)
1308 delta_max = delta;
1309 delta_cum += delta;
1310 if (++count == DISP_FREQ) {
1311 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1312 muldiv64(delta_min, 1000000, ticks_per_sec),
1313 muldiv64(delta_max, 1000000, ticks_per_sec),
1314 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1315 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1316 count = 0;
1317 delta_min = INT64_MAX;
1318 delta_max = 0;
1319 delta_cum = 0;
1320 }
1321 }
1322 last_clock = ti;
1323 }
1324#endif
1325 if (alarm_has_dynticks(alarm_timer) ||
1326 (!use_icount &&
1327 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1328 qemu_get_clock(vm_clock))) ||
1329 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1330 qemu_get_clock(rt_clock))) {
1331 CPUState *env = next_cpu;
1332
1333#ifdef _WIN32
1334 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1335 SetEvent(data->host_alarm);
1336#else
1337 static const char byte = 0;
1338 write(alarm_timer_wfd, &byte, sizeof(byte));
1339#endif
1340 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1341
1342 if (env) {
1343 /* stop the currently executing cpu because a timer occured */
1344 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1345#ifdef USE_KQEMU
1346 if (env->kqemu_enabled) {
1347 kqemu_cpu_interrupt(env);
1348 }
1349#endif
1350 }
1351 event_pending = 1;
1352 }
1353}
1354
1355static int64_t qemu_next_deadline(void)
1356{
1357 int64_t delta;
1358
1359 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1360 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1361 qemu_get_clock(vm_clock);
1362 } else {
1363 /* To avoid problems with overflow limit this to 2^32. */
1364 delta = INT32_MAX;
1365 }
1366
1367 if (delta < 0)
1368 delta = 0;
1369
1370 return delta;
1371}
1372
1373#if defined(__linux__) || defined(_WIN32)
1374static uint64_t qemu_next_deadline_dyntick(void)
1375{
1376 int64_t delta;
1377 int64_t rtdelta;
1378
1379 if (use_icount)
1380 delta = INT32_MAX;
1381 else
1382 delta = (qemu_next_deadline() + 999) / 1000;
1383
1384 if (active_timers[QEMU_TIMER_REALTIME]) {
1385 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1386 qemu_get_clock(rt_clock))*1000;
1387 if (rtdelta < delta)
1388 delta = rtdelta;
1389 }
1390
1391 if (delta < MIN_TIMER_REARM_US)
1392 delta = MIN_TIMER_REARM_US;
1393
1394 return delta;
1395}
1396#endif
1397
1398#ifndef _WIN32
1399
1400/* Sets a specific flag */
1401static int fcntl_setfl(int fd, int flag)
1402{
1403 int flags;
1404
1405 flags = fcntl(fd, F_GETFL);
1406 if (flags == -1)
1407 return -errno;
1408
1409 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1410 return -errno;
1411
1412 return 0;
1413}
1414
1415#if defined(__linux__)
1416
1417#define RTC_FREQ 1024
1418
1419static void enable_sigio_timer(int fd)
1420{
1421 struct sigaction act;
1422
1423 /* timer signal */
1424 sigfillset(&act.sa_mask);
1425 act.sa_flags = 0;
1426 act.sa_handler = host_alarm_handler;
1427
1428 sigaction(SIGIO, &act, NULL);
1429 fcntl_setfl(fd, O_ASYNC);
1430 fcntl(fd, F_SETOWN, getpid());
1431}
1432
1433static int hpet_start_timer(struct qemu_alarm_timer *t)
1434{
1435 struct hpet_info info;
1436 int r, fd;
1437
1438 fd = open("/dev/hpet", O_RDONLY);
1439 if (fd < 0)
1440 return -1;
1441
1442 /* Set frequency */
1443 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1444 if (r < 0) {
1445 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1446 "error, but for better emulation accuracy type:\n"
1447 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1448 goto fail;
1449 }
1450
1451 /* Check capabilities */
1452 r = ioctl(fd, HPET_INFO, &info);
1453 if (r < 0)
1454 goto fail;
1455
1456 /* Enable periodic mode */
1457 r = ioctl(fd, HPET_EPI, 0);
1458 if (info.hi_flags && (r < 0))
1459 goto fail;
1460
1461 /* Enable interrupt */
1462 r = ioctl(fd, HPET_IE_ON, 0);
1463 if (r < 0)
1464 goto fail;
1465
1466 enable_sigio_timer(fd);
1467 t->priv = (void *)(long)fd;
1468
1469 return 0;
1470fail:
1471 close(fd);
1472 return -1;
1473}
1474
1475static void hpet_stop_timer(struct qemu_alarm_timer *t)
1476{
1477 int fd = (long)t->priv;
1478
1479 close(fd);
1480}
1481
1482static int rtc_start_timer(struct qemu_alarm_timer *t)
1483{
1484 int rtc_fd;
1485 unsigned long current_rtc_freq = 0;
1486
1487 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1488 if (rtc_fd < 0)
1489 return -1;
1490 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1491 if (current_rtc_freq != RTC_FREQ &&
1492 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1493 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1494 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1495 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1496 goto fail;
1497 }
1498 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1499 fail:
1500 close(rtc_fd);
1501 return -1;
1502 }
1503
1504 enable_sigio_timer(rtc_fd);
1505
1506 t->priv = (void *)(long)rtc_fd;
1507
1508 return 0;
1509}
1510
1511static void rtc_stop_timer(struct qemu_alarm_timer *t)
1512{
1513 int rtc_fd = (long)t->priv;
1514
1515 close(rtc_fd);
1516}
1517
1518static int dynticks_start_timer(struct qemu_alarm_timer *t)
1519{
1520 struct sigevent ev;
1521 timer_t host_timer;
1522 struct sigaction act;
1523
1524 sigfillset(&act.sa_mask);
1525 act.sa_flags = 0;
1526 act.sa_handler = host_alarm_handler;
1527
1528 sigaction(SIGALRM, &act, NULL);
1529
1530 ev.sigev_value.sival_int = 0;
1531 ev.sigev_notify = SIGEV_SIGNAL;
1532 ev.sigev_signo = SIGALRM;
1533
1534 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1535 perror("timer_create");
1536
1537 /* disable dynticks */
1538 fprintf(stderr, "Dynamic Ticks disabled\n");
1539
1540 return -1;
1541 }
1542
1543 t->priv = (void *)(long)host_timer;
1544
1545 return 0;
1546}
1547
1548static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1549{
1550 timer_t host_timer = (timer_t)(long)t->priv;
1551
1552 timer_delete(host_timer);
1553}
1554
1555static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1556{
1557 timer_t host_timer = (timer_t)(long)t->priv;
1558 struct itimerspec timeout;
1559 int64_t nearest_delta_us = INT64_MAX;
1560 int64_t current_us;
1561
1562 if (!active_timers[QEMU_TIMER_REALTIME] &&
1563 !active_timers[QEMU_TIMER_VIRTUAL])
1564 return;
1565
1566 nearest_delta_us = qemu_next_deadline_dyntick();
1567
1568 /* check whether a timer is already running */
1569 if (timer_gettime(host_timer, &timeout)) {
1570 perror("gettime");
1571 fprintf(stderr, "Internal timer error: aborting\n");
1572 exit(1);
1573 }
1574 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1575 if (current_us && current_us <= nearest_delta_us)
1576 return;
1577
1578 timeout.it_interval.tv_sec = 0;
1579 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1580 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1581 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1582 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1583 perror("settime");
1584 fprintf(stderr, "Internal timer error: aborting\n");
1585 exit(1);
1586 }
1587}
1588
1589#endif /* defined(__linux__) */
1590
1591static int unix_start_timer(struct qemu_alarm_timer *t)
1592{
1593 struct sigaction act;
1594 struct itimerval itv;
1595 int err;
1596
1597 /* timer signal */
1598 sigfillset(&act.sa_mask);
1599 act.sa_flags = 0;
1600 act.sa_handler = host_alarm_handler;
1601
1602 sigaction(SIGALRM, &act, NULL);
1603
1604 itv.it_interval.tv_sec = 0;
1605 /* for i386 kernel 2.6 to get 1 ms */
1606 itv.it_interval.tv_usec = 999;
1607 itv.it_value.tv_sec = 0;
1608 itv.it_value.tv_usec = 10 * 1000;
1609
1610 err = setitimer(ITIMER_REAL, &itv, NULL);
1611 if (err)
1612 return -1;
1613
1614 return 0;
1615}
1616
1617static void unix_stop_timer(struct qemu_alarm_timer *t)
1618{
1619 struct itimerval itv;
1620
1621 memset(&itv, 0, sizeof(itv));
1622 setitimer(ITIMER_REAL, &itv, NULL);
1623}
1624
1625#endif /* !defined(_WIN32) */
1626
1627static void try_to_rearm_timer(void *opaque)
1628{
1629 struct qemu_alarm_timer *t = opaque;
1630#ifndef _WIN32
1631 ssize_t len;
1632
1633 /* Drain the notify pipe */
1634 do {
1635 char buffer[512];
1636 len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1637 } while ((len == -1 && errno == EINTR) || len > 0);
1638#endif
1639
1640 if (t->flags & ALARM_FLAG_EXPIRED) {
1641 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1642 qemu_rearm_alarm_timer(alarm_timer);
1643 }
1644}
1645
1646#ifdef _WIN32
1647
1648static int win32_start_timer(struct qemu_alarm_timer *t)
1649{
1650 TIMECAPS tc;
1651 struct qemu_alarm_win32 *data = t->priv;
1652 UINT flags;
1653
1654 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1655 if (!data->host_alarm) {
1656 perror("Failed CreateEvent");
1657 return -1;
1658 }
1659
1660 memset(&tc, 0, sizeof(tc));
1661 timeGetDevCaps(&tc, sizeof(tc));
1662
1663 if (data->period < tc.wPeriodMin)
1664 data->period = tc.wPeriodMin;
1665
1666 timeBeginPeriod(data->period);
1667
1668 flags = TIME_CALLBACK_FUNCTION;
1669 if (alarm_has_dynticks(t))
1670 flags |= TIME_ONESHOT;
1671 else
1672 flags |= TIME_PERIODIC;
1673
1674 data->timerId = timeSetEvent(1, // interval (ms)
1675 data->period, // resolution
1676 host_alarm_handler, // function
1677 (DWORD)t, // parameter
1678 flags);
1679
1680 if (!data->timerId) {
1681 perror("Failed to initialize win32 alarm timer");
1682
1683 timeEndPeriod(data->period);
1684 CloseHandle(data->host_alarm);
1685 return -1;
1686 }
1687
1688 qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1689
1690 return 0;
1691}
1692
1693static void win32_stop_timer(struct qemu_alarm_timer *t)
1694{
1695 struct qemu_alarm_win32 *data = t->priv;
1696
1697 timeKillEvent(data->timerId);
1698 timeEndPeriod(data->period);
1699
1700 CloseHandle(data->host_alarm);
1701}
1702
1703static void win32_rearm_timer(struct qemu_alarm_timer *t)
1704{
1705 struct qemu_alarm_win32 *data = t->priv;
1706 uint64_t nearest_delta_us;
1707
1708 if (!active_timers[QEMU_TIMER_REALTIME] &&
1709 !active_timers[QEMU_TIMER_VIRTUAL])
1710 return;
1711
1712 nearest_delta_us = qemu_next_deadline_dyntick();
1713 nearest_delta_us /= 1000;
1714
1715 timeKillEvent(data->timerId);
1716
1717 data->timerId = timeSetEvent(1,
1718 data->period,
1719 host_alarm_handler,
1720 (DWORD)t,
1721 TIME_ONESHOT | TIME_PERIODIC);
1722
1723 if (!data->timerId) {
1724 perror("Failed to re-arm win32 alarm timer");
1725
1726 timeEndPeriod(data->period);
1727 CloseHandle(data->host_alarm);
1728 exit(1);
1729 }
1730}
1731
1732#endif /* _WIN32 */
1733
1734static int init_timer_alarm(void)
1735{
1736 struct qemu_alarm_timer *t = NULL;
1737 int i, err = -1;
1738
1739#ifndef _WIN32
1740 int fds[2];
1741
1742 err = pipe(fds);
1743 if (err == -1)
1744 return -errno;
1745
1746 err = fcntl_setfl(fds[0], O_NONBLOCK);
1747 if (err < 0)
1748 goto fail;
1749
1750 err = fcntl_setfl(fds[1], O_NONBLOCK);
1751 if (err < 0)
1752 goto fail;
1753
1754 alarm_timer_rfd = fds[0];
1755 alarm_timer_wfd = fds[1];
1756#endif
1757
1758 for (i = 0; alarm_timers[i].name; i++) {
1759 t = &alarm_timers[i];
1760
1761 err = t->start(t);
1762 if (!err)
1763 break;
1764 }
1765
1766 if (err) {
1767 err = -ENOENT;
1768 goto fail;
1769 }
1770
1771#ifndef _WIN32
1772 qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1773 try_to_rearm_timer, NULL, t);
1774#endif
1775
1776 alarm_timer = t;
1777
1778 return 0;
1779
1780fail:
1781#ifndef _WIN32
1782 close(fds[0]);
1783 close(fds[1]);
1784#endif
1785 return err;
1786}
1787
1788static void quit_timers(void)
1789{
1790 alarm_timer->stop(alarm_timer);
1791 alarm_timer = NULL;
1792}
1793
1794/***********************************************************/
1795/* host time/date access */
1796void qemu_get_timedate(struct tm *tm, int offset)
1797{
1798 time_t ti;
1799 struct tm *ret;
1800
1801 time(&ti);
1802 ti += offset;
1803 if (rtc_date_offset == -1) {
1804 if (rtc_utc)
1805 ret = gmtime(&ti);
1806 else
1807 ret = localtime(&ti);
1808 } else {
1809 ti -= rtc_date_offset;
1810 ret = gmtime(&ti);
1811 }
1812
1813 memcpy(tm, ret, sizeof(struct tm));
1814}
1815
1816int qemu_timedate_diff(struct tm *tm)
1817{
1818 time_t seconds;
1819
1820 if (rtc_date_offset == -1)
1821 if (rtc_utc)
1822 seconds = mktimegm(tm);
1823 else
1824 seconds = mktime(tm);
1825 else
1826 seconds = mktimegm(tm) + rtc_date_offset;
1827
1828 return seconds - time(NULL);
1829}
1830
1831#ifdef _WIN32
1832static void socket_cleanup(void)
1833{
1834 WSACleanup();
1835}
1836
1837static int socket_init(void)
1838{
1839 WSADATA Data;
1840 int ret, err;
1841
1842 ret = WSAStartup(MAKEWORD(2,2), &Data);
1843 if (ret != 0) {
1844 err = WSAGetLastError();
1845 fprintf(stderr, "WSAStartup: %d\n", err);
1846 return -1;
1847 }
1848 atexit(socket_cleanup);
1849 return 0;
1850}
1851#endif
1852
1853const char *get_opt_name(char *buf, int buf_size, const char *p)
1854{
1855 char *q;
1856
1857 q = buf;
1858 while (*p != '\0' && *p != '=') {
1859 if (q && (q - buf) < buf_size - 1)
1860 *q++ = *p;
1861 p++;
1862 }
1863 if (q)
1864 *q = '\0';
1865
1866 return p;
1867}
1868
1869const char *get_opt_value(char *buf, int buf_size, const char *p)
1870{
1871 char *q;
1872
1873 q = buf;
1874 while (*p != '\0') {
1875 if (*p == ',') {
1876 if (*(p + 1) != ',')
1877 break;
1878 p++;
1879 }
1880 if (q && (q - buf) < buf_size - 1)
1881 *q++ = *p;
1882 p++;
1883 }
1884 if (q)
1885 *q = '\0';
1886
1887 return p;
1888}
1889
1890int get_param_value(char *buf, int buf_size,
1891 const char *tag, const char *str)
1892{
1893 const char *p;
1894 char option[128];
1895
1896 p = str;
1897 for(;;) {
1898 p = get_opt_name(option, sizeof(option), p);
1899 if (*p != '=')
1900 break;
1901 p++;
1902 if (!strcmp(tag, option)) {
1903 (void)get_opt_value(buf, buf_size, p);
1904 return strlen(buf);
1905 } else {
1906 p = get_opt_value(NULL, 0, p);
1907 }
1908 if (*p != ',')
1909 break;
1910 p++;
1911 }
1912 return 0;
1913}
1914
1915int check_params(char *buf, int buf_size,
1916 const char * const *params, const char *str)
1917{
1918 const char *p;
1919 int i;
1920
1921 p = str;
1922 for(;;) {
1923 p = get_opt_name(buf, buf_size, p);
1924 if (*p != '=')
1925 return -1;
1926 p++;
1927 for(i = 0; params[i] != NULL; i++)
1928 if (!strcmp(params[i], buf))
1929 break;
1930 if (params[i] == NULL)
1931 return -1;
1932 p = get_opt_value(NULL, 0, p);
1933 if (*p != ',')
1934 break;
1935 p++;
1936 }
1937 return 0;
1938}
1939
1940/***********************************************************/
1941/* Bluetooth support */
1942static int nb_hcis;
1943static int cur_hci;
1944static struct HCIInfo *hci_table[MAX_NICS];
1945
1946static struct bt_vlan_s {
1947 struct bt_scatternet_s net;
1948 int id;
1949 struct bt_vlan_s *next;
1950} *first_bt_vlan;
1951
1952/* find or alloc a new bluetooth "VLAN" */
1953static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1954{
1955 struct bt_vlan_s **pvlan, *vlan;
1956 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1957 if (vlan->id == id)
1958 return &vlan->net;
1959 }
1960 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1961 vlan->id = id;
1962 pvlan = &first_bt_vlan;
1963 while (*pvlan != NULL)
1964 pvlan = &(*pvlan)->next;
1965 *pvlan = vlan;
1966 return &vlan->net;
1967}
1968
1969static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1970{
1971}
1972
1973static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1974{
1975 return -ENOTSUP;
1976}
1977
1978static struct HCIInfo null_hci = {
1979 .cmd_send = null_hci_send,
1980 .sco_send = null_hci_send,
1981 .acl_send = null_hci_send,
1982 .bdaddr_set = null_hci_addr_set,
1983};
1984
1985struct HCIInfo *qemu_next_hci(void)
1986{
1987 if (cur_hci == nb_hcis)
1988 return &null_hci;
1989
1990 return hci_table[cur_hci++];
1991}
1992
1993static struct HCIInfo *hci_init(const char *str)
1994{
1995 char *endp;
1996 struct bt_scatternet_s *vlan = 0;
1997
1998 if (!strcmp(str, "null"))
1999 /* null */
2000 return &null_hci;
2001 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2002 /* host[:hciN] */
2003 return bt_host_hci(str[4] ? str + 5 : "hci0");
2004 else if (!strncmp(str, "hci", 3)) {
2005 /* hci[,vlan=n] */
2006 if (str[3]) {
2007 if (!strncmp(str + 3, ",vlan=", 6)) {
2008 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2009 if (*endp)
2010 vlan = 0;
2011 }
2012 } else
2013 vlan = qemu_find_bt_vlan(0);
2014 if (vlan)
2015 return bt_new_hci(vlan);
2016 }
2017
2018 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2019
2020 return 0;
2021}
2022
2023static int bt_hci_parse(const char *str)
2024{
2025 struct HCIInfo *hci;
2026 bdaddr_t bdaddr;
2027
2028 if (nb_hcis >= MAX_NICS) {
2029 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2030 return -1;
2031 }
2032
2033 hci = hci_init(str);
2034 if (!hci)
2035 return -1;
2036
2037 bdaddr.b[0] = 0x52;
2038 bdaddr.b[1] = 0x54;
2039 bdaddr.b[2] = 0x00;
2040 bdaddr.b[3] = 0x12;
2041 bdaddr.b[4] = 0x34;
2042 bdaddr.b[5] = 0x56 + nb_hcis;
2043 hci->bdaddr_set(hci, bdaddr.b);
2044
2045 hci_table[nb_hcis++] = hci;
2046
2047 return 0;
2048}
2049
2050static void bt_vhci_add(int vlan_id)
2051{
2052 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2053
2054 if (!vlan->slave)
2055 fprintf(stderr, "qemu: warning: adding a VHCI to "
2056 "an empty scatternet %i\n", vlan_id);
2057
2058 bt_vhci_init(bt_new_hci(vlan));
2059}
2060
2061static struct bt_device_s *bt_device_add(const char *opt)
2062{
2063 struct bt_scatternet_s *vlan;
2064 int vlan_id = 0;
2065 char *endp = strstr(opt, ",vlan=");
2066 int len = (endp ? endp - opt : strlen(opt)) + 1;
2067 char devname[10];
2068
2069 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2070
2071 if (endp) {
2072 vlan_id = strtol(endp + 6, &endp, 0);
2073 if (*endp) {
2074 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2075 return 0;
2076 }
2077 }
2078
2079 vlan = qemu_find_bt_vlan(vlan_id);
2080
2081 if (!vlan->slave)
2082 fprintf(stderr, "qemu: warning: adding a slave device to "
2083 "an empty scatternet %i\n", vlan_id);
2084
2085 if (!strcmp(devname, "keyboard"))
2086 return bt_keyboard_init(vlan);
2087
2088 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2089 return 0;
2090}
2091
2092static int bt_parse(const char *opt)
2093{
2094 const char *endp, *p;
2095 int vlan;
2096
2097 if (strstart(opt, "hci", &endp)) {
2098 if (!*endp || *endp == ',') {
2099 if (*endp)
2100 if (!strstart(endp, ",vlan=", 0))
2101 opt = endp + 1;
2102
2103 return bt_hci_parse(opt);
2104 }
2105 } else if (strstart(opt, "vhci", &endp)) {
2106 if (!*endp || *endp == ',') {
2107 if (*endp) {
2108 if (strstart(endp, ",vlan=", &p)) {
2109 vlan = strtol(p, (char **) &endp, 0);
2110 if (*endp) {
2111 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2112 return 1;
2113 }
2114 } else {
2115 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2116 return 1;
2117 }
2118 } else
2119 vlan = 0;
2120
2121 bt_vhci_add(vlan);
2122 return 0;
2123 }
2124 } else if (strstart(opt, "device:", &endp))
2125 return !bt_device_add(endp);
2126
2127 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2128 return 1;
2129}
2130
2131/***********************************************************/
2132/* QEMU Block devices */
2133
2134#define HD_ALIAS "index=%d,media=disk"
2135#ifdef TARGET_PPC
2136#define CDROM_ALIAS "index=1,media=cdrom"
2137#else
2138#define CDROM_ALIAS "index=2,media=cdrom"
2139#endif
2140#define FD_ALIAS "index=%d,if=floppy"
2141#define PFLASH_ALIAS "if=pflash"
2142#define MTD_ALIAS "if=mtd"
2143#define SD_ALIAS "index=0,if=sd"
2144
2145static int drive_add(const char *file, const char *fmt, ...)
2146{
2147 va_list ap;
2148
2149 if (nb_drives_opt >= MAX_DRIVES) {
2150 fprintf(stderr, "qemu: too many drives\n");
2151 exit(1);
2152 }
2153
2154 drives_opt[nb_drives_opt].file = file;
2155 va_start(ap, fmt);
2156 vsnprintf(drives_opt[nb_drives_opt].opt,
2157 sizeof(drives_opt[0].opt), fmt, ap);
2158 va_end(ap);
2159
2160 return nb_drives_opt++;
2161}
2162
2163int drive_get_index(BlockInterfaceType type, int bus, int unit)
2164{
2165 int index;
2166
2167 /* seek interface, bus and unit */
2168
2169 for (index = 0; index < nb_drives; index++)
2170 if (drives_table[index].type == type &&
2171 drives_table[index].bus == bus &&
2172 drives_table[index].unit == unit)
2173 return index;
2174
2175 return -1;
2176}
2177
2178int drive_get_max_bus(BlockInterfaceType type)
2179{
2180 int max_bus;
2181 int index;
2182
2183 max_bus = -1;
2184 for (index = 0; index < nb_drives; index++) {
2185 if(drives_table[index].type == type &&
2186 drives_table[index].bus > max_bus)
2187 max_bus = drives_table[index].bus;
2188 }
2189 return max_bus;
2190}
2191
2192const char *drive_get_serial(BlockDriverState *bdrv)
2193{
2194 int index;
2195
2196 for (index = 0; index < nb_drives; index++)
2197 if (drives_table[index].bdrv == bdrv)
2198 return drives_table[index].serial;
2199
2200 return "\0";
2201}
2202
2203static void bdrv_format_print(void *opaque, const char *name)
2204{
2205 fprintf(stderr, " %s", name);
2206}
2207
2208static int drive_init(struct drive_opt *arg, int snapshot,
2209 QEMUMachine *machine)
2210{
2211 char buf[128];
2212 char file[1024];
2213 char devname[128];
2214 char serial[21];
2215 const char *mediastr = "";
2216 BlockInterfaceType type;
2217 enum { MEDIA_DISK, MEDIA_CDROM } media;
2218 int bus_id, unit_id;
2219 int cyls, heads, secs, translation;
2220 BlockDriverState *bdrv;
2221 BlockDriver *drv = NULL;
2222 int max_devs;
2223 int index;
2224 int cache;
2225 int bdrv_flags;
2226 char *str = arg->opt;
2227 static const char * const params[] = { "bus", "unit", "if", "index",
2228 "cyls", "heads", "secs", "trans",
2229 "media", "snapshot", "file",
2230 "cache", "format", "serial", NULL };
2231
2232 if (check_params(buf, sizeof(buf), params, str) < 0) {
2233 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2234 buf, str);
2235 return -1;
2236 }
2237
2238 file[0] = 0;
2239 cyls = heads = secs = 0;
2240 bus_id = 0;
2241 unit_id = -1;
2242 translation = BIOS_ATA_TRANSLATION_AUTO;
2243 index = -1;
2244 cache = 3;
2245
2246 if (machine->use_scsi) {
2247 type = IF_SCSI;
2248 max_devs = MAX_SCSI_DEVS;
2249 pstrcpy(devname, sizeof(devname), "scsi");
2250 } else {
2251 type = IF_IDE;
2252 max_devs = MAX_IDE_DEVS;
2253 pstrcpy(devname, sizeof(devname), "ide");
2254 }
2255 media = MEDIA_DISK;
2256
2257 /* extract parameters */
2258
2259 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2260 bus_id = strtol(buf, NULL, 0);
2261 if (bus_id < 0) {
2262 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2263 return -1;
2264 }
2265 }
2266
2267 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2268 unit_id = strtol(buf, NULL, 0);
2269 if (unit_id < 0) {
2270 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2271 return -1;
2272 }
2273 }
2274
2275 if (get_param_value(buf, sizeof(buf), "if", str)) {
2276 pstrcpy(devname, sizeof(devname), buf);
2277 if (!strcmp(buf, "ide")) {
2278 type = IF_IDE;
2279 max_devs = MAX_IDE_DEVS;
2280 } else if (!strcmp(buf, "scsi")) {
2281 type = IF_SCSI;
2282 max_devs = MAX_SCSI_DEVS;
2283 } else if (!strcmp(buf, "floppy")) {
2284 type = IF_FLOPPY;
2285 max_devs = 0;
2286 } else if (!strcmp(buf, "pflash")) {
2287 type = IF_PFLASH;
2288 max_devs = 0;
2289 } else if (!strcmp(buf, "mtd")) {
2290 type = IF_MTD;
2291 max_devs = 0;
2292 } else if (!strcmp(buf, "sd")) {
2293 type = IF_SD;
2294 max_devs = 0;
2295 } else if (!strcmp(buf, "virtio")) {
2296 type = IF_VIRTIO;
2297 max_devs = 0;
2298 } else {
2299 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2300 return -1;
2301 }
2302 }
2303
2304 if (get_param_value(buf, sizeof(buf), "index", str)) {
2305 index = strtol(buf, NULL, 0);
2306 if (index < 0) {
2307 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2308 return -1;
2309 }
2310 }
2311
2312 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2313 cyls = strtol(buf, NULL, 0);
2314 }
2315
2316 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2317 heads = strtol(buf, NULL, 0);
2318 }
2319
2320 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2321 secs = strtol(buf, NULL, 0);
2322 }
2323
2324 if (cyls || heads || secs) {
2325 if (cyls < 1 || cyls > 16383) {
2326 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2327 return -1;
2328 }
2329 if (heads < 1 || heads > 16) {
2330 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2331 return -1;
2332 }
2333 if (secs < 1 || secs > 63) {
2334 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2335 return -1;
2336 }
2337 }
2338
2339 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2340 if (!cyls) {
2341 fprintf(stderr,
2342 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2343 str);
2344 return -1;
2345 }
2346 if (!strcmp(buf, "none"))
2347 translation = BIOS_ATA_TRANSLATION_NONE;
2348 else if (!strcmp(buf, "lba"))
2349 translation = BIOS_ATA_TRANSLATION_LBA;
2350 else if (!strcmp(buf, "auto"))
2351 translation = BIOS_ATA_TRANSLATION_AUTO;
2352 else {
2353 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2354 return -1;
2355 }
2356 }
2357
2358 if (get_param_value(buf, sizeof(buf), "media", str)) {
2359 if (!strcmp(buf, "disk")) {
2360 media = MEDIA_DISK;
2361 } else if (!strcmp(buf, "cdrom")) {
2362 if (cyls || secs || heads) {
2363 fprintf(stderr,
2364 "qemu: '%s' invalid physical CHS format\n", str);
2365 return -1;
2366 }
2367 media = MEDIA_CDROM;
2368 } else {
2369 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2370 return -1;
2371 }
2372 }
2373
2374 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2375 if (!strcmp(buf, "on"))
2376 snapshot = 1;
2377 else if (!strcmp(buf, "off"))
2378 snapshot = 0;
2379 else {
2380 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2381 return -1;
2382 }
2383 }
2384
2385 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2386 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2387 cache = 0;
2388 else if (!strcmp(buf, "writethrough"))
2389 cache = 1;
2390 else if (!strcmp(buf, "writeback"))
2391 cache = 2;
2392 else {
2393 fprintf(stderr, "qemu: invalid cache option\n");
2394 return -1;
2395 }
2396 }
2397
2398 if (get_param_value(buf, sizeof(buf), "format", str)) {
2399 if (strcmp(buf, "?") == 0) {
2400 fprintf(stderr, "qemu: Supported formats:");
2401 bdrv_iterate_format(bdrv_format_print, NULL);
2402 fprintf(stderr, "\n");
2403 return -1;
2404 }
2405 drv = bdrv_find_format(buf);
2406 if (!drv) {
2407 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2408 return -1;
2409 }
2410 }
2411
2412 if (arg->file == NULL)
2413 get_param_value(file, sizeof(file), "file", str);
2414 else
2415 pstrcpy(file, sizeof(file), arg->file);
2416
2417 if (!get_param_value(serial, sizeof(serial), "serial", str))
2418 memset(serial, 0, sizeof(serial));
2419
2420 /* compute bus and unit according index */
2421
2422 if (index != -1) {
2423 if (bus_id != 0 || unit_id != -1) {
2424 fprintf(stderr,
2425 "qemu: '%s' index cannot be used with bus and unit\n", str);
2426 return -1;
2427 }
2428 if (max_devs == 0)
2429 {
2430 unit_id = index;
2431 bus_id = 0;
2432 } else {
2433 unit_id = index % max_devs;
2434 bus_id = index / max_devs;
2435 }
2436 }
2437
2438 /* if user doesn't specify a unit_id,
2439 * try to find the first free
2440 */
2441
2442 if (unit_id == -1) {
2443 unit_id = 0;
2444 while (drive_get_index(type, bus_id, unit_id) != -1) {
2445 unit_id++;
2446 if (max_devs && unit_id >= max_devs) {
2447 unit_id -= max_devs;
2448 bus_id++;
2449 }
2450 }
2451 }
2452
2453 /* check unit id */
2454
2455 if (max_devs && unit_id >= max_devs) {
2456 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2457 str, unit_id, max_devs - 1);
2458 return -1;
2459 }
2460
2461 /*
2462 * ignore multiple definitions
2463 */
2464
2465 if (drive_get_index(type, bus_id, unit_id) != -1)
2466 return 0;
2467
2468 /* init */
2469
2470 if (type == IF_IDE || type == IF_SCSI)
2471 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2472 if (max_devs)
2473 snprintf(buf, sizeof(buf), "%s%i%s%i",
2474 devname, bus_id, mediastr, unit_id);
2475 else
2476 snprintf(buf, sizeof(buf), "%s%s%i",
2477 devname, mediastr, unit_id);
2478 bdrv = bdrv_new(buf);
2479 drives_table[nb_drives].bdrv = bdrv;
2480 drives_table[nb_drives].type = type;
2481 drives_table[nb_drives].bus = bus_id;
2482 drives_table[nb_drives].unit = unit_id;
2483 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2484 nb_drives++;
2485
2486 switch(type) {
2487 case IF_IDE:
2488 case IF_SCSI:
2489 switch(media) {
2490 case MEDIA_DISK:
2491 if (cyls != 0) {
2492 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2493 bdrv_set_translation_hint(bdrv, translation);
2494 }
2495 break;
2496 case MEDIA_CDROM:
2497 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2498 break;
2499 }
2500 break;
2501 case IF_SD:
2502 /* FIXME: This isn't really a floppy, but it's a reasonable
2503 approximation. */
2504 case IF_FLOPPY:
2505 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2506 break;
2507 case IF_PFLASH:
2508 case IF_MTD:
2509 case IF_VIRTIO:
2510 break;
2511 }
2512 if (!file[0])
2513 return 0;
2514 bdrv_flags = 0;
2515 if (snapshot) {
2516 bdrv_flags |= BDRV_O_SNAPSHOT;
2517 cache = 2; /* always use write-back with snapshot */
2518 }
2519 if (cache == 0) /* no caching */
2520 bdrv_flags |= BDRV_O_NOCACHE;
2521 else if (cache == 2) /* write-back */
2522 bdrv_flags |= BDRV_O_CACHE_WB;
2523 else if (cache == 3) /* not specified */
2524 bdrv_flags |= BDRV_O_CACHE_DEF;
2525 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
2526 fprintf(stderr, "qemu: could not open disk image %s\n",
2527 file);
2528 return -1;
2529 }
2530 return 0;
2531}
2532
2533/***********************************************************/
2534/* USB devices */
2535
2536static USBPort *used_usb_ports;
2537static USBPort *free_usb_ports;
2538
2539/* ??? Maybe change this to register a hub to keep track of the topology. */
2540void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2541 usb_attachfn attach)
2542{
2543 port->opaque = opaque;
2544 port->index = index;
2545 port->attach = attach;
2546 port->next = free_usb_ports;
2547 free_usb_ports = port;
2548}
2549
2550int usb_device_add_dev(USBDevice *dev)
2551{
2552 USBPort *port;
2553
2554 /* Find a USB port to add the device to. */
2555 port = free_usb_ports;
2556 if (!port->next) {
2557 USBDevice *hub;
2558
2559 /* Create a new hub and chain it on. */
2560 free_usb_ports = NULL;
2561 port->next = used_usb_ports;
2562 used_usb_ports = port;
2563
2564 hub = usb_hub_init(VM_USB_HUB_SIZE);
2565 usb_attach(port, hub);
2566 port = free_usb_ports;
2567 }
2568
2569 free_usb_ports = port->next;
2570 port->next = used_usb_ports;
2571 used_usb_ports = port;
2572 usb_attach(port, dev);
2573 return 0;
2574}
2575
2576static int usb_device_add(const char *devname)
2577{
2578 const char *p;
2579 USBDevice *dev;
2580
2581 if (!free_usb_ports)
2582 return -1;
2583
2584 if (strstart(devname, "host:", &p)) {
2585 dev = usb_host_device_open(p);
2586 } else if (!strcmp(devname, "mouse")) {
2587 dev = usb_mouse_init();
2588 } else if (!strcmp(devname, "tablet")) {
2589 dev = usb_tablet_init();
2590 } else if (!strcmp(devname, "keyboard")) {
2591 dev = usb_keyboard_init();
2592 } else if (strstart(devname, "disk:", &p)) {
2593 dev = usb_msd_init(p);
2594 } else if (!strcmp(devname, "wacom-tablet")) {
2595 dev = usb_wacom_init();
2596 } else if (strstart(devname, "serial:", &p)) {
2597 dev = usb_serial_init(p);
2598#ifdef CONFIG_BRLAPI
2599 } else if (!strcmp(devname, "braille")) {
2600 dev = usb_baum_init();
2601#endif
2602 } else if (strstart(devname, "net:", &p)) {
2603 int nic = nb_nics;
2604
2605 if (net_client_init("nic", p) < 0)
2606 return -1;
2607 nd_table[nic].model = "usb";
2608 dev = usb_net_init(&nd_table[nic]);
2609 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2610 dev = usb_bt_init(devname[2] ? hci_init(p) :
2611 bt_new_hci(qemu_find_bt_vlan(0)));
2612 } else {
2613 return -1;
2614 }
2615 if (!dev)
2616 return -1;
2617
2618 return usb_device_add_dev(dev);
2619}
2620
2621int usb_device_del_addr(int bus_num, int addr)
2622{
2623 USBPort *port;
2624 USBPort **lastp;
2625 USBDevice *dev;
2626
2627 if (!used_usb_ports)
2628 return -1;
2629
2630 if (bus_num != 0)
2631 return -1;
2632
2633 lastp = &used_usb_ports;
2634 port = used_usb_ports;
2635 while (port && port->dev->addr != addr) {
2636 lastp = &port->next;
2637 port = port->next;
2638 }
2639
2640 if (!port)
2641 return -1;
2642
2643 dev = port->dev;
2644 *lastp = port->next;
2645 usb_attach(port, NULL);
2646 dev->handle_destroy(dev);
2647 port->next = free_usb_ports;
2648 free_usb_ports = port;
2649 return 0;
2650}
2651
2652static int usb_device_del(const char *devname)
2653{
2654 int bus_num, addr;
2655 const char *p;
2656
2657 if (strstart(devname, "host:", &p))
2658 return usb_host_device_close(p);
2659
2660 if (!used_usb_ports)
2661 return -1;
2662
2663 p = strchr(devname, '.');
2664 if (!p)
2665 return -1;
2666 bus_num = strtoul(devname, NULL, 0);
2667 addr = strtoul(p + 1, NULL, 0);
2668
2669 return usb_device_del_addr(bus_num, addr);
2670}
2671
2672void do_usb_add(const char *devname)
2673{
2674 usb_device_add(devname);
2675}
2676
2677void do_usb_del(const char *devname)
2678{
2679 usb_device_del(devname);
2680}
2681
2682void usb_info(void)
2683{
2684 USBDevice *dev;
2685 USBPort *port;
2686 const char *speed_str;
2687
2688 if (!usb_enabled) {
2689 term_printf("USB support not enabled\n");
2690 return;
2691 }
2692
2693 for (port = used_usb_ports; port; port = port->next) {
2694 dev = port->dev;
2695 if (!dev)
2696 continue;
2697 switch(dev->speed) {
2698 case USB_SPEED_LOW:
2699 speed_str = "1.5";
2700 break;
2701 case USB_SPEED_FULL:
2702 speed_str = "12";
2703 break;
2704 case USB_SPEED_HIGH:
2705 speed_str = "480";
2706 break;
2707 default:
2708 speed_str = "?";
2709 break;
2710 }
2711 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
2712 0, dev->addr, speed_str, dev->devname);
2713 }
2714}
2715
2716/***********************************************************/
2717/* PCMCIA/Cardbus */
2718
2719static struct pcmcia_socket_entry_s {
2720 struct pcmcia_socket_s *socket;
2721 struct pcmcia_socket_entry_s *next;
2722} *pcmcia_sockets = 0;
2723
2724void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2725{
2726 struct pcmcia_socket_entry_s *entry;
2727
2728 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2729 entry->socket = socket;
2730 entry->next = pcmcia_sockets;
2731 pcmcia_sockets = entry;
2732}
2733
2734void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2735{
2736 struct pcmcia_socket_entry_s *entry, **ptr;
2737
2738 ptr = &pcmcia_sockets;
2739 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2740 if (entry->socket == socket) {
2741 *ptr = entry->next;
2742 qemu_free(entry);
2743 }
2744}
2745
2746void pcmcia_info(void)
2747{
2748 struct pcmcia_socket_entry_s *iter;
2749 if (!pcmcia_sockets)
2750 term_printf("No PCMCIA sockets\n");
2751
2752 for (iter = pcmcia_sockets; iter; iter = iter->next)
2753 term_printf("%s: %s\n", iter->socket->slot_string,
2754 iter->socket->attached ? iter->socket->card_string :
2755 "Empty");
2756}
2757
2758/***********************************************************/
2759/* register display */
2760
2761void register_displaystate(DisplayState *ds)
2762{
2763 DisplayState **s;
2764 s = &display_state;
2765 while (*s != NULL)
2766 s = &(*s)->next;
2767 ds->next = NULL;
2768 *s = ds;
2769}
2770
2771DisplayState *get_displaystate(void)
2772{
2773 return display_state;
2774}
2775
2776/* dumb display */
2777
2778static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
2779{
2780}
2781
2782static void dumb_resize(DisplayState *ds)
2783{
2784}
2785
2786static void dumb_display_init(DisplayState *ds)
2787{
2788 DisplayChangeListener *dcl = qemu_mallocz(sizeof(DisplayChangeListener));
2789 if (!dcl)
2790 exit(1);
2791 dcl->dpy_update = dumb_update;
2792 dcl->dpy_resize = dumb_resize;
2793 dcl->dpy_refresh = NULL;
2794 dcl->idle = 1;
2795 dcl->gui_timer_interval = 500;
2796 register_displaychangelistener(ds, dcl);
2797}
2798
2799/***********************************************************/
2800/* I/O handling */
2801
2802#define MAX_IO_HANDLERS 64
2803
2804typedef struct IOHandlerRecord {
2805 int fd;
2806 IOCanRWHandler *fd_read_poll;
2807 IOHandler *fd_read;
2808 IOHandler *fd_write;
2809 int deleted;
2810 void *opaque;
2811 /* temporary data */
2812 struct pollfd *ufd;
2813 struct IOHandlerRecord *next;
2814} IOHandlerRecord;
2815
2816static IOHandlerRecord *first_io_handler;
2817
2818/* XXX: fd_read_poll should be suppressed, but an API change is
2819 necessary in the character devices to suppress fd_can_read(). */
2820int qemu_set_fd_handler2(int fd,
2821 IOCanRWHandler *fd_read_poll,
2822 IOHandler *fd_read,
2823 IOHandler *fd_write,
2824 void *opaque)
2825{
2826 IOHandlerRecord **pioh, *ioh;
2827
2828 if (!fd_read && !fd_write) {
2829 pioh = &first_io_handler;
2830 for(;;) {
2831 ioh = *pioh;
2832 if (ioh == NULL)
2833 break;
2834 if (ioh->fd == fd) {
2835 ioh->deleted = 1;
2836 break;
2837 }
2838 pioh = &ioh->next;
2839 }
2840 } else {
2841 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2842 if (ioh->fd == fd)
2843 goto found;
2844 }
2845 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2846 if (!ioh)
2847 return -1;
2848 ioh->next = first_io_handler;
2849 first_io_handler = ioh;
2850 found:
2851 ioh->fd = fd;
2852 ioh->fd_read_poll = fd_read_poll;
2853 ioh->fd_read = fd_read;
2854 ioh->fd_write = fd_write;
2855 ioh->opaque = opaque;
2856 ioh->deleted = 0;
2857 }
2858 return 0;
2859}
2860
2861int qemu_set_fd_handler(int fd,
2862 IOHandler *fd_read,
2863 IOHandler *fd_write,
2864 void *opaque)
2865{
2866 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2867}
2868
2869#ifdef _WIN32
2870/***********************************************************/
2871/* Polling handling */
2872
2873typedef struct PollingEntry {
2874 PollingFunc *func;
2875 void *opaque;
2876 struct PollingEntry *next;
2877} PollingEntry;
2878
2879static PollingEntry *first_polling_entry;
2880
2881int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2882{
2883 PollingEntry **ppe, *pe;
2884 pe = qemu_mallocz(sizeof(PollingEntry));
2885 if (!pe)
2886 return -1;
2887 pe->func = func;
2888 pe->opaque = opaque;
2889 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2890 *ppe = pe;
2891 return 0;
2892}
2893
2894void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2895{
2896 PollingEntry **ppe, *pe;
2897 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2898 pe = *ppe;
2899 if (pe->func == func && pe->opaque == opaque) {
2900 *ppe = pe->next;
2901 qemu_free(pe);
2902 break;
2903 }
2904 }
2905}
2906
2907/***********************************************************/
2908/* Wait objects support */
2909typedef struct WaitObjects {
2910 int num;
2911 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2912 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2913 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2914} WaitObjects;
2915
2916static WaitObjects wait_objects = {0};
2917
2918int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2919{
2920 WaitObjects *w = &wait_objects;
2921
2922 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2923 return -1;
2924 w->events[w->num] = handle;
2925 w->func[w->num] = func;
2926 w->opaque[w->num] = opaque;
2927 w->num++;
2928 return 0;
2929}
2930
2931void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2932{
2933 int i, found;
2934 WaitObjects *w = &wait_objects;
2935
2936 found = 0;
2937 for (i = 0; i < w->num; i++) {
2938 if (w->events[i] == handle)
2939 found = 1;
2940 if (found) {
2941 w->events[i] = w->events[i + 1];
2942 w->func[i] = w->func[i + 1];
2943 w->opaque[i] = w->opaque[i + 1];
2944 }
2945 }
2946 if (found)
2947 w->num--;
2948}
2949#endif
2950
2951/***********************************************************/
2952/* ram save/restore */
2953
2954static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2955{
2956 int v;
2957
2958 v = qemu_get_byte(f);
2959 switch(v) {
2960 case 0:
2961 if (qemu_get_buffer(f, buf, len) != len)
2962 return -EIO;
2963 break;
2964 case 1:
2965 v = qemu_get_byte(f);
2966 memset(buf, v, len);
2967 break;
2968 default:
2969 return -EINVAL;
2970 }
2971
2972 if (qemu_file_has_error(f))
2973 return -EIO;
2974
2975 return 0;
2976}
2977
2978static int ram_load_v1(QEMUFile *f, void *opaque)
2979{
2980 int ret;
2981 ram_addr_t i;
2982
2983 if (qemu_get_be32(f) != phys_ram_size)
2984 return -EINVAL;
2985 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
2986 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
2987 if (ret)
2988 return ret;
2989 }
2990 return 0;
2991}
2992
2993#define BDRV_HASH_BLOCK_SIZE 1024
2994#define IOBUF_SIZE 4096
2995#define RAM_CBLOCK_MAGIC 0xfabe
2996
2997typedef struct RamDecompressState {
2998 z_stream zstream;
2999 QEMUFile *f;
3000 uint8_t buf[IOBUF_SIZE];
3001} RamDecompressState;
3002
3003static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3004{
3005 int ret;
3006 memset(s, 0, sizeof(*s));
3007 s->f = f;
3008 ret = inflateInit(&s->zstream);
3009 if (ret != Z_OK)
3010 return -1;
3011 return 0;
3012}
3013
3014static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3015{
3016 int ret, clen;
3017
3018 s->zstream.avail_out = len;
3019 s->zstream.next_out = buf;
3020 while (s->zstream.avail_out > 0) {
3021 if (s->zstream.avail_in == 0) {
3022 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3023 return -1;
3024 clen = qemu_get_be16(s->f);
3025 if (clen > IOBUF_SIZE)
3026 return -1;
3027 qemu_get_buffer(s->f, s->buf, clen);
3028 s->zstream.avail_in = clen;
3029 s->zstream.next_in = s->buf;
3030 }
3031 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3032 if (ret != Z_OK && ret != Z_STREAM_END) {
3033 return -1;
3034 }
3035 }
3036 return 0;
3037}
3038
3039static void ram_decompress_close(RamDecompressState *s)
3040{
3041 inflateEnd(&s->zstream);
3042}
3043
3044#define RAM_SAVE_FLAG_FULL 0x01
3045#define RAM_SAVE_FLAG_COMPRESS 0x02
3046#define RAM_SAVE_FLAG_MEM_SIZE 0x04
3047#define RAM_SAVE_FLAG_PAGE 0x08
3048#define RAM_SAVE_FLAG_EOS 0x10
3049
3050static int is_dup_page(uint8_t *page, uint8_t ch)
3051{
3052 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3053 uint32_t *array = (uint32_t *)page;
3054 int i;
3055
3056 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3057 if (array[i] != val)
3058 return 0;
3059 }
3060
3061 return 1;
3062}
3063
3064static int ram_save_block(QEMUFile *f)
3065{
3066 static ram_addr_t current_addr = 0;
3067 ram_addr_t saved_addr = current_addr;
3068 ram_addr_t addr = 0;
3069 int found = 0;
3070
3071 while (addr < phys_ram_size) {
3072 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3073 uint8_t ch;
3074
3075 cpu_physical_memory_reset_dirty(current_addr,
3076 current_addr + TARGET_PAGE_SIZE,
3077 MIGRATION_DIRTY_FLAG);
3078
3079 ch = *(phys_ram_base + current_addr);
3080
3081 if (is_dup_page(phys_ram_base + current_addr, ch)) {
3082 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3083 qemu_put_byte(f, ch);
3084 } else {
3085 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3086 qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3087 }
3088
3089 found = 1;
3090 break;
3091 }
3092 addr += TARGET_PAGE_SIZE;
3093 current_addr = (saved_addr + addr) % phys_ram_size;
3094 }
3095
3096 return found;
3097}
3098
3099static ram_addr_t ram_save_threshold = 10;
3100
3101static ram_addr_t ram_save_remaining(void)
3102{
3103 ram_addr_t addr;
3104 ram_addr_t count = 0;
3105
3106 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3107 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3108 count++;
3109 }
3110
3111 return count;
3112}
3113
3114static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3115{
3116 ram_addr_t addr;
3117
3118 if (stage == 1) {
3119 /* Make sure all dirty bits are set */
3120 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3121 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3122 cpu_physical_memory_set_dirty(addr);
3123 }
3124
3125 /* Enable dirty memory tracking */
3126 cpu_physical_memory_set_dirty_tracking(1);
3127
3128 qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3129 }
3130
3131 while (!qemu_file_rate_limit(f)) {
3132 int ret;
3133
3134 ret = ram_save_block(f);
3135 if (ret == 0) /* no more blocks */
3136 break;
3137 }
3138
3139 /* try transferring iterative blocks of memory */
3140
3141 if (stage == 3) {
3142 cpu_physical_memory_set_dirty_tracking(0);
3143
3144 /* flush all remaining blocks regardless of rate limiting */
3145 while (ram_save_block(f) != 0);
3146 }
3147
3148 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3149
3150 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3151}
3152
3153static int ram_load_dead(QEMUFile *f, void *opaque)
3154{
3155 RamDecompressState s1, *s = &s1;
3156 uint8_t buf[10];
3157 ram_addr_t i;
3158
3159 if (ram_decompress_open(s, f) < 0)
3160 return -EINVAL;
3161 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3162 if (ram_decompress_buf(s, buf, 1) < 0) {
3163 fprintf(stderr, "Error while reading ram block header\n");
3164 goto error;
3165 }
3166 if (buf[0] == 0) {
3167 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3168 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3169 goto error;
3170 }
3171 } else {
3172 error:
3173 printf("Error block header\n");
3174 return -EINVAL;
3175 }
3176 }
3177 ram_decompress_close(s);
3178
3179 return 0;
3180}
3181
3182static int ram_load(QEMUFile *f, void *opaque, int version_id)
3183{
3184 ram_addr_t addr;
3185 int flags;
3186
3187 if (version_id == 1)
3188 return ram_load_v1(f, opaque);
3189
3190 if (version_id == 2) {
3191 if (qemu_get_be32(f) != phys_ram_size)
3192 return -EINVAL;
3193 return ram_load_dead(f, opaque);
3194 }
3195
3196 if (version_id != 3)
3197 return -EINVAL;
3198
3199 do {
3200 addr = qemu_get_be64(f);
3201
3202 flags = addr & ~TARGET_PAGE_MASK;
3203 addr &= TARGET_PAGE_MASK;
3204
3205 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3206 if (addr != phys_ram_size)
3207 return -EINVAL;
3208 }
3209
3210 if (flags & RAM_SAVE_FLAG_FULL) {
3211 if (ram_load_dead(f, opaque) < 0)
3212 return -EINVAL;
3213 }
3214
3215 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3216 uint8_t ch = qemu_get_byte(f);
3217 memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3218 } else if (flags & RAM_SAVE_FLAG_PAGE)
3219 qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3220 } while (!(flags & RAM_SAVE_FLAG_EOS));
3221
3222 return 0;
3223}
3224
3225void qemu_service_io(void)
3226{
3227 CPUState *env = cpu_single_env;
3228 if (env) {
3229 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3230#ifdef USE_KQEMU
3231 if (env->kqemu_enabled) {
3232 kqemu_cpu_interrupt(env);
3233 }
3234#endif
3235 }
3236}
3237
3238/***********************************************************/
3239/* bottom halves (can be seen as timers which expire ASAP) */
3240
3241struct QEMUBH {
3242 QEMUBHFunc *cb;
3243 void *opaque;
3244 int scheduled;
3245 int idle;
3246 int deleted;
3247 QEMUBH *next;
3248};
3249
3250static QEMUBH *first_bh = NULL;
3251
3252QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3253{
3254 QEMUBH *bh;
3255 bh = qemu_mallocz(sizeof(QEMUBH));
3256 if (!bh)
3257 return NULL;
3258 bh->cb = cb;
3259 bh->opaque = opaque;
3260 bh->next = first_bh;
3261 first_bh = bh;
3262 return bh;
3263}
3264
3265int qemu_bh_poll(void)
3266{
3267 QEMUBH *bh, **bhp;
3268 int ret;
3269
3270 ret = 0;
3271 for (bh = first_bh; bh; bh = bh->next) {
3272 if (!bh->deleted && bh->scheduled) {
3273 bh->scheduled = 0;
3274 if (!bh->idle)
3275 ret = 1;
3276 bh->idle = 0;
3277 bh->cb(bh->opaque);
3278 }
3279 }
3280
3281 /* remove deleted bhs */
3282 bhp = &first_bh;
3283 while (*bhp) {
3284 bh = *bhp;
3285 if (bh->deleted) {
3286 *bhp = bh->next;
3287 qemu_free(bh);
3288 } else
3289 bhp = &bh->next;
3290 }
3291
3292 return ret;
3293}
3294
3295void qemu_bh_schedule_idle(QEMUBH *bh)
3296{
3297 if (bh->scheduled)
3298 return;
3299 bh->scheduled = 1;
3300 bh->idle = 1;
3301}
3302
3303void qemu_bh_schedule(QEMUBH *bh)
3304{
3305 CPUState *env = cpu_single_env;
3306 if (bh->scheduled)
3307 return;
3308 bh->scheduled = 1;
3309 bh->idle = 0;
3310 /* stop the currently executing CPU to execute the BH ASAP */
3311 if (env) {
3312 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3313 }
3314}
3315
3316void qemu_bh_cancel(QEMUBH *bh)
3317{
3318 bh->scheduled = 0;
3319}
3320
3321void qemu_bh_delete(QEMUBH *bh)
3322{
3323 bh->scheduled = 0;
3324 bh->deleted = 1;
3325}
3326
3327static void qemu_bh_update_timeout(int *timeout)
3328{
3329 QEMUBH *bh;
3330
3331 for (bh = first_bh; bh; bh = bh->next) {
3332 if (!bh->deleted && bh->scheduled) {
3333 if (bh->idle) {
3334 /* idle bottom halves will be polled at least
3335 * every 10ms */
3336 *timeout = MIN(10, *timeout);
3337 } else {
3338 /* non-idle bottom halves will be executed
3339 * immediately */
3340 *timeout = 0;
3341 break;
3342 }
3343 }
3344 }
3345}
3346
3347/***********************************************************/
3348/* machine registration */
3349
3350static QEMUMachine *first_machine = NULL;
3351
3352int qemu_register_machine(QEMUMachine *m)
3353{
3354 QEMUMachine **pm;
3355 pm = &first_machine;
3356 while (*pm != NULL)
3357 pm = &(*pm)->next;
3358 m->next = NULL;
3359 *pm = m;
3360 return 0;
3361}
3362
3363static QEMUMachine *find_machine(const char *name)
3364{
3365 QEMUMachine *m;
3366
3367 for(m = first_machine; m != NULL; m = m->next) {
3368 if (!strcmp(m->name, name))
3369 return m;
3370 }
3371 return NULL;
3372}
3373
3374/***********************************************************/
3375/* main execution loop */
3376
3377static void gui_update(void *opaque)
3378{
3379 uint64_t interval = GUI_REFRESH_INTERVAL;
3380 DisplayState *ds = opaque;
3381 DisplayChangeListener *dcl = ds->listeners;
3382
3383 dpy_refresh(ds);
3384
3385 while (dcl != NULL) {
3386 if (dcl->gui_timer_interval &&
3387 dcl->gui_timer_interval < interval)
3388 interval = dcl->gui_timer_interval;
3389 dcl = dcl->next;
3390 }
3391 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3392}
3393
3394struct vm_change_state_entry {
3395 VMChangeStateHandler *cb;
3396 void *opaque;
3397 LIST_ENTRY (vm_change_state_entry) entries;
3398};
3399
3400static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3401
3402VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3403 void *opaque)
3404{
3405 VMChangeStateEntry *e;
3406
3407 e = qemu_mallocz(sizeof (*e));
3408 if (!e)
3409 return NULL;
3410
3411 e->cb = cb;
3412 e->opaque = opaque;
3413 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3414 return e;
3415}
3416
3417void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3418{
3419 LIST_REMOVE (e, entries);
3420 qemu_free (e);
3421}
3422
3423static void vm_state_notify(int running)
3424{
3425 VMChangeStateEntry *e;
3426
3427 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3428 e->cb(e->opaque, running);
3429 }
3430}
3431
3432/* XXX: support several handlers */
3433static VMStopHandler *vm_stop_cb;
3434static void *vm_stop_opaque;
3435
3436int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
3437{
3438 vm_stop_cb = cb;
3439 vm_stop_opaque = opaque;
3440 return 0;
3441}
3442
3443void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
3444{
3445 vm_stop_cb = NULL;
3446}
3447
3448void vm_start(void)
3449{
3450 if (!vm_running) {
3451 cpu_enable_ticks();
3452 vm_running = 1;
3453 vm_state_notify(1);
3454 qemu_rearm_alarm_timer(alarm_timer);
3455 }
3456}
3457
3458void vm_stop(int reason)
3459{
3460 if (vm_running) {
3461 cpu_disable_ticks();
3462 vm_running = 0;
3463 if (reason != 0) {
3464 if (vm_stop_cb) {
3465 vm_stop_cb(vm_stop_opaque, reason);
3466 }
3467 }
3468 vm_state_notify(0);
3469 }
3470}
3471
3472/* reset/shutdown handler */
3473
3474typedef struct QEMUResetEntry {
3475 QEMUResetHandler *func;
3476 void *opaque;
3477 struct QEMUResetEntry *next;
3478} QEMUResetEntry;
3479
3480static QEMUResetEntry *first_reset_entry;
3481static int reset_requested;
3482static int shutdown_requested;
3483static int powerdown_requested;
3484
3485int qemu_shutdown_requested(void)
3486{
3487 int r = shutdown_requested;
3488 shutdown_requested = 0;
3489 return r;
3490}
3491
3492int qemu_reset_requested(void)
3493{
3494 int r = reset_requested;
3495 reset_requested = 0;
3496 return r;
3497}
3498
3499int qemu_powerdown_requested(void)
3500{
3501 int r = powerdown_requested;
3502 powerdown_requested = 0;
3503 return r;
3504}
3505
3506void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3507{
3508 QEMUResetEntry **pre, *re;
3509
3510 pre = &first_reset_entry;
3511 while (*pre != NULL)
3512 pre = &(*pre)->next;
3513 re = qemu_mallocz(sizeof(QEMUResetEntry));
3514 re->func = func;
3515 re->opaque = opaque;
3516 re->next = NULL;
3517 *pre = re;
3518}
3519
3520void qemu_system_reset(void)
3521{
3522 QEMUResetEntry *re;
3523
3524 /* reset all devices */
3525 for(re = first_reset_entry; re != NULL; re = re->next) {
3526 re->func(re->opaque);
3527 }
3528}
3529
3530void qemu_system_reset_request(void)
3531{
3532 if (no_reboot) {
3533 shutdown_requested = 1;
3534 } else {
3535 reset_requested = 1;
3536 }
3537 if (cpu_single_env)
3538 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3539}
3540
3541void qemu_system_shutdown_request(void)
3542{
3543 shutdown_requested = 1;
3544 if (cpu_single_env)
3545 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3546}
3547
3548void qemu_system_powerdown_request(void)
3549{
3550 powerdown_requested = 1;
3551 if (cpu_single_env)
3552 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3553}
3554
3555#ifdef _WIN32
3556static void host_main_loop_wait(int *timeout)
3557{
3558 int ret, ret2, i;
3559 PollingEntry *pe;
3560
3561
3562 /* XXX: need to suppress polling by better using win32 events */
3563 ret = 0;
3564 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3565 ret |= pe->func(pe->opaque);
3566 }
3567 if (ret == 0) {
3568 int err;
3569 WaitObjects *w = &wait_objects;
3570
3571 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3572 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3573 if (w->func[ret - WAIT_OBJECT_0])
3574 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3575
3576 /* Check for additional signaled events */
3577 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3578
3579 /* Check if event is signaled */
3580 ret2 = WaitForSingleObject(w->events[i], 0);
3581 if(ret2 == WAIT_OBJECT_0) {
3582 if (w->func[i])
3583 w->func[i](w->opaque[i]);
3584 } else if (ret2 == WAIT_TIMEOUT) {
3585 } else {
3586 err = GetLastError();
3587 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3588 }
3589 }
3590 } else if (ret == WAIT_TIMEOUT) {
3591 } else {
3592 err = GetLastError();
3593 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3594 }
3595 }
3596
3597 *timeout = 0;
3598}
3599#else
3600static void host_main_loop_wait(int *timeout)
3601{
3602}
3603#endif
3604
3605void main_loop_wait(int timeout)
3606{
3607 IOHandlerRecord *ioh;
3608 fd_set rfds, wfds, xfds;
3609 int ret, nfds;
3610 struct timeval tv;
3611
3612 qemu_bh_update_timeout(&timeout);
3613
3614 host_main_loop_wait(&timeout);
3615
3616 /* poll any events */
3617 /* XXX: separate device handlers from system ones */
3618 nfds = -1;
3619 FD_ZERO(&rfds);
3620 FD_ZERO(&wfds);
3621 FD_ZERO(&xfds);
3622 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3623 if (ioh->deleted)
3624 continue;
3625 if (ioh->fd_read &&
3626 (!ioh->fd_read_poll ||
3627 ioh->fd_read_poll(ioh->opaque) != 0)) {
3628 FD_SET(ioh->fd, &rfds);
3629 if (ioh->fd > nfds)
3630 nfds = ioh->fd;
3631 }
3632 if (ioh->fd_write) {
3633 FD_SET(ioh->fd, &wfds);
3634 if (ioh->fd > nfds)
3635 nfds = ioh->fd;
3636 }
3637 }
3638
3639 tv.tv_sec = timeout / 1000;
3640 tv.tv_usec = (timeout % 1000) * 1000;
3641
3642#if defined(CONFIG_SLIRP)
3643 if (slirp_is_inited()) {
3644 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3645 }
3646#endif
3647 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3648 if (ret > 0) {
3649 IOHandlerRecord **pioh;
3650
3651 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3652 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3653 ioh->fd_read(ioh->opaque);
3654 }
3655 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3656 ioh->fd_write(ioh->opaque);
3657 }
3658 }
3659
3660 /* remove deleted IO handlers */
3661 pioh = &first_io_handler;
3662 while (*pioh) {
3663 ioh = *pioh;
3664 if (ioh->deleted) {
3665 *pioh = ioh->next;
3666 qemu_free(ioh);
3667 } else
3668 pioh = &ioh->next;
3669 }
3670 }
3671#if defined(CONFIG_SLIRP)
3672 if (slirp_is_inited()) {
3673 if (ret < 0) {
3674 FD_ZERO(&rfds);
3675 FD_ZERO(&wfds);
3676 FD_ZERO(&xfds);
3677 }
3678 slirp_select_poll(&rfds, &wfds, &xfds);
3679 }
3680#endif
3681
3682 /* vm time timers */
3683 if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3684 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3685 qemu_get_clock(vm_clock));
3686
3687 /* real time timers */
3688 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3689 qemu_get_clock(rt_clock));
3690
3691 /* Check bottom-halves last in case any of the earlier events triggered
3692 them. */
3693 qemu_bh_poll();
3694
3695}
3696
3697static int main_loop(void)
3698{
3699 int ret, timeout;
3700#ifdef CONFIG_PROFILER
3701 int64_t ti;
3702#endif
3703 CPUState *env;
3704
3705 cur_cpu = first_cpu;
3706 next_cpu = cur_cpu->next_cpu ?: first_cpu;
3707 for(;;) {
3708 if (vm_running) {
3709
3710 for(;;) {
3711 /* get next cpu */
3712 env = next_cpu;
3713#ifdef CONFIG_PROFILER
3714 ti = profile_getclock();
3715#endif
3716 if (use_icount) {
3717 int64_t count;
3718 int decr;
3719 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3720 env->icount_decr.u16.low = 0;
3721 env->icount_extra = 0;
3722 count = qemu_next_deadline();
3723 count = (count + (1 << icount_time_shift) - 1)
3724 >> icount_time_shift;
3725 qemu_icount += count;
3726 decr = (count > 0xffff) ? 0xffff : count;
3727 count -= decr;
3728 env->icount_decr.u16.low = decr;
3729 env->icount_extra = count;
3730 }
3731 ret = cpu_exec(env);
3732#ifdef CONFIG_PROFILER
3733 qemu_time += profile_getclock() - ti;
3734#endif
3735 if (use_icount) {
3736 /* Fold pending instructions back into the
3737 instruction counter, and clear the interrupt flag. */
3738 qemu_icount -= (env->icount_decr.u16.low
3739 + env->icount_extra);
3740 env->icount_decr.u32 = 0;
3741 env->icount_extra = 0;
3742 }
3743 next_cpu = env->next_cpu ?: first_cpu;
3744 if (event_pending && likely(ret != EXCP_DEBUG)) {
3745 ret = EXCP_INTERRUPT;
3746 event_pending = 0;
3747 break;
3748 }
3749 if (ret == EXCP_HLT) {
3750 /* Give the next CPU a chance to run. */
3751 cur_cpu = env;
3752 continue;
3753 }
3754 if (ret != EXCP_HALTED)
3755 break;
3756 /* all CPUs are halted ? */
3757 if (env == cur_cpu)
3758 break;
3759 }
3760 cur_cpu = env;
3761
3762 if (shutdown_requested) {
3763 ret = EXCP_INTERRUPT;
3764 if (no_shutdown) {
3765 vm_stop(0);
3766 no_shutdown = 0;
3767 }
3768 else
3769 break;
3770 }
3771 if (reset_requested) {
3772 reset_requested = 0;
3773 qemu_system_reset();
3774 ret = EXCP_INTERRUPT;
3775 }
3776 if (powerdown_requested) {
3777 powerdown_requested = 0;
3778 qemu_system_powerdown();
3779 ret = EXCP_INTERRUPT;
3780 }
3781 if (unlikely(ret == EXCP_DEBUG)) {
3782 gdb_set_stop_cpu(cur_cpu);
3783 vm_stop(EXCP_DEBUG);
3784 }
3785 /* If all cpus are halted then wait until the next IRQ */
3786 /* XXX: use timeout computed from timers */
3787 if (ret == EXCP_HALTED) {
3788 if (use_icount) {
3789 int64_t add;
3790 int64_t delta;
3791 /* Advance virtual time to the next event. */
3792 if (use_icount == 1) {
3793 /* When not using an adaptive execution frequency
3794 we tend to get badly out of sync with real time,
3795 so just delay for a reasonable amount of time. */
3796 delta = 0;
3797 } else {
3798 delta = cpu_get_icount() - cpu_get_clock();
3799 }
3800 if (delta > 0) {
3801 /* If virtual time is ahead of real time then just
3802 wait for IO. */
3803 timeout = (delta / 1000000) + 1;
3804 } else {
3805 /* Wait for either IO to occur or the next
3806 timer event. */
3807 add = qemu_next_deadline();
3808 /* We advance the timer before checking for IO.
3809 Limit the amount we advance so that early IO
3810 activity won't get the guest too far ahead. */
3811 if (add > 10000000)
3812 add = 10000000;
3813 delta += add;
3814 add = (add + (1 << icount_time_shift) - 1)
3815 >> icount_time_shift;
3816 qemu_icount += add;
3817 timeout = delta / 1000000;
3818 if (timeout < 0)
3819 timeout = 0;
3820 }
3821 } else {
3822 timeout = 5000;
3823 }
3824 } else {
3825 timeout = 0;
3826 }
3827 } else {
3828 if (shutdown_requested) {
3829 ret = EXCP_INTERRUPT;
3830 break;
3831 }
3832 timeout = 5000;
3833 }
3834#ifdef CONFIG_PROFILER
3835 ti = profile_getclock();
3836#endif
3837 main_loop_wait(timeout);
3838#ifdef CONFIG_PROFILER
3839 dev_time += profile_getclock() - ti;
3840#endif
3841 }
3842 cpu_disable_ticks();
3843 return ret;
3844}
3845
3846static void help(int exitcode)
3847{
3848 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3849 "usage: %s [options] [disk_image]\n"
3850 "\n"
3851 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3852 "\n"
3853 "Standard options:\n"
3854 "-M machine select emulated machine (-M ? for list)\n"
3855 "-cpu cpu select CPU (-cpu ? for list)\n"
3856 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
3857 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
3858 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
3859 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
3860 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
3861 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
3862 " [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
3863 " use 'file' as a drive image\n"
3864 "-mtdblock file use 'file' as on-board Flash memory image\n"
3865 "-sd file use 'file' as SecureDigital card image\n"
3866 "-pflash file use 'file' as a parallel flash image\n"
3867 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
3868 "-snapshot write to temporary files instead of disk image files\n"
3869#ifdef CONFIG_SDL
3870 "-no-frame open SDL window without a frame and window decorations\n"
3871 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
3872 "-no-quit disable SDL window close capability\n"
3873 "-sdl enable SDL\n"
3874#endif
3875#ifdef TARGET_I386
3876 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
3877#endif
3878 "-m megs set virtual RAM size to megs MB [default=%d]\n"
3879 "-smp n set the number of CPUs to 'n' [default=1]\n"
3880 "-nographic disable graphical output and redirect serial I/Os to console\n"
3881 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
3882#ifndef _WIN32
3883 "-k language use keyboard layout (for example \"fr\" for French)\n"
3884#endif
3885#ifdef HAS_AUDIO
3886 "-audio-help print list of audio drivers and their options\n"
3887 "-soundhw c1,... enable audio support\n"
3888 " and only specified sound cards (comma separated list)\n"
3889 " use -soundhw ? to get the list of supported cards\n"
3890 " use -soundhw all to enable all of them\n"
3891#endif
3892 "-vga [std|cirrus|vmware|none]\n"
3893 " select video card type\n"
3894 "-localtime set the real time clock to local time [default=utc]\n"
3895 "-full-screen start in full screen\n"
3896#ifdef TARGET_I386
3897 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
3898 "-rtc-td-hack use it to fix time drift in Windows ACPI HAL\n"
3899#endif
3900 "-usb enable the USB driver (will be the default soon)\n"
3901 "-usbdevice name add the host or guest USB device 'name'\n"
3902#if defined(TARGET_PPC) || defined(TARGET_SPARC)
3903 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
3904#endif
3905 "-name string set the name of the guest\n"
3906 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x specify machine UUID\n"
3907 "\n"
3908 "Network options:\n"
3909 "-net nic[,vlan=n][,macaddr=addr][,model=type][,name=str]\n"
3910 " create a new Network Interface Card and connect it to VLAN 'n'\n"
3911#ifdef CONFIG_SLIRP
3912 "-net user[,vlan=n][,name=str][,hostname=host]\n"
3913 " connect the user mode network stack to VLAN 'n' and send\n"
3914 " hostname 'host' to DHCP clients\n"
3915#endif
3916#ifdef _WIN32
3917 "-net tap[,vlan=n][,name=str],ifname=name\n"
3918 " connect the host TAP network interface to VLAN 'n'\n"
3919#else
3920 "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
3921 " connect the host TAP network interface to VLAN 'n' and use the\n"
3922 " network scripts 'file' (default=%s)\n"
3923 " and 'dfile' (default=%s);\n"
3924 " use '[down]script=no' to disable script execution;\n"
3925 " use 'fd=h' to connect to an already opened TAP interface\n"
3926#endif
3927 "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
3928 " connect the vlan 'n' to another VLAN using a socket connection\n"
3929 "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
3930 " connect the vlan 'n' to multicast maddr and port\n"
3931#ifdef CONFIG_VDE
3932 "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
3933 " connect the vlan 'n' to port 'n' of a vde switch running\n"
3934 " on host and listening for incoming connections on 'socketpath'.\n"
3935 " Use group 'groupname' and mode 'octalmode' to change default\n"
3936 " ownership and permissions for communication port.\n"
3937#endif
3938 "-net none use it alone to have zero network devices; if no -net option\n"
3939 " is provided, the default is '-net nic -net user'\n"
3940 "\n"
3941 "-bt hci,null Dumb bluetooth HCI - doesn't respond to commands\n"
3942 "-bt hci,host[:id]\n"
3943 " Use host's HCI with the given name\n"
3944 "-bt hci[,vlan=n]\n"
3945 " Emulate a standard HCI in virtual scatternet 'n'\n"
3946 "-bt vhci[,vlan=n]\n"
3947 " Add host computer to virtual scatternet 'n' using VHCI\n"
3948 "-bt device:dev[,vlan=n]\n"
3949 " Emulate a bluetooth device 'dev' in scatternet 'n'\n"
3950 "\n"
3951#ifdef CONFIG_SLIRP
3952 "-tftp dir allow tftp access to files in dir [-net user]\n"
3953 "-bootp file advertise file in BOOTP replies\n"
3954#ifndef _WIN32
3955 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
3956#endif
3957 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
3958 " redirect TCP or UDP connections from host to guest [-net user]\n"
3959#endif
3960 "\n"
3961 "Linux boot specific:\n"
3962 "-kernel bzImage use 'bzImage' as kernel image\n"
3963 "-append cmdline use 'cmdline' as kernel command line\n"
3964 "-initrd file use 'file' as initial ram disk\n"
3965 "\n"
3966 "Debug/Expert options:\n"
3967 "-monitor dev redirect the monitor to char device 'dev'\n"
3968 "-serial dev redirect the serial port to char device 'dev'\n"
3969 "-parallel dev redirect the parallel port to char device 'dev'\n"
3970 "-pidfile file Write PID to 'file'\n"
3971 "-S freeze CPU at startup (use 'c' to start execution)\n"
3972 "-s wait gdb connection to port\n"
3973 "-p port set gdb connection port [default=%s]\n"
3974 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
3975 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
3976 " translation (t=none or lba) (usually qemu can guess them)\n"
3977 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
3978#ifdef USE_KQEMU
3979 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
3980 "-no-kqemu disable KQEMU kernel module usage\n"
3981#endif
3982#ifdef CONFIG_KVM
3983 "-enable-kvm enable KVM full virtualization support\n"
3984#endif
3985#ifdef TARGET_I386
3986 "-no-acpi disable ACPI\n"
3987 "-no-hpet disable HPET\n"
3988#endif
3989#ifdef CONFIG_CURSES
3990 "-curses use a curses/ncurses interface instead of SDL\n"
3991#endif
3992 "-no-reboot exit instead of rebooting\n"
3993 "-no-shutdown stop before shutdown\n"
3994 "-loadvm [tag|id] start right away with a saved state (loadvm in monitor)\n"
3995 "-vnc display start a VNC server on display\n"
3996#ifndef _WIN32
3997 "-daemonize daemonize QEMU after initializing\n"
3998#endif
3999 "-option-rom rom load a file, rom, into the option ROM space\n"
4000#ifdef TARGET_SPARC
4001 "-prom-env variable=value set OpenBIOS nvram variables\n"
4002#endif
4003 "-clock force the use of the given methods for timer alarm.\n"
4004 " To see what timers are available use -clock ?\n"
4005 "-startdate select initial date of the clock\n"
4006 "-icount [N|auto]\n"
4007 " Enable virtual instruction counter with 2^N clock ticks per instruction\n"
4008 "\n"
4009 "During emulation, the following keys are useful:\n"
4010 "ctrl-alt-f toggle full screen\n"
4011 "ctrl-alt-n switch to virtual console 'n'\n"
4012 "ctrl-alt toggle mouse and keyboard grab\n"
4013 "\n"
4014 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4015 ,
4016 "qemu",
4017 DEFAULT_RAM_SIZE,
4018#ifndef _WIN32
4019 DEFAULT_NETWORK_SCRIPT,
4020 DEFAULT_NETWORK_DOWN_SCRIPT,
4021#endif
4022 DEFAULT_GDBSTUB_PORT,
4023 "/tmp/qemu.log");
4024 exit(exitcode);
4025}
4026
4027#define HAS_ARG 0x0001
4028
4029enum {
4030 QEMU_OPTION_h,
4031
4032 QEMU_OPTION_M,
4033 QEMU_OPTION_cpu,
4034 QEMU_OPTION_fda,
4035 QEMU_OPTION_fdb,
4036 QEMU_OPTION_hda,
4037 QEMU_OPTION_hdb,
4038 QEMU_OPTION_hdc,
4039 QEMU_OPTION_hdd,
4040 QEMU_OPTION_drive,
4041 QEMU_OPTION_cdrom,
4042 QEMU_OPTION_mtdblock,
4043 QEMU_OPTION_sd,
4044 QEMU_OPTION_pflash,
4045 QEMU_OPTION_boot,
4046 QEMU_OPTION_snapshot,
4047#ifdef TARGET_I386
4048 QEMU_OPTION_no_fd_bootchk,
4049#endif
4050 QEMU_OPTION_m,
4051 QEMU_OPTION_nographic,
4052 QEMU_OPTION_portrait,
4053#ifdef HAS_AUDIO
4054 QEMU_OPTION_audio_help,
4055 QEMU_OPTION_soundhw,
4056#endif
4057
4058 QEMU_OPTION_net,
4059 QEMU_OPTION_tftp,
4060 QEMU_OPTION_bootp,
4061 QEMU_OPTION_smb,
4062 QEMU_OPTION_redir,
4063 QEMU_OPTION_bt,
4064
4065 QEMU_OPTION_kernel,
4066 QEMU_OPTION_append,
4067 QEMU_OPTION_initrd,
4068
4069 QEMU_OPTION_S,
4070 QEMU_OPTION_s,
4071 QEMU_OPTION_p,
4072 QEMU_OPTION_d,
4073 QEMU_OPTION_hdachs,
4074 QEMU_OPTION_L,
4075 QEMU_OPTION_bios,
4076 QEMU_OPTION_k,
4077 QEMU_OPTION_localtime,
4078 QEMU_OPTION_g,
4079 QEMU_OPTION_vga,
4080 QEMU_OPTION_echr,
4081 QEMU_OPTION_monitor,
4082 QEMU_OPTION_serial,
4083 QEMU_OPTION_virtiocon,
4084 QEMU_OPTION_parallel,
4085 QEMU_OPTION_loadvm,
4086 QEMU_OPTION_full_screen,
4087 QEMU_OPTION_no_frame,
4088 QEMU_OPTION_alt_grab,
4089 QEMU_OPTION_no_quit,
4090 QEMU_OPTION_sdl,
4091 QEMU_OPTION_pidfile,
4092 QEMU_OPTION_no_kqemu,
4093 QEMU_OPTION_kernel_kqemu,
4094 QEMU_OPTION_enable_kvm,
4095 QEMU_OPTION_win2k_hack,
4096 QEMU_OPTION_rtc_td_hack,
4097 QEMU_OPTION_usb,
4098 QEMU_OPTION_usbdevice,
4099 QEMU_OPTION_smp,
4100 QEMU_OPTION_vnc,
4101 QEMU_OPTION_no_acpi,
4102 QEMU_OPTION_no_hpet,
4103 QEMU_OPTION_curses,
4104 QEMU_OPTION_no_reboot,
4105 QEMU_OPTION_no_shutdown,
4106 QEMU_OPTION_show_cursor,
4107 QEMU_OPTION_daemonize,
4108 QEMU_OPTION_option_rom,
4109 QEMU_OPTION_semihosting,
4110 QEMU_OPTION_name,
4111 QEMU_OPTION_prom_env,
4112 QEMU_OPTION_old_param,
4113 QEMU_OPTION_clock,
4114 QEMU_OPTION_startdate,
4115 QEMU_OPTION_tb_size,
4116 QEMU_OPTION_icount,
4117 QEMU_OPTION_uuid,
4118 QEMU_OPTION_incoming,
4119};
4120
4121typedef struct QEMUOption {
4122 const char *name;
4123 int flags;
4124 int index;
4125} QEMUOption;
4126
4127static const QEMUOption qemu_options[] = {
4128 { "h", 0, QEMU_OPTION_h },
4129 { "help", 0, QEMU_OPTION_h },
4130
4131 { "M", HAS_ARG, QEMU_OPTION_M },
4132 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
4133 { "fda", HAS_ARG, QEMU_OPTION_fda },
4134 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4135 { "hda", HAS_ARG, QEMU_OPTION_hda },
4136 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4137 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4138 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4139 { "drive", HAS_ARG, QEMU_OPTION_drive },
4140 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4141 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
4142 { "sd", HAS_ARG, QEMU_OPTION_sd },
4143 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
4144 { "boot", HAS_ARG, QEMU_OPTION_boot },
4145 { "snapshot", 0, QEMU_OPTION_snapshot },
4146#ifdef TARGET_I386
4147 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
4148#endif
4149 { "m", HAS_ARG, QEMU_OPTION_m },
4150 { "nographic", 0, QEMU_OPTION_nographic },
4151 { "portrait", 0, QEMU_OPTION_portrait },
4152 { "k", HAS_ARG, QEMU_OPTION_k },
4153#ifdef HAS_AUDIO
4154 { "audio-help", 0, QEMU_OPTION_audio_help },
4155 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4156#endif
4157
4158 { "net", HAS_ARG, QEMU_OPTION_net},
4159#ifdef CONFIG_SLIRP
4160 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4161 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
4162#ifndef _WIN32
4163 { "smb", HAS_ARG, QEMU_OPTION_smb },
4164#endif
4165 { "redir", HAS_ARG, QEMU_OPTION_redir },
4166#endif
4167 { "bt", HAS_ARG, QEMU_OPTION_bt },
4168
4169 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4170 { "append", HAS_ARG, QEMU_OPTION_append },
4171 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4172
4173 { "S", 0, QEMU_OPTION_S },
4174 { "s", 0, QEMU_OPTION_s },
4175 { "p", HAS_ARG, QEMU_OPTION_p },
4176 { "d", HAS_ARG, QEMU_OPTION_d },
4177 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4178 { "L", HAS_ARG, QEMU_OPTION_L },
4179 { "bios", HAS_ARG, QEMU_OPTION_bios },
4180#ifdef USE_KQEMU
4181 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4182 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4183#endif
4184#ifdef CONFIG_KVM
4185 { "enable-kvm", 0, QEMU_OPTION_enable_kvm },
4186#endif
4187#if defined(TARGET_PPC) || defined(TARGET_SPARC)
4188 { "g", 1, QEMU_OPTION_g },
4189#endif
4190 { "localtime", 0, QEMU_OPTION_localtime },
4191 { "vga", HAS_ARG, QEMU_OPTION_vga },
4192 { "echr", HAS_ARG, QEMU_OPTION_echr },
4193 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
4194 { "serial", HAS_ARG, QEMU_OPTION_serial },
4195 { "virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon },
4196 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
4197 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4198 { "full-screen", 0, QEMU_OPTION_full_screen },
4199#ifdef CONFIG_SDL
4200 { "no-frame", 0, QEMU_OPTION_no_frame },
4201 { "alt-grab", 0, QEMU_OPTION_alt_grab },
4202 { "no-quit", 0, QEMU_OPTION_no_quit },
4203 { "sdl", 0, QEMU_OPTION_sdl },
4204#endif
4205 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4206 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4207 { "rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack },
4208 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4209 { "smp", HAS_ARG, QEMU_OPTION_smp },
4210 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4211#ifdef CONFIG_CURSES
4212 { "curses", 0, QEMU_OPTION_curses },
4213#endif
4214 { "uuid", HAS_ARG, QEMU_OPTION_uuid },
4215
4216 /* temporary options */
4217 { "usb", 0, QEMU_OPTION_usb },
4218 { "no-acpi", 0, QEMU_OPTION_no_acpi },
4219 { "no-hpet", 0, QEMU_OPTION_no_hpet },
4220 { "no-reboot", 0, QEMU_OPTION_no_reboot },
4221 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
4222 { "show-cursor", 0, QEMU_OPTION_show_cursor },
4223 { "daemonize", 0, QEMU_OPTION_daemonize },
4224 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
4225#if defined(TARGET_ARM) || defined(TARGET_M68K)
4226 { "semihosting", 0, QEMU_OPTION_semihosting },
4227#endif
4228 { "name", HAS_ARG, QEMU_OPTION_name },
4229#if defined(TARGET_SPARC) || defined(TARGET_PPC)
4230 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
4231#endif
4232#if defined(TARGET_ARM)
4233 { "old-param", 0, QEMU_OPTION_old_param },
4234#endif
4235 { "clock", HAS_ARG, QEMU_OPTION_clock },
4236 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
4237 { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
4238 { "icount", HAS_ARG, QEMU_OPTION_icount },
4239 { "incoming", HAS_ARG, QEMU_OPTION_incoming },
4240 { NULL },
4241};
4242
4243/* password input */
4244
4245int qemu_key_check(BlockDriverState *bs, const char *name)
4246{
4247 char password[256];
4248 int i;
4249
4250 if (!bdrv_is_encrypted(bs))
4251 return 0;
4252
4253 term_printf("%s is encrypted.\n", name);
4254 for(i = 0; i < 3; i++) {
4255 monitor_readline("Password: ", 1, password, sizeof(password));
4256 if (bdrv_set_key(bs, password) == 0)
4257 return 0;
4258 term_printf("invalid password\n");
4259 }
4260 return -EPERM;
4261}
4262
4263static BlockDriverState *get_bdrv(int index)
4264{
4265 if (index > nb_drives)
4266 return NULL;
4267 return drives_table[index].bdrv;
4268}
4269
4270static void read_passwords(void)
4271{
4272 BlockDriverState *bs;
4273 int i;
4274
4275 for(i = 0; i < 6; i++) {
4276 bs = get_bdrv(i);
4277 if (bs)
4278 qemu_key_check(bs, bdrv_get_device_name(bs));
4279 }
4280}
4281
4282#ifdef HAS_AUDIO
4283struct soundhw soundhw[] = {
4284#ifdef HAS_AUDIO_CHOICE
4285#if defined(TARGET_I386) || defined(TARGET_MIPS)
4286 {
4287 "pcspk",
4288 "PC speaker",
4289 0,
4290 1,
4291 { .init_isa = pcspk_audio_init }
4292 },
4293#endif
4294
4295#ifdef CONFIG_SB16
4296 {
4297 "sb16",
4298 "Creative Sound Blaster 16",
4299 0,
4300 1,
4301 { .init_isa = SB16_init }
4302 },
4303#endif
4304
4305#ifdef CONFIG_CS4231A
4306 {
4307 "cs4231a",
4308 "CS4231A",
4309 0,
4310 1,
4311 { .init_isa = cs4231a_init }
4312 },
4313#endif
4314
4315#ifdef CONFIG_ADLIB
4316 {
4317 "adlib",
4318#ifdef HAS_YMF262
4319 "Yamaha YMF262 (OPL3)",
4320#else
4321 "Yamaha YM3812 (OPL2)",
4322#endif
4323 0,
4324 1,
4325 { .init_isa = Adlib_init }
4326 },
4327#endif
4328
4329#ifdef CONFIG_GUS
4330 {
4331 "gus",
4332 "Gravis Ultrasound GF1",
4333 0,
4334 1,
4335 { .init_isa = GUS_init }
4336 },
4337#endif
4338
4339#ifdef CONFIG_AC97
4340 {
4341 "ac97",
4342 "Intel 82801AA AC97 Audio",
4343 0,
4344 0,
4345 { .init_pci = ac97_init }
4346 },
4347#endif
4348
4349#ifdef CONFIG_ES1370
4350 {
4351 "es1370",
4352 "ENSONIQ AudioPCI ES1370",
4353 0,
4354 0,
4355 { .init_pci = es1370_init }
4356 },
4357#endif
4358
4359#endif /* HAS_AUDIO_CHOICE */
4360
4361 { NULL, NULL, 0, 0, { NULL } }
4362};
4363
4364static void select_soundhw (const char *optarg)
4365{
4366 struct soundhw *c;
4367
4368 if (*optarg == '?') {
4369 show_valid_cards:
4370
4371 printf ("Valid sound card names (comma separated):\n");
4372 for (c = soundhw; c->name; ++c) {
4373 printf ("%-11s %s\n", c->name, c->descr);
4374 }
4375 printf ("\n-soundhw all will enable all of the above\n");
4376 exit (*optarg != '?');
4377 }
4378 else {
4379 size_t l;
4380 const char *p;
4381 char *e;
4382 int bad_card = 0;
4383
4384 if (!strcmp (optarg, "all")) {
4385 for (c = soundhw; c->name; ++c) {
4386 c->enabled = 1;
4387 }
4388 return;
4389 }
4390
4391 p = optarg;
4392 while (*p) {
4393 e = strchr (p, ',');
4394 l = !e ? strlen (p) : (size_t) (e - p);
4395
4396 for (c = soundhw; c->name; ++c) {
4397 if (!strncmp (c->name, p, l)) {
4398 c->enabled = 1;
4399 break;
4400 }
4401 }
4402
4403 if (!c->name) {
4404 if (l > 80) {
4405 fprintf (stderr,
4406 "Unknown sound card name (too big to show)\n");
4407 }
4408 else {
4409 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4410 (int) l, p);
4411 }
4412 bad_card = 1;
4413 }
4414 p += l + (e != NULL);
4415 }
4416
4417 if (bad_card)
4418 goto show_valid_cards;
4419 }
4420}
4421#endif
4422
4423static void select_vgahw (const char *p)
4424{
4425 const char *opts;
4426
4427 if (strstart(p, "std", &opts)) {
4428 std_vga_enabled = 1;
4429 cirrus_vga_enabled = 0;
4430 vmsvga_enabled = 0;
4431 } else if (strstart(p, "cirrus", &opts)) {
4432 cirrus_vga_enabled = 1;
4433 std_vga_enabled = 0;
4434 vmsvga_enabled = 0;
4435 } else if (strstart(p, "vmware", &opts)) {
4436 cirrus_vga_enabled = 0;
4437 std_vga_enabled = 0;
4438 vmsvga_enabled = 1;
4439 } else if (strstart(p, "none", &opts)) {
4440 cirrus_vga_enabled = 0;
4441 std_vga_enabled = 0;
4442 vmsvga_enabled = 0;
4443 } else {
4444 invalid_vga:
4445 fprintf(stderr, "Unknown vga type: %s\n", p);
4446 exit(1);
4447 }
4448 while (*opts) {
4449 const char *nextopt;
4450
4451 if (strstart(opts, ",retrace=", &nextopt)) {
4452 opts = nextopt;
4453 if (strstart(opts, "dumb", &nextopt))
4454 vga_retrace_method = VGA_RETRACE_DUMB;
4455 else if (strstart(opts, "precise", &nextopt))
4456 vga_retrace_method = VGA_RETRACE_PRECISE;
4457 else goto invalid_vga;
4458 } else goto invalid_vga;
4459 opts = nextopt;
4460 }
4461}
4462
4463#ifdef _WIN32
4464static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4465{
4466 exit(STATUS_CONTROL_C_EXIT);
4467 return TRUE;
4468}
4469#endif
4470
4471static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4472{
4473 int ret;
4474
4475 if(strlen(str) != 36)
4476 return -1;
4477
4478 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4479 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4480 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4481
4482 if(ret != 16)
4483 return -1;
4484
4485 return 0;
4486}
4487
4488#define MAX_NET_CLIENTS 32
4489
4490#ifndef _WIN32
4491
4492static void termsig_handler(int signal)
4493{
4494 qemu_system_shutdown_request();
4495}
4496
4497static void termsig_setup(void)
4498{
4499 struct sigaction act;
4500
4501 memset(&act, 0, sizeof(act));
4502 act.sa_handler = termsig_handler;
4503 sigaction(SIGINT, &act, NULL);
4504 sigaction(SIGHUP, &act, NULL);
4505 sigaction(SIGTERM, &act, NULL);
4506}
4507
4508#endif
4509
4510int main(int argc, char **argv, char **envp)
4511{
4512#ifdef CONFIG_GDBSTUB
4513 int use_gdbstub;
4514 const char *gdbstub_port;
4515#endif
4516 uint32_t boot_devices_bitmap = 0;
4517 int i;
4518 int snapshot, linux_boot, net_boot;
4519 const char *initrd_filename;
4520 const char *kernel_filename, *kernel_cmdline;
4521 const char *boot_devices = "";
4522 DisplayState *ds;
4523 DisplayChangeListener *dcl;
4524 int cyls, heads, secs, translation;
4525 const char *net_clients[MAX_NET_CLIENTS];
4526 int nb_net_clients;
4527 const char *bt_opts[MAX_BT_CMDLINE];
4528 int nb_bt_opts;
4529 int hda_index;
4530 int optind;
4531 const char *r, *optarg;
4532 CharDriverState *monitor_hd = NULL;
4533 const char *monitor_device;
4534 const char *serial_devices[MAX_SERIAL_PORTS];
4535 int serial_device_index;
4536 const char *parallel_devices[MAX_PARALLEL_PORTS];
4537 int parallel_device_index;
4538 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4539 int virtio_console_index;
4540 const char *loadvm = NULL;
4541 QEMUMachine *machine;
4542 const char *cpu_model;
4543 const char *usb_devices[MAX_USB_CMDLINE];
4544 int usb_devices_index;
4545 int fds[2];
4546 int tb_size;
4547 const char *pid_file = NULL;
4548 int autostart;
4549 const char *incoming = NULL;
4550
4551 qemu_cache_utils_init(envp);
4552
4553 LIST_INIT (&vm_change_state_head);
4554#ifndef _WIN32
4555 {
4556 struct sigaction act;
4557 sigfillset(&act.sa_mask);
4558 act.sa_flags = 0;
4559 act.sa_handler = SIG_IGN;
4560 sigaction(SIGPIPE, &act, NULL);
4561 }
4562#else
4563 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4564 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4565 QEMU to run on a single CPU */
4566 {
4567 HANDLE h;
4568 DWORD mask, smask;
4569 int i;
4570 h = GetCurrentProcess();
4571 if (GetProcessAffinityMask(h, &mask, &smask)) {
4572 for(i = 0; i < 32; i++) {
4573 if (mask & (1 << i))
4574 break;
4575 }
4576 if (i != 32) {
4577 mask = 1 << i;
4578 SetProcessAffinityMask(h, mask);
4579 }
4580 }
4581 }
4582#endif
4583
4584 register_machines();
4585 machine = first_machine;
4586 cpu_model = NULL;
4587 initrd_filename = NULL;
4588 ram_size = 0;
4589 vga_ram_size = VGA_RAM_SIZE;
4590#ifdef CONFIG_GDBSTUB
4591 use_gdbstub = 0;
4592 gdbstub_port = DEFAULT_GDBSTUB_PORT;
4593#endif
4594 snapshot = 0;
4595 nographic = 0;
4596 curses = 0;
4597 kernel_filename = NULL;
4598 kernel_cmdline = "";
4599 cyls = heads = secs = 0;
4600 translation = BIOS_ATA_TRANSLATION_AUTO;
4601 monitor_device = "vc";
4602
4603 serial_devices[0] = "vc:80Cx24C";
4604 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4605 serial_devices[i] = NULL;
4606 serial_device_index = 0;
4607
4608 parallel_devices[0] = "vc:640x480";
4609 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4610 parallel_devices[i] = NULL;
4611 parallel_device_index = 0;
4612
4613 virtio_consoles[0] = "vc:80Cx24C";
4614 for(i = 1; i < MAX_VIRTIO_CONSOLES; i++)
4615 virtio_consoles[i] = NULL;
4616 virtio_console_index = 0;
4617
4618 usb_devices_index = 0;
4619
4620 nb_net_clients = 0;
4621 nb_bt_opts = 0;
4622 nb_drives = 0;
4623 nb_drives_opt = 0;
4624 hda_index = -1;
4625
4626 nb_nics = 0;
4627
4628 tb_size = 0;
4629 autostart= 1;
4630
4631 optind = 1;
4632 for(;;) {
4633 if (optind >= argc)
4634 break;
4635 r = argv[optind];
4636 if (r[0] != '-') {
4637 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4638 } else {
4639 const QEMUOption *popt;
4640
4641 optind++;
4642 /* Treat --foo the same as -foo. */
4643 if (r[1] == '-')
4644 r++;
4645 popt = qemu_options;
4646 for(;;) {
4647 if (!popt->name) {
4648 fprintf(stderr, "%s: invalid option -- '%s'\n",
4649 argv[0], r);
4650 exit(1);
4651 }
4652 if (!strcmp(popt->name, r + 1))
4653 break;
4654 popt++;
4655 }
4656 if (popt->flags & HAS_ARG) {
4657 if (optind >= argc) {
4658 fprintf(stderr, "%s: option '%s' requires an argument\n",
4659 argv[0], r);
4660 exit(1);
4661 }
4662 optarg = argv[optind++];
4663 } else {
4664 optarg = NULL;
4665 }
4666
4667 switch(popt->index) {
4668 case QEMU_OPTION_M:
4669 machine = find_machine(optarg);
4670 if (!machine) {
4671 QEMUMachine *m;
4672 printf("Supported machines are:\n");
4673 for(m = first_machine; m != NULL; m = m->next) {
4674 printf("%-10s %s%s\n",
4675 m->name, m->desc,
4676 m == first_machine ? " (default)" : "");
4677 }
4678 exit(*optarg != '?');
4679 }
4680 break;
4681 case QEMU_OPTION_cpu:
4682 /* hw initialization will check this */
4683 if (*optarg == '?') {
4684/* XXX: implement xxx_cpu_list for targets that still miss it */
4685#if defined(cpu_list)
4686 cpu_list(stdout, &fprintf);
4687#endif
4688 exit(0);
4689 } else {
4690 cpu_model = optarg;
4691 }
4692 break;
4693 case QEMU_OPTION_initrd:
4694 initrd_filename = optarg;
4695 break;
4696 case QEMU_OPTION_hda:
4697 if (cyls == 0)
4698 hda_index = drive_add(optarg, HD_ALIAS, 0);
4699 else
4700 hda_index = drive_add(optarg, HD_ALIAS
4701 ",cyls=%d,heads=%d,secs=%d%s",
4702 0, cyls, heads, secs,
4703 translation == BIOS_ATA_TRANSLATION_LBA ?
4704 ",trans=lba" :
4705 translation == BIOS_ATA_TRANSLATION_NONE ?
4706 ",trans=none" : "");
4707 break;
4708 case QEMU_OPTION_hdb:
4709 case QEMU_OPTION_hdc:
4710 case QEMU_OPTION_hdd:
4711 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4712 break;
4713 case QEMU_OPTION_drive:
4714 drive_add(NULL, "%s", optarg);
4715 break;
4716 case QEMU_OPTION_mtdblock:
4717 drive_add(optarg, MTD_ALIAS);
4718 break;
4719 case QEMU_OPTION_sd:
4720 drive_add(optarg, SD_ALIAS);
4721 break;
4722 case QEMU_OPTION_pflash:
4723 drive_add(optarg, PFLASH_ALIAS);
4724 break;
4725 case QEMU_OPTION_snapshot:
4726 snapshot = 1;
4727 break;
4728 case QEMU_OPTION_hdachs:
4729 {
4730 const char *p;
4731 p = optarg;
4732 cyls = strtol(p, (char **)&p, 0);
4733 if (cyls < 1 || cyls > 16383)
4734 goto chs_fail;
4735 if (*p != ',')
4736 goto chs_fail;
4737 p++;
4738 heads = strtol(p, (char **)&p, 0);
4739 if (heads < 1 || heads > 16)
4740 goto chs_fail;
4741 if (*p != ',')
4742 goto chs_fail;
4743 p++;
4744 secs = strtol(p, (char **)&p, 0);
4745 if (secs < 1 || secs > 63)
4746 goto chs_fail;
4747 if (*p == ',') {
4748 p++;
4749 if (!strcmp(p, "none"))
4750 translation = BIOS_ATA_TRANSLATION_NONE;
4751 else if (!strcmp(p, "lba"))
4752 translation = BIOS_ATA_TRANSLATION_LBA;
4753 else if (!strcmp(p, "auto"))
4754 translation = BIOS_ATA_TRANSLATION_AUTO;
4755 else
4756 goto chs_fail;
4757 } else if (*p != '\0') {
4758 chs_fail:
4759 fprintf(stderr, "qemu: invalid physical CHS format\n");
4760 exit(1);
4761 }
4762 if (hda_index != -1)
4763 snprintf(drives_opt[hda_index].opt,
4764 sizeof(drives_opt[hda_index].opt),
4765 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4766 0, cyls, heads, secs,
4767 translation == BIOS_ATA_TRANSLATION_LBA ?
4768 ",trans=lba" :
4769 translation == BIOS_ATA_TRANSLATION_NONE ?
4770 ",trans=none" : "");
4771 }
4772 break;
4773 case QEMU_OPTION_nographic:
4774 nographic = 1;
4775 break;
4776#ifdef CONFIG_CURSES
4777 case QEMU_OPTION_curses:
4778 curses = 1;
4779 break;
4780#endif
4781 case QEMU_OPTION_portrait:
4782 graphic_rotate = 1;
4783 break;
4784 case QEMU_OPTION_kernel:
4785 kernel_filename = optarg;
4786 break;
4787 case QEMU_OPTION_append:
4788 kernel_cmdline = optarg;
4789 break;
4790 case QEMU_OPTION_cdrom:
4791 drive_add(optarg, CDROM_ALIAS);
4792 break;
4793 case QEMU_OPTION_boot:
4794 boot_devices = optarg;
4795 /* We just do some generic consistency checks */
4796 {
4797 /* Could easily be extended to 64 devices if needed */
4798 const char *p;
4799
4800 boot_devices_bitmap = 0;
4801 for (p = boot_devices; *p != '\0'; p++) {
4802 /* Allowed boot devices are:
4803 * a b : floppy disk drives
4804 * c ... f : IDE disk drives
4805 * g ... m : machine implementation dependant drives
4806 * n ... p : network devices
4807 * It's up to each machine implementation to check
4808 * if the given boot devices match the actual hardware
4809 * implementation and firmware features.
4810 */
4811 if (*p < 'a' || *p > 'q') {
4812 fprintf(stderr, "Invalid boot device '%c'\n", *p);
4813 exit(1);
4814 }
4815 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4816 fprintf(stderr,
4817 "Boot device '%c' was given twice\n",*p);
4818 exit(1);
4819 }
4820 boot_devices_bitmap |= 1 << (*p - 'a');
4821 }
4822 }
4823 break;
4824 case QEMU_OPTION_fda:
4825 case QEMU_OPTION_fdb:
4826 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4827 break;
4828#ifdef TARGET_I386
4829 case QEMU_OPTION_no_fd_bootchk:
4830 fd_bootchk = 0;
4831 break;
4832#endif
4833 case QEMU_OPTION_net:
4834 if (nb_net_clients >= MAX_NET_CLIENTS) {
4835 fprintf(stderr, "qemu: too many network clients\n");
4836 exit(1);
4837 }
4838 net_clients[nb_net_clients] = optarg;
4839 nb_net_clients++;
4840 break;
4841#ifdef CONFIG_SLIRP
4842 case QEMU_OPTION_tftp:
4843 tftp_prefix = optarg;
4844 break;
4845 case QEMU_OPTION_bootp:
4846 bootp_filename = optarg;
4847 break;
4848#ifndef _WIN32
4849 case QEMU_OPTION_smb:
4850 net_slirp_smb(optarg);
4851 break;
4852#endif
4853 case QEMU_OPTION_redir:
4854 net_slirp_redir(optarg);
4855 break;
4856#endif
4857 case QEMU_OPTION_bt:
4858 if (nb_bt_opts >= MAX_BT_CMDLINE) {
4859 fprintf(stderr, "qemu: too many bluetooth options\n");
4860 exit(1);
4861 }
4862 bt_opts[nb_bt_opts++] = optarg;
4863 break;
4864#ifdef HAS_AUDIO
4865 case QEMU_OPTION_audio_help:
4866 AUD_help ();
4867 exit (0);
4868 break;
4869 case QEMU_OPTION_soundhw:
4870 select_soundhw (optarg);
4871 break;
4872#endif
4873 case QEMU_OPTION_h:
4874 help(0);
4875 break;
4876 case QEMU_OPTION_m: {
4877 uint64_t value;
4878 char *ptr;
4879
4880 value = strtoul(optarg, &ptr, 10);
4881 switch (*ptr) {
4882 case 0: case 'M': case 'm':
4883 value <<= 20;
4884 break;
4885 case 'G': case 'g':
4886 value <<= 30;
4887 break;
4888 default:
4889 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4890 exit(1);
4891 }
4892
4893 /* On 32-bit hosts, QEMU is limited by virtual address space */
4894 if (value > (2047 << 20)
4895#ifndef USE_KQEMU
4896 && HOST_LONG_BITS == 32
4897#endif
4898 ) {
4899 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4900 exit(1);
4901 }
4902 if (value != (uint64_t)(ram_addr_t)value) {
4903 fprintf(stderr, "qemu: ram size too large\n");
4904 exit(1);
4905 }
4906 ram_size = value;
4907 break;
4908 }
4909 case QEMU_OPTION_d:
4910 {
4911 int mask;
4912 const CPULogItem *item;
4913
4914 mask = cpu_str_to_log_mask(optarg);
4915 if (!mask) {
4916 printf("Log items (comma separated):\n");
4917 for(item = cpu_log_items; item->mask != 0; item++) {
4918 printf("%-10s %s\n", item->name, item->help);
4919 }
4920 exit(1);
4921 }
4922 cpu_set_log(mask);
4923 }
4924 break;
4925#ifdef CONFIG_GDBSTUB
4926 case QEMU_OPTION_s:
4927 use_gdbstub = 1;
4928 break;
4929 case QEMU_OPTION_p:
4930 gdbstub_port = optarg;
4931 break;
4932#endif
4933 case QEMU_OPTION_L:
4934 bios_dir = optarg;
4935 break;
4936 case QEMU_OPTION_bios:
4937 bios_name = optarg;
4938 break;
4939 case QEMU_OPTION_S:
4940 autostart = 0;
4941 break;
4942 case QEMU_OPTION_k:
4943 keyboard_layout = optarg;
4944 break;
4945 case QEMU_OPTION_localtime:
4946 rtc_utc = 0;
4947 break;
4948 case QEMU_OPTION_vga:
4949 select_vgahw (optarg);
4950 break;
4951 case QEMU_OPTION_g:
4952 {
4953 const char *p;
4954 int w, h, depth;
4955 p = optarg;
4956 w = strtol(p, (char **)&p, 10);
4957 if (w <= 0) {
4958 graphic_error:
4959 fprintf(stderr, "qemu: invalid resolution or depth\n");
4960 exit(1);
4961 }
4962 if (*p != 'x')
4963 goto graphic_error;
4964 p++;
4965 h = strtol(p, (char **)&p, 10);
4966 if (h <= 0)
4967 goto graphic_error;
4968 if (*p == 'x') {
4969 p++;
4970 depth = strtol(p, (char **)&p, 10);
4971 if (depth != 8 && depth != 15 && depth != 16 &&
4972 depth != 24 && depth != 32)
4973 goto graphic_error;
4974 } else if (*p == '\0') {
4975 depth = graphic_depth;
4976 } else {
4977 goto graphic_error;
4978 }
4979
4980 graphic_width = w;
4981 graphic_height = h;
4982 graphic_depth = depth;
4983 }
4984 break;
4985 case QEMU_OPTION_echr:
4986 {
4987 char *r;
4988 term_escape_char = strtol(optarg, &r, 0);
4989 if (r == optarg)
4990 printf("Bad argument to echr\n");
4991 break;
4992 }
4993 case QEMU_OPTION_monitor:
4994 monitor_device = optarg;
4995 break;
4996 case QEMU_OPTION_serial:
4997 if (serial_device_index >= MAX_SERIAL_PORTS) {
4998 fprintf(stderr, "qemu: too many serial ports\n");
4999 exit(1);
5000 }
5001 serial_devices[serial_device_index] = optarg;
5002 serial_device_index++;
5003 break;
5004 case QEMU_OPTION_virtiocon:
5005 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5006 fprintf(stderr, "qemu: too many virtio consoles\n");
5007 exit(1);
5008 }
5009 virtio_consoles[virtio_console_index] = optarg;
5010 virtio_console_index++;
5011 break;
5012 case QEMU_OPTION_parallel:
5013 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5014 fprintf(stderr, "qemu: too many parallel ports\n");
5015 exit(1);
5016 }
5017 parallel_devices[parallel_device_index] = optarg;
5018 parallel_device_index++;
5019 break;
5020 case QEMU_OPTION_loadvm:
5021 loadvm = optarg;
5022 break;
5023 case QEMU_OPTION_full_screen:
5024 full_screen = 1;
5025 break;
5026#ifdef CONFIG_SDL
5027 case QEMU_OPTION_no_frame:
5028 no_frame = 1;
5029 break;
5030 case QEMU_OPTION_alt_grab:
5031 alt_grab = 1;
5032 break;
5033 case QEMU_OPTION_no_quit:
5034 no_quit = 1;
5035 break;
5036 case QEMU_OPTION_sdl:
5037 sdl = 1;
5038 break;
5039#endif
5040 case QEMU_OPTION_pidfile:
5041 pid_file = optarg;
5042 break;
5043#ifdef TARGET_I386
5044 case QEMU_OPTION_win2k_hack:
5045 win2k_install_hack = 1;
5046 break;
5047 case QEMU_OPTION_rtc_td_hack:
5048 rtc_td_hack = 1;
5049 break;
5050#endif
5051#ifdef USE_KQEMU
5052 case QEMU_OPTION_no_kqemu:
5053 kqemu_allowed = 0;
5054 break;
5055 case QEMU_OPTION_kernel_kqemu:
5056 kqemu_allowed = 2;
5057 break;
5058#endif
5059#ifdef CONFIG_KVM
5060 case QEMU_OPTION_enable_kvm:
5061 kvm_allowed = 1;
5062#ifdef USE_KQEMU
5063 kqemu_allowed = 0;
5064#endif
5065 break;
5066#endif
5067 case QEMU_OPTION_usb:
5068 usb_enabled = 1;
5069 break;
5070 case QEMU_OPTION_usbdevice:
5071 usb_enabled = 1;
5072 if (usb_devices_index >= MAX_USB_CMDLINE) {
5073 fprintf(stderr, "Too many USB devices\n");
5074 exit(1);
5075 }
5076 usb_devices[usb_devices_index] = optarg;
5077 usb_devices_index++;
5078 break;
5079 case QEMU_OPTION_smp:
5080 smp_cpus = atoi(optarg);
5081 if (smp_cpus < 1) {
5082 fprintf(stderr, "Invalid number of CPUs\n");
5083 exit(1);
5084 }
5085 break;
5086 case QEMU_OPTION_vnc:
5087 vnc_display = optarg;
5088 break;
5089 case QEMU_OPTION_no_acpi:
5090 acpi_enabled = 0;
5091 break;
5092 case QEMU_OPTION_no_hpet:
5093 no_hpet = 1;
5094 break;
5095 case QEMU_OPTION_no_reboot:
5096 no_reboot = 1;
5097 break;
5098 case QEMU_OPTION_no_shutdown:
5099 no_shutdown = 1;
5100 break;
5101 case QEMU_OPTION_show_cursor:
5102 cursor_hide = 0;
5103 break;
5104 case QEMU_OPTION_uuid:
5105 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5106 fprintf(stderr, "Fail to parse UUID string."
5107 " Wrong format.\n");
5108 exit(1);
5109 }
5110 break;
5111 case QEMU_OPTION_daemonize:
5112 daemonize = 1;
5113 break;
5114 case QEMU_OPTION_option_rom:
5115 if (nb_option_roms >= MAX_OPTION_ROMS) {
5116 fprintf(stderr, "Too many option ROMs\n");
5117 exit(1);
5118 }
5119 option_rom[nb_option_roms] = optarg;
5120 nb_option_roms++;
5121 break;
5122 case QEMU_OPTION_semihosting:
5123 semihosting_enabled = 1;
5124 break;
5125 case QEMU_OPTION_name:
5126 qemu_name = optarg;
5127 break;
5128#if defined(TARGET_SPARC) || defined(TARGET_PPC)
5129 case QEMU_OPTION_prom_env:
5130 if (nb_prom_envs >= MAX_PROM_ENVS) {
5131 fprintf(stderr, "Too many prom variables\n");
5132 exit(1);
5133 }
5134 prom_envs[nb_prom_envs] = optarg;
5135 nb_prom_envs++;
5136 break;
5137#endif
5138#ifdef TARGET_ARM
5139 case QEMU_OPTION_old_param:
5140 old_param = 1;
5141 break;
5142#endif
5143 case QEMU_OPTION_clock:
5144 configure_alarms(optarg);
5145 break;
5146 case QEMU_OPTION_startdate:
5147 {
5148 struct tm tm;
5149 time_t rtc_start_date;
5150 if (!strcmp(optarg, "now")) {
5151 rtc_date_offset = -1;
5152 } else {
5153 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5154 &tm.tm_year,
5155 &tm.tm_mon,
5156 &tm.tm_mday,
5157 &tm.tm_hour,
5158 &tm.tm_min,
5159 &tm.tm_sec) == 6) {
5160 /* OK */
5161 } else if (sscanf(optarg, "%d-%d-%d",
5162 &tm.tm_year,
5163 &tm.tm_mon,
5164 &tm.tm_mday) == 3) {
5165 tm.tm_hour = 0;
5166 tm.tm_min = 0;
5167 tm.tm_sec = 0;
5168 } else {
5169 goto date_fail;
5170 }
5171 tm.tm_year -= 1900;
5172 tm.tm_mon--;
5173 rtc_start_date = mktimegm(&tm);
5174 if (rtc_start_date == -1) {
5175 date_fail:
5176 fprintf(stderr, "Invalid date format. Valid format are:\n"
5177 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5178 exit(1);
5179 }
5180 rtc_date_offset = time(NULL) - rtc_start_date;
5181 }
5182 }
5183 break;
5184 case QEMU_OPTION_tb_size:
5185 tb_size = strtol(optarg, NULL, 0);
5186 if (tb_size < 0)
5187 tb_size = 0;
5188 break;
5189 case QEMU_OPTION_icount:
5190 use_icount = 1;
5191 if (strcmp(optarg, "auto") == 0) {
5192 icount_time_shift = -1;
5193 } else {
5194 icount_time_shift = strtol(optarg, NULL, 0);
5195 }
5196 break;
5197 case QEMU_OPTION_incoming:
5198 incoming = optarg;
5199 break;
5200 }
5201 }
5202 }
5203
5204#if defined(CONFIG_KVM) && defined(USE_KQEMU)
5205 if (kvm_allowed && kqemu_allowed) {
5206 fprintf(stderr,
5207 "You can not enable both KVM and kqemu at the same time\n");
5208 exit(1);
5209 }
5210#endif
5211
5212 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5213 if (smp_cpus > machine->max_cpus) {
5214 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5215 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5216 machine->max_cpus);
5217 exit(1);
5218 }
5219
5220 if (nographic) {
5221 if (serial_device_index == 0)
5222 serial_devices[0] = "stdio";
5223 if (parallel_device_index == 0)
5224 parallel_devices[0] = "null";
5225 if (strncmp(monitor_device, "vc", 2) == 0)
5226 monitor_device = "stdio";
5227 if (virtio_console_index == 0)
5228 virtio_consoles[0] = "null";
5229 }
5230
5231#ifndef _WIN32
5232 if (daemonize) {
5233 pid_t pid;
5234
5235 if (pipe(fds) == -1)
5236 exit(1);
5237
5238 pid = fork();
5239 if (pid > 0) {
5240 uint8_t status;
5241 ssize_t len;
5242
5243 close(fds[1]);
5244
5245 again:
5246 len = read(fds[0], &status, 1);
5247 if (len == -1 && (errno == EINTR))
5248 goto again;
5249
5250 if (len != 1)
5251 exit(1);
5252 else if (status == 1) {
5253 fprintf(stderr, "Could not acquire pidfile\n");
5254 exit(1);
5255 } else
5256 exit(0);
5257 } else if (pid < 0)
5258 exit(1);
5259
5260 setsid();
5261
5262 pid = fork();
5263 if (pid > 0)
5264 exit(0);
5265 else if (pid < 0)
5266 exit(1);
5267
5268 umask(027);
5269
5270 signal(SIGTSTP, SIG_IGN);
5271 signal(SIGTTOU, SIG_IGN);
5272 signal(SIGTTIN, SIG_IGN);
5273 }
5274#endif
5275
5276 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5277 if (daemonize) {
5278 uint8_t status = 1;
5279 write(fds[1], &status, 1);
5280 } else
5281 fprintf(stderr, "Could not acquire pid file\n");
5282 exit(1);
5283 }
5284
5285#ifdef USE_KQEMU
5286 if (smp_cpus > 1)
5287 kqemu_allowed = 0;
5288#endif
5289 linux_boot = (kernel_filename != NULL);
5290 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5291
5292 if (!linux_boot && net_boot == 0 &&
5293 !machine->nodisk_ok && nb_drives_opt == 0)
5294 help(1);
5295
5296 if (!linux_boot && *kernel_cmdline != '\0') {
5297 fprintf(stderr, "-append only allowed with -kernel option\n");
5298 exit(1);
5299 }
5300
5301 if (!linux_boot && initrd_filename != NULL) {
5302 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5303 exit(1);
5304 }
5305
5306 /* boot to floppy or the default cd if no hard disk defined yet */
5307 if (!boot_devices[0]) {
5308 boot_devices = "cad";
5309 }
5310 setvbuf(stdout, NULL, _IOLBF, 0);
5311
5312 init_timers();
5313 if (init_timer_alarm() < 0) {
5314 fprintf(stderr, "could not initialize alarm timer\n");
5315 exit(1);
5316 }
5317 if (use_icount && icount_time_shift < 0) {
5318 use_icount = 2;
5319 /* 125MIPS seems a reasonable initial guess at the guest speed.
5320 It will be corrected fairly quickly anyway. */
5321 icount_time_shift = 3;
5322 init_icount_adjust();
5323 }
5324
5325#ifdef _WIN32
5326 socket_init();
5327#endif
5328
5329 /* init network clients */
5330 if (nb_net_clients == 0) {
5331 /* if no clients, we use a default config */
5332 net_clients[nb_net_clients++] = "nic";
5333#ifdef CONFIG_SLIRP
5334 net_clients[nb_net_clients++] = "user";
5335#endif
5336 }
5337
5338 for(i = 0;i < nb_net_clients; i++) {
5339 if (net_client_parse(net_clients[i]) < 0)
5340 exit(1);
5341 }
5342 net_client_check();
5343
5344#ifdef TARGET_I386
5345 /* XXX: this should be moved in the PC machine instantiation code */
5346 if (net_boot != 0) {
5347 int netroms = 0;
5348 for (i = 0; i < nb_nics && i < 4; i++) {
5349 const char *model = nd_table[i].model;
5350 char buf[1024];
5351 if (net_boot & (1 << i)) {
5352 if (model == NULL)
5353 model = "ne2k_pci";
5354 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5355 if (get_image_size(buf) > 0) {
5356 if (nb_option_roms >= MAX_OPTION_ROMS) {
5357 fprintf(stderr, "Too many option ROMs\n");
5358 exit(1);
5359 }
5360 option_rom[nb_option_roms] = strdup(buf);
5361 nb_option_roms++;
5362 netroms++;
5363 }
5364 }
5365 }
5366 if (netroms == 0) {
5367 fprintf(stderr, "No valid PXE rom found for network device\n");
5368 exit(1);
5369 }
5370 }
5371#endif
5372
5373 /* init the bluetooth world */
5374 for (i = 0; i < nb_bt_opts; i++)
5375 if (bt_parse(bt_opts[i]))
5376 exit(1);
5377
5378 /* init the memory */
5379 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5380
5381 if (machine->ram_require & RAMSIZE_FIXED) {
5382 if (ram_size > 0) {
5383 if (ram_size < phys_ram_size) {
5384 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5385 machine->name, (unsigned long long) phys_ram_size);
5386 exit(-1);
5387 }
5388
5389 phys_ram_size = ram_size;
5390 } else
5391 ram_size = phys_ram_size;
5392 } else {
5393 if (ram_size == 0)
5394 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5395
5396 phys_ram_size += ram_size;
5397 }
5398
5399 phys_ram_base = qemu_vmalloc(phys_ram_size);
5400 if (!phys_ram_base) {
5401 fprintf(stderr, "Could not allocate physical memory\n");
5402 exit(1);
5403 }
5404
5405 /* init the dynamic translator */
5406 cpu_exec_init_all(tb_size * 1024 * 1024);
5407
5408 bdrv_init();
5409
5410 /* we always create the cdrom drive, even if no disk is there */
5411
5412 if (nb_drives_opt < MAX_DRIVES)
5413 drive_add(NULL, CDROM_ALIAS);
5414
5415 /* we always create at least one floppy */
5416
5417 if (nb_drives_opt < MAX_DRIVES)
5418 drive_add(NULL, FD_ALIAS, 0);
5419
5420 /* we always create one sd slot, even if no card is in it */
5421
5422 if (nb_drives_opt < MAX_DRIVES)
5423 drive_add(NULL, SD_ALIAS);
5424
5425 /* open the virtual block devices */
5426
5427 for(i = 0; i < nb_drives_opt; i++)
5428 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5429 exit(1);
5430
5431 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5432 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5433
5434#ifndef _WIN32
5435 /* must be after terminal init, SDL library changes signal handlers */
5436 termsig_setup();
5437#endif
5438
5439 /* Maintain compatibility with multiple stdio monitors */
5440 if (!strcmp(monitor_device,"stdio")) {
5441 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5442 const char *devname = serial_devices[i];
5443 if (devname && !strcmp(devname,"mon:stdio")) {
5444 monitor_device = NULL;
5445 break;
5446 } else if (devname && !strcmp(devname,"stdio")) {
5447 monitor_device = NULL;
5448 serial_devices[i] = "mon:stdio";
5449 break;
5450 }
5451 }
5452 }
5453
5454 if (kvm_enabled()) {
5455 int ret;
5456
5457 ret = kvm_init(smp_cpus);
5458 if (ret < 0) {
5459 fprintf(stderr, "failed to initialize KVM\n");
5460 exit(1);
5461 }
5462 }
5463
5464 if (monitor_device) {
5465 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5466 if (!monitor_hd) {
5467 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5468 exit(1);
5469 }
5470 }
5471
5472 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5473 const char *devname = serial_devices[i];
5474 if (devname && strcmp(devname, "none")) {
5475 char label[32];
5476 snprintf(label, sizeof(label), "serial%d", i);
5477 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5478 if (!serial_hds[i]) {
5479 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5480 devname);
5481 exit(1);
5482 }
5483 }
5484 }
5485
5486 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5487 const char *devname = parallel_devices[i];
5488 if (devname && strcmp(devname, "none")) {
5489 char label[32];
5490 snprintf(label, sizeof(label), "parallel%d", i);
5491 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5492 if (!parallel_hds[i]) {
5493 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5494 devname);
5495 exit(1);
5496 }
5497 }
5498 }
5499
5500 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5501 const char *devname = virtio_consoles[i];
5502 if (devname && strcmp(devname, "none")) {
5503 char label[32];
5504 snprintf(label, sizeof(label), "virtcon%d", i);
5505 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5506 if (!virtcon_hds[i]) {
5507 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5508 devname);
5509 exit(1);
5510 }
5511 }
5512 }
5513
5514 machine->init(ram_size, vga_ram_size, boot_devices,
5515 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5516
5517 /* Set KVM's vcpu state to qemu's initial CPUState. */
5518 if (kvm_enabled()) {
5519 int ret;
5520
5521 ret = kvm_sync_vcpus();
5522 if (ret < 0) {
5523 fprintf(stderr, "failed to initialize vcpus\n");
5524 exit(1);
5525 }
5526 }
5527
5528 /* init USB devices */
5529 if (usb_enabled) {
5530 for(i = 0; i < usb_devices_index; i++) {
5531 if (usb_device_add(usb_devices[i]) < 0) {
5532 fprintf(stderr, "Warning: could not add USB device %s\n",
5533 usb_devices[i]);
5534 }
5535 }
5536 }
5537
5538 /* just use the first displaystate for the moment */
5539 ds = display_state;
5540 /* terminal init */
5541 if (nographic) {
5542 if (curses) {
5543 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5544 exit(1);
5545 }
5546 /* nearly nothing to do */
5547 dumb_display_init(ds);
5548 } else {
5549#if defined(CONFIG_CURSES)
5550 if (curses) {
5551 /* At the moment curses cannot be used with other displays */
5552 curses_display_init(ds, full_screen);
5553 } else
5554#endif
5555 {
5556 if (vnc_display != NULL) {
5557 vnc_display_init(ds);
5558 if (vnc_display_open(ds, vnc_display) < 0)
5559 exit(1);
5560 }
5561 if (sdl || !vnc_display)
5562#if defined(CONFIG_SDL)
5563 sdl_display_init(ds, full_screen, no_frame);
5564#elif defined(CONFIG_COCOA)
5565 cocoa_display_init(ds, full_screen);
5566#else
5567 dumb_display_init(ds);
5568#endif
5569 }
5570 }
5571 dpy_resize(ds);
5572
5573 dcl = ds->listeners;
5574 while (dcl != NULL) {
5575 if (dcl->dpy_refresh != NULL) {
5576 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5577 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5578 }
5579 dcl = dcl->next;
5580 }
5581
5582 text_consoles_set_display(display_state);
5583
5584 if (monitor_device && monitor_hd)
5585 monitor_init(monitor_hd, !nographic);
5586
5587 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5588 const char *devname = serial_devices[i];
5589 if (devname && strcmp(devname, "none")) {
5590 char label[32];
5591 snprintf(label, sizeof(label), "serial%d", i);
5592 if (strstart(devname, "vc", 0))
5593 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5594 }
5595 }
5596
5597 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5598 const char *devname = parallel_devices[i];
5599 if (devname && strcmp(devname, "none")) {
5600 char label[32];
5601 snprintf(label, sizeof(label), "parallel%d", i);
5602 if (strstart(devname, "vc", 0))
5603 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5604 }
5605 }
5606
5607 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5608 const char *devname = virtio_consoles[i];
5609 if (virtcon_hds[i] && devname) {
5610 char label[32];
5611 snprintf(label, sizeof(label), "virtcon%d", i);
5612 if (strstart(devname, "vc", 0))
5613 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5614 }
5615 }
5616
5617#ifdef CONFIG_GDBSTUB
5618 if (use_gdbstub) {
5619 /* XXX: use standard host:port notation and modify options
5620 accordingly. */
5621 if (gdbserver_start(gdbstub_port) < 0) {
5622 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5623 gdbstub_port);
5624 exit(1);
5625 }
5626 }
5627#endif
5628
5629 if (loadvm)
5630 do_loadvm(loadvm);
5631
5632 if (incoming) {
5633 autostart = 0; /* fixme how to deal with -daemonize */
5634 qemu_start_incoming_migration(incoming);
5635 }
5636
5637 {
5638 /* XXX: simplify init */
5639 read_passwords();
5640 if (autostart) {
5641 vm_start();
5642 }
5643 }
5644
5645 if (daemonize) {
5646 uint8_t status = 0;
5647 ssize_t len;
5648 int fd;
5649
5650 again1:
5651 len = write(fds[1], &status, 1);
5652 if (len == -1 && (errno == EINTR))
5653 goto again1;
5654
5655 if (len != 1)
5656 exit(1);
5657
5658 chdir("/");
5659 TFR(fd = open("/dev/null", O_RDWR));
5660 if (fd == -1)
5661 exit(1);
5662
5663 dup2(fd, 0);
5664 dup2(fd, 1);
5665 dup2(fd, 2);
5666
5667 close(fd);
5668 }
5669
5670 main_loop();
5671 quit_timers();
5672 net_cleanup();
5673
5674 return 0;
5675}