]> git.proxmox.com Git - qemu.git/blame_incremental - vl.c
Fix compilation when x86_64 is defined
[qemu.git] / vl.c
... / ...
CommitLineData
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <signal.h>
27#include <time.h>
28#include <errno.h>
29#include <sys/time.h>
30#include <zlib.h>
31
32/* Needed early for HOST_BSD etc. */
33#include "config-host.h"
34
35#ifndef _WIN32
36#include <pwd.h>
37#include <sys/times.h>
38#include <sys/wait.h>
39#include <termios.h>
40#include <sys/mman.h>
41#include <sys/ioctl.h>
42#include <sys/resource.h>
43#include <sys/socket.h>
44#include <netinet/in.h>
45#include <net/if.h>
46#if defined(__NetBSD__)
47#include <net/if_tap.h>
48#endif
49#ifdef __linux__
50#include <linux/if_tun.h>
51#endif
52#include <arpa/inet.h>
53#include <dirent.h>
54#include <netdb.h>
55#include <sys/select.h>
56#ifdef HOST_BSD
57#include <sys/stat.h>
58#if defined(__FreeBSD__) || defined(__DragonFly__)
59#include <libutil.h>
60#else
61#include <util.h>
62#endif
63#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64#include <freebsd/stdlib.h>
65#else
66#ifdef __linux__
67#include <pty.h>
68#include <malloc.h>
69#include <linux/rtc.h>
70
71/* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73/* #include <linux/hpet.h> */
74#include "hpet.h"
75
76#include <linux/ppdev.h>
77#include <linux/parport.h>
78#endif
79#ifdef __sun__
80#include <sys/stat.h>
81#include <sys/ethernet.h>
82#include <sys/sockio.h>
83#include <netinet/arp.h>
84#include <netinet/in.h>
85#include <netinet/in_systm.h>
86#include <netinet/ip.h>
87#include <netinet/ip_icmp.h> // must come after ip.h
88#include <netinet/udp.h>
89#include <netinet/tcp.h>
90#include <net/if.h>
91#include <syslog.h>
92#include <stropts.h>
93#endif
94#endif
95#endif
96
97#if defined(__OpenBSD__)
98#include <util.h>
99#endif
100
101#if defined(CONFIG_VDE)
102#include <libvdeplug.h>
103#endif
104
105#ifdef _WIN32
106#include <windows.h>
107#include <malloc.h>
108#include <sys/timeb.h>
109#include <mmsystem.h>
110#define getopt_long_only getopt_long
111#define memalign(align, size) malloc(size)
112#endif
113
114#ifdef CONFIG_SDL
115#ifdef __APPLE__
116#include <SDL/SDL.h>
117int qemu_main(int argc, char **argv, char **envp);
118int main(int argc, char **argv)
119{
120 qemu_main(argc, argv, NULL);
121}
122#undef main
123#define main qemu_main
124#endif
125#endif /* CONFIG_SDL */
126
127#ifdef CONFIG_COCOA
128#undef main
129#define main qemu_main
130#endif /* CONFIG_COCOA */
131
132#include "hw/hw.h"
133#include "hw/boards.h"
134#include "hw/usb.h"
135#include "hw/pcmcia.h"
136#include "hw/pc.h"
137#include "hw/audiodev.h"
138#include "hw/isa.h"
139#include "hw/baum.h"
140#include "hw/bt.h"
141#include "hw/smbios.h"
142#include "hw/xen.h"
143#include "bt-host.h"
144#include "net.h"
145#include "monitor.h"
146#include "console.h"
147#include "sysemu.h"
148#include "gdbstub.h"
149#include "qemu-timer.h"
150#include "qemu-char.h"
151#include "cache-utils.h"
152#include "block.h"
153#include "dma.h"
154#include "audio/audio.h"
155#include "migration.h"
156#include "kvm.h"
157#include "balloon.h"
158
159#include "disas.h"
160
161#include "exec-all.h"
162
163#include "qemu_socket.h"
164
165#if defined(CONFIG_SLIRP)
166#include "libslirp.h"
167#endif
168
169//#define DEBUG_UNUSED_IOPORT
170//#define DEBUG_IOPORT
171//#define DEBUG_NET
172//#define DEBUG_SLIRP
173
174
175#ifdef DEBUG_IOPORT
176# define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
177#else
178# define LOG_IOPORT(...) do { } while (0)
179#endif
180
181#define DEFAULT_RAM_SIZE 128
182
183/* Max number of USB devices that can be specified on the commandline. */
184#define MAX_USB_CMDLINE 8
185
186/* Max number of bluetooth switches on the commandline. */
187#define MAX_BT_CMDLINE 10
188
189/* XXX: use a two level table to limit memory usage */
190#define MAX_IOPORTS 65536
191
192const char *bios_dir = CONFIG_QEMU_SHAREDIR;
193const char *bios_name = NULL;
194static void *ioport_opaque[MAX_IOPORTS];
195static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
196static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
197/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
198 to store the VM snapshots */
199DriveInfo drives_table[MAX_DRIVES+1];
200int nb_drives;
201static int vga_ram_size;
202enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
203static DisplayState *display_state;
204int nographic;
205static int curses;
206static int sdl;
207const char* keyboard_layout = NULL;
208int64_t ticks_per_sec;
209ram_addr_t ram_size;
210int nb_nics;
211NICInfo nd_table[MAX_NICS];
212int vm_running;
213static int autostart;
214static int rtc_utc = 1;
215static int rtc_date_offset = -1; /* -1 means no change */
216int cirrus_vga_enabled = 1;
217int std_vga_enabled = 0;
218int vmsvga_enabled = 0;
219int xenfb_enabled = 0;
220#ifdef TARGET_SPARC
221int graphic_width = 1024;
222int graphic_height = 768;
223int graphic_depth = 8;
224#else
225int graphic_width = 800;
226int graphic_height = 600;
227int graphic_depth = 15;
228#endif
229static int full_screen = 0;
230#ifdef CONFIG_SDL
231static int no_frame = 0;
232#endif
233int no_quit = 0;
234CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237#ifdef TARGET_I386
238int win2k_install_hack = 0;
239int rtc_td_hack = 0;
240#endif
241int usb_enabled = 0;
242int singlestep = 0;
243int smp_cpus = 1;
244const char *vnc_display;
245int acpi_enabled = 1;
246int no_hpet = 0;
247int fd_bootchk = 1;
248int no_reboot = 0;
249int no_shutdown = 0;
250int cursor_hide = 1;
251int graphic_rotate = 0;
252#ifndef _WIN32
253int daemonize = 0;
254#endif
255const char *option_rom[MAX_OPTION_ROMS];
256int nb_option_roms;
257int semihosting_enabled = 0;
258#ifdef TARGET_ARM
259int old_param = 0;
260#endif
261const char *qemu_name;
262int alt_grab = 0;
263#if defined(TARGET_SPARC) || defined(TARGET_PPC)
264unsigned int nb_prom_envs = 0;
265const char *prom_envs[MAX_PROM_ENVS];
266#endif
267int nb_drives_opt;
268struct drive_opt drives_opt[MAX_DRIVES];
269
270int nb_numa_nodes;
271uint64_t node_mem[MAX_NODES];
272uint64_t node_cpumask[MAX_NODES];
273
274static CPUState *cur_cpu;
275static CPUState *next_cpu;
276static int timer_alarm_pending = 1;
277/* Conversion factor from emulated instructions to virtual clock ticks. */
278static int icount_time_shift;
279/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
280#define MAX_ICOUNT_SHIFT 10
281/* Compensate for varying guest execution speed. */
282static int64_t qemu_icount_bias;
283static QEMUTimer *icount_rt_timer;
284static QEMUTimer *icount_vm_timer;
285static QEMUTimer *nographic_timer;
286
287uint8_t qemu_uuid[16];
288
289/***********************************************************/
290/* x86 ISA bus support */
291
292target_phys_addr_t isa_mem_base = 0;
293PicState2 *isa_pic;
294
295static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
296static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
297
298static uint32_t ioport_read(int index, uint32_t address)
299{
300 static IOPortReadFunc *default_func[3] = {
301 default_ioport_readb,
302 default_ioport_readw,
303 default_ioport_readl
304 };
305 IOPortReadFunc *func = ioport_read_table[index][address];
306 if (!func)
307 func = default_func[index];
308 return func(ioport_opaque[address], address);
309}
310
311static void ioport_write(int index, uint32_t address, uint32_t data)
312{
313 static IOPortWriteFunc *default_func[3] = {
314 default_ioport_writeb,
315 default_ioport_writew,
316 default_ioport_writel
317 };
318 IOPortWriteFunc *func = ioport_write_table[index][address];
319 if (!func)
320 func = default_func[index];
321 func(ioport_opaque[address], address, data);
322}
323
324static uint32_t default_ioport_readb(void *opaque, uint32_t address)
325{
326#ifdef DEBUG_UNUSED_IOPORT
327 fprintf(stderr, "unused inb: port=0x%04x\n", address);
328#endif
329 return 0xff;
330}
331
332static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
333{
334#ifdef DEBUG_UNUSED_IOPORT
335 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
336#endif
337}
338
339/* default is to make two byte accesses */
340static uint32_t default_ioport_readw(void *opaque, uint32_t address)
341{
342 uint32_t data;
343 data = ioport_read(0, address);
344 address = (address + 1) & (MAX_IOPORTS - 1);
345 data |= ioport_read(0, address) << 8;
346 return data;
347}
348
349static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
350{
351 ioport_write(0, address, data & 0xff);
352 address = (address + 1) & (MAX_IOPORTS - 1);
353 ioport_write(0, address, (data >> 8) & 0xff);
354}
355
356static uint32_t default_ioport_readl(void *opaque, uint32_t address)
357{
358#ifdef DEBUG_UNUSED_IOPORT
359 fprintf(stderr, "unused inl: port=0x%04x\n", address);
360#endif
361 return 0xffffffff;
362}
363
364static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
365{
366#ifdef DEBUG_UNUSED_IOPORT
367 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
368#endif
369}
370
371/* size is the word size in byte */
372int register_ioport_read(int start, int length, int size,
373 IOPortReadFunc *func, void *opaque)
374{
375 int i, bsize;
376
377 if (size == 1) {
378 bsize = 0;
379 } else if (size == 2) {
380 bsize = 1;
381 } else if (size == 4) {
382 bsize = 2;
383 } else {
384 hw_error("register_ioport_read: invalid size");
385 return -1;
386 }
387 for(i = start; i < start + length; i += size) {
388 ioport_read_table[bsize][i] = func;
389 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
390 hw_error("register_ioport_read: invalid opaque");
391 ioport_opaque[i] = opaque;
392 }
393 return 0;
394}
395
396/* size is the word size in byte */
397int register_ioport_write(int start, int length, int size,
398 IOPortWriteFunc *func, void *opaque)
399{
400 int i, bsize;
401
402 if (size == 1) {
403 bsize = 0;
404 } else if (size == 2) {
405 bsize = 1;
406 } else if (size == 4) {
407 bsize = 2;
408 } else {
409 hw_error("register_ioport_write: invalid size");
410 return -1;
411 }
412 for(i = start; i < start + length; i += size) {
413 ioport_write_table[bsize][i] = func;
414 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
415 hw_error("register_ioport_write: invalid opaque");
416 ioport_opaque[i] = opaque;
417 }
418 return 0;
419}
420
421void isa_unassign_ioport(int start, int length)
422{
423 int i;
424
425 for(i = start; i < start + length; i++) {
426 ioport_read_table[0][i] = default_ioport_readb;
427 ioport_read_table[1][i] = default_ioport_readw;
428 ioport_read_table[2][i] = default_ioport_readl;
429
430 ioport_write_table[0][i] = default_ioport_writeb;
431 ioport_write_table[1][i] = default_ioport_writew;
432 ioport_write_table[2][i] = default_ioport_writel;
433
434 ioport_opaque[i] = NULL;
435 }
436}
437
438/***********************************************************/
439
440void cpu_outb(CPUState *env, int addr, int val)
441{
442 LOG_IOPORT("outb: %04x %02x\n", addr, val);
443 ioport_write(0, addr, val);
444#ifdef CONFIG_KQEMU
445 if (env)
446 env->last_io_time = cpu_get_time_fast();
447#endif
448}
449
450void cpu_outw(CPUState *env, int addr, int val)
451{
452 LOG_IOPORT("outw: %04x %04x\n", addr, val);
453 ioport_write(1, addr, val);
454#ifdef CONFIG_KQEMU
455 if (env)
456 env->last_io_time = cpu_get_time_fast();
457#endif
458}
459
460void cpu_outl(CPUState *env, int addr, int val)
461{
462 LOG_IOPORT("outl: %04x %08x\n", addr, val);
463 ioport_write(2, addr, val);
464#ifdef CONFIG_KQEMU
465 if (env)
466 env->last_io_time = cpu_get_time_fast();
467#endif
468}
469
470int cpu_inb(CPUState *env, int addr)
471{
472 int val;
473 val = ioport_read(0, addr);
474 LOG_IOPORT("inb : %04x %02x\n", addr, val);
475#ifdef CONFIG_KQEMU
476 if (env)
477 env->last_io_time = cpu_get_time_fast();
478#endif
479 return val;
480}
481
482int cpu_inw(CPUState *env, int addr)
483{
484 int val;
485 val = ioport_read(1, addr);
486 LOG_IOPORT("inw : %04x %04x\n", addr, val);
487#ifdef CONFIG_KQEMU
488 if (env)
489 env->last_io_time = cpu_get_time_fast();
490#endif
491 return val;
492}
493
494int cpu_inl(CPUState *env, int addr)
495{
496 int val;
497 val = ioport_read(2, addr);
498 LOG_IOPORT("inl : %04x %08x\n", addr, val);
499#ifdef CONFIG_KQEMU
500 if (env)
501 env->last_io_time = cpu_get_time_fast();
502#endif
503 return val;
504}
505
506/***********************************************************/
507void hw_error(const char *fmt, ...)
508{
509 va_list ap;
510 CPUState *env;
511
512 va_start(ap, fmt);
513 fprintf(stderr, "qemu: hardware error: ");
514 vfprintf(stderr, fmt, ap);
515 fprintf(stderr, "\n");
516 for(env = first_cpu; env != NULL; env = env->next_cpu) {
517 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
518#ifdef TARGET_I386
519 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
520#else
521 cpu_dump_state(env, stderr, fprintf, 0);
522#endif
523 }
524 va_end(ap);
525 abort();
526}
527
528/***************/
529/* ballooning */
530
531static QEMUBalloonEvent *qemu_balloon_event;
532void *qemu_balloon_event_opaque;
533
534void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
535{
536 qemu_balloon_event = func;
537 qemu_balloon_event_opaque = opaque;
538}
539
540void qemu_balloon(ram_addr_t target)
541{
542 if (qemu_balloon_event)
543 qemu_balloon_event(qemu_balloon_event_opaque, target);
544}
545
546ram_addr_t qemu_balloon_status(void)
547{
548 if (qemu_balloon_event)
549 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
550 return 0;
551}
552
553/***********************************************************/
554/* keyboard/mouse */
555
556static QEMUPutKBDEvent *qemu_put_kbd_event;
557static void *qemu_put_kbd_event_opaque;
558static QEMUPutMouseEntry *qemu_put_mouse_event_head;
559static QEMUPutMouseEntry *qemu_put_mouse_event_current;
560
561void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
562{
563 qemu_put_kbd_event_opaque = opaque;
564 qemu_put_kbd_event = func;
565}
566
567QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
568 void *opaque, int absolute,
569 const char *name)
570{
571 QEMUPutMouseEntry *s, *cursor;
572
573 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
574
575 s->qemu_put_mouse_event = func;
576 s->qemu_put_mouse_event_opaque = opaque;
577 s->qemu_put_mouse_event_absolute = absolute;
578 s->qemu_put_mouse_event_name = qemu_strdup(name);
579 s->next = NULL;
580
581 if (!qemu_put_mouse_event_head) {
582 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
583 return s;
584 }
585
586 cursor = qemu_put_mouse_event_head;
587 while (cursor->next != NULL)
588 cursor = cursor->next;
589
590 cursor->next = s;
591 qemu_put_mouse_event_current = s;
592
593 return s;
594}
595
596void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
597{
598 QEMUPutMouseEntry *prev = NULL, *cursor;
599
600 if (!qemu_put_mouse_event_head || entry == NULL)
601 return;
602
603 cursor = qemu_put_mouse_event_head;
604 while (cursor != NULL && cursor != entry) {
605 prev = cursor;
606 cursor = cursor->next;
607 }
608
609 if (cursor == NULL) // does not exist or list empty
610 return;
611 else if (prev == NULL) { // entry is head
612 qemu_put_mouse_event_head = cursor->next;
613 if (qemu_put_mouse_event_current == entry)
614 qemu_put_mouse_event_current = cursor->next;
615 qemu_free(entry->qemu_put_mouse_event_name);
616 qemu_free(entry);
617 return;
618 }
619
620 prev->next = entry->next;
621
622 if (qemu_put_mouse_event_current == entry)
623 qemu_put_mouse_event_current = prev;
624
625 qemu_free(entry->qemu_put_mouse_event_name);
626 qemu_free(entry);
627}
628
629void kbd_put_keycode(int keycode)
630{
631 if (qemu_put_kbd_event) {
632 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
633 }
634}
635
636void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
637{
638 QEMUPutMouseEvent *mouse_event;
639 void *mouse_event_opaque;
640 int width;
641
642 if (!qemu_put_mouse_event_current) {
643 return;
644 }
645
646 mouse_event =
647 qemu_put_mouse_event_current->qemu_put_mouse_event;
648 mouse_event_opaque =
649 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
650
651 if (mouse_event) {
652 if (graphic_rotate) {
653 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
654 width = 0x7fff;
655 else
656 width = graphic_width - 1;
657 mouse_event(mouse_event_opaque,
658 width - dy, dx, dz, buttons_state);
659 } else
660 mouse_event(mouse_event_opaque,
661 dx, dy, dz, buttons_state);
662 }
663}
664
665int kbd_mouse_is_absolute(void)
666{
667 if (!qemu_put_mouse_event_current)
668 return 0;
669
670 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
671}
672
673void do_info_mice(Monitor *mon)
674{
675 QEMUPutMouseEntry *cursor;
676 int index = 0;
677
678 if (!qemu_put_mouse_event_head) {
679 monitor_printf(mon, "No mouse devices connected\n");
680 return;
681 }
682
683 monitor_printf(mon, "Mouse devices available:\n");
684 cursor = qemu_put_mouse_event_head;
685 while (cursor != NULL) {
686 monitor_printf(mon, "%c Mouse #%d: %s\n",
687 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
688 index, cursor->qemu_put_mouse_event_name);
689 index++;
690 cursor = cursor->next;
691 }
692}
693
694void do_mouse_set(Monitor *mon, int index)
695{
696 QEMUPutMouseEntry *cursor;
697 int i = 0;
698
699 if (!qemu_put_mouse_event_head) {
700 monitor_printf(mon, "No mouse devices connected\n");
701 return;
702 }
703
704 cursor = qemu_put_mouse_event_head;
705 while (cursor != NULL && index != i) {
706 i++;
707 cursor = cursor->next;
708 }
709
710 if (cursor != NULL)
711 qemu_put_mouse_event_current = cursor;
712 else
713 monitor_printf(mon, "Mouse at given index not found\n");
714}
715
716/* compute with 96 bit intermediate result: (a*b)/c */
717uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
718{
719 union {
720 uint64_t ll;
721 struct {
722#ifdef WORDS_BIGENDIAN
723 uint32_t high, low;
724#else
725 uint32_t low, high;
726#endif
727 } l;
728 } u, res;
729 uint64_t rl, rh;
730
731 u.ll = a;
732 rl = (uint64_t)u.l.low * (uint64_t)b;
733 rh = (uint64_t)u.l.high * (uint64_t)b;
734 rh += (rl >> 32);
735 res.l.high = rh / c;
736 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
737 return res.ll;
738}
739
740/***********************************************************/
741/* real time host monotonic timer */
742
743#define QEMU_TIMER_BASE 1000000000LL
744
745#ifdef WIN32
746
747static int64_t clock_freq;
748
749static void init_get_clock(void)
750{
751 LARGE_INTEGER freq;
752 int ret;
753 ret = QueryPerformanceFrequency(&freq);
754 if (ret == 0) {
755 fprintf(stderr, "Could not calibrate ticks\n");
756 exit(1);
757 }
758 clock_freq = freq.QuadPart;
759}
760
761static int64_t get_clock(void)
762{
763 LARGE_INTEGER ti;
764 QueryPerformanceCounter(&ti);
765 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
766}
767
768#else
769
770static int use_rt_clock;
771
772static void init_get_clock(void)
773{
774 use_rt_clock = 0;
775#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
776 || defined(__DragonFly__)
777 {
778 struct timespec ts;
779 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
780 use_rt_clock = 1;
781 }
782 }
783#endif
784}
785
786static int64_t get_clock(void)
787{
788#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
789 || defined(__DragonFly__)
790 if (use_rt_clock) {
791 struct timespec ts;
792 clock_gettime(CLOCK_MONOTONIC, &ts);
793 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
794 } else
795#endif
796 {
797 /* XXX: using gettimeofday leads to problems if the date
798 changes, so it should be avoided. */
799 struct timeval tv;
800 gettimeofday(&tv, NULL);
801 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
802 }
803}
804#endif
805
806/* Return the virtual CPU time, based on the instruction counter. */
807static int64_t cpu_get_icount(void)
808{
809 int64_t icount;
810 CPUState *env = cpu_single_env;;
811 icount = qemu_icount;
812 if (env) {
813 if (!can_do_io(env))
814 fprintf(stderr, "Bad clock read\n");
815 icount -= (env->icount_decr.u16.low + env->icount_extra);
816 }
817 return qemu_icount_bias + (icount << icount_time_shift);
818}
819
820/***********************************************************/
821/* guest cycle counter */
822
823static int64_t cpu_ticks_prev;
824static int64_t cpu_ticks_offset;
825static int64_t cpu_clock_offset;
826static int cpu_ticks_enabled;
827
828/* return the host CPU cycle counter and handle stop/restart */
829int64_t cpu_get_ticks(void)
830{
831 if (use_icount) {
832 return cpu_get_icount();
833 }
834 if (!cpu_ticks_enabled) {
835 return cpu_ticks_offset;
836 } else {
837 int64_t ticks;
838 ticks = cpu_get_real_ticks();
839 if (cpu_ticks_prev > ticks) {
840 /* Note: non increasing ticks may happen if the host uses
841 software suspend */
842 cpu_ticks_offset += cpu_ticks_prev - ticks;
843 }
844 cpu_ticks_prev = ticks;
845 return ticks + cpu_ticks_offset;
846 }
847}
848
849/* return the host CPU monotonic timer and handle stop/restart */
850static int64_t cpu_get_clock(void)
851{
852 int64_t ti;
853 if (!cpu_ticks_enabled) {
854 return cpu_clock_offset;
855 } else {
856 ti = get_clock();
857 return ti + cpu_clock_offset;
858 }
859}
860
861/* enable cpu_get_ticks() */
862void cpu_enable_ticks(void)
863{
864 if (!cpu_ticks_enabled) {
865 cpu_ticks_offset -= cpu_get_real_ticks();
866 cpu_clock_offset -= get_clock();
867 cpu_ticks_enabled = 1;
868 }
869}
870
871/* disable cpu_get_ticks() : the clock is stopped. You must not call
872 cpu_get_ticks() after that. */
873void cpu_disable_ticks(void)
874{
875 if (cpu_ticks_enabled) {
876 cpu_ticks_offset = cpu_get_ticks();
877 cpu_clock_offset = cpu_get_clock();
878 cpu_ticks_enabled = 0;
879 }
880}
881
882/***********************************************************/
883/* timers */
884
885#define QEMU_TIMER_REALTIME 0
886#define QEMU_TIMER_VIRTUAL 1
887
888struct QEMUClock {
889 int type;
890 /* XXX: add frequency */
891};
892
893struct QEMUTimer {
894 QEMUClock *clock;
895 int64_t expire_time;
896 QEMUTimerCB *cb;
897 void *opaque;
898 struct QEMUTimer *next;
899};
900
901struct qemu_alarm_timer {
902 char const *name;
903 unsigned int flags;
904
905 int (*start)(struct qemu_alarm_timer *t);
906 void (*stop)(struct qemu_alarm_timer *t);
907 void (*rearm)(struct qemu_alarm_timer *t);
908 void *priv;
909};
910
911#define ALARM_FLAG_DYNTICKS 0x1
912#define ALARM_FLAG_EXPIRED 0x2
913
914static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
915{
916 return t->flags & ALARM_FLAG_DYNTICKS;
917}
918
919static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
920{
921 if (!alarm_has_dynticks(t))
922 return;
923
924 t->rearm(t);
925}
926
927/* TODO: MIN_TIMER_REARM_US should be optimized */
928#define MIN_TIMER_REARM_US 250
929
930static struct qemu_alarm_timer *alarm_timer;
931
932#ifdef _WIN32
933
934struct qemu_alarm_win32 {
935 MMRESULT timerId;
936 unsigned int period;
937} alarm_win32_data = {0, NULL, -1};
938
939static int win32_start_timer(struct qemu_alarm_timer *t);
940static void win32_stop_timer(struct qemu_alarm_timer *t);
941static void win32_rearm_timer(struct qemu_alarm_timer *t);
942
943#else
944
945static int unix_start_timer(struct qemu_alarm_timer *t);
946static void unix_stop_timer(struct qemu_alarm_timer *t);
947
948#ifdef __linux__
949
950static int dynticks_start_timer(struct qemu_alarm_timer *t);
951static void dynticks_stop_timer(struct qemu_alarm_timer *t);
952static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
953
954static int hpet_start_timer(struct qemu_alarm_timer *t);
955static void hpet_stop_timer(struct qemu_alarm_timer *t);
956
957static int rtc_start_timer(struct qemu_alarm_timer *t);
958static void rtc_stop_timer(struct qemu_alarm_timer *t);
959
960#endif /* __linux__ */
961
962#endif /* _WIN32 */
963
964/* Correlation between real and virtual time is always going to be
965 fairly approximate, so ignore small variation.
966 When the guest is idle real and virtual time will be aligned in
967 the IO wait loop. */
968#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
969
970static void icount_adjust(void)
971{
972 int64_t cur_time;
973 int64_t cur_icount;
974 int64_t delta;
975 static int64_t last_delta;
976 /* If the VM is not running, then do nothing. */
977 if (!vm_running)
978 return;
979
980 cur_time = cpu_get_clock();
981 cur_icount = qemu_get_clock(vm_clock);
982 delta = cur_icount - cur_time;
983 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
984 if (delta > 0
985 && last_delta + ICOUNT_WOBBLE < delta * 2
986 && icount_time_shift > 0) {
987 /* The guest is getting too far ahead. Slow time down. */
988 icount_time_shift--;
989 }
990 if (delta < 0
991 && last_delta - ICOUNT_WOBBLE > delta * 2
992 && icount_time_shift < MAX_ICOUNT_SHIFT) {
993 /* The guest is getting too far behind. Speed time up. */
994 icount_time_shift++;
995 }
996 last_delta = delta;
997 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
998}
999
1000static void icount_adjust_rt(void * opaque)
1001{
1002 qemu_mod_timer(icount_rt_timer,
1003 qemu_get_clock(rt_clock) + 1000);
1004 icount_adjust();
1005}
1006
1007static void icount_adjust_vm(void * opaque)
1008{
1009 qemu_mod_timer(icount_vm_timer,
1010 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1011 icount_adjust();
1012}
1013
1014static void init_icount_adjust(void)
1015{
1016 /* Have both realtime and virtual time triggers for speed adjustment.
1017 The realtime trigger catches emulated time passing too slowly,
1018 the virtual time trigger catches emulated time passing too fast.
1019 Realtime triggers occur even when idle, so use them less frequently
1020 than VM triggers. */
1021 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1022 qemu_mod_timer(icount_rt_timer,
1023 qemu_get_clock(rt_clock) + 1000);
1024 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1025 qemu_mod_timer(icount_vm_timer,
1026 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1027}
1028
1029static struct qemu_alarm_timer alarm_timers[] = {
1030#ifndef _WIN32
1031#ifdef __linux__
1032 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1033 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1034 /* HPET - if available - is preferred */
1035 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1036 /* ...otherwise try RTC */
1037 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1038#endif
1039 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1040#else
1041 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1042 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1043 {"win32", 0, win32_start_timer,
1044 win32_stop_timer, NULL, &alarm_win32_data},
1045#endif
1046 {NULL, }
1047};
1048
1049static void show_available_alarms(void)
1050{
1051 int i;
1052
1053 printf("Available alarm timers, in order of precedence:\n");
1054 for (i = 0; alarm_timers[i].name; i++)
1055 printf("%s\n", alarm_timers[i].name);
1056}
1057
1058static void configure_alarms(char const *opt)
1059{
1060 int i;
1061 int cur = 0;
1062 int count = ARRAY_SIZE(alarm_timers) - 1;
1063 char *arg;
1064 char *name;
1065 struct qemu_alarm_timer tmp;
1066
1067 if (!strcmp(opt, "?")) {
1068 show_available_alarms();
1069 exit(0);
1070 }
1071
1072 arg = strdup(opt);
1073
1074 /* Reorder the array */
1075 name = strtok(arg, ",");
1076 while (name) {
1077 for (i = 0; i < count && alarm_timers[i].name; i++) {
1078 if (!strcmp(alarm_timers[i].name, name))
1079 break;
1080 }
1081
1082 if (i == count) {
1083 fprintf(stderr, "Unknown clock %s\n", name);
1084 goto next;
1085 }
1086
1087 if (i < cur)
1088 /* Ignore */
1089 goto next;
1090
1091 /* Swap */
1092 tmp = alarm_timers[i];
1093 alarm_timers[i] = alarm_timers[cur];
1094 alarm_timers[cur] = tmp;
1095
1096 cur++;
1097next:
1098 name = strtok(NULL, ",");
1099 }
1100
1101 free(arg);
1102
1103 if (cur) {
1104 /* Disable remaining timers */
1105 for (i = cur; i < count; i++)
1106 alarm_timers[i].name = NULL;
1107 } else {
1108 show_available_alarms();
1109 exit(1);
1110 }
1111}
1112
1113QEMUClock *rt_clock;
1114QEMUClock *vm_clock;
1115
1116static QEMUTimer *active_timers[2];
1117
1118static QEMUClock *qemu_new_clock(int type)
1119{
1120 QEMUClock *clock;
1121 clock = qemu_mallocz(sizeof(QEMUClock));
1122 clock->type = type;
1123 return clock;
1124}
1125
1126QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1127{
1128 QEMUTimer *ts;
1129
1130 ts = qemu_mallocz(sizeof(QEMUTimer));
1131 ts->clock = clock;
1132 ts->cb = cb;
1133 ts->opaque = opaque;
1134 return ts;
1135}
1136
1137void qemu_free_timer(QEMUTimer *ts)
1138{
1139 qemu_free(ts);
1140}
1141
1142/* stop a timer, but do not dealloc it */
1143void qemu_del_timer(QEMUTimer *ts)
1144{
1145 QEMUTimer **pt, *t;
1146
1147 /* NOTE: this code must be signal safe because
1148 qemu_timer_expired() can be called from a signal. */
1149 pt = &active_timers[ts->clock->type];
1150 for(;;) {
1151 t = *pt;
1152 if (!t)
1153 break;
1154 if (t == ts) {
1155 *pt = t->next;
1156 break;
1157 }
1158 pt = &t->next;
1159 }
1160}
1161
1162/* modify the current timer so that it will be fired when current_time
1163 >= expire_time. The corresponding callback will be called. */
1164void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1165{
1166 QEMUTimer **pt, *t;
1167
1168 qemu_del_timer(ts);
1169
1170 /* add the timer in the sorted list */
1171 /* NOTE: this code must be signal safe because
1172 qemu_timer_expired() can be called from a signal. */
1173 pt = &active_timers[ts->clock->type];
1174 for(;;) {
1175 t = *pt;
1176 if (!t)
1177 break;
1178 if (t->expire_time > expire_time)
1179 break;
1180 pt = &t->next;
1181 }
1182 ts->expire_time = expire_time;
1183 ts->next = *pt;
1184 *pt = ts;
1185
1186 /* Rearm if necessary */
1187 if (pt == &active_timers[ts->clock->type]) {
1188 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1189 qemu_rearm_alarm_timer(alarm_timer);
1190 }
1191 /* Interrupt execution to force deadline recalculation. */
1192 if (use_icount)
1193 qemu_notify_event();
1194 }
1195}
1196
1197int qemu_timer_pending(QEMUTimer *ts)
1198{
1199 QEMUTimer *t;
1200 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1201 if (t == ts)
1202 return 1;
1203 }
1204 return 0;
1205}
1206
1207static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1208{
1209 if (!timer_head)
1210 return 0;
1211 return (timer_head->expire_time <= current_time);
1212}
1213
1214static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1215{
1216 QEMUTimer *ts;
1217
1218 for(;;) {
1219 ts = *ptimer_head;
1220 if (!ts || ts->expire_time > current_time)
1221 break;
1222 /* remove timer from the list before calling the callback */
1223 *ptimer_head = ts->next;
1224 ts->next = NULL;
1225
1226 /* run the callback (the timer list can be modified) */
1227 ts->cb(ts->opaque);
1228 }
1229}
1230
1231int64_t qemu_get_clock(QEMUClock *clock)
1232{
1233 switch(clock->type) {
1234 case QEMU_TIMER_REALTIME:
1235 return get_clock() / 1000000;
1236 default:
1237 case QEMU_TIMER_VIRTUAL:
1238 if (use_icount) {
1239 return cpu_get_icount();
1240 } else {
1241 return cpu_get_clock();
1242 }
1243 }
1244}
1245
1246static void init_timers(void)
1247{
1248 init_get_clock();
1249 ticks_per_sec = QEMU_TIMER_BASE;
1250 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1251 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1252}
1253
1254/* save a timer */
1255void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1256{
1257 uint64_t expire_time;
1258
1259 if (qemu_timer_pending(ts)) {
1260 expire_time = ts->expire_time;
1261 } else {
1262 expire_time = -1;
1263 }
1264 qemu_put_be64(f, expire_time);
1265}
1266
1267void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1268{
1269 uint64_t expire_time;
1270
1271 expire_time = qemu_get_be64(f);
1272 if (expire_time != -1) {
1273 qemu_mod_timer(ts, expire_time);
1274 } else {
1275 qemu_del_timer(ts);
1276 }
1277}
1278
1279static void timer_save(QEMUFile *f, void *opaque)
1280{
1281 if (cpu_ticks_enabled) {
1282 hw_error("cannot save state if virtual timers are running");
1283 }
1284 qemu_put_be64(f, cpu_ticks_offset);
1285 qemu_put_be64(f, ticks_per_sec);
1286 qemu_put_be64(f, cpu_clock_offset);
1287}
1288
1289static int timer_load(QEMUFile *f, void *opaque, int version_id)
1290{
1291 if (version_id != 1 && version_id != 2)
1292 return -EINVAL;
1293 if (cpu_ticks_enabled) {
1294 return -EINVAL;
1295 }
1296 cpu_ticks_offset=qemu_get_be64(f);
1297 ticks_per_sec=qemu_get_be64(f);
1298 if (version_id == 2) {
1299 cpu_clock_offset=qemu_get_be64(f);
1300 }
1301 return 0;
1302}
1303
1304static void qemu_event_increment(void);
1305
1306#ifdef _WIN32
1307static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1308 DWORD_PTR dwUser, DWORD_PTR dw1,
1309 DWORD_PTR dw2)
1310#else
1311static void host_alarm_handler(int host_signum)
1312#endif
1313{
1314#if 0
1315#define DISP_FREQ 1000
1316 {
1317 static int64_t delta_min = INT64_MAX;
1318 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1319 static int count;
1320 ti = qemu_get_clock(vm_clock);
1321 if (last_clock != 0) {
1322 delta = ti - last_clock;
1323 if (delta < delta_min)
1324 delta_min = delta;
1325 if (delta > delta_max)
1326 delta_max = delta;
1327 delta_cum += delta;
1328 if (++count == DISP_FREQ) {
1329 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1330 muldiv64(delta_min, 1000000, ticks_per_sec),
1331 muldiv64(delta_max, 1000000, ticks_per_sec),
1332 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1333 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1334 count = 0;
1335 delta_min = INT64_MAX;
1336 delta_max = 0;
1337 delta_cum = 0;
1338 }
1339 }
1340 last_clock = ti;
1341 }
1342#endif
1343 if (alarm_has_dynticks(alarm_timer) ||
1344 (!use_icount &&
1345 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1346 qemu_get_clock(vm_clock))) ||
1347 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1348 qemu_get_clock(rt_clock))) {
1349 qemu_event_increment();
1350 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1351
1352#ifndef CONFIG_IOTHREAD
1353 if (next_cpu) {
1354 /* stop the currently executing cpu because a timer occured */
1355 cpu_exit(next_cpu);
1356#ifdef CONFIG_KQEMU
1357 if (next_cpu->kqemu_enabled) {
1358 kqemu_cpu_interrupt(next_cpu);
1359 }
1360#endif
1361 }
1362#endif
1363 timer_alarm_pending = 1;
1364 qemu_notify_event();
1365 }
1366}
1367
1368static int64_t qemu_next_deadline(void)
1369{
1370 int64_t delta;
1371
1372 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1373 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1374 qemu_get_clock(vm_clock);
1375 } else {
1376 /* To avoid problems with overflow limit this to 2^32. */
1377 delta = INT32_MAX;
1378 }
1379
1380 if (delta < 0)
1381 delta = 0;
1382
1383 return delta;
1384}
1385
1386#if defined(__linux__) || defined(_WIN32)
1387static uint64_t qemu_next_deadline_dyntick(void)
1388{
1389 int64_t delta;
1390 int64_t rtdelta;
1391
1392 if (use_icount)
1393 delta = INT32_MAX;
1394 else
1395 delta = (qemu_next_deadline() + 999) / 1000;
1396
1397 if (active_timers[QEMU_TIMER_REALTIME]) {
1398 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1399 qemu_get_clock(rt_clock))*1000;
1400 if (rtdelta < delta)
1401 delta = rtdelta;
1402 }
1403
1404 if (delta < MIN_TIMER_REARM_US)
1405 delta = MIN_TIMER_REARM_US;
1406
1407 return delta;
1408}
1409#endif
1410
1411#ifndef _WIN32
1412
1413/* Sets a specific flag */
1414static int fcntl_setfl(int fd, int flag)
1415{
1416 int flags;
1417
1418 flags = fcntl(fd, F_GETFL);
1419 if (flags == -1)
1420 return -errno;
1421
1422 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1423 return -errno;
1424
1425 return 0;
1426}
1427
1428#if defined(__linux__)
1429
1430#define RTC_FREQ 1024
1431
1432static void enable_sigio_timer(int fd)
1433{
1434 struct sigaction act;
1435
1436 /* timer signal */
1437 sigfillset(&act.sa_mask);
1438 act.sa_flags = 0;
1439 act.sa_handler = host_alarm_handler;
1440
1441 sigaction(SIGIO, &act, NULL);
1442 fcntl_setfl(fd, O_ASYNC);
1443 fcntl(fd, F_SETOWN, getpid());
1444}
1445
1446static int hpet_start_timer(struct qemu_alarm_timer *t)
1447{
1448 struct hpet_info info;
1449 int r, fd;
1450
1451 fd = open("/dev/hpet", O_RDONLY);
1452 if (fd < 0)
1453 return -1;
1454
1455 /* Set frequency */
1456 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1457 if (r < 0) {
1458 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1459 "error, but for better emulation accuracy type:\n"
1460 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1461 goto fail;
1462 }
1463
1464 /* Check capabilities */
1465 r = ioctl(fd, HPET_INFO, &info);
1466 if (r < 0)
1467 goto fail;
1468
1469 /* Enable periodic mode */
1470 r = ioctl(fd, HPET_EPI, 0);
1471 if (info.hi_flags && (r < 0))
1472 goto fail;
1473
1474 /* Enable interrupt */
1475 r = ioctl(fd, HPET_IE_ON, 0);
1476 if (r < 0)
1477 goto fail;
1478
1479 enable_sigio_timer(fd);
1480 t->priv = (void *)(long)fd;
1481
1482 return 0;
1483fail:
1484 close(fd);
1485 return -1;
1486}
1487
1488static void hpet_stop_timer(struct qemu_alarm_timer *t)
1489{
1490 int fd = (long)t->priv;
1491
1492 close(fd);
1493}
1494
1495static int rtc_start_timer(struct qemu_alarm_timer *t)
1496{
1497 int rtc_fd;
1498 unsigned long current_rtc_freq = 0;
1499
1500 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1501 if (rtc_fd < 0)
1502 return -1;
1503 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1504 if (current_rtc_freq != RTC_FREQ &&
1505 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1506 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1507 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1508 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1509 goto fail;
1510 }
1511 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1512 fail:
1513 close(rtc_fd);
1514 return -1;
1515 }
1516
1517 enable_sigio_timer(rtc_fd);
1518
1519 t->priv = (void *)(long)rtc_fd;
1520
1521 return 0;
1522}
1523
1524static void rtc_stop_timer(struct qemu_alarm_timer *t)
1525{
1526 int rtc_fd = (long)t->priv;
1527
1528 close(rtc_fd);
1529}
1530
1531static int dynticks_start_timer(struct qemu_alarm_timer *t)
1532{
1533 struct sigevent ev;
1534 timer_t host_timer;
1535 struct sigaction act;
1536
1537 sigfillset(&act.sa_mask);
1538 act.sa_flags = 0;
1539 act.sa_handler = host_alarm_handler;
1540
1541 sigaction(SIGALRM, &act, NULL);
1542
1543 ev.sigev_value.sival_int = 0;
1544 ev.sigev_notify = SIGEV_SIGNAL;
1545 ev.sigev_signo = SIGALRM;
1546
1547 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1548 perror("timer_create");
1549
1550 /* disable dynticks */
1551 fprintf(stderr, "Dynamic Ticks disabled\n");
1552
1553 return -1;
1554 }
1555
1556 t->priv = (void *)(long)host_timer;
1557
1558 return 0;
1559}
1560
1561static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1562{
1563 timer_t host_timer = (timer_t)(long)t->priv;
1564
1565 timer_delete(host_timer);
1566}
1567
1568static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1569{
1570 timer_t host_timer = (timer_t)(long)t->priv;
1571 struct itimerspec timeout;
1572 int64_t nearest_delta_us = INT64_MAX;
1573 int64_t current_us;
1574
1575 if (!active_timers[QEMU_TIMER_REALTIME] &&
1576 !active_timers[QEMU_TIMER_VIRTUAL])
1577 return;
1578
1579 nearest_delta_us = qemu_next_deadline_dyntick();
1580
1581 /* check whether a timer is already running */
1582 if (timer_gettime(host_timer, &timeout)) {
1583 perror("gettime");
1584 fprintf(stderr, "Internal timer error: aborting\n");
1585 exit(1);
1586 }
1587 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1588 if (current_us && current_us <= nearest_delta_us)
1589 return;
1590
1591 timeout.it_interval.tv_sec = 0;
1592 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1593 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1594 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1595 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1596 perror("settime");
1597 fprintf(stderr, "Internal timer error: aborting\n");
1598 exit(1);
1599 }
1600}
1601
1602#endif /* defined(__linux__) */
1603
1604static int unix_start_timer(struct qemu_alarm_timer *t)
1605{
1606 struct sigaction act;
1607 struct itimerval itv;
1608 int err;
1609
1610 /* timer signal */
1611 sigfillset(&act.sa_mask);
1612 act.sa_flags = 0;
1613 act.sa_handler = host_alarm_handler;
1614
1615 sigaction(SIGALRM, &act, NULL);
1616
1617 itv.it_interval.tv_sec = 0;
1618 /* for i386 kernel 2.6 to get 1 ms */
1619 itv.it_interval.tv_usec = 999;
1620 itv.it_value.tv_sec = 0;
1621 itv.it_value.tv_usec = 10 * 1000;
1622
1623 err = setitimer(ITIMER_REAL, &itv, NULL);
1624 if (err)
1625 return -1;
1626
1627 return 0;
1628}
1629
1630static void unix_stop_timer(struct qemu_alarm_timer *t)
1631{
1632 struct itimerval itv;
1633
1634 memset(&itv, 0, sizeof(itv));
1635 setitimer(ITIMER_REAL, &itv, NULL);
1636}
1637
1638#endif /* !defined(_WIN32) */
1639
1640
1641#ifdef _WIN32
1642
1643static int win32_start_timer(struct qemu_alarm_timer *t)
1644{
1645 TIMECAPS tc;
1646 struct qemu_alarm_win32 *data = t->priv;
1647 UINT flags;
1648
1649 memset(&tc, 0, sizeof(tc));
1650 timeGetDevCaps(&tc, sizeof(tc));
1651
1652 if (data->period < tc.wPeriodMin)
1653 data->period = tc.wPeriodMin;
1654
1655 timeBeginPeriod(data->period);
1656
1657 flags = TIME_CALLBACK_FUNCTION;
1658 if (alarm_has_dynticks(t))
1659 flags |= TIME_ONESHOT;
1660 else
1661 flags |= TIME_PERIODIC;
1662
1663 data->timerId = timeSetEvent(1, // interval (ms)
1664 data->period, // resolution
1665 host_alarm_handler, // function
1666 (DWORD)t, // parameter
1667 flags);
1668
1669 if (!data->timerId) {
1670 perror("Failed to initialize win32 alarm timer");
1671 timeEndPeriod(data->period);
1672 return -1;
1673 }
1674
1675 return 0;
1676}
1677
1678static void win32_stop_timer(struct qemu_alarm_timer *t)
1679{
1680 struct qemu_alarm_win32 *data = t->priv;
1681
1682 timeKillEvent(data->timerId);
1683 timeEndPeriod(data->period);
1684}
1685
1686static void win32_rearm_timer(struct qemu_alarm_timer *t)
1687{
1688 struct qemu_alarm_win32 *data = t->priv;
1689 uint64_t nearest_delta_us;
1690
1691 if (!active_timers[QEMU_TIMER_REALTIME] &&
1692 !active_timers[QEMU_TIMER_VIRTUAL])
1693 return;
1694
1695 nearest_delta_us = qemu_next_deadline_dyntick();
1696 nearest_delta_us /= 1000;
1697
1698 timeKillEvent(data->timerId);
1699
1700 data->timerId = timeSetEvent(1,
1701 data->period,
1702 host_alarm_handler,
1703 (DWORD)t,
1704 TIME_ONESHOT | TIME_PERIODIC);
1705
1706 if (!data->timerId) {
1707 perror("Failed to re-arm win32 alarm timer");
1708
1709 timeEndPeriod(data->period);
1710 exit(1);
1711 }
1712}
1713
1714#endif /* _WIN32 */
1715
1716static int init_timer_alarm(void)
1717{
1718 struct qemu_alarm_timer *t = NULL;
1719 int i, err = -1;
1720
1721 for (i = 0; alarm_timers[i].name; i++) {
1722 t = &alarm_timers[i];
1723
1724 err = t->start(t);
1725 if (!err)
1726 break;
1727 }
1728
1729 if (err) {
1730 err = -ENOENT;
1731 goto fail;
1732 }
1733
1734 alarm_timer = t;
1735
1736 return 0;
1737
1738fail:
1739 return err;
1740}
1741
1742static void quit_timers(void)
1743{
1744 alarm_timer->stop(alarm_timer);
1745 alarm_timer = NULL;
1746}
1747
1748/***********************************************************/
1749/* host time/date access */
1750void qemu_get_timedate(struct tm *tm, int offset)
1751{
1752 time_t ti;
1753 struct tm *ret;
1754
1755 time(&ti);
1756 ti += offset;
1757 if (rtc_date_offset == -1) {
1758 if (rtc_utc)
1759 ret = gmtime(&ti);
1760 else
1761 ret = localtime(&ti);
1762 } else {
1763 ti -= rtc_date_offset;
1764 ret = gmtime(&ti);
1765 }
1766
1767 memcpy(tm, ret, sizeof(struct tm));
1768}
1769
1770int qemu_timedate_diff(struct tm *tm)
1771{
1772 time_t seconds;
1773
1774 if (rtc_date_offset == -1)
1775 if (rtc_utc)
1776 seconds = mktimegm(tm);
1777 else
1778 seconds = mktime(tm);
1779 else
1780 seconds = mktimegm(tm) + rtc_date_offset;
1781
1782 return seconds - time(NULL);
1783}
1784
1785#ifdef _WIN32
1786static void socket_cleanup(void)
1787{
1788 WSACleanup();
1789}
1790
1791static int socket_init(void)
1792{
1793 WSADATA Data;
1794 int ret, err;
1795
1796 ret = WSAStartup(MAKEWORD(2,2), &Data);
1797 if (ret != 0) {
1798 err = WSAGetLastError();
1799 fprintf(stderr, "WSAStartup: %d\n", err);
1800 return -1;
1801 }
1802 atexit(socket_cleanup);
1803 return 0;
1804}
1805#endif
1806
1807const char *get_opt_name(char *buf, int buf_size, const char *p, char delim)
1808{
1809 char *q;
1810
1811 q = buf;
1812 while (*p != '\0' && *p != delim) {
1813 if (q && (q - buf) < buf_size - 1)
1814 *q++ = *p;
1815 p++;
1816 }
1817 if (q)
1818 *q = '\0';
1819
1820 return p;
1821}
1822
1823const char *get_opt_value(char *buf, int buf_size, const char *p)
1824{
1825 char *q;
1826
1827 q = buf;
1828 while (*p != '\0') {
1829 if (*p == ',') {
1830 if (*(p + 1) != ',')
1831 break;
1832 p++;
1833 }
1834 if (q && (q - buf) < buf_size - 1)
1835 *q++ = *p;
1836 p++;
1837 }
1838 if (q)
1839 *q = '\0';
1840
1841 return p;
1842}
1843
1844int get_param_value(char *buf, int buf_size,
1845 const char *tag, const char *str)
1846{
1847 const char *p;
1848 char option[128];
1849
1850 p = str;
1851 for(;;) {
1852 p = get_opt_name(option, sizeof(option), p, '=');
1853 if (*p != '=')
1854 break;
1855 p++;
1856 if (!strcmp(tag, option)) {
1857 (void)get_opt_value(buf, buf_size, p);
1858 return strlen(buf);
1859 } else {
1860 p = get_opt_value(NULL, 0, p);
1861 }
1862 if (*p != ',')
1863 break;
1864 p++;
1865 }
1866 return 0;
1867}
1868
1869int check_params(char *buf, int buf_size,
1870 const char * const *params, const char *str)
1871{
1872 const char *p;
1873 int i;
1874
1875 p = str;
1876 while (*p != '\0') {
1877 p = get_opt_name(buf, buf_size, p, '=');
1878 if (*p != '=')
1879 return -1;
1880 p++;
1881 for(i = 0; params[i] != NULL; i++)
1882 if (!strcmp(params[i], buf))
1883 break;
1884 if (params[i] == NULL)
1885 return -1;
1886 p = get_opt_value(NULL, 0, p);
1887 if (*p != ',')
1888 break;
1889 p++;
1890 }
1891 return 0;
1892}
1893
1894/***********************************************************/
1895/* Bluetooth support */
1896static int nb_hcis;
1897static int cur_hci;
1898static struct HCIInfo *hci_table[MAX_NICS];
1899
1900static struct bt_vlan_s {
1901 struct bt_scatternet_s net;
1902 int id;
1903 struct bt_vlan_s *next;
1904} *first_bt_vlan;
1905
1906/* find or alloc a new bluetooth "VLAN" */
1907static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1908{
1909 struct bt_vlan_s **pvlan, *vlan;
1910 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1911 if (vlan->id == id)
1912 return &vlan->net;
1913 }
1914 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1915 vlan->id = id;
1916 pvlan = &first_bt_vlan;
1917 while (*pvlan != NULL)
1918 pvlan = &(*pvlan)->next;
1919 *pvlan = vlan;
1920 return &vlan->net;
1921}
1922
1923static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1924{
1925}
1926
1927static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1928{
1929 return -ENOTSUP;
1930}
1931
1932static struct HCIInfo null_hci = {
1933 .cmd_send = null_hci_send,
1934 .sco_send = null_hci_send,
1935 .acl_send = null_hci_send,
1936 .bdaddr_set = null_hci_addr_set,
1937};
1938
1939struct HCIInfo *qemu_next_hci(void)
1940{
1941 if (cur_hci == nb_hcis)
1942 return &null_hci;
1943
1944 return hci_table[cur_hci++];
1945}
1946
1947static struct HCIInfo *hci_init(const char *str)
1948{
1949 char *endp;
1950 struct bt_scatternet_s *vlan = 0;
1951
1952 if (!strcmp(str, "null"))
1953 /* null */
1954 return &null_hci;
1955 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1956 /* host[:hciN] */
1957 return bt_host_hci(str[4] ? str + 5 : "hci0");
1958 else if (!strncmp(str, "hci", 3)) {
1959 /* hci[,vlan=n] */
1960 if (str[3]) {
1961 if (!strncmp(str + 3, ",vlan=", 6)) {
1962 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1963 if (*endp)
1964 vlan = 0;
1965 }
1966 } else
1967 vlan = qemu_find_bt_vlan(0);
1968 if (vlan)
1969 return bt_new_hci(vlan);
1970 }
1971
1972 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1973
1974 return 0;
1975}
1976
1977static int bt_hci_parse(const char *str)
1978{
1979 struct HCIInfo *hci;
1980 bdaddr_t bdaddr;
1981
1982 if (nb_hcis >= MAX_NICS) {
1983 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1984 return -1;
1985 }
1986
1987 hci = hci_init(str);
1988 if (!hci)
1989 return -1;
1990
1991 bdaddr.b[0] = 0x52;
1992 bdaddr.b[1] = 0x54;
1993 bdaddr.b[2] = 0x00;
1994 bdaddr.b[3] = 0x12;
1995 bdaddr.b[4] = 0x34;
1996 bdaddr.b[5] = 0x56 + nb_hcis;
1997 hci->bdaddr_set(hci, bdaddr.b);
1998
1999 hci_table[nb_hcis++] = hci;
2000
2001 return 0;
2002}
2003
2004static void bt_vhci_add(int vlan_id)
2005{
2006 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2007
2008 if (!vlan->slave)
2009 fprintf(stderr, "qemu: warning: adding a VHCI to "
2010 "an empty scatternet %i\n", vlan_id);
2011
2012 bt_vhci_init(bt_new_hci(vlan));
2013}
2014
2015static struct bt_device_s *bt_device_add(const char *opt)
2016{
2017 struct bt_scatternet_s *vlan;
2018 int vlan_id = 0;
2019 char *endp = strstr(opt, ",vlan=");
2020 int len = (endp ? endp - opt : strlen(opt)) + 1;
2021 char devname[10];
2022
2023 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2024
2025 if (endp) {
2026 vlan_id = strtol(endp + 6, &endp, 0);
2027 if (*endp) {
2028 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2029 return 0;
2030 }
2031 }
2032
2033 vlan = qemu_find_bt_vlan(vlan_id);
2034
2035 if (!vlan->slave)
2036 fprintf(stderr, "qemu: warning: adding a slave device to "
2037 "an empty scatternet %i\n", vlan_id);
2038
2039 if (!strcmp(devname, "keyboard"))
2040 return bt_keyboard_init(vlan);
2041
2042 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2043 return 0;
2044}
2045
2046static int bt_parse(const char *opt)
2047{
2048 const char *endp, *p;
2049 int vlan;
2050
2051 if (strstart(opt, "hci", &endp)) {
2052 if (!*endp || *endp == ',') {
2053 if (*endp)
2054 if (!strstart(endp, ",vlan=", 0))
2055 opt = endp + 1;
2056
2057 return bt_hci_parse(opt);
2058 }
2059 } else if (strstart(opt, "vhci", &endp)) {
2060 if (!*endp || *endp == ',') {
2061 if (*endp) {
2062 if (strstart(endp, ",vlan=", &p)) {
2063 vlan = strtol(p, (char **) &endp, 0);
2064 if (*endp) {
2065 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2066 return 1;
2067 }
2068 } else {
2069 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2070 return 1;
2071 }
2072 } else
2073 vlan = 0;
2074
2075 bt_vhci_add(vlan);
2076 return 0;
2077 }
2078 } else if (strstart(opt, "device:", &endp))
2079 return !bt_device_add(endp);
2080
2081 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2082 return 1;
2083}
2084
2085/***********************************************************/
2086/* QEMU Block devices */
2087
2088#define HD_ALIAS "index=%d,media=disk"
2089#define CDROM_ALIAS "index=2,media=cdrom"
2090#define FD_ALIAS "index=%d,if=floppy"
2091#define PFLASH_ALIAS "if=pflash"
2092#define MTD_ALIAS "if=mtd"
2093#define SD_ALIAS "index=0,if=sd"
2094
2095static int drive_opt_get_free_idx(void)
2096{
2097 int index;
2098
2099 for (index = 0; index < MAX_DRIVES; index++)
2100 if (!drives_opt[index].used) {
2101 drives_opt[index].used = 1;
2102 return index;
2103 }
2104
2105 return -1;
2106}
2107
2108static int drive_get_free_idx(void)
2109{
2110 int index;
2111
2112 for (index = 0; index < MAX_DRIVES; index++)
2113 if (!drives_table[index].used) {
2114 drives_table[index].used = 1;
2115 return index;
2116 }
2117
2118 return -1;
2119}
2120
2121int drive_add(const char *file, const char *fmt, ...)
2122{
2123 va_list ap;
2124 int index = drive_opt_get_free_idx();
2125
2126 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2127 fprintf(stderr, "qemu: too many drives\n");
2128 return -1;
2129 }
2130
2131 drives_opt[index].file = file;
2132 va_start(ap, fmt);
2133 vsnprintf(drives_opt[index].opt,
2134 sizeof(drives_opt[0].opt), fmt, ap);
2135 va_end(ap);
2136
2137 nb_drives_opt++;
2138 return index;
2139}
2140
2141void drive_remove(int index)
2142{
2143 drives_opt[index].used = 0;
2144 nb_drives_opt--;
2145}
2146
2147int drive_get_index(BlockInterfaceType type, int bus, int unit)
2148{
2149 int index;
2150
2151 /* seek interface, bus and unit */
2152
2153 for (index = 0; index < MAX_DRIVES; index++)
2154 if (drives_table[index].type == type &&
2155 drives_table[index].bus == bus &&
2156 drives_table[index].unit == unit &&
2157 drives_table[index].used)
2158 return index;
2159
2160 return -1;
2161}
2162
2163int drive_get_max_bus(BlockInterfaceType type)
2164{
2165 int max_bus;
2166 int index;
2167
2168 max_bus = -1;
2169 for (index = 0; index < nb_drives; index++) {
2170 if(drives_table[index].type == type &&
2171 drives_table[index].bus > max_bus)
2172 max_bus = drives_table[index].bus;
2173 }
2174 return max_bus;
2175}
2176
2177const char *drive_get_serial(BlockDriverState *bdrv)
2178{
2179 int index;
2180
2181 for (index = 0; index < nb_drives; index++)
2182 if (drives_table[index].bdrv == bdrv)
2183 return drives_table[index].serial;
2184
2185 return "\0";
2186}
2187
2188BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2189{
2190 int index;
2191
2192 for (index = 0; index < nb_drives; index++)
2193 if (drives_table[index].bdrv == bdrv)
2194 return drives_table[index].onerror;
2195
2196 return BLOCK_ERR_STOP_ENOSPC;
2197}
2198
2199static void bdrv_format_print(void *opaque, const char *name)
2200{
2201 fprintf(stderr, " %s", name);
2202}
2203
2204void drive_uninit(BlockDriverState *bdrv)
2205{
2206 int i;
2207
2208 for (i = 0; i < MAX_DRIVES; i++)
2209 if (drives_table[i].bdrv == bdrv) {
2210 drives_table[i].bdrv = NULL;
2211 drives_table[i].used = 0;
2212 drive_remove(drives_table[i].drive_opt_idx);
2213 nb_drives--;
2214 break;
2215 }
2216}
2217
2218int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2219{
2220 char buf[128];
2221 char file[1024];
2222 char devname[128];
2223 char serial[21];
2224 const char *mediastr = "";
2225 BlockInterfaceType type;
2226 enum { MEDIA_DISK, MEDIA_CDROM } media;
2227 int bus_id, unit_id;
2228 int cyls, heads, secs, translation;
2229 BlockDriverState *bdrv;
2230 BlockDriver *drv = NULL;
2231 QEMUMachine *machine = opaque;
2232 int max_devs;
2233 int index;
2234 int cache;
2235 int bdrv_flags, onerror;
2236 int drives_table_idx;
2237 char *str = arg->opt;
2238 static const char * const params[] = { "bus", "unit", "if", "index",
2239 "cyls", "heads", "secs", "trans",
2240 "media", "snapshot", "file",
2241 "cache", "format", "serial", "werror",
2242 NULL };
2243
2244 if (check_params(buf, sizeof(buf), params, str) < 0) {
2245 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2246 buf, str);
2247 return -1;
2248 }
2249
2250 file[0] = 0;
2251 cyls = heads = secs = 0;
2252 bus_id = 0;
2253 unit_id = -1;
2254 translation = BIOS_ATA_TRANSLATION_AUTO;
2255 index = -1;
2256 cache = 3;
2257
2258 if (machine->use_scsi) {
2259 type = IF_SCSI;
2260 max_devs = MAX_SCSI_DEVS;
2261 pstrcpy(devname, sizeof(devname), "scsi");
2262 } else {
2263 type = IF_IDE;
2264 max_devs = MAX_IDE_DEVS;
2265 pstrcpy(devname, sizeof(devname), "ide");
2266 }
2267 media = MEDIA_DISK;
2268
2269 /* extract parameters */
2270
2271 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2272 bus_id = strtol(buf, NULL, 0);
2273 if (bus_id < 0) {
2274 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2275 return -1;
2276 }
2277 }
2278
2279 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2280 unit_id = strtol(buf, NULL, 0);
2281 if (unit_id < 0) {
2282 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2283 return -1;
2284 }
2285 }
2286
2287 if (get_param_value(buf, sizeof(buf), "if", str)) {
2288 pstrcpy(devname, sizeof(devname), buf);
2289 if (!strcmp(buf, "ide")) {
2290 type = IF_IDE;
2291 max_devs = MAX_IDE_DEVS;
2292 } else if (!strcmp(buf, "scsi")) {
2293 type = IF_SCSI;
2294 max_devs = MAX_SCSI_DEVS;
2295 } else if (!strcmp(buf, "floppy")) {
2296 type = IF_FLOPPY;
2297 max_devs = 0;
2298 } else if (!strcmp(buf, "pflash")) {
2299 type = IF_PFLASH;
2300 max_devs = 0;
2301 } else if (!strcmp(buf, "mtd")) {
2302 type = IF_MTD;
2303 max_devs = 0;
2304 } else if (!strcmp(buf, "sd")) {
2305 type = IF_SD;
2306 max_devs = 0;
2307 } else if (!strcmp(buf, "virtio")) {
2308 type = IF_VIRTIO;
2309 max_devs = 0;
2310 } else if (!strcmp(buf, "xen")) {
2311 type = IF_XEN;
2312 max_devs = 0;
2313 } else {
2314 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2315 return -1;
2316 }
2317 }
2318
2319 if (get_param_value(buf, sizeof(buf), "index", str)) {
2320 index = strtol(buf, NULL, 0);
2321 if (index < 0) {
2322 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2323 return -1;
2324 }
2325 }
2326
2327 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2328 cyls = strtol(buf, NULL, 0);
2329 }
2330
2331 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2332 heads = strtol(buf, NULL, 0);
2333 }
2334
2335 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2336 secs = strtol(buf, NULL, 0);
2337 }
2338
2339 if (cyls || heads || secs) {
2340 if (cyls < 1 || cyls > 16383) {
2341 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2342 return -1;
2343 }
2344 if (heads < 1 || heads > 16) {
2345 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2346 return -1;
2347 }
2348 if (secs < 1 || secs > 63) {
2349 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2350 return -1;
2351 }
2352 }
2353
2354 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2355 if (!cyls) {
2356 fprintf(stderr,
2357 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2358 str);
2359 return -1;
2360 }
2361 if (!strcmp(buf, "none"))
2362 translation = BIOS_ATA_TRANSLATION_NONE;
2363 else if (!strcmp(buf, "lba"))
2364 translation = BIOS_ATA_TRANSLATION_LBA;
2365 else if (!strcmp(buf, "auto"))
2366 translation = BIOS_ATA_TRANSLATION_AUTO;
2367 else {
2368 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2369 return -1;
2370 }
2371 }
2372
2373 if (get_param_value(buf, sizeof(buf), "media", str)) {
2374 if (!strcmp(buf, "disk")) {
2375 media = MEDIA_DISK;
2376 } else if (!strcmp(buf, "cdrom")) {
2377 if (cyls || secs || heads) {
2378 fprintf(stderr,
2379 "qemu: '%s' invalid physical CHS format\n", str);
2380 return -1;
2381 }
2382 media = MEDIA_CDROM;
2383 } else {
2384 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2385 return -1;
2386 }
2387 }
2388
2389 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2390 if (!strcmp(buf, "on"))
2391 snapshot = 1;
2392 else if (!strcmp(buf, "off"))
2393 snapshot = 0;
2394 else {
2395 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2396 return -1;
2397 }
2398 }
2399
2400 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2401 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2402 cache = 0;
2403 else if (!strcmp(buf, "writethrough"))
2404 cache = 1;
2405 else if (!strcmp(buf, "writeback"))
2406 cache = 2;
2407 else {
2408 fprintf(stderr, "qemu: invalid cache option\n");
2409 return -1;
2410 }
2411 }
2412
2413 if (get_param_value(buf, sizeof(buf), "format", str)) {
2414 if (strcmp(buf, "?") == 0) {
2415 fprintf(stderr, "qemu: Supported formats:");
2416 bdrv_iterate_format(bdrv_format_print, NULL);
2417 fprintf(stderr, "\n");
2418 return -1;
2419 }
2420 drv = bdrv_find_format(buf);
2421 if (!drv) {
2422 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2423 return -1;
2424 }
2425 }
2426
2427 if (arg->file == NULL)
2428 get_param_value(file, sizeof(file), "file", str);
2429 else
2430 pstrcpy(file, sizeof(file), arg->file);
2431
2432 if (!get_param_value(serial, sizeof(serial), "serial", str))
2433 memset(serial, 0, sizeof(serial));
2434
2435 onerror = BLOCK_ERR_STOP_ENOSPC;
2436 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2437 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2438 fprintf(stderr, "werror is no supported by this format\n");
2439 return -1;
2440 }
2441 if (!strcmp(buf, "ignore"))
2442 onerror = BLOCK_ERR_IGNORE;
2443 else if (!strcmp(buf, "enospc"))
2444 onerror = BLOCK_ERR_STOP_ENOSPC;
2445 else if (!strcmp(buf, "stop"))
2446 onerror = BLOCK_ERR_STOP_ANY;
2447 else if (!strcmp(buf, "report"))
2448 onerror = BLOCK_ERR_REPORT;
2449 else {
2450 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2451 return -1;
2452 }
2453 }
2454
2455 /* compute bus and unit according index */
2456
2457 if (index != -1) {
2458 if (bus_id != 0 || unit_id != -1) {
2459 fprintf(stderr,
2460 "qemu: '%s' index cannot be used with bus and unit\n", str);
2461 return -1;
2462 }
2463 if (max_devs == 0)
2464 {
2465 unit_id = index;
2466 bus_id = 0;
2467 } else {
2468 unit_id = index % max_devs;
2469 bus_id = index / max_devs;
2470 }
2471 }
2472
2473 /* if user doesn't specify a unit_id,
2474 * try to find the first free
2475 */
2476
2477 if (unit_id == -1) {
2478 unit_id = 0;
2479 while (drive_get_index(type, bus_id, unit_id) != -1) {
2480 unit_id++;
2481 if (max_devs && unit_id >= max_devs) {
2482 unit_id -= max_devs;
2483 bus_id++;
2484 }
2485 }
2486 }
2487
2488 /* check unit id */
2489
2490 if (max_devs && unit_id >= max_devs) {
2491 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2492 str, unit_id, max_devs - 1);
2493 return -1;
2494 }
2495
2496 /*
2497 * ignore multiple definitions
2498 */
2499
2500 if (drive_get_index(type, bus_id, unit_id) != -1)
2501 return -2;
2502
2503 /* init */
2504
2505 if (type == IF_IDE || type == IF_SCSI)
2506 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2507 if (max_devs)
2508 snprintf(buf, sizeof(buf), "%s%i%s%i",
2509 devname, bus_id, mediastr, unit_id);
2510 else
2511 snprintf(buf, sizeof(buf), "%s%s%i",
2512 devname, mediastr, unit_id);
2513 bdrv = bdrv_new(buf);
2514 drives_table_idx = drive_get_free_idx();
2515 drives_table[drives_table_idx].bdrv = bdrv;
2516 drives_table[drives_table_idx].type = type;
2517 drives_table[drives_table_idx].bus = bus_id;
2518 drives_table[drives_table_idx].unit = unit_id;
2519 drives_table[drives_table_idx].onerror = onerror;
2520 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2521 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2522 nb_drives++;
2523
2524 switch(type) {
2525 case IF_IDE:
2526 case IF_SCSI:
2527 case IF_XEN:
2528 switch(media) {
2529 case MEDIA_DISK:
2530 if (cyls != 0) {
2531 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2532 bdrv_set_translation_hint(bdrv, translation);
2533 }
2534 break;
2535 case MEDIA_CDROM:
2536 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2537 break;
2538 }
2539 break;
2540 case IF_SD:
2541 /* FIXME: This isn't really a floppy, but it's a reasonable
2542 approximation. */
2543 case IF_FLOPPY:
2544 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2545 break;
2546 case IF_PFLASH:
2547 case IF_MTD:
2548 case IF_VIRTIO:
2549 break;
2550 }
2551 if (!file[0])
2552 return -2;
2553 bdrv_flags = 0;
2554 if (snapshot) {
2555 bdrv_flags |= BDRV_O_SNAPSHOT;
2556 cache = 2; /* always use write-back with snapshot */
2557 }
2558 if (cache == 0) /* no caching */
2559 bdrv_flags |= BDRV_O_NOCACHE;
2560 else if (cache == 2) /* write-back */
2561 bdrv_flags |= BDRV_O_CACHE_WB;
2562 else if (cache == 3) /* not specified */
2563 bdrv_flags |= BDRV_O_CACHE_DEF;
2564 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2565 fprintf(stderr, "qemu: could not open disk image %s\n",
2566 file);
2567 return -1;
2568 }
2569 if (bdrv_key_required(bdrv))
2570 autostart = 0;
2571 return drives_table_idx;
2572}
2573
2574static void numa_add(const char *optarg)
2575{
2576 char option[128];
2577 char *endptr;
2578 unsigned long long value, endvalue;
2579 int nodenr;
2580
2581 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2582 if (!strcmp(option, "node")) {
2583 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2584 nodenr = nb_numa_nodes;
2585 } else {
2586 nodenr = strtoull(option, NULL, 10);
2587 }
2588
2589 if (get_param_value(option, 128, "mem", optarg) == 0) {
2590 node_mem[nodenr] = 0;
2591 } else {
2592 value = strtoull(option, &endptr, 0);
2593 switch (*endptr) {
2594 case 0: case 'M': case 'm':
2595 value <<= 20;
2596 break;
2597 case 'G': case 'g':
2598 value <<= 30;
2599 break;
2600 }
2601 node_mem[nodenr] = value;
2602 }
2603 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2604 node_cpumask[nodenr] = 0;
2605 } else {
2606 value = strtoull(option, &endptr, 10);
2607 if (value >= 64) {
2608 value = 63;
2609 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2610 } else {
2611 if (*endptr == '-') {
2612 endvalue = strtoull(endptr+1, &endptr, 10);
2613 if (endvalue >= 63) {
2614 endvalue = 62;
2615 fprintf(stderr,
2616 "only 63 CPUs in NUMA mode supported.\n");
2617 }
2618 value = (1 << (endvalue + 1)) - (1 << value);
2619 } else {
2620 value = 1 << value;
2621 }
2622 }
2623 node_cpumask[nodenr] = value;
2624 }
2625 nb_numa_nodes++;
2626 }
2627 return;
2628}
2629
2630/***********************************************************/
2631/* USB devices */
2632
2633static USBPort *used_usb_ports;
2634static USBPort *free_usb_ports;
2635
2636/* ??? Maybe change this to register a hub to keep track of the topology. */
2637void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2638 usb_attachfn attach)
2639{
2640 port->opaque = opaque;
2641 port->index = index;
2642 port->attach = attach;
2643 port->next = free_usb_ports;
2644 free_usb_ports = port;
2645}
2646
2647int usb_device_add_dev(USBDevice *dev)
2648{
2649 USBPort *port;
2650
2651 /* Find a USB port to add the device to. */
2652 port = free_usb_ports;
2653 if (!port->next) {
2654 USBDevice *hub;
2655
2656 /* Create a new hub and chain it on. */
2657 free_usb_ports = NULL;
2658 port->next = used_usb_ports;
2659 used_usb_ports = port;
2660
2661 hub = usb_hub_init(VM_USB_HUB_SIZE);
2662 usb_attach(port, hub);
2663 port = free_usb_ports;
2664 }
2665
2666 free_usb_ports = port->next;
2667 port->next = used_usb_ports;
2668 used_usb_ports = port;
2669 usb_attach(port, dev);
2670 return 0;
2671}
2672
2673static void usb_msd_password_cb(void *opaque, int err)
2674{
2675 USBDevice *dev = opaque;
2676
2677 if (!err)
2678 usb_device_add_dev(dev);
2679 else
2680 dev->handle_destroy(dev);
2681}
2682
2683static int usb_device_add(const char *devname, int is_hotplug)
2684{
2685 const char *p;
2686 USBDevice *dev;
2687
2688 if (!free_usb_ports)
2689 return -1;
2690
2691 if (strstart(devname, "host:", &p)) {
2692 dev = usb_host_device_open(p);
2693 } else if (!strcmp(devname, "mouse")) {
2694 dev = usb_mouse_init();
2695 } else if (!strcmp(devname, "tablet")) {
2696 dev = usb_tablet_init();
2697 } else if (!strcmp(devname, "keyboard")) {
2698 dev = usb_keyboard_init();
2699 } else if (strstart(devname, "disk:", &p)) {
2700 BlockDriverState *bs;
2701
2702 dev = usb_msd_init(p);
2703 if (!dev)
2704 return -1;
2705 bs = usb_msd_get_bdrv(dev);
2706 if (bdrv_key_required(bs)) {
2707 autostart = 0;
2708 if (is_hotplug) {
2709 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2710 dev);
2711 return 0;
2712 }
2713 }
2714 } else if (!strcmp(devname, "wacom-tablet")) {
2715 dev = usb_wacom_init();
2716 } else if (strstart(devname, "serial:", &p)) {
2717 dev = usb_serial_init(p);
2718#ifdef CONFIG_BRLAPI
2719 } else if (!strcmp(devname, "braille")) {
2720 dev = usb_baum_init();
2721#endif
2722 } else if (strstart(devname, "net:", &p)) {
2723 int nic = nb_nics;
2724
2725 if (net_client_init("nic", p) < 0)
2726 return -1;
2727 nd_table[nic].model = "usb";
2728 dev = usb_net_init(&nd_table[nic]);
2729 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2730 dev = usb_bt_init(devname[2] ? hci_init(p) :
2731 bt_new_hci(qemu_find_bt_vlan(0)));
2732 } else {
2733 return -1;
2734 }
2735 if (!dev)
2736 return -1;
2737
2738 return usb_device_add_dev(dev);
2739}
2740
2741int usb_device_del_addr(int bus_num, int addr)
2742{
2743 USBPort *port;
2744 USBPort **lastp;
2745 USBDevice *dev;
2746
2747 if (!used_usb_ports)
2748 return -1;
2749
2750 if (bus_num != 0)
2751 return -1;
2752
2753 lastp = &used_usb_ports;
2754 port = used_usb_ports;
2755 while (port && port->dev->addr != addr) {
2756 lastp = &port->next;
2757 port = port->next;
2758 }
2759
2760 if (!port)
2761 return -1;
2762
2763 dev = port->dev;
2764 *lastp = port->next;
2765 usb_attach(port, NULL);
2766 dev->handle_destroy(dev);
2767 port->next = free_usb_ports;
2768 free_usb_ports = port;
2769 return 0;
2770}
2771
2772static int usb_device_del(const char *devname)
2773{
2774 int bus_num, addr;
2775 const char *p;
2776
2777 if (strstart(devname, "host:", &p))
2778 return usb_host_device_close(p);
2779
2780 if (!used_usb_ports)
2781 return -1;
2782
2783 p = strchr(devname, '.');
2784 if (!p)
2785 return -1;
2786 bus_num = strtoul(devname, NULL, 0);
2787 addr = strtoul(p + 1, NULL, 0);
2788
2789 return usb_device_del_addr(bus_num, addr);
2790}
2791
2792void do_usb_add(Monitor *mon, const char *devname)
2793{
2794 usb_device_add(devname, 1);
2795}
2796
2797void do_usb_del(Monitor *mon, const char *devname)
2798{
2799 usb_device_del(devname);
2800}
2801
2802void usb_info(Monitor *mon)
2803{
2804 USBDevice *dev;
2805 USBPort *port;
2806 const char *speed_str;
2807
2808 if (!usb_enabled) {
2809 monitor_printf(mon, "USB support not enabled\n");
2810 return;
2811 }
2812
2813 for (port = used_usb_ports; port; port = port->next) {
2814 dev = port->dev;
2815 if (!dev)
2816 continue;
2817 switch(dev->speed) {
2818 case USB_SPEED_LOW:
2819 speed_str = "1.5";
2820 break;
2821 case USB_SPEED_FULL:
2822 speed_str = "12";
2823 break;
2824 case USB_SPEED_HIGH:
2825 speed_str = "480";
2826 break;
2827 default:
2828 speed_str = "?";
2829 break;
2830 }
2831 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2832 0, dev->addr, speed_str, dev->devname);
2833 }
2834}
2835
2836/***********************************************************/
2837/* PCMCIA/Cardbus */
2838
2839static struct pcmcia_socket_entry_s {
2840 struct pcmcia_socket_s *socket;
2841 struct pcmcia_socket_entry_s *next;
2842} *pcmcia_sockets = 0;
2843
2844void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2845{
2846 struct pcmcia_socket_entry_s *entry;
2847
2848 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2849 entry->socket = socket;
2850 entry->next = pcmcia_sockets;
2851 pcmcia_sockets = entry;
2852}
2853
2854void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2855{
2856 struct pcmcia_socket_entry_s *entry, **ptr;
2857
2858 ptr = &pcmcia_sockets;
2859 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2860 if (entry->socket == socket) {
2861 *ptr = entry->next;
2862 qemu_free(entry);
2863 }
2864}
2865
2866void pcmcia_info(Monitor *mon)
2867{
2868 struct pcmcia_socket_entry_s *iter;
2869
2870 if (!pcmcia_sockets)
2871 monitor_printf(mon, "No PCMCIA sockets\n");
2872
2873 for (iter = pcmcia_sockets; iter; iter = iter->next)
2874 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2875 iter->socket->attached ? iter->socket->card_string :
2876 "Empty");
2877}
2878
2879/***********************************************************/
2880/* register display */
2881
2882struct DisplayAllocator default_allocator = {
2883 defaultallocator_create_displaysurface,
2884 defaultallocator_resize_displaysurface,
2885 defaultallocator_free_displaysurface
2886};
2887
2888void register_displaystate(DisplayState *ds)
2889{
2890 DisplayState **s;
2891 s = &display_state;
2892 while (*s != NULL)
2893 s = &(*s)->next;
2894 ds->next = NULL;
2895 *s = ds;
2896}
2897
2898DisplayState *get_displaystate(void)
2899{
2900 return display_state;
2901}
2902
2903DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2904{
2905 if(ds->allocator == &default_allocator) ds->allocator = da;
2906 return ds->allocator;
2907}
2908
2909/* dumb display */
2910
2911static void dumb_display_init(void)
2912{
2913 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2914 ds->allocator = &default_allocator;
2915 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2916 register_displaystate(ds);
2917}
2918
2919/***********************************************************/
2920/* I/O handling */
2921
2922typedef struct IOHandlerRecord {
2923 int fd;
2924 IOCanRWHandler *fd_read_poll;
2925 IOHandler *fd_read;
2926 IOHandler *fd_write;
2927 int deleted;
2928 void *opaque;
2929 /* temporary data */
2930 struct pollfd *ufd;
2931 struct IOHandlerRecord *next;
2932} IOHandlerRecord;
2933
2934static IOHandlerRecord *first_io_handler;
2935
2936/* XXX: fd_read_poll should be suppressed, but an API change is
2937 necessary in the character devices to suppress fd_can_read(). */
2938int qemu_set_fd_handler2(int fd,
2939 IOCanRWHandler *fd_read_poll,
2940 IOHandler *fd_read,
2941 IOHandler *fd_write,
2942 void *opaque)
2943{
2944 IOHandlerRecord **pioh, *ioh;
2945
2946 if (!fd_read && !fd_write) {
2947 pioh = &first_io_handler;
2948 for(;;) {
2949 ioh = *pioh;
2950 if (ioh == NULL)
2951 break;
2952 if (ioh->fd == fd) {
2953 ioh->deleted = 1;
2954 break;
2955 }
2956 pioh = &ioh->next;
2957 }
2958 } else {
2959 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2960 if (ioh->fd == fd)
2961 goto found;
2962 }
2963 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2964 ioh->next = first_io_handler;
2965 first_io_handler = ioh;
2966 found:
2967 ioh->fd = fd;
2968 ioh->fd_read_poll = fd_read_poll;
2969 ioh->fd_read = fd_read;
2970 ioh->fd_write = fd_write;
2971 ioh->opaque = opaque;
2972 ioh->deleted = 0;
2973 }
2974 return 0;
2975}
2976
2977int qemu_set_fd_handler(int fd,
2978 IOHandler *fd_read,
2979 IOHandler *fd_write,
2980 void *opaque)
2981{
2982 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2983}
2984
2985#ifdef _WIN32
2986/***********************************************************/
2987/* Polling handling */
2988
2989typedef struct PollingEntry {
2990 PollingFunc *func;
2991 void *opaque;
2992 struct PollingEntry *next;
2993} PollingEntry;
2994
2995static PollingEntry *first_polling_entry;
2996
2997int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2998{
2999 PollingEntry **ppe, *pe;
3000 pe = qemu_mallocz(sizeof(PollingEntry));
3001 pe->func = func;
3002 pe->opaque = opaque;
3003 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3004 *ppe = pe;
3005 return 0;
3006}
3007
3008void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3009{
3010 PollingEntry **ppe, *pe;
3011 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3012 pe = *ppe;
3013 if (pe->func == func && pe->opaque == opaque) {
3014 *ppe = pe->next;
3015 qemu_free(pe);
3016 break;
3017 }
3018 }
3019}
3020
3021/***********************************************************/
3022/* Wait objects support */
3023typedef struct WaitObjects {
3024 int num;
3025 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3026 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3027 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3028} WaitObjects;
3029
3030static WaitObjects wait_objects = {0};
3031
3032int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3033{
3034 WaitObjects *w = &wait_objects;
3035
3036 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3037 return -1;
3038 w->events[w->num] = handle;
3039 w->func[w->num] = func;
3040 w->opaque[w->num] = opaque;
3041 w->num++;
3042 return 0;
3043}
3044
3045void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3046{
3047 int i, found;
3048 WaitObjects *w = &wait_objects;
3049
3050 found = 0;
3051 for (i = 0; i < w->num; i++) {
3052 if (w->events[i] == handle)
3053 found = 1;
3054 if (found) {
3055 w->events[i] = w->events[i + 1];
3056 w->func[i] = w->func[i + 1];
3057 w->opaque[i] = w->opaque[i + 1];
3058 }
3059 }
3060 if (found)
3061 w->num--;
3062}
3063#endif
3064
3065/***********************************************************/
3066/* ram save/restore */
3067
3068static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3069{
3070 int v;
3071
3072 v = qemu_get_byte(f);
3073 switch(v) {
3074 case 0:
3075 if (qemu_get_buffer(f, buf, len) != len)
3076 return -EIO;
3077 break;
3078 case 1:
3079 v = qemu_get_byte(f);
3080 memset(buf, v, len);
3081 break;
3082 default:
3083 return -EINVAL;
3084 }
3085
3086 if (qemu_file_has_error(f))
3087 return -EIO;
3088
3089 return 0;
3090}
3091
3092static int ram_load_v1(QEMUFile *f, void *opaque)
3093{
3094 int ret;
3095 ram_addr_t i;
3096
3097 if (qemu_get_be32(f) != last_ram_offset)
3098 return -EINVAL;
3099 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3100 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3101 if (ret)
3102 return ret;
3103 }
3104 return 0;
3105}
3106
3107#define BDRV_HASH_BLOCK_SIZE 1024
3108#define IOBUF_SIZE 4096
3109#define RAM_CBLOCK_MAGIC 0xfabe
3110
3111typedef struct RamDecompressState {
3112 z_stream zstream;
3113 QEMUFile *f;
3114 uint8_t buf[IOBUF_SIZE];
3115} RamDecompressState;
3116
3117static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3118{
3119 int ret;
3120 memset(s, 0, sizeof(*s));
3121 s->f = f;
3122 ret = inflateInit(&s->zstream);
3123 if (ret != Z_OK)
3124 return -1;
3125 return 0;
3126}
3127
3128static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3129{
3130 int ret, clen;
3131
3132 s->zstream.avail_out = len;
3133 s->zstream.next_out = buf;
3134 while (s->zstream.avail_out > 0) {
3135 if (s->zstream.avail_in == 0) {
3136 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3137 return -1;
3138 clen = qemu_get_be16(s->f);
3139 if (clen > IOBUF_SIZE)
3140 return -1;
3141 qemu_get_buffer(s->f, s->buf, clen);
3142 s->zstream.avail_in = clen;
3143 s->zstream.next_in = s->buf;
3144 }
3145 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3146 if (ret != Z_OK && ret != Z_STREAM_END) {
3147 return -1;
3148 }
3149 }
3150 return 0;
3151}
3152
3153static void ram_decompress_close(RamDecompressState *s)
3154{
3155 inflateEnd(&s->zstream);
3156}
3157
3158#define RAM_SAVE_FLAG_FULL 0x01
3159#define RAM_SAVE_FLAG_COMPRESS 0x02
3160#define RAM_SAVE_FLAG_MEM_SIZE 0x04
3161#define RAM_SAVE_FLAG_PAGE 0x08
3162#define RAM_SAVE_FLAG_EOS 0x10
3163
3164static int is_dup_page(uint8_t *page, uint8_t ch)
3165{
3166 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3167 uint32_t *array = (uint32_t *)page;
3168 int i;
3169
3170 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3171 if (array[i] != val)
3172 return 0;
3173 }
3174
3175 return 1;
3176}
3177
3178static int ram_save_block(QEMUFile *f)
3179{
3180 static ram_addr_t current_addr = 0;
3181 ram_addr_t saved_addr = current_addr;
3182 ram_addr_t addr = 0;
3183 int found = 0;
3184
3185 while (addr < last_ram_offset) {
3186 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3187 uint8_t *p;
3188
3189 cpu_physical_memory_reset_dirty(current_addr,
3190 current_addr + TARGET_PAGE_SIZE,
3191 MIGRATION_DIRTY_FLAG);
3192
3193 p = qemu_get_ram_ptr(current_addr);
3194
3195 if (is_dup_page(p, *p)) {
3196 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3197 qemu_put_byte(f, *p);
3198 } else {
3199 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3200 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3201 }
3202
3203 found = 1;
3204 break;
3205 }
3206 addr += TARGET_PAGE_SIZE;
3207 current_addr = (saved_addr + addr) % last_ram_offset;
3208 }
3209
3210 return found;
3211}
3212
3213static ram_addr_t ram_save_threshold = 10;
3214
3215static ram_addr_t ram_save_remaining(void)
3216{
3217 ram_addr_t addr;
3218 ram_addr_t count = 0;
3219
3220 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3221 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3222 count++;
3223 }
3224
3225 return count;
3226}
3227
3228static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3229{
3230 ram_addr_t addr;
3231
3232 if (stage == 1) {
3233 /* Make sure all dirty bits are set */
3234 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3235 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3236 cpu_physical_memory_set_dirty(addr);
3237 }
3238
3239 /* Enable dirty memory tracking */
3240 cpu_physical_memory_set_dirty_tracking(1);
3241
3242 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3243 }
3244
3245 while (!qemu_file_rate_limit(f)) {
3246 int ret;
3247
3248 ret = ram_save_block(f);
3249 if (ret == 0) /* no more blocks */
3250 break;
3251 }
3252
3253 /* try transferring iterative blocks of memory */
3254
3255 if (stage == 3) {
3256
3257 /* flush all remaining blocks regardless of rate limiting */
3258 while (ram_save_block(f) != 0);
3259 cpu_physical_memory_set_dirty_tracking(0);
3260 }
3261
3262 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3263
3264 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3265}
3266
3267static int ram_load_dead(QEMUFile *f, void *opaque)
3268{
3269 RamDecompressState s1, *s = &s1;
3270 uint8_t buf[10];
3271 ram_addr_t i;
3272
3273 if (ram_decompress_open(s, f) < 0)
3274 return -EINVAL;
3275 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3276 if (ram_decompress_buf(s, buf, 1) < 0) {
3277 fprintf(stderr, "Error while reading ram block header\n");
3278 goto error;
3279 }
3280 if (buf[0] == 0) {
3281 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3282 BDRV_HASH_BLOCK_SIZE) < 0) {
3283 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3284 goto error;
3285 }
3286 } else {
3287 error:
3288 printf("Error block header\n");
3289 return -EINVAL;
3290 }
3291 }
3292 ram_decompress_close(s);
3293
3294 return 0;
3295}
3296
3297static int ram_load(QEMUFile *f, void *opaque, int version_id)
3298{
3299 ram_addr_t addr;
3300 int flags;
3301
3302 if (version_id == 1)
3303 return ram_load_v1(f, opaque);
3304
3305 if (version_id == 2) {
3306 if (qemu_get_be32(f) != last_ram_offset)
3307 return -EINVAL;
3308 return ram_load_dead(f, opaque);
3309 }
3310
3311 if (version_id != 3)
3312 return -EINVAL;
3313
3314 do {
3315 addr = qemu_get_be64(f);
3316
3317 flags = addr & ~TARGET_PAGE_MASK;
3318 addr &= TARGET_PAGE_MASK;
3319
3320 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3321 if (addr != last_ram_offset)
3322 return -EINVAL;
3323 }
3324
3325 if (flags & RAM_SAVE_FLAG_FULL) {
3326 if (ram_load_dead(f, opaque) < 0)
3327 return -EINVAL;
3328 }
3329
3330 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3331 uint8_t ch = qemu_get_byte(f);
3332 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3333 } else if (flags & RAM_SAVE_FLAG_PAGE)
3334 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3335 } while (!(flags & RAM_SAVE_FLAG_EOS));
3336
3337 return 0;
3338}
3339
3340void qemu_service_io(void)
3341{
3342 qemu_notify_event();
3343}
3344
3345/***********************************************************/
3346/* bottom halves (can be seen as timers which expire ASAP) */
3347
3348struct QEMUBH {
3349 QEMUBHFunc *cb;
3350 void *opaque;
3351 int scheduled;
3352 int idle;
3353 int deleted;
3354 QEMUBH *next;
3355};
3356
3357static QEMUBH *first_bh = NULL;
3358
3359QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3360{
3361 QEMUBH *bh;
3362 bh = qemu_mallocz(sizeof(QEMUBH));
3363 bh->cb = cb;
3364 bh->opaque = opaque;
3365 bh->next = first_bh;
3366 first_bh = bh;
3367 return bh;
3368}
3369
3370int qemu_bh_poll(void)
3371{
3372 QEMUBH *bh, **bhp;
3373 int ret;
3374
3375 ret = 0;
3376 for (bh = first_bh; bh; bh = bh->next) {
3377 if (!bh->deleted && bh->scheduled) {
3378 bh->scheduled = 0;
3379 if (!bh->idle)
3380 ret = 1;
3381 bh->idle = 0;
3382 bh->cb(bh->opaque);
3383 }
3384 }
3385
3386 /* remove deleted bhs */
3387 bhp = &first_bh;
3388 while (*bhp) {
3389 bh = *bhp;
3390 if (bh->deleted) {
3391 *bhp = bh->next;
3392 qemu_free(bh);
3393 } else
3394 bhp = &bh->next;
3395 }
3396
3397 return ret;
3398}
3399
3400void qemu_bh_schedule_idle(QEMUBH *bh)
3401{
3402 if (bh->scheduled)
3403 return;
3404 bh->scheduled = 1;
3405 bh->idle = 1;
3406}
3407
3408void qemu_bh_schedule(QEMUBH *bh)
3409{
3410 if (bh->scheduled)
3411 return;
3412 bh->scheduled = 1;
3413 bh->idle = 0;
3414 /* stop the currently executing CPU to execute the BH ASAP */
3415 qemu_notify_event();
3416}
3417
3418void qemu_bh_cancel(QEMUBH *bh)
3419{
3420 bh->scheduled = 0;
3421}
3422
3423void qemu_bh_delete(QEMUBH *bh)
3424{
3425 bh->scheduled = 0;
3426 bh->deleted = 1;
3427}
3428
3429static void qemu_bh_update_timeout(int *timeout)
3430{
3431 QEMUBH *bh;
3432
3433 for (bh = first_bh; bh; bh = bh->next) {
3434 if (!bh->deleted && bh->scheduled) {
3435 if (bh->idle) {
3436 /* idle bottom halves will be polled at least
3437 * every 10ms */
3438 *timeout = MIN(10, *timeout);
3439 } else {
3440 /* non-idle bottom halves will be executed
3441 * immediately */
3442 *timeout = 0;
3443 break;
3444 }
3445 }
3446 }
3447}
3448
3449/***********************************************************/
3450/* machine registration */
3451
3452static QEMUMachine *first_machine = NULL;
3453QEMUMachine *current_machine = NULL;
3454
3455int qemu_register_machine(QEMUMachine *m)
3456{
3457 QEMUMachine **pm;
3458 pm = &first_machine;
3459 while (*pm != NULL)
3460 pm = &(*pm)->next;
3461 m->next = NULL;
3462 *pm = m;
3463 return 0;
3464}
3465
3466static QEMUMachine *find_machine(const char *name)
3467{
3468 QEMUMachine *m;
3469
3470 for(m = first_machine; m != NULL; m = m->next) {
3471 if (!strcmp(m->name, name))
3472 return m;
3473 }
3474 return NULL;
3475}
3476
3477/***********************************************************/
3478/* main execution loop */
3479
3480static void gui_update(void *opaque)
3481{
3482 uint64_t interval = GUI_REFRESH_INTERVAL;
3483 DisplayState *ds = opaque;
3484 DisplayChangeListener *dcl = ds->listeners;
3485
3486 dpy_refresh(ds);
3487
3488 while (dcl != NULL) {
3489 if (dcl->gui_timer_interval &&
3490 dcl->gui_timer_interval < interval)
3491 interval = dcl->gui_timer_interval;
3492 dcl = dcl->next;
3493 }
3494 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3495}
3496
3497static void nographic_update(void *opaque)
3498{
3499 uint64_t interval = GUI_REFRESH_INTERVAL;
3500
3501 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3502}
3503
3504struct vm_change_state_entry {
3505 VMChangeStateHandler *cb;
3506 void *opaque;
3507 LIST_ENTRY (vm_change_state_entry) entries;
3508};
3509
3510static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3511
3512VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3513 void *opaque)
3514{
3515 VMChangeStateEntry *e;
3516
3517 e = qemu_mallocz(sizeof (*e));
3518
3519 e->cb = cb;
3520 e->opaque = opaque;
3521 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3522 return e;
3523}
3524
3525void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3526{
3527 LIST_REMOVE (e, entries);
3528 qemu_free (e);
3529}
3530
3531static void vm_state_notify(int running, int reason)
3532{
3533 VMChangeStateEntry *e;
3534
3535 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3536 e->cb(e->opaque, running, reason);
3537 }
3538}
3539
3540static void resume_all_vcpus(void);
3541static void pause_all_vcpus(void);
3542
3543void vm_start(void)
3544{
3545 if (!vm_running) {
3546 cpu_enable_ticks();
3547 vm_running = 1;
3548 vm_state_notify(1, 0);
3549 qemu_rearm_alarm_timer(alarm_timer);
3550 resume_all_vcpus();
3551 }
3552}
3553
3554/* reset/shutdown handler */
3555
3556typedef struct QEMUResetEntry {
3557 QEMUResetHandler *func;
3558 void *opaque;
3559 struct QEMUResetEntry *next;
3560} QEMUResetEntry;
3561
3562static QEMUResetEntry *first_reset_entry;
3563static int reset_requested;
3564static int shutdown_requested;
3565static int powerdown_requested;
3566static int debug_requested;
3567static int vmstop_requested;
3568
3569int qemu_shutdown_requested(void)
3570{
3571 int r = shutdown_requested;
3572 shutdown_requested = 0;
3573 return r;
3574}
3575
3576int qemu_reset_requested(void)
3577{
3578 int r = reset_requested;
3579 reset_requested = 0;
3580 return r;
3581}
3582
3583int qemu_powerdown_requested(void)
3584{
3585 int r = powerdown_requested;
3586 powerdown_requested = 0;
3587 return r;
3588}
3589
3590static int qemu_debug_requested(void)
3591{
3592 int r = debug_requested;
3593 debug_requested = 0;
3594 return r;
3595}
3596
3597static int qemu_vmstop_requested(void)
3598{
3599 int r = vmstop_requested;
3600 vmstop_requested = 0;
3601 return r;
3602}
3603
3604static void do_vm_stop(int reason)
3605{
3606 if (vm_running) {
3607 cpu_disable_ticks();
3608 vm_running = 0;
3609 pause_all_vcpus();
3610 vm_state_notify(0, reason);
3611 }
3612}
3613
3614void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3615{
3616 QEMUResetEntry **pre, *re;
3617
3618 pre = &first_reset_entry;
3619 while (*pre != NULL)
3620 pre = &(*pre)->next;
3621 re = qemu_mallocz(sizeof(QEMUResetEntry));
3622 re->func = func;
3623 re->opaque = opaque;
3624 re->next = NULL;
3625 *pre = re;
3626}
3627
3628void qemu_system_reset(void)
3629{
3630 QEMUResetEntry *re;
3631
3632 /* reset all devices */
3633 for(re = first_reset_entry; re != NULL; re = re->next) {
3634 re->func(re->opaque);
3635 }
3636 if (kvm_enabled())
3637 kvm_sync_vcpus();
3638}
3639
3640void qemu_system_reset_request(void)
3641{
3642 if (no_reboot) {
3643 shutdown_requested = 1;
3644 } else {
3645 reset_requested = 1;
3646 }
3647 qemu_notify_event();
3648}
3649
3650void qemu_system_shutdown_request(void)
3651{
3652 shutdown_requested = 1;
3653 qemu_notify_event();
3654}
3655
3656void qemu_system_powerdown_request(void)
3657{
3658 powerdown_requested = 1;
3659 qemu_notify_event();
3660}
3661
3662#ifdef CONFIG_IOTHREAD
3663static void qemu_system_vmstop_request(int reason)
3664{
3665 vmstop_requested = reason;
3666 qemu_notify_event();
3667}
3668#endif
3669
3670#ifndef _WIN32
3671static int io_thread_fd = -1;
3672
3673static void qemu_event_increment(void)
3674{
3675 static const char byte = 0;
3676
3677 if (io_thread_fd == -1)
3678 return;
3679
3680 write(io_thread_fd, &byte, sizeof(byte));
3681}
3682
3683static void qemu_event_read(void *opaque)
3684{
3685 int fd = (unsigned long)opaque;
3686 ssize_t len;
3687
3688 /* Drain the notify pipe */
3689 do {
3690 char buffer[512];
3691 len = read(fd, buffer, sizeof(buffer));
3692 } while ((len == -1 && errno == EINTR) || len > 0);
3693}
3694
3695static int qemu_event_init(void)
3696{
3697 int err;
3698 int fds[2];
3699
3700 err = pipe(fds);
3701 if (err == -1)
3702 return -errno;
3703
3704 err = fcntl_setfl(fds[0], O_NONBLOCK);
3705 if (err < 0)
3706 goto fail;
3707
3708 err = fcntl_setfl(fds[1], O_NONBLOCK);
3709 if (err < 0)
3710 goto fail;
3711
3712 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3713 (void *)(unsigned long)fds[0]);
3714
3715 io_thread_fd = fds[1];
3716fail:
3717 close(fds[0]);
3718 close(fds[1]);
3719 return err;
3720}
3721#else
3722HANDLE qemu_event_handle;
3723
3724static void dummy_event_handler(void *opaque)
3725{
3726}
3727
3728static int qemu_event_init(void)
3729{
3730 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3731 if (!qemu_event_handle) {
3732 perror("Failed CreateEvent");
3733 return -1;
3734 }
3735 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3736 return 0;
3737}
3738
3739static void qemu_event_increment(void)
3740{
3741 SetEvent(qemu_event_handle);
3742}
3743#endif
3744
3745static int cpu_can_run(CPUState *env)
3746{
3747 if (env->stop)
3748 return 0;
3749 if (env->stopped)
3750 return 0;
3751 return 1;
3752}
3753
3754#ifndef CONFIG_IOTHREAD
3755static int qemu_init_main_loop(void)
3756{
3757 return qemu_event_init();
3758}
3759
3760void qemu_init_vcpu(void *_env)
3761{
3762 CPUState *env = _env;
3763
3764 if (kvm_enabled())
3765 kvm_init_vcpu(env);
3766 return;
3767}
3768
3769int qemu_cpu_self(void *env)
3770{
3771 return 1;
3772}
3773
3774static void resume_all_vcpus(void)
3775{
3776}
3777
3778static void pause_all_vcpus(void)
3779{
3780}
3781
3782void qemu_cpu_kick(void *env)
3783{
3784 return;
3785}
3786
3787void qemu_notify_event(void)
3788{
3789 CPUState *env = cpu_single_env;
3790
3791 if (env) {
3792 cpu_exit(env);
3793#ifdef USE_KQEMU
3794 if (env->kqemu_enabled)
3795 kqemu_cpu_interrupt(env);
3796#endif
3797 }
3798}
3799
3800#define qemu_mutex_lock_iothread() do { } while (0)
3801#define qemu_mutex_unlock_iothread() do { } while (0)
3802
3803void vm_stop(int reason)
3804{
3805 do_vm_stop(reason);
3806}
3807
3808#else /* CONFIG_IOTHREAD */
3809
3810#include "qemu-thread.h"
3811
3812QemuMutex qemu_global_mutex;
3813static QemuMutex qemu_fair_mutex;
3814
3815static QemuThread io_thread;
3816
3817static QemuThread *tcg_cpu_thread;
3818static QemuCond *tcg_halt_cond;
3819
3820static int qemu_system_ready;
3821/* cpu creation */
3822static QemuCond qemu_cpu_cond;
3823/* system init */
3824static QemuCond qemu_system_cond;
3825static QemuCond qemu_pause_cond;
3826
3827static void block_io_signals(void);
3828static void unblock_io_signals(void);
3829static int tcg_has_work(void);
3830
3831static int qemu_init_main_loop(void)
3832{
3833 int ret;
3834
3835 ret = qemu_event_init();
3836 if (ret)
3837 return ret;
3838
3839 qemu_cond_init(&qemu_pause_cond);
3840 qemu_mutex_init(&qemu_fair_mutex);
3841 qemu_mutex_init(&qemu_global_mutex);
3842 qemu_mutex_lock(&qemu_global_mutex);
3843
3844 unblock_io_signals();
3845 qemu_thread_self(&io_thread);
3846
3847 return 0;
3848}
3849
3850static void qemu_wait_io_event(CPUState *env)
3851{
3852 while (!tcg_has_work())
3853 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3854
3855 qemu_mutex_unlock(&qemu_global_mutex);
3856
3857 /*
3858 * Users of qemu_global_mutex can be starved, having no chance
3859 * to acquire it since this path will get to it first.
3860 * So use another lock to provide fairness.
3861 */
3862 qemu_mutex_lock(&qemu_fair_mutex);
3863 qemu_mutex_unlock(&qemu_fair_mutex);
3864
3865 qemu_mutex_lock(&qemu_global_mutex);
3866 if (env->stop) {
3867 env->stop = 0;
3868 env->stopped = 1;
3869 qemu_cond_signal(&qemu_pause_cond);
3870 }
3871}
3872
3873static int qemu_cpu_exec(CPUState *env);
3874
3875static void *kvm_cpu_thread_fn(void *arg)
3876{
3877 CPUState *env = arg;
3878
3879 block_io_signals();
3880 qemu_thread_self(env->thread);
3881
3882 /* signal CPU creation */
3883 qemu_mutex_lock(&qemu_global_mutex);
3884 env->created = 1;
3885 qemu_cond_signal(&qemu_cpu_cond);
3886
3887 /* and wait for machine initialization */
3888 while (!qemu_system_ready)
3889 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3890
3891 while (1) {
3892 if (cpu_can_run(env))
3893 qemu_cpu_exec(env);
3894 qemu_wait_io_event(env);
3895 }
3896
3897 return NULL;
3898}
3899
3900static void tcg_cpu_exec(void);
3901
3902static void *tcg_cpu_thread_fn(void *arg)
3903{
3904 CPUState *env = arg;
3905
3906 block_io_signals();
3907 qemu_thread_self(env->thread);
3908
3909 /* signal CPU creation */
3910 qemu_mutex_lock(&qemu_global_mutex);
3911 for (env = first_cpu; env != NULL; env = env->next_cpu)
3912 env->created = 1;
3913 qemu_cond_signal(&qemu_cpu_cond);
3914
3915 /* and wait for machine initialization */
3916 while (!qemu_system_ready)
3917 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3918
3919 while (1) {
3920 tcg_cpu_exec();
3921 qemu_wait_io_event(cur_cpu);
3922 }
3923
3924 return NULL;
3925}
3926
3927void qemu_cpu_kick(void *_env)
3928{
3929 CPUState *env = _env;
3930 qemu_cond_broadcast(env->halt_cond);
3931 if (kvm_enabled())
3932 qemu_thread_signal(env->thread, SIGUSR1);
3933}
3934
3935int qemu_cpu_self(void *env)
3936{
3937 return (cpu_single_env != NULL);
3938}
3939
3940static void cpu_signal(int sig)
3941{
3942 if (cpu_single_env)
3943 cpu_exit(cpu_single_env);
3944}
3945
3946static void block_io_signals(void)
3947{
3948 sigset_t set;
3949 struct sigaction sigact;
3950
3951 sigemptyset(&set);
3952 sigaddset(&set, SIGUSR2);
3953 sigaddset(&set, SIGIO);
3954 sigaddset(&set, SIGALRM);
3955 pthread_sigmask(SIG_BLOCK, &set, NULL);
3956
3957 sigemptyset(&set);
3958 sigaddset(&set, SIGUSR1);
3959 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3960
3961 memset(&sigact, 0, sizeof(sigact));
3962 sigact.sa_handler = cpu_signal;
3963 sigaction(SIGUSR1, &sigact, NULL);
3964}
3965
3966static void unblock_io_signals(void)
3967{
3968 sigset_t set;
3969
3970 sigemptyset(&set);
3971 sigaddset(&set, SIGUSR2);
3972 sigaddset(&set, SIGIO);
3973 sigaddset(&set, SIGALRM);
3974 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3975
3976 sigemptyset(&set);
3977 sigaddset(&set, SIGUSR1);
3978 pthread_sigmask(SIG_BLOCK, &set, NULL);
3979}
3980
3981static void qemu_signal_lock(unsigned int msecs)
3982{
3983 qemu_mutex_lock(&qemu_fair_mutex);
3984
3985 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3986 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3987 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3988 break;
3989 }
3990 qemu_mutex_unlock(&qemu_fair_mutex);
3991}
3992
3993static void qemu_mutex_lock_iothread(void)
3994{
3995 if (kvm_enabled()) {
3996 qemu_mutex_lock(&qemu_fair_mutex);
3997 qemu_mutex_lock(&qemu_global_mutex);
3998 qemu_mutex_unlock(&qemu_fair_mutex);
3999 } else
4000 qemu_signal_lock(100);
4001}
4002
4003static void qemu_mutex_unlock_iothread(void)
4004{
4005 qemu_mutex_unlock(&qemu_global_mutex);
4006}
4007
4008static int all_vcpus_paused(void)
4009{
4010 CPUState *penv = first_cpu;
4011
4012 while (penv) {
4013 if (!penv->stopped)
4014 return 0;
4015 penv = (CPUState *)penv->next_cpu;
4016 }
4017
4018 return 1;
4019}
4020
4021static void pause_all_vcpus(void)
4022{
4023 CPUState *penv = first_cpu;
4024
4025 while (penv) {
4026 penv->stop = 1;
4027 qemu_thread_signal(penv->thread, SIGUSR1);
4028 qemu_cpu_kick(penv);
4029 penv = (CPUState *)penv->next_cpu;
4030 }
4031
4032 while (!all_vcpus_paused()) {
4033 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4034 penv = first_cpu;
4035 while (penv) {
4036 qemu_thread_signal(penv->thread, SIGUSR1);
4037 penv = (CPUState *)penv->next_cpu;
4038 }
4039 }
4040}
4041
4042static void resume_all_vcpus(void)
4043{
4044 CPUState *penv = first_cpu;
4045
4046 while (penv) {
4047 penv->stop = 0;
4048 penv->stopped = 0;
4049 qemu_thread_signal(penv->thread, SIGUSR1);
4050 qemu_cpu_kick(penv);
4051 penv = (CPUState *)penv->next_cpu;
4052 }
4053}
4054
4055static void tcg_init_vcpu(void *_env)
4056{
4057 CPUState *env = _env;
4058 /* share a single thread for all cpus with TCG */
4059 if (!tcg_cpu_thread) {
4060 env->thread = qemu_mallocz(sizeof(QemuThread));
4061 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4062 qemu_cond_init(env->halt_cond);
4063 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4064 while (env->created == 0)
4065 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4066 tcg_cpu_thread = env->thread;
4067 tcg_halt_cond = env->halt_cond;
4068 } else {
4069 env->thread = tcg_cpu_thread;
4070 env->halt_cond = tcg_halt_cond;
4071 }
4072}
4073
4074static void kvm_start_vcpu(CPUState *env)
4075{
4076 kvm_init_vcpu(env);
4077 env->thread = qemu_mallocz(sizeof(QemuThread));
4078 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4079 qemu_cond_init(env->halt_cond);
4080 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4081 while (env->created == 0)
4082 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4083}
4084
4085void qemu_init_vcpu(void *_env)
4086{
4087 CPUState *env = _env;
4088
4089 if (kvm_enabled())
4090 kvm_start_vcpu(env);
4091 else
4092 tcg_init_vcpu(env);
4093}
4094
4095void qemu_notify_event(void)
4096{
4097 qemu_event_increment();
4098}
4099
4100void vm_stop(int reason)
4101{
4102 QemuThread me;
4103 qemu_thread_self(&me);
4104
4105 if (!qemu_thread_equal(&me, &io_thread)) {
4106 qemu_system_vmstop_request(reason);
4107 /*
4108 * FIXME: should not return to device code in case
4109 * vm_stop() has been requested.
4110 */
4111 if (cpu_single_env) {
4112 cpu_exit(cpu_single_env);
4113 cpu_single_env->stop = 1;
4114 }
4115 return;
4116 }
4117 do_vm_stop(reason);
4118}
4119
4120#endif
4121
4122
4123#ifdef _WIN32
4124static void host_main_loop_wait(int *timeout)
4125{
4126 int ret, ret2, i;
4127 PollingEntry *pe;
4128
4129
4130 /* XXX: need to suppress polling by better using win32 events */
4131 ret = 0;
4132 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4133 ret |= pe->func(pe->opaque);
4134 }
4135 if (ret == 0) {
4136 int err;
4137 WaitObjects *w = &wait_objects;
4138
4139 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4140 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4141 if (w->func[ret - WAIT_OBJECT_0])
4142 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4143
4144 /* Check for additional signaled events */
4145 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4146
4147 /* Check if event is signaled */
4148 ret2 = WaitForSingleObject(w->events[i], 0);
4149 if(ret2 == WAIT_OBJECT_0) {
4150 if (w->func[i])
4151 w->func[i](w->opaque[i]);
4152 } else if (ret2 == WAIT_TIMEOUT) {
4153 } else {
4154 err = GetLastError();
4155 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4156 }
4157 }
4158 } else if (ret == WAIT_TIMEOUT) {
4159 } else {
4160 err = GetLastError();
4161 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4162 }
4163 }
4164
4165 *timeout = 0;
4166}
4167#else
4168static void host_main_loop_wait(int *timeout)
4169{
4170}
4171#endif
4172
4173void main_loop_wait(int timeout)
4174{
4175 IOHandlerRecord *ioh;
4176 fd_set rfds, wfds, xfds;
4177 int ret, nfds;
4178 struct timeval tv;
4179
4180 qemu_bh_update_timeout(&timeout);
4181
4182 host_main_loop_wait(&timeout);
4183
4184 /* poll any events */
4185 /* XXX: separate device handlers from system ones */
4186 nfds = -1;
4187 FD_ZERO(&rfds);
4188 FD_ZERO(&wfds);
4189 FD_ZERO(&xfds);
4190 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4191 if (ioh->deleted)
4192 continue;
4193 if (ioh->fd_read &&
4194 (!ioh->fd_read_poll ||
4195 ioh->fd_read_poll(ioh->opaque) != 0)) {
4196 FD_SET(ioh->fd, &rfds);
4197 if (ioh->fd > nfds)
4198 nfds = ioh->fd;
4199 }
4200 if (ioh->fd_write) {
4201 FD_SET(ioh->fd, &wfds);
4202 if (ioh->fd > nfds)
4203 nfds = ioh->fd;
4204 }
4205 }
4206
4207 tv.tv_sec = timeout / 1000;
4208 tv.tv_usec = (timeout % 1000) * 1000;
4209
4210#if defined(CONFIG_SLIRP)
4211 if (slirp_is_inited()) {
4212 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4213 }
4214#endif
4215 qemu_mutex_unlock_iothread();
4216 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4217 qemu_mutex_lock_iothread();
4218 if (ret > 0) {
4219 IOHandlerRecord **pioh;
4220
4221 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4222 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4223 ioh->fd_read(ioh->opaque);
4224 }
4225 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4226 ioh->fd_write(ioh->opaque);
4227 }
4228 }
4229
4230 /* remove deleted IO handlers */
4231 pioh = &first_io_handler;
4232 while (*pioh) {
4233 ioh = *pioh;
4234 if (ioh->deleted) {
4235 *pioh = ioh->next;
4236 qemu_free(ioh);
4237 } else
4238 pioh = &ioh->next;
4239 }
4240 }
4241#if defined(CONFIG_SLIRP)
4242 if (slirp_is_inited()) {
4243 if (ret < 0) {
4244 FD_ZERO(&rfds);
4245 FD_ZERO(&wfds);
4246 FD_ZERO(&xfds);
4247 }
4248 slirp_select_poll(&rfds, &wfds, &xfds);
4249 }
4250#endif
4251
4252 /* rearm timer, if not periodic */
4253 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4254 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4255 qemu_rearm_alarm_timer(alarm_timer);
4256 }
4257
4258 /* vm time timers */
4259 if (vm_running) {
4260 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4261 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4262 qemu_get_clock(vm_clock));
4263 }
4264
4265 /* real time timers */
4266 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4267 qemu_get_clock(rt_clock));
4268
4269 /* Check bottom-halves last in case any of the earlier events triggered
4270 them. */
4271 qemu_bh_poll();
4272
4273}
4274
4275static int qemu_cpu_exec(CPUState *env)
4276{
4277 int ret;
4278#ifdef CONFIG_PROFILER
4279 int64_t ti;
4280#endif
4281
4282#ifdef CONFIG_PROFILER
4283 ti = profile_getclock();
4284#endif
4285 if (use_icount) {
4286 int64_t count;
4287 int decr;
4288 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4289 env->icount_decr.u16.low = 0;
4290 env->icount_extra = 0;
4291 count = qemu_next_deadline();
4292 count = (count + (1 << icount_time_shift) - 1)
4293 >> icount_time_shift;
4294 qemu_icount += count;
4295 decr = (count > 0xffff) ? 0xffff : count;
4296 count -= decr;
4297 env->icount_decr.u16.low = decr;
4298 env->icount_extra = count;
4299 }
4300 ret = cpu_exec(env);
4301#ifdef CONFIG_PROFILER
4302 qemu_time += profile_getclock() - ti;
4303#endif
4304 if (use_icount) {
4305 /* Fold pending instructions back into the
4306 instruction counter, and clear the interrupt flag. */
4307 qemu_icount -= (env->icount_decr.u16.low
4308 + env->icount_extra);
4309 env->icount_decr.u32 = 0;
4310 env->icount_extra = 0;
4311 }
4312 return ret;
4313}
4314
4315static void tcg_cpu_exec(void)
4316{
4317 int ret = 0;
4318
4319 if (next_cpu == NULL)
4320 next_cpu = first_cpu;
4321 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4322 CPUState *env = cur_cpu = next_cpu;
4323
4324 if (!vm_running)
4325 break;
4326 if (timer_alarm_pending) {
4327 timer_alarm_pending = 0;
4328 break;
4329 }
4330 if (cpu_can_run(env))
4331 ret = qemu_cpu_exec(env);
4332 if (ret == EXCP_DEBUG) {
4333 gdb_set_stop_cpu(env);
4334 debug_requested = 1;
4335 break;
4336 }
4337 }
4338}
4339
4340static int cpu_has_work(CPUState *env)
4341{
4342 if (env->stop)
4343 return 1;
4344 if (env->stopped)
4345 return 0;
4346 if (!env->halted)
4347 return 1;
4348 if (qemu_cpu_has_work(env))
4349 return 1;
4350 return 0;
4351}
4352
4353static int tcg_has_work(void)
4354{
4355 CPUState *env;
4356
4357 for (env = first_cpu; env != NULL; env = env->next_cpu)
4358 if (cpu_has_work(env))
4359 return 1;
4360 return 0;
4361}
4362
4363static int qemu_calculate_timeout(void)
4364{
4365 int timeout;
4366
4367 if (!vm_running)
4368 timeout = 5000;
4369 else if (tcg_has_work())
4370 timeout = 0;
4371 else if (!use_icount)
4372 timeout = 5000;
4373 else {
4374 /* XXX: use timeout computed from timers */
4375 int64_t add;
4376 int64_t delta;
4377 /* Advance virtual time to the next event. */
4378 if (use_icount == 1) {
4379 /* When not using an adaptive execution frequency
4380 we tend to get badly out of sync with real time,
4381 so just delay for a reasonable amount of time. */
4382 delta = 0;
4383 } else {
4384 delta = cpu_get_icount() - cpu_get_clock();
4385 }
4386 if (delta > 0) {
4387 /* If virtual time is ahead of real time then just
4388 wait for IO. */
4389 timeout = (delta / 1000000) + 1;
4390 } else {
4391 /* Wait for either IO to occur or the next
4392 timer event. */
4393 add = qemu_next_deadline();
4394 /* We advance the timer before checking for IO.
4395 Limit the amount we advance so that early IO
4396 activity won't get the guest too far ahead. */
4397 if (add > 10000000)
4398 add = 10000000;
4399 delta += add;
4400 add = (add + (1 << icount_time_shift) - 1)
4401 >> icount_time_shift;
4402 qemu_icount += add;
4403 timeout = delta / 1000000;
4404 if (timeout < 0)
4405 timeout = 0;
4406 }
4407 }
4408
4409 return timeout;
4410}
4411
4412static int vm_can_run(void)
4413{
4414 if (powerdown_requested)
4415 return 0;
4416 if (reset_requested)
4417 return 0;
4418 if (shutdown_requested)
4419 return 0;
4420 if (debug_requested)
4421 return 0;
4422 return 1;
4423}
4424
4425static void main_loop(void)
4426{
4427 int r;
4428
4429#ifdef CONFIG_IOTHREAD
4430 qemu_system_ready = 1;
4431 qemu_cond_broadcast(&qemu_system_cond);
4432#endif
4433
4434 for (;;) {
4435 do {
4436#ifdef CONFIG_PROFILER
4437 int64_t ti;
4438#endif
4439#ifndef CONFIG_IOTHREAD
4440 tcg_cpu_exec();
4441#endif
4442#ifdef CONFIG_PROFILER
4443 ti = profile_getclock();
4444#endif
4445#ifdef CONFIG_IOTHREAD
4446 main_loop_wait(1000);
4447#else
4448 main_loop_wait(qemu_calculate_timeout());
4449#endif
4450#ifdef CONFIG_PROFILER
4451 dev_time += profile_getclock() - ti;
4452#endif
4453 } while (vm_can_run());
4454
4455 if (qemu_debug_requested())
4456 vm_stop(EXCP_DEBUG);
4457 if (qemu_shutdown_requested()) {
4458 if (no_shutdown) {
4459 vm_stop(0);
4460 no_shutdown = 0;
4461 } else
4462 break;
4463 }
4464 if (qemu_reset_requested()) {
4465 pause_all_vcpus();
4466 qemu_system_reset();
4467 resume_all_vcpus();
4468 }
4469 if (qemu_powerdown_requested())
4470 qemu_system_powerdown();
4471 if ((r = qemu_vmstop_requested()))
4472 vm_stop(r);
4473 }
4474 pause_all_vcpus();
4475}
4476
4477static void version(void)
4478{
4479 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4480}
4481
4482static void help(int exitcode)
4483{
4484 version();
4485 printf("usage: %s [options] [disk_image]\n"
4486 "\n"
4487 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4488 "\n"
4489#define DEF(option, opt_arg, opt_enum, opt_help) \
4490 opt_help
4491#define DEFHEADING(text) stringify(text) "\n"
4492#include "qemu-options.h"
4493#undef DEF
4494#undef DEFHEADING
4495#undef GEN_DOCS
4496 "\n"
4497 "During emulation, the following keys are useful:\n"
4498 "ctrl-alt-f toggle full screen\n"
4499 "ctrl-alt-n switch to virtual console 'n'\n"
4500 "ctrl-alt toggle mouse and keyboard grab\n"
4501 "\n"
4502 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4503 ,
4504 "qemu",
4505 DEFAULT_RAM_SIZE,
4506#ifndef _WIN32
4507 DEFAULT_NETWORK_SCRIPT,
4508 DEFAULT_NETWORK_DOWN_SCRIPT,
4509#endif
4510 DEFAULT_GDBSTUB_PORT,
4511 "/tmp/qemu.log");
4512 exit(exitcode);
4513}
4514
4515#define HAS_ARG 0x0001
4516
4517enum {
4518#define DEF(option, opt_arg, opt_enum, opt_help) \
4519 opt_enum,
4520#define DEFHEADING(text)
4521#include "qemu-options.h"
4522#undef DEF
4523#undef DEFHEADING
4524#undef GEN_DOCS
4525};
4526
4527typedef struct QEMUOption {
4528 const char *name;
4529 int flags;
4530 int index;
4531} QEMUOption;
4532
4533static const QEMUOption qemu_options[] = {
4534 { "h", 0, QEMU_OPTION_h },
4535#define DEF(option, opt_arg, opt_enum, opt_help) \
4536 { option, opt_arg, opt_enum },
4537#define DEFHEADING(text)
4538#include "qemu-options.h"
4539#undef DEF
4540#undef DEFHEADING
4541#undef GEN_DOCS
4542 { NULL },
4543};
4544
4545#ifdef HAS_AUDIO
4546struct soundhw soundhw[] = {
4547#ifdef HAS_AUDIO_CHOICE
4548#if defined(TARGET_I386) || defined(TARGET_MIPS)
4549 {
4550 "pcspk",
4551 "PC speaker",
4552 0,
4553 1,
4554 { .init_isa = pcspk_audio_init }
4555 },
4556#endif
4557
4558#ifdef CONFIG_SB16
4559 {
4560 "sb16",
4561 "Creative Sound Blaster 16",
4562 0,
4563 1,
4564 { .init_isa = SB16_init }
4565 },
4566#endif
4567
4568#ifdef CONFIG_CS4231A
4569 {
4570 "cs4231a",
4571 "CS4231A",
4572 0,
4573 1,
4574 { .init_isa = cs4231a_init }
4575 },
4576#endif
4577
4578#ifdef CONFIG_ADLIB
4579 {
4580 "adlib",
4581#ifdef HAS_YMF262
4582 "Yamaha YMF262 (OPL3)",
4583#else
4584 "Yamaha YM3812 (OPL2)",
4585#endif
4586 0,
4587 1,
4588 { .init_isa = Adlib_init }
4589 },
4590#endif
4591
4592#ifdef CONFIG_GUS
4593 {
4594 "gus",
4595 "Gravis Ultrasound GF1",
4596 0,
4597 1,
4598 { .init_isa = GUS_init }
4599 },
4600#endif
4601
4602#ifdef CONFIG_AC97
4603 {
4604 "ac97",
4605 "Intel 82801AA AC97 Audio",
4606 0,
4607 0,
4608 { .init_pci = ac97_init }
4609 },
4610#endif
4611
4612#ifdef CONFIG_ES1370
4613 {
4614 "es1370",
4615 "ENSONIQ AudioPCI ES1370",
4616 0,
4617 0,
4618 { .init_pci = es1370_init }
4619 },
4620#endif
4621
4622#endif /* HAS_AUDIO_CHOICE */
4623
4624 { NULL, NULL, 0, 0, { NULL } }
4625};
4626
4627static void select_soundhw (const char *optarg)
4628{
4629 struct soundhw *c;
4630
4631 if (*optarg == '?') {
4632 show_valid_cards:
4633
4634 printf ("Valid sound card names (comma separated):\n");
4635 for (c = soundhw; c->name; ++c) {
4636 printf ("%-11s %s\n", c->name, c->descr);
4637 }
4638 printf ("\n-soundhw all will enable all of the above\n");
4639 exit (*optarg != '?');
4640 }
4641 else {
4642 size_t l;
4643 const char *p;
4644 char *e;
4645 int bad_card = 0;
4646
4647 if (!strcmp (optarg, "all")) {
4648 for (c = soundhw; c->name; ++c) {
4649 c->enabled = 1;
4650 }
4651 return;
4652 }
4653
4654 p = optarg;
4655 while (*p) {
4656 e = strchr (p, ',');
4657 l = !e ? strlen (p) : (size_t) (e - p);
4658
4659 for (c = soundhw; c->name; ++c) {
4660 if (!strncmp (c->name, p, l)) {
4661 c->enabled = 1;
4662 break;
4663 }
4664 }
4665
4666 if (!c->name) {
4667 if (l > 80) {
4668 fprintf (stderr,
4669 "Unknown sound card name (too big to show)\n");
4670 }
4671 else {
4672 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4673 (int) l, p);
4674 }
4675 bad_card = 1;
4676 }
4677 p += l + (e != NULL);
4678 }
4679
4680 if (bad_card)
4681 goto show_valid_cards;
4682 }
4683}
4684#endif
4685
4686static void select_vgahw (const char *p)
4687{
4688 const char *opts;
4689
4690 cirrus_vga_enabled = 0;
4691 std_vga_enabled = 0;
4692 vmsvga_enabled = 0;
4693 xenfb_enabled = 0;
4694 if (strstart(p, "std", &opts)) {
4695 std_vga_enabled = 1;
4696 } else if (strstart(p, "cirrus", &opts)) {
4697 cirrus_vga_enabled = 1;
4698 } else if (strstart(p, "vmware", &opts)) {
4699 vmsvga_enabled = 1;
4700 } else if (strstart(p, "xenfb", &opts)) {
4701 xenfb_enabled = 1;
4702 } else if (!strstart(p, "none", &opts)) {
4703 invalid_vga:
4704 fprintf(stderr, "Unknown vga type: %s\n", p);
4705 exit(1);
4706 }
4707 while (*opts) {
4708 const char *nextopt;
4709
4710 if (strstart(opts, ",retrace=", &nextopt)) {
4711 opts = nextopt;
4712 if (strstart(opts, "dumb", &nextopt))
4713 vga_retrace_method = VGA_RETRACE_DUMB;
4714 else if (strstart(opts, "precise", &nextopt))
4715 vga_retrace_method = VGA_RETRACE_PRECISE;
4716 else goto invalid_vga;
4717 } else goto invalid_vga;
4718 opts = nextopt;
4719 }
4720}
4721
4722#ifdef _WIN32
4723static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4724{
4725 exit(STATUS_CONTROL_C_EXIT);
4726 return TRUE;
4727}
4728#endif
4729
4730int qemu_uuid_parse(const char *str, uint8_t *uuid)
4731{
4732 int ret;
4733
4734 if(strlen(str) != 36)
4735 return -1;
4736
4737 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4738 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4739 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4740
4741 if(ret != 16)
4742 return -1;
4743
4744#ifdef TARGET_I386
4745 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4746#endif
4747
4748 return 0;
4749}
4750
4751#define MAX_NET_CLIENTS 32
4752
4753#ifndef _WIN32
4754
4755static void termsig_handler(int signal)
4756{
4757 qemu_system_shutdown_request();
4758}
4759
4760static void termsig_setup(void)
4761{
4762 struct sigaction act;
4763
4764 memset(&act, 0, sizeof(act));
4765 act.sa_handler = termsig_handler;
4766 sigaction(SIGINT, &act, NULL);
4767 sigaction(SIGHUP, &act, NULL);
4768 sigaction(SIGTERM, &act, NULL);
4769}
4770
4771#endif
4772
4773int main(int argc, char **argv, char **envp)
4774{
4775#ifdef CONFIG_GDBSTUB
4776 const char *gdbstub_dev = NULL;
4777#endif
4778 uint32_t boot_devices_bitmap = 0;
4779 int i;
4780 int snapshot, linux_boot, net_boot;
4781 const char *initrd_filename;
4782 const char *kernel_filename, *kernel_cmdline;
4783 const char *boot_devices = "";
4784 DisplayState *ds;
4785 DisplayChangeListener *dcl;
4786 int cyls, heads, secs, translation;
4787 const char *net_clients[MAX_NET_CLIENTS];
4788 int nb_net_clients;
4789 const char *bt_opts[MAX_BT_CMDLINE];
4790 int nb_bt_opts;
4791 int hda_index;
4792 int optind;
4793 const char *r, *optarg;
4794 CharDriverState *monitor_hd = NULL;
4795 const char *monitor_device;
4796 const char *serial_devices[MAX_SERIAL_PORTS];
4797 int serial_device_index;
4798 const char *parallel_devices[MAX_PARALLEL_PORTS];
4799 int parallel_device_index;
4800 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4801 int virtio_console_index;
4802 const char *loadvm = NULL;
4803 QEMUMachine *machine;
4804 const char *cpu_model;
4805 const char *usb_devices[MAX_USB_CMDLINE];
4806 int usb_devices_index;
4807#ifndef _WIN32
4808 int fds[2];
4809#endif
4810 int tb_size;
4811 const char *pid_file = NULL;
4812 const char *incoming = NULL;
4813#ifndef _WIN32
4814 int fd = 0;
4815 struct passwd *pwd = NULL;
4816 const char *chroot_dir = NULL;
4817 const char *run_as = NULL;
4818#endif
4819 CPUState *env;
4820
4821 qemu_cache_utils_init(envp);
4822
4823 LIST_INIT (&vm_change_state_head);
4824#ifndef _WIN32
4825 {
4826 struct sigaction act;
4827 sigfillset(&act.sa_mask);
4828 act.sa_flags = 0;
4829 act.sa_handler = SIG_IGN;
4830 sigaction(SIGPIPE, &act, NULL);
4831 }
4832#else
4833 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4834 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4835 QEMU to run on a single CPU */
4836 {
4837 HANDLE h;
4838 DWORD mask, smask;
4839 int i;
4840 h = GetCurrentProcess();
4841 if (GetProcessAffinityMask(h, &mask, &smask)) {
4842 for(i = 0; i < 32; i++) {
4843 if (mask & (1 << i))
4844 break;
4845 }
4846 if (i != 32) {
4847 mask = 1 << i;
4848 SetProcessAffinityMask(h, mask);
4849 }
4850 }
4851 }
4852#endif
4853
4854 register_machines();
4855 machine = first_machine;
4856 cpu_model = NULL;
4857 initrd_filename = NULL;
4858 ram_size = 0;
4859 vga_ram_size = VGA_RAM_SIZE;
4860 snapshot = 0;
4861 nographic = 0;
4862 curses = 0;
4863 kernel_filename = NULL;
4864 kernel_cmdline = "";
4865 cyls = heads = secs = 0;
4866 translation = BIOS_ATA_TRANSLATION_AUTO;
4867 monitor_device = "vc:80Cx24C";
4868
4869 serial_devices[0] = "vc:80Cx24C";
4870 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4871 serial_devices[i] = NULL;
4872 serial_device_index = 0;
4873
4874 parallel_devices[0] = "vc:80Cx24C";
4875 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4876 parallel_devices[i] = NULL;
4877 parallel_device_index = 0;
4878
4879 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4880 virtio_consoles[i] = NULL;
4881 virtio_console_index = 0;
4882
4883 for (i = 0; i < MAX_NODES; i++) {
4884 node_mem[i] = 0;
4885 node_cpumask[i] = 0;
4886 }
4887
4888 usb_devices_index = 0;
4889
4890 nb_net_clients = 0;
4891 nb_bt_opts = 0;
4892 nb_drives = 0;
4893 nb_drives_opt = 0;
4894 nb_numa_nodes = 0;
4895 hda_index = -1;
4896
4897 nb_nics = 0;
4898
4899 tb_size = 0;
4900 autostart= 1;
4901
4902 optind = 1;
4903 for(;;) {
4904 if (optind >= argc)
4905 break;
4906 r = argv[optind];
4907 if (r[0] != '-') {
4908 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4909 } else {
4910 const QEMUOption *popt;
4911
4912 optind++;
4913 /* Treat --foo the same as -foo. */
4914 if (r[1] == '-')
4915 r++;
4916 popt = qemu_options;
4917 for(;;) {
4918 if (!popt->name) {
4919 fprintf(stderr, "%s: invalid option -- '%s'\n",
4920 argv[0], r);
4921 exit(1);
4922 }
4923 if (!strcmp(popt->name, r + 1))
4924 break;
4925 popt++;
4926 }
4927 if (popt->flags & HAS_ARG) {
4928 if (optind >= argc) {
4929 fprintf(stderr, "%s: option '%s' requires an argument\n",
4930 argv[0], r);
4931 exit(1);
4932 }
4933 optarg = argv[optind++];
4934 } else {
4935 optarg = NULL;
4936 }
4937
4938 switch(popt->index) {
4939 case QEMU_OPTION_M:
4940 machine = find_machine(optarg);
4941 if (!machine) {
4942 QEMUMachine *m;
4943 printf("Supported machines are:\n");
4944 for(m = first_machine; m != NULL; m = m->next) {
4945 printf("%-10s %s%s\n",
4946 m->name, m->desc,
4947 m == first_machine ? " (default)" : "");
4948 }
4949 exit(*optarg != '?');
4950 }
4951 break;
4952 case QEMU_OPTION_cpu:
4953 /* hw initialization will check this */
4954 if (*optarg == '?') {
4955/* XXX: implement xxx_cpu_list for targets that still miss it */
4956#if defined(cpu_list)
4957 cpu_list(stdout, &fprintf);
4958#endif
4959 exit(0);
4960 } else {
4961 cpu_model = optarg;
4962 }
4963 break;
4964 case QEMU_OPTION_initrd:
4965 initrd_filename = optarg;
4966 break;
4967 case QEMU_OPTION_hda:
4968 if (cyls == 0)
4969 hda_index = drive_add(optarg, HD_ALIAS, 0);
4970 else
4971 hda_index = drive_add(optarg, HD_ALIAS
4972 ",cyls=%d,heads=%d,secs=%d%s",
4973 0, cyls, heads, secs,
4974 translation == BIOS_ATA_TRANSLATION_LBA ?
4975 ",trans=lba" :
4976 translation == BIOS_ATA_TRANSLATION_NONE ?
4977 ",trans=none" : "");
4978 break;
4979 case QEMU_OPTION_hdb:
4980 case QEMU_OPTION_hdc:
4981 case QEMU_OPTION_hdd:
4982 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4983 break;
4984 case QEMU_OPTION_drive:
4985 drive_add(NULL, "%s", optarg);
4986 break;
4987 case QEMU_OPTION_mtdblock:
4988 drive_add(optarg, MTD_ALIAS);
4989 break;
4990 case QEMU_OPTION_sd:
4991 drive_add(optarg, SD_ALIAS);
4992 break;
4993 case QEMU_OPTION_pflash:
4994 drive_add(optarg, PFLASH_ALIAS);
4995 break;
4996 case QEMU_OPTION_snapshot:
4997 snapshot = 1;
4998 break;
4999 case QEMU_OPTION_hdachs:
5000 {
5001 const char *p;
5002 p = optarg;
5003 cyls = strtol(p, (char **)&p, 0);
5004 if (cyls < 1 || cyls > 16383)
5005 goto chs_fail;
5006 if (*p != ',')
5007 goto chs_fail;
5008 p++;
5009 heads = strtol(p, (char **)&p, 0);
5010 if (heads < 1 || heads > 16)
5011 goto chs_fail;
5012 if (*p != ',')
5013 goto chs_fail;
5014 p++;
5015 secs = strtol(p, (char **)&p, 0);
5016 if (secs < 1 || secs > 63)
5017 goto chs_fail;
5018 if (*p == ',') {
5019 p++;
5020 if (!strcmp(p, "none"))
5021 translation = BIOS_ATA_TRANSLATION_NONE;
5022 else if (!strcmp(p, "lba"))
5023 translation = BIOS_ATA_TRANSLATION_LBA;
5024 else if (!strcmp(p, "auto"))
5025 translation = BIOS_ATA_TRANSLATION_AUTO;
5026 else
5027 goto chs_fail;
5028 } else if (*p != '\0') {
5029 chs_fail:
5030 fprintf(stderr, "qemu: invalid physical CHS format\n");
5031 exit(1);
5032 }
5033 if (hda_index != -1)
5034 snprintf(drives_opt[hda_index].opt,
5035 sizeof(drives_opt[hda_index].opt),
5036 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5037 0, cyls, heads, secs,
5038 translation == BIOS_ATA_TRANSLATION_LBA ?
5039 ",trans=lba" :
5040 translation == BIOS_ATA_TRANSLATION_NONE ?
5041 ",trans=none" : "");
5042 }
5043 break;
5044 case QEMU_OPTION_numa:
5045 if (nb_numa_nodes >= MAX_NODES) {
5046 fprintf(stderr, "qemu: too many NUMA nodes\n");
5047 exit(1);
5048 }
5049 numa_add(optarg);
5050 break;
5051 case QEMU_OPTION_nographic:
5052 nographic = 1;
5053 break;
5054#ifdef CONFIG_CURSES
5055 case QEMU_OPTION_curses:
5056 curses = 1;
5057 break;
5058#endif
5059 case QEMU_OPTION_portrait:
5060 graphic_rotate = 1;
5061 break;
5062 case QEMU_OPTION_kernel:
5063 kernel_filename = optarg;
5064 break;
5065 case QEMU_OPTION_append:
5066 kernel_cmdline = optarg;
5067 break;
5068 case QEMU_OPTION_cdrom:
5069 drive_add(optarg, CDROM_ALIAS);
5070 break;
5071 case QEMU_OPTION_boot:
5072 boot_devices = optarg;
5073 /* We just do some generic consistency checks */
5074 {
5075 /* Could easily be extended to 64 devices if needed */
5076 const char *p;
5077
5078 boot_devices_bitmap = 0;
5079 for (p = boot_devices; *p != '\0'; p++) {
5080 /* Allowed boot devices are:
5081 * a b : floppy disk drives
5082 * c ... f : IDE disk drives
5083 * g ... m : machine implementation dependant drives
5084 * n ... p : network devices
5085 * It's up to each machine implementation to check
5086 * if the given boot devices match the actual hardware
5087 * implementation and firmware features.
5088 */
5089 if (*p < 'a' || *p > 'q') {
5090 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5091 exit(1);
5092 }
5093 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5094 fprintf(stderr,
5095 "Boot device '%c' was given twice\n",*p);
5096 exit(1);
5097 }
5098 boot_devices_bitmap |= 1 << (*p - 'a');
5099 }
5100 }
5101 break;
5102 case QEMU_OPTION_fda:
5103 case QEMU_OPTION_fdb:
5104 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5105 break;
5106#ifdef TARGET_I386
5107 case QEMU_OPTION_no_fd_bootchk:
5108 fd_bootchk = 0;
5109 break;
5110#endif
5111 case QEMU_OPTION_net:
5112 if (nb_net_clients >= MAX_NET_CLIENTS) {
5113 fprintf(stderr, "qemu: too many network clients\n");
5114 exit(1);
5115 }
5116 net_clients[nb_net_clients] = optarg;
5117 nb_net_clients++;
5118 break;
5119#ifdef CONFIG_SLIRP
5120 case QEMU_OPTION_tftp:
5121 tftp_prefix = optarg;
5122 break;
5123 case QEMU_OPTION_bootp:
5124 bootp_filename = optarg;
5125 break;
5126#ifndef _WIN32
5127 case QEMU_OPTION_smb:
5128 net_slirp_smb(optarg);
5129 break;
5130#endif
5131 case QEMU_OPTION_redir:
5132 net_slirp_redir(NULL, optarg);
5133 break;
5134#endif
5135 case QEMU_OPTION_bt:
5136 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5137 fprintf(stderr, "qemu: too many bluetooth options\n");
5138 exit(1);
5139 }
5140 bt_opts[nb_bt_opts++] = optarg;
5141 break;
5142#ifdef HAS_AUDIO
5143 case QEMU_OPTION_audio_help:
5144 AUD_help ();
5145 exit (0);
5146 break;
5147 case QEMU_OPTION_soundhw:
5148 select_soundhw (optarg);
5149 break;
5150#endif
5151 case QEMU_OPTION_h:
5152 help(0);
5153 break;
5154 case QEMU_OPTION_version:
5155 version();
5156 exit(0);
5157 break;
5158 case QEMU_OPTION_m: {
5159 uint64_t value;
5160 char *ptr;
5161
5162 value = strtoul(optarg, &ptr, 10);
5163 switch (*ptr) {
5164 case 0: case 'M': case 'm':
5165 value <<= 20;
5166 break;
5167 case 'G': case 'g':
5168 value <<= 30;
5169 break;
5170 default:
5171 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5172 exit(1);
5173 }
5174
5175 /* On 32-bit hosts, QEMU is limited by virtual address space */
5176 if (value > (2047 << 20)
5177#ifndef CONFIG_KQEMU
5178 && HOST_LONG_BITS == 32
5179#endif
5180 ) {
5181 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5182 exit(1);
5183 }
5184 if (value != (uint64_t)(ram_addr_t)value) {
5185 fprintf(stderr, "qemu: ram size too large\n");
5186 exit(1);
5187 }
5188 ram_size = value;
5189 break;
5190 }
5191 case QEMU_OPTION_d:
5192 {
5193 int mask;
5194 const CPULogItem *item;
5195
5196 mask = cpu_str_to_log_mask(optarg);
5197 if (!mask) {
5198 printf("Log items (comma separated):\n");
5199 for(item = cpu_log_items; item->mask != 0; item++) {
5200 printf("%-10s %s\n", item->name, item->help);
5201 }
5202 exit(1);
5203 }
5204 cpu_set_log(mask);
5205 }
5206 break;
5207#ifdef CONFIG_GDBSTUB
5208 case QEMU_OPTION_s:
5209 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5210 break;
5211 case QEMU_OPTION_gdb:
5212 gdbstub_dev = optarg;
5213 break;
5214#endif
5215 case QEMU_OPTION_L:
5216 bios_dir = optarg;
5217 break;
5218 case QEMU_OPTION_bios:
5219 bios_name = optarg;
5220 break;
5221 case QEMU_OPTION_singlestep:
5222 singlestep = 1;
5223 break;
5224 case QEMU_OPTION_S:
5225 autostart = 0;
5226 break;
5227#ifndef _WIN32
5228 case QEMU_OPTION_k:
5229 keyboard_layout = optarg;
5230 break;
5231#endif
5232 case QEMU_OPTION_localtime:
5233 rtc_utc = 0;
5234 break;
5235 case QEMU_OPTION_vga:
5236 select_vgahw (optarg);
5237 break;
5238#if defined(TARGET_PPC) || defined(TARGET_SPARC)
5239 case QEMU_OPTION_g:
5240 {
5241 const char *p;
5242 int w, h, depth;
5243 p = optarg;
5244 w = strtol(p, (char **)&p, 10);
5245 if (w <= 0) {
5246 graphic_error:
5247 fprintf(stderr, "qemu: invalid resolution or depth\n");
5248 exit(1);
5249 }
5250 if (*p != 'x')
5251 goto graphic_error;
5252 p++;
5253 h = strtol(p, (char **)&p, 10);
5254 if (h <= 0)
5255 goto graphic_error;
5256 if (*p == 'x') {
5257 p++;
5258 depth = strtol(p, (char **)&p, 10);
5259 if (depth != 8 && depth != 15 && depth != 16 &&
5260 depth != 24 && depth != 32)
5261 goto graphic_error;
5262 } else if (*p == '\0') {
5263 depth = graphic_depth;
5264 } else {
5265 goto graphic_error;
5266 }
5267
5268 graphic_width = w;
5269 graphic_height = h;
5270 graphic_depth = depth;
5271 }
5272 break;
5273#endif
5274 case QEMU_OPTION_echr:
5275 {
5276 char *r;
5277 term_escape_char = strtol(optarg, &r, 0);
5278 if (r == optarg)
5279 printf("Bad argument to echr\n");
5280 break;
5281 }
5282 case QEMU_OPTION_monitor:
5283 monitor_device = optarg;
5284 break;
5285 case QEMU_OPTION_serial:
5286 if (serial_device_index >= MAX_SERIAL_PORTS) {
5287 fprintf(stderr, "qemu: too many serial ports\n");
5288 exit(1);
5289 }
5290 serial_devices[serial_device_index] = optarg;
5291 serial_device_index++;
5292 break;
5293 case QEMU_OPTION_virtiocon:
5294 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5295 fprintf(stderr, "qemu: too many virtio consoles\n");
5296 exit(1);
5297 }
5298 virtio_consoles[virtio_console_index] = optarg;
5299 virtio_console_index++;
5300 break;
5301 case QEMU_OPTION_parallel:
5302 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5303 fprintf(stderr, "qemu: too many parallel ports\n");
5304 exit(1);
5305 }
5306 parallel_devices[parallel_device_index] = optarg;
5307 parallel_device_index++;
5308 break;
5309 case QEMU_OPTION_loadvm:
5310 loadvm = optarg;
5311 break;
5312 case QEMU_OPTION_full_screen:
5313 full_screen = 1;
5314 break;
5315#ifdef CONFIG_SDL
5316 case QEMU_OPTION_no_frame:
5317 no_frame = 1;
5318 break;
5319 case QEMU_OPTION_alt_grab:
5320 alt_grab = 1;
5321 break;
5322 case QEMU_OPTION_no_quit:
5323 no_quit = 1;
5324 break;
5325 case QEMU_OPTION_sdl:
5326 sdl = 1;
5327 break;
5328#endif
5329 case QEMU_OPTION_pidfile:
5330 pid_file = optarg;
5331 break;
5332#ifdef TARGET_I386
5333 case QEMU_OPTION_win2k_hack:
5334 win2k_install_hack = 1;
5335 break;
5336 case QEMU_OPTION_rtc_td_hack:
5337 rtc_td_hack = 1;
5338 break;
5339 case QEMU_OPTION_acpitable:
5340 if(acpi_table_add(optarg) < 0) {
5341 fprintf(stderr, "Wrong acpi table provided\n");
5342 exit(1);
5343 }
5344 break;
5345 case QEMU_OPTION_smbios:
5346 if(smbios_entry_add(optarg) < 0) {
5347 fprintf(stderr, "Wrong smbios provided\n");
5348 exit(1);
5349 }
5350 break;
5351#endif
5352#ifdef CONFIG_KQEMU
5353 case QEMU_OPTION_no_kqemu:
5354 kqemu_allowed = 0;
5355 break;
5356 case QEMU_OPTION_kernel_kqemu:
5357 kqemu_allowed = 2;
5358 break;
5359#endif
5360#ifdef CONFIG_KVM
5361 case QEMU_OPTION_enable_kvm:
5362 kvm_allowed = 1;
5363#ifdef CONFIG_KQEMU
5364 kqemu_allowed = 0;
5365#endif
5366 break;
5367#endif
5368 case QEMU_OPTION_usb:
5369 usb_enabled = 1;
5370 break;
5371 case QEMU_OPTION_usbdevice:
5372 usb_enabled = 1;
5373 if (usb_devices_index >= MAX_USB_CMDLINE) {
5374 fprintf(stderr, "Too many USB devices\n");
5375 exit(1);
5376 }
5377 usb_devices[usb_devices_index] = optarg;
5378 usb_devices_index++;
5379 break;
5380 case QEMU_OPTION_smp:
5381 smp_cpus = atoi(optarg);
5382 if (smp_cpus < 1) {
5383 fprintf(stderr, "Invalid number of CPUs\n");
5384 exit(1);
5385 }
5386 break;
5387 case QEMU_OPTION_vnc:
5388 vnc_display = optarg;
5389 break;
5390#ifdef TARGET_I386
5391 case QEMU_OPTION_no_acpi:
5392 acpi_enabled = 0;
5393 break;
5394 case QEMU_OPTION_no_hpet:
5395 no_hpet = 1;
5396 break;
5397#endif
5398 case QEMU_OPTION_no_reboot:
5399 no_reboot = 1;
5400 break;
5401 case QEMU_OPTION_no_shutdown:
5402 no_shutdown = 1;
5403 break;
5404 case QEMU_OPTION_show_cursor:
5405 cursor_hide = 0;
5406 break;
5407 case QEMU_OPTION_uuid:
5408 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5409 fprintf(stderr, "Fail to parse UUID string."
5410 " Wrong format.\n");
5411 exit(1);
5412 }
5413 break;
5414#ifndef _WIN32
5415 case QEMU_OPTION_daemonize:
5416 daemonize = 1;
5417 break;
5418#endif
5419 case QEMU_OPTION_option_rom:
5420 if (nb_option_roms >= MAX_OPTION_ROMS) {
5421 fprintf(stderr, "Too many option ROMs\n");
5422 exit(1);
5423 }
5424 option_rom[nb_option_roms] = optarg;
5425 nb_option_roms++;
5426 break;
5427#if defined(TARGET_ARM) || defined(TARGET_M68K)
5428 case QEMU_OPTION_semihosting:
5429 semihosting_enabled = 1;
5430 break;
5431#endif
5432 case QEMU_OPTION_name:
5433 qemu_name = optarg;
5434 break;
5435#if defined(TARGET_SPARC) || defined(TARGET_PPC)
5436 case QEMU_OPTION_prom_env:
5437 if (nb_prom_envs >= MAX_PROM_ENVS) {
5438 fprintf(stderr, "Too many prom variables\n");
5439 exit(1);
5440 }
5441 prom_envs[nb_prom_envs] = optarg;
5442 nb_prom_envs++;
5443 break;
5444#endif
5445#ifdef TARGET_ARM
5446 case QEMU_OPTION_old_param:
5447 old_param = 1;
5448 break;
5449#endif
5450 case QEMU_OPTION_clock:
5451 configure_alarms(optarg);
5452 break;
5453 case QEMU_OPTION_startdate:
5454 {
5455 struct tm tm;
5456 time_t rtc_start_date;
5457 if (!strcmp(optarg, "now")) {
5458 rtc_date_offset = -1;
5459 } else {
5460 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5461 &tm.tm_year,
5462 &tm.tm_mon,
5463 &tm.tm_mday,
5464 &tm.tm_hour,
5465 &tm.tm_min,
5466 &tm.tm_sec) == 6) {
5467 /* OK */
5468 } else if (sscanf(optarg, "%d-%d-%d",
5469 &tm.tm_year,
5470 &tm.tm_mon,
5471 &tm.tm_mday) == 3) {
5472 tm.tm_hour = 0;
5473 tm.tm_min = 0;
5474 tm.tm_sec = 0;
5475 } else {
5476 goto date_fail;
5477 }
5478 tm.tm_year -= 1900;
5479 tm.tm_mon--;
5480 rtc_start_date = mktimegm(&tm);
5481 if (rtc_start_date == -1) {
5482 date_fail:
5483 fprintf(stderr, "Invalid date format. Valid format are:\n"
5484 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5485 exit(1);
5486 }
5487 rtc_date_offset = time(NULL) - rtc_start_date;
5488 }
5489 }
5490 break;
5491 case QEMU_OPTION_tb_size:
5492 tb_size = strtol(optarg, NULL, 0);
5493 if (tb_size < 0)
5494 tb_size = 0;
5495 break;
5496 case QEMU_OPTION_icount:
5497 use_icount = 1;
5498 if (strcmp(optarg, "auto") == 0) {
5499 icount_time_shift = -1;
5500 } else {
5501 icount_time_shift = strtol(optarg, NULL, 0);
5502 }
5503 break;
5504 case QEMU_OPTION_incoming:
5505 incoming = optarg;
5506 break;
5507#ifndef _WIN32
5508 case QEMU_OPTION_chroot:
5509 chroot_dir = optarg;
5510 break;
5511 case QEMU_OPTION_runas:
5512 run_as = optarg;
5513 break;
5514#endif
5515#ifdef CONFIG_XEN
5516 case QEMU_OPTION_xen_domid:
5517 xen_domid = atoi(optarg);
5518 break;
5519 case QEMU_OPTION_xen_create:
5520 xen_mode = XEN_CREATE;
5521 break;
5522 case QEMU_OPTION_xen_attach:
5523 xen_mode = XEN_ATTACH;
5524 break;
5525#endif
5526 }
5527 }
5528 }
5529
5530#if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5531 if (kvm_allowed && kqemu_allowed) {
5532 fprintf(stderr,
5533 "You can not enable both KVM and kqemu at the same time\n");
5534 exit(1);
5535 }
5536#endif
5537
5538 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5539 if (smp_cpus > machine->max_cpus) {
5540 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5541 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5542 machine->max_cpus);
5543 exit(1);
5544 }
5545
5546 if (nographic) {
5547 if (serial_device_index == 0)
5548 serial_devices[0] = "stdio";
5549 if (parallel_device_index == 0)
5550 parallel_devices[0] = "null";
5551 if (strncmp(monitor_device, "vc", 2) == 0)
5552 monitor_device = "stdio";
5553 }
5554
5555#ifndef _WIN32
5556 if (daemonize) {
5557 pid_t pid;
5558
5559 if (pipe(fds) == -1)
5560 exit(1);
5561
5562 pid = fork();
5563 if (pid > 0) {
5564 uint8_t status;
5565 ssize_t len;
5566
5567 close(fds[1]);
5568
5569 again:
5570 len = read(fds[0], &status, 1);
5571 if (len == -1 && (errno == EINTR))
5572 goto again;
5573
5574 if (len != 1)
5575 exit(1);
5576 else if (status == 1) {
5577 fprintf(stderr, "Could not acquire pidfile\n");
5578 exit(1);
5579 } else
5580 exit(0);
5581 } else if (pid < 0)
5582 exit(1);
5583
5584 setsid();
5585
5586 pid = fork();
5587 if (pid > 0)
5588 exit(0);
5589 else if (pid < 0)
5590 exit(1);
5591
5592 umask(027);
5593
5594 signal(SIGTSTP, SIG_IGN);
5595 signal(SIGTTOU, SIG_IGN);
5596 signal(SIGTTIN, SIG_IGN);
5597 }
5598
5599 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5600 if (daemonize) {
5601 uint8_t status = 1;
5602 write(fds[1], &status, 1);
5603 } else
5604 fprintf(stderr, "Could not acquire pid file\n");
5605 exit(1);
5606 }
5607#endif
5608
5609#ifdef CONFIG_KQEMU
5610 if (smp_cpus > 1)
5611 kqemu_allowed = 0;
5612#endif
5613 if (qemu_init_main_loop()) {
5614 fprintf(stderr, "qemu_init_main_loop failed\n");
5615 exit(1);
5616 }
5617 linux_boot = (kernel_filename != NULL);
5618 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5619
5620 if (!linux_boot && *kernel_cmdline != '\0') {
5621 fprintf(stderr, "-append only allowed with -kernel option\n");
5622 exit(1);
5623 }
5624
5625 if (!linux_boot && initrd_filename != NULL) {
5626 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5627 exit(1);
5628 }
5629
5630 /* boot to floppy or the default cd if no hard disk defined yet */
5631 if (!boot_devices[0]) {
5632 boot_devices = "cad";
5633 }
5634 setvbuf(stdout, NULL, _IOLBF, 0);
5635
5636 init_timers();
5637 if (init_timer_alarm() < 0) {
5638 fprintf(stderr, "could not initialize alarm timer\n");
5639 exit(1);
5640 }
5641 if (use_icount && icount_time_shift < 0) {
5642 use_icount = 2;
5643 /* 125MIPS seems a reasonable initial guess at the guest speed.
5644 It will be corrected fairly quickly anyway. */
5645 icount_time_shift = 3;
5646 init_icount_adjust();
5647 }
5648
5649#ifdef _WIN32
5650 socket_init();
5651#endif
5652
5653 /* init network clients */
5654 if (nb_net_clients == 0) {
5655 /* if no clients, we use a default config */
5656 net_clients[nb_net_clients++] = "nic";
5657#ifdef CONFIG_SLIRP
5658 net_clients[nb_net_clients++] = "user";
5659#endif
5660 }
5661
5662 for(i = 0;i < nb_net_clients; i++) {
5663 if (net_client_parse(net_clients[i]) < 0)
5664 exit(1);
5665 }
5666 net_client_check();
5667
5668#ifdef TARGET_I386
5669 /* XXX: this should be moved in the PC machine instantiation code */
5670 if (net_boot != 0) {
5671 int netroms = 0;
5672 for (i = 0; i < nb_nics && i < 4; i++) {
5673 const char *model = nd_table[i].model;
5674 char buf[1024];
5675 if (net_boot & (1 << i)) {
5676 if (model == NULL)
5677 model = "ne2k_pci";
5678 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5679 if (get_image_size(buf) > 0) {
5680 if (nb_option_roms >= MAX_OPTION_ROMS) {
5681 fprintf(stderr, "Too many option ROMs\n");
5682 exit(1);
5683 }
5684 option_rom[nb_option_roms] = strdup(buf);
5685 nb_option_roms++;
5686 netroms++;
5687 }
5688 }
5689 }
5690 if (netroms == 0) {
5691 fprintf(stderr, "No valid PXE rom found for network device\n");
5692 exit(1);
5693 }
5694 }
5695#endif
5696
5697 /* init the bluetooth world */
5698 for (i = 0; i < nb_bt_opts; i++)
5699 if (bt_parse(bt_opts[i]))
5700 exit(1);
5701
5702 /* init the memory */
5703 if (ram_size == 0)
5704 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5705
5706#ifdef CONFIG_KQEMU
5707 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5708 guest ram allocation. It needs to go away. */
5709 if (kqemu_allowed) {
5710 kqemu_phys_ram_size = ram_size + VGA_RAM_SIZE + 4 * 1024 * 1024;
5711 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5712 if (!kqemu_phys_ram_base) {
5713 fprintf(stderr, "Could not allocate physical memory\n");
5714 exit(1);
5715 }
5716 }
5717#endif
5718
5719 /* init the dynamic translator */
5720 cpu_exec_init_all(tb_size * 1024 * 1024);
5721
5722 bdrv_init();
5723 dma_helper_init();
5724
5725 /* we always create the cdrom drive, even if no disk is there */
5726
5727 if (nb_drives_opt < MAX_DRIVES)
5728 drive_add(NULL, CDROM_ALIAS);
5729
5730 /* we always create at least one floppy */
5731
5732 if (nb_drives_opt < MAX_DRIVES)
5733 drive_add(NULL, FD_ALIAS, 0);
5734
5735 /* we always create one sd slot, even if no card is in it */
5736
5737 if (nb_drives_opt < MAX_DRIVES)
5738 drive_add(NULL, SD_ALIAS);
5739
5740 /* open the virtual block devices */
5741
5742 for(i = 0; i < nb_drives_opt; i++)
5743 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5744 exit(1);
5745
5746 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5747 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5748
5749#ifndef _WIN32
5750 /* must be after terminal init, SDL library changes signal handlers */
5751 termsig_setup();
5752#endif
5753
5754 /* Maintain compatibility with multiple stdio monitors */
5755 if (!strcmp(monitor_device,"stdio")) {
5756 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5757 const char *devname = serial_devices[i];
5758 if (devname && !strcmp(devname,"mon:stdio")) {
5759 monitor_device = NULL;
5760 break;
5761 } else if (devname && !strcmp(devname,"stdio")) {
5762 monitor_device = NULL;
5763 serial_devices[i] = "mon:stdio";
5764 break;
5765 }
5766 }
5767 }
5768
5769 if (nb_numa_nodes > 0) {
5770 int i;
5771
5772 if (nb_numa_nodes > smp_cpus) {
5773 nb_numa_nodes = smp_cpus;
5774 }
5775
5776 /* If no memory size if given for any node, assume the default case
5777 * and distribute the available memory equally across all nodes
5778 */
5779 for (i = 0; i < nb_numa_nodes; i++) {
5780 if (node_mem[i] != 0)
5781 break;
5782 }
5783 if (i == nb_numa_nodes) {
5784 uint64_t usedmem = 0;
5785
5786 /* On Linux, the each node's border has to be 8MB aligned,
5787 * the final node gets the rest.
5788 */
5789 for (i = 0; i < nb_numa_nodes - 1; i++) {
5790 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5791 usedmem += node_mem[i];
5792 }
5793 node_mem[i] = ram_size - usedmem;
5794 }
5795
5796 for (i = 0; i < nb_numa_nodes; i++) {
5797 if (node_cpumask[i] != 0)
5798 break;
5799 }
5800 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5801 * must cope with this anyway, because there are BIOSes out there in
5802 * real machines which also use this scheme.
5803 */
5804 if (i == nb_numa_nodes) {
5805 for (i = 0; i < smp_cpus; i++) {
5806 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5807 }
5808 }
5809 }
5810
5811 if (kvm_enabled()) {
5812 int ret;
5813
5814 ret = kvm_init(smp_cpus);
5815 if (ret < 0) {
5816 fprintf(stderr, "failed to initialize KVM\n");
5817 exit(1);
5818 }
5819 }
5820
5821 if (monitor_device) {
5822 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5823 if (!monitor_hd) {
5824 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5825 exit(1);
5826 }
5827 }
5828
5829 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5830 const char *devname = serial_devices[i];
5831 if (devname && strcmp(devname, "none")) {
5832 char label[32];
5833 snprintf(label, sizeof(label), "serial%d", i);
5834 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5835 if (!serial_hds[i]) {
5836 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5837 devname);
5838 exit(1);
5839 }
5840 }
5841 }
5842
5843 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5844 const char *devname = parallel_devices[i];
5845 if (devname && strcmp(devname, "none")) {
5846 char label[32];
5847 snprintf(label, sizeof(label), "parallel%d", i);
5848 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5849 if (!parallel_hds[i]) {
5850 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5851 devname);
5852 exit(1);
5853 }
5854 }
5855 }
5856
5857 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5858 const char *devname = virtio_consoles[i];
5859 if (devname && strcmp(devname, "none")) {
5860 char label[32];
5861 snprintf(label, sizeof(label), "virtcon%d", i);
5862 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5863 if (!virtcon_hds[i]) {
5864 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5865 devname);
5866 exit(1);
5867 }
5868 }
5869 }
5870
5871 machine->init(ram_size, vga_ram_size, boot_devices,
5872 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5873
5874
5875 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5876 for (i = 0; i < nb_numa_nodes; i++) {
5877 if (node_cpumask[i] & (1 << env->cpu_index)) {
5878 env->numa_node = i;
5879 }
5880 }
5881 }
5882
5883 current_machine = machine;
5884
5885 /* Set KVM's vcpu state to qemu's initial CPUState. */
5886 if (kvm_enabled()) {
5887 int ret;
5888
5889 ret = kvm_sync_vcpus();
5890 if (ret < 0) {
5891 fprintf(stderr, "failed to initialize vcpus\n");
5892 exit(1);
5893 }
5894 }
5895
5896 /* init USB devices */
5897 if (usb_enabled) {
5898 for(i = 0; i < usb_devices_index; i++) {
5899 if (usb_device_add(usb_devices[i], 0) < 0) {
5900 fprintf(stderr, "Warning: could not add USB device %s\n",
5901 usb_devices[i]);
5902 }
5903 }
5904 }
5905
5906 if (!display_state)
5907 dumb_display_init();
5908 /* just use the first displaystate for the moment */
5909 ds = display_state;
5910 /* terminal init */
5911 if (nographic) {
5912 if (curses) {
5913 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5914 exit(1);
5915 }
5916 } else {
5917#if defined(CONFIG_CURSES)
5918 if (curses) {
5919 /* At the moment curses cannot be used with other displays */
5920 curses_display_init(ds, full_screen);
5921 } else
5922#endif
5923 {
5924 if (vnc_display != NULL) {
5925 vnc_display_init(ds);
5926 if (vnc_display_open(ds, vnc_display) < 0)
5927 exit(1);
5928 }
5929#if defined(CONFIG_SDL)
5930 if (sdl || !vnc_display)
5931 sdl_display_init(ds, full_screen, no_frame);
5932#elif defined(CONFIG_COCOA)
5933 if (sdl || !vnc_display)
5934 cocoa_display_init(ds, full_screen);
5935#endif
5936 }
5937 }
5938 dpy_resize(ds);
5939
5940 dcl = ds->listeners;
5941 while (dcl != NULL) {
5942 if (dcl->dpy_refresh != NULL) {
5943 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5944 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5945 }
5946 dcl = dcl->next;
5947 }
5948
5949 if (nographic || (vnc_display && !sdl)) {
5950 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5951 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5952 }
5953
5954 text_consoles_set_display(display_state);
5955 qemu_chr_initial_reset();
5956
5957 if (monitor_device && monitor_hd)
5958 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5959
5960 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5961 const char *devname = serial_devices[i];
5962 if (devname && strcmp(devname, "none")) {
5963 char label[32];
5964 snprintf(label, sizeof(label), "serial%d", i);
5965 if (strstart(devname, "vc", 0))
5966 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5967 }
5968 }
5969
5970 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5971 const char *devname = parallel_devices[i];
5972 if (devname && strcmp(devname, "none")) {
5973 char label[32];
5974 snprintf(label, sizeof(label), "parallel%d", i);
5975 if (strstart(devname, "vc", 0))
5976 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5977 }
5978 }
5979
5980 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5981 const char *devname = virtio_consoles[i];
5982 if (virtcon_hds[i] && devname) {
5983 char label[32];
5984 snprintf(label, sizeof(label), "virtcon%d", i);
5985 if (strstart(devname, "vc", 0))
5986 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5987 }
5988 }
5989
5990#ifdef CONFIG_GDBSTUB
5991 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5992 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5993 gdbstub_dev);
5994 exit(1);
5995 }
5996#endif
5997
5998 if (loadvm)
5999 do_loadvm(cur_mon, loadvm);
6000
6001 if (incoming) {
6002 autostart = 0; /* fixme how to deal with -daemonize */
6003 qemu_start_incoming_migration(incoming);
6004 }
6005
6006 if (autostart)
6007 vm_start();
6008
6009#ifndef _WIN32
6010 if (daemonize) {
6011 uint8_t status = 0;
6012 ssize_t len;
6013
6014 again1:
6015 len = write(fds[1], &status, 1);
6016 if (len == -1 && (errno == EINTR))
6017 goto again1;
6018
6019 if (len != 1)
6020 exit(1);
6021
6022 chdir("/");
6023 TFR(fd = open("/dev/null", O_RDWR));
6024 if (fd == -1)
6025 exit(1);
6026 }
6027
6028 if (run_as) {
6029 pwd = getpwnam(run_as);
6030 if (!pwd) {
6031 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6032 exit(1);
6033 }
6034 }
6035
6036 if (chroot_dir) {
6037 if (chroot(chroot_dir) < 0) {
6038 fprintf(stderr, "chroot failed\n");
6039 exit(1);
6040 }
6041 chdir("/");
6042 }
6043
6044 if (run_as) {
6045 if (setgid(pwd->pw_gid) < 0) {
6046 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6047 exit(1);
6048 }
6049 if (setuid(pwd->pw_uid) < 0) {
6050 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6051 exit(1);
6052 }
6053 if (setuid(0) != -1) {
6054 fprintf(stderr, "Dropping privileges failed\n");
6055 exit(1);
6056 }
6057 }
6058
6059 if (daemonize) {
6060 dup2(fd, 0);
6061 dup2(fd, 1);
6062 dup2(fd, 2);
6063
6064 close(fd);
6065 }
6066#endif
6067
6068 main_loop();
6069 quit_timers();
6070 net_cleanup();
6071
6072 return 0;
6073}