]> git.proxmox.com Git - mirror_edk2.git/blob - IntelFrameworkModulePkg/Csm/LegacyBiosDxe/LegacyBootSupport.c
Remove the code added originally to restore 8254 timer to 54ms.
[mirror_edk2.git] / IntelFrameworkModulePkg / Csm / LegacyBiosDxe / LegacyBootSupport.c
1 /** @file
2
3 Copyright (c) 2006 - 2011, Intel Corporation. All rights reserved.<BR>
4
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions
7 of the BSD License which accompanies this distribution. The
8 full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #include "LegacyBiosInterface.h"
17 #include <IndustryStandard/Pci.h>
18
19 #define BOOT_LEGACY_OS 0
20 #define BOOT_EFI_OS 1
21 #define BOOT_UNCONVENTIONAL_DEVICE 2
22
23 UINT32 mLoadOptionsSize = 0;
24 UINTN mBootMode = BOOT_LEGACY_OS;
25 VOID *mLoadOptions = NULL;
26 BBS_BBS_DEVICE_PATH *mBbsDevicePathPtr = NULL;
27 BBS_BBS_DEVICE_PATH mBbsDevicePathNode;
28 UDC_ATTRIBUTES mAttributes = { 0, 0, 0, 0 };
29 UINTN mBbsEntry = 0;
30 VOID *mBeerData = NULL;
31 VOID *mServiceAreaData = NULL;
32 UINT64 mLowWater = 0xffffffffffffffffULL;
33
34 extern BBS_TABLE *mBbsTable;
35
36 /**
37 Print the BBS Table.
38
39 @param BbsTable The BBS table.
40
41
42 **/
43 VOID
44 PrintBbsTable (
45 IN BBS_TABLE *BbsTable
46 )
47 {
48 UINT16 Index;
49 UINT16 SubIndex;
50 CHAR8 *String;
51
52 DEBUG ((EFI_D_INFO, "\n"));
53 DEBUG ((EFI_D_INFO, " NO Prio bb/dd/ff cl/sc Type Stat segm:offs mfgs:mfgo dess:deso\n"));
54 DEBUG ((EFI_D_INFO, "=================================================================\n"));
55 for (Index = 0; Index < MAX_BBS_ENTRIES; Index++) {
56 //
57 // Filter
58 //
59 if (BbsTable[Index].BootPriority == BBS_IGNORE_ENTRY) {
60 continue;
61 }
62
63 DEBUG ((
64 EFI_D_INFO,
65 " %02x: %04x %02x/%02x/%02x %02x/%02x %04x %04x",
66 (UINTN) Index,
67 (UINTN) BbsTable[Index].BootPriority,
68 (UINTN) BbsTable[Index].Bus,
69 (UINTN) BbsTable[Index].Device,
70 (UINTN) BbsTable[Index].Function,
71 (UINTN) BbsTable[Index].Class,
72 (UINTN) BbsTable[Index].SubClass,
73 (UINTN) BbsTable[Index].DeviceType,
74 (UINTN) * (UINT16 *) &BbsTable[Index].StatusFlags
75 ));
76 DEBUG ((
77 EFI_D_INFO,
78 " %04x:%04x %04x:%04x %04x:%04x",
79 (UINTN) BbsTable[Index].BootHandlerSegment,
80 (UINTN) BbsTable[Index].BootHandlerOffset,
81 (UINTN) BbsTable[Index].MfgStringSegment,
82 (UINTN) BbsTable[Index].MfgStringOffset,
83 (UINTN) BbsTable[Index].DescStringSegment,
84 (UINTN) BbsTable[Index].DescStringOffset
85 ));
86
87 //
88 // Print DescString
89 //
90 String = (CHAR8 *)(UINTN)((BbsTable[Index].DescStringSegment << 4) + BbsTable[Index].DescStringOffset);
91 if (String != NULL) {
92 DEBUG ((EFI_D_INFO," ("));
93 for (SubIndex = 0; String[SubIndex] != 0; SubIndex++) {
94 DEBUG ((EFI_D_INFO, "%c", String[SubIndex]));
95 }
96 DEBUG ((EFI_D_INFO,")"));
97 }
98 DEBUG ((EFI_D_INFO,"\n"));
99 }
100
101 DEBUG ((EFI_D_INFO, "\n"));
102
103 return ;
104 }
105
106 /**
107 Print the BBS Table.
108
109 @param HddInfo The HddInfo table.
110
111
112 **/
113 VOID
114 PrintHddInfo (
115 IN HDD_INFO *HddInfo
116 )
117 {
118 UINTN Index;
119
120 DEBUG ((EFI_D_INFO, "\n"));
121 for (Index = 0; Index < MAX_IDE_CONTROLLER; Index++) {
122 DEBUG ((EFI_D_INFO, "Index - %04x\n", Index));
123 DEBUG ((EFI_D_INFO, " Status - %04x\n", (UINTN)HddInfo[Index].Status));
124 DEBUG ((EFI_D_INFO, " B/D/F - %02x/%02x/%02x\n", (UINTN)HddInfo[Index].Bus, (UINTN)HddInfo[Index].Device, (UINTN)HddInfo[Index].Function));
125 DEBUG ((EFI_D_INFO, " Command - %04x\n", HddInfo[Index].CommandBaseAddress));
126 DEBUG ((EFI_D_INFO, " Control - %04x\n", HddInfo[Index].ControlBaseAddress));
127 DEBUG ((EFI_D_INFO, " BusMaster - %04x\n", HddInfo[Index].BusMasterAddress));
128 DEBUG ((EFI_D_INFO, " HddIrq - %02x\n", HddInfo[Index].HddIrq));
129 DEBUG ((EFI_D_INFO, " IdentifyDrive[0].Raw[0] - %x\n", HddInfo[Index].IdentifyDrive[0].Raw[0]));
130 DEBUG ((EFI_D_INFO, " IdentifyDrive[1].Raw[0] - %x\n", HddInfo[Index].IdentifyDrive[1].Raw[0]));
131 }
132
133 DEBUG ((EFI_D_INFO, "\n"));
134
135 return ;
136 }
137
138 /**
139 Print the PCI Interrupt Line and Interrupt Pin registers.
140 **/
141 VOID
142 PrintPciInterruptRegister (
143 VOID
144 )
145 {
146 EFI_STATUS Status;
147 UINTN Index;
148 EFI_HANDLE *Handles;
149 UINTN HandleNum;
150 EFI_PCI_IO_PROTOCOL *PciIo;
151 UINT8 Interrupt[2];
152 UINTN Segment;
153 UINTN Bus;
154 UINTN Device;
155 UINTN Function;
156
157 gBS->LocateHandleBuffer (
158 ByProtocol,
159 &gEfiPciIoProtocolGuid,
160 NULL,
161 &HandleNum,
162 &Handles
163 );
164
165 Bus = 0;
166 Device = 0;
167 Function = 0;
168
169 DEBUG ((EFI_D_INFO, "\n"));
170 DEBUG ((EFI_D_INFO, " bb/dd/ff interrupt line interrupt pin\n"));
171 DEBUG ((EFI_D_INFO, "======================================\n"));
172 for (Index = 0; Index < HandleNum; Index++) {
173 Status = gBS->HandleProtocol (Handles[Index], &gEfiPciIoProtocolGuid, (VOID **) &PciIo);
174 if (!EFI_ERROR (Status)) {
175 Status = PciIo->Pci.Read (
176 PciIo,
177 EfiPciIoWidthUint8,
178 PCI_INT_LINE_OFFSET,
179 2,
180 Interrupt
181 );
182 }
183 if (!EFI_ERROR (Status)) {
184 Status = PciIo->GetLocation (
185 PciIo,
186 &Segment,
187 &Bus,
188 &Device,
189 &Function
190 );
191 }
192 if (!EFI_ERROR (Status)) {
193 DEBUG ((EFI_D_INFO, " %02x/%02x/%02x 0x%02x 0x%02x\n",
194 Bus, Device, Function, Interrupt[0], Interrupt[1]));
195 }
196 }
197 DEBUG ((EFI_D_INFO, "\n"));
198
199 if (Handles != NULL) {
200 FreePool (Handles);
201 }
202 }
203
204 /**
205 Identify drive data must be updated to actual parameters before boot.
206
207 @param IdentifyDriveData ATA Identify Data
208
209 **/
210 VOID
211 UpdateIdentifyDriveData (
212 IN UINT8 *IdentifyDriveData
213 );
214
215 /**
216 Update SIO data.
217
218 @param Private Legacy BIOS Instance data
219
220 @retval EFI_SUCCESS Removable media not present
221
222 **/
223 EFI_STATUS
224 UpdateSioData (
225 IN LEGACY_BIOS_INSTANCE *Private
226 )
227 {
228 EFI_STATUS Status;
229 UINTN Index;
230 UINTN Index1;
231 UINT8 LegacyInterrupts[16];
232 EFI_LEGACY_IRQ_ROUTING_ENTRY *RoutingTable;
233 UINTN RoutingTableEntries;
234 EFI_LEGACY_IRQ_PRIORITY_TABLE_ENTRY *IrqPriorityTable;
235 UINTN NumberPriorityEntries;
236 EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
237 UINT8 HddIrq;
238 UINT16 LegacyInt;
239 UINT16 LegMask;
240 UINT32 Register;
241 UINTN HandleCount;
242 EFI_HANDLE *HandleBuffer;
243 EFI_ISA_IO_PROTOCOL *IsaIo;
244
245 LegacyInt = 0;
246 HandleBuffer = NULL;
247
248 EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
249 LegacyBiosBuildSioData (Private);
250 SetMem (LegacyInterrupts, sizeof (LegacyInterrupts), 0);
251
252 //
253 // Create list of legacy interrupts.
254 //
255 for (Index = 0; Index < 4; Index++) {
256 LegacyInterrupts[Index] = EfiToLegacy16BootTable->SioData.Serial[Index].Irq;
257 }
258
259 for (Index = 4; Index < 7; Index++) {
260 LegacyInterrupts[Index] = EfiToLegacy16BootTable->SioData.Parallel[Index - 4].Irq;
261 }
262
263 LegacyInterrupts[7] = EfiToLegacy16BootTable->SioData.Floppy.Irq;
264
265 //
266 // Get Legacy Hdd IRQs. If native mode treat as PCI
267 //
268 for (Index = 0; Index < 2; Index++) {
269 HddIrq = EfiToLegacy16BootTable->HddInfo[Index].HddIrq;
270 if ((HddIrq != 0) && ((HddIrq == 15) || (HddIrq == 14))) {
271 LegacyInterrupts[Index + 8] = HddIrq;
272 }
273 }
274
275 Private->LegacyBiosPlatform->GetRoutingTable (
276 Private->LegacyBiosPlatform,
277 (VOID *) &RoutingTable,
278 &RoutingTableEntries,
279 NULL,
280 NULL,
281 (VOID **) &IrqPriorityTable,
282 &NumberPriorityEntries
283 );
284 //
285 // Remove legacy interrupts from the list of PCI interrupts available.
286 //
287 for (Index = 0; Index <= 0x0b; Index++) {
288 for (Index1 = 0; Index1 <= NumberPriorityEntries; Index1++) {
289 if (LegacyInterrupts[Index] != 0) {
290 LegacyInt = (UINT16) (LegacyInt | (1 << LegacyInterrupts[Index]));
291 if (LegacyInterrupts[Index] == IrqPriorityTable[Index1].Irq) {
292 IrqPriorityTable[Index1].Used = LEGACY_USED;
293 }
294 }
295 }
296 }
297
298 Private->Legacy8259->GetMask (
299 Private->Legacy8259,
300 &LegMask,
301 NULL,
302 NULL,
303 NULL
304 );
305
306 //
307 // Set SIO interrupts and disable mouse. Let mouse driver
308 // re-enable it.
309 //
310 LegMask = (UINT16) ((LegMask &~LegacyInt) | 0x1000);
311 Private->Legacy8259->SetMask (
312 Private->Legacy8259,
313 &LegMask,
314 NULL,
315 NULL,
316 NULL
317 );
318
319 //
320 // Disable mouse in keyboard controller
321 //
322 Register = 0xA7;
323 Status = gBS->LocateHandleBuffer (
324 ByProtocol,
325 &gEfiIsaIoProtocolGuid,
326 NULL,
327 &HandleCount,
328 &HandleBuffer
329 );
330 if (EFI_ERROR (Status)) {
331 return Status;
332 }
333
334 for (Index = 0; Index < HandleCount; Index++) {
335 Status = gBS->HandleProtocol (
336 HandleBuffer[Index],
337 &gEfiIsaIoProtocolGuid,
338 (VOID **) &IsaIo
339 );
340 ASSERT_EFI_ERROR (Status);
341 IsaIo->Io.Write (IsaIo, EfiIsaIoWidthUint8, 0x64, 1, &Register);
342
343 }
344
345 if (HandleBuffer != NULL) {
346 FreePool (HandleBuffer);
347 }
348
349 return EFI_SUCCESS;
350
351 }
352
353 /**
354 Identify drive data must be updated to actual parameters before boot.
355 This requires updating the checksum, if it exists.
356
357 @param IdentifyDriveData ATA Identify Data
358 @param Checksum checksum of the ATA Identify Data
359
360 @retval EFI_SUCCESS checksum calculated
361 @retval EFI_SECURITY_VIOLATION IdentifyData invalid
362
363 **/
364 EFI_STATUS
365 CalculateIdentifyDriveChecksum (
366 IN UINT8 *IdentifyDriveData,
367 OUT UINT8 *Checksum
368 )
369 {
370 UINTN Index;
371 UINT8 LocalChecksum;
372 LocalChecksum = 0;
373 *Checksum = 0;
374 if (IdentifyDriveData[510] != 0xA5) {
375 return EFI_SECURITY_VIOLATION;
376 }
377
378 for (Index = 0; Index < 512; Index++) {
379 LocalChecksum = (UINT8) (LocalChecksum + IdentifyDriveData[Index]);
380 }
381
382 *Checksum = LocalChecksum;
383 return EFI_SUCCESS;
384 }
385
386
387 /**
388 Identify drive data must be updated to actual parameters before boot.
389
390 @param IdentifyDriveData ATA Identify Data
391
392
393 **/
394 VOID
395 UpdateIdentifyDriveData (
396 IN UINT8 *IdentifyDriveData
397 )
398 {
399 UINT16 NumberCylinders;
400 UINT16 NumberHeads;
401 UINT16 NumberSectorsTrack;
402 UINT32 CapacityInSectors;
403 UINT8 OriginalChecksum;
404 UINT8 FinalChecksum;
405 EFI_STATUS Status;
406 ATAPI_IDENTIFY *ReadInfo;
407
408 //
409 // Status indicates if Integrity byte is correct. Checksum should be
410 // 0 if valid.
411 //
412 ReadInfo = (ATAPI_IDENTIFY *) IdentifyDriveData;
413 Status = CalculateIdentifyDriveChecksum (IdentifyDriveData, &OriginalChecksum);
414 if (OriginalChecksum != 0) {
415 Status = EFI_SECURITY_VIOLATION;
416 }
417 //
418 // If NumberCylinders = 0 then do data(Controller present but don drive attached).
419 //
420 NumberCylinders = ReadInfo->Raw[1];
421 if (NumberCylinders != 0) {
422 ReadInfo->Raw[54] = NumberCylinders;
423
424 NumberHeads = ReadInfo->Raw[3];
425 ReadInfo->Raw[55] = NumberHeads;
426
427 NumberSectorsTrack = ReadInfo->Raw[6];
428 ReadInfo->Raw[56] = NumberSectorsTrack;
429
430 //
431 // Copy Multisector info and set valid bit.
432 //
433 ReadInfo->Raw[59] = (UINT16) (ReadInfo->Raw[47] + 0x100);
434 CapacityInSectors = (UINT32) ((UINT32) (NumberCylinders) * (UINT32) (NumberHeads) * (UINT32) (NumberSectorsTrack));
435 ReadInfo->Raw[57] = (UINT16) (CapacityInSectors >> 16);
436 ReadInfo->Raw[58] = (UINT16) (CapacityInSectors & 0xffff);
437 if (Status == EFI_SUCCESS) {
438 //
439 // Forece checksum byte to 0 and get new checksum.
440 //
441 ReadInfo->Raw[255] &= 0xff;
442 CalculateIdentifyDriveChecksum (IdentifyDriveData, &FinalChecksum);
443
444 //
445 // Force new checksum such that sum is 0.
446 //
447 FinalChecksum = (UINT8) ((UINT8)0 - FinalChecksum);
448 ReadInfo->Raw[255] = (UINT16) (ReadInfo->Raw[255] | (FinalChecksum << 8));
449 }
450 }
451 }
452
453 /**
454 Identify drive data must be updated to actual parameters before boot.
455 Do for all drives.
456
457 @param Private Legacy BIOS Instance data
458
459
460 **/
461 VOID
462 UpdateAllIdentifyDriveData (
463 IN LEGACY_BIOS_INSTANCE *Private
464 )
465 {
466 UINTN Index;
467 HDD_INFO *HddInfo;
468
469 HddInfo = &Private->IntThunk->EfiToLegacy16BootTable.HddInfo[0];
470
471 for (Index = 0; Index < MAX_IDE_CONTROLLER; Index++) {
472 //
473 // Each controller can have 2 devices. Update for each device
474 //
475 if ((HddInfo[Index].Status & HDD_MASTER_IDE) != 0) {
476 UpdateIdentifyDriveData ((UINT8 *) (&HddInfo[Index].IdentifyDrive[0].Raw[0]));
477 }
478
479 if ((HddInfo[Index].Status & HDD_SLAVE_IDE) != 0) {
480 UpdateIdentifyDriveData ((UINT8 *) (&HddInfo[Index].IdentifyDrive[1].Raw[0]));
481 }
482 }
483 }
484
485 /**
486 Enable ide controller. This gets disabled when LegacyBoot.c is about
487 to run the Option ROMs.
488
489 @param Private Legacy BIOS Instance data
490
491
492 **/
493 VOID
494 EnableIdeController (
495 IN LEGACY_BIOS_INSTANCE *Private
496 )
497 {
498 EFI_PCI_IO_PROTOCOL *PciIo;
499 EFI_STATUS Status;
500 EFI_HANDLE IdeController;
501 UINT8 ByteBuffer;
502 UINTN HandleCount;
503 EFI_HANDLE *HandleBuffer;
504
505 Status = Private->LegacyBiosPlatform->GetPlatformHandle (
506 Private->LegacyBiosPlatform,
507 EfiGetPlatformIdeHandle,
508 0,
509 &HandleBuffer,
510 &HandleCount,
511 NULL
512 );
513 if (!EFI_ERROR (Status)) {
514 IdeController = HandleBuffer[0];
515 Status = gBS->HandleProtocol (
516 IdeController,
517 &gEfiPciIoProtocolGuid,
518 (VOID **) &PciIo
519 );
520 ByteBuffer = 0x1f;
521 if (!EFI_ERROR (Status)) {
522 PciIo->Pci.Write (PciIo, EfiPciIoWidthUint8, 0x04, 1, &ByteBuffer);
523 }
524 }
525 }
526
527
528 /**
529 Enable ide controller. This gets disabled when LegacyBoot.c is about
530 to run the Option ROMs.
531
532 @param Private Legacy BIOS Instance data
533
534
535 **/
536 VOID
537 EnableAllControllers (
538 IN LEGACY_BIOS_INSTANCE *Private
539 )
540 {
541 UINTN HandleCount;
542 EFI_HANDLE *HandleBuffer;
543 UINTN Index;
544 EFI_PCI_IO_PROTOCOL *PciIo;
545 PCI_TYPE01 PciConfigHeader;
546 EFI_STATUS Status;
547
548 //
549 //
550 //
551 EnableIdeController (Private);
552
553 //
554 // Assumption is table is built from low bus to high bus numbers.
555 //
556 Status = gBS->LocateHandleBuffer (
557 ByProtocol,
558 &gEfiPciIoProtocolGuid,
559 NULL,
560 &HandleCount,
561 &HandleBuffer
562 );
563 ASSERT_EFI_ERROR (Status);
564
565 for (Index = 0; Index < HandleCount; Index++) {
566 Status = gBS->HandleProtocol (
567 HandleBuffer[Index],
568 &gEfiPciIoProtocolGuid,
569 (VOID **) &PciIo
570 );
571 ASSERT_EFI_ERROR (Status);
572
573 PciIo->Pci.Read (
574 PciIo,
575 EfiPciIoWidthUint32,
576 0,
577 sizeof (PciConfigHeader) / sizeof (UINT32),
578 &PciConfigHeader
579 );
580
581 //
582 // We do not enable PPB here. This is for HotPlug Consideration.
583 // The Platform HotPlug Driver is responsible for Padding enough hot plug
584 // resources. It is also responsible for enable this bridge. If it
585 // does not pad it. It will cause some early Windows fail to installation.
586 // If the platform driver does not pad resource for PPB, PPB should be in
587 // un-enabled state to let Windows know that this PPB is not configured by
588 // BIOS. So Windows will allocate default resource for PPB.
589 //
590 // The reason for why we enable the command register is:
591 // The CSM will use the IO bar to detect some IRQ status, if the command
592 // is disabled, the IO resource will be out of scope.
593 // For example:
594 // We installed a legacy IRQ handle for a PCI IDE controller. When IRQ
595 // comes up, the handle will check the IO space to identify is the
596 // controller generated the IRQ source.
597 // If the IO command is not enabled, the IRQ handler will has wrong
598 // information. It will cause IRQ storm when the correctly IRQ handler fails
599 // to run.
600 //
601 if (!(IS_PCI_VGA (&PciConfigHeader) ||
602 IS_PCI_OLD_VGA (&PciConfigHeader) ||
603 IS_PCI_IDE (&PciConfigHeader) ||
604 IS_PCI_P2P (&PciConfigHeader) ||
605 IS_PCI_P2P_SUB (&PciConfigHeader) ||
606 IS_PCI_LPC (&PciConfigHeader) )) {
607
608 PciConfigHeader.Hdr.Command |= 0x1f;
609
610 PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, 4, 1, &PciConfigHeader.Hdr.Command);
611 }
612 }
613 }
614
615 /**
616 The following routines are identical in operation, so combine
617 for code compaction:
618 EfiGetPlatformBinaryGetMpTable
619 EfiGetPlatformBinaryGetOemIntData
620 EfiGetPlatformBinaryGetOem32Data
621 EfiGetPlatformBinaryGetOem16Data
622
623 @param This Protocol instance pointer.
624 @param Id Table/Data identifier
625
626 @retval EFI_SUCCESS Success
627 @retval EFI_INVALID_PARAMETER Invalid ID
628 @retval EFI_OUT_OF_RESOURCES no resource to get data or table
629
630 **/
631 EFI_STATUS
632 LegacyGetDataOrTable (
633 IN EFI_LEGACY_BIOS_PROTOCOL *This,
634 IN EFI_GET_PLATFORM_INFO_MODE Id
635 )
636 {
637 VOID *Table;
638 UINT32 TablePtr;
639 UINTN TableSize;
640 UINTN Alignment;
641 UINTN Location;
642 EFI_STATUS Status;
643 EFI_LEGACY_BIOS_PLATFORM_PROTOCOL *LegacyBiosPlatform;
644 EFI_COMPATIBILITY16_TABLE *Legacy16Table;
645 EFI_IA32_REGISTER_SET Regs;
646 LEGACY_BIOS_INSTANCE *Private;
647
648 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
649
650 LegacyBiosPlatform = Private->LegacyBiosPlatform;
651 Legacy16Table = Private->Legacy16Table;
652
653 //
654 // Phase 1 - get an address allocated in 16-bit code
655 //
656 while (TRUE) {
657 switch (Id) {
658 case EfiGetPlatformBinaryMpTable:
659 case EfiGetPlatformBinaryOemIntData:
660 case EfiGetPlatformBinaryOem32Data:
661 case EfiGetPlatformBinaryOem16Data:
662 {
663 Status = LegacyBiosPlatform->GetPlatformInfo (
664 LegacyBiosPlatform,
665 Id,
666 (VOID *) &Table,
667 &TableSize,
668 &Location,
669 &Alignment,
670 0,
671 0
672 );
673 DEBUG ((EFI_D_INFO, "LegacyGetDataOrTable - ID: %x, %r\n", (UINTN)Id, Status));
674 DEBUG ((EFI_D_INFO, " Table - %x, Size - %x, Location - %x, Alignment - %x\n", (UINTN)Table, (UINTN)TableSize, (UINTN)Location, (UINTN)Alignment));
675 break;
676 }
677
678 default:
679 {
680 return EFI_INVALID_PARAMETER;
681 }
682 }
683
684 if (EFI_ERROR (Status)) {
685 return Status;
686 }
687
688 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
689 Regs.X.AX = Legacy16GetTableAddress;
690 Regs.X.CX = (UINT16) TableSize;
691 Regs.X.BX = (UINT16) Location;
692 Regs.X.DX = (UINT16) Alignment;
693 Private->LegacyBios.FarCall86 (
694 This,
695 Private->Legacy16CallSegment,
696 Private->Legacy16CallOffset,
697 &Regs,
698 NULL,
699 0
700 );
701
702 if (Regs.X.AX != 0) {
703 DEBUG ((EFI_D_ERROR, "Table ID %x length insufficient\n", Id));
704 return EFI_OUT_OF_RESOURCES;
705 } else {
706 break;
707 }
708 }
709 //
710 // Phase 2 Call routine second time with address to allow address adjustment
711 //
712 Status = LegacyBiosPlatform->GetPlatformInfo (
713 LegacyBiosPlatform,
714 Id,
715 (VOID *) &Table,
716 &TableSize,
717 &Location,
718 &Alignment,
719 Regs.X.DS,
720 Regs.X.BX
721 );
722 switch (Id) {
723 case EfiGetPlatformBinaryMpTable:
724 {
725 Legacy16Table->MpTablePtr = (UINT32) (Regs.X.DS * 16 + Regs.X.BX);
726 Legacy16Table->MpTableLength = (UINT32)TableSize;
727 DEBUG ((EFI_D_INFO, "MP table in legacy region - %x\n", (UINTN)Legacy16Table->MpTablePtr));
728 break;
729 }
730
731 case EfiGetPlatformBinaryOemIntData:
732 {
733
734 Legacy16Table->OemIntSegment = Regs.X.DS;
735 Legacy16Table->OemIntOffset = Regs.X.BX;
736 DEBUG ((EFI_D_INFO, "OemInt table in legacy region - %04x:%04x\n", (UINTN)Legacy16Table->OemIntSegment, (UINTN)Legacy16Table->OemIntOffset));
737 break;
738 }
739
740 case EfiGetPlatformBinaryOem32Data:
741 {
742 Legacy16Table->Oem32Segment = Regs.X.DS;
743 Legacy16Table->Oem32Offset = Regs.X.BX;
744 DEBUG ((EFI_D_INFO, "Oem32 table in legacy region - %04x:%04x\n", (UINTN)Legacy16Table->Oem32Segment, (UINTN)Legacy16Table->Oem32Offset));
745 break;
746 }
747
748 case EfiGetPlatformBinaryOem16Data:
749 {
750 //
751 // Legacy16Table->Oem16Segment = Regs.X.DS;
752 // Legacy16Table->Oem16Offset = Regs.X.BX;
753 DEBUG ((EFI_D_INFO, "Oem16 table in legacy region - %04x:%04x\n", (UINTN)Legacy16Table->Oem16Segment, (UINTN)Legacy16Table->Oem16Offset));
754 break;
755 }
756
757 default:
758 {
759 return EFI_INVALID_PARAMETER;
760 }
761 }
762
763 if (EFI_ERROR (Status)) {
764 return Status;
765 }
766 //
767 // Phase 3 Copy table to final location
768 //
769 TablePtr = (UINT32) (Regs.X.DS * 16 + Regs.X.BX);
770
771 CopyMem (
772 (VOID *) (UINTN)TablePtr,
773 Table,
774 TableSize
775 );
776
777 return EFI_SUCCESS;
778 }
779
780
781 /**
782 Assign drive number to legacy HDD drives prior to booting an EFI
783 aware OS so the OS can access drives without an EFI driver.
784 Note: BBS compliant drives ARE NOT available until this call by
785 either shell or EFI.
786
787 @param This Protocol instance pointer.
788
789 @retval EFI_SUCCESS Drive numbers assigned
790
791 **/
792 EFI_STATUS
793 GenericLegacyBoot (
794 IN EFI_LEGACY_BIOS_PROTOCOL *This
795 )
796 {
797 EFI_STATUS Status;
798 LEGACY_BIOS_INSTANCE *Private;
799 EFI_IA32_REGISTER_SET Regs;
800 EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
801 EFI_LEGACY_BIOS_PLATFORM_PROTOCOL *LegacyBiosPlatform;
802 UINTN CopySize;
803 VOID *AcpiPtr;
804 HDD_INFO *HddInfo;
805 HDD_INFO *LocalHddInfo;
806 UINTN Index;
807 EFI_COMPATIBILITY16_TABLE *Legacy16Table;
808 UINT32 *BdaPtr;
809 UINT16 HddCount;
810 UINT16 BbsCount;
811 BBS_TABLE *LocalBbsTable;
812 UINT32 *BaseVectorMaster;
813 EFI_TIME BootTime;
814 UINT32 LocalTime;
815 EFI_HANDLE IdeController;
816 UINTN HandleCount;
817 EFI_HANDLE *HandleBuffer;
818 VOID *SmbiosTable;
819 VOID *AcpiTable;
820 UINTN ShadowAddress;
821 UINT32 Granularity;
822
823 LocalHddInfo = NULL;
824 HddCount = 0;
825 BbsCount = 0;
826 LocalBbsTable = NULL;
827
828 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
829 DEBUG_CODE (
830 DEBUG ((EFI_D_ERROR, "Start of legacy boot\n"));
831 );
832
833 Legacy16Table = Private->Legacy16Table;
834 EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
835 HddInfo = &EfiToLegacy16BootTable->HddInfo[0];
836
837 LegacyBiosPlatform = Private->LegacyBiosPlatform;
838
839 EfiToLegacy16BootTable->MajorVersion = EFI_TO_LEGACY_MAJOR_VERSION;
840 EfiToLegacy16BootTable->MinorVersion = EFI_TO_LEGACY_MINOR_VERSION;
841
842 //
843 // If booting to a legacy OS then force HDD drives to the appropriate
844 // boot mode by calling GetIdeHandle.
845 // A reconnect -r can force all HDDs back to native mode.
846 //
847 IdeController = NULL;
848 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
849 Status = LegacyBiosPlatform->GetPlatformHandle (
850 Private->LegacyBiosPlatform,
851 EfiGetPlatformIdeHandle,
852 0,
853 &HandleBuffer,
854 &HandleCount,
855 NULL
856 );
857 if (!EFI_ERROR (Status)) {
858 IdeController = HandleBuffer[0];
859 }
860 }
861 //
862 // Unlock the Legacy BIOS region
863 //
864 Private->LegacyRegion->UnLock (
865 Private->LegacyRegion,
866 0xE0000,
867 0x20000,
868 &Granularity
869 );
870
871 //
872 // Reconstruct the Legacy16 boot memory map
873 //
874 LegacyBiosBuildE820 (Private, &CopySize);
875 if (CopySize > Private->Legacy16Table->E820Length) {
876 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
877 Regs.X.AX = Legacy16GetTableAddress;
878 Regs.X.CX = (UINT16) CopySize;
879 Private->LegacyBios.FarCall86 (
880 &Private->LegacyBios,
881 Private->Legacy16Table->Compatibility16CallSegment,
882 Private->Legacy16Table->Compatibility16CallOffset,
883 &Regs,
884 NULL,
885 0
886 );
887
888 Private->Legacy16Table->E820Pointer = (UINT32) (Regs.X.DS * 16 + Regs.X.BX);
889 Private->Legacy16Table->E820Length = (UINT32) CopySize;
890 if (Regs.X.AX != 0) {
891 DEBUG ((EFI_D_ERROR, "Legacy16 E820 length insufficient\n"));
892 } else {
893 CopyMem (
894 (VOID *)(UINTN) Private->Legacy16Table->E820Pointer,
895 Private->E820Table,
896 CopySize
897 );
898 }
899 } else {
900 CopyMem (
901 (VOID *)(UINTN) Private->Legacy16Table->E820Pointer,
902 Private->E820Table,
903 CopySize
904 );
905 Private->Legacy16Table->E820Length = (UINT32) CopySize;
906 }
907 //
908 // Get SMBIOS and ACPI table pointers
909 //
910 SmbiosTable = NULL;
911 EfiGetSystemConfigurationTable (
912 &gEfiSmbiosTableGuid,
913 &SmbiosTable
914 );
915 //
916 // We do not ASSERT if SmbiosTable not found. It is possbile that a platform does not produce SmbiosTable.
917 //
918 if (SmbiosTable == NULL) {
919 DEBUG ((EFI_D_INFO, "Smbios table is not found!\n"));
920 }
921 EfiToLegacy16BootTable->SmbiosTable = (UINT32)(UINTN)SmbiosTable;
922
923 AcpiTable = NULL;
924 Status = EfiGetSystemConfigurationTable (
925 &gEfiAcpi20TableGuid,
926 &AcpiTable
927 );
928 if (EFI_ERROR (Status)) {
929 Status = EfiGetSystemConfigurationTable (
930 &gEfiAcpi10TableGuid,
931 &AcpiTable
932 );
933 }
934 //
935 // We do not ASSERT if AcpiTable not found. It is possbile that a platform does not produce AcpiTable.
936 //
937 if (AcpiTable == NULL) {
938 DEBUG ((EFI_D_INFO, "ACPI table is not found!\n"));
939 }
940 EfiToLegacy16BootTable->AcpiTable = (UINT32)(UINTN)AcpiTable;
941
942 //
943 // Get RSD Ptr table rev at offset 15 decimal
944 // Rev = 0 Length is 20 decimal
945 // Rev != 0 Length is UINT32 at offset 20 decimal
946 //
947 if (AcpiTable != NULL) {
948
949 AcpiPtr = AcpiTable;
950 if (*((UINT8 *) AcpiPtr + 15) == 0) {
951 CopySize = 20;
952 } else {
953 AcpiPtr = ((UINT8 *) AcpiPtr + 20);
954 CopySize = (*(UINT32 *) AcpiPtr);
955 }
956
957 CopyMem (
958 (VOID *)(UINTN) Private->Legacy16Table->AcpiRsdPtrPointer,
959 AcpiTable,
960 CopySize
961 );
962 }
963 //
964 // Make sure all PCI Interrupt Line register are programmed to match 8259
965 //
966 PciProgramAllInterruptLineRegisters (Private);
967
968 //
969 // Unlock the Legacy BIOS region as PciProgramAllInterruptLineRegisters
970 // can lock it.
971 //
972 Private->LegacyRegion->UnLock (
973 Private->LegacyRegion,
974 Private->BiosStart,
975 Private->LegacyBiosImageSize,
976 &Granularity
977 );
978
979 //
980 // Configure Legacy Device Magic
981 //
982 // Only do this code if booting legacy OS
983 //
984 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
985 UpdateSioData (Private);
986 }
987 //
988 // Setup BDA and EBDA standard areas before Legacy Boot
989 //
990 LegacyBiosCompleteBdaBeforeBoot (Private);
991 LegacyBiosCompleteStandardCmosBeforeBoot (Private);
992
993 //
994 // We must build IDE data, if it hasn't been done, before PciShadowRoms
995 // to insure EFI drivers are connected.
996 //
997 LegacyBiosBuildIdeData (Private, &HddInfo, 1);
998 UpdateAllIdentifyDriveData (Private);
999
1000 //
1001 // Clear IO BAR, if IDE controller in legacy mode.
1002 //
1003 InitLegacyIdeController (IdeController);
1004
1005 //
1006 // Generate number of ticks since midnight for BDA. DOS requires this
1007 // for its time. We have to make assumptions as to how long following
1008 // code takes since after PciShadowRoms PciIo is gone. Place result in
1009 // 40:6C-6F
1010 //
1011 // Adjust value by 1 second.
1012 //
1013 gRT->GetTime (&BootTime, NULL);
1014 LocalTime = BootTime.Hour * 3600 + BootTime.Minute * 60 + BootTime.Second;
1015 LocalTime += 1;
1016
1017 //
1018 // Multiply result by 18.2 for number of ticks since midnight.
1019 // Use 182/10 to avoid floating point math.
1020 //
1021 LocalTime = (LocalTime * 182) / 10;
1022 BdaPtr = (UINT32 *) (UINTN)0x46C;
1023 *BdaPtr = LocalTime;
1024
1025 //
1026 // Shadow PCI ROMs. We must do this near the end since this will kick
1027 // of Native EFI drivers that may be needed to collect info for Legacy16
1028 //
1029 // WARNING: PciIo is gone after this call.
1030 //
1031 PciShadowRoms (Private);
1032
1033 //
1034 // Shadow PXE base code, BIS etc.
1035 //
1036 Private->LegacyRegion->UnLock (Private->LegacyRegion, 0xc0000, 0x40000, &Granularity);
1037 ShadowAddress = Private->OptionRom;
1038 Private->LegacyBiosPlatform->PlatformHooks (
1039 Private->LegacyBiosPlatform,
1040 EfiPlatformHookShadowServiceRoms,
1041 0,
1042 0,
1043 &ShadowAddress,
1044 Legacy16Table,
1045 NULL
1046 );
1047 Private->OptionRom = (UINT32)ShadowAddress;
1048 //
1049 // Register Legacy SMI Handler
1050 //
1051 LegacyBiosPlatform->SmmInit (
1052 LegacyBiosPlatform,
1053 EfiToLegacy16BootTable
1054 );
1055
1056 //
1057 // Let platform code know the boot options
1058 //
1059 LegacyBiosGetBbsInfo (
1060 This,
1061 &HddCount,
1062 &LocalHddInfo,
1063 &BbsCount,
1064 &LocalBbsTable
1065 );
1066
1067 DEBUG_CODE (
1068 PrintPciInterruptRegister ();
1069 PrintBbsTable (LocalBbsTable);
1070 PrintHddInfo (LocalHddInfo);
1071 );
1072 //
1073 // If drive wasn't spun up then BuildIdeData may have found new drives.
1074 // Need to update BBS boot priority.
1075 //
1076 for (Index = 0; Index < MAX_IDE_CONTROLLER; Index++) {
1077 if ((LocalHddInfo[Index].IdentifyDrive[0].Raw[0] != 0) &&
1078 (LocalBbsTable[2 * Index + 1].BootPriority == BBS_IGNORE_ENTRY)
1079 ) {
1080 LocalBbsTable[2 * Index + 1].BootPriority = BBS_UNPRIORITIZED_ENTRY;
1081 }
1082
1083 if ((LocalHddInfo[Index].IdentifyDrive[1].Raw[0] != 0) &&
1084 (LocalBbsTable[2 * Index + 2].BootPriority == BBS_IGNORE_ENTRY)
1085 ) {
1086 LocalBbsTable[2 * Index + 2].BootPriority = BBS_UNPRIORITIZED_ENTRY;
1087 }
1088 }
1089
1090 Private->LegacyRegion->UnLock (
1091 Private->LegacyRegion,
1092 0xc0000,
1093 0x40000,
1094 &Granularity
1095 );
1096
1097 LegacyBiosPlatform->PrepareToBoot (
1098 LegacyBiosPlatform,
1099 mBbsDevicePathPtr,
1100 mBbsTable,
1101 mLoadOptionsSize,
1102 mLoadOptions,
1103 (VOID *) &Private->IntThunk->EfiToLegacy16BootTable
1104 );
1105
1106 //
1107 // If no boot device return to BDS
1108 //
1109 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
1110 for (Index = 0; Index < BbsCount; Index++){
1111 if ((LocalBbsTable[Index].BootPriority != BBS_DO_NOT_BOOT_FROM) &&
1112 (LocalBbsTable[Index].BootPriority != BBS_UNPRIORITIZED_ENTRY) &&
1113 (LocalBbsTable[Index].BootPriority != BBS_IGNORE_ENTRY)) {
1114 break;
1115 }
1116 }
1117 if (Index == BbsCount) {
1118 return EFI_DEVICE_ERROR;
1119 }
1120 }
1121 //
1122 // Let the Legacy16 code know the device path type for legacy boot
1123 //
1124 EfiToLegacy16BootTable->DevicePathType = mBbsDevicePathPtr->DeviceType;
1125
1126 //
1127 // Copy MP table, if it exists.
1128 //
1129 LegacyGetDataOrTable (This, EfiGetPlatformBinaryMpTable);
1130
1131 if (!Private->LegacyBootEntered) {
1132 //
1133 // Copy OEM INT Data, if it exists. Note: This code treats any data
1134 // as a bag of bits and knows nothing of the contents nor cares.
1135 // Contents are IBV specific.
1136 //
1137 LegacyGetDataOrTable (This, EfiGetPlatformBinaryOemIntData);
1138
1139 //
1140 // Copy OEM16 Data, if it exists.Note: This code treats any data
1141 // as a bag of bits and knows nothing of the contents nor cares.
1142 // Contents are IBV specific.
1143 //
1144 LegacyGetDataOrTable (This, EfiGetPlatformBinaryOem16Data);
1145
1146 //
1147 // Copy OEM32 Data, if it exists.Note: This code treats any data
1148 // as a bag of bits and knows nothing of the contents nor cares.
1149 // Contents are IBV specific.
1150 //
1151 LegacyGetDataOrTable (This, EfiGetPlatformBinaryOem32Data);
1152 }
1153
1154 //
1155 // Call into Legacy16 code to prepare for INT 19h
1156 //
1157 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
1158 Regs.X.AX = Legacy16PrepareToBoot;
1159
1160 //
1161 // Pass in handoff data
1162 //
1163 Regs.X.ES = EFI_SEGMENT ((UINTN)EfiToLegacy16BootTable);
1164 Regs.X.BX = EFI_OFFSET ((UINTN)EfiToLegacy16BootTable);
1165
1166 Private->LegacyBios.FarCall86 (
1167 This,
1168 Private->Legacy16CallSegment,
1169 Private->Legacy16CallOffset,
1170 &Regs,
1171 NULL,
1172 0
1173 );
1174
1175 if (Regs.X.AX != 0) {
1176 return EFI_DEVICE_ERROR;
1177 }
1178 //
1179 // Lock the Legacy BIOS region
1180 //
1181 Private->LegacyRegion->Lock (
1182 Private->LegacyRegion,
1183 0xc0000,
1184 0x40000,
1185 &Granularity
1186 );
1187 //
1188 // Lock attributes of the Legacy Region if chipset supports
1189 //
1190 Private->LegacyRegion->BootLock (
1191 Private->LegacyRegion,
1192 0xc0000,
1193 0x40000,
1194 &Granularity
1195 );
1196
1197 //
1198 // Call into Legacy16 code to do the INT 19h
1199 //
1200 EnableAllControllers (Private);
1201 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
1202 //
1203 // Signal all the events that are waiting on EVT_SIGNAL_LEGACY_BOOT
1204 //
1205 EfiSignalEventLegacyBoot ();
1206 DEBUG ((EFI_D_INFO, "Legacy INT19 Boot...\n"));
1207 //
1208 // Raise TPL to high level to disable CPU interrupts
1209 //
1210 gBS->RaiseTPL (TPL_HIGH_LEVEL);
1211
1212 //
1213 // Put the 8259 into its legacy mode by reprogramming the vector bases
1214 //
1215 Private->Legacy8259->SetVectorBase (Private->Legacy8259, LEGACY_MODE_BASE_VECTOR_MASTER, LEGACY_MODE_BASE_VECTOR_SLAVE);
1216 //
1217 // PC History
1218 // The original PC used INT8-F for master PIC. Since these mapped over
1219 // processor exceptions TIANO moved the master PIC to INT68-6F.
1220 // We need to set these back to the Legacy16 unexpected interrupt(saved
1221 // in LegacyBios.c) since some OS see that these have values different from
1222 // what is expected and invoke them. Since the legacy OS corrupts EFI
1223 // memory, there is no handler for these interrupts and OS blows up.
1224 //
1225 // We need to save the TIANO values for the rare case that the Legacy16
1226 // code cannot boot but knows memory hasn't been destroyed.
1227 //
1228 // To compound the problem, video takes over one of these INTS and must be
1229 // be left.
1230 // @bug - determine if video hooks INT(in which case we must find new
1231 // set of TIANO vectors) or takes it over.
1232 //
1233 //
1234 BaseVectorMaster = (UINT32 *) (sizeof (UINT32) * PROTECTED_MODE_BASE_VECTOR_MASTER);
1235 for (Index = 0; Index < 8; Index++) {
1236 Private->ThunkSavedInt[Index] = BaseVectorMaster[Index];
1237 if (Private->ThunkSeg == (UINT16) (BaseVectorMaster[Index] >> 16)) {
1238 BaseVectorMaster[Index] = (UINT32) (Private->BiosUnexpectedInt);
1239 }
1240 }
1241
1242 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
1243 Regs.X.AX = Legacy16Boot;
1244
1245 Private->LegacyBios.FarCall86 (
1246 This,
1247 Private->Legacy16CallSegment,
1248 Private->Legacy16CallOffset,
1249 &Regs,
1250 NULL,
1251 0
1252 );
1253
1254 BaseVectorMaster = (UINT32 *) (sizeof (UINT32) * PROTECTED_MODE_BASE_VECTOR_MASTER);
1255 for (Index = 0; Index < 8; Index++) {
1256 BaseVectorMaster[Index] = Private->ThunkSavedInt[Index];
1257 }
1258 }
1259 Private->LegacyBootEntered = TRUE;
1260 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
1261 //
1262 // Should never return unless never passed control to 0:7c00(first stage
1263 // OS loader) and only then if no bootable device found.
1264 //
1265 return EFI_DEVICE_ERROR;
1266 } else {
1267 //
1268 // If boot to EFI then expect to return to caller
1269 //
1270 return EFI_SUCCESS;
1271 }
1272 }
1273
1274
1275 /**
1276 Assign drive number to legacy HDD drives prior to booting an EFI
1277 aware OS so the OS can access drives without an EFI driver.
1278 Note: BBS compliant drives ARE NOT available until this call by
1279 either shell or EFI.
1280
1281 @param This Protocol instance pointer.
1282 @param BbsCount Number of BBS_TABLE structures
1283 @param BbsTable List BBS entries
1284
1285 @retval EFI_SUCCESS Drive numbers assigned
1286
1287 **/
1288 EFI_STATUS
1289 EFIAPI
1290 LegacyBiosPrepareToBootEfi (
1291 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1292 OUT UINT16 *BbsCount,
1293 OUT BBS_TABLE **BbsTable
1294 )
1295 {
1296 EFI_STATUS Status;
1297 EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
1298 LEGACY_BIOS_INSTANCE *Private;
1299
1300 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
1301 EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
1302 mBootMode = BOOT_EFI_OS;
1303 mBbsDevicePathPtr = NULL;
1304 Status = GenericLegacyBoot (This);
1305 *BbsTable = (BBS_TABLE*)(UINTN)EfiToLegacy16BootTable->BbsTable;
1306 *BbsCount = (UINT16) (sizeof (Private->IntThunk->BbsTable) / sizeof (BBS_TABLE));
1307 return Status;
1308 }
1309
1310 /**
1311 To boot from an unconventional device like parties and/or execute HDD diagnostics.
1312
1313 @param This Protocol instance pointer.
1314 @param Attributes How to interpret the other input parameters
1315 @param BbsEntry The 0-based index into the BbsTable for the parent
1316 device.
1317 @param BeerData Pointer to the 128 bytes of ram BEER data.
1318 @param ServiceAreaData Pointer to the 64 bytes of raw Service Area data. The
1319 caller must provide a pointer to the specific Service
1320 Area and not the start all Service Areas.
1321
1322 @retval EFI_INVALID_PARAMETER if error. Does NOT return if no error.
1323
1324 ***/
1325 EFI_STATUS
1326 EFIAPI
1327 LegacyBiosBootUnconventionalDevice (
1328 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1329 IN UDC_ATTRIBUTES Attributes,
1330 IN UINTN BbsEntry,
1331 IN VOID *BeerData,
1332 IN VOID *ServiceAreaData
1333 )
1334 {
1335 EFI_STATUS Status;
1336 EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
1337 LEGACY_BIOS_INSTANCE *Private;
1338 UD_TABLE *UcdTable;
1339 UINTN Index;
1340 UINT16 BootPriority;
1341 BBS_TABLE *BbsTable;
1342
1343 BootPriority = 0;
1344 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
1345 mBootMode = BOOT_UNCONVENTIONAL_DEVICE;
1346 mBbsDevicePathPtr = &mBbsDevicePathNode;
1347 mAttributes = Attributes;
1348 mBbsEntry = BbsEntry;
1349 mBeerData = BeerData, mServiceAreaData = ServiceAreaData;
1350
1351 EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
1352
1353 //
1354 // Do input parameter checking
1355 //
1356 if ((Attributes.DirectoryServiceValidity == 0) &&
1357 (Attributes.RabcaUsedFlag == 0) &&
1358 (Attributes.ExecuteHddDiagnosticsFlag == 0)
1359 ) {
1360 return EFI_INVALID_PARAMETER;
1361 }
1362
1363 if (((Attributes.DirectoryServiceValidity != 0) && (ServiceAreaData == NULL)) ||
1364 (((Attributes.DirectoryServiceValidity | Attributes.RabcaUsedFlag) != 0) && (BeerData == NULL))
1365 ) {
1366 return EFI_INVALID_PARAMETER;
1367 }
1368
1369 UcdTable = (UD_TABLE *) AllocatePool (
1370 sizeof (UD_TABLE)
1371 );
1372 if (NULL == UcdTable) {
1373 return EFI_OUT_OF_RESOURCES;
1374 }
1375
1376 EfiToLegacy16BootTable->UnconventionalDeviceTable = (UINT32)(UINTN)UcdTable;
1377 UcdTable->Attributes = Attributes;
1378 UcdTable->BbsTableEntryNumberForParentDevice = (UINT8) BbsEntry;
1379 //
1380 // Force all existing BBS entries to DoNotBoot. This allows 16-bit CSM
1381 // to assign drive numbers but bot boot from. Only newly created entries
1382 // will be valid.
1383 //
1384 BbsTable = (BBS_TABLE*)(UINTN)EfiToLegacy16BootTable->BbsTable;
1385 for (Index = 0; Index < EfiToLegacy16BootTable->NumberBbsEntries; Index++) {
1386 BbsTable[Index].BootPriority = BBS_DO_NOT_BOOT_FROM;
1387 }
1388 //
1389 // If parent is onboard IDE then assign controller & device number
1390 // else they are 0.
1391 //
1392 if (BbsEntry < MAX_IDE_CONTROLLER * 2) {
1393 UcdTable->DeviceNumber = (UINT8) ((BbsEntry - 1) % 2);
1394 }
1395
1396 if (BeerData != NULL) {
1397 CopyMem (
1398 (VOID *) UcdTable->BeerData,
1399 BeerData,
1400 (UINTN) 128
1401 );
1402 }
1403
1404 if (ServiceAreaData != NULL) {
1405 CopyMem (
1406 (VOID *) UcdTable->ServiceAreaData,
1407 ServiceAreaData,
1408 (UINTN) 64
1409 );
1410 }
1411 //
1412 // For each new entry do the following:
1413 // 1. Increment current number of BBS entries
1414 // 2. Copy parent entry to new entry.
1415 // 3. Zero out BootHandler Offset & segment
1416 // 4. Set appropriate device type. BEV(0x80) for HDD diagnostics
1417 // and Floppy(0x01) for PARTIES boot.
1418 // 5. Assign new priority.
1419 //
1420 if ((Attributes.ExecuteHddDiagnosticsFlag) != 0) {
1421 EfiToLegacy16BootTable->NumberBbsEntries += 1;
1422
1423 CopyMem (
1424 (VOID *) &BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority,
1425 (VOID *) &BbsTable[BbsEntry].BootPriority,
1426 sizeof (BBS_TABLE)
1427 );
1428
1429 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerOffset = 0;
1430 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerSegment = 0;
1431 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].DeviceType = 0x80;
1432
1433 UcdTable->BbsTableEntryNumberForHddDiag = (UINT8) (EfiToLegacy16BootTable->NumberBbsEntries - 1);
1434
1435 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority = BootPriority;
1436 BootPriority += 1;
1437
1438 //
1439 // Set device type as BBS_TYPE_DEV for PARTIES diagnostic
1440 //
1441 mBbsDevicePathNode.DeviceType = BBS_TYPE_BEV;
1442 }
1443
1444 if (((Attributes.DirectoryServiceValidity | Attributes.RabcaUsedFlag)) != 0) {
1445 EfiToLegacy16BootTable->NumberBbsEntries += 1;
1446 CopyMem (
1447 (VOID *) &BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority,
1448 (VOID *) &BbsTable[BbsEntry].BootPriority,
1449 sizeof (BBS_TABLE)
1450 );
1451
1452 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerOffset = 0;
1453 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerSegment = 0;
1454 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].DeviceType = 0x01;
1455 UcdTable->BbsTableEntryNumberForBoot = (UINT8) (EfiToLegacy16BootTable->NumberBbsEntries - 1);
1456 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority = BootPriority;
1457
1458 //
1459 // Set device type as BBS_TYPE_FLOPPY for PARTIES boot as floppy
1460 //
1461 mBbsDevicePathNode.DeviceType = BBS_TYPE_FLOPPY;
1462 }
1463 //
1464 // Build the BBS Device Path for this boot selection
1465 //
1466 mBbsDevicePathNode.Header.Type = BBS_DEVICE_PATH;
1467 mBbsDevicePathNode.Header.SubType = BBS_BBS_DP;
1468 SetDevicePathNodeLength (&mBbsDevicePathNode.Header, sizeof (BBS_BBS_DEVICE_PATH));
1469 mBbsDevicePathNode.StatusFlag = 0;
1470 mBbsDevicePathNode.String[0] = 0;
1471
1472 Status = GenericLegacyBoot (This);
1473 return Status;
1474 }
1475
1476 /**
1477 Attempt to legacy boot the BootOption. If the EFI contexted has been
1478 compromised this function will not return.
1479
1480 @param This Protocol instance pointer.
1481 @param BbsDevicePath EFI Device Path from BootXXXX variable.
1482 @param LoadOptionsSize Size of LoadOption in size.
1483 @param LoadOptions LoadOption from BootXXXX variable
1484
1485 @retval EFI_SUCCESS Removable media not present
1486
1487 **/
1488 EFI_STATUS
1489 EFIAPI
1490 LegacyBiosLegacyBoot (
1491 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1492 IN BBS_BBS_DEVICE_PATH *BbsDevicePath,
1493 IN UINT32 LoadOptionsSize,
1494 IN VOID *LoadOptions
1495 )
1496 {
1497 EFI_STATUS Status;
1498
1499 mBbsDevicePathPtr = BbsDevicePath;
1500 mLoadOptionsSize = LoadOptionsSize;
1501 mLoadOptions = LoadOptions;
1502 mBootMode = BOOT_LEGACY_OS;
1503 Status = GenericLegacyBoot (This);
1504
1505 return Status;
1506 }
1507
1508 /**
1509 Convert EFI Memory Type to E820 Memory Type.
1510
1511 @param Type EFI Memory Type
1512
1513 @return ACPI Memory Type for EFI Memory Type
1514
1515 **/
1516 EFI_ACPI_MEMORY_TYPE
1517 EfiMemoryTypeToE820Type (
1518 IN UINT32 Type
1519 )
1520 {
1521 switch (Type) {
1522 case EfiLoaderCode:
1523 case EfiLoaderData:
1524 case EfiBootServicesCode:
1525 case EfiBootServicesData:
1526 case EfiConventionalMemory:
1527 case EfiRuntimeServicesCode:
1528 case EfiRuntimeServicesData:
1529 return EfiAcpiAddressRangeMemory;
1530
1531 case EfiACPIReclaimMemory:
1532 return EfiAcpiAddressRangeACPI;
1533
1534 case EfiACPIMemoryNVS:
1535 return EfiAcpiAddressRangeNVS;
1536
1537 //
1538 // All other types map to reserved.
1539 // Adding the code just waists FLASH space.
1540 //
1541 // case EfiReservedMemoryType:
1542 // case EfiUnusableMemory:
1543 // case EfiMemoryMappedIO:
1544 // case EfiMemoryMappedIOPortSpace:
1545 // case EfiPalCode:
1546 //
1547 default:
1548 return EfiAcpiAddressRangeReserved;
1549 }
1550 }
1551
1552 /**
1553 Build the E820 table.
1554
1555 @param Private Legacy BIOS Instance data
1556 @param Size Size of E820 Table
1557
1558 @retval EFI_SUCCESS It should always work.
1559
1560 **/
1561 EFI_STATUS
1562 LegacyBiosBuildE820 (
1563 IN LEGACY_BIOS_INSTANCE *Private,
1564 OUT UINTN *Size
1565 )
1566 {
1567 EFI_STATUS Status;
1568 EFI_E820_ENTRY64 *E820Table;
1569 EFI_MEMORY_DESCRIPTOR *EfiMemoryMap;
1570 EFI_MEMORY_DESCRIPTOR *EfiMemoryMapEnd;
1571 EFI_MEMORY_DESCRIPTOR *EfiEntry;
1572 EFI_MEMORY_DESCRIPTOR *NextEfiEntry;
1573 EFI_MEMORY_DESCRIPTOR TempEfiEntry;
1574 UINTN EfiMemoryMapSize;
1575 UINTN EfiMapKey;
1576 UINTN EfiDescriptorSize;
1577 UINT32 EfiDescriptorVersion;
1578 UINTN Index;
1579 EFI_PEI_HOB_POINTERS Hob;
1580 EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;
1581 UINTN TempIndex;
1582 UINTN IndexSort;
1583 UINTN TempNextIndex;
1584 EFI_E820_ENTRY64 TempE820;
1585 EFI_ACPI_MEMORY_TYPE TempType;
1586 BOOLEAN ChangedFlag;
1587 UINTN Above1MIndex;
1588 UINT64 MemoryBlockLength;
1589
1590 E820Table = (EFI_E820_ENTRY64 *) Private->E820Table;
1591
1592 //
1593 // Get the EFI memory map.
1594 //
1595 EfiMemoryMapSize = 0;
1596 EfiMemoryMap = NULL;
1597 Status = gBS->GetMemoryMap (
1598 &EfiMemoryMapSize,
1599 EfiMemoryMap,
1600 &EfiMapKey,
1601 &EfiDescriptorSize,
1602 &EfiDescriptorVersion
1603 );
1604 ASSERT (Status == EFI_BUFFER_TOO_SMALL);
1605
1606 do {
1607 //
1608 // Use size returned back plus 1 descriptor for the AllocatePool.
1609 // We don't just multiply by 2 since the "for" loop below terminates on
1610 // EfiMemoryMapEnd which is dependent upon EfiMemoryMapSize. Otherwize
1611 // we process bogus entries and create bogus E820 entries.
1612 //
1613 EfiMemoryMap = (EFI_MEMORY_DESCRIPTOR *) AllocatePool (EfiMemoryMapSize);
1614 ASSERT (EfiMemoryMap != NULL);
1615 Status = gBS->GetMemoryMap (
1616 &EfiMemoryMapSize,
1617 EfiMemoryMap,
1618 &EfiMapKey,
1619 &EfiDescriptorSize,
1620 &EfiDescriptorVersion
1621 );
1622 if (EFI_ERROR (Status)) {
1623 FreePool (EfiMemoryMap);
1624 }
1625 } while (Status == EFI_BUFFER_TOO_SMALL);
1626
1627 ASSERT_EFI_ERROR (Status);
1628
1629 //
1630 // Punch in the E820 table for memory less than 1 MB.
1631 // Assume ZeroMem () has been done on data structure.
1632 //
1633 //
1634 // First entry is 0 to (640k - EBDA)
1635 //
1636 E820Table[0].BaseAddr = 0;
1637 E820Table[0].Length = (UINT64) ((*(UINT16 *) (UINTN)0x40E) << 4);
1638 E820Table[0].Type = EfiAcpiAddressRangeMemory;
1639
1640 //
1641 // Second entry is (640k - EBDA) to 640k
1642 //
1643 E820Table[1].BaseAddr = E820Table[0].Length;
1644 E820Table[1].Length = (UINT64) ((640 * 1024) - E820Table[0].Length);
1645 E820Table[1].Type = EfiAcpiAddressRangeReserved;
1646
1647 //
1648 // Third Entry is legacy BIOS
1649 // DO NOT CLAIM region from 0xA0000-0xDFFFF. OS can use free areas
1650 // to page in memory under 1MB.
1651 // Omit region from 0xE0000 to start of BIOS, if any. This can be
1652 // used for a multiple reasons including OPROMS.
1653 //
1654
1655 //
1656 // The CSM binary image size is not the actually size that CSM binary used,
1657 // to avoid memory corrupt, we declare the 0E0000 - 0FFFFF is used by CSM binary.
1658 //
1659 E820Table[2].BaseAddr = 0xE0000;
1660 E820Table[2].Length = 0x20000;
1661 E820Table[2].Type = EfiAcpiAddressRangeReserved;
1662
1663 Above1MIndex = 2;
1664
1665 //
1666 // Process the EFI map to produce E820 map;
1667 //
1668
1669 //
1670 // Sort memory map from low to high
1671 //
1672 EfiEntry = EfiMemoryMap;
1673 NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
1674 EfiMemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) EfiMemoryMap + EfiMemoryMapSize);
1675 while (EfiEntry < EfiMemoryMapEnd) {
1676 while (NextEfiEntry < EfiMemoryMapEnd) {
1677 if (EfiEntry->PhysicalStart > NextEfiEntry->PhysicalStart) {
1678 CopyMem (&TempEfiEntry, EfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
1679 CopyMem (EfiEntry, NextEfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
1680 CopyMem (NextEfiEntry, &TempEfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
1681 }
1682
1683 NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (NextEfiEntry, EfiDescriptorSize);
1684 }
1685
1686 EfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
1687 NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
1688 }
1689
1690 EfiEntry = EfiMemoryMap;
1691 EfiMemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) EfiMemoryMap + EfiMemoryMapSize);
1692 for (Index = Above1MIndex; (EfiEntry < EfiMemoryMapEnd) && (Index < EFI_MAX_E820_ENTRY - 1); ) {
1693 MemoryBlockLength = (UINT64) (LShiftU64 (EfiEntry->NumberOfPages, 12));
1694 if ((EfiEntry->PhysicalStart + MemoryBlockLength) < 0x100000) {
1695 //
1696 // Skip the memory block is under 1MB
1697 //
1698 } else {
1699 if (EfiEntry->PhysicalStart < 0x100000) {
1700 //
1701 // When the memory block spans below 1MB, ensure the memory block start address is at least 1MB
1702 //
1703 MemoryBlockLength -= 0x100000 - EfiEntry->PhysicalStart;
1704 EfiEntry->PhysicalStart = 0x100000;
1705 }
1706
1707 //
1708 // Convert memory type to E820 type
1709 //
1710 TempType = EfiMemoryTypeToE820Type (EfiEntry->Type);
1711
1712 if ((E820Table[Index].Type == TempType) && (EfiEntry->PhysicalStart == (E820Table[Index].BaseAddr + E820Table[Index].Length))) {
1713 //
1714 // Grow an existing entry
1715 //
1716 E820Table[Index].Length += MemoryBlockLength;
1717 } else {
1718 //
1719 // Make a new entry
1720 //
1721 ++Index;
1722 E820Table[Index].BaseAddr = EfiEntry->PhysicalStart;
1723 E820Table[Index].Length = MemoryBlockLength;
1724 E820Table[Index].Type = TempType;
1725 }
1726 }
1727 EfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
1728 }
1729
1730 FreePool (EfiMemoryMap);
1731
1732 //
1733 // Process the reserved memory map to produce E820 map ;
1734 //
1735 for (Hob.Raw = GetHobList (); !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) {
1736 if (Hob.Raw != NULL && GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
1737 ResourceHob = Hob.ResourceDescriptor;
1738 if (((ResourceHob->ResourceType == EFI_RESOURCE_MEMORY_MAPPED_IO) ||
1739 (ResourceHob->ResourceType == EFI_RESOURCE_FIRMWARE_DEVICE) ||
1740 (ResourceHob->ResourceType == EFI_RESOURCE_MEMORY_RESERVED) ) &&
1741 (ResourceHob->PhysicalStart > 0x100000) &&
1742 (Index < EFI_MAX_E820_ENTRY - 1)) {
1743 ++Index;
1744 E820Table[Index].BaseAddr = ResourceHob->PhysicalStart;
1745 E820Table[Index].Length = ResourceHob->ResourceLength;
1746 E820Table[Index].Type = EfiAcpiAddressRangeReserved;
1747 }
1748 }
1749 }
1750
1751 Index ++;
1752 Private->IntThunk->EfiToLegacy16InitTable.NumberE820Entries = (UINT32)Index;
1753 Private->IntThunk->EfiToLegacy16BootTable.NumberE820Entries = (UINT32)Index;
1754 Private->NumberE820Entries = (UINT32)Index;
1755 *Size = (UINTN) (Index * sizeof (EFI_E820_ENTRY64));
1756
1757 //
1758 // Sort E820Table from low to high
1759 //
1760 for (TempIndex = 0; TempIndex < Index; TempIndex++) {
1761 ChangedFlag = FALSE;
1762 for (TempNextIndex = 1; TempNextIndex < Index - TempIndex; TempNextIndex++) {
1763 if (E820Table[TempNextIndex - 1].BaseAddr > E820Table[TempNextIndex].BaseAddr) {
1764 ChangedFlag = TRUE;
1765 TempE820.BaseAddr = E820Table[TempNextIndex - 1].BaseAddr;
1766 TempE820.Length = E820Table[TempNextIndex - 1].Length;
1767 TempE820.Type = E820Table[TempNextIndex - 1].Type;
1768
1769 E820Table[TempNextIndex - 1].BaseAddr = E820Table[TempNextIndex].BaseAddr;
1770 E820Table[TempNextIndex - 1].Length = E820Table[TempNextIndex].Length;
1771 E820Table[TempNextIndex - 1].Type = E820Table[TempNextIndex].Type;
1772
1773 E820Table[TempNextIndex].BaseAddr = TempE820.BaseAddr;
1774 E820Table[TempNextIndex].Length = TempE820.Length;
1775 E820Table[TempNextIndex].Type = TempE820.Type;
1776 }
1777 }
1778
1779 if (!ChangedFlag) {
1780 break;
1781 }
1782 }
1783
1784 //
1785 // Remove the overlap range
1786 //
1787 for (TempIndex = 1; TempIndex < Index; TempIndex++) {
1788 if (E820Table[TempIndex - 1].BaseAddr <= E820Table[TempIndex].BaseAddr &&
1789 ((E820Table[TempIndex - 1].BaseAddr + E820Table[TempIndex - 1].Length) >=
1790 (E820Table[TempIndex].BaseAddr +E820Table[TempIndex].Length))) {
1791 //
1792 //Overlap range is found
1793 //
1794 ASSERT (E820Table[TempIndex - 1].Type == E820Table[TempIndex].Type);
1795
1796 if (TempIndex == Index - 1) {
1797 E820Table[TempIndex].BaseAddr = 0;
1798 E820Table[TempIndex].Length = 0;
1799 E820Table[TempIndex].Type = (EFI_ACPI_MEMORY_TYPE) 0;
1800 Index--;
1801 break;
1802 } else {
1803 for (IndexSort = TempIndex; IndexSort < Index - 1; IndexSort ++) {
1804 E820Table[IndexSort].BaseAddr = E820Table[IndexSort + 1].BaseAddr;
1805 E820Table[IndexSort].Length = E820Table[IndexSort + 1].Length;
1806 E820Table[IndexSort].Type = E820Table[IndexSort + 1].Type;
1807 }
1808 Index--;
1809 }
1810 }
1811 }
1812
1813
1814
1815 Private->IntThunk->EfiToLegacy16InitTable.NumberE820Entries = (UINT32)Index;
1816 Private->IntThunk->EfiToLegacy16BootTable.NumberE820Entries = (UINT32)Index;
1817 Private->NumberE820Entries = (UINT32)Index;
1818 *Size = (UINTN) (Index * sizeof (EFI_E820_ENTRY64));
1819
1820 //
1821 // Determine OS usable memory above 1Mb
1822 //
1823 Private->IntThunk->EfiToLegacy16BootTable.OsMemoryAbove1Mb = 0x0000;
1824 for (TempIndex = Above1MIndex; TempIndex < Index; TempIndex++) {
1825 if (E820Table[TempIndex].BaseAddr >= 0x100000 && E820Table[TempIndex].BaseAddr < 0x100000000ULL) { // not include above 4G memory
1826 //
1827 // ACPIReclaimMemory is also usable memory for ACPI OS, after OS dumps all ACPI tables.
1828 //
1829 if ((E820Table[TempIndex].Type == EfiAcpiAddressRangeMemory) || (E820Table[TempIndex].Type == EfiAcpiAddressRangeACPI)) {
1830 Private->IntThunk->EfiToLegacy16BootTable.OsMemoryAbove1Mb += (UINT32) (E820Table[TempIndex].Length);
1831 } else {
1832 break; // break at first not normal memory, because SMM may use reserved memory.
1833 }
1834 }
1835 }
1836
1837 Private->IntThunk->EfiToLegacy16InitTable.OsMemoryAbove1Mb = Private->IntThunk->EfiToLegacy16BootTable.OsMemoryAbove1Mb;
1838
1839 //
1840 // Print DEBUG information
1841 //
1842 for (TempIndex = 0; TempIndex < Index; TempIndex++) {
1843 DEBUG((EFI_D_INFO, "E820[%2d]: 0x%16lx ---- 0x%16lx, Type = 0x%x \n",
1844 TempIndex,
1845 E820Table[TempIndex].BaseAddr,
1846 (E820Table[TempIndex].BaseAddr + E820Table[TempIndex].Length),
1847 E820Table[TempIndex].Type
1848 ));
1849 }
1850
1851 return EFI_SUCCESS;
1852 }
1853
1854
1855 /**
1856 Fill in the standard BDA and EBDA stuff prior to legacy Boot
1857
1858 @param Private Legacy BIOS Instance data
1859
1860 @retval EFI_SUCCESS It should always work.
1861
1862 **/
1863 EFI_STATUS
1864 LegacyBiosCompleteBdaBeforeBoot (
1865 IN LEGACY_BIOS_INSTANCE *Private
1866 )
1867 {
1868 BDA_STRUC *Bda;
1869 UINT16 MachineConfig;
1870 DEVICE_PRODUCER_DATA_HEADER *SioPtr;
1871
1872 Bda = (BDA_STRUC *) ((UINTN) 0x400);
1873 MachineConfig = 0;
1874
1875 SioPtr = &(Private->IntThunk->EfiToLegacy16BootTable.SioData);
1876 Bda->Com1 = SioPtr->Serial[0].Address;
1877 Bda->Com2 = SioPtr->Serial[1].Address;
1878 Bda->Com3 = SioPtr->Serial[2].Address;
1879 Bda->Com4 = SioPtr->Serial[3].Address;
1880
1881 if (SioPtr->Serial[0].Address != 0x00) {
1882 MachineConfig += 0x200;
1883 }
1884
1885 if (SioPtr->Serial[1].Address != 0x00) {
1886 MachineConfig += 0x200;
1887 }
1888
1889 if (SioPtr->Serial[2].Address != 0x00) {
1890 MachineConfig += 0x200;
1891 }
1892
1893 if (SioPtr->Serial[3].Address != 0x00) {
1894 MachineConfig += 0x200;
1895 }
1896
1897 Bda->Lpt1 = SioPtr->Parallel[0].Address;
1898 Bda->Lpt2 = SioPtr->Parallel[1].Address;
1899 Bda->Lpt3 = SioPtr->Parallel[2].Address;
1900
1901 if (SioPtr->Parallel[0].Address != 0x00) {
1902 MachineConfig += 0x4000;
1903 }
1904
1905 if (SioPtr->Parallel[1].Address != 0x00) {
1906 MachineConfig += 0x4000;
1907 }
1908
1909 if (SioPtr->Parallel[2].Address != 0x00) {
1910 MachineConfig += 0x4000;
1911 }
1912
1913 Bda->NumberOfDrives = (UINT8) (Bda->NumberOfDrives + Private->IdeDriveCount);
1914 if (SioPtr->Floppy.NumberOfFloppy != 0x00) {
1915 MachineConfig = (UINT16) (MachineConfig + 0x01 + (SioPtr->Floppy.NumberOfFloppy - 1) * 0x40);
1916 Bda->FloppyXRate = 0x07;
1917 }
1918
1919 Bda->Lpt1_2Timeout = 0x1414;
1920 Bda->Lpt3_4Timeout = 0x1414;
1921 Bda->Com1_2Timeout = 0x0101;
1922 Bda->Com3_4Timeout = 0x0101;
1923
1924 //
1925 // Force VGA and Coprocessor, indicate 101/102 keyboard
1926 //
1927 MachineConfig = (UINT16) (MachineConfig + 0x00 + 0x02 + (SioPtr->MousePresent * 0x04));
1928 Bda->MachineConfig = MachineConfig;
1929
1930 return EFI_SUCCESS;
1931 }
1932
1933 /**
1934 Fill in the standard BDA for Keyboard LEDs
1935
1936 @param This Protocol instance pointer.
1937 @param Leds Current LED status
1938
1939 @retval EFI_SUCCESS It should always work.
1940
1941 **/
1942 EFI_STATUS
1943 EFIAPI
1944 LegacyBiosUpdateKeyboardLedStatus (
1945 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1946 IN UINT8 Leds
1947 )
1948 {
1949 LEGACY_BIOS_INSTANCE *Private;
1950 BDA_STRUC *Bda;
1951 UINT8 LocalLeds;
1952 EFI_IA32_REGISTER_SET Regs;
1953
1954 Bda = (BDA_STRUC *) ((UINTN) 0x400);
1955
1956 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
1957 LocalLeds = Leds;
1958 Bda->LedStatus = (UINT8) ((Bda->LedStatus &~0x07) | LocalLeds);
1959 LocalLeds = (UINT8) (LocalLeds << 4);
1960 Bda->ShiftStatus = (UINT8) ((Bda->ShiftStatus &~0x70) | LocalLeds);
1961 LocalLeds = (UINT8) (Leds & 0x20);
1962 Bda->KeyboardStatus = (UINT8) ((Bda->KeyboardStatus &~0x20) | LocalLeds);
1963 //
1964 // Call into Legacy16 code to allow it to do any processing
1965 //
1966 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
1967 Regs.X.AX = Legacy16SetKeyboardLeds;
1968 Regs.H.CL = Leds;
1969
1970 Private->LegacyBios.FarCall86 (
1971 &Private->LegacyBios,
1972 Private->Legacy16Table->Compatibility16CallSegment,
1973 Private->Legacy16Table->Compatibility16CallOffset,
1974 &Regs,
1975 NULL,
1976 0
1977 );
1978
1979 return EFI_SUCCESS;
1980 }
1981
1982
1983 /**
1984 Fill in the standard CMOS stuff prior to legacy Boot
1985
1986 @param Private Legacy BIOS Instance data
1987
1988 @retval EFI_SUCCESS It should always work.
1989
1990 **/
1991 EFI_STATUS
1992 LegacyBiosCompleteStandardCmosBeforeBoot (
1993 IN LEGACY_BIOS_INSTANCE *Private
1994 )
1995 {
1996 UINT8 Bda;
1997 UINT8 Floppy;
1998 UINT32 Size;
1999
2000 //
2001 // Update CMOS locations
2002 // 10 floppy
2003 // 12,19,1A - ignore as OS don't use them and there is no standard due
2004 // to large capacity drives
2005 // CMOS 14 = BDA 40:10 plus bit 3(display enabled)
2006 //
2007 Bda = (UINT8)(*((UINT8 *)((UINTN)0x410)) | BIT3);
2008
2009 //
2010 // Force display enabled
2011 //
2012 Floppy = 0x00;
2013 if ((Bda & BIT0) != 0) {
2014 Floppy = BIT6;
2015 }
2016
2017 //
2018 // Check if 2.88MB floppy set
2019 //
2020 if ((Bda & (BIT7 | BIT6)) != 0) {
2021 Floppy = (UINT8)(Floppy | BIT1);
2022 }
2023
2024 LegacyWriteStandardCmos (CMOS_10, Floppy);
2025 LegacyWriteStandardCmos (CMOS_14, Bda);
2026
2027 //
2028 // Force Status Register A to set rate selection bits and divider
2029 //
2030 LegacyWriteStandardCmos (CMOS_0A, 0x26);
2031
2032 //
2033 // redo memory size since it can change
2034 //
2035 Size = 15 * SIZE_1MB;
2036 if (Private->IntThunk->EfiToLegacy16InitTable.OsMemoryAbove1Mb < (15 * SIZE_1MB)) {
2037 Size = Private->IntThunk->EfiToLegacy16InitTable.OsMemoryAbove1Mb >> 10;
2038 }
2039
2040 LegacyWriteStandardCmos (CMOS_17, (UINT8)(Size & 0xFF));
2041 LegacyWriteStandardCmos (CMOS_30, (UINT8)(Size & 0xFF));
2042 LegacyWriteStandardCmos (CMOS_18, (UINT8)(Size >> 8));
2043 LegacyWriteStandardCmos (CMOS_31, (UINT8)(Size >> 8));
2044
2045 LegacyCalculateWriteStandardCmosChecksum ();
2046
2047 return EFI_SUCCESS;
2048 }
2049
2050 /**
2051 Relocate this image under 4G memory for IPF.
2052
2053 @param ImageHandle Handle of driver image.
2054 @param SystemTable Pointer to system table.
2055
2056 @retval EFI_SUCCESS Image successfully relocated.
2057 @retval EFI_ABORTED Failed to relocate image.
2058
2059 **/
2060 EFI_STATUS
2061 RelocateImageUnder4GIfNeeded (
2062 IN EFI_HANDLE ImageHandle,
2063 IN EFI_SYSTEM_TABLE *SystemTable
2064 )
2065 {
2066 return EFI_SUCCESS;
2067 }