]> git.proxmox.com Git - qemu.git/blame_incremental - vl.c
Avoid duplicated definitions: move common definitions from exec-all.h
[qemu.git] / vl.c
... / ...
CommitLineData
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2007 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24#include "hw/hw.h"
25#include "hw/boards.h"
26#include "hw/usb.h"
27#include "hw/pcmcia.h"
28#include "hw/pc.h"
29#include "hw/fdc.h"
30#include "hw/audiodev.h"
31#include "hw/isa.h"
32#include "net.h"
33#include "console.h"
34#include "sysemu.h"
35#include "gdbstub.h"
36#include "qemu-timer.h"
37#include "qemu-char.h"
38#include "block.h"
39#include "audio/audio.h"
40
41#include <unistd.h>
42#include <fcntl.h>
43#include <signal.h>
44#include <time.h>
45#include <errno.h>
46#include <sys/time.h>
47#include <zlib.h>
48
49#ifndef _WIN32
50#include <sys/times.h>
51#include <sys/wait.h>
52#include <termios.h>
53#include <sys/poll.h>
54#include <sys/mman.h>
55#include <sys/ioctl.h>
56#include <sys/socket.h>
57#include <netinet/in.h>
58#include <dirent.h>
59#include <netdb.h>
60#include <sys/select.h>
61#include <arpa/inet.h>
62#ifdef _BSD
63#include <sys/stat.h>
64#ifndef __APPLE__
65#include <libutil.h>
66#endif
67#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
68#include <freebsd/stdlib.h>
69#else
70#ifndef __sun__
71#include <linux/if.h>
72#include <linux/if_tun.h>
73#include <pty.h>
74#include <malloc.h>
75#include <linux/rtc.h>
76
77/* For the benefit of older linux systems which don't supply it,
78 we use a local copy of hpet.h. */
79/* #include <linux/hpet.h> */
80#include "hpet.h"
81
82#include <linux/ppdev.h>
83#include <linux/parport.h>
84#else
85#include <sys/stat.h>
86#include <sys/ethernet.h>
87#include <sys/sockio.h>
88#include <netinet/arp.h>
89#include <netinet/in.h>
90#include <netinet/in_systm.h>
91#include <netinet/ip.h>
92#include <netinet/ip_icmp.h> // must come after ip.h
93#include <netinet/udp.h>
94#include <netinet/tcp.h>
95#include <net/if.h>
96#include <syslog.h>
97#include <stropts.h>
98#endif
99#endif
100#else
101#include <winsock2.h>
102int inet_aton(const char *cp, struct in_addr *ia);
103#endif
104
105#if defined(CONFIG_SLIRP)
106#include "libslirp.h"
107#endif
108
109#ifdef _WIN32
110#include <malloc.h>
111#include <sys/timeb.h>
112#include <windows.h>
113#define getopt_long_only getopt_long
114#define memalign(align, size) malloc(size)
115#endif
116
117#include "qemu_socket.h"
118
119#ifdef CONFIG_SDL
120#ifdef __APPLE__
121#include <SDL/SDL.h>
122#endif
123#endif /* CONFIG_SDL */
124
125#ifdef CONFIG_COCOA
126#undef main
127#define main qemu_main
128#endif /* CONFIG_COCOA */
129
130#include "disas.h"
131
132#include "exec-all.h"
133
134#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
135#define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
136#ifdef __sun__
137#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
138#else
139#define SMBD_COMMAND "/usr/sbin/smbd"
140#endif
141
142//#define DEBUG_UNUSED_IOPORT
143//#define DEBUG_IOPORT
144
145#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
146
147#ifdef TARGET_PPC
148#define DEFAULT_RAM_SIZE 144
149#else
150#define DEFAULT_RAM_SIZE 128
151#endif
152/* in ms */
153#define GUI_REFRESH_INTERVAL 30
154
155/* Max number of USB devices that can be specified on the commandline. */
156#define MAX_USB_CMDLINE 8
157
158/* XXX: use a two level table to limit memory usage */
159#define MAX_IOPORTS 65536
160
161const char *bios_dir = CONFIG_QEMU_SHAREDIR;
162const char *bios_name = NULL;
163char phys_ram_file[1024];
164void *ioport_opaque[MAX_IOPORTS];
165IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
166IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
167/* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
168 to store the VM snapshots */
169BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
170BlockDriverState *pflash_table[MAX_PFLASH];
171BlockDriverState *sd_bdrv;
172BlockDriverState *mtd_bdrv;
173/* point to the block driver where the snapshots are managed */
174BlockDriverState *bs_snapshots;
175int vga_ram_size;
176static DisplayState display_state;
177int nographic;
178const char* keyboard_layout = NULL;
179int64_t ticks_per_sec;
180int ram_size;
181int pit_min_timer_count = 0;
182int nb_nics;
183NICInfo nd_table[MAX_NICS];
184int vm_running;
185int rtc_utc = 1;
186int rtc_start_date = -1; /* -1 means now */
187int cirrus_vga_enabled = 1;
188int vmsvga_enabled = 0;
189#ifdef TARGET_SPARC
190int graphic_width = 1024;
191int graphic_height = 768;
192int graphic_depth = 8;
193#else
194int graphic_width = 800;
195int graphic_height = 600;
196int graphic_depth = 15;
197#endif
198int full_screen = 0;
199int no_frame = 0;
200int no_quit = 0;
201CharDriverState *serial_hds[MAX_SERIAL_PORTS];
202CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
203#ifdef TARGET_I386
204int win2k_install_hack = 0;
205#endif
206int usb_enabled = 0;
207static VLANState *first_vlan;
208int smp_cpus = 1;
209const char *vnc_display;
210#if defined(TARGET_SPARC)
211#define MAX_CPUS 16
212#elif defined(TARGET_I386)
213#define MAX_CPUS 255
214#else
215#define MAX_CPUS 1
216#endif
217int acpi_enabled = 1;
218int fd_bootchk = 1;
219int no_reboot = 0;
220int cursor_hide = 1;
221int graphic_rotate = 0;
222int daemonize = 0;
223const char *option_rom[MAX_OPTION_ROMS];
224int nb_option_roms;
225int semihosting_enabled = 0;
226int autostart = 1;
227#ifdef TARGET_ARM
228int old_param = 0;
229#endif
230const char *qemu_name;
231int alt_grab = 0;
232#ifdef TARGET_SPARC
233unsigned int nb_prom_envs = 0;
234const char *prom_envs[MAX_PROM_ENVS];
235#endif
236
237#define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
238
239/***********************************************************/
240/* x86 ISA bus support */
241
242target_phys_addr_t isa_mem_base = 0;
243PicState2 *isa_pic;
244
245static uint32_t default_ioport_readb(void *opaque, uint32_t address)
246{
247#ifdef DEBUG_UNUSED_IOPORT
248 fprintf(stderr, "unused inb: port=0x%04x\n", address);
249#endif
250 return 0xff;
251}
252
253static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
254{
255#ifdef DEBUG_UNUSED_IOPORT
256 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
257#endif
258}
259
260/* default is to make two byte accesses */
261static uint32_t default_ioport_readw(void *opaque, uint32_t address)
262{
263 uint32_t data;
264 data = ioport_read_table[0][address](ioport_opaque[address], address);
265 address = (address + 1) & (MAX_IOPORTS - 1);
266 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
267 return data;
268}
269
270static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
271{
272 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
273 address = (address + 1) & (MAX_IOPORTS - 1);
274 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
275}
276
277static uint32_t default_ioport_readl(void *opaque, uint32_t address)
278{
279#ifdef DEBUG_UNUSED_IOPORT
280 fprintf(stderr, "unused inl: port=0x%04x\n", address);
281#endif
282 return 0xffffffff;
283}
284
285static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
286{
287#ifdef DEBUG_UNUSED_IOPORT
288 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
289#endif
290}
291
292static void init_ioports(void)
293{
294 int i;
295
296 for(i = 0; i < MAX_IOPORTS; i++) {
297 ioport_read_table[0][i] = default_ioport_readb;
298 ioport_write_table[0][i] = default_ioport_writeb;
299 ioport_read_table[1][i] = default_ioport_readw;
300 ioport_write_table[1][i] = default_ioport_writew;
301 ioport_read_table[2][i] = default_ioport_readl;
302 ioport_write_table[2][i] = default_ioport_writel;
303 }
304}
305
306/* size is the word size in byte */
307int register_ioport_read(int start, int length, int size,
308 IOPortReadFunc *func, void *opaque)
309{
310 int i, bsize;
311
312 if (size == 1) {
313 bsize = 0;
314 } else if (size == 2) {
315 bsize = 1;
316 } else if (size == 4) {
317 bsize = 2;
318 } else {
319 hw_error("register_ioport_read: invalid size");
320 return -1;
321 }
322 for(i = start; i < start + length; i += size) {
323 ioport_read_table[bsize][i] = func;
324 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
325 hw_error("register_ioport_read: invalid opaque");
326 ioport_opaque[i] = opaque;
327 }
328 return 0;
329}
330
331/* size is the word size in byte */
332int register_ioport_write(int start, int length, int size,
333 IOPortWriteFunc *func, void *opaque)
334{
335 int i, bsize;
336
337 if (size == 1) {
338 bsize = 0;
339 } else if (size == 2) {
340 bsize = 1;
341 } else if (size == 4) {
342 bsize = 2;
343 } else {
344 hw_error("register_ioport_write: invalid size");
345 return -1;
346 }
347 for(i = start; i < start + length; i += size) {
348 ioport_write_table[bsize][i] = func;
349 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
350 hw_error("register_ioport_write: invalid opaque");
351 ioport_opaque[i] = opaque;
352 }
353 return 0;
354}
355
356void isa_unassign_ioport(int start, int length)
357{
358 int i;
359
360 for(i = start; i < start + length; i++) {
361 ioport_read_table[0][i] = default_ioport_readb;
362 ioport_read_table[1][i] = default_ioport_readw;
363 ioport_read_table[2][i] = default_ioport_readl;
364
365 ioport_write_table[0][i] = default_ioport_writeb;
366 ioport_write_table[1][i] = default_ioport_writew;
367 ioport_write_table[2][i] = default_ioport_writel;
368 }
369}
370
371/***********************************************************/
372
373void cpu_outb(CPUState *env, int addr, int val)
374{
375#ifdef DEBUG_IOPORT
376 if (loglevel & CPU_LOG_IOPORT)
377 fprintf(logfile, "outb: %04x %02x\n", addr, val);
378#endif
379 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
380#ifdef USE_KQEMU
381 if (env)
382 env->last_io_time = cpu_get_time_fast();
383#endif
384}
385
386void cpu_outw(CPUState *env, int addr, int val)
387{
388#ifdef DEBUG_IOPORT
389 if (loglevel & CPU_LOG_IOPORT)
390 fprintf(logfile, "outw: %04x %04x\n", addr, val);
391#endif
392 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
393#ifdef USE_KQEMU
394 if (env)
395 env->last_io_time = cpu_get_time_fast();
396#endif
397}
398
399void cpu_outl(CPUState *env, int addr, int val)
400{
401#ifdef DEBUG_IOPORT
402 if (loglevel & CPU_LOG_IOPORT)
403 fprintf(logfile, "outl: %04x %08x\n", addr, val);
404#endif
405 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
406#ifdef USE_KQEMU
407 if (env)
408 env->last_io_time = cpu_get_time_fast();
409#endif
410}
411
412int cpu_inb(CPUState *env, int addr)
413{
414 int val;
415 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
416#ifdef DEBUG_IOPORT
417 if (loglevel & CPU_LOG_IOPORT)
418 fprintf(logfile, "inb : %04x %02x\n", addr, val);
419#endif
420#ifdef USE_KQEMU
421 if (env)
422 env->last_io_time = cpu_get_time_fast();
423#endif
424 return val;
425}
426
427int cpu_inw(CPUState *env, int addr)
428{
429 int val;
430 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
431#ifdef DEBUG_IOPORT
432 if (loglevel & CPU_LOG_IOPORT)
433 fprintf(logfile, "inw : %04x %04x\n", addr, val);
434#endif
435#ifdef USE_KQEMU
436 if (env)
437 env->last_io_time = cpu_get_time_fast();
438#endif
439 return val;
440}
441
442int cpu_inl(CPUState *env, int addr)
443{
444 int val;
445 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
446#ifdef DEBUG_IOPORT
447 if (loglevel & CPU_LOG_IOPORT)
448 fprintf(logfile, "inl : %04x %08x\n", addr, val);
449#endif
450#ifdef USE_KQEMU
451 if (env)
452 env->last_io_time = cpu_get_time_fast();
453#endif
454 return val;
455}
456
457/***********************************************************/
458void hw_error(const char *fmt, ...)
459{
460 va_list ap;
461 CPUState *env;
462
463 va_start(ap, fmt);
464 fprintf(stderr, "qemu: hardware error: ");
465 vfprintf(stderr, fmt, ap);
466 fprintf(stderr, "\n");
467 for(env = first_cpu; env != NULL; env = env->next_cpu) {
468 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
469#ifdef TARGET_I386
470 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
471#else
472 cpu_dump_state(env, stderr, fprintf, 0);
473#endif
474 }
475 va_end(ap);
476 abort();
477}
478
479/***********************************************************/
480/* keyboard/mouse */
481
482static QEMUPutKBDEvent *qemu_put_kbd_event;
483static void *qemu_put_kbd_event_opaque;
484static QEMUPutMouseEntry *qemu_put_mouse_event_head;
485static QEMUPutMouseEntry *qemu_put_mouse_event_current;
486
487void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
488{
489 qemu_put_kbd_event_opaque = opaque;
490 qemu_put_kbd_event = func;
491}
492
493QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
494 void *opaque, int absolute,
495 const char *name)
496{
497 QEMUPutMouseEntry *s, *cursor;
498
499 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
500 if (!s)
501 return NULL;
502
503 s->qemu_put_mouse_event = func;
504 s->qemu_put_mouse_event_opaque = opaque;
505 s->qemu_put_mouse_event_absolute = absolute;
506 s->qemu_put_mouse_event_name = qemu_strdup(name);
507 s->next = NULL;
508
509 if (!qemu_put_mouse_event_head) {
510 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
511 return s;
512 }
513
514 cursor = qemu_put_mouse_event_head;
515 while (cursor->next != NULL)
516 cursor = cursor->next;
517
518 cursor->next = s;
519 qemu_put_mouse_event_current = s;
520
521 return s;
522}
523
524void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
525{
526 QEMUPutMouseEntry *prev = NULL, *cursor;
527
528 if (!qemu_put_mouse_event_head || entry == NULL)
529 return;
530
531 cursor = qemu_put_mouse_event_head;
532 while (cursor != NULL && cursor != entry) {
533 prev = cursor;
534 cursor = cursor->next;
535 }
536
537 if (cursor == NULL) // does not exist or list empty
538 return;
539 else if (prev == NULL) { // entry is head
540 qemu_put_mouse_event_head = cursor->next;
541 if (qemu_put_mouse_event_current == entry)
542 qemu_put_mouse_event_current = cursor->next;
543 qemu_free(entry->qemu_put_mouse_event_name);
544 qemu_free(entry);
545 return;
546 }
547
548 prev->next = entry->next;
549
550 if (qemu_put_mouse_event_current == entry)
551 qemu_put_mouse_event_current = prev;
552
553 qemu_free(entry->qemu_put_mouse_event_name);
554 qemu_free(entry);
555}
556
557void kbd_put_keycode(int keycode)
558{
559 if (qemu_put_kbd_event) {
560 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
561 }
562}
563
564void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
565{
566 QEMUPutMouseEvent *mouse_event;
567 void *mouse_event_opaque;
568 int width;
569
570 if (!qemu_put_mouse_event_current) {
571 return;
572 }
573
574 mouse_event =
575 qemu_put_mouse_event_current->qemu_put_mouse_event;
576 mouse_event_opaque =
577 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
578
579 if (mouse_event) {
580 if (graphic_rotate) {
581 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
582 width = 0x7fff;
583 else
584 width = graphic_width;
585 mouse_event(mouse_event_opaque,
586 width - dy, dx, dz, buttons_state);
587 } else
588 mouse_event(mouse_event_opaque,
589 dx, dy, dz, buttons_state);
590 }
591}
592
593int kbd_mouse_is_absolute(void)
594{
595 if (!qemu_put_mouse_event_current)
596 return 0;
597
598 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
599}
600
601void do_info_mice(void)
602{
603 QEMUPutMouseEntry *cursor;
604 int index = 0;
605
606 if (!qemu_put_mouse_event_head) {
607 term_printf("No mouse devices connected\n");
608 return;
609 }
610
611 term_printf("Mouse devices available:\n");
612 cursor = qemu_put_mouse_event_head;
613 while (cursor != NULL) {
614 term_printf("%c Mouse #%d: %s\n",
615 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
616 index, cursor->qemu_put_mouse_event_name);
617 index++;
618 cursor = cursor->next;
619 }
620}
621
622void do_mouse_set(int index)
623{
624 QEMUPutMouseEntry *cursor;
625 int i = 0;
626
627 if (!qemu_put_mouse_event_head) {
628 term_printf("No mouse devices connected\n");
629 return;
630 }
631
632 cursor = qemu_put_mouse_event_head;
633 while (cursor != NULL && index != i) {
634 i++;
635 cursor = cursor->next;
636 }
637
638 if (cursor != NULL)
639 qemu_put_mouse_event_current = cursor;
640 else
641 term_printf("Mouse at given index not found\n");
642}
643
644/* compute with 96 bit intermediate result: (a*b)/c */
645uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
646{
647 union {
648 uint64_t ll;
649 struct {
650#ifdef WORDS_BIGENDIAN
651 uint32_t high, low;
652#else
653 uint32_t low, high;
654#endif
655 } l;
656 } u, res;
657 uint64_t rl, rh;
658
659 u.ll = a;
660 rl = (uint64_t)u.l.low * (uint64_t)b;
661 rh = (uint64_t)u.l.high * (uint64_t)b;
662 rh += (rl >> 32);
663 res.l.high = rh / c;
664 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
665 return res.ll;
666}
667
668/***********************************************************/
669/* real time host monotonic timer */
670
671#define QEMU_TIMER_BASE 1000000000LL
672
673#ifdef WIN32
674
675static int64_t clock_freq;
676
677static void init_get_clock(void)
678{
679 LARGE_INTEGER freq;
680 int ret;
681 ret = QueryPerformanceFrequency(&freq);
682 if (ret == 0) {
683 fprintf(stderr, "Could not calibrate ticks\n");
684 exit(1);
685 }
686 clock_freq = freq.QuadPart;
687}
688
689static int64_t get_clock(void)
690{
691 LARGE_INTEGER ti;
692 QueryPerformanceCounter(&ti);
693 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
694}
695
696#else
697
698static int use_rt_clock;
699
700static void init_get_clock(void)
701{
702 use_rt_clock = 0;
703#if defined(__linux__)
704 {
705 struct timespec ts;
706 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
707 use_rt_clock = 1;
708 }
709 }
710#endif
711}
712
713static int64_t get_clock(void)
714{
715#if defined(__linux__)
716 if (use_rt_clock) {
717 struct timespec ts;
718 clock_gettime(CLOCK_MONOTONIC, &ts);
719 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
720 } else
721#endif
722 {
723 /* XXX: using gettimeofday leads to problems if the date
724 changes, so it should be avoided. */
725 struct timeval tv;
726 gettimeofday(&tv, NULL);
727 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
728 }
729}
730
731#endif
732
733/***********************************************************/
734/* guest cycle counter */
735
736static int64_t cpu_ticks_prev;
737static int64_t cpu_ticks_offset;
738static int64_t cpu_clock_offset;
739static int cpu_ticks_enabled;
740
741/* return the host CPU cycle counter and handle stop/restart */
742int64_t cpu_get_ticks(void)
743{
744 if (!cpu_ticks_enabled) {
745 return cpu_ticks_offset;
746 } else {
747 int64_t ticks;
748 ticks = cpu_get_real_ticks();
749 if (cpu_ticks_prev > ticks) {
750 /* Note: non increasing ticks may happen if the host uses
751 software suspend */
752 cpu_ticks_offset += cpu_ticks_prev - ticks;
753 }
754 cpu_ticks_prev = ticks;
755 return ticks + cpu_ticks_offset;
756 }
757}
758
759/* return the host CPU monotonic timer and handle stop/restart */
760static int64_t cpu_get_clock(void)
761{
762 int64_t ti;
763 if (!cpu_ticks_enabled) {
764 return cpu_clock_offset;
765 } else {
766 ti = get_clock();
767 return ti + cpu_clock_offset;
768 }
769}
770
771/* enable cpu_get_ticks() */
772void cpu_enable_ticks(void)
773{
774 if (!cpu_ticks_enabled) {
775 cpu_ticks_offset -= cpu_get_real_ticks();
776 cpu_clock_offset -= get_clock();
777 cpu_ticks_enabled = 1;
778 }
779}
780
781/* disable cpu_get_ticks() : the clock is stopped. You must not call
782 cpu_get_ticks() after that. */
783void cpu_disable_ticks(void)
784{
785 if (cpu_ticks_enabled) {
786 cpu_ticks_offset = cpu_get_ticks();
787 cpu_clock_offset = cpu_get_clock();
788 cpu_ticks_enabled = 0;
789 }
790}
791
792/***********************************************************/
793/* timers */
794
795#define QEMU_TIMER_REALTIME 0
796#define QEMU_TIMER_VIRTUAL 1
797
798struct QEMUClock {
799 int type;
800 /* XXX: add frequency */
801};
802
803struct QEMUTimer {
804 QEMUClock *clock;
805 int64_t expire_time;
806 QEMUTimerCB *cb;
807 void *opaque;
808 struct QEMUTimer *next;
809};
810
811struct qemu_alarm_timer {
812 char const *name;
813 unsigned int flags;
814
815 int (*start)(struct qemu_alarm_timer *t);
816 void (*stop)(struct qemu_alarm_timer *t);
817 void (*rearm)(struct qemu_alarm_timer *t);
818 void *priv;
819};
820
821#define ALARM_FLAG_DYNTICKS 0x1
822
823static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
824{
825 return t->flags & ALARM_FLAG_DYNTICKS;
826}
827
828static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
829{
830 if (!alarm_has_dynticks(t))
831 return;
832
833 t->rearm(t);
834}
835
836/* TODO: MIN_TIMER_REARM_US should be optimized */
837#define MIN_TIMER_REARM_US 250
838
839static struct qemu_alarm_timer *alarm_timer;
840
841#ifdef _WIN32
842
843struct qemu_alarm_win32 {
844 MMRESULT timerId;
845 HANDLE host_alarm;
846 unsigned int period;
847} alarm_win32_data = {0, NULL, -1};
848
849static int win32_start_timer(struct qemu_alarm_timer *t);
850static void win32_stop_timer(struct qemu_alarm_timer *t);
851static void win32_rearm_timer(struct qemu_alarm_timer *t);
852
853#else
854
855static int unix_start_timer(struct qemu_alarm_timer *t);
856static void unix_stop_timer(struct qemu_alarm_timer *t);
857
858#ifdef __linux__
859
860static int dynticks_start_timer(struct qemu_alarm_timer *t);
861static void dynticks_stop_timer(struct qemu_alarm_timer *t);
862static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
863
864static int hpet_start_timer(struct qemu_alarm_timer *t);
865static void hpet_stop_timer(struct qemu_alarm_timer *t);
866
867static int rtc_start_timer(struct qemu_alarm_timer *t);
868static void rtc_stop_timer(struct qemu_alarm_timer *t);
869
870#endif /* __linux__ */
871
872#endif /* _WIN32 */
873
874static struct qemu_alarm_timer alarm_timers[] = {
875#ifndef _WIN32
876#ifdef __linux__
877 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
878 dynticks_stop_timer, dynticks_rearm_timer, NULL},
879 /* HPET - if available - is preferred */
880 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
881 /* ...otherwise try RTC */
882 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
883#endif
884 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
885#else
886 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
887 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
888 {"win32", 0, win32_start_timer,
889 win32_stop_timer, NULL, &alarm_win32_data},
890#endif
891 {NULL, }
892};
893
894static void show_available_alarms()
895{
896 int i;
897
898 printf("Available alarm timers, in order of precedence:\n");
899 for (i = 0; alarm_timers[i].name; i++)
900 printf("%s\n", alarm_timers[i].name);
901}
902
903static void configure_alarms(char const *opt)
904{
905 int i;
906 int cur = 0;
907 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
908 char *arg;
909 char *name;
910
911 if (!strcmp(opt, "help")) {
912 show_available_alarms();
913 exit(0);
914 }
915
916 arg = strdup(opt);
917
918 /* Reorder the array */
919 name = strtok(arg, ",");
920 while (name) {
921 struct qemu_alarm_timer tmp;
922
923 for (i = 0; i < count && alarm_timers[i].name; i++) {
924 if (!strcmp(alarm_timers[i].name, name))
925 break;
926 }
927
928 if (i == count) {
929 fprintf(stderr, "Unknown clock %s\n", name);
930 goto next;
931 }
932
933 if (i < cur)
934 /* Ignore */
935 goto next;
936
937 /* Swap */
938 tmp = alarm_timers[i];
939 alarm_timers[i] = alarm_timers[cur];
940 alarm_timers[cur] = tmp;
941
942 cur++;
943next:
944 name = strtok(NULL, ",");
945 }
946
947 free(arg);
948
949 if (cur) {
950 /* Disable remaining timers */
951 for (i = cur; i < count; i++)
952 alarm_timers[i].name = NULL;
953 }
954
955 /* debug */
956 show_available_alarms();
957}
958
959QEMUClock *rt_clock;
960QEMUClock *vm_clock;
961
962static QEMUTimer *active_timers[2];
963
964static QEMUClock *qemu_new_clock(int type)
965{
966 QEMUClock *clock;
967 clock = qemu_mallocz(sizeof(QEMUClock));
968 if (!clock)
969 return NULL;
970 clock->type = type;
971 return clock;
972}
973
974QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
975{
976 QEMUTimer *ts;
977
978 ts = qemu_mallocz(sizeof(QEMUTimer));
979 ts->clock = clock;
980 ts->cb = cb;
981 ts->opaque = opaque;
982 return ts;
983}
984
985void qemu_free_timer(QEMUTimer *ts)
986{
987 qemu_free(ts);
988}
989
990/* stop a timer, but do not dealloc it */
991void qemu_del_timer(QEMUTimer *ts)
992{
993 QEMUTimer **pt, *t;
994
995 /* NOTE: this code must be signal safe because
996 qemu_timer_expired() can be called from a signal. */
997 pt = &active_timers[ts->clock->type];
998 for(;;) {
999 t = *pt;
1000 if (!t)
1001 break;
1002 if (t == ts) {
1003 *pt = t->next;
1004 break;
1005 }
1006 pt = &t->next;
1007 }
1008}
1009
1010/* modify the current timer so that it will be fired when current_time
1011 >= expire_time. The corresponding callback will be called. */
1012void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1013{
1014 QEMUTimer **pt, *t;
1015
1016 qemu_del_timer(ts);
1017
1018 /* add the timer in the sorted list */
1019 /* NOTE: this code must be signal safe because
1020 qemu_timer_expired() can be called from a signal. */
1021 pt = &active_timers[ts->clock->type];
1022 for(;;) {
1023 t = *pt;
1024 if (!t)
1025 break;
1026 if (t->expire_time > expire_time)
1027 break;
1028 pt = &t->next;
1029 }
1030 ts->expire_time = expire_time;
1031 ts->next = *pt;
1032 *pt = ts;
1033}
1034
1035int qemu_timer_pending(QEMUTimer *ts)
1036{
1037 QEMUTimer *t;
1038 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1039 if (t == ts)
1040 return 1;
1041 }
1042 return 0;
1043}
1044
1045static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1046{
1047 if (!timer_head)
1048 return 0;
1049 return (timer_head->expire_time <= current_time);
1050}
1051
1052static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1053{
1054 QEMUTimer *ts;
1055
1056 for(;;) {
1057 ts = *ptimer_head;
1058 if (!ts || ts->expire_time > current_time)
1059 break;
1060 /* remove timer from the list before calling the callback */
1061 *ptimer_head = ts->next;
1062 ts->next = NULL;
1063
1064 /* run the callback (the timer list can be modified) */
1065 ts->cb(ts->opaque);
1066 }
1067 qemu_rearm_alarm_timer(alarm_timer);
1068}
1069
1070int64_t qemu_get_clock(QEMUClock *clock)
1071{
1072 switch(clock->type) {
1073 case QEMU_TIMER_REALTIME:
1074 return get_clock() / 1000000;
1075 default:
1076 case QEMU_TIMER_VIRTUAL:
1077 return cpu_get_clock();
1078 }
1079}
1080
1081static void init_timers(void)
1082{
1083 init_get_clock();
1084 ticks_per_sec = QEMU_TIMER_BASE;
1085 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1086 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1087}
1088
1089/* save a timer */
1090void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1091{
1092 uint64_t expire_time;
1093
1094 if (qemu_timer_pending(ts)) {
1095 expire_time = ts->expire_time;
1096 } else {
1097 expire_time = -1;
1098 }
1099 qemu_put_be64(f, expire_time);
1100}
1101
1102void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1103{
1104 uint64_t expire_time;
1105
1106 expire_time = qemu_get_be64(f);
1107 if (expire_time != -1) {
1108 qemu_mod_timer(ts, expire_time);
1109 } else {
1110 qemu_del_timer(ts);
1111 }
1112}
1113
1114static void timer_save(QEMUFile *f, void *opaque)
1115{
1116 if (cpu_ticks_enabled) {
1117 hw_error("cannot save state if virtual timers are running");
1118 }
1119 qemu_put_be64s(f, &cpu_ticks_offset);
1120 qemu_put_be64s(f, &ticks_per_sec);
1121 qemu_put_be64s(f, &cpu_clock_offset);
1122}
1123
1124static int timer_load(QEMUFile *f, void *opaque, int version_id)
1125{
1126 if (version_id != 1 && version_id != 2)
1127 return -EINVAL;
1128 if (cpu_ticks_enabled) {
1129 return -EINVAL;
1130 }
1131 qemu_get_be64s(f, &cpu_ticks_offset);
1132 qemu_get_be64s(f, &ticks_per_sec);
1133 if (version_id == 2) {
1134 qemu_get_be64s(f, &cpu_clock_offset);
1135 }
1136 return 0;
1137}
1138
1139#ifdef _WIN32
1140void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1141 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1142#else
1143static void host_alarm_handler(int host_signum)
1144#endif
1145{
1146#if 0
1147#define DISP_FREQ 1000
1148 {
1149 static int64_t delta_min = INT64_MAX;
1150 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1151 static int count;
1152 ti = qemu_get_clock(vm_clock);
1153 if (last_clock != 0) {
1154 delta = ti - last_clock;
1155 if (delta < delta_min)
1156 delta_min = delta;
1157 if (delta > delta_max)
1158 delta_max = delta;
1159 delta_cum += delta;
1160 if (++count == DISP_FREQ) {
1161 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1162 muldiv64(delta_min, 1000000, ticks_per_sec),
1163 muldiv64(delta_max, 1000000, ticks_per_sec),
1164 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1165 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1166 count = 0;
1167 delta_min = INT64_MAX;
1168 delta_max = 0;
1169 delta_cum = 0;
1170 }
1171 }
1172 last_clock = ti;
1173 }
1174#endif
1175 if (alarm_has_dynticks(alarm_timer) ||
1176 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1177 qemu_get_clock(vm_clock)) ||
1178 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1179 qemu_get_clock(rt_clock))) {
1180#ifdef _WIN32
1181 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1182 SetEvent(data->host_alarm);
1183#endif
1184 CPUState *env = cpu_single_env;
1185 if (env) {
1186 /* stop the currently executing cpu because a timer occured */
1187 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1188#ifdef USE_KQEMU
1189 if (env->kqemu_enabled) {
1190 kqemu_cpu_interrupt(env);
1191 }
1192#endif
1193 }
1194 }
1195}
1196
1197static uint64_t qemu_next_deadline(void)
1198{
1199 int64_t nearest_delta_us = INT64_MAX;
1200 int64_t vmdelta_us;
1201
1202 if (active_timers[QEMU_TIMER_REALTIME])
1203 nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1204 qemu_get_clock(rt_clock))*1000;
1205
1206 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1207 /* round up */
1208 vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1209 qemu_get_clock(vm_clock)+999)/1000;
1210 if (vmdelta_us < nearest_delta_us)
1211 nearest_delta_us = vmdelta_us;
1212 }
1213
1214 /* Avoid arming the timer to negative, zero, or too low values */
1215 if (nearest_delta_us <= MIN_TIMER_REARM_US)
1216 nearest_delta_us = MIN_TIMER_REARM_US;
1217
1218 return nearest_delta_us;
1219}
1220
1221#ifndef _WIN32
1222
1223#if defined(__linux__)
1224
1225#define RTC_FREQ 1024
1226
1227static void enable_sigio_timer(int fd)
1228{
1229 struct sigaction act;
1230
1231 /* timer signal */
1232 sigfillset(&act.sa_mask);
1233 act.sa_flags = 0;
1234 act.sa_handler = host_alarm_handler;
1235
1236 sigaction(SIGIO, &act, NULL);
1237 fcntl(fd, F_SETFL, O_ASYNC);
1238 fcntl(fd, F_SETOWN, getpid());
1239}
1240
1241static int hpet_start_timer(struct qemu_alarm_timer *t)
1242{
1243 struct hpet_info info;
1244 int r, fd;
1245
1246 fd = open("/dev/hpet", O_RDONLY);
1247 if (fd < 0)
1248 return -1;
1249
1250 /* Set frequency */
1251 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1252 if (r < 0) {
1253 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1254 "error, but for better emulation accuracy type:\n"
1255 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1256 goto fail;
1257 }
1258
1259 /* Check capabilities */
1260 r = ioctl(fd, HPET_INFO, &info);
1261 if (r < 0)
1262 goto fail;
1263
1264 /* Enable periodic mode */
1265 r = ioctl(fd, HPET_EPI, 0);
1266 if (info.hi_flags && (r < 0))
1267 goto fail;
1268
1269 /* Enable interrupt */
1270 r = ioctl(fd, HPET_IE_ON, 0);
1271 if (r < 0)
1272 goto fail;
1273
1274 enable_sigio_timer(fd);
1275 t->priv = (void *)(long)fd;
1276
1277 return 0;
1278fail:
1279 close(fd);
1280 return -1;
1281}
1282
1283static void hpet_stop_timer(struct qemu_alarm_timer *t)
1284{
1285 int fd = (long)t->priv;
1286
1287 close(fd);
1288}
1289
1290static int rtc_start_timer(struct qemu_alarm_timer *t)
1291{
1292 int rtc_fd;
1293
1294 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1295 if (rtc_fd < 0)
1296 return -1;
1297 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1298 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1299 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1300 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1301 goto fail;
1302 }
1303 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1304 fail:
1305 close(rtc_fd);
1306 return -1;
1307 }
1308
1309 enable_sigio_timer(rtc_fd);
1310
1311 t->priv = (void *)(long)rtc_fd;
1312
1313 return 0;
1314}
1315
1316static void rtc_stop_timer(struct qemu_alarm_timer *t)
1317{
1318 int rtc_fd = (long)t->priv;
1319
1320 close(rtc_fd);
1321}
1322
1323static int dynticks_start_timer(struct qemu_alarm_timer *t)
1324{
1325 struct sigevent ev;
1326 timer_t host_timer;
1327 struct sigaction act;
1328
1329 sigfillset(&act.sa_mask);
1330 act.sa_flags = 0;
1331 act.sa_handler = host_alarm_handler;
1332
1333 sigaction(SIGALRM, &act, NULL);
1334
1335 ev.sigev_value.sival_int = 0;
1336 ev.sigev_notify = SIGEV_SIGNAL;
1337 ev.sigev_signo = SIGALRM;
1338
1339 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1340 perror("timer_create");
1341
1342 /* disable dynticks */
1343 fprintf(stderr, "Dynamic Ticks disabled\n");
1344
1345 return -1;
1346 }
1347
1348 t->priv = (void *)host_timer;
1349
1350 return 0;
1351}
1352
1353static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1354{
1355 timer_t host_timer = (timer_t)t->priv;
1356
1357 timer_delete(host_timer);
1358}
1359
1360static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1361{
1362 timer_t host_timer = (timer_t)t->priv;
1363 struct itimerspec timeout;
1364 int64_t nearest_delta_us = INT64_MAX;
1365 int64_t current_us;
1366
1367 if (!active_timers[QEMU_TIMER_REALTIME] &&
1368 !active_timers[QEMU_TIMER_VIRTUAL])
1369 return;
1370
1371 nearest_delta_us = qemu_next_deadline();
1372
1373 /* check whether a timer is already running */
1374 if (timer_gettime(host_timer, &timeout)) {
1375 perror("gettime");
1376 fprintf(stderr, "Internal timer error: aborting\n");
1377 exit(1);
1378 }
1379 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1380 if (current_us && current_us <= nearest_delta_us)
1381 return;
1382
1383 timeout.it_interval.tv_sec = 0;
1384 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1385 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1386 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1387 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1388 perror("settime");
1389 fprintf(stderr, "Internal timer error: aborting\n");
1390 exit(1);
1391 }
1392}
1393
1394#endif /* defined(__linux__) */
1395
1396static int unix_start_timer(struct qemu_alarm_timer *t)
1397{
1398 struct sigaction act;
1399 struct itimerval itv;
1400 int err;
1401
1402 /* timer signal */
1403 sigfillset(&act.sa_mask);
1404 act.sa_flags = 0;
1405 act.sa_handler = host_alarm_handler;
1406
1407 sigaction(SIGALRM, &act, NULL);
1408
1409 itv.it_interval.tv_sec = 0;
1410 /* for i386 kernel 2.6 to get 1 ms */
1411 itv.it_interval.tv_usec = 999;
1412 itv.it_value.tv_sec = 0;
1413 itv.it_value.tv_usec = 10 * 1000;
1414
1415 err = setitimer(ITIMER_REAL, &itv, NULL);
1416 if (err)
1417 return -1;
1418
1419 return 0;
1420}
1421
1422static void unix_stop_timer(struct qemu_alarm_timer *t)
1423{
1424 struct itimerval itv;
1425
1426 memset(&itv, 0, sizeof(itv));
1427 setitimer(ITIMER_REAL, &itv, NULL);
1428}
1429
1430#endif /* !defined(_WIN32) */
1431
1432#ifdef _WIN32
1433
1434static int win32_start_timer(struct qemu_alarm_timer *t)
1435{
1436 TIMECAPS tc;
1437 struct qemu_alarm_win32 *data = t->priv;
1438 UINT flags;
1439
1440 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1441 if (!data->host_alarm) {
1442 perror("Failed CreateEvent");
1443 return -1;
1444 }
1445
1446 memset(&tc, 0, sizeof(tc));
1447 timeGetDevCaps(&tc, sizeof(tc));
1448
1449 if (data->period < tc.wPeriodMin)
1450 data->period = tc.wPeriodMin;
1451
1452 timeBeginPeriod(data->period);
1453
1454 flags = TIME_CALLBACK_FUNCTION;
1455 if (alarm_has_dynticks(t))
1456 flags |= TIME_ONESHOT;
1457 else
1458 flags |= TIME_PERIODIC;
1459
1460 data->timerId = timeSetEvent(1, // interval (ms)
1461 data->period, // resolution
1462 host_alarm_handler, // function
1463 (DWORD)t, // parameter
1464 flags);
1465
1466 if (!data->timerId) {
1467 perror("Failed to initialize win32 alarm timer");
1468
1469 timeEndPeriod(data->period);
1470 CloseHandle(data->host_alarm);
1471 return -1;
1472 }
1473
1474 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1475
1476 return 0;
1477}
1478
1479static void win32_stop_timer(struct qemu_alarm_timer *t)
1480{
1481 struct qemu_alarm_win32 *data = t->priv;
1482
1483 timeKillEvent(data->timerId);
1484 timeEndPeriod(data->period);
1485
1486 CloseHandle(data->host_alarm);
1487}
1488
1489static void win32_rearm_timer(struct qemu_alarm_timer *t)
1490{
1491 struct qemu_alarm_win32 *data = t->priv;
1492 uint64_t nearest_delta_us;
1493
1494 if (!active_timers[QEMU_TIMER_REALTIME] &&
1495 !active_timers[QEMU_TIMER_VIRTUAL])
1496 return;
1497
1498 nearest_delta_us = qemu_next_deadline();
1499 nearest_delta_us /= 1000;
1500
1501 timeKillEvent(data->timerId);
1502
1503 data->timerId = timeSetEvent(1,
1504 data->period,
1505 host_alarm_handler,
1506 (DWORD)t,
1507 TIME_ONESHOT | TIME_PERIODIC);
1508
1509 if (!data->timerId) {
1510 perror("Failed to re-arm win32 alarm timer");
1511
1512 timeEndPeriod(data->period);
1513 CloseHandle(data->host_alarm);
1514 exit(1);
1515 }
1516}
1517
1518#endif /* _WIN32 */
1519
1520static void init_timer_alarm(void)
1521{
1522 struct qemu_alarm_timer *t;
1523 int i, err = -1;
1524
1525 for (i = 0; alarm_timers[i].name; i++) {
1526 t = &alarm_timers[i];
1527
1528 err = t->start(t);
1529 if (!err)
1530 break;
1531 }
1532
1533 if (err) {
1534 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1535 fprintf(stderr, "Terminating\n");
1536 exit(1);
1537 }
1538
1539 alarm_timer = t;
1540}
1541
1542static void quit_timers(void)
1543{
1544 alarm_timer->stop(alarm_timer);
1545 alarm_timer = NULL;
1546}
1547
1548/***********************************************************/
1549/* character device */
1550
1551static void qemu_chr_event(CharDriverState *s, int event)
1552{
1553 if (!s->chr_event)
1554 return;
1555 s->chr_event(s->handler_opaque, event);
1556}
1557
1558static void qemu_chr_reset_bh(void *opaque)
1559{
1560 CharDriverState *s = opaque;
1561 qemu_chr_event(s, CHR_EVENT_RESET);
1562 qemu_bh_delete(s->bh);
1563 s->bh = NULL;
1564}
1565
1566void qemu_chr_reset(CharDriverState *s)
1567{
1568 if (s->bh == NULL) {
1569 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1570 qemu_bh_schedule(s->bh);
1571 }
1572}
1573
1574int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1575{
1576 return s->chr_write(s, buf, len);
1577}
1578
1579int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1580{
1581 if (!s->chr_ioctl)
1582 return -ENOTSUP;
1583 return s->chr_ioctl(s, cmd, arg);
1584}
1585
1586int qemu_chr_can_read(CharDriverState *s)
1587{
1588 if (!s->chr_can_read)
1589 return 0;
1590 return s->chr_can_read(s->handler_opaque);
1591}
1592
1593void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1594{
1595 s->chr_read(s->handler_opaque, buf, len);
1596}
1597
1598
1599void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1600{
1601 char buf[4096];
1602 va_list ap;
1603 va_start(ap, fmt);
1604 vsnprintf(buf, sizeof(buf), fmt, ap);
1605 qemu_chr_write(s, buf, strlen(buf));
1606 va_end(ap);
1607}
1608
1609void qemu_chr_send_event(CharDriverState *s, int event)
1610{
1611 if (s->chr_send_event)
1612 s->chr_send_event(s, event);
1613}
1614
1615void qemu_chr_add_handlers(CharDriverState *s,
1616 IOCanRWHandler *fd_can_read,
1617 IOReadHandler *fd_read,
1618 IOEventHandler *fd_event,
1619 void *opaque)
1620{
1621 s->chr_can_read = fd_can_read;
1622 s->chr_read = fd_read;
1623 s->chr_event = fd_event;
1624 s->handler_opaque = opaque;
1625 if (s->chr_update_read_handler)
1626 s->chr_update_read_handler(s);
1627}
1628
1629static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1630{
1631 return len;
1632}
1633
1634static CharDriverState *qemu_chr_open_null(void)
1635{
1636 CharDriverState *chr;
1637
1638 chr = qemu_mallocz(sizeof(CharDriverState));
1639 if (!chr)
1640 return NULL;
1641 chr->chr_write = null_chr_write;
1642 return chr;
1643}
1644
1645/* MUX driver for serial I/O splitting */
1646static int term_timestamps;
1647static int64_t term_timestamps_start;
1648#define MAX_MUX 4
1649typedef struct {
1650 IOCanRWHandler *chr_can_read[MAX_MUX];
1651 IOReadHandler *chr_read[MAX_MUX];
1652 IOEventHandler *chr_event[MAX_MUX];
1653 void *ext_opaque[MAX_MUX];
1654 CharDriverState *drv;
1655 int mux_cnt;
1656 int term_got_escape;
1657 int max_size;
1658} MuxDriver;
1659
1660
1661static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1662{
1663 MuxDriver *d = chr->opaque;
1664 int ret;
1665 if (!term_timestamps) {
1666 ret = d->drv->chr_write(d->drv, buf, len);
1667 } else {
1668 int i;
1669
1670 ret = 0;
1671 for(i = 0; i < len; i++) {
1672 ret += d->drv->chr_write(d->drv, buf+i, 1);
1673 if (buf[i] == '\n') {
1674 char buf1[64];
1675 int64_t ti;
1676 int secs;
1677
1678 ti = get_clock();
1679 if (term_timestamps_start == -1)
1680 term_timestamps_start = ti;
1681 ti -= term_timestamps_start;
1682 secs = ti / 1000000000;
1683 snprintf(buf1, sizeof(buf1),
1684 "[%02d:%02d:%02d.%03d] ",
1685 secs / 3600,
1686 (secs / 60) % 60,
1687 secs % 60,
1688 (int)((ti / 1000000) % 1000));
1689 d->drv->chr_write(d->drv, buf1, strlen(buf1));
1690 }
1691 }
1692 }
1693 return ret;
1694}
1695
1696static char *mux_help[] = {
1697 "% h print this help\n\r",
1698 "% x exit emulator\n\r",
1699 "% s save disk data back to file (if -snapshot)\n\r",
1700 "% t toggle console timestamps\n\r"
1701 "% b send break (magic sysrq)\n\r",
1702 "% c switch between console and monitor\n\r",
1703 "% % sends %\n\r",
1704 NULL
1705};
1706
1707static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1708static void mux_print_help(CharDriverState *chr)
1709{
1710 int i, j;
1711 char ebuf[15] = "Escape-Char";
1712 char cbuf[50] = "\n\r";
1713
1714 if (term_escape_char > 0 && term_escape_char < 26) {
1715 sprintf(cbuf,"\n\r");
1716 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1717 } else {
1718 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1719 }
1720 chr->chr_write(chr, cbuf, strlen(cbuf));
1721 for (i = 0; mux_help[i] != NULL; i++) {
1722 for (j=0; mux_help[i][j] != '\0'; j++) {
1723 if (mux_help[i][j] == '%')
1724 chr->chr_write(chr, ebuf, strlen(ebuf));
1725 else
1726 chr->chr_write(chr, &mux_help[i][j], 1);
1727 }
1728 }
1729}
1730
1731static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1732{
1733 if (d->term_got_escape) {
1734 d->term_got_escape = 0;
1735 if (ch == term_escape_char)
1736 goto send_char;
1737 switch(ch) {
1738 case '?':
1739 case 'h':
1740 mux_print_help(chr);
1741 break;
1742 case 'x':
1743 {
1744 char *term = "QEMU: Terminated\n\r";
1745 chr->chr_write(chr,term,strlen(term));
1746 exit(0);
1747 break;
1748 }
1749 case 's':
1750 {
1751 int i;
1752 for (i = 0; i < MAX_DISKS; i++) {
1753 if (bs_table[i])
1754 bdrv_commit(bs_table[i]);
1755 }
1756 if (mtd_bdrv)
1757 bdrv_commit(mtd_bdrv);
1758 }
1759 break;
1760 case 'b':
1761 qemu_chr_event(chr, CHR_EVENT_BREAK);
1762 break;
1763 case 'c':
1764 /* Switch to the next registered device */
1765 chr->focus++;
1766 if (chr->focus >= d->mux_cnt)
1767 chr->focus = 0;
1768 break;
1769 case 't':
1770 term_timestamps = !term_timestamps;
1771 term_timestamps_start = -1;
1772 break;
1773 }
1774 } else if (ch == term_escape_char) {
1775 d->term_got_escape = 1;
1776 } else {
1777 send_char:
1778 return 1;
1779 }
1780 return 0;
1781}
1782
1783static int mux_chr_can_read(void *opaque)
1784{
1785 CharDriverState *chr = opaque;
1786 MuxDriver *d = chr->opaque;
1787 if (d->chr_can_read[chr->focus])
1788 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1789 return 0;
1790}
1791
1792static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1793{
1794 CharDriverState *chr = opaque;
1795 MuxDriver *d = chr->opaque;
1796 int i;
1797 for(i = 0; i < size; i++)
1798 if (mux_proc_byte(chr, d, buf[i]))
1799 d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1800}
1801
1802static void mux_chr_event(void *opaque, int event)
1803{
1804 CharDriverState *chr = opaque;
1805 MuxDriver *d = chr->opaque;
1806 int i;
1807
1808 /* Send the event to all registered listeners */
1809 for (i = 0; i < d->mux_cnt; i++)
1810 if (d->chr_event[i])
1811 d->chr_event[i](d->ext_opaque[i], event);
1812}
1813
1814static void mux_chr_update_read_handler(CharDriverState *chr)
1815{
1816 MuxDriver *d = chr->opaque;
1817
1818 if (d->mux_cnt >= MAX_MUX) {
1819 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1820 return;
1821 }
1822 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1823 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1824 d->chr_read[d->mux_cnt] = chr->chr_read;
1825 d->chr_event[d->mux_cnt] = chr->chr_event;
1826 /* Fix up the real driver with mux routines */
1827 if (d->mux_cnt == 0) {
1828 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1829 mux_chr_event, chr);
1830 }
1831 chr->focus = d->mux_cnt;
1832 d->mux_cnt++;
1833}
1834
1835static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1836{
1837 CharDriverState *chr;
1838 MuxDriver *d;
1839
1840 chr = qemu_mallocz(sizeof(CharDriverState));
1841 if (!chr)
1842 return NULL;
1843 d = qemu_mallocz(sizeof(MuxDriver));
1844 if (!d) {
1845 free(chr);
1846 return NULL;
1847 }
1848
1849 chr->opaque = d;
1850 d->drv = drv;
1851 chr->focus = -1;
1852 chr->chr_write = mux_chr_write;
1853 chr->chr_update_read_handler = mux_chr_update_read_handler;
1854 return chr;
1855}
1856
1857
1858#ifdef _WIN32
1859
1860static void socket_cleanup(void)
1861{
1862 WSACleanup();
1863}
1864
1865static int socket_init(void)
1866{
1867 WSADATA Data;
1868 int ret, err;
1869
1870 ret = WSAStartup(MAKEWORD(2,2), &Data);
1871 if (ret != 0) {
1872 err = WSAGetLastError();
1873 fprintf(stderr, "WSAStartup: %d\n", err);
1874 return -1;
1875 }
1876 atexit(socket_cleanup);
1877 return 0;
1878}
1879
1880static int send_all(int fd, const uint8_t *buf, int len1)
1881{
1882 int ret, len;
1883
1884 len = len1;
1885 while (len > 0) {
1886 ret = send(fd, buf, len, 0);
1887 if (ret < 0) {
1888 int errno;
1889 errno = WSAGetLastError();
1890 if (errno != WSAEWOULDBLOCK) {
1891 return -1;
1892 }
1893 } else if (ret == 0) {
1894 break;
1895 } else {
1896 buf += ret;
1897 len -= ret;
1898 }
1899 }
1900 return len1 - len;
1901}
1902
1903void socket_set_nonblock(int fd)
1904{
1905 unsigned long opt = 1;
1906 ioctlsocket(fd, FIONBIO, &opt);
1907}
1908
1909#else
1910
1911static int unix_write(int fd, const uint8_t *buf, int len1)
1912{
1913 int ret, len;
1914
1915 len = len1;
1916 while (len > 0) {
1917 ret = write(fd, buf, len);
1918 if (ret < 0) {
1919 if (errno != EINTR && errno != EAGAIN)
1920 return -1;
1921 } else if (ret == 0) {
1922 break;
1923 } else {
1924 buf += ret;
1925 len -= ret;
1926 }
1927 }
1928 return len1 - len;
1929}
1930
1931static inline int send_all(int fd, const uint8_t *buf, int len1)
1932{
1933 return unix_write(fd, buf, len1);
1934}
1935
1936void socket_set_nonblock(int fd)
1937{
1938 fcntl(fd, F_SETFL, O_NONBLOCK);
1939}
1940#endif /* !_WIN32 */
1941
1942#ifndef _WIN32
1943
1944typedef struct {
1945 int fd_in, fd_out;
1946 int max_size;
1947} FDCharDriver;
1948
1949#define STDIO_MAX_CLIENTS 1
1950static int stdio_nb_clients = 0;
1951
1952static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1953{
1954 FDCharDriver *s = chr->opaque;
1955 return unix_write(s->fd_out, buf, len);
1956}
1957
1958static int fd_chr_read_poll(void *opaque)
1959{
1960 CharDriverState *chr = opaque;
1961 FDCharDriver *s = chr->opaque;
1962
1963 s->max_size = qemu_chr_can_read(chr);
1964 return s->max_size;
1965}
1966
1967static void fd_chr_read(void *opaque)
1968{
1969 CharDriverState *chr = opaque;
1970 FDCharDriver *s = chr->opaque;
1971 int size, len;
1972 uint8_t buf[1024];
1973
1974 len = sizeof(buf);
1975 if (len > s->max_size)
1976 len = s->max_size;
1977 if (len == 0)
1978 return;
1979 size = read(s->fd_in, buf, len);
1980 if (size == 0) {
1981 /* FD has been closed. Remove it from the active list. */
1982 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1983 return;
1984 }
1985 if (size > 0) {
1986 qemu_chr_read(chr, buf, size);
1987 }
1988}
1989
1990static void fd_chr_update_read_handler(CharDriverState *chr)
1991{
1992 FDCharDriver *s = chr->opaque;
1993
1994 if (s->fd_in >= 0) {
1995 if (nographic && s->fd_in == 0) {
1996 } else {
1997 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1998 fd_chr_read, NULL, chr);
1999 }
2000 }
2001}
2002
2003/* open a character device to a unix fd */
2004static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2005{
2006 CharDriverState *chr;
2007 FDCharDriver *s;
2008
2009 chr = qemu_mallocz(sizeof(CharDriverState));
2010 if (!chr)
2011 return NULL;
2012 s = qemu_mallocz(sizeof(FDCharDriver));
2013 if (!s) {
2014 free(chr);
2015 return NULL;
2016 }
2017 s->fd_in = fd_in;
2018 s->fd_out = fd_out;
2019 chr->opaque = s;
2020 chr->chr_write = fd_chr_write;
2021 chr->chr_update_read_handler = fd_chr_update_read_handler;
2022
2023 qemu_chr_reset(chr);
2024
2025 return chr;
2026}
2027
2028static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2029{
2030 int fd_out;
2031
2032 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2033 if (fd_out < 0)
2034 return NULL;
2035 return qemu_chr_open_fd(-1, fd_out);
2036}
2037
2038static CharDriverState *qemu_chr_open_pipe(const char *filename)
2039{
2040 int fd_in, fd_out;
2041 char filename_in[256], filename_out[256];
2042
2043 snprintf(filename_in, 256, "%s.in", filename);
2044 snprintf(filename_out, 256, "%s.out", filename);
2045 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2046 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2047 if (fd_in < 0 || fd_out < 0) {
2048 if (fd_in >= 0)
2049 close(fd_in);
2050 if (fd_out >= 0)
2051 close(fd_out);
2052 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2053 if (fd_in < 0)
2054 return NULL;
2055 }
2056 return qemu_chr_open_fd(fd_in, fd_out);
2057}
2058
2059
2060/* for STDIO, we handle the case where several clients use it
2061 (nographic mode) */
2062
2063#define TERM_FIFO_MAX_SIZE 1
2064
2065static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2066static int term_fifo_size;
2067
2068static int stdio_read_poll(void *opaque)
2069{
2070 CharDriverState *chr = opaque;
2071
2072 /* try to flush the queue if needed */
2073 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2074 qemu_chr_read(chr, term_fifo, 1);
2075 term_fifo_size = 0;
2076 }
2077 /* see if we can absorb more chars */
2078 if (term_fifo_size == 0)
2079 return 1;
2080 else
2081 return 0;
2082}
2083
2084static void stdio_read(void *opaque)
2085{
2086 int size;
2087 uint8_t buf[1];
2088 CharDriverState *chr = opaque;
2089
2090 size = read(0, buf, 1);
2091 if (size == 0) {
2092 /* stdin has been closed. Remove it from the active list. */
2093 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2094 return;
2095 }
2096 if (size > 0) {
2097 if (qemu_chr_can_read(chr) > 0) {
2098 qemu_chr_read(chr, buf, 1);
2099 } else if (term_fifo_size == 0) {
2100 term_fifo[term_fifo_size++] = buf[0];
2101 }
2102 }
2103}
2104
2105/* init terminal so that we can grab keys */
2106static struct termios oldtty;
2107static int old_fd0_flags;
2108
2109static void term_exit(void)
2110{
2111 tcsetattr (0, TCSANOW, &oldtty);
2112 fcntl(0, F_SETFL, old_fd0_flags);
2113}
2114
2115static void term_init(void)
2116{
2117 struct termios tty;
2118
2119 tcgetattr (0, &tty);
2120 oldtty = tty;
2121 old_fd0_flags = fcntl(0, F_GETFL);
2122
2123 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2124 |INLCR|IGNCR|ICRNL|IXON);
2125 tty.c_oflag |= OPOST;
2126 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2127 /* if graphical mode, we allow Ctrl-C handling */
2128 if (nographic)
2129 tty.c_lflag &= ~ISIG;
2130 tty.c_cflag &= ~(CSIZE|PARENB);
2131 tty.c_cflag |= CS8;
2132 tty.c_cc[VMIN] = 1;
2133 tty.c_cc[VTIME] = 0;
2134
2135 tcsetattr (0, TCSANOW, &tty);
2136
2137 atexit(term_exit);
2138
2139 fcntl(0, F_SETFL, O_NONBLOCK);
2140}
2141
2142static CharDriverState *qemu_chr_open_stdio(void)
2143{
2144 CharDriverState *chr;
2145
2146 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2147 return NULL;
2148 chr = qemu_chr_open_fd(0, 1);
2149 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2150 stdio_nb_clients++;
2151 term_init();
2152
2153 return chr;
2154}
2155
2156#if defined(__linux__) || defined(__sun__)
2157static CharDriverState *qemu_chr_open_pty(void)
2158{
2159 struct termios tty;
2160 char slave_name[1024];
2161 int master_fd, slave_fd;
2162
2163#if defined(__linux__)
2164 /* Not satisfying */
2165 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2166 return NULL;
2167 }
2168#endif
2169
2170 /* Disabling local echo and line-buffered output */
2171 tcgetattr (master_fd, &tty);
2172 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2173 tty.c_cc[VMIN] = 1;
2174 tty.c_cc[VTIME] = 0;
2175 tcsetattr (master_fd, TCSAFLUSH, &tty);
2176
2177 fprintf(stderr, "char device redirected to %s\n", slave_name);
2178 return qemu_chr_open_fd(master_fd, master_fd);
2179}
2180
2181static void tty_serial_init(int fd, int speed,
2182 int parity, int data_bits, int stop_bits)
2183{
2184 struct termios tty;
2185 speed_t spd;
2186
2187#if 0
2188 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2189 speed, parity, data_bits, stop_bits);
2190#endif
2191 tcgetattr (fd, &tty);
2192
2193 switch(speed) {
2194 case 50:
2195 spd = B50;
2196 break;
2197 case 75:
2198 spd = B75;
2199 break;
2200 case 300:
2201 spd = B300;
2202 break;
2203 case 600:
2204 spd = B600;
2205 break;
2206 case 1200:
2207 spd = B1200;
2208 break;
2209 case 2400:
2210 spd = B2400;
2211 break;
2212 case 4800:
2213 spd = B4800;
2214 break;
2215 case 9600:
2216 spd = B9600;
2217 break;
2218 case 19200:
2219 spd = B19200;
2220 break;
2221 case 38400:
2222 spd = B38400;
2223 break;
2224 case 57600:
2225 spd = B57600;
2226 break;
2227 default:
2228 case 115200:
2229 spd = B115200;
2230 break;
2231 }
2232
2233 cfsetispeed(&tty, spd);
2234 cfsetospeed(&tty, spd);
2235
2236 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2237 |INLCR|IGNCR|ICRNL|IXON);
2238 tty.c_oflag |= OPOST;
2239 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2240 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2241 switch(data_bits) {
2242 default:
2243 case 8:
2244 tty.c_cflag |= CS8;
2245 break;
2246 case 7:
2247 tty.c_cflag |= CS7;
2248 break;
2249 case 6:
2250 tty.c_cflag |= CS6;
2251 break;
2252 case 5:
2253 tty.c_cflag |= CS5;
2254 break;
2255 }
2256 switch(parity) {
2257 default:
2258 case 'N':
2259 break;
2260 case 'E':
2261 tty.c_cflag |= PARENB;
2262 break;
2263 case 'O':
2264 tty.c_cflag |= PARENB | PARODD;
2265 break;
2266 }
2267 if (stop_bits == 2)
2268 tty.c_cflag |= CSTOPB;
2269
2270 tcsetattr (fd, TCSANOW, &tty);
2271}
2272
2273static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2274{
2275 FDCharDriver *s = chr->opaque;
2276
2277 switch(cmd) {
2278 case CHR_IOCTL_SERIAL_SET_PARAMS:
2279 {
2280 QEMUSerialSetParams *ssp = arg;
2281 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2282 ssp->data_bits, ssp->stop_bits);
2283 }
2284 break;
2285 case CHR_IOCTL_SERIAL_SET_BREAK:
2286 {
2287 int enable = *(int *)arg;
2288 if (enable)
2289 tcsendbreak(s->fd_in, 1);
2290 }
2291 break;
2292 default:
2293 return -ENOTSUP;
2294 }
2295 return 0;
2296}
2297
2298static CharDriverState *qemu_chr_open_tty(const char *filename)
2299{
2300 CharDriverState *chr;
2301 int fd;
2302
2303 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2304 fcntl(fd, F_SETFL, O_NONBLOCK);
2305 tty_serial_init(fd, 115200, 'N', 8, 1);
2306 chr = qemu_chr_open_fd(fd, fd);
2307 if (!chr) {
2308 close(fd);
2309 return NULL;
2310 }
2311 chr->chr_ioctl = tty_serial_ioctl;
2312 qemu_chr_reset(chr);
2313 return chr;
2314}
2315#else /* ! __linux__ && ! __sun__ */
2316static CharDriverState *qemu_chr_open_pty(void)
2317{
2318 return NULL;
2319}
2320#endif /* __linux__ || __sun__ */
2321
2322#if defined(__linux__)
2323typedef struct {
2324 int fd;
2325 int mode;
2326} ParallelCharDriver;
2327
2328static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2329{
2330 if (s->mode != mode) {
2331 int m = mode;
2332 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2333 return 0;
2334 s->mode = mode;
2335 }
2336 return 1;
2337}
2338
2339static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2340{
2341 ParallelCharDriver *drv = chr->opaque;
2342 int fd = drv->fd;
2343 uint8_t b;
2344
2345 switch(cmd) {
2346 case CHR_IOCTL_PP_READ_DATA:
2347 if (ioctl(fd, PPRDATA, &b) < 0)
2348 return -ENOTSUP;
2349 *(uint8_t *)arg = b;
2350 break;
2351 case CHR_IOCTL_PP_WRITE_DATA:
2352 b = *(uint8_t *)arg;
2353 if (ioctl(fd, PPWDATA, &b) < 0)
2354 return -ENOTSUP;
2355 break;
2356 case CHR_IOCTL_PP_READ_CONTROL:
2357 if (ioctl(fd, PPRCONTROL, &b) < 0)
2358 return -ENOTSUP;
2359 /* Linux gives only the lowest bits, and no way to know data
2360 direction! For better compatibility set the fixed upper
2361 bits. */
2362 *(uint8_t *)arg = b | 0xc0;
2363 break;
2364 case CHR_IOCTL_PP_WRITE_CONTROL:
2365 b = *(uint8_t *)arg;
2366 if (ioctl(fd, PPWCONTROL, &b) < 0)
2367 return -ENOTSUP;
2368 break;
2369 case CHR_IOCTL_PP_READ_STATUS:
2370 if (ioctl(fd, PPRSTATUS, &b) < 0)
2371 return -ENOTSUP;
2372 *(uint8_t *)arg = b;
2373 break;
2374 case CHR_IOCTL_PP_EPP_READ_ADDR:
2375 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2376 struct ParallelIOArg *parg = arg;
2377 int n = read(fd, parg->buffer, parg->count);
2378 if (n != parg->count) {
2379 return -EIO;
2380 }
2381 }
2382 break;
2383 case CHR_IOCTL_PP_EPP_READ:
2384 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2385 struct ParallelIOArg *parg = arg;
2386 int n = read(fd, parg->buffer, parg->count);
2387 if (n != parg->count) {
2388 return -EIO;
2389 }
2390 }
2391 break;
2392 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2393 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2394 struct ParallelIOArg *parg = arg;
2395 int n = write(fd, parg->buffer, parg->count);
2396 if (n != parg->count) {
2397 return -EIO;
2398 }
2399 }
2400 break;
2401 case CHR_IOCTL_PP_EPP_WRITE:
2402 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2403 struct ParallelIOArg *parg = arg;
2404 int n = write(fd, parg->buffer, parg->count);
2405 if (n != parg->count) {
2406 return -EIO;
2407 }
2408 }
2409 break;
2410 default:
2411 return -ENOTSUP;
2412 }
2413 return 0;
2414}
2415
2416static void pp_close(CharDriverState *chr)
2417{
2418 ParallelCharDriver *drv = chr->opaque;
2419 int fd = drv->fd;
2420
2421 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2422 ioctl(fd, PPRELEASE);
2423 close(fd);
2424 qemu_free(drv);
2425}
2426
2427static CharDriverState *qemu_chr_open_pp(const char *filename)
2428{
2429 CharDriverState *chr;
2430 ParallelCharDriver *drv;
2431 int fd;
2432
2433 TFR(fd = open(filename, O_RDWR));
2434 if (fd < 0)
2435 return NULL;
2436
2437 if (ioctl(fd, PPCLAIM) < 0) {
2438 close(fd);
2439 return NULL;
2440 }
2441
2442 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2443 if (!drv) {
2444 close(fd);
2445 return NULL;
2446 }
2447 drv->fd = fd;
2448 drv->mode = IEEE1284_MODE_COMPAT;
2449
2450 chr = qemu_mallocz(sizeof(CharDriverState));
2451 if (!chr) {
2452 qemu_free(drv);
2453 close(fd);
2454 return NULL;
2455 }
2456 chr->chr_write = null_chr_write;
2457 chr->chr_ioctl = pp_ioctl;
2458 chr->chr_close = pp_close;
2459 chr->opaque = drv;
2460
2461 qemu_chr_reset(chr);
2462
2463 return chr;
2464}
2465#endif /* __linux__ */
2466
2467#else /* _WIN32 */
2468
2469typedef struct {
2470 int max_size;
2471 HANDLE hcom, hrecv, hsend;
2472 OVERLAPPED orecv, osend;
2473 BOOL fpipe;
2474 DWORD len;
2475} WinCharState;
2476
2477#define NSENDBUF 2048
2478#define NRECVBUF 2048
2479#define MAXCONNECT 1
2480#define NTIMEOUT 5000
2481
2482static int win_chr_poll(void *opaque);
2483static int win_chr_pipe_poll(void *opaque);
2484
2485static void win_chr_close(CharDriverState *chr)
2486{
2487 WinCharState *s = chr->opaque;
2488
2489 if (s->hsend) {
2490 CloseHandle(s->hsend);
2491 s->hsend = NULL;
2492 }
2493 if (s->hrecv) {
2494 CloseHandle(s->hrecv);
2495 s->hrecv = NULL;
2496 }
2497 if (s->hcom) {
2498 CloseHandle(s->hcom);
2499 s->hcom = NULL;
2500 }
2501 if (s->fpipe)
2502 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2503 else
2504 qemu_del_polling_cb(win_chr_poll, chr);
2505}
2506
2507static int win_chr_init(CharDriverState *chr, const char *filename)
2508{
2509 WinCharState *s = chr->opaque;
2510 COMMCONFIG comcfg;
2511 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2512 COMSTAT comstat;
2513 DWORD size;
2514 DWORD err;
2515
2516 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2517 if (!s->hsend) {
2518 fprintf(stderr, "Failed CreateEvent\n");
2519 goto fail;
2520 }
2521 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2522 if (!s->hrecv) {
2523 fprintf(stderr, "Failed CreateEvent\n");
2524 goto fail;
2525 }
2526
2527 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2528 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2529 if (s->hcom == INVALID_HANDLE_VALUE) {
2530 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2531 s->hcom = NULL;
2532 goto fail;
2533 }
2534
2535 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2536 fprintf(stderr, "Failed SetupComm\n");
2537 goto fail;
2538 }
2539
2540 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2541 size = sizeof(COMMCONFIG);
2542 GetDefaultCommConfig(filename, &comcfg, &size);
2543 comcfg.dcb.DCBlength = sizeof(DCB);
2544 CommConfigDialog(filename, NULL, &comcfg);
2545
2546 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2547 fprintf(stderr, "Failed SetCommState\n");
2548 goto fail;
2549 }
2550
2551 if (!SetCommMask(s->hcom, EV_ERR)) {
2552 fprintf(stderr, "Failed SetCommMask\n");
2553 goto fail;
2554 }
2555
2556 cto.ReadIntervalTimeout = MAXDWORD;
2557 if (!SetCommTimeouts(s->hcom, &cto)) {
2558 fprintf(stderr, "Failed SetCommTimeouts\n");
2559 goto fail;
2560 }
2561
2562 if (!ClearCommError(s->hcom, &err, &comstat)) {
2563 fprintf(stderr, "Failed ClearCommError\n");
2564 goto fail;
2565 }
2566 qemu_add_polling_cb(win_chr_poll, chr);
2567 return 0;
2568
2569 fail:
2570 win_chr_close(chr);
2571 return -1;
2572}
2573
2574static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2575{
2576 WinCharState *s = chr->opaque;
2577 DWORD len, ret, size, err;
2578
2579 len = len1;
2580 ZeroMemory(&s->osend, sizeof(s->osend));
2581 s->osend.hEvent = s->hsend;
2582 while (len > 0) {
2583 if (s->hsend)
2584 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2585 else
2586 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2587 if (!ret) {
2588 err = GetLastError();
2589 if (err == ERROR_IO_PENDING) {
2590 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2591 if (ret) {
2592 buf += size;
2593 len -= size;
2594 } else {
2595 break;
2596 }
2597 } else {
2598 break;
2599 }
2600 } else {
2601 buf += size;
2602 len -= size;
2603 }
2604 }
2605 return len1 - len;
2606}
2607
2608static int win_chr_read_poll(CharDriverState *chr)
2609{
2610 WinCharState *s = chr->opaque;
2611
2612 s->max_size = qemu_chr_can_read(chr);
2613 return s->max_size;
2614}
2615
2616static void win_chr_readfile(CharDriverState *chr)
2617{
2618 WinCharState *s = chr->opaque;
2619 int ret, err;
2620 uint8_t buf[1024];
2621 DWORD size;
2622
2623 ZeroMemory(&s->orecv, sizeof(s->orecv));
2624 s->orecv.hEvent = s->hrecv;
2625 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2626 if (!ret) {
2627 err = GetLastError();
2628 if (err == ERROR_IO_PENDING) {
2629 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2630 }
2631 }
2632
2633 if (size > 0) {
2634 qemu_chr_read(chr, buf, size);
2635 }
2636}
2637
2638static void win_chr_read(CharDriverState *chr)
2639{
2640 WinCharState *s = chr->opaque;
2641
2642 if (s->len > s->max_size)
2643 s->len = s->max_size;
2644 if (s->len == 0)
2645 return;
2646
2647 win_chr_readfile(chr);
2648}
2649
2650static int win_chr_poll(void *opaque)
2651{
2652 CharDriverState *chr = opaque;
2653 WinCharState *s = chr->opaque;
2654 COMSTAT status;
2655 DWORD comerr;
2656
2657 ClearCommError(s->hcom, &comerr, &status);
2658 if (status.cbInQue > 0) {
2659 s->len = status.cbInQue;
2660 win_chr_read_poll(chr);
2661 win_chr_read(chr);
2662 return 1;
2663 }
2664 return 0;
2665}
2666
2667static CharDriverState *qemu_chr_open_win(const char *filename)
2668{
2669 CharDriverState *chr;
2670 WinCharState *s;
2671
2672 chr = qemu_mallocz(sizeof(CharDriverState));
2673 if (!chr)
2674 return NULL;
2675 s = qemu_mallocz(sizeof(WinCharState));
2676 if (!s) {
2677 free(chr);
2678 return NULL;
2679 }
2680 chr->opaque = s;
2681 chr->chr_write = win_chr_write;
2682 chr->chr_close = win_chr_close;
2683
2684 if (win_chr_init(chr, filename) < 0) {
2685 free(s);
2686 free(chr);
2687 return NULL;
2688 }
2689 qemu_chr_reset(chr);
2690 return chr;
2691}
2692
2693static int win_chr_pipe_poll(void *opaque)
2694{
2695 CharDriverState *chr = opaque;
2696 WinCharState *s = chr->opaque;
2697 DWORD size;
2698
2699 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2700 if (size > 0) {
2701 s->len = size;
2702 win_chr_read_poll(chr);
2703 win_chr_read(chr);
2704 return 1;
2705 }
2706 return 0;
2707}
2708
2709static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2710{
2711 WinCharState *s = chr->opaque;
2712 OVERLAPPED ov;
2713 int ret;
2714 DWORD size;
2715 char openname[256];
2716
2717 s->fpipe = TRUE;
2718
2719 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2720 if (!s->hsend) {
2721 fprintf(stderr, "Failed CreateEvent\n");
2722 goto fail;
2723 }
2724 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2725 if (!s->hrecv) {
2726 fprintf(stderr, "Failed CreateEvent\n");
2727 goto fail;
2728 }
2729
2730 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2731 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2732 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2733 PIPE_WAIT,
2734 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2735 if (s->hcom == INVALID_HANDLE_VALUE) {
2736 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2737 s->hcom = NULL;
2738 goto fail;
2739 }
2740
2741 ZeroMemory(&ov, sizeof(ov));
2742 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2743 ret = ConnectNamedPipe(s->hcom, &ov);
2744 if (ret) {
2745 fprintf(stderr, "Failed ConnectNamedPipe\n");
2746 goto fail;
2747 }
2748
2749 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2750 if (!ret) {
2751 fprintf(stderr, "Failed GetOverlappedResult\n");
2752 if (ov.hEvent) {
2753 CloseHandle(ov.hEvent);
2754 ov.hEvent = NULL;
2755 }
2756 goto fail;
2757 }
2758
2759 if (ov.hEvent) {
2760 CloseHandle(ov.hEvent);
2761 ov.hEvent = NULL;
2762 }
2763 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2764 return 0;
2765
2766 fail:
2767 win_chr_close(chr);
2768 return -1;
2769}
2770
2771
2772static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2773{
2774 CharDriverState *chr;
2775 WinCharState *s;
2776
2777 chr = qemu_mallocz(sizeof(CharDriverState));
2778 if (!chr)
2779 return NULL;
2780 s = qemu_mallocz(sizeof(WinCharState));
2781 if (!s) {
2782 free(chr);
2783 return NULL;
2784 }
2785 chr->opaque = s;
2786 chr->chr_write = win_chr_write;
2787 chr->chr_close = win_chr_close;
2788
2789 if (win_chr_pipe_init(chr, filename) < 0) {
2790 free(s);
2791 free(chr);
2792 return NULL;
2793 }
2794 qemu_chr_reset(chr);
2795 return chr;
2796}
2797
2798static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2799{
2800 CharDriverState *chr;
2801 WinCharState *s;
2802
2803 chr = qemu_mallocz(sizeof(CharDriverState));
2804 if (!chr)
2805 return NULL;
2806 s = qemu_mallocz(sizeof(WinCharState));
2807 if (!s) {
2808 free(chr);
2809 return NULL;
2810 }
2811 s->hcom = fd_out;
2812 chr->opaque = s;
2813 chr->chr_write = win_chr_write;
2814 qemu_chr_reset(chr);
2815 return chr;
2816}
2817
2818static CharDriverState *qemu_chr_open_win_con(const char *filename)
2819{
2820 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2821}
2822
2823static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2824{
2825 HANDLE fd_out;
2826
2827 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2828 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2829 if (fd_out == INVALID_HANDLE_VALUE)
2830 return NULL;
2831
2832 return qemu_chr_open_win_file(fd_out);
2833}
2834#endif /* !_WIN32 */
2835
2836/***********************************************************/
2837/* UDP Net console */
2838
2839typedef struct {
2840 int fd;
2841 struct sockaddr_in daddr;
2842 char buf[1024];
2843 int bufcnt;
2844 int bufptr;
2845 int max_size;
2846} NetCharDriver;
2847
2848static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2849{
2850 NetCharDriver *s = chr->opaque;
2851
2852 return sendto(s->fd, buf, len, 0,
2853 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2854}
2855
2856static int udp_chr_read_poll(void *opaque)
2857{
2858 CharDriverState *chr = opaque;
2859 NetCharDriver *s = chr->opaque;
2860
2861 s->max_size = qemu_chr_can_read(chr);
2862
2863 /* If there were any stray characters in the queue process them
2864 * first
2865 */
2866 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2867 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2868 s->bufptr++;
2869 s->max_size = qemu_chr_can_read(chr);
2870 }
2871 return s->max_size;
2872}
2873
2874static void udp_chr_read(void *opaque)
2875{
2876 CharDriverState *chr = opaque;
2877 NetCharDriver *s = chr->opaque;
2878
2879 if (s->max_size == 0)
2880 return;
2881 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2882 s->bufptr = s->bufcnt;
2883 if (s->bufcnt <= 0)
2884 return;
2885
2886 s->bufptr = 0;
2887 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2888 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2889 s->bufptr++;
2890 s->max_size = qemu_chr_can_read(chr);
2891 }
2892}
2893
2894static void udp_chr_update_read_handler(CharDriverState *chr)
2895{
2896 NetCharDriver *s = chr->opaque;
2897
2898 if (s->fd >= 0) {
2899 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2900 udp_chr_read, NULL, chr);
2901 }
2902}
2903
2904int parse_host_port(struct sockaddr_in *saddr, const char *str);
2905#ifndef _WIN32
2906static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2907#endif
2908int parse_host_src_port(struct sockaddr_in *haddr,
2909 struct sockaddr_in *saddr,
2910 const char *str);
2911
2912static CharDriverState *qemu_chr_open_udp(const char *def)
2913{
2914 CharDriverState *chr = NULL;
2915 NetCharDriver *s = NULL;
2916 int fd = -1;
2917 struct sockaddr_in saddr;
2918
2919 chr = qemu_mallocz(sizeof(CharDriverState));
2920 if (!chr)
2921 goto return_err;
2922 s = qemu_mallocz(sizeof(NetCharDriver));
2923 if (!s)
2924 goto return_err;
2925
2926 fd = socket(PF_INET, SOCK_DGRAM, 0);
2927 if (fd < 0) {
2928 perror("socket(PF_INET, SOCK_DGRAM)");
2929 goto return_err;
2930 }
2931
2932 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2933 printf("Could not parse: %s\n", def);
2934 goto return_err;
2935 }
2936
2937 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2938 {
2939 perror("bind");
2940 goto return_err;
2941 }
2942
2943 s->fd = fd;
2944 s->bufcnt = 0;
2945 s->bufptr = 0;
2946 chr->opaque = s;
2947 chr->chr_write = udp_chr_write;
2948 chr->chr_update_read_handler = udp_chr_update_read_handler;
2949 return chr;
2950
2951return_err:
2952 if (chr)
2953 free(chr);
2954 if (s)
2955 free(s);
2956 if (fd >= 0)
2957 closesocket(fd);
2958 return NULL;
2959}
2960
2961/***********************************************************/
2962/* TCP Net console */
2963
2964typedef struct {
2965 int fd, listen_fd;
2966 int connected;
2967 int max_size;
2968 int do_telnetopt;
2969 int do_nodelay;
2970 int is_unix;
2971} TCPCharDriver;
2972
2973static void tcp_chr_accept(void *opaque);
2974
2975static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2976{
2977 TCPCharDriver *s = chr->opaque;
2978 if (s->connected) {
2979 return send_all(s->fd, buf, len);
2980 } else {
2981 /* XXX: indicate an error ? */
2982 return len;
2983 }
2984}
2985
2986static int tcp_chr_read_poll(void *opaque)
2987{
2988 CharDriverState *chr = opaque;
2989 TCPCharDriver *s = chr->opaque;
2990 if (!s->connected)
2991 return 0;
2992 s->max_size = qemu_chr_can_read(chr);
2993 return s->max_size;
2994}
2995
2996#define IAC 255
2997#define IAC_BREAK 243
2998static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2999 TCPCharDriver *s,
3000 char *buf, int *size)
3001{
3002 /* Handle any telnet client's basic IAC options to satisfy char by
3003 * char mode with no echo. All IAC options will be removed from
3004 * the buf and the do_telnetopt variable will be used to track the
3005 * state of the width of the IAC information.
3006 *
3007 * IAC commands come in sets of 3 bytes with the exception of the
3008 * "IAC BREAK" command and the double IAC.
3009 */
3010
3011 int i;
3012 int j = 0;
3013
3014 for (i = 0; i < *size; i++) {
3015 if (s->do_telnetopt > 1) {
3016 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3017 /* Double IAC means send an IAC */
3018 if (j != i)
3019 buf[j] = buf[i];
3020 j++;
3021 s->do_telnetopt = 1;
3022 } else {
3023 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3024 /* Handle IAC break commands by sending a serial break */
3025 qemu_chr_event(chr, CHR_EVENT_BREAK);
3026 s->do_telnetopt++;
3027 }
3028 s->do_telnetopt++;
3029 }
3030 if (s->do_telnetopt >= 4) {
3031 s->do_telnetopt = 1;
3032 }
3033 } else {
3034 if ((unsigned char)buf[i] == IAC) {
3035 s->do_telnetopt = 2;
3036 } else {
3037 if (j != i)
3038 buf[j] = buf[i];
3039 j++;
3040 }
3041 }
3042 }
3043 *size = j;
3044}
3045
3046static void tcp_chr_read(void *opaque)
3047{
3048 CharDriverState *chr = opaque;
3049 TCPCharDriver *s = chr->opaque;
3050 uint8_t buf[1024];
3051 int len, size;
3052
3053 if (!s->connected || s->max_size <= 0)
3054 return;
3055 len = sizeof(buf);
3056 if (len > s->max_size)
3057 len = s->max_size;
3058 size = recv(s->fd, buf, len, 0);
3059 if (size == 0) {
3060 /* connection closed */
3061 s->connected = 0;
3062 if (s->listen_fd >= 0) {
3063 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3064 }
3065 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3066 closesocket(s->fd);
3067 s->fd = -1;
3068 } else if (size > 0) {
3069 if (s->do_telnetopt)
3070 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3071 if (size > 0)
3072 qemu_chr_read(chr, buf, size);
3073 }
3074}
3075
3076static void tcp_chr_connect(void *opaque)
3077{
3078 CharDriverState *chr = opaque;
3079 TCPCharDriver *s = chr->opaque;
3080
3081 s->connected = 1;
3082 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3083 tcp_chr_read, NULL, chr);
3084 qemu_chr_reset(chr);
3085}
3086
3087#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3088static void tcp_chr_telnet_init(int fd)
3089{
3090 char buf[3];
3091 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3092 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3093 send(fd, (char *)buf, 3, 0);
3094 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3095 send(fd, (char *)buf, 3, 0);
3096 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3097 send(fd, (char *)buf, 3, 0);
3098 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3099 send(fd, (char *)buf, 3, 0);
3100}
3101
3102static void socket_set_nodelay(int fd)
3103{
3104 int val = 1;
3105 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3106}
3107
3108static void tcp_chr_accept(void *opaque)
3109{
3110 CharDriverState *chr = opaque;
3111 TCPCharDriver *s = chr->opaque;
3112 struct sockaddr_in saddr;
3113#ifndef _WIN32
3114 struct sockaddr_un uaddr;
3115#endif
3116 struct sockaddr *addr;
3117 socklen_t len;
3118 int fd;
3119
3120 for(;;) {
3121#ifndef _WIN32
3122 if (s->is_unix) {
3123 len = sizeof(uaddr);
3124 addr = (struct sockaddr *)&uaddr;
3125 } else
3126#endif
3127 {
3128 len = sizeof(saddr);
3129 addr = (struct sockaddr *)&saddr;
3130 }
3131 fd = accept(s->listen_fd, addr, &len);
3132 if (fd < 0 && errno != EINTR) {
3133 return;
3134 } else if (fd >= 0) {
3135 if (s->do_telnetopt)
3136 tcp_chr_telnet_init(fd);
3137 break;
3138 }
3139 }
3140 socket_set_nonblock(fd);
3141 if (s->do_nodelay)
3142 socket_set_nodelay(fd);
3143 s->fd = fd;
3144 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3145 tcp_chr_connect(chr);
3146}
3147
3148static void tcp_chr_close(CharDriverState *chr)
3149{
3150 TCPCharDriver *s = chr->opaque;
3151 if (s->fd >= 0)
3152 closesocket(s->fd);
3153 if (s->listen_fd >= 0)
3154 closesocket(s->listen_fd);
3155 qemu_free(s);
3156}
3157
3158static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3159 int is_telnet,
3160 int is_unix)
3161{
3162 CharDriverState *chr = NULL;
3163 TCPCharDriver *s = NULL;
3164 int fd = -1, ret, err, val;
3165 int is_listen = 0;
3166 int is_waitconnect = 1;
3167 int do_nodelay = 0;
3168 const char *ptr;
3169 struct sockaddr_in saddr;
3170#ifndef _WIN32
3171 struct sockaddr_un uaddr;
3172#endif
3173 struct sockaddr *addr;
3174 socklen_t addrlen;
3175
3176#ifndef _WIN32
3177 if (is_unix) {
3178 addr = (struct sockaddr *)&uaddr;
3179 addrlen = sizeof(uaddr);
3180 if (parse_unix_path(&uaddr, host_str) < 0)
3181 goto fail;
3182 } else
3183#endif
3184 {
3185 addr = (struct sockaddr *)&saddr;
3186 addrlen = sizeof(saddr);
3187 if (parse_host_port(&saddr, host_str) < 0)
3188 goto fail;
3189 }
3190
3191 ptr = host_str;
3192 while((ptr = strchr(ptr,','))) {
3193 ptr++;
3194 if (!strncmp(ptr,"server",6)) {
3195 is_listen = 1;
3196 } else if (!strncmp(ptr,"nowait",6)) {
3197 is_waitconnect = 0;
3198 } else if (!strncmp(ptr,"nodelay",6)) {
3199 do_nodelay = 1;
3200 } else {
3201 printf("Unknown option: %s\n", ptr);
3202 goto fail;
3203 }
3204 }
3205 if (!is_listen)
3206 is_waitconnect = 0;
3207
3208 chr = qemu_mallocz(sizeof(CharDriverState));
3209 if (!chr)
3210 goto fail;
3211 s = qemu_mallocz(sizeof(TCPCharDriver));
3212 if (!s)
3213 goto fail;
3214
3215#ifndef _WIN32
3216 if (is_unix)
3217 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3218 else
3219#endif
3220 fd = socket(PF_INET, SOCK_STREAM, 0);
3221
3222 if (fd < 0)
3223 goto fail;
3224
3225 if (!is_waitconnect)
3226 socket_set_nonblock(fd);
3227
3228 s->connected = 0;
3229 s->fd = -1;
3230 s->listen_fd = -1;
3231 s->is_unix = is_unix;
3232 s->do_nodelay = do_nodelay && !is_unix;
3233
3234 chr->opaque = s;
3235 chr->chr_write = tcp_chr_write;
3236 chr->chr_close = tcp_chr_close;
3237
3238 if (is_listen) {
3239 /* allow fast reuse */
3240#ifndef _WIN32
3241 if (is_unix) {
3242 char path[109];
3243 strncpy(path, uaddr.sun_path, 108);
3244 path[108] = 0;
3245 unlink(path);
3246 } else
3247#endif
3248 {
3249 val = 1;
3250 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3251 }
3252
3253 ret = bind(fd, addr, addrlen);
3254 if (ret < 0)
3255 goto fail;
3256
3257 ret = listen(fd, 0);
3258 if (ret < 0)
3259 goto fail;
3260
3261 s->listen_fd = fd;
3262 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3263 if (is_telnet)
3264 s->do_telnetopt = 1;
3265 } else {
3266 for(;;) {
3267 ret = connect(fd, addr, addrlen);
3268 if (ret < 0) {
3269 err = socket_error();
3270 if (err == EINTR || err == EWOULDBLOCK) {
3271 } else if (err == EINPROGRESS) {
3272 break;
3273#ifdef _WIN32
3274 } else if (err == WSAEALREADY) {
3275 break;
3276#endif
3277 } else {
3278 goto fail;
3279 }
3280 } else {
3281 s->connected = 1;
3282 break;
3283 }
3284 }
3285 s->fd = fd;
3286 socket_set_nodelay(fd);
3287 if (s->connected)
3288 tcp_chr_connect(chr);
3289 else
3290 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3291 }
3292
3293 if (is_listen && is_waitconnect) {
3294 printf("QEMU waiting for connection on: %s\n", host_str);
3295 tcp_chr_accept(chr);
3296 socket_set_nonblock(s->listen_fd);
3297 }
3298
3299 return chr;
3300 fail:
3301 if (fd >= 0)
3302 closesocket(fd);
3303 qemu_free(s);
3304 qemu_free(chr);
3305 return NULL;
3306}
3307
3308CharDriverState *qemu_chr_open(const char *filename)
3309{
3310 const char *p;
3311
3312 if (!strcmp(filename, "vc")) {
3313 return text_console_init(&display_state, 0);
3314 } else if (strstart(filename, "vc:", &p)) {
3315 return text_console_init(&display_state, p);
3316 } else if (!strcmp(filename, "null")) {
3317 return qemu_chr_open_null();
3318 } else
3319 if (strstart(filename, "tcp:", &p)) {
3320 return qemu_chr_open_tcp(p, 0, 0);
3321 } else
3322 if (strstart(filename, "telnet:", &p)) {
3323 return qemu_chr_open_tcp(p, 1, 0);
3324 } else
3325 if (strstart(filename, "udp:", &p)) {
3326 return qemu_chr_open_udp(p);
3327 } else
3328 if (strstart(filename, "mon:", &p)) {
3329 CharDriverState *drv = qemu_chr_open(p);
3330 if (drv) {
3331 drv = qemu_chr_open_mux(drv);
3332 monitor_init(drv, !nographic);
3333 return drv;
3334 }
3335 printf("Unable to open driver: %s\n", p);
3336 return 0;
3337 } else
3338#ifndef _WIN32
3339 if (strstart(filename, "unix:", &p)) {
3340 return qemu_chr_open_tcp(p, 0, 1);
3341 } else if (strstart(filename, "file:", &p)) {
3342 return qemu_chr_open_file_out(p);
3343 } else if (strstart(filename, "pipe:", &p)) {
3344 return qemu_chr_open_pipe(p);
3345 } else if (!strcmp(filename, "pty")) {
3346 return qemu_chr_open_pty();
3347 } else if (!strcmp(filename, "stdio")) {
3348 return qemu_chr_open_stdio();
3349 } else
3350#if defined(__linux__)
3351 if (strstart(filename, "/dev/parport", NULL)) {
3352 return qemu_chr_open_pp(filename);
3353 } else
3354#endif
3355#if defined(__linux__) || defined(__sun__)
3356 if (strstart(filename, "/dev/", NULL)) {
3357 return qemu_chr_open_tty(filename);
3358 } else
3359#endif
3360#else /* !_WIN32 */
3361 if (strstart(filename, "COM", NULL)) {
3362 return qemu_chr_open_win(filename);
3363 } else
3364 if (strstart(filename, "pipe:", &p)) {
3365 return qemu_chr_open_win_pipe(p);
3366 } else
3367 if (strstart(filename, "con:", NULL)) {
3368 return qemu_chr_open_win_con(filename);
3369 } else
3370 if (strstart(filename, "file:", &p)) {
3371 return qemu_chr_open_win_file_out(p);
3372 }
3373#endif
3374 {
3375 return NULL;
3376 }
3377}
3378
3379void qemu_chr_close(CharDriverState *chr)
3380{
3381 if (chr->chr_close)
3382 chr->chr_close(chr);
3383}
3384
3385/***********************************************************/
3386/* network device redirectors */
3387
3388static void hex_dump(FILE *f, const uint8_t *buf, int size)
3389{
3390 int len, i, j, c;
3391
3392 for(i=0;i<size;i+=16) {
3393 len = size - i;
3394 if (len > 16)
3395 len = 16;
3396 fprintf(f, "%08x ", i);
3397 for(j=0;j<16;j++) {
3398 if (j < len)
3399 fprintf(f, " %02x", buf[i+j]);
3400 else
3401 fprintf(f, " ");
3402 }
3403 fprintf(f, " ");
3404 for(j=0;j<len;j++) {
3405 c = buf[i+j];
3406 if (c < ' ' || c > '~')
3407 c = '.';
3408 fprintf(f, "%c", c);
3409 }
3410 fprintf(f, "\n");
3411 }
3412}
3413
3414static int parse_macaddr(uint8_t *macaddr, const char *p)
3415{
3416 int i;
3417 for(i = 0; i < 6; i++) {
3418 macaddr[i] = strtol(p, (char **)&p, 16);
3419 if (i == 5) {
3420 if (*p != '\0')
3421 return -1;
3422 } else {
3423 if (*p != ':')
3424 return -1;
3425 p++;
3426 }
3427 }
3428 return 0;
3429}
3430
3431static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3432{
3433 const char *p, *p1;
3434 int len;
3435 p = *pp;
3436 p1 = strchr(p, sep);
3437 if (!p1)
3438 return -1;
3439 len = p1 - p;
3440 p1++;
3441 if (buf_size > 0) {
3442 if (len > buf_size - 1)
3443 len = buf_size - 1;
3444 memcpy(buf, p, len);
3445 buf[len] = '\0';
3446 }
3447 *pp = p1;
3448 return 0;
3449}
3450
3451int parse_host_src_port(struct sockaddr_in *haddr,
3452 struct sockaddr_in *saddr,
3453 const char *input_str)
3454{
3455 char *str = strdup(input_str);
3456 char *host_str = str;
3457 char *src_str;
3458 char *ptr;
3459
3460 /*
3461 * Chop off any extra arguments at the end of the string which
3462 * would start with a comma, then fill in the src port information
3463 * if it was provided else use the "any address" and "any port".
3464 */
3465 if ((ptr = strchr(str,',')))
3466 *ptr = '\0';
3467
3468 if ((src_str = strchr(input_str,'@'))) {
3469 *src_str = '\0';
3470 src_str++;
3471 }
3472
3473 if (parse_host_port(haddr, host_str) < 0)
3474 goto fail;
3475
3476 if (!src_str || *src_str == '\0')
3477 src_str = ":0";
3478
3479 if (parse_host_port(saddr, src_str) < 0)
3480 goto fail;
3481
3482 free(str);
3483 return(0);
3484
3485fail:
3486 free(str);
3487 return -1;
3488}
3489
3490int parse_host_port(struct sockaddr_in *saddr, const char *str)
3491{
3492 char buf[512];
3493 struct hostent *he;
3494 const char *p, *r;
3495 int port;
3496
3497 p = str;
3498 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3499 return -1;
3500 saddr->sin_family = AF_INET;
3501 if (buf[0] == '\0') {
3502 saddr->sin_addr.s_addr = 0;
3503 } else {
3504 if (isdigit(buf[0])) {
3505 if (!inet_aton(buf, &saddr->sin_addr))
3506 return -1;
3507 } else {
3508 if ((he = gethostbyname(buf)) == NULL)
3509 return - 1;
3510 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3511 }
3512 }
3513 port = strtol(p, (char **)&r, 0);
3514 if (r == p)
3515 return -1;
3516 saddr->sin_port = htons(port);
3517 return 0;
3518}
3519
3520#ifndef _WIN32
3521static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3522{
3523 const char *p;
3524 int len;
3525
3526 len = MIN(108, strlen(str));
3527 p = strchr(str, ',');
3528 if (p)
3529 len = MIN(len, p - str);
3530
3531 memset(uaddr, 0, sizeof(*uaddr));
3532
3533 uaddr->sun_family = AF_UNIX;
3534 memcpy(uaddr->sun_path, str, len);
3535
3536 return 0;
3537}
3538#endif
3539
3540/* find or alloc a new VLAN */
3541VLANState *qemu_find_vlan(int id)
3542{
3543 VLANState **pvlan, *vlan;
3544 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3545 if (vlan->id == id)
3546 return vlan;
3547 }
3548 vlan = qemu_mallocz(sizeof(VLANState));
3549 if (!vlan)
3550 return NULL;
3551 vlan->id = id;
3552 vlan->next = NULL;
3553 pvlan = &first_vlan;
3554 while (*pvlan != NULL)
3555 pvlan = &(*pvlan)->next;
3556 *pvlan = vlan;
3557 return vlan;
3558}
3559
3560VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3561 IOReadHandler *fd_read,
3562 IOCanRWHandler *fd_can_read,
3563 void *opaque)
3564{
3565 VLANClientState *vc, **pvc;
3566 vc = qemu_mallocz(sizeof(VLANClientState));
3567 if (!vc)
3568 return NULL;
3569 vc->fd_read = fd_read;
3570 vc->fd_can_read = fd_can_read;
3571 vc->opaque = opaque;
3572 vc->vlan = vlan;
3573
3574 vc->next = NULL;
3575 pvc = &vlan->first_client;
3576 while (*pvc != NULL)
3577 pvc = &(*pvc)->next;
3578 *pvc = vc;
3579 return vc;
3580}
3581
3582int qemu_can_send_packet(VLANClientState *vc1)
3583{
3584 VLANState *vlan = vc1->vlan;
3585 VLANClientState *vc;
3586
3587 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3588 if (vc != vc1) {
3589 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3590 return 1;
3591 }
3592 }
3593 return 0;
3594}
3595
3596void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3597{
3598 VLANState *vlan = vc1->vlan;
3599 VLANClientState *vc;
3600
3601#if 0
3602 printf("vlan %d send:\n", vlan->id);
3603 hex_dump(stdout, buf, size);
3604#endif
3605 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3606 if (vc != vc1) {
3607 vc->fd_read(vc->opaque, buf, size);
3608 }
3609 }
3610}
3611
3612#if defined(CONFIG_SLIRP)
3613
3614/* slirp network adapter */
3615
3616static int slirp_inited;
3617static VLANClientState *slirp_vc;
3618
3619int slirp_can_output(void)
3620{
3621 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3622}
3623
3624void slirp_output(const uint8_t *pkt, int pkt_len)
3625{
3626#if 0
3627 printf("slirp output:\n");
3628 hex_dump(stdout, pkt, pkt_len);
3629#endif
3630 if (!slirp_vc)
3631 return;
3632 qemu_send_packet(slirp_vc, pkt, pkt_len);
3633}
3634
3635static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3636{
3637#if 0
3638 printf("slirp input:\n");
3639 hex_dump(stdout, buf, size);
3640#endif
3641 slirp_input(buf, size);
3642}
3643
3644static int net_slirp_init(VLANState *vlan)
3645{
3646 if (!slirp_inited) {
3647 slirp_inited = 1;
3648 slirp_init();
3649 }
3650 slirp_vc = qemu_new_vlan_client(vlan,
3651 slirp_receive, NULL, NULL);
3652 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3653 return 0;
3654}
3655
3656static void net_slirp_redir(const char *redir_str)
3657{
3658 int is_udp;
3659 char buf[256], *r;
3660 const char *p;
3661 struct in_addr guest_addr;
3662 int host_port, guest_port;
3663
3664 if (!slirp_inited) {
3665 slirp_inited = 1;
3666 slirp_init();
3667 }
3668
3669 p = redir_str;
3670 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3671 goto fail;
3672 if (!strcmp(buf, "tcp")) {
3673 is_udp = 0;
3674 } else if (!strcmp(buf, "udp")) {
3675 is_udp = 1;
3676 } else {
3677 goto fail;
3678 }
3679
3680 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3681 goto fail;
3682 host_port = strtol(buf, &r, 0);
3683 if (r == buf)
3684 goto fail;
3685
3686 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3687 goto fail;
3688 if (buf[0] == '\0') {
3689 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3690 }
3691 if (!inet_aton(buf, &guest_addr))
3692 goto fail;
3693
3694 guest_port = strtol(p, &r, 0);
3695 if (r == p)
3696 goto fail;
3697
3698 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3699 fprintf(stderr, "qemu: could not set up redirection\n");
3700 exit(1);
3701 }
3702 return;
3703 fail:
3704 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3705 exit(1);
3706}
3707
3708#ifndef _WIN32
3709
3710char smb_dir[1024];
3711
3712static void smb_exit(void)
3713{
3714 DIR *d;
3715 struct dirent *de;
3716 char filename[1024];
3717
3718 /* erase all the files in the directory */
3719 d = opendir(smb_dir);
3720 for(;;) {
3721 de = readdir(d);
3722 if (!de)
3723 break;
3724 if (strcmp(de->d_name, ".") != 0 &&
3725 strcmp(de->d_name, "..") != 0) {
3726 snprintf(filename, sizeof(filename), "%s/%s",
3727 smb_dir, de->d_name);
3728 unlink(filename);
3729 }
3730 }
3731 closedir(d);
3732 rmdir(smb_dir);
3733}
3734
3735/* automatic user mode samba server configuration */
3736static void net_slirp_smb(const char *exported_dir)
3737{
3738 char smb_conf[1024];
3739 char smb_cmdline[1024];
3740 FILE *f;
3741
3742 if (!slirp_inited) {
3743 slirp_inited = 1;
3744 slirp_init();
3745 }
3746
3747 /* XXX: better tmp dir construction */
3748 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3749 if (mkdir(smb_dir, 0700) < 0) {
3750 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3751 exit(1);
3752 }
3753 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3754
3755 f = fopen(smb_conf, "w");
3756 if (!f) {
3757 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3758 exit(1);
3759 }
3760 fprintf(f,
3761 "[global]\n"
3762 "private dir=%s\n"
3763 "smb ports=0\n"
3764 "socket address=127.0.0.1\n"
3765 "pid directory=%s\n"
3766 "lock directory=%s\n"
3767 "log file=%s/log.smbd\n"
3768 "smb passwd file=%s/smbpasswd\n"
3769 "security = share\n"
3770 "[qemu]\n"
3771 "path=%s\n"
3772 "read only=no\n"
3773 "guest ok=yes\n",
3774 smb_dir,
3775 smb_dir,
3776 smb_dir,
3777 smb_dir,
3778 smb_dir,
3779 exported_dir
3780 );
3781 fclose(f);
3782 atexit(smb_exit);
3783
3784 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3785 SMBD_COMMAND, smb_conf);
3786
3787 slirp_add_exec(0, smb_cmdline, 4, 139);
3788}
3789
3790#endif /* !defined(_WIN32) */
3791void do_info_slirp(void)
3792{
3793 slirp_stats();
3794}
3795
3796#endif /* CONFIG_SLIRP */
3797
3798#if !defined(_WIN32)
3799
3800typedef struct TAPState {
3801 VLANClientState *vc;
3802 int fd;
3803 char down_script[1024];
3804} TAPState;
3805
3806static void tap_receive(void *opaque, const uint8_t *buf, int size)
3807{
3808 TAPState *s = opaque;
3809 int ret;
3810 for(;;) {
3811 ret = write(s->fd, buf, size);
3812 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3813 } else {
3814 break;
3815 }
3816 }
3817}
3818
3819static void tap_send(void *opaque)
3820{
3821 TAPState *s = opaque;
3822 uint8_t buf[4096];
3823 int size;
3824
3825#ifdef __sun__
3826 struct strbuf sbuf;
3827 int f = 0;
3828 sbuf.maxlen = sizeof(buf);
3829 sbuf.buf = buf;
3830 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3831#else
3832 size = read(s->fd, buf, sizeof(buf));
3833#endif
3834 if (size > 0) {
3835 qemu_send_packet(s->vc, buf, size);
3836 }
3837}
3838
3839/* fd support */
3840
3841static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3842{
3843 TAPState *s;
3844
3845 s = qemu_mallocz(sizeof(TAPState));
3846 if (!s)
3847 return NULL;
3848 s->fd = fd;
3849 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3850 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3851 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3852 return s;
3853}
3854
3855#if defined (_BSD) || defined (__FreeBSD_kernel__)
3856static int tap_open(char *ifname, int ifname_size)
3857{
3858 int fd;
3859 char *dev;
3860 struct stat s;
3861
3862 TFR(fd = open("/dev/tap", O_RDWR));
3863 if (fd < 0) {
3864 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3865 return -1;
3866 }
3867
3868 fstat(fd, &s);
3869 dev = devname(s.st_rdev, S_IFCHR);
3870 pstrcpy(ifname, ifname_size, dev);
3871
3872 fcntl(fd, F_SETFL, O_NONBLOCK);
3873 return fd;
3874}
3875#elif defined(__sun__)
3876#define TUNNEWPPA (('T'<<16) | 0x0001)
3877/*
3878 * Allocate TAP device, returns opened fd.
3879 * Stores dev name in the first arg(must be large enough).
3880 */
3881int tap_alloc(char *dev)
3882{
3883 int tap_fd, if_fd, ppa = -1;
3884 static int ip_fd = 0;
3885 char *ptr;
3886
3887 static int arp_fd = 0;
3888 int ip_muxid, arp_muxid;
3889 struct strioctl strioc_if, strioc_ppa;
3890 int link_type = I_PLINK;;
3891 struct lifreq ifr;
3892 char actual_name[32] = "";
3893
3894 memset(&ifr, 0x0, sizeof(ifr));
3895
3896 if( *dev ){
3897 ptr = dev;
3898 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3899 ppa = atoi(ptr);
3900 }
3901
3902 /* Check if IP device was opened */
3903 if( ip_fd )
3904 close(ip_fd);
3905
3906 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3907 if (ip_fd < 0) {
3908 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3909 return -1;
3910 }
3911
3912 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
3913 if (tap_fd < 0) {
3914 syslog(LOG_ERR, "Can't open /dev/tap");
3915 return -1;
3916 }
3917
3918 /* Assign a new PPA and get its unit number. */
3919 strioc_ppa.ic_cmd = TUNNEWPPA;
3920 strioc_ppa.ic_timout = 0;
3921 strioc_ppa.ic_len = sizeof(ppa);
3922 strioc_ppa.ic_dp = (char *)&ppa;
3923 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3924 syslog (LOG_ERR, "Can't assign new interface");
3925
3926 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
3927 if (if_fd < 0) {
3928 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3929 return -1;
3930 }
3931 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3932 syslog(LOG_ERR, "Can't push IP module");
3933 return -1;
3934 }
3935
3936 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3937 syslog(LOG_ERR, "Can't get flags\n");
3938
3939 snprintf (actual_name, 32, "tap%d", ppa);
3940 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3941
3942 ifr.lifr_ppa = ppa;
3943 /* Assign ppa according to the unit number returned by tun device */
3944
3945 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3946 syslog (LOG_ERR, "Can't set PPA %d", ppa);
3947 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3948 syslog (LOG_ERR, "Can't get flags\n");
3949 /* Push arp module to if_fd */
3950 if (ioctl (if_fd, I_PUSH, "arp") < 0)
3951 syslog (LOG_ERR, "Can't push ARP module (2)");
3952
3953 /* Push arp module to ip_fd */
3954 if (ioctl (ip_fd, I_POP, NULL) < 0)
3955 syslog (LOG_ERR, "I_POP failed\n");
3956 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3957 syslog (LOG_ERR, "Can't push ARP module (3)\n");
3958 /* Open arp_fd */
3959 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
3960 if (arp_fd < 0)
3961 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3962
3963 /* Set ifname to arp */
3964 strioc_if.ic_cmd = SIOCSLIFNAME;
3965 strioc_if.ic_timout = 0;
3966 strioc_if.ic_len = sizeof(ifr);
3967 strioc_if.ic_dp = (char *)&ifr;
3968 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3969 syslog (LOG_ERR, "Can't set ifname to arp\n");
3970 }
3971
3972 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3973 syslog(LOG_ERR, "Can't link TAP device to IP");
3974 return -1;
3975 }
3976
3977 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3978 syslog (LOG_ERR, "Can't link TAP device to ARP");
3979
3980 close (if_fd);
3981
3982 memset(&ifr, 0x0, sizeof(ifr));
3983 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3984 ifr.lifr_ip_muxid = ip_muxid;
3985 ifr.lifr_arp_muxid = arp_muxid;
3986
3987 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3988 {
3989 ioctl (ip_fd, I_PUNLINK , arp_muxid);
3990 ioctl (ip_fd, I_PUNLINK, ip_muxid);
3991 syslog (LOG_ERR, "Can't set multiplexor id");
3992 }
3993
3994 sprintf(dev, "tap%d", ppa);
3995 return tap_fd;
3996}
3997
3998static int tap_open(char *ifname, int ifname_size)
3999{
4000 char dev[10]="";
4001 int fd;
4002 if( (fd = tap_alloc(dev)) < 0 ){
4003 fprintf(stderr, "Cannot allocate TAP device\n");
4004 return -1;
4005 }
4006 pstrcpy(ifname, ifname_size, dev);
4007 fcntl(fd, F_SETFL, O_NONBLOCK);
4008 return fd;
4009}
4010#else
4011static int tap_open(char *ifname, int ifname_size)
4012{
4013 struct ifreq ifr;
4014 int fd, ret;
4015
4016 TFR(fd = open("/dev/net/tun", O_RDWR));
4017 if (fd < 0) {
4018 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4019 return -1;
4020 }
4021 memset(&ifr, 0, sizeof(ifr));
4022 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4023 if (ifname[0] != '\0')
4024 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4025 else
4026 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4027 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4028 if (ret != 0) {
4029 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4030 close(fd);
4031 return -1;
4032 }
4033 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4034 fcntl(fd, F_SETFL, O_NONBLOCK);
4035 return fd;
4036}
4037#endif
4038
4039static int launch_script(const char *setup_script, const char *ifname, int fd)
4040{
4041 int pid, status;
4042 char *args[3];
4043 char **parg;
4044
4045 /* try to launch network script */
4046 pid = fork();
4047 if (pid >= 0) {
4048 if (pid == 0) {
4049 int open_max = sysconf (_SC_OPEN_MAX), i;
4050 for (i = 0; i < open_max; i++)
4051 if (i != STDIN_FILENO &&
4052 i != STDOUT_FILENO &&
4053 i != STDERR_FILENO &&
4054 i != fd)
4055 close(i);
4056
4057 parg = args;
4058 *parg++ = (char *)setup_script;
4059 *parg++ = (char *)ifname;
4060 *parg++ = NULL;
4061 execv(setup_script, args);
4062 _exit(1);
4063 }
4064 while (waitpid(pid, &status, 0) != pid);
4065 if (!WIFEXITED(status) ||
4066 WEXITSTATUS(status) != 0) {
4067 fprintf(stderr, "%s: could not launch network script\n",
4068 setup_script);
4069 return -1;
4070 }
4071 }
4072 return 0;
4073}
4074
4075static int net_tap_init(VLANState *vlan, const char *ifname1,
4076 const char *setup_script, const char *down_script)
4077{
4078 TAPState *s;
4079 int fd;
4080 char ifname[128];
4081
4082 if (ifname1 != NULL)
4083 pstrcpy(ifname, sizeof(ifname), ifname1);
4084 else
4085 ifname[0] = '\0';
4086 TFR(fd = tap_open(ifname, sizeof(ifname)));
4087 if (fd < 0)
4088 return -1;
4089
4090 if (!setup_script || !strcmp(setup_script, "no"))
4091 setup_script = "";
4092 if (setup_script[0] != '\0') {
4093 if (launch_script(setup_script, ifname, fd))
4094 return -1;
4095 }
4096 s = net_tap_fd_init(vlan, fd);
4097 if (!s)
4098 return -1;
4099 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4100 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4101 if (down_script && strcmp(down_script, "no"))
4102 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4103 return 0;
4104}
4105
4106#endif /* !_WIN32 */
4107
4108/* network connection */
4109typedef struct NetSocketState {
4110 VLANClientState *vc;
4111 int fd;
4112 int state; /* 0 = getting length, 1 = getting data */
4113 int index;
4114 int packet_len;
4115 uint8_t buf[4096];
4116 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4117} NetSocketState;
4118
4119typedef struct NetSocketListenState {
4120 VLANState *vlan;
4121 int fd;
4122} NetSocketListenState;
4123
4124/* XXX: we consider we can send the whole packet without blocking */
4125static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4126{
4127 NetSocketState *s = opaque;
4128 uint32_t len;
4129 len = htonl(size);
4130
4131 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4132 send_all(s->fd, buf, size);
4133}
4134
4135static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4136{
4137 NetSocketState *s = opaque;
4138 sendto(s->fd, buf, size, 0,
4139 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4140}
4141
4142static void net_socket_send(void *opaque)
4143{
4144 NetSocketState *s = opaque;
4145 int l, size, err;
4146 uint8_t buf1[4096];
4147 const uint8_t *buf;
4148
4149 size = recv(s->fd, buf1, sizeof(buf1), 0);
4150 if (size < 0) {
4151 err = socket_error();
4152 if (err != EWOULDBLOCK)
4153 goto eoc;
4154 } else if (size == 0) {
4155 /* end of connection */
4156 eoc:
4157 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4158 closesocket(s->fd);
4159 return;
4160 }
4161 buf = buf1;
4162 while (size > 0) {
4163 /* reassemble a packet from the network */
4164 switch(s->state) {
4165 case 0:
4166 l = 4 - s->index;
4167 if (l > size)
4168 l = size;
4169 memcpy(s->buf + s->index, buf, l);
4170 buf += l;
4171 size -= l;
4172 s->index += l;
4173 if (s->index == 4) {
4174 /* got length */
4175 s->packet_len = ntohl(*(uint32_t *)s->buf);
4176 s->index = 0;
4177 s->state = 1;
4178 }
4179 break;
4180 case 1:
4181 l = s->packet_len - s->index;
4182 if (l > size)
4183 l = size;
4184 memcpy(s->buf + s->index, buf, l);
4185 s->index += l;
4186 buf += l;
4187 size -= l;
4188 if (s->index >= s->packet_len) {
4189 qemu_send_packet(s->vc, s->buf, s->packet_len);
4190 s->index = 0;
4191 s->state = 0;
4192 }
4193 break;
4194 }
4195 }
4196}
4197
4198static void net_socket_send_dgram(void *opaque)
4199{
4200 NetSocketState *s = opaque;
4201 int size;
4202
4203 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4204 if (size < 0)
4205 return;
4206 if (size == 0) {
4207 /* end of connection */
4208 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4209 return;
4210 }
4211 qemu_send_packet(s->vc, s->buf, size);
4212}
4213
4214static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4215{
4216 struct ip_mreq imr;
4217 int fd;
4218 int val, ret;
4219 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4220 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4221 inet_ntoa(mcastaddr->sin_addr),
4222 (int)ntohl(mcastaddr->sin_addr.s_addr));
4223 return -1;
4224
4225 }
4226 fd = socket(PF_INET, SOCK_DGRAM, 0);
4227 if (fd < 0) {
4228 perror("socket(PF_INET, SOCK_DGRAM)");
4229 return -1;
4230 }
4231
4232 val = 1;
4233 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4234 (const char *)&val, sizeof(val));
4235 if (ret < 0) {
4236 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4237 goto fail;
4238 }
4239
4240 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4241 if (ret < 0) {
4242 perror("bind");
4243 goto fail;
4244 }
4245
4246 /* Add host to multicast group */
4247 imr.imr_multiaddr = mcastaddr->sin_addr;
4248 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4249
4250 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4251 (const char *)&imr, sizeof(struct ip_mreq));
4252 if (ret < 0) {
4253 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4254 goto fail;
4255 }
4256
4257 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4258 val = 1;
4259 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4260 (const char *)&val, sizeof(val));
4261 if (ret < 0) {
4262 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4263 goto fail;
4264 }
4265
4266 socket_set_nonblock(fd);
4267 return fd;
4268fail:
4269 if (fd >= 0)
4270 closesocket(fd);
4271 return -1;
4272}
4273
4274static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4275 int is_connected)
4276{
4277 struct sockaddr_in saddr;
4278 int newfd;
4279 socklen_t saddr_len;
4280 NetSocketState *s;
4281
4282 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4283 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4284 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4285 */
4286
4287 if (is_connected) {
4288 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4289 /* must be bound */
4290 if (saddr.sin_addr.s_addr==0) {
4291 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4292 fd);
4293 return NULL;
4294 }
4295 /* clone dgram socket */
4296 newfd = net_socket_mcast_create(&saddr);
4297 if (newfd < 0) {
4298 /* error already reported by net_socket_mcast_create() */
4299 close(fd);
4300 return NULL;
4301 }
4302 /* clone newfd to fd, close newfd */
4303 dup2(newfd, fd);
4304 close(newfd);
4305
4306 } else {
4307 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4308 fd, strerror(errno));
4309 return NULL;
4310 }
4311 }
4312
4313 s = qemu_mallocz(sizeof(NetSocketState));
4314 if (!s)
4315 return NULL;
4316 s->fd = fd;
4317
4318 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4319 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4320
4321 /* mcast: save bound address as dst */
4322 if (is_connected) s->dgram_dst=saddr;
4323
4324 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4325 "socket: fd=%d (%s mcast=%s:%d)",
4326 fd, is_connected? "cloned" : "",
4327 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4328 return s;
4329}
4330
4331static void net_socket_connect(void *opaque)
4332{
4333 NetSocketState *s = opaque;
4334 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4335}
4336
4337static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4338 int is_connected)
4339{
4340 NetSocketState *s;
4341 s = qemu_mallocz(sizeof(NetSocketState));
4342 if (!s)
4343 return NULL;
4344 s->fd = fd;
4345 s->vc = qemu_new_vlan_client(vlan,
4346 net_socket_receive, NULL, s);
4347 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4348 "socket: fd=%d", fd);
4349 if (is_connected) {
4350 net_socket_connect(s);
4351 } else {
4352 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4353 }
4354 return s;
4355}
4356
4357static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4358 int is_connected)
4359{
4360 int so_type=-1, optlen=sizeof(so_type);
4361
4362 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
4363 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4364 return NULL;
4365 }
4366 switch(so_type) {
4367 case SOCK_DGRAM:
4368 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4369 case SOCK_STREAM:
4370 return net_socket_fd_init_stream(vlan, fd, is_connected);
4371 default:
4372 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4373 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4374 return net_socket_fd_init_stream(vlan, fd, is_connected);
4375 }
4376 return NULL;
4377}
4378
4379static void net_socket_accept(void *opaque)
4380{
4381 NetSocketListenState *s = opaque;
4382 NetSocketState *s1;
4383 struct sockaddr_in saddr;
4384 socklen_t len;
4385 int fd;
4386
4387 for(;;) {
4388 len = sizeof(saddr);
4389 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4390 if (fd < 0 && errno != EINTR) {
4391 return;
4392 } else if (fd >= 0) {
4393 break;
4394 }
4395 }
4396 s1 = net_socket_fd_init(s->vlan, fd, 1);
4397 if (!s1) {
4398 closesocket(fd);
4399 } else {
4400 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4401 "socket: connection from %s:%d",
4402 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4403 }
4404}
4405
4406static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4407{
4408 NetSocketListenState *s;
4409 int fd, val, ret;
4410 struct sockaddr_in saddr;
4411
4412 if (parse_host_port(&saddr, host_str) < 0)
4413 return -1;
4414
4415 s = qemu_mallocz(sizeof(NetSocketListenState));
4416 if (!s)
4417 return -1;
4418
4419 fd = socket(PF_INET, SOCK_STREAM, 0);
4420 if (fd < 0) {
4421 perror("socket");
4422 return -1;
4423 }
4424 socket_set_nonblock(fd);
4425
4426 /* allow fast reuse */
4427 val = 1;
4428 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4429
4430 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4431 if (ret < 0) {
4432 perror("bind");
4433 return -1;
4434 }
4435 ret = listen(fd, 0);
4436 if (ret < 0) {
4437 perror("listen");
4438 return -1;
4439 }
4440 s->vlan = vlan;
4441 s->fd = fd;
4442 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4443 return 0;
4444}
4445
4446static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4447{
4448 NetSocketState *s;
4449 int fd, connected, ret, err;
4450 struct sockaddr_in saddr;
4451
4452 if (parse_host_port(&saddr, host_str) < 0)
4453 return -1;
4454
4455 fd = socket(PF_INET, SOCK_STREAM, 0);
4456 if (fd < 0) {
4457 perror("socket");
4458 return -1;
4459 }
4460 socket_set_nonblock(fd);
4461
4462 connected = 0;
4463 for(;;) {
4464 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4465 if (ret < 0) {
4466 err = socket_error();
4467 if (err == EINTR || err == EWOULDBLOCK) {
4468 } else if (err == EINPROGRESS) {
4469 break;
4470#ifdef _WIN32
4471 } else if (err == WSAEALREADY) {
4472 break;
4473#endif
4474 } else {
4475 perror("connect");
4476 closesocket(fd);
4477 return -1;
4478 }
4479 } else {
4480 connected = 1;
4481 break;
4482 }
4483 }
4484 s = net_socket_fd_init(vlan, fd, connected);
4485 if (!s)
4486 return -1;
4487 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4488 "socket: connect to %s:%d",
4489 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4490 return 0;
4491}
4492
4493static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4494{
4495 NetSocketState *s;
4496 int fd;
4497 struct sockaddr_in saddr;
4498
4499 if (parse_host_port(&saddr, host_str) < 0)
4500 return -1;
4501
4502
4503 fd = net_socket_mcast_create(&saddr);
4504 if (fd < 0)
4505 return -1;
4506
4507 s = net_socket_fd_init(vlan, fd, 0);
4508 if (!s)
4509 return -1;
4510
4511 s->dgram_dst = saddr;
4512
4513 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4514 "socket: mcast=%s:%d",
4515 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4516 return 0;
4517
4518}
4519
4520static int get_param_value(char *buf, int buf_size,
4521 const char *tag, const char *str)
4522{
4523 const char *p;
4524 char *q;
4525 char option[128];
4526
4527 p = str;
4528 for(;;) {
4529 q = option;
4530 while (*p != '\0' && *p != '=') {
4531 if ((q - option) < sizeof(option) - 1)
4532 *q++ = *p;
4533 p++;
4534 }
4535 *q = '\0';
4536 if (*p != '=')
4537 break;
4538 p++;
4539 if (!strcmp(tag, option)) {
4540 q = buf;
4541 while (*p != '\0' && *p != ',') {
4542 if ((q - buf) < buf_size - 1)
4543 *q++ = *p;
4544 p++;
4545 }
4546 *q = '\0';
4547 return q - buf;
4548 } else {
4549 while (*p != '\0' && *p != ',') {
4550 p++;
4551 }
4552 }
4553 if (*p != ',')
4554 break;
4555 p++;
4556 }
4557 return 0;
4558}
4559
4560static int net_client_init(const char *str)
4561{
4562 const char *p;
4563 char *q;
4564 char device[64];
4565 char buf[1024];
4566 int vlan_id, ret;
4567 VLANState *vlan;
4568
4569 p = str;
4570 q = device;
4571 while (*p != '\0' && *p != ',') {
4572 if ((q - device) < sizeof(device) - 1)
4573 *q++ = *p;
4574 p++;
4575 }
4576 *q = '\0';
4577 if (*p == ',')
4578 p++;
4579 vlan_id = 0;
4580 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4581 vlan_id = strtol(buf, NULL, 0);
4582 }
4583 vlan = qemu_find_vlan(vlan_id);
4584 if (!vlan) {
4585 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4586 return -1;
4587 }
4588 if (!strcmp(device, "nic")) {
4589 NICInfo *nd;
4590 uint8_t *macaddr;
4591
4592 if (nb_nics >= MAX_NICS) {
4593 fprintf(stderr, "Too Many NICs\n");
4594 return -1;
4595 }
4596 nd = &nd_table[nb_nics];
4597 macaddr = nd->macaddr;
4598 macaddr[0] = 0x52;
4599 macaddr[1] = 0x54;
4600 macaddr[2] = 0x00;
4601 macaddr[3] = 0x12;
4602 macaddr[4] = 0x34;
4603 macaddr[5] = 0x56 + nb_nics;
4604
4605 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4606 if (parse_macaddr(macaddr, buf) < 0) {
4607 fprintf(stderr, "invalid syntax for ethernet address\n");
4608 return -1;
4609 }
4610 }
4611 if (get_param_value(buf, sizeof(buf), "model", p)) {
4612 nd->model = strdup(buf);
4613 }
4614 nd->vlan = vlan;
4615 nb_nics++;
4616 vlan->nb_guest_devs++;
4617 ret = 0;
4618 } else
4619 if (!strcmp(device, "none")) {
4620 /* does nothing. It is needed to signal that no network cards
4621 are wanted */
4622 ret = 0;
4623 } else
4624#ifdef CONFIG_SLIRP
4625 if (!strcmp(device, "user")) {
4626 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4627 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4628 }
4629 vlan->nb_host_devs++;
4630 ret = net_slirp_init(vlan);
4631 } else
4632#endif
4633#ifdef _WIN32
4634 if (!strcmp(device, "tap")) {
4635 char ifname[64];
4636 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4637 fprintf(stderr, "tap: no interface name\n");
4638 return -1;
4639 }
4640 vlan->nb_host_devs++;
4641 ret = tap_win32_init(vlan, ifname);
4642 } else
4643#else
4644 if (!strcmp(device, "tap")) {
4645 char ifname[64];
4646 char setup_script[1024], down_script[1024];
4647 int fd;
4648 vlan->nb_host_devs++;
4649 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4650 fd = strtol(buf, NULL, 0);
4651 ret = -1;
4652 if (net_tap_fd_init(vlan, fd))
4653 ret = 0;
4654 } else {
4655 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4656 ifname[0] = '\0';
4657 }
4658 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4659 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4660 }
4661 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4662 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4663 }
4664 ret = net_tap_init(vlan, ifname, setup_script, down_script);
4665 }
4666 } else
4667#endif
4668 if (!strcmp(device, "socket")) {
4669 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4670 int fd;
4671 fd = strtol(buf, NULL, 0);
4672 ret = -1;
4673 if (net_socket_fd_init(vlan, fd, 1))
4674 ret = 0;
4675 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4676 ret = net_socket_listen_init(vlan, buf);
4677 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4678 ret = net_socket_connect_init(vlan, buf);
4679 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4680 ret = net_socket_mcast_init(vlan, buf);
4681 } else {
4682 fprintf(stderr, "Unknown socket options: %s\n", p);
4683 return -1;
4684 }
4685 vlan->nb_host_devs++;
4686 } else
4687 {
4688 fprintf(stderr, "Unknown network device: %s\n", device);
4689 return -1;
4690 }
4691 if (ret < 0) {
4692 fprintf(stderr, "Could not initialize device '%s'\n", device);
4693 }
4694
4695 return ret;
4696}
4697
4698void do_info_network(void)
4699{
4700 VLANState *vlan;
4701 VLANClientState *vc;
4702
4703 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4704 term_printf("VLAN %d devices:\n", vlan->id);
4705 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4706 term_printf(" %s\n", vc->info_str);
4707 }
4708}
4709
4710/***********************************************************/
4711/* USB devices */
4712
4713static USBPort *used_usb_ports;
4714static USBPort *free_usb_ports;
4715
4716/* ??? Maybe change this to register a hub to keep track of the topology. */
4717void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4718 usb_attachfn attach)
4719{
4720 port->opaque = opaque;
4721 port->index = index;
4722 port->attach = attach;
4723 port->next = free_usb_ports;
4724 free_usb_ports = port;
4725}
4726
4727static int usb_device_add(const char *devname)
4728{
4729 const char *p;
4730 USBDevice *dev;
4731 USBPort *port;
4732
4733 if (!free_usb_ports)
4734 return -1;
4735
4736 if (strstart(devname, "host:", &p)) {
4737 dev = usb_host_device_open(p);
4738 } else if (!strcmp(devname, "mouse")) {
4739 dev = usb_mouse_init();
4740 } else if (!strcmp(devname, "tablet")) {
4741 dev = usb_tablet_init();
4742 } else if (!strcmp(devname, "keyboard")) {
4743 dev = usb_keyboard_init();
4744 } else if (strstart(devname, "disk:", &p)) {
4745 dev = usb_msd_init(p);
4746 } else if (!strcmp(devname, "wacom-tablet")) {
4747 dev = usb_wacom_init();
4748 } else {
4749 return -1;
4750 }
4751 if (!dev)
4752 return -1;
4753
4754 /* Find a USB port to add the device to. */
4755 port = free_usb_ports;
4756 if (!port->next) {
4757 USBDevice *hub;
4758
4759 /* Create a new hub and chain it on. */
4760 free_usb_ports = NULL;
4761 port->next = used_usb_ports;
4762 used_usb_ports = port;
4763
4764 hub = usb_hub_init(VM_USB_HUB_SIZE);
4765 usb_attach(port, hub);
4766 port = free_usb_ports;
4767 }
4768
4769 free_usb_ports = port->next;
4770 port->next = used_usb_ports;
4771 used_usb_ports = port;
4772 usb_attach(port, dev);
4773 return 0;
4774}
4775
4776static int usb_device_del(const char *devname)
4777{
4778 USBPort *port;
4779 USBPort **lastp;
4780 USBDevice *dev;
4781 int bus_num, addr;
4782 const char *p;
4783
4784 if (!used_usb_ports)
4785 return -1;
4786
4787 p = strchr(devname, '.');
4788 if (!p)
4789 return -1;
4790 bus_num = strtoul(devname, NULL, 0);
4791 addr = strtoul(p + 1, NULL, 0);
4792 if (bus_num != 0)
4793 return -1;
4794
4795 lastp = &used_usb_ports;
4796 port = used_usb_ports;
4797 while (port && port->dev->addr != addr) {
4798 lastp = &port->next;
4799 port = port->next;
4800 }
4801
4802 if (!port)
4803 return -1;
4804
4805 dev = port->dev;
4806 *lastp = port->next;
4807 usb_attach(port, NULL);
4808 dev->handle_destroy(dev);
4809 port->next = free_usb_ports;
4810 free_usb_ports = port;
4811 return 0;
4812}
4813
4814void do_usb_add(const char *devname)
4815{
4816 int ret;
4817 ret = usb_device_add(devname);
4818 if (ret < 0)
4819 term_printf("Could not add USB device '%s'\n", devname);
4820}
4821
4822void do_usb_del(const char *devname)
4823{
4824 int ret;
4825 ret = usb_device_del(devname);
4826 if (ret < 0)
4827 term_printf("Could not remove USB device '%s'\n", devname);
4828}
4829
4830void usb_info(void)
4831{
4832 USBDevice *dev;
4833 USBPort *port;
4834 const char *speed_str;
4835
4836 if (!usb_enabled) {
4837 term_printf("USB support not enabled\n");
4838 return;
4839 }
4840
4841 for (port = used_usb_ports; port; port = port->next) {
4842 dev = port->dev;
4843 if (!dev)
4844 continue;
4845 switch(dev->speed) {
4846 case USB_SPEED_LOW:
4847 speed_str = "1.5";
4848 break;
4849 case USB_SPEED_FULL:
4850 speed_str = "12";
4851 break;
4852 case USB_SPEED_HIGH:
4853 speed_str = "480";
4854 break;
4855 default:
4856 speed_str = "?";
4857 break;
4858 }
4859 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
4860 0, dev->addr, speed_str, dev->devname);
4861 }
4862}
4863
4864/***********************************************************/
4865/* PCMCIA/Cardbus */
4866
4867static struct pcmcia_socket_entry_s {
4868 struct pcmcia_socket_s *socket;
4869 struct pcmcia_socket_entry_s *next;
4870} *pcmcia_sockets = 0;
4871
4872void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4873{
4874 struct pcmcia_socket_entry_s *entry;
4875
4876 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4877 entry->socket = socket;
4878 entry->next = pcmcia_sockets;
4879 pcmcia_sockets = entry;
4880}
4881
4882void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4883{
4884 struct pcmcia_socket_entry_s *entry, **ptr;
4885
4886 ptr = &pcmcia_sockets;
4887 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4888 if (entry->socket == socket) {
4889 *ptr = entry->next;
4890 qemu_free(entry);
4891 }
4892}
4893
4894void pcmcia_info(void)
4895{
4896 struct pcmcia_socket_entry_s *iter;
4897 if (!pcmcia_sockets)
4898 term_printf("No PCMCIA sockets\n");
4899
4900 for (iter = pcmcia_sockets; iter; iter = iter->next)
4901 term_printf("%s: %s\n", iter->socket->slot_string,
4902 iter->socket->attached ? iter->socket->card_string :
4903 "Empty");
4904}
4905
4906/***********************************************************/
4907/* dumb display */
4908
4909static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4910{
4911}
4912
4913static void dumb_resize(DisplayState *ds, int w, int h)
4914{
4915}
4916
4917static void dumb_refresh(DisplayState *ds)
4918{
4919#if defined(CONFIG_SDL)
4920 vga_hw_update();
4921#endif
4922}
4923
4924static void dumb_display_init(DisplayState *ds)
4925{
4926 ds->data = NULL;
4927 ds->linesize = 0;
4928 ds->depth = 0;
4929 ds->dpy_update = dumb_update;
4930 ds->dpy_resize = dumb_resize;
4931 ds->dpy_refresh = dumb_refresh;
4932}
4933
4934/***********************************************************/
4935/* I/O handling */
4936
4937#define MAX_IO_HANDLERS 64
4938
4939typedef struct IOHandlerRecord {
4940 int fd;
4941 IOCanRWHandler *fd_read_poll;
4942 IOHandler *fd_read;
4943 IOHandler *fd_write;
4944 int deleted;
4945 void *opaque;
4946 /* temporary data */
4947 struct pollfd *ufd;
4948 struct IOHandlerRecord *next;
4949} IOHandlerRecord;
4950
4951static IOHandlerRecord *first_io_handler;
4952
4953/* XXX: fd_read_poll should be suppressed, but an API change is
4954 necessary in the character devices to suppress fd_can_read(). */
4955int qemu_set_fd_handler2(int fd,
4956 IOCanRWHandler *fd_read_poll,
4957 IOHandler *fd_read,
4958 IOHandler *fd_write,
4959 void *opaque)
4960{
4961 IOHandlerRecord **pioh, *ioh;
4962
4963 if (!fd_read && !fd_write) {
4964 pioh = &first_io_handler;
4965 for(;;) {
4966 ioh = *pioh;
4967 if (ioh == NULL)
4968 break;
4969 if (ioh->fd == fd) {
4970 ioh->deleted = 1;
4971 break;
4972 }
4973 pioh = &ioh->next;
4974 }
4975 } else {
4976 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4977 if (ioh->fd == fd)
4978 goto found;
4979 }
4980 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4981 if (!ioh)
4982 return -1;
4983 ioh->next = first_io_handler;
4984 first_io_handler = ioh;
4985 found:
4986 ioh->fd = fd;
4987 ioh->fd_read_poll = fd_read_poll;
4988 ioh->fd_read = fd_read;
4989 ioh->fd_write = fd_write;
4990 ioh->opaque = opaque;
4991 ioh->deleted = 0;
4992 }
4993 return 0;
4994}
4995
4996int qemu_set_fd_handler(int fd,
4997 IOHandler *fd_read,
4998 IOHandler *fd_write,
4999 void *opaque)
5000{
5001 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
5002}
5003
5004/***********************************************************/
5005/* Polling handling */
5006
5007typedef struct PollingEntry {
5008 PollingFunc *func;
5009 void *opaque;
5010 struct PollingEntry *next;
5011} PollingEntry;
5012
5013static PollingEntry *first_polling_entry;
5014
5015int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5016{
5017 PollingEntry **ppe, *pe;
5018 pe = qemu_mallocz(sizeof(PollingEntry));
5019 if (!pe)
5020 return -1;
5021 pe->func = func;
5022 pe->opaque = opaque;
5023 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5024 *ppe = pe;
5025 return 0;
5026}
5027
5028void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5029{
5030 PollingEntry **ppe, *pe;
5031 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5032 pe = *ppe;
5033 if (pe->func == func && pe->opaque == opaque) {
5034 *ppe = pe->next;
5035 qemu_free(pe);
5036 break;
5037 }
5038 }
5039}
5040
5041#ifdef _WIN32
5042/***********************************************************/
5043/* Wait objects support */
5044typedef struct WaitObjects {
5045 int num;
5046 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5047 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5048 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5049} WaitObjects;
5050
5051static WaitObjects wait_objects = {0};
5052
5053int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5054{
5055 WaitObjects *w = &wait_objects;
5056
5057 if (w->num >= MAXIMUM_WAIT_OBJECTS)
5058 return -1;
5059 w->events[w->num] = handle;
5060 w->func[w->num] = func;
5061 w->opaque[w->num] = opaque;
5062 w->num++;
5063 return 0;
5064}
5065
5066void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5067{
5068 int i, found;
5069 WaitObjects *w = &wait_objects;
5070
5071 found = 0;
5072 for (i = 0; i < w->num; i++) {
5073 if (w->events[i] == handle)
5074 found = 1;
5075 if (found) {
5076 w->events[i] = w->events[i + 1];
5077 w->func[i] = w->func[i + 1];
5078 w->opaque[i] = w->opaque[i + 1];
5079 }
5080 }
5081 if (found)
5082 w->num--;
5083}
5084#endif
5085
5086/***********************************************************/
5087/* savevm/loadvm support */
5088
5089#define IO_BUF_SIZE 32768
5090
5091struct QEMUFile {
5092 FILE *outfile;
5093 BlockDriverState *bs;
5094 int is_file;
5095 int is_writable;
5096 int64_t base_offset;
5097 int64_t buf_offset; /* start of buffer when writing, end of buffer
5098 when reading */
5099 int buf_index;
5100 int buf_size; /* 0 when writing */
5101 uint8_t buf[IO_BUF_SIZE];
5102};
5103
5104QEMUFile *qemu_fopen(const char *filename, const char *mode)
5105{
5106 QEMUFile *f;
5107
5108 f = qemu_mallocz(sizeof(QEMUFile));
5109 if (!f)
5110 return NULL;
5111 if (!strcmp(mode, "wb")) {
5112 f->is_writable = 1;
5113 } else if (!strcmp(mode, "rb")) {
5114 f->is_writable = 0;
5115 } else {
5116 goto fail;
5117 }
5118 f->outfile = fopen(filename, mode);
5119 if (!f->outfile)
5120 goto fail;
5121 f->is_file = 1;
5122 return f;
5123 fail:
5124 if (f->outfile)
5125 fclose(f->outfile);
5126 qemu_free(f);
5127 return NULL;
5128}
5129
5130static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5131{
5132 QEMUFile *f;
5133
5134 f = qemu_mallocz(sizeof(QEMUFile));
5135 if (!f)
5136 return NULL;
5137 f->is_file = 0;
5138 f->bs = bs;
5139 f->is_writable = is_writable;
5140 f->base_offset = offset;
5141 return f;
5142}
5143
5144void qemu_fflush(QEMUFile *f)
5145{
5146 if (!f->is_writable)
5147 return;
5148 if (f->buf_index > 0) {
5149 if (f->is_file) {
5150 fseek(f->outfile, f->buf_offset, SEEK_SET);
5151 fwrite(f->buf, 1, f->buf_index, f->outfile);
5152 } else {
5153 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5154 f->buf, f->buf_index);
5155 }
5156 f->buf_offset += f->buf_index;
5157 f->buf_index = 0;
5158 }
5159}
5160
5161static void qemu_fill_buffer(QEMUFile *f)
5162{
5163 int len;
5164
5165 if (f->is_writable)
5166 return;
5167 if (f->is_file) {
5168 fseek(f->outfile, f->buf_offset, SEEK_SET);
5169 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5170 if (len < 0)
5171 len = 0;
5172 } else {
5173 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5174 f->buf, IO_BUF_SIZE);
5175 if (len < 0)
5176 len = 0;
5177 }
5178 f->buf_index = 0;
5179 f->buf_size = len;
5180 f->buf_offset += len;
5181}
5182
5183void qemu_fclose(QEMUFile *f)
5184{
5185 if (f->is_writable)
5186 qemu_fflush(f);
5187 if (f->is_file) {
5188 fclose(f->outfile);
5189 }
5190 qemu_free(f);
5191}
5192
5193void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5194{
5195 int l;
5196 while (size > 0) {
5197 l = IO_BUF_SIZE - f->buf_index;
5198 if (l > size)
5199 l = size;
5200 memcpy(f->buf + f->buf_index, buf, l);
5201 f->buf_index += l;
5202 buf += l;
5203 size -= l;
5204 if (f->buf_index >= IO_BUF_SIZE)
5205 qemu_fflush(f);
5206 }
5207}
5208
5209void qemu_put_byte(QEMUFile *f, int v)
5210{
5211 f->buf[f->buf_index++] = v;
5212 if (f->buf_index >= IO_BUF_SIZE)
5213 qemu_fflush(f);
5214}
5215
5216int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5217{
5218 int size, l;
5219
5220 size = size1;
5221 while (size > 0) {
5222 l = f->buf_size - f->buf_index;
5223 if (l == 0) {
5224 qemu_fill_buffer(f);
5225 l = f->buf_size - f->buf_index;
5226 if (l == 0)
5227 break;
5228 }
5229 if (l > size)
5230 l = size;
5231 memcpy(buf, f->buf + f->buf_index, l);
5232 f->buf_index += l;
5233 buf += l;
5234 size -= l;
5235 }
5236 return size1 - size;
5237}
5238
5239int qemu_get_byte(QEMUFile *f)
5240{
5241 if (f->buf_index >= f->buf_size) {
5242 qemu_fill_buffer(f);
5243 if (f->buf_index >= f->buf_size)
5244 return 0;
5245 }
5246 return f->buf[f->buf_index++];
5247}
5248
5249int64_t qemu_ftell(QEMUFile *f)
5250{
5251 return f->buf_offset - f->buf_size + f->buf_index;
5252}
5253
5254int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5255{
5256 if (whence == SEEK_SET) {
5257 /* nothing to do */
5258 } else if (whence == SEEK_CUR) {
5259 pos += qemu_ftell(f);
5260 } else {
5261 /* SEEK_END not supported */
5262 return -1;
5263 }
5264 if (f->is_writable) {
5265 qemu_fflush(f);
5266 f->buf_offset = pos;
5267 } else {
5268 f->buf_offset = pos;
5269 f->buf_index = 0;
5270 f->buf_size = 0;
5271 }
5272 return pos;
5273}
5274
5275void qemu_put_be16(QEMUFile *f, unsigned int v)
5276{
5277 qemu_put_byte(f, v >> 8);
5278 qemu_put_byte(f, v);
5279}
5280
5281void qemu_put_be32(QEMUFile *f, unsigned int v)
5282{
5283 qemu_put_byte(f, v >> 24);
5284 qemu_put_byte(f, v >> 16);
5285 qemu_put_byte(f, v >> 8);
5286 qemu_put_byte(f, v);
5287}
5288
5289void qemu_put_be64(QEMUFile *f, uint64_t v)
5290{
5291 qemu_put_be32(f, v >> 32);
5292 qemu_put_be32(f, v);
5293}
5294
5295unsigned int qemu_get_be16(QEMUFile *f)
5296{
5297 unsigned int v;
5298 v = qemu_get_byte(f) << 8;
5299 v |= qemu_get_byte(f);
5300 return v;
5301}
5302
5303unsigned int qemu_get_be32(QEMUFile *f)
5304{
5305 unsigned int v;
5306 v = qemu_get_byte(f) << 24;
5307 v |= qemu_get_byte(f) << 16;
5308 v |= qemu_get_byte(f) << 8;
5309 v |= qemu_get_byte(f);
5310 return v;
5311}
5312
5313uint64_t qemu_get_be64(QEMUFile *f)
5314{
5315 uint64_t v;
5316 v = (uint64_t)qemu_get_be32(f) << 32;
5317 v |= qemu_get_be32(f);
5318 return v;
5319}
5320
5321typedef struct SaveStateEntry {
5322 char idstr[256];
5323 int instance_id;
5324 int version_id;
5325 SaveStateHandler *save_state;
5326 LoadStateHandler *load_state;
5327 void *opaque;
5328 struct SaveStateEntry *next;
5329} SaveStateEntry;
5330
5331static SaveStateEntry *first_se;
5332
5333int register_savevm(const char *idstr,
5334 int instance_id,
5335 int version_id,
5336 SaveStateHandler *save_state,
5337 LoadStateHandler *load_state,
5338 void *opaque)
5339{
5340 SaveStateEntry *se, **pse;
5341
5342 se = qemu_malloc(sizeof(SaveStateEntry));
5343 if (!se)
5344 return -1;
5345 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5346 se->instance_id = instance_id;
5347 se->version_id = version_id;
5348 se->save_state = save_state;
5349 se->load_state = load_state;
5350 se->opaque = opaque;
5351 se->next = NULL;
5352
5353 /* add at the end of list */
5354 pse = &first_se;
5355 while (*pse != NULL)
5356 pse = &(*pse)->next;
5357 *pse = se;
5358 return 0;
5359}
5360
5361#define QEMU_VM_FILE_MAGIC 0x5145564d
5362#define QEMU_VM_FILE_VERSION 0x00000002
5363
5364static int qemu_savevm_state(QEMUFile *f)
5365{
5366 SaveStateEntry *se;
5367 int len, ret;
5368 int64_t cur_pos, len_pos, total_len_pos;
5369
5370 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5371 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5372 total_len_pos = qemu_ftell(f);
5373 qemu_put_be64(f, 0); /* total size */
5374
5375 for(se = first_se; se != NULL; se = se->next) {
5376 /* ID string */
5377 len = strlen(se->idstr);
5378 qemu_put_byte(f, len);
5379 qemu_put_buffer(f, se->idstr, len);
5380
5381 qemu_put_be32(f, se->instance_id);
5382 qemu_put_be32(f, se->version_id);
5383
5384 /* record size: filled later */
5385 len_pos = qemu_ftell(f);
5386 qemu_put_be32(f, 0);
5387 se->save_state(f, se->opaque);
5388
5389 /* fill record size */
5390 cur_pos = qemu_ftell(f);
5391 len = cur_pos - len_pos - 4;
5392 qemu_fseek(f, len_pos, SEEK_SET);
5393 qemu_put_be32(f, len);
5394 qemu_fseek(f, cur_pos, SEEK_SET);
5395 }
5396 cur_pos = qemu_ftell(f);
5397 qemu_fseek(f, total_len_pos, SEEK_SET);
5398 qemu_put_be64(f, cur_pos - total_len_pos - 8);
5399 qemu_fseek(f, cur_pos, SEEK_SET);
5400
5401 ret = 0;
5402 return ret;
5403}
5404
5405static SaveStateEntry *find_se(const char *idstr, int instance_id)
5406{
5407 SaveStateEntry *se;
5408
5409 for(se = first_se; se != NULL; se = se->next) {
5410 if (!strcmp(se->idstr, idstr) &&
5411 instance_id == se->instance_id)
5412 return se;
5413 }
5414 return NULL;
5415}
5416
5417static int qemu_loadvm_state(QEMUFile *f)
5418{
5419 SaveStateEntry *se;
5420 int len, ret, instance_id, record_len, version_id;
5421 int64_t total_len, end_pos, cur_pos;
5422 unsigned int v;
5423 char idstr[256];
5424
5425 v = qemu_get_be32(f);
5426 if (v != QEMU_VM_FILE_MAGIC)
5427 goto fail;
5428 v = qemu_get_be32(f);
5429 if (v != QEMU_VM_FILE_VERSION) {
5430 fail:
5431 ret = -1;
5432 goto the_end;
5433 }
5434 total_len = qemu_get_be64(f);
5435 end_pos = total_len + qemu_ftell(f);
5436 for(;;) {
5437 if (qemu_ftell(f) >= end_pos)
5438 break;
5439 len = qemu_get_byte(f);
5440 qemu_get_buffer(f, idstr, len);
5441 idstr[len] = '\0';
5442 instance_id = qemu_get_be32(f);
5443 version_id = qemu_get_be32(f);
5444 record_len = qemu_get_be32(f);
5445#if 0
5446 printf("idstr=%s instance=0x%x version=%d len=%d\n",
5447 idstr, instance_id, version_id, record_len);
5448#endif
5449 cur_pos = qemu_ftell(f);
5450 se = find_se(idstr, instance_id);
5451 if (!se) {
5452 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5453 instance_id, idstr);
5454 } else {
5455 ret = se->load_state(f, se->opaque, version_id);
5456 if (ret < 0) {
5457 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5458 instance_id, idstr);
5459 }
5460 }
5461 /* always seek to exact end of record */
5462 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5463 }
5464 ret = 0;
5465 the_end:
5466 return ret;
5467}
5468
5469/* device can contain snapshots */
5470static int bdrv_can_snapshot(BlockDriverState *bs)
5471{
5472 return (bs &&
5473 !bdrv_is_removable(bs) &&
5474 !bdrv_is_read_only(bs));
5475}
5476
5477/* device must be snapshots in order to have a reliable snapshot */
5478static int bdrv_has_snapshot(BlockDriverState *bs)
5479{
5480 return (bs &&
5481 !bdrv_is_removable(bs) &&
5482 !bdrv_is_read_only(bs));
5483}
5484
5485static BlockDriverState *get_bs_snapshots(void)
5486{
5487 BlockDriverState *bs;
5488 int i;
5489
5490 if (bs_snapshots)
5491 return bs_snapshots;
5492 for(i = 0; i <= MAX_DISKS; i++) {
5493 bs = bs_table[i];
5494 if (bdrv_can_snapshot(bs))
5495 goto ok;
5496 }
5497 return NULL;
5498 ok:
5499 bs_snapshots = bs;
5500 return bs;
5501}
5502
5503static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5504 const char *name)
5505{
5506 QEMUSnapshotInfo *sn_tab, *sn;
5507 int nb_sns, i, ret;
5508
5509 ret = -ENOENT;
5510 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5511 if (nb_sns < 0)
5512 return ret;
5513 for(i = 0; i < nb_sns; i++) {
5514 sn = &sn_tab[i];
5515 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5516 *sn_info = *sn;
5517 ret = 0;
5518 break;
5519 }
5520 }
5521 qemu_free(sn_tab);
5522 return ret;
5523}
5524
5525void do_savevm(const char *name)
5526{
5527 BlockDriverState *bs, *bs1;
5528 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5529 int must_delete, ret, i;
5530 BlockDriverInfo bdi1, *bdi = &bdi1;
5531 QEMUFile *f;
5532 int saved_vm_running;
5533#ifdef _WIN32
5534 struct _timeb tb;
5535#else
5536 struct timeval tv;
5537#endif
5538
5539 bs = get_bs_snapshots();
5540 if (!bs) {
5541 term_printf("No block device can accept snapshots\n");
5542 return;
5543 }
5544
5545 /* ??? Should this occur after vm_stop? */
5546 qemu_aio_flush();
5547
5548 saved_vm_running = vm_running;
5549 vm_stop(0);
5550
5551 must_delete = 0;
5552 if (name) {
5553 ret = bdrv_snapshot_find(bs, old_sn, name);
5554 if (ret >= 0) {
5555 must_delete = 1;
5556 }
5557 }
5558 memset(sn, 0, sizeof(*sn));
5559 if (must_delete) {
5560 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5561 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5562 } else {
5563 if (name)
5564 pstrcpy(sn->name, sizeof(sn->name), name);
5565 }
5566
5567 /* fill auxiliary fields */
5568#ifdef _WIN32
5569 _ftime(&tb);
5570 sn->date_sec = tb.time;
5571 sn->date_nsec = tb.millitm * 1000000;
5572#else
5573 gettimeofday(&tv, NULL);
5574 sn->date_sec = tv.tv_sec;
5575 sn->date_nsec = tv.tv_usec * 1000;
5576#endif
5577 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5578
5579 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5580 term_printf("Device %s does not support VM state snapshots\n",
5581 bdrv_get_device_name(bs));
5582 goto the_end;
5583 }
5584
5585 /* save the VM state */
5586 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5587 if (!f) {
5588 term_printf("Could not open VM state file\n");
5589 goto the_end;
5590 }
5591 ret = qemu_savevm_state(f);
5592 sn->vm_state_size = qemu_ftell(f);
5593 qemu_fclose(f);
5594 if (ret < 0) {
5595 term_printf("Error %d while writing VM\n", ret);
5596 goto the_end;
5597 }
5598
5599 /* create the snapshots */
5600
5601 for(i = 0; i < MAX_DISKS; i++) {
5602 bs1 = bs_table[i];
5603 if (bdrv_has_snapshot(bs1)) {
5604 if (must_delete) {
5605 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5606 if (ret < 0) {
5607 term_printf("Error while deleting snapshot on '%s'\n",
5608 bdrv_get_device_name(bs1));
5609 }
5610 }
5611 ret = bdrv_snapshot_create(bs1, sn);
5612 if (ret < 0) {
5613 term_printf("Error while creating snapshot on '%s'\n",
5614 bdrv_get_device_name(bs1));
5615 }
5616 }
5617 }
5618
5619 the_end:
5620 if (saved_vm_running)
5621 vm_start();
5622}
5623
5624void do_loadvm(const char *name)
5625{
5626 BlockDriverState *bs, *bs1;
5627 BlockDriverInfo bdi1, *bdi = &bdi1;
5628 QEMUFile *f;
5629 int i, ret;
5630 int saved_vm_running;
5631
5632 bs = get_bs_snapshots();
5633 if (!bs) {
5634 term_printf("No block device supports snapshots\n");
5635 return;
5636 }
5637
5638 /* Flush all IO requests so they don't interfere with the new state. */
5639 qemu_aio_flush();
5640
5641 saved_vm_running = vm_running;
5642 vm_stop(0);
5643
5644 for(i = 0; i <= MAX_DISKS; i++) {
5645 bs1 = bs_table[i];
5646 if (bdrv_has_snapshot(bs1)) {
5647 ret = bdrv_snapshot_goto(bs1, name);
5648 if (ret < 0) {
5649 if (bs != bs1)
5650 term_printf("Warning: ");
5651 switch(ret) {
5652 case -ENOTSUP:
5653 term_printf("Snapshots not supported on device '%s'\n",
5654 bdrv_get_device_name(bs1));
5655 break;
5656 case -ENOENT:
5657 term_printf("Could not find snapshot '%s' on device '%s'\n",
5658 name, bdrv_get_device_name(bs1));
5659 break;
5660 default:
5661 term_printf("Error %d while activating snapshot on '%s'\n",
5662 ret, bdrv_get_device_name(bs1));
5663 break;
5664 }
5665 /* fatal on snapshot block device */
5666 if (bs == bs1)
5667 goto the_end;
5668 }
5669 }
5670 }
5671
5672 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5673 term_printf("Device %s does not support VM state snapshots\n",
5674 bdrv_get_device_name(bs));
5675 return;
5676 }
5677
5678 /* restore the VM state */
5679 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5680 if (!f) {
5681 term_printf("Could not open VM state file\n");
5682 goto the_end;
5683 }
5684 ret = qemu_loadvm_state(f);
5685 qemu_fclose(f);
5686 if (ret < 0) {
5687 term_printf("Error %d while loading VM state\n", ret);
5688 }
5689 the_end:
5690 if (saved_vm_running)
5691 vm_start();
5692}
5693
5694void do_delvm(const char *name)
5695{
5696 BlockDriverState *bs, *bs1;
5697 int i, ret;
5698
5699 bs = get_bs_snapshots();
5700 if (!bs) {
5701 term_printf("No block device supports snapshots\n");
5702 return;
5703 }
5704
5705 for(i = 0; i <= MAX_DISKS; i++) {
5706 bs1 = bs_table[i];
5707 if (bdrv_has_snapshot(bs1)) {
5708 ret = bdrv_snapshot_delete(bs1, name);
5709 if (ret < 0) {
5710 if (ret == -ENOTSUP)
5711 term_printf("Snapshots not supported on device '%s'\n",
5712 bdrv_get_device_name(bs1));
5713 else
5714 term_printf("Error %d while deleting snapshot on '%s'\n",
5715 ret, bdrv_get_device_name(bs1));
5716 }
5717 }
5718 }
5719}
5720
5721void do_info_snapshots(void)
5722{
5723 BlockDriverState *bs, *bs1;
5724 QEMUSnapshotInfo *sn_tab, *sn;
5725 int nb_sns, i;
5726 char buf[256];
5727
5728 bs = get_bs_snapshots();
5729 if (!bs) {
5730 term_printf("No available block device supports snapshots\n");
5731 return;
5732 }
5733 term_printf("Snapshot devices:");
5734 for(i = 0; i <= MAX_DISKS; i++) {
5735 bs1 = bs_table[i];
5736 if (bdrv_has_snapshot(bs1)) {
5737 if (bs == bs1)
5738 term_printf(" %s", bdrv_get_device_name(bs1));
5739 }
5740 }
5741 term_printf("\n");
5742
5743 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5744 if (nb_sns < 0) {
5745 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5746 return;
5747 }
5748 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5749 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5750 for(i = 0; i < nb_sns; i++) {
5751 sn = &sn_tab[i];
5752 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5753 }
5754 qemu_free(sn_tab);
5755}
5756
5757/***********************************************************/
5758/* cpu save/restore */
5759
5760#if defined(TARGET_I386)
5761
5762static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5763{
5764 qemu_put_be32(f, dt->selector);
5765 qemu_put_betl(f, dt->base);
5766 qemu_put_be32(f, dt->limit);
5767 qemu_put_be32(f, dt->flags);
5768}
5769
5770static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5771{
5772 dt->selector = qemu_get_be32(f);
5773 dt->base = qemu_get_betl(f);
5774 dt->limit = qemu_get_be32(f);
5775 dt->flags = qemu_get_be32(f);
5776}
5777
5778void cpu_save(QEMUFile *f, void *opaque)
5779{
5780 CPUState *env = opaque;
5781 uint16_t fptag, fpus, fpuc, fpregs_format;
5782 uint32_t hflags;
5783 int i;
5784
5785 for(i = 0; i < CPU_NB_REGS; i++)
5786 qemu_put_betls(f, &env->regs[i]);
5787 qemu_put_betls(f, &env->eip);
5788 qemu_put_betls(f, &env->eflags);
5789 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5790 qemu_put_be32s(f, &hflags);
5791
5792 /* FPU */
5793 fpuc = env->fpuc;
5794 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5795 fptag = 0;
5796 for(i = 0; i < 8; i++) {
5797 fptag |= ((!env->fptags[i]) << i);
5798 }
5799
5800 qemu_put_be16s(f, &fpuc);
5801 qemu_put_be16s(f, &fpus);
5802 qemu_put_be16s(f, &fptag);
5803
5804#ifdef USE_X86LDOUBLE
5805 fpregs_format = 0;
5806#else
5807 fpregs_format = 1;
5808#endif
5809 qemu_put_be16s(f, &fpregs_format);
5810
5811 for(i = 0; i < 8; i++) {
5812#ifdef USE_X86LDOUBLE
5813 {
5814 uint64_t mant;
5815 uint16_t exp;
5816 /* we save the real CPU data (in case of MMX usage only 'mant'
5817 contains the MMX register */
5818 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5819 qemu_put_be64(f, mant);
5820 qemu_put_be16(f, exp);
5821 }
5822#else
5823 /* if we use doubles for float emulation, we save the doubles to
5824 avoid losing information in case of MMX usage. It can give
5825 problems if the image is restored on a CPU where long
5826 doubles are used instead. */
5827 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5828#endif
5829 }
5830
5831 for(i = 0; i < 6; i++)
5832 cpu_put_seg(f, &env->segs[i]);
5833 cpu_put_seg(f, &env->ldt);
5834 cpu_put_seg(f, &env->tr);
5835 cpu_put_seg(f, &env->gdt);
5836 cpu_put_seg(f, &env->idt);
5837
5838 qemu_put_be32s(f, &env->sysenter_cs);
5839 qemu_put_be32s(f, &env->sysenter_esp);
5840 qemu_put_be32s(f, &env->sysenter_eip);
5841
5842 qemu_put_betls(f, &env->cr[0]);
5843 qemu_put_betls(f, &env->cr[2]);
5844 qemu_put_betls(f, &env->cr[3]);
5845 qemu_put_betls(f, &env->cr[4]);
5846
5847 for(i = 0; i < 8; i++)
5848 qemu_put_betls(f, &env->dr[i]);
5849
5850 /* MMU */
5851 qemu_put_be32s(f, &env->a20_mask);
5852
5853 /* XMM */
5854 qemu_put_be32s(f, &env->mxcsr);
5855 for(i = 0; i < CPU_NB_REGS; i++) {
5856 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5857 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5858 }
5859
5860#ifdef TARGET_X86_64
5861 qemu_put_be64s(f, &env->efer);
5862 qemu_put_be64s(f, &env->star);
5863 qemu_put_be64s(f, &env->lstar);
5864 qemu_put_be64s(f, &env->cstar);
5865 qemu_put_be64s(f, &env->fmask);
5866 qemu_put_be64s(f, &env->kernelgsbase);
5867#endif
5868 qemu_put_be32s(f, &env->smbase);
5869}
5870
5871#ifdef USE_X86LDOUBLE
5872/* XXX: add that in a FPU generic layer */
5873union x86_longdouble {
5874 uint64_t mant;
5875 uint16_t exp;
5876};
5877
5878#define MANTD1(fp) (fp & ((1LL << 52) - 1))
5879#define EXPBIAS1 1023
5880#define EXPD1(fp) ((fp >> 52) & 0x7FF)
5881#define SIGND1(fp) ((fp >> 32) & 0x80000000)
5882
5883static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5884{
5885 int e;
5886 /* mantissa */
5887 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5888 /* exponent + sign */
5889 e = EXPD1(temp) - EXPBIAS1 + 16383;
5890 e |= SIGND1(temp) >> 16;
5891 p->exp = e;
5892}
5893#endif
5894
5895int cpu_load(QEMUFile *f, void *opaque, int version_id)
5896{
5897 CPUState *env = opaque;
5898 int i, guess_mmx;
5899 uint32_t hflags;
5900 uint16_t fpus, fpuc, fptag, fpregs_format;
5901
5902 if (version_id != 3 && version_id != 4)
5903 return -EINVAL;
5904 for(i = 0; i < CPU_NB_REGS; i++)
5905 qemu_get_betls(f, &env->regs[i]);
5906 qemu_get_betls(f, &env->eip);
5907 qemu_get_betls(f, &env->eflags);
5908 qemu_get_be32s(f, &hflags);
5909
5910 qemu_get_be16s(f, &fpuc);
5911 qemu_get_be16s(f, &fpus);
5912 qemu_get_be16s(f, &fptag);
5913 qemu_get_be16s(f, &fpregs_format);
5914
5915 /* NOTE: we cannot always restore the FPU state if the image come
5916 from a host with a different 'USE_X86LDOUBLE' define. We guess
5917 if we are in an MMX state to restore correctly in that case. */
5918 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5919 for(i = 0; i < 8; i++) {
5920 uint64_t mant;
5921 uint16_t exp;
5922
5923 switch(fpregs_format) {
5924 case 0:
5925 mant = qemu_get_be64(f);
5926 exp = qemu_get_be16(f);
5927#ifdef USE_X86LDOUBLE
5928 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5929#else
5930 /* difficult case */
5931 if (guess_mmx)
5932 env->fpregs[i].mmx.MMX_Q(0) = mant;
5933 else
5934 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5935#endif
5936 break;
5937 case 1:
5938 mant = qemu_get_be64(f);
5939#ifdef USE_X86LDOUBLE
5940 {
5941 union x86_longdouble *p;
5942 /* difficult case */
5943 p = (void *)&env->fpregs[i];
5944 if (guess_mmx) {
5945 p->mant = mant;
5946 p->exp = 0xffff;
5947 } else {
5948 fp64_to_fp80(p, mant);
5949 }
5950 }
5951#else
5952 env->fpregs[i].mmx.MMX_Q(0) = mant;
5953#endif
5954 break;
5955 default:
5956 return -EINVAL;
5957 }
5958 }
5959
5960 env->fpuc = fpuc;
5961 /* XXX: restore FPU round state */
5962 env->fpstt = (fpus >> 11) & 7;
5963 env->fpus = fpus & ~0x3800;
5964 fptag ^= 0xff;
5965 for(i = 0; i < 8; i++) {
5966 env->fptags[i] = (fptag >> i) & 1;
5967 }
5968
5969 for(i = 0; i < 6; i++)
5970 cpu_get_seg(f, &env->segs[i]);
5971 cpu_get_seg(f, &env->ldt);
5972 cpu_get_seg(f, &env->tr);
5973 cpu_get_seg(f, &env->gdt);
5974 cpu_get_seg(f, &env->idt);
5975
5976 qemu_get_be32s(f, &env->sysenter_cs);
5977 qemu_get_be32s(f, &env->sysenter_esp);
5978 qemu_get_be32s(f, &env->sysenter_eip);
5979
5980 qemu_get_betls(f, &env->cr[0]);
5981 qemu_get_betls(f, &env->cr[2]);
5982 qemu_get_betls(f, &env->cr[3]);
5983 qemu_get_betls(f, &env->cr[4]);
5984
5985 for(i = 0; i < 8; i++)
5986 qemu_get_betls(f, &env->dr[i]);
5987
5988 /* MMU */
5989 qemu_get_be32s(f, &env->a20_mask);
5990
5991 qemu_get_be32s(f, &env->mxcsr);
5992 for(i = 0; i < CPU_NB_REGS; i++) {
5993 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5994 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5995 }
5996
5997#ifdef TARGET_X86_64
5998 qemu_get_be64s(f, &env->efer);
5999 qemu_get_be64s(f, &env->star);
6000 qemu_get_be64s(f, &env->lstar);
6001 qemu_get_be64s(f, &env->cstar);
6002 qemu_get_be64s(f, &env->fmask);
6003 qemu_get_be64s(f, &env->kernelgsbase);
6004#endif
6005 if (version_id >= 4)
6006 qemu_get_be32s(f, &env->smbase);
6007
6008 /* XXX: compute hflags from scratch, except for CPL and IIF */
6009 env->hflags = hflags;
6010 tlb_flush(env, 1);
6011 return 0;
6012}
6013
6014#elif defined(TARGET_PPC)
6015void cpu_save(QEMUFile *f, void *opaque)
6016{
6017}
6018
6019int cpu_load(QEMUFile *f, void *opaque, int version_id)
6020{
6021 return 0;
6022}
6023
6024#elif defined(TARGET_MIPS)
6025void cpu_save(QEMUFile *f, void *opaque)
6026{
6027}
6028
6029int cpu_load(QEMUFile *f, void *opaque, int version_id)
6030{
6031 return 0;
6032}
6033
6034#elif defined(TARGET_SPARC)
6035void cpu_save(QEMUFile *f, void *opaque)
6036{
6037 CPUState *env = opaque;
6038 int i;
6039 uint32_t tmp;
6040
6041 for(i = 0; i < 8; i++)
6042 qemu_put_betls(f, &env->gregs[i]);
6043 for(i = 0; i < NWINDOWS * 16; i++)
6044 qemu_put_betls(f, &env->regbase[i]);
6045
6046 /* FPU */
6047 for(i = 0; i < TARGET_FPREGS; i++) {
6048 union {
6049 float32 f;
6050 uint32_t i;
6051 } u;
6052 u.f = env->fpr[i];
6053 qemu_put_be32(f, u.i);
6054 }
6055
6056 qemu_put_betls(f, &env->pc);
6057 qemu_put_betls(f, &env->npc);
6058 qemu_put_betls(f, &env->y);
6059 tmp = GET_PSR(env);
6060 qemu_put_be32(f, tmp);
6061 qemu_put_betls(f, &env->fsr);
6062 qemu_put_betls(f, &env->tbr);
6063#ifndef TARGET_SPARC64
6064 qemu_put_be32s(f, &env->wim);
6065 /* MMU */
6066 for(i = 0; i < 16; i++)
6067 qemu_put_be32s(f, &env->mmuregs[i]);
6068#endif
6069}
6070
6071int cpu_load(QEMUFile *f, void *opaque, int version_id)
6072{
6073 CPUState *env = opaque;
6074 int i;
6075 uint32_t tmp;
6076
6077 for(i = 0; i < 8; i++)
6078 qemu_get_betls(f, &env->gregs[i]);
6079 for(i = 0; i < NWINDOWS * 16; i++)
6080 qemu_get_betls(f, &env->regbase[i]);
6081
6082 /* FPU */
6083 for(i = 0; i < TARGET_FPREGS; i++) {
6084 union {
6085 float32 f;
6086 uint32_t i;
6087 } u;
6088 u.i = qemu_get_be32(f);
6089 env->fpr[i] = u.f;
6090 }
6091
6092 qemu_get_betls(f, &env->pc);
6093 qemu_get_betls(f, &env->npc);
6094 qemu_get_betls(f, &env->y);
6095 tmp = qemu_get_be32(f);
6096 env->cwp = 0; /* needed to ensure that the wrapping registers are
6097 correctly updated */
6098 PUT_PSR(env, tmp);
6099 qemu_get_betls(f, &env->fsr);
6100 qemu_get_betls(f, &env->tbr);
6101#ifndef TARGET_SPARC64
6102 qemu_get_be32s(f, &env->wim);
6103 /* MMU */
6104 for(i = 0; i < 16; i++)
6105 qemu_get_be32s(f, &env->mmuregs[i]);
6106#endif
6107 tlb_flush(env, 1);
6108 return 0;
6109}
6110
6111#elif defined(TARGET_ARM)
6112
6113void cpu_save(QEMUFile *f, void *opaque)
6114{
6115 int i;
6116 CPUARMState *env = (CPUARMState *)opaque;
6117
6118 for (i = 0; i < 16; i++) {
6119 qemu_put_be32(f, env->regs[i]);
6120 }
6121 qemu_put_be32(f, cpsr_read(env));
6122 qemu_put_be32(f, env->spsr);
6123 for (i = 0; i < 6; i++) {
6124 qemu_put_be32(f, env->banked_spsr[i]);
6125 qemu_put_be32(f, env->banked_r13[i]);
6126 qemu_put_be32(f, env->banked_r14[i]);
6127 }
6128 for (i = 0; i < 5; i++) {
6129 qemu_put_be32(f, env->usr_regs[i]);
6130 qemu_put_be32(f, env->fiq_regs[i]);
6131 }
6132 qemu_put_be32(f, env->cp15.c0_cpuid);
6133 qemu_put_be32(f, env->cp15.c0_cachetype);
6134 qemu_put_be32(f, env->cp15.c1_sys);
6135 qemu_put_be32(f, env->cp15.c1_coproc);
6136 qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6137 qemu_put_be32(f, env->cp15.c2_base0);
6138 qemu_put_be32(f, env->cp15.c2_base1);
6139 qemu_put_be32(f, env->cp15.c2_mask);
6140 qemu_put_be32(f, env->cp15.c2_data);
6141 qemu_put_be32(f, env->cp15.c2_insn);
6142 qemu_put_be32(f, env->cp15.c3);
6143 qemu_put_be32(f, env->cp15.c5_insn);
6144 qemu_put_be32(f, env->cp15.c5_data);
6145 for (i = 0; i < 8; i++) {
6146 qemu_put_be32(f, env->cp15.c6_region[i]);
6147 }
6148 qemu_put_be32(f, env->cp15.c6_insn);
6149 qemu_put_be32(f, env->cp15.c6_data);
6150 qemu_put_be32(f, env->cp15.c9_insn);
6151 qemu_put_be32(f, env->cp15.c9_data);
6152 qemu_put_be32(f, env->cp15.c13_fcse);
6153 qemu_put_be32(f, env->cp15.c13_context);
6154 qemu_put_be32(f, env->cp15.c13_tls1);
6155 qemu_put_be32(f, env->cp15.c13_tls2);
6156 qemu_put_be32(f, env->cp15.c13_tls3);
6157 qemu_put_be32(f, env->cp15.c15_cpar);
6158
6159 qemu_put_be32(f, env->features);
6160
6161 if (arm_feature(env, ARM_FEATURE_VFP)) {
6162 for (i = 0; i < 16; i++) {
6163 CPU_DoubleU u;
6164 u.d = env->vfp.regs[i];
6165 qemu_put_be32(f, u.l.upper);
6166 qemu_put_be32(f, u.l.lower);
6167 }
6168 for (i = 0; i < 16; i++) {
6169 qemu_put_be32(f, env->vfp.xregs[i]);
6170 }
6171
6172 /* TODO: Should use proper FPSCR access functions. */
6173 qemu_put_be32(f, env->vfp.vec_len);
6174 qemu_put_be32(f, env->vfp.vec_stride);
6175
6176 if (arm_feature(env, ARM_FEATURE_VFP3)) {
6177 for (i = 16; i < 32; i++) {
6178 CPU_DoubleU u;
6179 u.d = env->vfp.regs[i];
6180 qemu_put_be32(f, u.l.upper);
6181 qemu_put_be32(f, u.l.lower);
6182 }
6183 }
6184 }
6185
6186 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6187 for (i = 0; i < 16; i++) {
6188 qemu_put_be64(f, env->iwmmxt.regs[i]);
6189 }
6190 for (i = 0; i < 16; i++) {
6191 qemu_put_be32(f, env->iwmmxt.cregs[i]);
6192 }
6193 }
6194
6195 if (arm_feature(env, ARM_FEATURE_M)) {
6196 qemu_put_be32(f, env->v7m.other_sp);
6197 qemu_put_be32(f, env->v7m.vecbase);
6198 qemu_put_be32(f, env->v7m.basepri);
6199 qemu_put_be32(f, env->v7m.control);
6200 qemu_put_be32(f, env->v7m.current_sp);
6201 qemu_put_be32(f, env->v7m.exception);
6202 }
6203}
6204
6205int cpu_load(QEMUFile *f, void *opaque, int version_id)
6206{
6207 CPUARMState *env = (CPUARMState *)opaque;
6208 int i;
6209
6210 if (version_id != ARM_CPU_SAVE_VERSION)
6211 return -EINVAL;
6212
6213 for (i = 0; i < 16; i++) {
6214 env->regs[i] = qemu_get_be32(f);
6215 }
6216 cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6217 env->spsr = qemu_get_be32(f);
6218 for (i = 0; i < 6; i++) {
6219 env->banked_spsr[i] = qemu_get_be32(f);
6220 env->banked_r13[i] = qemu_get_be32(f);
6221 env->banked_r14[i] = qemu_get_be32(f);
6222 }
6223 for (i = 0; i < 5; i++) {
6224 env->usr_regs[i] = qemu_get_be32(f);
6225 env->fiq_regs[i] = qemu_get_be32(f);
6226 }
6227 env->cp15.c0_cpuid = qemu_get_be32(f);
6228 env->cp15.c0_cachetype = qemu_get_be32(f);
6229 env->cp15.c1_sys = qemu_get_be32(f);
6230 env->cp15.c1_coproc = qemu_get_be32(f);
6231 env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6232 env->cp15.c2_base0 = qemu_get_be32(f);
6233 env->cp15.c2_base1 = qemu_get_be32(f);
6234 env->cp15.c2_mask = qemu_get_be32(f);
6235 env->cp15.c2_data = qemu_get_be32(f);
6236 env->cp15.c2_insn = qemu_get_be32(f);
6237 env->cp15.c3 = qemu_get_be32(f);
6238 env->cp15.c5_insn = qemu_get_be32(f);
6239 env->cp15.c5_data = qemu_get_be32(f);
6240 for (i = 0; i < 8; i++) {
6241 env->cp15.c6_region[i] = qemu_get_be32(f);
6242 }
6243 env->cp15.c6_insn = qemu_get_be32(f);
6244 env->cp15.c6_data = qemu_get_be32(f);
6245 env->cp15.c9_insn = qemu_get_be32(f);
6246 env->cp15.c9_data = qemu_get_be32(f);
6247 env->cp15.c13_fcse = qemu_get_be32(f);
6248 env->cp15.c13_context = qemu_get_be32(f);
6249 env->cp15.c13_tls1 = qemu_get_be32(f);
6250 env->cp15.c13_tls2 = qemu_get_be32(f);
6251 env->cp15.c13_tls3 = qemu_get_be32(f);
6252 env->cp15.c15_cpar = qemu_get_be32(f);
6253
6254 env->features = qemu_get_be32(f);
6255
6256 if (arm_feature(env, ARM_FEATURE_VFP)) {
6257 for (i = 0; i < 16; i++) {
6258 CPU_DoubleU u;
6259 u.l.upper = qemu_get_be32(f);
6260 u.l.lower = qemu_get_be32(f);
6261 env->vfp.regs[i] = u.d;
6262 }
6263 for (i = 0; i < 16; i++) {
6264 env->vfp.xregs[i] = qemu_get_be32(f);
6265 }
6266
6267 /* TODO: Should use proper FPSCR access functions. */
6268 env->vfp.vec_len = qemu_get_be32(f);
6269 env->vfp.vec_stride = qemu_get_be32(f);
6270
6271 if (arm_feature(env, ARM_FEATURE_VFP3)) {
6272 for (i = 0; i < 16; i++) {
6273 CPU_DoubleU u;
6274 u.l.upper = qemu_get_be32(f);
6275 u.l.lower = qemu_get_be32(f);
6276 env->vfp.regs[i] = u.d;
6277 }
6278 }
6279 }
6280
6281 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6282 for (i = 0; i < 16; i++) {
6283 env->iwmmxt.regs[i] = qemu_get_be64(f);
6284 }
6285 for (i = 0; i < 16; i++) {
6286 env->iwmmxt.cregs[i] = qemu_get_be32(f);
6287 }
6288 }
6289
6290 if (arm_feature(env, ARM_FEATURE_M)) {
6291 env->v7m.other_sp = qemu_get_be32(f);
6292 env->v7m.vecbase = qemu_get_be32(f);
6293 env->v7m.basepri = qemu_get_be32(f);
6294 env->v7m.control = qemu_get_be32(f);
6295 env->v7m.current_sp = qemu_get_be32(f);
6296 env->v7m.exception = qemu_get_be32(f);
6297 }
6298
6299 return 0;
6300}
6301
6302#else
6303
6304//#warning No CPU save/restore functions
6305
6306#endif
6307
6308/***********************************************************/
6309/* ram save/restore */
6310
6311static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6312{
6313 int v;
6314
6315 v = qemu_get_byte(f);
6316 switch(v) {
6317 case 0:
6318 if (qemu_get_buffer(f, buf, len) != len)
6319 return -EIO;
6320 break;
6321 case 1:
6322 v = qemu_get_byte(f);
6323 memset(buf, v, len);
6324 break;
6325 default:
6326 return -EINVAL;
6327 }
6328 return 0;
6329}
6330
6331static int ram_load_v1(QEMUFile *f, void *opaque)
6332{
6333 int i, ret;
6334
6335 if (qemu_get_be32(f) != phys_ram_size)
6336 return -EINVAL;
6337 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6338 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6339 if (ret)
6340 return ret;
6341 }
6342 return 0;
6343}
6344
6345#define BDRV_HASH_BLOCK_SIZE 1024
6346#define IOBUF_SIZE 4096
6347#define RAM_CBLOCK_MAGIC 0xfabe
6348
6349typedef struct RamCompressState {
6350 z_stream zstream;
6351 QEMUFile *f;
6352 uint8_t buf[IOBUF_SIZE];
6353} RamCompressState;
6354
6355static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6356{
6357 int ret;
6358 memset(s, 0, sizeof(*s));
6359 s->f = f;
6360 ret = deflateInit2(&s->zstream, 1,
6361 Z_DEFLATED, 15,
6362 9, Z_DEFAULT_STRATEGY);
6363 if (ret != Z_OK)
6364 return -1;
6365 s->zstream.avail_out = IOBUF_SIZE;
6366 s->zstream.next_out = s->buf;
6367 return 0;
6368}
6369
6370static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6371{
6372 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6373 qemu_put_be16(s->f, len);
6374 qemu_put_buffer(s->f, buf, len);
6375}
6376
6377static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6378{
6379 int ret;
6380
6381 s->zstream.avail_in = len;
6382 s->zstream.next_in = (uint8_t *)buf;
6383 while (s->zstream.avail_in > 0) {
6384 ret = deflate(&s->zstream, Z_NO_FLUSH);
6385 if (ret != Z_OK)
6386 return -1;
6387 if (s->zstream.avail_out == 0) {
6388 ram_put_cblock(s, s->buf, IOBUF_SIZE);
6389 s->zstream.avail_out = IOBUF_SIZE;
6390 s->zstream.next_out = s->buf;
6391 }
6392 }
6393 return 0;
6394}
6395
6396static void ram_compress_close(RamCompressState *s)
6397{
6398 int len, ret;
6399
6400 /* compress last bytes */
6401 for(;;) {
6402 ret = deflate(&s->zstream, Z_FINISH);
6403 if (ret == Z_OK || ret == Z_STREAM_END) {
6404 len = IOBUF_SIZE - s->zstream.avail_out;
6405 if (len > 0) {
6406 ram_put_cblock(s, s->buf, len);
6407 }
6408 s->zstream.avail_out = IOBUF_SIZE;
6409 s->zstream.next_out = s->buf;
6410 if (ret == Z_STREAM_END)
6411 break;
6412 } else {
6413 goto fail;
6414 }
6415 }
6416fail:
6417 deflateEnd(&s->zstream);
6418}
6419
6420typedef struct RamDecompressState {
6421 z_stream zstream;
6422 QEMUFile *f;
6423 uint8_t buf[IOBUF_SIZE];
6424} RamDecompressState;
6425
6426static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6427{
6428 int ret;
6429 memset(s, 0, sizeof(*s));
6430 s->f = f;
6431 ret = inflateInit(&s->zstream);
6432 if (ret != Z_OK)
6433 return -1;
6434 return 0;
6435}
6436
6437static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6438{
6439 int ret, clen;
6440
6441 s->zstream.avail_out = len;
6442 s->zstream.next_out = buf;
6443 while (s->zstream.avail_out > 0) {
6444 if (s->zstream.avail_in == 0) {
6445 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6446 return -1;
6447 clen = qemu_get_be16(s->f);
6448 if (clen > IOBUF_SIZE)
6449 return -1;
6450 qemu_get_buffer(s->f, s->buf, clen);
6451 s->zstream.avail_in = clen;
6452 s->zstream.next_in = s->buf;
6453 }
6454 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6455 if (ret != Z_OK && ret != Z_STREAM_END) {
6456 return -1;
6457 }
6458 }
6459 return 0;
6460}
6461
6462static void ram_decompress_close(RamDecompressState *s)
6463{
6464 inflateEnd(&s->zstream);
6465}
6466
6467static void ram_save(QEMUFile *f, void *opaque)
6468{
6469 int i;
6470 RamCompressState s1, *s = &s1;
6471 uint8_t buf[10];
6472
6473 qemu_put_be32(f, phys_ram_size);
6474 if (ram_compress_open(s, f) < 0)
6475 return;
6476 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6477#if 0
6478 if (tight_savevm_enabled) {
6479 int64_t sector_num;
6480 int j;
6481
6482 /* find if the memory block is available on a virtual
6483 block device */
6484 sector_num = -1;
6485 for(j = 0; j < MAX_DISKS; j++) {
6486 if (bs_table[j]) {
6487 sector_num = bdrv_hash_find(bs_table[j],
6488 phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6489 if (sector_num >= 0)
6490 break;
6491 }
6492 }
6493 if (j == MAX_DISKS)
6494 goto normal_compress;
6495 buf[0] = 1;
6496 buf[1] = j;
6497 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6498 ram_compress_buf(s, buf, 10);
6499 } else
6500#endif
6501 {
6502 // normal_compress:
6503 buf[0] = 0;
6504 ram_compress_buf(s, buf, 1);
6505 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6506 }
6507 }
6508 ram_compress_close(s);
6509}
6510
6511static int ram_load(QEMUFile *f, void *opaque, int version_id)
6512{
6513 RamDecompressState s1, *s = &s1;
6514 uint8_t buf[10];
6515 int i;
6516
6517 if (version_id == 1)
6518 return ram_load_v1(f, opaque);
6519 if (version_id != 2)
6520 return -EINVAL;
6521 if (qemu_get_be32(f) != phys_ram_size)
6522 return -EINVAL;
6523 if (ram_decompress_open(s, f) < 0)
6524 return -EINVAL;
6525 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6526 if (ram_decompress_buf(s, buf, 1) < 0) {
6527 fprintf(stderr, "Error while reading ram block header\n");
6528 goto error;
6529 }
6530 if (buf[0] == 0) {
6531 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6532 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6533 goto error;
6534 }
6535 } else
6536#if 0
6537 if (buf[0] == 1) {
6538 int bs_index;
6539 int64_t sector_num;
6540
6541 ram_decompress_buf(s, buf + 1, 9);
6542 bs_index = buf[1];
6543 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6544 if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6545 fprintf(stderr, "Invalid block device index %d\n", bs_index);
6546 goto error;
6547 }
6548 if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
6549 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6550 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6551 bs_index, sector_num);
6552 goto error;
6553 }
6554 } else
6555#endif
6556 {
6557 error:
6558 printf("Error block header\n");
6559 return -EINVAL;
6560 }
6561 }
6562 ram_decompress_close(s);
6563 return 0;
6564}
6565
6566/***********************************************************/
6567/* bottom halves (can be seen as timers which expire ASAP) */
6568
6569struct QEMUBH {
6570 QEMUBHFunc *cb;
6571 void *opaque;
6572 int scheduled;
6573 QEMUBH *next;
6574};
6575
6576static QEMUBH *first_bh = NULL;
6577
6578QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6579{
6580 QEMUBH *bh;
6581 bh = qemu_mallocz(sizeof(QEMUBH));
6582 if (!bh)
6583 return NULL;
6584 bh->cb = cb;
6585 bh->opaque = opaque;
6586 return bh;
6587}
6588
6589int qemu_bh_poll(void)
6590{
6591 QEMUBH *bh, **pbh;
6592 int ret;
6593
6594 ret = 0;
6595 for(;;) {
6596 pbh = &first_bh;
6597 bh = *pbh;
6598 if (!bh)
6599 break;
6600 ret = 1;
6601 *pbh = bh->next;
6602 bh->scheduled = 0;
6603 bh->cb(bh->opaque);
6604 }
6605 return ret;
6606}
6607
6608void qemu_bh_schedule(QEMUBH *bh)
6609{
6610 CPUState *env = cpu_single_env;
6611 if (bh->scheduled)
6612 return;
6613 bh->scheduled = 1;
6614 bh->next = first_bh;
6615 first_bh = bh;
6616
6617 /* stop the currently executing CPU to execute the BH ASAP */
6618 if (env) {
6619 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6620 }
6621}
6622
6623void qemu_bh_cancel(QEMUBH *bh)
6624{
6625 QEMUBH **pbh;
6626 if (bh->scheduled) {
6627 pbh = &first_bh;
6628 while (*pbh != bh)
6629 pbh = &(*pbh)->next;
6630 *pbh = bh->next;
6631 bh->scheduled = 0;
6632 }
6633}
6634
6635void qemu_bh_delete(QEMUBH *bh)
6636{
6637 qemu_bh_cancel(bh);
6638 qemu_free(bh);
6639}
6640
6641/***********************************************************/
6642/* machine registration */
6643
6644QEMUMachine *first_machine = NULL;
6645
6646int qemu_register_machine(QEMUMachine *m)
6647{
6648 QEMUMachine **pm;
6649 pm = &first_machine;
6650 while (*pm != NULL)
6651 pm = &(*pm)->next;
6652 m->next = NULL;
6653 *pm = m;
6654 return 0;
6655}
6656
6657static QEMUMachine *find_machine(const char *name)
6658{
6659 QEMUMachine *m;
6660
6661 for(m = first_machine; m != NULL; m = m->next) {
6662 if (!strcmp(m->name, name))
6663 return m;
6664 }
6665 return NULL;
6666}
6667
6668/***********************************************************/
6669/* main execution loop */
6670
6671static void gui_update(void *opaque)
6672{
6673 DisplayState *ds = opaque;
6674 ds->dpy_refresh(ds);
6675 qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6676}
6677
6678struct vm_change_state_entry {
6679 VMChangeStateHandler *cb;
6680 void *opaque;
6681 LIST_ENTRY (vm_change_state_entry) entries;
6682};
6683
6684static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6685
6686VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6687 void *opaque)
6688{
6689 VMChangeStateEntry *e;
6690
6691 e = qemu_mallocz(sizeof (*e));
6692 if (!e)
6693 return NULL;
6694
6695 e->cb = cb;
6696 e->opaque = opaque;
6697 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6698 return e;
6699}
6700
6701void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6702{
6703 LIST_REMOVE (e, entries);
6704 qemu_free (e);
6705}
6706
6707static void vm_state_notify(int running)
6708{
6709 VMChangeStateEntry *e;
6710
6711 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6712 e->cb(e->opaque, running);
6713 }
6714}
6715
6716/* XXX: support several handlers */
6717static VMStopHandler *vm_stop_cb;
6718static void *vm_stop_opaque;
6719
6720int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6721{
6722 vm_stop_cb = cb;
6723 vm_stop_opaque = opaque;
6724 return 0;
6725}
6726
6727void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6728{
6729 vm_stop_cb = NULL;
6730}
6731
6732void vm_start(void)
6733{
6734 if (!vm_running) {
6735 cpu_enable_ticks();
6736 vm_running = 1;
6737 vm_state_notify(1);
6738 qemu_rearm_alarm_timer(alarm_timer);
6739 }
6740}
6741
6742void vm_stop(int reason)
6743{
6744 if (vm_running) {
6745 cpu_disable_ticks();
6746 vm_running = 0;
6747 if (reason != 0) {
6748 if (vm_stop_cb) {
6749 vm_stop_cb(vm_stop_opaque, reason);
6750 }
6751 }
6752 vm_state_notify(0);
6753 }
6754}
6755
6756/* reset/shutdown handler */
6757
6758typedef struct QEMUResetEntry {
6759 QEMUResetHandler *func;
6760 void *opaque;
6761 struct QEMUResetEntry *next;
6762} QEMUResetEntry;
6763
6764static QEMUResetEntry *first_reset_entry;
6765static int reset_requested;
6766static int shutdown_requested;
6767static int powerdown_requested;
6768
6769void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6770{
6771 QEMUResetEntry **pre, *re;
6772
6773 pre = &first_reset_entry;
6774 while (*pre != NULL)
6775 pre = &(*pre)->next;
6776 re = qemu_mallocz(sizeof(QEMUResetEntry));
6777 re->func = func;
6778 re->opaque = opaque;
6779 re->next = NULL;
6780 *pre = re;
6781}
6782
6783static void qemu_system_reset(void)
6784{
6785 QEMUResetEntry *re;
6786
6787 /* reset all devices */
6788 for(re = first_reset_entry; re != NULL; re = re->next) {
6789 re->func(re->opaque);
6790 }
6791}
6792
6793void qemu_system_reset_request(void)
6794{
6795 if (no_reboot) {
6796 shutdown_requested = 1;
6797 } else {
6798 reset_requested = 1;
6799 }
6800 if (cpu_single_env)
6801 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6802}
6803
6804void qemu_system_shutdown_request(void)
6805{
6806 shutdown_requested = 1;
6807 if (cpu_single_env)
6808 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6809}
6810
6811void qemu_system_powerdown_request(void)
6812{
6813 powerdown_requested = 1;
6814 if (cpu_single_env)
6815 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6816}
6817
6818void main_loop_wait(int timeout)
6819{
6820 IOHandlerRecord *ioh;
6821 fd_set rfds, wfds, xfds;
6822 int ret, nfds;
6823#ifdef _WIN32
6824 int ret2, i;
6825#endif
6826 struct timeval tv;
6827 PollingEntry *pe;
6828
6829
6830 /* XXX: need to suppress polling by better using win32 events */
6831 ret = 0;
6832 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6833 ret |= pe->func(pe->opaque);
6834 }
6835#ifdef _WIN32
6836 if (ret == 0) {
6837 int err;
6838 WaitObjects *w = &wait_objects;
6839
6840 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6841 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6842 if (w->func[ret - WAIT_OBJECT_0])
6843 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6844
6845 /* Check for additional signaled events */
6846 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6847
6848 /* Check if event is signaled */
6849 ret2 = WaitForSingleObject(w->events[i], 0);
6850 if(ret2 == WAIT_OBJECT_0) {
6851 if (w->func[i])
6852 w->func[i](w->opaque[i]);
6853 } else if (ret2 == WAIT_TIMEOUT) {
6854 } else {
6855 err = GetLastError();
6856 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6857 }
6858 }
6859 } else if (ret == WAIT_TIMEOUT) {
6860 } else {
6861 err = GetLastError();
6862 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6863 }
6864 }
6865#endif
6866 /* poll any events */
6867 /* XXX: separate device handlers from system ones */
6868 nfds = -1;
6869 FD_ZERO(&rfds);
6870 FD_ZERO(&wfds);
6871 FD_ZERO(&xfds);
6872 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6873 if (ioh->deleted)
6874 continue;
6875 if (ioh->fd_read &&
6876 (!ioh->fd_read_poll ||
6877 ioh->fd_read_poll(ioh->opaque) != 0)) {
6878 FD_SET(ioh->fd, &rfds);
6879 if (ioh->fd > nfds)
6880 nfds = ioh->fd;
6881 }
6882 if (ioh->fd_write) {
6883 FD_SET(ioh->fd, &wfds);
6884 if (ioh->fd > nfds)
6885 nfds = ioh->fd;
6886 }
6887 }
6888
6889 tv.tv_sec = 0;
6890#ifdef _WIN32
6891 tv.tv_usec = 0;
6892#else
6893 tv.tv_usec = timeout * 1000;
6894#endif
6895#if defined(CONFIG_SLIRP)
6896 if (slirp_inited) {
6897 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6898 }
6899#endif
6900 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6901 if (ret > 0) {
6902 IOHandlerRecord **pioh;
6903
6904 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6905 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
6906 ioh->fd_read(ioh->opaque);
6907 }
6908 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
6909 ioh->fd_write(ioh->opaque);
6910 }
6911 }
6912
6913 /* remove deleted IO handlers */
6914 pioh = &first_io_handler;
6915 while (*pioh) {
6916 ioh = *pioh;
6917 if (ioh->deleted) {
6918 *pioh = ioh->next;
6919 qemu_free(ioh);
6920 } else
6921 pioh = &ioh->next;
6922 }
6923 }
6924#if defined(CONFIG_SLIRP)
6925 if (slirp_inited) {
6926 if (ret < 0) {
6927 FD_ZERO(&rfds);
6928 FD_ZERO(&wfds);
6929 FD_ZERO(&xfds);
6930 }
6931 slirp_select_poll(&rfds, &wfds, &xfds);
6932 }
6933#endif
6934 qemu_aio_poll();
6935
6936 if (vm_running) {
6937 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6938 qemu_get_clock(vm_clock));
6939 /* run dma transfers, if any */
6940 DMA_run();
6941 }
6942
6943 /* real time timers */
6944 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6945 qemu_get_clock(rt_clock));
6946
6947 /* Check bottom-halves last in case any of the earlier events triggered
6948 them. */
6949 qemu_bh_poll();
6950
6951}
6952
6953static CPUState *cur_cpu;
6954
6955static int main_loop(void)
6956{
6957 int ret, timeout;
6958#ifdef CONFIG_PROFILER
6959 int64_t ti;
6960#endif
6961 CPUState *env;
6962
6963 cur_cpu = first_cpu;
6964 for(;;) {
6965 if (vm_running) {
6966
6967 env = cur_cpu;
6968 for(;;) {
6969 /* get next cpu */
6970 env = env->next_cpu;
6971 if (!env)
6972 env = first_cpu;
6973#ifdef CONFIG_PROFILER
6974 ti = profile_getclock();
6975#endif
6976 ret = cpu_exec(env);
6977#ifdef CONFIG_PROFILER
6978 qemu_time += profile_getclock() - ti;
6979#endif
6980 if (ret == EXCP_HLT) {
6981 /* Give the next CPU a chance to run. */
6982 cur_cpu = env;
6983 continue;
6984 }
6985 if (ret != EXCP_HALTED)
6986 break;
6987 /* all CPUs are halted ? */
6988 if (env == cur_cpu)
6989 break;
6990 }
6991 cur_cpu = env;
6992
6993 if (shutdown_requested) {
6994 ret = EXCP_INTERRUPT;
6995 break;
6996 }
6997 if (reset_requested) {
6998 reset_requested = 0;
6999 qemu_system_reset();
7000 ret = EXCP_INTERRUPT;
7001 }
7002 if (powerdown_requested) {
7003 powerdown_requested = 0;
7004 qemu_system_powerdown();
7005 ret = EXCP_INTERRUPT;
7006 }
7007 if (ret == EXCP_DEBUG) {
7008 vm_stop(EXCP_DEBUG);
7009 }
7010 /* If all cpus are halted then wait until the next IRQ */
7011 /* XXX: use timeout computed from timers */
7012 if (ret == EXCP_HALTED)
7013 timeout = 10;
7014 else
7015 timeout = 0;
7016 } else {
7017 timeout = 10;
7018 }
7019#ifdef CONFIG_PROFILER
7020 ti = profile_getclock();
7021#endif
7022 main_loop_wait(timeout);
7023#ifdef CONFIG_PROFILER
7024 dev_time += profile_getclock() - ti;
7025#endif
7026 }
7027 cpu_disable_ticks();
7028 return ret;
7029}
7030
7031static void help(int exitcode)
7032{
7033 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
7034 "usage: %s [options] [disk_image]\n"
7035 "\n"
7036 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7037 "\n"
7038 "Standard options:\n"
7039 "-M machine select emulated machine (-M ? for list)\n"
7040 "-cpu cpu select CPU (-cpu ? for list)\n"
7041 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
7042 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
7043 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
7044 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7045 "-mtdblock file use 'file' as on-board Flash memory image\n"
7046 "-sd file use 'file' as SecureDigital card image\n"
7047 "-pflash file use 'file' as a parallel flash image\n"
7048 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7049 "-snapshot write to temporary files instead of disk image files\n"
7050#ifdef CONFIG_SDL
7051 "-no-frame open SDL window without a frame and window decorations\n"
7052 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7053 "-no-quit disable SDL window close capability\n"
7054#endif
7055#ifdef TARGET_I386
7056 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
7057#endif
7058 "-m megs set virtual RAM size to megs MB [default=%d]\n"
7059 "-smp n set the number of CPUs to 'n' [default=1]\n"
7060 "-nographic disable graphical output and redirect serial I/Os to console\n"
7061 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
7062#ifndef _WIN32
7063 "-k language use keyboard layout (for example \"fr\" for French)\n"
7064#endif
7065#ifdef HAS_AUDIO
7066 "-audio-help print list of audio drivers and their options\n"
7067 "-soundhw c1,... enable audio support\n"
7068 " and only specified sound cards (comma separated list)\n"
7069 " use -soundhw ? to get the list of supported cards\n"
7070 " use -soundhw all to enable all of them\n"
7071#endif
7072 "-localtime set the real time clock to local time [default=utc]\n"
7073 "-full-screen start in full screen\n"
7074#ifdef TARGET_I386
7075 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
7076#endif
7077 "-usb enable the USB driver (will be the default soon)\n"
7078 "-usbdevice name add the host or guest USB device 'name'\n"
7079#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7080 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7081#endif
7082 "-name string set the name of the guest\n"
7083 "\n"
7084 "Network options:\n"
7085 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7086 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7087#ifdef CONFIG_SLIRP
7088 "-net user[,vlan=n][,hostname=host]\n"
7089 " connect the user mode network stack to VLAN 'n' and send\n"
7090 " hostname 'host' to DHCP clients\n"
7091#endif
7092#ifdef _WIN32
7093 "-net tap[,vlan=n],ifname=name\n"
7094 " connect the host TAP network interface to VLAN 'n'\n"
7095#else
7096 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7097 " connect the host TAP network interface to VLAN 'n' and use the\n"
7098 " network scripts 'file' (default=%s)\n"
7099 " and 'dfile' (default=%s);\n"
7100 " use '[down]script=no' to disable script execution;\n"
7101 " use 'fd=h' to connect to an already opened TAP interface\n"
7102#endif
7103 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7104 " connect the vlan 'n' to another VLAN using a socket connection\n"
7105 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7106 " connect the vlan 'n' to multicast maddr and port\n"
7107 "-net none use it alone to have zero network devices; if no -net option\n"
7108 " is provided, the default is '-net nic -net user'\n"
7109 "\n"
7110#ifdef CONFIG_SLIRP
7111 "-tftp dir allow tftp access to files in dir [-net user]\n"
7112 "-bootp file advertise file in BOOTP replies\n"
7113#ifndef _WIN32
7114 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7115#endif
7116 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7117 " redirect TCP or UDP connections from host to guest [-net user]\n"
7118#endif
7119 "\n"
7120 "Linux boot specific:\n"
7121 "-kernel bzImage use 'bzImage' as kernel image\n"
7122 "-append cmdline use 'cmdline' as kernel command line\n"
7123 "-initrd file use 'file' as initial ram disk\n"
7124 "\n"
7125 "Debug/Expert options:\n"
7126 "-monitor dev redirect the monitor to char device 'dev'\n"
7127 "-serial dev redirect the serial port to char device 'dev'\n"
7128 "-parallel dev redirect the parallel port to char device 'dev'\n"
7129 "-pidfile file Write PID to 'file'\n"
7130 "-S freeze CPU at startup (use 'c' to start execution)\n"
7131 "-s wait gdb connection to port\n"
7132 "-p port set gdb connection port [default=%s]\n"
7133 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7134 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7135 " translation (t=none or lba) (usually qemu can guess them)\n"
7136 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7137#ifdef USE_KQEMU
7138 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7139 "-no-kqemu disable KQEMU kernel module usage\n"
7140#endif
7141#ifdef TARGET_I386
7142 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
7143 " (default is CL-GD5446 PCI VGA)\n"
7144 "-no-acpi disable ACPI\n"
7145#endif
7146 "-no-reboot exit instead of rebooting\n"
7147 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
7148 "-vnc display start a VNC server on display\n"
7149#ifndef _WIN32
7150 "-daemonize daemonize QEMU after initializing\n"
7151#endif
7152 "-option-rom rom load a file, rom, into the option ROM space\n"
7153#ifdef TARGET_SPARC
7154 "-prom-env variable=value set OpenBIOS nvram variables\n"
7155#endif
7156 "-clock force the use of the given methods for timer alarm.\n"
7157 " To see what timers are available use -clock help\n"
7158 "\n"
7159 "During emulation, the following keys are useful:\n"
7160 "ctrl-alt-f toggle full screen\n"
7161 "ctrl-alt-n switch to virtual console 'n'\n"
7162 "ctrl-alt toggle mouse and keyboard grab\n"
7163 "\n"
7164 "When using -nographic, press 'ctrl-a h' to get some help.\n"
7165 ,
7166 "qemu",
7167 DEFAULT_RAM_SIZE,
7168#ifndef _WIN32
7169 DEFAULT_NETWORK_SCRIPT,
7170 DEFAULT_NETWORK_DOWN_SCRIPT,
7171#endif
7172 DEFAULT_GDBSTUB_PORT,
7173 "/tmp/qemu.log");
7174 exit(exitcode);
7175}
7176
7177#define HAS_ARG 0x0001
7178
7179enum {
7180 QEMU_OPTION_h,
7181
7182 QEMU_OPTION_M,
7183 QEMU_OPTION_cpu,
7184 QEMU_OPTION_fda,
7185 QEMU_OPTION_fdb,
7186 QEMU_OPTION_hda,
7187 QEMU_OPTION_hdb,
7188 QEMU_OPTION_hdc,
7189 QEMU_OPTION_hdd,
7190 QEMU_OPTION_cdrom,
7191 QEMU_OPTION_mtdblock,
7192 QEMU_OPTION_sd,
7193 QEMU_OPTION_pflash,
7194 QEMU_OPTION_boot,
7195 QEMU_OPTION_snapshot,
7196#ifdef TARGET_I386
7197 QEMU_OPTION_no_fd_bootchk,
7198#endif
7199 QEMU_OPTION_m,
7200 QEMU_OPTION_nographic,
7201 QEMU_OPTION_portrait,
7202#ifdef HAS_AUDIO
7203 QEMU_OPTION_audio_help,
7204 QEMU_OPTION_soundhw,
7205#endif
7206
7207 QEMU_OPTION_net,
7208 QEMU_OPTION_tftp,
7209 QEMU_OPTION_bootp,
7210 QEMU_OPTION_smb,
7211 QEMU_OPTION_redir,
7212
7213 QEMU_OPTION_kernel,
7214 QEMU_OPTION_append,
7215 QEMU_OPTION_initrd,
7216
7217 QEMU_OPTION_S,
7218 QEMU_OPTION_s,
7219 QEMU_OPTION_p,
7220 QEMU_OPTION_d,
7221 QEMU_OPTION_hdachs,
7222 QEMU_OPTION_L,
7223 QEMU_OPTION_bios,
7224 QEMU_OPTION_no_code_copy,
7225 QEMU_OPTION_k,
7226 QEMU_OPTION_localtime,
7227 QEMU_OPTION_cirrusvga,
7228 QEMU_OPTION_vmsvga,
7229 QEMU_OPTION_g,
7230 QEMU_OPTION_std_vga,
7231 QEMU_OPTION_echr,
7232 QEMU_OPTION_monitor,
7233 QEMU_OPTION_serial,
7234 QEMU_OPTION_parallel,
7235 QEMU_OPTION_loadvm,
7236 QEMU_OPTION_full_screen,
7237 QEMU_OPTION_no_frame,
7238 QEMU_OPTION_alt_grab,
7239 QEMU_OPTION_no_quit,
7240 QEMU_OPTION_pidfile,
7241 QEMU_OPTION_no_kqemu,
7242 QEMU_OPTION_kernel_kqemu,
7243 QEMU_OPTION_win2k_hack,
7244 QEMU_OPTION_usb,
7245 QEMU_OPTION_usbdevice,
7246 QEMU_OPTION_smp,
7247 QEMU_OPTION_vnc,
7248 QEMU_OPTION_no_acpi,
7249 QEMU_OPTION_no_reboot,
7250 QEMU_OPTION_show_cursor,
7251 QEMU_OPTION_daemonize,
7252 QEMU_OPTION_option_rom,
7253 QEMU_OPTION_semihosting,
7254 QEMU_OPTION_name,
7255 QEMU_OPTION_prom_env,
7256 QEMU_OPTION_old_param,
7257 QEMU_OPTION_clock,
7258 QEMU_OPTION_startdate,
7259};
7260
7261typedef struct QEMUOption {
7262 const char *name;
7263 int flags;
7264 int index;
7265} QEMUOption;
7266
7267const QEMUOption qemu_options[] = {
7268 { "h", 0, QEMU_OPTION_h },
7269 { "help", 0, QEMU_OPTION_h },
7270
7271 { "M", HAS_ARG, QEMU_OPTION_M },
7272 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7273 { "fda", HAS_ARG, QEMU_OPTION_fda },
7274 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7275 { "hda", HAS_ARG, QEMU_OPTION_hda },
7276 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7277 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7278 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7279 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7280 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7281 { "sd", HAS_ARG, QEMU_OPTION_sd },
7282 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7283 { "boot", HAS_ARG, QEMU_OPTION_boot },
7284 { "snapshot", 0, QEMU_OPTION_snapshot },
7285#ifdef TARGET_I386
7286 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7287#endif
7288 { "m", HAS_ARG, QEMU_OPTION_m },
7289 { "nographic", 0, QEMU_OPTION_nographic },
7290 { "portrait", 0, QEMU_OPTION_portrait },
7291 { "k", HAS_ARG, QEMU_OPTION_k },
7292#ifdef HAS_AUDIO
7293 { "audio-help", 0, QEMU_OPTION_audio_help },
7294 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7295#endif
7296
7297 { "net", HAS_ARG, QEMU_OPTION_net},
7298#ifdef CONFIG_SLIRP
7299 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7300 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7301#ifndef _WIN32
7302 { "smb", HAS_ARG, QEMU_OPTION_smb },
7303#endif
7304 { "redir", HAS_ARG, QEMU_OPTION_redir },
7305#endif
7306
7307 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7308 { "append", HAS_ARG, QEMU_OPTION_append },
7309 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7310
7311 { "S", 0, QEMU_OPTION_S },
7312 { "s", 0, QEMU_OPTION_s },
7313 { "p", HAS_ARG, QEMU_OPTION_p },
7314 { "d", HAS_ARG, QEMU_OPTION_d },
7315 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7316 { "L", HAS_ARG, QEMU_OPTION_L },
7317 { "bios", HAS_ARG, QEMU_OPTION_bios },
7318 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7319#ifdef USE_KQEMU
7320 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7321 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7322#endif
7323#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7324 { "g", 1, QEMU_OPTION_g },
7325#endif
7326 { "localtime", 0, QEMU_OPTION_localtime },
7327 { "std-vga", 0, QEMU_OPTION_std_vga },
7328 { "echr", HAS_ARG, QEMU_OPTION_echr },
7329 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7330 { "serial", HAS_ARG, QEMU_OPTION_serial },
7331 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7332 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7333 { "full-screen", 0, QEMU_OPTION_full_screen },
7334#ifdef CONFIG_SDL
7335 { "no-frame", 0, QEMU_OPTION_no_frame },
7336 { "alt-grab", 0, QEMU_OPTION_alt_grab },
7337 { "no-quit", 0, QEMU_OPTION_no_quit },
7338#endif
7339 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7340 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7341 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7342 { "smp", HAS_ARG, QEMU_OPTION_smp },
7343 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7344
7345 /* temporary options */
7346 { "usb", 0, QEMU_OPTION_usb },
7347 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7348 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7349 { "no-acpi", 0, QEMU_OPTION_no_acpi },
7350 { "no-reboot", 0, QEMU_OPTION_no_reboot },
7351 { "show-cursor", 0, QEMU_OPTION_show_cursor },
7352 { "daemonize", 0, QEMU_OPTION_daemonize },
7353 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7354#if defined(TARGET_ARM) || defined(TARGET_M68K)
7355 { "semihosting", 0, QEMU_OPTION_semihosting },
7356#endif
7357 { "name", HAS_ARG, QEMU_OPTION_name },
7358#if defined(TARGET_SPARC)
7359 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7360#endif
7361#if defined(TARGET_ARM)
7362 { "old-param", 0, QEMU_OPTION_old_param },
7363#endif
7364 { "clock", HAS_ARG, QEMU_OPTION_clock },
7365 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
7366 { NULL },
7367};
7368
7369/* password input */
7370
7371int qemu_key_check(BlockDriverState *bs, const char *name)
7372{
7373 char password[256];
7374 int i;
7375
7376 if (!bdrv_is_encrypted(bs))
7377 return 0;
7378
7379 term_printf("%s is encrypted.\n", name);
7380 for(i = 0; i < 3; i++) {
7381 monitor_readline("Password: ", 1, password, sizeof(password));
7382 if (bdrv_set_key(bs, password) == 0)
7383 return 0;
7384 term_printf("invalid password\n");
7385 }
7386 return -EPERM;
7387}
7388
7389static BlockDriverState *get_bdrv(int index)
7390{
7391 BlockDriverState *bs;
7392
7393 if (index < 4) {
7394 bs = bs_table[index];
7395 } else if (index < 6) {
7396 bs = fd_table[index - 4];
7397 } else {
7398 bs = NULL;
7399 }
7400 return bs;
7401}
7402
7403static void read_passwords(void)
7404{
7405 BlockDriverState *bs;
7406 int i;
7407
7408 for(i = 0; i < 6; i++) {
7409 bs = get_bdrv(i);
7410 if (bs)
7411 qemu_key_check(bs, bdrv_get_device_name(bs));
7412 }
7413}
7414
7415/* XXX: currently we cannot use simultaneously different CPUs */
7416static void register_machines(void)
7417{
7418#if defined(TARGET_I386)
7419 qemu_register_machine(&pc_machine);
7420 qemu_register_machine(&isapc_machine);
7421#elif defined(TARGET_PPC)
7422 qemu_register_machine(&heathrow_machine);
7423 qemu_register_machine(&core99_machine);
7424 qemu_register_machine(&prep_machine);
7425 qemu_register_machine(&ref405ep_machine);
7426 qemu_register_machine(&taihu_machine);
7427#elif defined(TARGET_MIPS)
7428 qemu_register_machine(&mips_machine);
7429 qemu_register_machine(&mips_malta_machine);
7430 qemu_register_machine(&mips_pica61_machine);
7431 qemu_register_machine(&mips_mipssim_machine);
7432#elif defined(TARGET_SPARC)
7433#ifdef TARGET_SPARC64
7434 qemu_register_machine(&sun4u_machine);
7435#else
7436 qemu_register_machine(&ss5_machine);
7437 qemu_register_machine(&ss10_machine);
7438 qemu_register_machine(&ss600mp_machine);
7439#endif
7440#elif defined(TARGET_ARM)
7441 qemu_register_machine(&integratorcp_machine);
7442 qemu_register_machine(&versatilepb_machine);
7443 qemu_register_machine(&versatileab_machine);
7444 qemu_register_machine(&realview_machine);
7445 qemu_register_machine(&akitapda_machine);
7446 qemu_register_machine(&spitzpda_machine);
7447 qemu_register_machine(&borzoipda_machine);
7448 qemu_register_machine(&terrierpda_machine);
7449 qemu_register_machine(&palmte_machine);
7450 qemu_register_machine(&lm3s811evb_machine);
7451 qemu_register_machine(&lm3s6965evb_machine);
7452 qemu_register_machine(&connex_machine);
7453#elif defined(TARGET_SH4)
7454 qemu_register_machine(&shix_machine);
7455 qemu_register_machine(&r2d_machine);
7456#elif defined(TARGET_ALPHA)
7457 /* XXX: TODO */
7458#elif defined(TARGET_M68K)
7459 qemu_register_machine(&mcf5208evb_machine);
7460 qemu_register_machine(&an5206_machine);
7461 qemu_register_machine(&dummy_m68k_machine);
7462#elif defined(TARGET_CRIS)
7463 qemu_register_machine(&bareetraxfs_machine);
7464#else
7465#error unsupported CPU
7466#endif
7467}
7468
7469#ifdef HAS_AUDIO
7470struct soundhw soundhw[] = {
7471#ifdef HAS_AUDIO_CHOICE
7472#ifdef TARGET_I386
7473 {
7474 "pcspk",
7475 "PC speaker",
7476 0,
7477 1,
7478 { .init_isa = pcspk_audio_init }
7479 },
7480#endif
7481 {
7482 "sb16",
7483 "Creative Sound Blaster 16",
7484 0,
7485 1,
7486 { .init_isa = SB16_init }
7487 },
7488
7489#ifdef CONFIG_ADLIB
7490 {
7491 "adlib",
7492#ifdef HAS_YMF262
7493 "Yamaha YMF262 (OPL3)",
7494#else
7495 "Yamaha YM3812 (OPL2)",
7496#endif
7497 0,
7498 1,
7499 { .init_isa = Adlib_init }
7500 },
7501#endif
7502
7503#ifdef CONFIG_GUS
7504 {
7505 "gus",
7506 "Gravis Ultrasound GF1",
7507 0,
7508 1,
7509 { .init_isa = GUS_init }
7510 },
7511#endif
7512
7513 {
7514 "es1370",
7515 "ENSONIQ AudioPCI ES1370",
7516 0,
7517 0,
7518 { .init_pci = es1370_init }
7519 },
7520#endif
7521
7522 { NULL, NULL, 0, 0, { NULL } }
7523};
7524
7525static void select_soundhw (const char *optarg)
7526{
7527 struct soundhw *c;
7528
7529 if (*optarg == '?') {
7530 show_valid_cards:
7531
7532 printf ("Valid sound card names (comma separated):\n");
7533 for (c = soundhw; c->name; ++c) {
7534 printf ("%-11s %s\n", c->name, c->descr);
7535 }
7536 printf ("\n-soundhw all will enable all of the above\n");
7537 exit (*optarg != '?');
7538 }
7539 else {
7540 size_t l;
7541 const char *p;
7542 char *e;
7543 int bad_card = 0;
7544
7545 if (!strcmp (optarg, "all")) {
7546 for (c = soundhw; c->name; ++c) {
7547 c->enabled = 1;
7548 }
7549 return;
7550 }
7551
7552 p = optarg;
7553 while (*p) {
7554 e = strchr (p, ',');
7555 l = !e ? strlen (p) : (size_t) (e - p);
7556
7557 for (c = soundhw; c->name; ++c) {
7558 if (!strncmp (c->name, p, l)) {
7559 c->enabled = 1;
7560 break;
7561 }
7562 }
7563
7564 if (!c->name) {
7565 if (l > 80) {
7566 fprintf (stderr,
7567 "Unknown sound card name (too big to show)\n");
7568 }
7569 else {
7570 fprintf (stderr, "Unknown sound card name `%.*s'\n",
7571 (int) l, p);
7572 }
7573 bad_card = 1;
7574 }
7575 p += l + (e != NULL);
7576 }
7577
7578 if (bad_card)
7579 goto show_valid_cards;
7580 }
7581}
7582#endif
7583
7584#ifdef _WIN32
7585static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7586{
7587 exit(STATUS_CONTROL_C_EXIT);
7588 return TRUE;
7589}
7590#endif
7591
7592#define MAX_NET_CLIENTS 32
7593
7594int main(int argc, char **argv)
7595{
7596#ifdef CONFIG_GDBSTUB
7597 int use_gdbstub;
7598 const char *gdbstub_port;
7599#endif
7600 uint32_t boot_devices_bitmap = 0;
7601 int i, cdrom_index, pflash_index;
7602 int snapshot, linux_boot, net_boot;
7603 const char *initrd_filename;
7604 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7605 const char *pflash_filename[MAX_PFLASH];
7606 const char *sd_filename;
7607 const char *mtd_filename;
7608 const char *kernel_filename, *kernel_cmdline;
7609 const char *boot_devices = "";
7610 DisplayState *ds = &display_state;
7611 int cyls, heads, secs, translation;
7612 char net_clients[MAX_NET_CLIENTS][256];
7613 int nb_net_clients;
7614 int optind;
7615 const char *r, *optarg;
7616 CharDriverState *monitor_hd;
7617 char monitor_device[128];
7618 char serial_devices[MAX_SERIAL_PORTS][128];
7619 int serial_device_index;
7620 char parallel_devices[MAX_PARALLEL_PORTS][128];
7621 int parallel_device_index;
7622 const char *loadvm = NULL;
7623 QEMUMachine *machine;
7624 const char *cpu_model;
7625 char usb_devices[MAX_USB_CMDLINE][128];
7626 int usb_devices_index;
7627 int fds[2];
7628 const char *pid_file = NULL;
7629 VLANState *vlan;
7630
7631 LIST_INIT (&vm_change_state_head);
7632#ifndef _WIN32
7633 {
7634 struct sigaction act;
7635 sigfillset(&act.sa_mask);
7636 act.sa_flags = 0;
7637 act.sa_handler = SIG_IGN;
7638 sigaction(SIGPIPE, &act, NULL);
7639 }
7640#else
7641 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7642 /* Note: cpu_interrupt() is currently not SMP safe, so we force
7643 QEMU to run on a single CPU */
7644 {
7645 HANDLE h;
7646 DWORD mask, smask;
7647 int i;
7648 h = GetCurrentProcess();
7649 if (GetProcessAffinityMask(h, &mask, &smask)) {
7650 for(i = 0; i < 32; i++) {
7651 if (mask & (1 << i))
7652 break;
7653 }
7654 if (i != 32) {
7655 mask = 1 << i;
7656 SetProcessAffinityMask(h, mask);
7657 }
7658 }
7659 }
7660#endif
7661
7662 register_machines();
7663 machine = first_machine;
7664 cpu_model = NULL;
7665 initrd_filename = NULL;
7666 for(i = 0; i < MAX_FD; i++)
7667 fd_filename[i] = NULL;
7668 for(i = 0; i < MAX_DISKS; i++)
7669 hd_filename[i] = NULL;
7670 for(i = 0; i < MAX_PFLASH; i++)
7671 pflash_filename[i] = NULL;
7672 pflash_index = 0;
7673 sd_filename = NULL;
7674 mtd_filename = NULL;
7675 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7676 vga_ram_size = VGA_RAM_SIZE;
7677#ifdef CONFIG_GDBSTUB
7678 use_gdbstub = 0;
7679 gdbstub_port = DEFAULT_GDBSTUB_PORT;
7680#endif
7681 snapshot = 0;
7682 nographic = 0;
7683 kernel_filename = NULL;
7684 kernel_cmdline = "";
7685#ifdef TARGET_PPC
7686 cdrom_index = 1;
7687#else
7688 cdrom_index = 2;
7689#endif
7690 cyls = heads = secs = 0;
7691 translation = BIOS_ATA_TRANSLATION_AUTO;
7692 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7693
7694 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7695 for(i = 1; i < MAX_SERIAL_PORTS; i++)
7696 serial_devices[i][0] = '\0';
7697 serial_device_index = 0;
7698
7699 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7700 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7701 parallel_devices[i][0] = '\0';
7702 parallel_device_index = 0;
7703
7704 usb_devices_index = 0;
7705
7706 nb_net_clients = 0;
7707
7708 nb_nics = 0;
7709 /* default mac address of the first network interface */
7710
7711 optind = 1;
7712 for(;;) {
7713 if (optind >= argc)
7714 break;
7715 r = argv[optind];
7716 if (r[0] != '-') {
7717 hd_filename[0] = argv[optind++];
7718 } else {
7719 const QEMUOption *popt;
7720
7721 optind++;
7722 /* Treat --foo the same as -foo. */
7723 if (r[1] == '-')
7724 r++;
7725 popt = qemu_options;
7726 for(;;) {
7727 if (!popt->name) {
7728 fprintf(stderr, "%s: invalid option -- '%s'\n",
7729 argv[0], r);
7730 exit(1);
7731 }
7732 if (!strcmp(popt->name, r + 1))
7733 break;
7734 popt++;
7735 }
7736 if (popt->flags & HAS_ARG) {
7737 if (optind >= argc) {
7738 fprintf(stderr, "%s: option '%s' requires an argument\n",
7739 argv[0], r);
7740 exit(1);
7741 }
7742 optarg = argv[optind++];
7743 } else {
7744 optarg = NULL;
7745 }
7746
7747 switch(popt->index) {
7748 case QEMU_OPTION_M:
7749 machine = find_machine(optarg);
7750 if (!machine) {
7751 QEMUMachine *m;
7752 printf("Supported machines are:\n");
7753 for(m = first_machine; m != NULL; m = m->next) {
7754 printf("%-10s %s%s\n",
7755 m->name, m->desc,
7756 m == first_machine ? " (default)" : "");
7757 }
7758 exit(*optarg != '?');
7759 }
7760 break;
7761 case QEMU_OPTION_cpu:
7762 /* hw initialization will check this */
7763 if (*optarg == '?') {
7764/* XXX: implement xxx_cpu_list for targets that still miss it */
7765#if defined(cpu_list)
7766 cpu_list(stdout, &fprintf);
7767#endif
7768 exit(0);
7769 } else {
7770 cpu_model = optarg;
7771 }
7772 break;
7773 case QEMU_OPTION_initrd:
7774 initrd_filename = optarg;
7775 break;
7776 case QEMU_OPTION_hda:
7777 case QEMU_OPTION_hdb:
7778 case QEMU_OPTION_hdc:
7779 case QEMU_OPTION_hdd:
7780 {
7781 int hd_index;
7782 hd_index = popt->index - QEMU_OPTION_hda;
7783 hd_filename[hd_index] = optarg;
7784 if (hd_index == cdrom_index)
7785 cdrom_index = -1;
7786 }
7787 break;
7788 case QEMU_OPTION_mtdblock:
7789 mtd_filename = optarg;
7790 break;
7791 case QEMU_OPTION_sd:
7792 sd_filename = optarg;
7793 break;
7794 case QEMU_OPTION_pflash:
7795 if (pflash_index >= MAX_PFLASH) {
7796 fprintf(stderr, "qemu: too many parallel flash images\n");
7797 exit(1);
7798 }
7799 pflash_filename[pflash_index++] = optarg;
7800 break;
7801 case QEMU_OPTION_snapshot:
7802 snapshot = 1;
7803 break;
7804 case QEMU_OPTION_hdachs:
7805 {
7806 const char *p;
7807 p = optarg;
7808 cyls = strtol(p, (char **)&p, 0);
7809 if (cyls < 1 || cyls > 16383)
7810 goto chs_fail;
7811 if (*p != ',')
7812 goto chs_fail;
7813 p++;
7814 heads = strtol(p, (char **)&p, 0);
7815 if (heads < 1 || heads > 16)
7816 goto chs_fail;
7817 if (*p != ',')
7818 goto chs_fail;
7819 p++;
7820 secs = strtol(p, (char **)&p, 0);
7821 if (secs < 1 || secs > 63)
7822 goto chs_fail;
7823 if (*p == ',') {
7824 p++;
7825 if (!strcmp(p, "none"))
7826 translation = BIOS_ATA_TRANSLATION_NONE;
7827 else if (!strcmp(p, "lba"))
7828 translation = BIOS_ATA_TRANSLATION_LBA;
7829 else if (!strcmp(p, "auto"))
7830 translation = BIOS_ATA_TRANSLATION_AUTO;
7831 else
7832 goto chs_fail;
7833 } else if (*p != '\0') {
7834 chs_fail:
7835 fprintf(stderr, "qemu: invalid physical CHS format\n");
7836 exit(1);
7837 }
7838 }
7839 break;
7840 case QEMU_OPTION_nographic:
7841 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7842 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7843 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7844 nographic = 1;
7845 break;
7846 case QEMU_OPTION_portrait:
7847 graphic_rotate = 1;
7848 break;
7849 case QEMU_OPTION_kernel:
7850 kernel_filename = optarg;
7851 break;
7852 case QEMU_OPTION_append:
7853 kernel_cmdline = optarg;
7854 break;
7855 case QEMU_OPTION_cdrom:
7856 if (cdrom_index >= 0) {
7857 hd_filename[cdrom_index] = optarg;
7858 }
7859 break;
7860 case QEMU_OPTION_boot:
7861 boot_devices = optarg;
7862 /* We just do some generic consistency checks */
7863 {
7864 /* Could easily be extended to 64 devices if needed */
7865 const unsigned char *p;
7866
7867 boot_devices_bitmap = 0;
7868 for (p = boot_devices; *p != '\0'; p++) {
7869 /* Allowed boot devices are:
7870 * a b : floppy disk drives
7871 * c ... f : IDE disk drives
7872 * g ... m : machine implementation dependant drives
7873 * n ... p : network devices
7874 * It's up to each machine implementation to check
7875 * if the given boot devices match the actual hardware
7876 * implementation and firmware features.
7877 */
7878 if (*p < 'a' || *p > 'q') {
7879 fprintf(stderr, "Invalid boot device '%c'\n", *p);
7880 exit(1);
7881 }
7882 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
7883 fprintf(stderr,
7884 "Boot device '%c' was given twice\n",*p);
7885 exit(1);
7886 }
7887 boot_devices_bitmap |= 1 << (*p - 'a');
7888 }
7889 }
7890 break;
7891 case QEMU_OPTION_fda:
7892 fd_filename[0] = optarg;
7893 break;
7894 case QEMU_OPTION_fdb:
7895 fd_filename[1] = optarg;
7896 break;
7897#ifdef TARGET_I386
7898 case QEMU_OPTION_no_fd_bootchk:
7899 fd_bootchk = 0;
7900 break;
7901#endif
7902 case QEMU_OPTION_no_code_copy:
7903 code_copy_enabled = 0;
7904 break;
7905 case QEMU_OPTION_net:
7906 if (nb_net_clients >= MAX_NET_CLIENTS) {
7907 fprintf(stderr, "qemu: too many network clients\n");
7908 exit(1);
7909 }
7910 pstrcpy(net_clients[nb_net_clients],
7911 sizeof(net_clients[0]),
7912 optarg);
7913 nb_net_clients++;
7914 break;
7915#ifdef CONFIG_SLIRP
7916 case QEMU_OPTION_tftp:
7917 tftp_prefix = optarg;
7918 break;
7919 case QEMU_OPTION_bootp:
7920 bootp_filename = optarg;
7921 break;
7922#ifndef _WIN32
7923 case QEMU_OPTION_smb:
7924 net_slirp_smb(optarg);
7925 break;
7926#endif
7927 case QEMU_OPTION_redir:
7928 net_slirp_redir(optarg);
7929 break;
7930#endif
7931#ifdef HAS_AUDIO
7932 case QEMU_OPTION_audio_help:
7933 AUD_help ();
7934 exit (0);
7935 break;
7936 case QEMU_OPTION_soundhw:
7937 select_soundhw (optarg);
7938 break;
7939#endif
7940 case QEMU_OPTION_h:
7941 help(0);
7942 break;
7943 case QEMU_OPTION_m:
7944 ram_size = atoi(optarg) * 1024 * 1024;
7945 if (ram_size <= 0)
7946 help(1);
7947 if (ram_size > PHYS_RAM_MAX_SIZE) {
7948 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7949 PHYS_RAM_MAX_SIZE / (1024 * 1024));
7950 exit(1);
7951 }
7952 break;
7953 case QEMU_OPTION_d:
7954 {
7955 int mask;
7956 CPULogItem *item;
7957
7958 mask = cpu_str_to_log_mask(optarg);
7959 if (!mask) {
7960 printf("Log items (comma separated):\n");
7961 for(item = cpu_log_items; item->mask != 0; item++) {
7962 printf("%-10s %s\n", item->name, item->help);
7963 }
7964 exit(1);
7965 }
7966 cpu_set_log(mask);
7967 }
7968 break;
7969#ifdef CONFIG_GDBSTUB
7970 case QEMU_OPTION_s:
7971 use_gdbstub = 1;
7972 break;
7973 case QEMU_OPTION_p:
7974 gdbstub_port = optarg;
7975 break;
7976#endif
7977 case QEMU_OPTION_L:
7978 bios_dir = optarg;
7979 break;
7980 case QEMU_OPTION_bios:
7981 bios_name = optarg;
7982 break;
7983 case QEMU_OPTION_S:
7984 autostart = 0;
7985 break;
7986 case QEMU_OPTION_k:
7987 keyboard_layout = optarg;
7988 break;
7989 case QEMU_OPTION_localtime:
7990 rtc_utc = 0;
7991 break;
7992 case QEMU_OPTION_cirrusvga:
7993 cirrus_vga_enabled = 1;
7994 vmsvga_enabled = 0;
7995 break;
7996 case QEMU_OPTION_vmsvga:
7997 cirrus_vga_enabled = 0;
7998 vmsvga_enabled = 1;
7999 break;
8000 case QEMU_OPTION_std_vga:
8001 cirrus_vga_enabled = 0;
8002 vmsvga_enabled = 0;
8003 break;
8004 case QEMU_OPTION_g:
8005 {
8006 const char *p;
8007 int w, h, depth;
8008 p = optarg;
8009 w = strtol(p, (char **)&p, 10);
8010 if (w <= 0) {
8011 graphic_error:
8012 fprintf(stderr, "qemu: invalid resolution or depth\n");
8013 exit(1);
8014 }
8015 if (*p != 'x')
8016 goto graphic_error;
8017 p++;
8018 h = strtol(p, (char **)&p, 10);
8019 if (h <= 0)
8020 goto graphic_error;
8021 if (*p == 'x') {
8022 p++;
8023 depth = strtol(p, (char **)&p, 10);
8024 if (depth != 8 && depth != 15 && depth != 16 &&
8025 depth != 24 && depth != 32)
8026 goto graphic_error;
8027 } else if (*p == '\0') {
8028 depth = graphic_depth;
8029 } else {
8030 goto graphic_error;
8031 }
8032
8033 graphic_width = w;
8034 graphic_height = h;
8035 graphic_depth = depth;
8036 }
8037 break;
8038 case QEMU_OPTION_echr:
8039 {
8040 char *r;
8041 term_escape_char = strtol(optarg, &r, 0);
8042 if (r == optarg)
8043 printf("Bad argument to echr\n");
8044 break;
8045 }
8046 case QEMU_OPTION_monitor:
8047 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
8048 break;
8049 case QEMU_OPTION_serial:
8050 if (serial_device_index >= MAX_SERIAL_PORTS) {
8051 fprintf(stderr, "qemu: too many serial ports\n");
8052 exit(1);
8053 }
8054 pstrcpy(serial_devices[serial_device_index],
8055 sizeof(serial_devices[0]), optarg);
8056 serial_device_index++;
8057 break;
8058 case QEMU_OPTION_parallel:
8059 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8060 fprintf(stderr, "qemu: too many parallel ports\n");
8061 exit(1);
8062 }
8063 pstrcpy(parallel_devices[parallel_device_index],
8064 sizeof(parallel_devices[0]), optarg);
8065 parallel_device_index++;
8066 break;
8067 case QEMU_OPTION_loadvm:
8068 loadvm = optarg;
8069 break;
8070 case QEMU_OPTION_full_screen:
8071 full_screen = 1;
8072 break;
8073#ifdef CONFIG_SDL
8074 case QEMU_OPTION_no_frame:
8075 no_frame = 1;
8076 break;
8077 case QEMU_OPTION_alt_grab:
8078 alt_grab = 1;
8079 break;
8080 case QEMU_OPTION_no_quit:
8081 no_quit = 1;
8082 break;
8083#endif
8084 case QEMU_OPTION_pidfile:
8085 pid_file = optarg;
8086 break;
8087#ifdef TARGET_I386
8088 case QEMU_OPTION_win2k_hack:
8089 win2k_install_hack = 1;
8090 break;
8091#endif
8092#ifdef USE_KQEMU
8093 case QEMU_OPTION_no_kqemu:
8094 kqemu_allowed = 0;
8095 break;
8096 case QEMU_OPTION_kernel_kqemu:
8097 kqemu_allowed = 2;
8098 break;
8099#endif
8100 case QEMU_OPTION_usb:
8101 usb_enabled = 1;
8102 break;
8103 case QEMU_OPTION_usbdevice:
8104 usb_enabled = 1;
8105 if (usb_devices_index >= MAX_USB_CMDLINE) {
8106 fprintf(stderr, "Too many USB devices\n");
8107 exit(1);
8108 }
8109 pstrcpy(usb_devices[usb_devices_index],
8110 sizeof(usb_devices[usb_devices_index]),
8111 optarg);
8112 usb_devices_index++;
8113 break;
8114 case QEMU_OPTION_smp:
8115 smp_cpus = atoi(optarg);
8116 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8117 fprintf(stderr, "Invalid number of CPUs\n");
8118 exit(1);
8119 }
8120 break;
8121 case QEMU_OPTION_vnc:
8122 vnc_display = optarg;
8123 break;
8124 case QEMU_OPTION_no_acpi:
8125 acpi_enabled = 0;
8126 break;
8127 case QEMU_OPTION_no_reboot:
8128 no_reboot = 1;
8129 break;
8130 case QEMU_OPTION_show_cursor:
8131 cursor_hide = 0;
8132 break;
8133 case QEMU_OPTION_daemonize:
8134 daemonize = 1;
8135 break;
8136 case QEMU_OPTION_option_rom:
8137 if (nb_option_roms >= MAX_OPTION_ROMS) {
8138 fprintf(stderr, "Too many option ROMs\n");
8139 exit(1);
8140 }
8141 option_rom[nb_option_roms] = optarg;
8142 nb_option_roms++;
8143 break;
8144 case QEMU_OPTION_semihosting:
8145 semihosting_enabled = 1;
8146 break;
8147 case QEMU_OPTION_name:
8148 qemu_name = optarg;
8149 break;
8150#ifdef TARGET_SPARC
8151 case QEMU_OPTION_prom_env:
8152 if (nb_prom_envs >= MAX_PROM_ENVS) {
8153 fprintf(stderr, "Too many prom variables\n");
8154 exit(1);
8155 }
8156 prom_envs[nb_prom_envs] = optarg;
8157 nb_prom_envs++;
8158 break;
8159#endif
8160#ifdef TARGET_ARM
8161 case QEMU_OPTION_old_param:
8162 old_param = 1;
8163#endif
8164 case QEMU_OPTION_clock:
8165 configure_alarms(optarg);
8166 break;
8167 case QEMU_OPTION_startdate:
8168 {
8169 struct tm tm;
8170 if (!strcmp(optarg, "now")) {
8171 rtc_start_date = -1;
8172 } else {
8173 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8174 &tm.tm_year,
8175 &tm.tm_mon,
8176 &tm.tm_mday,
8177 &tm.tm_hour,
8178 &tm.tm_min,
8179 &tm.tm_sec) == 6) {
8180 /* OK */
8181 } else if (sscanf(optarg, "%d-%d-%d",
8182 &tm.tm_year,
8183 &tm.tm_mon,
8184 &tm.tm_mday) == 3) {
8185 tm.tm_hour = 0;
8186 tm.tm_min = 0;
8187 tm.tm_sec = 0;
8188 } else {
8189 goto date_fail;
8190 }
8191 tm.tm_year -= 1900;
8192 tm.tm_mon--;
8193 rtc_start_date = mktimegm(&tm);
8194 if (rtc_start_date == -1) {
8195 date_fail:
8196 fprintf(stderr, "Invalid date format. Valid format are:\n"
8197 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8198 exit(1);
8199 }
8200 }
8201 }
8202 break;
8203 }
8204 }
8205 }
8206
8207#ifndef _WIN32
8208 if (daemonize && !nographic && vnc_display == NULL) {
8209 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8210 daemonize = 0;
8211 }
8212
8213 if (daemonize) {
8214 pid_t pid;
8215
8216 if (pipe(fds) == -1)
8217 exit(1);
8218
8219 pid = fork();
8220 if (pid > 0) {
8221 uint8_t status;
8222 ssize_t len;
8223
8224 close(fds[1]);
8225
8226 again:
8227 len = read(fds[0], &status, 1);
8228 if (len == -1 && (errno == EINTR))
8229 goto again;
8230
8231 if (len != 1)
8232 exit(1);
8233 else if (status == 1) {
8234 fprintf(stderr, "Could not acquire pidfile\n");
8235 exit(1);
8236 } else
8237 exit(0);
8238 } else if (pid < 0)
8239 exit(1);
8240
8241 setsid();
8242
8243 pid = fork();
8244 if (pid > 0)
8245 exit(0);
8246 else if (pid < 0)
8247 exit(1);
8248
8249 umask(027);
8250 chdir("/");
8251
8252 signal(SIGTSTP, SIG_IGN);
8253 signal(SIGTTOU, SIG_IGN);
8254 signal(SIGTTIN, SIG_IGN);
8255 }
8256#endif
8257
8258 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8259 if (daemonize) {
8260 uint8_t status = 1;
8261 write(fds[1], &status, 1);
8262 } else
8263 fprintf(stderr, "Could not acquire pid file\n");
8264 exit(1);
8265 }
8266
8267#ifdef USE_KQEMU
8268 if (smp_cpus > 1)
8269 kqemu_allowed = 0;
8270#endif
8271 linux_boot = (kernel_filename != NULL);
8272 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
8273
8274 /* XXX: this should not be: some embedded targets just have flash */
8275 if (!linux_boot && net_boot == 0 &&
8276 hd_filename[0] == NULL &&
8277 (cdrom_index >= 0 && hd_filename[cdrom_index] == NULL) &&
8278 fd_filename[0] == NULL &&
8279 pflash_filename[0] == NULL)
8280 help(1);
8281
8282 /* boot to floppy or the default cd if no hard disk defined yet */
8283 if (!boot_devices[0]) {
8284 if (hd_filename[0] != NULL)
8285 boot_devices = "c";
8286 else if (fd_filename[0] != NULL)
8287 boot_devices = "a";
8288 else
8289 boot_devices = "d";
8290 }
8291 setvbuf(stdout, NULL, _IOLBF, 0);
8292
8293 init_timers();
8294 init_timer_alarm();
8295 qemu_aio_init();
8296
8297#ifdef _WIN32
8298 socket_init();
8299#endif
8300
8301 /* init network clients */
8302 if (nb_net_clients == 0) {
8303 /* if no clients, we use a default config */
8304 pstrcpy(net_clients[0], sizeof(net_clients[0]),
8305 "nic");
8306 pstrcpy(net_clients[1], sizeof(net_clients[0]),
8307 "user");
8308 nb_net_clients = 2;
8309 }
8310
8311 for(i = 0;i < nb_net_clients; i++) {
8312 if (net_client_init(net_clients[i]) < 0)
8313 exit(1);
8314 }
8315 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8316 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8317 continue;
8318 if (vlan->nb_guest_devs == 0) {
8319 fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8320 exit(1);
8321 }
8322 if (vlan->nb_host_devs == 0)
8323 fprintf(stderr,
8324 "Warning: vlan %d is not connected to host network\n",
8325 vlan->id);
8326 }
8327
8328#ifdef TARGET_I386
8329 /* XXX: this should be moved in the PC machine instanciation code */
8330 if (net_boot != 0) {
8331 int netroms = 0;
8332 for (i = 0; i < nb_nics && i < 4; i++) {
8333 const char *model = nd_table[i].model;
8334 char buf[1024];
8335 if (net_boot & (1 << i)) {
8336 if (model == NULL)
8337 model = "ne2k_pci";
8338 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8339 if (get_image_size(buf) > 0) {
8340 if (nb_option_roms >= MAX_OPTION_ROMS) {
8341 fprintf(stderr, "Too many option ROMs\n");
8342 exit(1);
8343 }
8344 option_rom[nb_option_roms] = strdup(buf);
8345 nb_option_roms++;
8346 netroms++;
8347 }
8348 }
8349 }
8350 if (netroms == 0) {
8351 fprintf(stderr, "No valid PXE rom found for network device\n");
8352 exit(1);
8353 }
8354 }
8355#endif
8356
8357 /* init the memory */
8358 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8359
8360 phys_ram_base = qemu_vmalloc(phys_ram_size);
8361 if (!phys_ram_base) {
8362 fprintf(stderr, "Could not allocate physical memory\n");
8363 exit(1);
8364 }
8365
8366 /* we always create the cdrom drive, even if no disk is there */
8367 bdrv_init();
8368 if (cdrom_index >= 0) {
8369 bs_table[cdrom_index] = bdrv_new("cdrom");
8370 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
8371 }
8372
8373 /* open the virtual block devices */
8374 for(i = 0; i < MAX_DISKS; i++) {
8375 if (hd_filename[i]) {
8376 if (!bs_table[i]) {
8377 char buf[64];
8378 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
8379 bs_table[i] = bdrv_new(buf);
8380 }
8381 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8382 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
8383 hd_filename[i]);
8384 exit(1);
8385 }
8386 if (i == 0 && cyls != 0) {
8387 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
8388 bdrv_set_translation_hint(bs_table[i], translation);
8389 }
8390 }
8391 }
8392
8393 /* we always create at least one floppy disk */
8394 fd_table[0] = bdrv_new("fda");
8395 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
8396
8397 for(i = 0; i < MAX_FD; i++) {
8398 if (fd_filename[i]) {
8399 if (!fd_table[i]) {
8400 char buf[64];
8401 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
8402 fd_table[i] = bdrv_new(buf);
8403 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
8404 }
8405 if (fd_filename[i][0] != '\0') {
8406 if (bdrv_open(fd_table[i], fd_filename[i],
8407 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8408 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
8409 fd_filename[i]);
8410 exit(1);
8411 }
8412 }
8413 }
8414 }
8415
8416 /* Open the virtual parallel flash block devices */
8417 for(i = 0; i < MAX_PFLASH; i++) {
8418 if (pflash_filename[i]) {
8419 if (!pflash_table[i]) {
8420 char buf[64];
8421 snprintf(buf, sizeof(buf), "fl%c", i + 'a');
8422 pflash_table[i] = bdrv_new(buf);
8423 }
8424 if (bdrv_open(pflash_table[i], pflash_filename[i],
8425 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8426 fprintf(stderr, "qemu: could not open flash image '%s'\n",
8427 pflash_filename[i]);
8428 exit(1);
8429 }
8430 }
8431 }
8432
8433 sd_bdrv = bdrv_new ("sd");
8434 /* FIXME: This isn't really a floppy, but it's a reasonable
8435 approximation. */
8436 bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
8437 if (sd_filename) {
8438 if (bdrv_open(sd_bdrv, sd_filename,
8439 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8440 fprintf(stderr, "qemu: could not open SD card image %s\n",
8441 sd_filename);
8442 } else
8443 qemu_key_check(sd_bdrv, sd_filename);
8444 }
8445
8446 if (mtd_filename) {
8447 mtd_bdrv = bdrv_new ("mtd");
8448 if (bdrv_open(mtd_bdrv, mtd_filename,
8449 snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
8450 qemu_key_check(mtd_bdrv, mtd_filename)) {
8451 fprintf(stderr, "qemu: could not open Flash image %s\n",
8452 mtd_filename);
8453 bdrv_delete(mtd_bdrv);
8454 mtd_bdrv = 0;
8455 }
8456 }
8457
8458 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8459 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8460
8461 init_ioports();
8462
8463 /* terminal init */
8464 memset(&display_state, 0, sizeof(display_state));
8465 if (nographic) {
8466 /* nearly nothing to do */
8467 dumb_display_init(ds);
8468 } else if (vnc_display != NULL) {
8469 vnc_display_init(ds);
8470 if (vnc_display_open(ds, vnc_display) < 0)
8471 exit(1);
8472 } else {
8473#if defined(CONFIG_SDL)
8474 sdl_display_init(ds, full_screen, no_frame);
8475#elif defined(CONFIG_COCOA)
8476 cocoa_display_init(ds, full_screen);
8477#else
8478 dumb_display_init(ds);
8479#endif
8480 }
8481
8482 /* Maintain compatibility with multiple stdio monitors */
8483 if (!strcmp(monitor_device,"stdio")) {
8484 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8485 if (!strcmp(serial_devices[i],"mon:stdio")) {
8486 monitor_device[0] = '\0';
8487 break;
8488 } else if (!strcmp(serial_devices[i],"stdio")) {
8489 monitor_device[0] = '\0';
8490 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
8491 break;
8492 }
8493 }
8494 }
8495 if (monitor_device[0] != '\0') {
8496 monitor_hd = qemu_chr_open(monitor_device);
8497 if (!monitor_hd) {
8498 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8499 exit(1);
8500 }
8501 monitor_init(monitor_hd, !nographic);
8502 }
8503
8504 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8505 const char *devname = serial_devices[i];
8506 if (devname[0] != '\0' && strcmp(devname, "none")) {
8507 serial_hds[i] = qemu_chr_open(devname);
8508 if (!serial_hds[i]) {
8509 fprintf(stderr, "qemu: could not open serial device '%s'\n",
8510 devname);
8511 exit(1);
8512 }
8513 if (strstart(devname, "vc", 0))
8514 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8515 }
8516 }
8517
8518 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8519 const char *devname = parallel_devices[i];
8520 if (devname[0] != '\0' && strcmp(devname, "none")) {
8521 parallel_hds[i] = qemu_chr_open(devname);
8522 if (!parallel_hds[i]) {
8523 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
8524 devname);
8525 exit(1);
8526 }
8527 if (strstart(devname, "vc", 0))
8528 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8529 }
8530 }
8531
8532 machine->init(ram_size, vga_ram_size, boot_devices, ds,
8533 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8534
8535 /* init USB devices */
8536 if (usb_enabled) {
8537 for(i = 0; i < usb_devices_index; i++) {
8538 if (usb_device_add(usb_devices[i]) < 0) {
8539 fprintf(stderr, "Warning: could not add USB device %s\n",
8540 usb_devices[i]);
8541 }
8542 }
8543 }
8544
8545 if (display_state.dpy_refresh) {
8546 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8547 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8548 }
8549
8550#ifdef CONFIG_GDBSTUB
8551 if (use_gdbstub) {
8552 /* XXX: use standard host:port notation and modify options
8553 accordingly. */
8554 if (gdbserver_start(gdbstub_port) < 0) {
8555 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8556 gdbstub_port);
8557 exit(1);
8558 }
8559 }
8560#endif
8561
8562 if (loadvm)
8563 do_loadvm(loadvm);
8564
8565 {
8566 /* XXX: simplify init */
8567 read_passwords();
8568 if (autostart) {
8569 vm_start();
8570 }
8571 }
8572
8573 if (daemonize) {
8574 uint8_t status = 0;
8575 ssize_t len;
8576 int fd;
8577
8578 again1:
8579 len = write(fds[1], &status, 1);
8580 if (len == -1 && (errno == EINTR))
8581 goto again1;
8582
8583 if (len != 1)
8584 exit(1);
8585
8586 TFR(fd = open("/dev/null", O_RDWR));
8587 if (fd == -1)
8588 exit(1);
8589
8590 dup2(fd, 0);
8591 dup2(fd, 1);
8592 dup2(fd, 2);
8593
8594 close(fd);
8595 }
8596
8597 main_loop();
8598 quit_timers();
8599
8600#if !defined(_WIN32)
8601 /* close network clients */
8602 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8603 VLANClientState *vc;
8604
8605 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
8606 if (vc->fd_read == tap_receive) {
8607 char ifname[64];
8608 TAPState *s = vc->opaque;
8609
8610 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
8611 s->down_script[0])
8612 launch_script(s->down_script, ifname, s->fd);
8613 }
8614 }
8615 }
8616#endif
8617 return 0;
8618}