]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Include/Library/NetLib.h
Adopt new IPv4/IPv6 device path for network modules.
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
1 /** @file
2 This library is only intended to be used by UEFI network stack modules.
3 It provides basic functions for the UEFI network stack.
4
5 Copyright (c) 2005 - 2011, Intel Corporation. All rights reserved.<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at<BR>
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #ifndef _NET_LIB_H_
17 #define _NET_LIB_H_
18
19 #include <Protocol/Ip6.h>
20
21 #include <Library/BaseLib.h>
22 #include <Library/BaseMemoryLib.h>
23
24 typedef UINT32 IP4_ADDR;
25 typedef UINT32 TCP_SEQNO;
26 typedef UINT16 TCP_PORTNO;
27
28
29 #define NET_ETHER_ADDR_LEN 6
30 #define NET_IFTYPE_ETHERNET 0x01
31
32 #define NET_VLAN_TAG_LEN 4
33 #define ETHER_TYPE_VLAN 0x8100
34
35 #define EFI_IP_PROTO_UDP 0x11
36 #define EFI_IP_PROTO_TCP 0x06
37 #define EFI_IP_PROTO_ICMP 0x01
38 #define IP4_PROTO_IGMP 0x02
39 #define IP6_ICMP 58
40
41 //
42 // The address classification
43 //
44 #define IP4_ADDR_CLASSA 1
45 #define IP4_ADDR_CLASSB 2
46 #define IP4_ADDR_CLASSC 3
47 #define IP4_ADDR_CLASSD 4
48 #define IP4_ADDR_CLASSE 5
49
50 #define IP4_MASK_NUM 33
51 #define IP6_PREFIX_NUM 129
52
53 #define IP6_HOP_BY_HOP 0
54 #define IP6_DESTINATION 60
55 #define IP6_ROUTING 43
56 #define IP6_FRAGMENT 44
57 #define IP6_AH 51
58 #define IP6_ESP 50
59 #define IP6_NO_NEXT_HEADER 59
60
61 #define IP_VERSION_4 4
62 #define IP_VERSION_6 6
63
64 #define IP6_PREFIX_LENGTH 64
65
66 #pragma pack(1)
67
68 //
69 // Ethernet head definition
70 //
71 typedef struct {
72 UINT8 DstMac [NET_ETHER_ADDR_LEN];
73 UINT8 SrcMac [NET_ETHER_ADDR_LEN];
74 UINT16 EtherType;
75 } ETHER_HEAD;
76
77 //
78 // 802.1Q VLAN Tag Control Information
79 //
80 typedef union {
81 struct {
82 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)
83 UINT16 Cfi : 1; // Canonical Format Indicator
84 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)
85 } Bits;
86 UINT16 Uint16;
87 } VLAN_TCI;
88
89 #define VLAN_TCI_CFI_CANONICAL_MAC 0
90 #define VLAN_TCI_CFI_NON_CANONICAL_MAC 1
91
92 //
93 // The EFI_IP4_HEADER is hard to use because the source and
94 // destination address are defined as EFI_IPv4_ADDRESS, which
95 // is a structure. Two structures can't be compared or masked
96 // directly. This is why there is an internal representation.
97 //
98 typedef struct {
99 UINT8 HeadLen : 4;
100 UINT8 Ver : 4;
101 UINT8 Tos;
102 UINT16 TotalLen;
103 UINT16 Id;
104 UINT16 Fragment;
105 UINT8 Ttl;
106 UINT8 Protocol;
107 UINT16 Checksum;
108 IP4_ADDR Src;
109 IP4_ADDR Dst;
110 } IP4_HEAD;
111
112
113 //
114 // ICMP head definition. Each ICMP message is categorized as either an error
115 // message or query message. Two message types have their own head format.
116 //
117 typedef struct {
118 UINT8 Type;
119 UINT8 Code;
120 UINT16 Checksum;
121 } IP4_ICMP_HEAD;
122
123 typedef struct {
124 IP4_ICMP_HEAD Head;
125 UINT32 Fourth; // 4th filed of the head, it depends on Type.
126 IP4_HEAD IpHead;
127 } IP4_ICMP_ERROR_HEAD;
128
129 typedef struct {
130 IP4_ICMP_HEAD Head;
131 UINT16 Id;
132 UINT16 Seq;
133 } IP4_ICMP_QUERY_HEAD;
134
135 typedef struct {
136 UINT8 Type;
137 UINT8 Code;
138 UINT16 Checksum;
139 } IP6_ICMP_HEAD;
140
141 typedef struct {
142 IP6_ICMP_HEAD Head;
143 UINT32 Fourth;
144 EFI_IP6_HEADER IpHead;
145 } IP6_ICMP_ERROR_HEAD;
146
147 typedef struct {
148 IP6_ICMP_HEAD Head;
149 UINT32 Fourth;
150 } IP6_ICMP_INFORMATION_HEAD;
151
152 //
153 // UDP header definition
154 //
155 typedef struct {
156 UINT16 SrcPort;
157 UINT16 DstPort;
158 UINT16 Length;
159 UINT16 Checksum;
160 } EFI_UDP_HEADER;
161
162 //
163 // TCP header definition
164 //
165 typedef struct {
166 TCP_PORTNO SrcPort;
167 TCP_PORTNO DstPort;
168 TCP_SEQNO Seq;
169 TCP_SEQNO Ack;
170 UINT8 Res : 4;
171 UINT8 HeadLen : 4;
172 UINT8 Flag;
173 UINT16 Wnd;
174 UINT16 Checksum;
175 UINT16 Urg;
176 } TCP_HEAD;
177
178 #pragma pack()
179
180 #define NET_MAC_EQUAL(pMac1, pMac2, Len) \
181 (CompareMem ((pMac1), (pMac2), Len) == 0)
182
183 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
184 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
185
186 #define NTOHL(x) SwapBytes32 (x)
187
188 #define HTONL(x) NTOHL(x)
189
190 #define NTOHS(x) SwapBytes16 (x)
191
192 #define HTONS(x) NTOHS(x)
193 #define NTOHLL(x) SwapBytes64 (x)
194 #define HTONLL(x) NTOHLL(x)
195 #define NTOHLLL(x) Ip6Swap128 (x)
196 #define HTONLLL(x) NTOHLLL(x)
197
198 //
199 // Test the IP's attribute, All the IPs are in host byte order.
200 //
201 #define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)
202 #define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)
203 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
204 #define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != IP4_MASK_NUM)
205
206 #define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)
207
208 //
209 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
210 //
211 #define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))
212 #define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))
213 #define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
214
215 #define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
216
217 #define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))
218 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
219 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
220
221 //
222 // The debug level definition. This value is also used as the
223 // syslog's servity level. Don't change it.
224 //
225 #define NETDEBUG_LEVEL_TRACE 5
226 #define NETDEBUG_LEVEL_WARNING 4
227 #define NETDEBUG_LEVEL_ERROR 3
228
229 //
230 // Network debug message is sent out as syslog packet.
231 //
232 #define NET_SYSLOG_FACILITY 16 // Syslog local facility local use
233 #define NET_SYSLOG_PACKET_LEN 512
234 #define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms
235 #define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)
236
237 //
238 // The debug output expects the ASCII format string, Use %a to print ASCII
239 // string, and %s to print UNICODE string. PrintArg must be enclosed in ().
240 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
241 //
242 #define NET_DEBUG_TRACE(Module, PrintArg) \
243 NetDebugOutput ( \
244 NETDEBUG_LEVEL_TRACE, \
245 Module, \
246 __FILE__, \
247 __LINE__, \
248 NetDebugASPrint PrintArg \
249 )
250
251 #define NET_DEBUG_WARNING(Module, PrintArg) \
252 NetDebugOutput ( \
253 NETDEBUG_LEVEL_WARNING, \
254 Module, \
255 __FILE__, \
256 __LINE__, \
257 NetDebugASPrint PrintArg \
258 )
259
260 #define NET_DEBUG_ERROR(Module, PrintArg) \
261 NetDebugOutput ( \
262 NETDEBUG_LEVEL_ERROR, \
263 Module, \
264 __FILE__, \
265 __LINE__, \
266 NetDebugASPrint PrintArg \
267 )
268
269 /**
270 Allocate a buffer, then format the message to it. This is a
271 help function for the NET_DEBUG_XXX macros. The PrintArg of
272 these macros treats the variable length print parameters as a
273 single parameter, and pass it to the NetDebugASPrint. For
274 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
275 if extracted to:
276
277 NetDebugOutput (
278 NETDEBUG_LEVEL_TRACE,
279 "Tcp",
280 __FILE__,
281 __LINE__,
282 NetDebugASPrint ("State transit to %a\n", Name)
283 )
284
285 @param Format The ASCII format string.
286 @param ... The variable length parameter whose format is determined
287 by the Format string.
288
289 @return The buffer containing the formatted message,
290 or NULL if memory allocation failed.
291
292 **/
293 CHAR8 *
294 EFIAPI
295 NetDebugASPrint (
296 IN CHAR8 *Format,
297 ...
298 );
299
300 /**
301 Builds an UDP4 syslog packet and send it using SNP.
302
303 This function will locate a instance of SNP then send the message through it.
304 Because it isn't open the SNP BY_DRIVER, apply caution when using it.
305
306 @param Level The servity level of the message.
307 @param Module The Moudle that generates the log.
308 @param File The file that contains the log.
309 @param Line The exact line that contains the log.
310 @param Message The user message to log.
311
312 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
313 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet
314 @retval EFI_SUCCESS The log is discard because that it is more verbose
315 than the mNetDebugLevelMax. Or, it has been sent out.
316 **/
317 EFI_STATUS
318 EFIAPI
319 NetDebugOutput (
320 IN UINT32 Level,
321 IN UINT8 *Module,
322 IN UINT8 *File,
323 IN UINT32 Line,
324 IN UINT8 *Message
325 );
326
327
328 /**
329 Return the length of the mask.
330
331 Return the length of the mask. Valid values are 0 to 32.
332 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
333 NetMask is in the host byte order.
334
335 @param[in] NetMask The netmask to get the length from.
336
337 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
338
339 **/
340 INTN
341 EFIAPI
342 NetGetMaskLength (
343 IN IP4_ADDR NetMask
344 );
345
346 /**
347 Return the class of the IP address, such as class A, B, C.
348 Addr is in host byte order.
349
350 The address of class A starts with 0.
351 If the address belong to class A, return IP4_ADDR_CLASSA.
352 The address of class B starts with 10.
353 If the address belong to class B, return IP4_ADDR_CLASSB.
354 The address of class C starts with 110.
355 If the address belong to class C, return IP4_ADDR_CLASSC.
356 The address of class D starts with 1110.
357 If the address belong to class D, return IP4_ADDR_CLASSD.
358 The address of class E starts with 1111.
359 If the address belong to class E, return IP4_ADDR_CLASSE.
360
361
362 @param[in] Addr The address to get the class from.
363
364 @return IP address class, such as IP4_ADDR_CLASSA.
365
366 **/
367 INTN
368 EFIAPI
369 NetGetIpClass (
370 IN IP4_ADDR Addr
371 );
372
373 /**
374 Check whether the IP is a valid unicast address according to
375 the netmask. If NetMask is zero, use the IP address's class to get the default mask.
376
377 If Ip is 0, IP is not a valid unicast address.
378 Class D address is used for multicasting and class E address is reserved for future. If Ip
379 belongs to class D or class E, Ip is not a valid unicast address.
380 If all bits of the host address of Ip are 0 or 1, Ip is not a valid unicast address.
381
382 @param[in] Ip The IP to check against.
383 @param[in] NetMask The mask of the IP.
384
385 @return TRUE if Ip is a valid unicast address on the network, otherwise FALSE.
386
387 **/
388 BOOLEAN
389 EFIAPI
390 NetIp4IsUnicast (
391 IN IP4_ADDR Ip,
392 IN IP4_ADDR NetMask
393 );
394
395 /**
396 Check whether the incoming IPv6 address is a valid unicast address.
397
398 If the address is a multicast address has binary 0xFF at the start, it is not
399 a valid unicast address. If the address is unspecified ::, it is not a valid
400 unicast address to be assigned to any node. If the address is loopback address
401 ::1, it is also not a valid unicast address to be assigned to any physical
402 interface.
403
404 @param[in] Ip6 The IPv6 address to check against.
405
406 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
407
408 **/
409 BOOLEAN
410 EFIAPI
411 NetIp6IsValidUnicast (
412 IN EFI_IPv6_ADDRESS *Ip6
413 );
414
415
416 /**
417 Check whether the incoming Ipv6 address is the unspecified address or not.
418
419 @param[in] Ip6 - Ip6 address, in network order.
420
421 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address.
422 @retval FALSE - The incoming Ipv6 address is not the unspecified address
423
424 **/
425 BOOLEAN
426 EFIAPI
427 NetIp6IsUnspecifiedAddr (
428 IN EFI_IPv6_ADDRESS *Ip6
429 );
430
431 /**
432 Check whether the incoming Ipv6 address is a link-local address.
433
434 @param[in] Ip6 - Ip6 address, in network order.
435
436 @retval TRUE - The incoming Ipv6 address is a link-local address.
437 @retval FALSE - The incoming Ipv6 address is not a link-local address.
438
439 **/
440 BOOLEAN
441 EFIAPI
442 NetIp6IsLinkLocalAddr (
443 IN EFI_IPv6_ADDRESS *Ip6
444 );
445
446 /**
447 Check whether the Ipv6 address1 and address2 are on the connected network.
448
449 @param[in] Ip1 - Ip6 address1, in network order.
450 @param[in] Ip2 - Ip6 address2, in network order.
451 @param[in] PrefixLength - The prefix length of the checking net.
452
453 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected.
454 @retval FALSE - No the Ipv6 address1 and address2 are not connected.
455
456 **/
457 BOOLEAN
458 EFIAPI
459 NetIp6IsNetEqual (
460 EFI_IPv6_ADDRESS *Ip1,
461 EFI_IPv6_ADDRESS *Ip2,
462 UINT8 PrefixLength
463 );
464
465 /**
466 Switches the endianess of an IPv6 address.
467
468 This function swaps the bytes in a 128-bit IPv6 address to switch the value
469 from little endian to big endian or vice versa. The byte swapped value is
470 returned.
471
472 @param Ip6 Points to an IPv6 address.
473
474 @return The byte swapped IPv6 address.
475
476 **/
477 EFI_IPv6_ADDRESS *
478 EFIAPI
479 Ip6Swap128 (
480 EFI_IPv6_ADDRESS *Ip6
481 );
482
483 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
484
485
486 extern EFI_IPv4_ADDRESS mZeroIp4Addr;
487
488 #define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))
489 #define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))
490 #define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))
491 #define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))
492
493 #define TICKS_PER_MS 10000U
494 #define TICKS_PER_SECOND 10000000U
495
496 #define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
497
498 /**
499 Extract a UINT32 from a byte stream.
500
501 This function copies a UINT32 from a byte stream, and then converts it from Network
502 byte order to host byte order. Use this function to avoid alignment error.
503
504 @param[in] Buf The buffer to extract the UINT32.
505
506 @return The UINT32 extracted.
507
508 **/
509 UINT32
510 EFIAPI
511 NetGetUint32 (
512 IN UINT8 *Buf
513 );
514
515 /**
516 Puts a UINT32 into the byte stream in network byte order.
517
518 Converts a UINT32 from host byte order to network byte order, then copies it to the
519 byte stream.
520
521 @param[in, out] Buf The buffer in which to put the UINT32.
522 @param[in] Data The data to be converted and put into the byte stream.
523
524 **/
525 VOID
526 EFIAPI
527 NetPutUint32 (
528 IN OUT UINT8 *Buf,
529 IN UINT32 Data
530 );
531
532 /**
533 Initialize a random seed using current time.
534
535 Get current time first. Then initialize a random seed based on some basic
536 mathematical operations on the hour, day, minute, second, nanosecond and year
537 of the current time.
538
539 @return The random seed, initialized with current time.
540
541 **/
542 UINT32
543 EFIAPI
544 NetRandomInitSeed (
545 VOID
546 );
547
548
549 #define NET_LIST_USER_STRUCT(Entry, Type, Field) \
550 BASE_CR(Entry, Type, Field)
551
552 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \
553 CR(Entry, Type, Field, Sig)
554
555 //
556 // Iterate through the double linked list. It is NOT delete safe
557 //
558 #define NET_LIST_FOR_EACH(Entry, ListHead) \
559 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
560
561 //
562 // Iterate through the double linked list. This is delete-safe.
563 // Don't touch NextEntry. Also, don't use this macro if list
564 // entries other than the Entry may be deleted when processing
565 // the current Entry.
566 //
567 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
568 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
569 Entry != (ListHead); \
570 Entry = NextEntry, NextEntry = Entry->ForwardLink \
571 )
572
573 //
574 // Make sure the list isn't empty before getting the first/last record.
575 //
576 #define NET_LIST_HEAD(ListHead, Type, Field) \
577 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
578
579 #define NET_LIST_TAIL(ListHead, Type, Field) \
580 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
581
582
583 /**
584 Remove the first node entry on the list, and return the removed node entry.
585
586 Removes the first node entry from a doubly linked list. It is up to the caller of
587 this function to release the memory used by the first node, if that is required. On
588 exit, the removed node is returned.
589
590 If Head is NULL, then ASSERT().
591 If Head was not initialized, then ASSERT().
592 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
593 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
594 then ASSERT().
595
596 @param[in, out] Head The list header.
597
598 @return The first node entry that is removed from the list, NULL if the list is empty.
599
600 **/
601 LIST_ENTRY *
602 EFIAPI
603 NetListRemoveHead (
604 IN OUT LIST_ENTRY *Head
605 );
606
607 /**
608 Remove the last node entry on the list and return the removed node entry.
609
610 Removes the last node entry from a doubly linked list. It is up to the caller of
611 this function to release the memory used by the first node, if that is required. On
612 exit, the removed node is returned.
613
614 If Head is NULL, then ASSERT().
615 If Head was not initialized, then ASSERT().
616 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
617 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
618 then ASSERT().
619
620 @param[in, out] Head The list head.
621
622 @return The last node entry that is removed from the list, NULL if the list is empty.
623
624 **/
625 LIST_ENTRY *
626 EFIAPI
627 NetListRemoveTail (
628 IN OUT LIST_ENTRY *Head
629 );
630
631 /**
632 Insert a new node entry after a designated node entry of a doubly linked list.
633
634 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
635 of the doubly linked list.
636
637 @param[in, out] PrevEntry The entry after which to insert.
638 @param[in, out] NewEntry The new entry to insert.
639
640 **/
641 VOID
642 EFIAPI
643 NetListInsertAfter (
644 IN OUT LIST_ENTRY *PrevEntry,
645 IN OUT LIST_ENTRY *NewEntry
646 );
647
648 /**
649 Insert a new node entry before a designated node entry of a doubly linked list.
650
651 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
652 of the doubly linked list.
653
654 @param[in, out] PostEntry The entry to insert before.
655 @param[in, out] NewEntry The new entry to insert.
656
657 **/
658 VOID
659 EFIAPI
660 NetListInsertBefore (
661 IN OUT LIST_ENTRY *PostEntry,
662 IN OUT LIST_ENTRY *NewEntry
663 );
664
665
666 //
667 // Object container: EFI network stack spec defines various kinds of
668 // tokens. The drivers can share code to manage those objects.
669 //
670 typedef struct {
671 LIST_ENTRY Link;
672 VOID *Key;
673 VOID *Value;
674 } NET_MAP_ITEM;
675
676 typedef struct {
677 LIST_ENTRY Used;
678 LIST_ENTRY Recycled;
679 UINTN Count;
680 } NET_MAP;
681
682 #define NET_MAP_INCREAMENT 64
683
684 /**
685 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
686
687 Initialize the forward and backward links of two head nodes donated by Map->Used
688 and Map->Recycled of two doubly linked lists.
689 Initializes the count of the <Key, Value> pairs in the netmap to zero.
690
691 If Map is NULL, then ASSERT().
692 If the address of Map->Used is NULL, then ASSERT().
693 If the address of Map->Recycled is NULl, then ASSERT().
694
695 @param[in, out] Map The netmap to initialize.
696
697 **/
698 VOID
699 EFIAPI
700 NetMapInit (
701 IN OUT NET_MAP *Map
702 );
703
704 /**
705 To clean up the netmap, that is, release allocated memories.
706
707 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
708 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
709 The number of the <Key, Value> pairs in the netmap is set to zero.
710
711 If Map is NULL, then ASSERT().
712
713 @param[in, out] Map The netmap to clean up.
714
715 **/
716 VOID
717 EFIAPI
718 NetMapClean (
719 IN OUT NET_MAP *Map
720 );
721
722 /**
723 Test whether the netmap is empty and return true if it is.
724
725 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
726
727 If Map is NULL, then ASSERT().
728
729
730 @param[in] Map The net map to test.
731
732 @return TRUE if the netmap is empty, otherwise FALSE.
733
734 **/
735 BOOLEAN
736 EFIAPI
737 NetMapIsEmpty (
738 IN NET_MAP *Map
739 );
740
741 /**
742 Return the number of the <Key, Value> pairs in the netmap.
743
744 @param[in] Map The netmap to get the entry number.
745
746 @return The entry number in the netmap.
747
748 **/
749 UINTN
750 EFIAPI
751 NetMapGetCount (
752 IN NET_MAP *Map
753 );
754
755 /**
756 Allocate an item to save the <Key, Value> pair to the head of the netmap.
757
758 Allocate an item to save the <Key, Value> pair and add corresponding node entry
759 to the beginning of the Used doubly linked list. The number of the <Key, Value>
760 pairs in the netmap increase by 1.
761
762 If Map is NULL, then ASSERT().
763
764 @param[in, out] Map The netmap to insert into.
765 @param[in] Key The user's key.
766 @param[in] Value The user's value for the key.
767
768 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
769 @retval EFI_SUCCESS The item is inserted to the head.
770
771 **/
772 EFI_STATUS
773 EFIAPI
774 NetMapInsertHead (
775 IN OUT NET_MAP *Map,
776 IN VOID *Key,
777 IN VOID *Value OPTIONAL
778 );
779
780 /**
781 Allocate an item to save the <Key, Value> pair to the tail of the netmap.
782
783 Allocate an item to save the <Key, Value> pair and add corresponding node entry
784 to the tail of the Used doubly linked list. The number of the <Key, Value>
785 pairs in the netmap increase by 1.
786
787 If Map is NULL, then ASSERT().
788
789 @param[in, out] Map The netmap to insert into.
790 @param[in] Key The user's key.
791 @param[in] Value The user's value for the key.
792
793 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
794 @retval EFI_SUCCESS The item is inserted to the tail.
795
796 **/
797 EFI_STATUS
798 EFIAPI
799 NetMapInsertTail (
800 IN OUT NET_MAP *Map,
801 IN VOID *Key,
802 IN VOID *Value OPTIONAL
803 );
804
805 /**
806 Finds the key in the netmap and returns the point to the item containing the Key.
807
808 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
809 item with the key to search. It returns the point to the item contains the Key if found.
810
811 If Map is NULL, then ASSERT().
812
813 @param[in] Map The netmap to search within.
814 @param[in] Key The key to search.
815
816 @return The point to the item contains the Key, or NULL if Key isn't in the map.
817
818 **/
819 NET_MAP_ITEM *
820 EFIAPI
821 NetMapFindKey (
822 IN NET_MAP *Map,
823 IN VOID *Key
824 );
825
826 /**
827 Remove the node entry of the item from the netmap and return the key of the removed item.
828
829 Remove the node entry of the item from the Used doubly linked list of the netmap.
830 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
831 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
832 Value will point to the value of the item. It returns the key of the removed item.
833
834 If Map is NULL, then ASSERT().
835 If Item is NULL, then ASSERT().
836 if item in not in the netmap, then ASSERT().
837
838 @param[in, out] Map The netmap to remove the item from.
839 @param[in, out] Item The item to remove.
840 @param[out] Value The variable to receive the value if not NULL.
841
842 @return The key of the removed item.
843
844 **/
845 VOID *
846 EFIAPI
847 NetMapRemoveItem (
848 IN OUT NET_MAP *Map,
849 IN OUT NET_MAP_ITEM *Item,
850 OUT VOID **Value OPTIONAL
851 );
852
853 /**
854 Remove the first node entry on the netmap and return the key of the removed item.
855
856 Remove the first node entry from the Used doubly linked list of the netmap.
857 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
858 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
859 parameter Value will point to the value of the item. It returns the key of the removed item.
860
861 If Map is NULL, then ASSERT().
862 If the Used doubly linked list is empty, then ASSERT().
863
864 @param[in, out] Map The netmap to remove the head from.
865 @param[out] Value The variable to receive the value if not NULL.
866
867 @return The key of the item removed.
868
869 **/
870 VOID *
871 EFIAPI
872 NetMapRemoveHead (
873 IN OUT NET_MAP *Map,
874 OUT VOID **Value OPTIONAL
875 );
876
877 /**
878 Remove the last node entry on the netmap and return the key of the removed item.
879
880 Remove the last node entry from the Used doubly linked list of the netmap.
881 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
882 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
883 parameter Value will point to the value of the item. It returns the key of the removed item.
884
885 If Map is NULL, then ASSERT().
886 If the Used doubly linked list is empty, then ASSERT().
887
888 @param[in, out] Map The netmap to remove the tail from.
889 @param[out] Value The variable to receive the value if not NULL.
890
891 @return The key of the item removed.
892
893 **/
894 VOID *
895 EFIAPI
896 NetMapRemoveTail (
897 IN OUT NET_MAP *Map,
898 OUT VOID **Value OPTIONAL
899 );
900
901 typedef
902 EFI_STATUS
903 (EFIAPI *NET_MAP_CALLBACK) (
904 IN NET_MAP *Map,
905 IN NET_MAP_ITEM *Item,
906 IN VOID *Arg
907 );
908
909 /**
910 Iterate through the netmap and call CallBack for each item.
911
912 It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
913 from the loop. It returns the CallBack's last return value. This function is
914 delete safe for the current item.
915
916 If Map is NULL, then ASSERT().
917 If CallBack is NULL, then ASSERT().
918
919 @param[in] Map The Map to iterate through.
920 @param[in] CallBack The callback function to call for each item.
921 @param[in] Arg The opaque parameter to the callback.
922
923 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item
924 returns EFI_SUCCESS.
925 @retval Others It returns the CallBack's last return value.
926
927 **/
928 EFI_STATUS
929 EFIAPI
930 NetMapIterate (
931 IN NET_MAP *Map,
932 IN NET_MAP_CALLBACK CallBack,
933 IN VOID *Arg OPTIONAL
934 );
935
936
937 //
938 // Helper functions to implement driver binding and service binding protocols.
939 //
940 /**
941 Create a child of the service that is identified by ServiceBindingGuid.
942
943 Get the ServiceBinding Protocol first, then use it to create a child.
944
945 If ServiceBindingGuid is NULL, then ASSERT().
946 If ChildHandle is NULL, then ASSERT().
947
948 @param[in] Controller The controller which has the service installed.
949 @param[in] Image The image handle used to open service.
950 @param[in] ServiceBindingGuid The service's Guid.
951 @param[in, out] ChildHandle The handle to receive the created child.
952
953 @retval EFI_SUCCESS The child was successfully created.
954 @retval Others Failed to create the child.
955
956 **/
957 EFI_STATUS
958 EFIAPI
959 NetLibCreateServiceChild (
960 IN EFI_HANDLE Controller,
961 IN EFI_HANDLE Image,
962 IN EFI_GUID *ServiceBindingGuid,
963 IN OUT EFI_HANDLE *ChildHandle
964 );
965
966 /**
967 Destroy a child of the service that is identified by ServiceBindingGuid.
968
969 Get the ServiceBinding Protocol first, then use it to destroy a child.
970
971 If ServiceBindingGuid is NULL, then ASSERT().
972
973 @param[in] Controller The controller which has the service installed.
974 @param[in] Image The image handle used to open service.
975 @param[in] ServiceBindingGuid The service's Guid.
976 @param[in] ChildHandle The child to destroy.
977
978 @retval EFI_SUCCESS The child was destroyed.
979 @retval Others Failed to destroy the child.
980
981 **/
982 EFI_STATUS
983 EFIAPI
984 NetLibDestroyServiceChild (
985 IN EFI_HANDLE Controller,
986 IN EFI_HANDLE Image,
987 IN EFI_GUID *ServiceBindingGuid,
988 IN EFI_HANDLE ChildHandle
989 );
990
991 /**
992 Get handle with Simple Network Protocol installed on it.
993
994 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
995 If Simple Network Protocol is already installed on the ServiceHandle, the
996 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
997 try to find its parent handle with SNP installed.
998
999 @param[in] ServiceHandle The handle where network service binding protocols are
1000 installed on.
1001 @param[out] Snp The pointer to store the address of the SNP instance.
1002 This is an optional parameter that may be NULL.
1003
1004 @return The SNP handle, or NULL if not found.
1005
1006 **/
1007 EFI_HANDLE
1008 EFIAPI
1009 NetLibGetSnpHandle (
1010 IN EFI_HANDLE ServiceHandle,
1011 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL
1012 );
1013
1014 /**
1015 Retrieve VLAN ID of a VLAN device handle.
1016
1017 Search VLAN device path node in Device Path of specified ServiceHandle and
1018 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
1019 is not a VLAN device handle, and 0 will be returned.
1020
1021 @param[in] ServiceHandle The handle where network service binding protocols are
1022 installed on.
1023
1024 @return VLAN ID of the device handle, or 0 if not a VLAN device.
1025
1026 **/
1027 UINT16
1028 EFIAPI
1029 NetLibGetVlanId (
1030 IN EFI_HANDLE ServiceHandle
1031 );
1032
1033 /**
1034 Find VLAN device handle with specified VLAN ID.
1035
1036 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
1037 This function will append VLAN device path node to the parent device path,
1038 and then use LocateDevicePath() to find the correct VLAN device handle.
1039
1040 @param[in] ControllerHandle The handle where network service binding protocols are
1041 installed on.
1042 @param[in] VlanId The configured VLAN ID for the VLAN device.
1043
1044 @return The VLAN device handle, or NULL if not found.
1045
1046 **/
1047 EFI_HANDLE
1048 EFIAPI
1049 NetLibGetVlanHandle (
1050 IN EFI_HANDLE ControllerHandle,
1051 IN UINT16 VlanId
1052 );
1053
1054 /**
1055 Get MAC address associated with the network service handle.
1056
1057 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1058 If SNP is installed on the ServiceHandle or its parent handle, MAC address will
1059 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
1060
1061 @param[in] ServiceHandle The handle where network service binding protocols are
1062 installed on.
1063 @param[out] MacAddress The pointer to store the returned MAC address.
1064 @param[out] AddressSize The length of returned MAC address.
1065
1066 @retval EFI_SUCCESS MAC address was returned successfully.
1067 @retval Others Failed to get SNP mode data.
1068
1069 **/
1070 EFI_STATUS
1071 EFIAPI
1072 NetLibGetMacAddress (
1073 IN EFI_HANDLE ServiceHandle,
1074 OUT EFI_MAC_ADDRESS *MacAddress,
1075 OUT UINTN *AddressSize
1076 );
1077
1078 /**
1079 Convert MAC address of the NIC associated with specified Service Binding Handle
1080 to a unicode string. Callers are responsible for freeing the string storage.
1081
1082 Locate simple network protocol associated with the Service Binding Handle and
1083 get the mac address from SNP. Then convert the mac address into a unicode
1084 string. It takes 2 unicode characters to represent a 1 byte binary buffer.
1085 Plus one unicode character for the null-terminator.
1086
1087 @param[in] ServiceHandle The handle where network service binding protocol is
1088 installed.
1089 @param[in] ImageHandle The image handle used to act as the agent handle to
1090 get the simple network protocol.
1091 @param[out] MacString The pointer to store the address of the string
1092 representation of the mac address.
1093
1094 @retval EFI_SUCCESS Converted the mac address a unicode string successfully.
1095 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources.
1096 @retval Others Failed to open the simple network protocol.
1097
1098 **/
1099 EFI_STATUS
1100 EFIAPI
1101 NetLibGetMacString (
1102 IN EFI_HANDLE ServiceHandle,
1103 IN EFI_HANDLE ImageHandle,
1104 OUT CHAR16 **MacString
1105 );
1106
1107 /**
1108 Detect media status for specified network device.
1109
1110 The underlying UNDI driver may or may not support reporting media status from
1111 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
1112 will try to invoke Snp->GetStatus() to get the media status. If media is already
1113 present, it returns directly. If media is not present, it will stop SNP and then
1114 restart SNP to get the latest media status. This provides an opportunity to get
1115 the correct media status for old UNDI driver, which doesn't support reporting
1116 media status from GET_STATUS command.
1117 Note: there are two limitations for the current algorithm:
1118 1) For UNDI with this capability, when the cable is not attached, there will
1119 be an redundant Stop/Start() process.
1120 2) for UNDI without this capability, in case that network cable is attached when
1121 Snp->Initialize() is invoked while network cable is unattached later,
1122 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
1123 apps to wait for timeout time.
1124
1125 @param[in] ServiceHandle The handle where network service binding protocols are
1126 installed.
1127 @param[out] MediaPresent The pointer to store the media status.
1128
1129 @retval EFI_SUCCESS Media detection success.
1130 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.
1131 @retval EFI_UNSUPPORTED The network device does not support media detection.
1132 @retval EFI_DEVICE_ERROR SNP is in an unknown state.
1133
1134 **/
1135 EFI_STATUS
1136 EFIAPI
1137 NetLibDetectMedia (
1138 IN EFI_HANDLE ServiceHandle,
1139 OUT BOOLEAN *MediaPresent
1140 );
1141
1142 /**
1143 Create an IPv4 device path node.
1144
1145 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
1146 The header subtype of IPv4 device path node is MSG_IPv4_DP.
1147 The length of the IPv4 device path node in bytes is 19.
1148 Get other information from parameters to make up the whole IPv4 device path node.
1149
1150 @param[in, out] Node The pointer to the IPv4 device path node.
1151 @param[in] Controller The controller handle.
1152 @param[in] LocalIp The local IPv4 address.
1153 @param[in] LocalPort The local port.
1154 @param[in] RemoteIp The remote IPv4 address.
1155 @param[in] RemotePort The remote port.
1156 @param[in] Protocol The protocol type in the IP header.
1157 @param[in] UseDefaultAddress Whether this instance is using default address or not.
1158
1159 **/
1160 VOID
1161 EFIAPI
1162 NetLibCreateIPv4DPathNode (
1163 IN OUT IPv4_DEVICE_PATH *Node,
1164 IN EFI_HANDLE Controller,
1165 IN IP4_ADDR LocalIp,
1166 IN UINT16 LocalPort,
1167 IN IP4_ADDR RemoteIp,
1168 IN UINT16 RemotePort,
1169 IN UINT16 Protocol,
1170 IN BOOLEAN UseDefaultAddress
1171 );
1172
1173 /**
1174 Create an IPv6 device path node.
1175
1176 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
1177 The header subtype of IPv6 device path node is MSG_IPv6_DP.
1178 The length of the IPv6 device path node in bytes is 43.
1179 Get other information from parameters to make up the whole IPv6 device path node.
1180
1181 @param[in, out] Node The pointer to the IPv6 device path node.
1182 @param[in] Controller The controller handle.
1183 @param[in] LocalIp The local IPv6 address.
1184 @param[in] LocalPort The local port.
1185 @param[in] RemoteIp The remote IPv6 address.
1186 @param[in] RemotePort The remote port.
1187 @param[in] Protocol The protocol type in the IP header.
1188
1189 **/
1190 VOID
1191 EFIAPI
1192 NetLibCreateIPv6DPathNode (
1193 IN OUT IPv6_DEVICE_PATH *Node,
1194 IN EFI_HANDLE Controller,
1195 IN EFI_IPv6_ADDRESS *LocalIp,
1196 IN UINT16 LocalPort,
1197 IN EFI_IPv6_ADDRESS *RemoteIp,
1198 IN UINT16 RemotePort,
1199 IN UINT16 Protocol
1200 );
1201
1202
1203 /**
1204 Find the UNDI/SNP handle from controller and protocol GUID.
1205
1206 For example, IP will open an MNP child to transmit/receive
1207 packets. When MNP is stopped, IP should also be stopped. IP
1208 needs to find its own private data that is related the IP's
1209 service binding instance that is installed on the UNDI/SNP handle.
1210 The controller is then either an MNP or an ARP child handle. Note that
1211 IP opens these handles using BY_DRIVER. Use that infomation to get the
1212 UNDI/SNP handle.
1213
1214 @param[in] Controller The protocol handle to check.
1215 @param[in] ProtocolGuid The protocol that is related with the handle.
1216
1217 @return The UNDI/SNP handle or NULL for errors.
1218
1219 **/
1220 EFI_HANDLE
1221 EFIAPI
1222 NetLibGetNicHandle (
1223 IN EFI_HANDLE Controller,
1224 IN EFI_GUID *ProtocolGuid
1225 );
1226
1227 /**
1228 This is the default unload handle for all the network drivers.
1229
1230 Disconnect the driver specified by ImageHandle from all the devices in the handle database.
1231 Uninstall all the protocols installed in the driver entry point.
1232
1233 @param[in] ImageHandle The drivers' driver image.
1234
1235 @retval EFI_SUCCESS The image is unloaded.
1236 @retval Others Failed to unload the image.
1237
1238 **/
1239 EFI_STATUS
1240 EFIAPI
1241 NetLibDefaultUnload (
1242 IN EFI_HANDLE ImageHandle
1243 );
1244
1245 /**
1246 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
1247
1248 @param[in] String The pointer to the Ascii string.
1249 @param[out] Ip4Address The pointer to the converted IPv4 address.
1250
1251 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1252 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip4Address is NULL.
1253
1254 **/
1255 EFI_STATUS
1256 EFIAPI
1257 NetLibAsciiStrToIp4 (
1258 IN CONST CHAR8 *String,
1259 OUT EFI_IPv4_ADDRESS *Ip4Address
1260 );
1261
1262 /**
1263 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
1264 string is defined in RFC 4291 - Text Pepresentation of Addresses.
1265
1266 @param[in] String The pointer to the Ascii string.
1267 @param[out] Ip6Address The pointer to the converted IPv6 address.
1268
1269 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1270 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.
1271
1272 **/
1273 EFI_STATUS
1274 EFIAPI
1275 NetLibAsciiStrToIp6 (
1276 IN CONST CHAR8 *String,
1277 OUT EFI_IPv6_ADDRESS *Ip6Address
1278 );
1279
1280 /**
1281 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
1282
1283 @param[in] String The pointer to the Ascii string.
1284 @param[out] Ip4Address The pointer to the converted IPv4 address.
1285
1286 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1287 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL.
1288 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to lack of resources.
1289
1290 **/
1291 EFI_STATUS
1292 EFIAPI
1293 NetLibStrToIp4 (
1294 IN CONST CHAR16 *String,
1295 OUT EFI_IPv4_ADDRESS *Ip4Address
1296 );
1297
1298 /**
1299 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of
1300 the string is defined in RFC 4291 - Text Pepresentation of Addresses.
1301
1302 @param[in] String The pointer to the Ascii string.
1303 @param[out] Ip6Address The pointer to the converted IPv6 address.
1304
1305 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1306 @retval EFI_INVALID_PARAMETER The string is malformated or Ip6Address is NULL.
1307 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.
1308
1309 **/
1310 EFI_STATUS
1311 EFIAPI
1312 NetLibStrToIp6 (
1313 IN CONST CHAR16 *String,
1314 OUT EFI_IPv6_ADDRESS *Ip6Address
1315 );
1316
1317 /**
1318 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
1319 The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses
1320 Prefixes: ipv6-address/prefix-length.
1321
1322 @param[in] String The pointer to the Ascii string.
1323 @param[out] Ip6Address The pointer to the converted IPv6 address.
1324 @param[out] PrefixLength The pointer to the converted prefix length.
1325
1326 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1327 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.
1328 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.
1329
1330 **/
1331 EFI_STATUS
1332 EFIAPI
1333 NetLibStrToIp6andPrefix (
1334 IN CONST CHAR16 *String,
1335 OUT EFI_IPv6_ADDRESS *Ip6Address,
1336 OUT UINT8 *PrefixLength
1337 );
1338
1339 //
1340 // Various signatures
1341 //
1342 #define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')
1343 #define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
1344 #define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')
1345
1346
1347 #define NET_PROTO_DATA 64 // Opaque buffer for protocols
1348 #define NET_BUF_HEAD 1 // Trim or allocate space from head
1349 #define NET_BUF_TAIL 0 // Trim or allocate space from tail
1350 #define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector
1351
1352 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
1353 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
1354
1355 //
1356 // Single memory block in the vector.
1357 //
1358 typedef struct {
1359 UINT32 Len; // The block's length
1360 UINT8 *Bulk; // The block's Data
1361 } NET_BLOCK;
1362
1363 typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);
1364
1365 //
1366 //NET_VECTOR contains several blocks to hold all packet's
1367 //fragments and other house-keeping stuff for sharing. It
1368 //doesn't specify the where actual packet fragment begins.
1369 //
1370 typedef struct {
1371 UINT32 Signature;
1372 INTN RefCnt; // Reference count to share NET_VECTOR.
1373 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR
1374 VOID *Arg; // opeque argument to Free
1375 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST
1376 UINT32 Len; // Total length of the assocated BLOCKs
1377
1378 UINT32 BlockNum;
1379 NET_BLOCK Block[1];
1380 } NET_VECTOR;
1381
1382 //
1383 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies
1384 //where the actual fragment begins and ends
1385 //
1386 typedef struct {
1387 UINT8 *BlockHead; // Block's head, or the smallest valid Head
1388 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length
1389 UINT8 *Head; // 1st byte of the data in the block
1390 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size
1391 UINT32 Size; // The size of the data
1392 } NET_BLOCK_OP;
1393
1394 typedef union {
1395 IP4_HEAD *Ip4;
1396 EFI_IP6_HEADER *Ip6;
1397 } NET_IP_HEAD;
1398
1399 //
1400 //NET_BUF is the buffer manage structure used by the
1401 //network stack. Every network packet may be fragmented. The Vector points to
1402 //memory blocks used by each fragment, and BlockOp
1403 //specifies where each fragment begins and ends.
1404 //
1405 //It also contains an opaque area for the protocol to store
1406 //per-packet information. Protocol must be careful not
1407 //to overwrite the members after that.
1408 //
1409 typedef struct {
1410 UINT32 Signature;
1411 INTN RefCnt;
1412 LIST_ENTRY List; // The List this NET_BUF is on
1413
1414 NET_IP_HEAD Ip; // Network layer header, for fast access
1415 TCP_HEAD *Tcp; // Transport layer header, for fast access
1416 EFI_UDP_HEADER *Udp; // User Datagram Protocol header
1417 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data
1418
1419 NET_VECTOR *Vector; // The vector containing the packet
1420
1421 UINT32 BlockOpNum; // Total number of BlockOp in the buffer
1422 UINT32 TotalSize; // Total size of the actual packet
1423 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet
1424 } NET_BUF;
1425
1426 //
1427 //A queue of NET_BUFs. It is a thin extension of
1428 //NET_BUF functions.
1429 //
1430 typedef struct {
1431 UINT32 Signature;
1432 INTN RefCnt;
1433 LIST_ENTRY List; // The List this buffer queue is on
1434
1435 LIST_ENTRY BufList; // list of queued buffers
1436 UINT32 BufSize; // total length of DATA in the buffers
1437 UINT32 BufNum; // total number of buffers on the chain
1438 } NET_BUF_QUEUE;
1439
1440 //
1441 // Pseudo header for TCP and UDP checksum
1442 //
1443 #pragma pack(1)
1444 typedef struct {
1445 IP4_ADDR SrcIp;
1446 IP4_ADDR DstIp;
1447 UINT8 Reserved;
1448 UINT8 Protocol;
1449 UINT16 Len;
1450 } NET_PSEUDO_HDR;
1451
1452 typedef struct {
1453 EFI_IPv6_ADDRESS SrcIp;
1454 EFI_IPv6_ADDRESS DstIp;
1455 UINT32 Len;
1456 UINT32 Reserved:24;
1457 UINT32 NextHeader:8;
1458 } NET_IP6_PSEUDO_HDR;
1459 #pragma pack()
1460
1461 //
1462 // The fragment entry table used in network interfaces. This is
1463 // the same as NET_BLOCK now. Use two different to distinguish
1464 // the two in case that NET_BLOCK be enhanced later.
1465 //
1466 typedef struct {
1467 UINT32 Len;
1468 UINT8 *Bulk;
1469 } NET_FRAGMENT;
1470
1471 #define NET_GET_REF(PData) ((PData)->RefCnt++)
1472 #define NET_PUT_REF(PData) ((PData)->RefCnt--)
1473 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
1474
1475 #define NET_BUF_SHARED(Buf) \
1476 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
1477
1478 #define NET_VECTOR_SIZE(BlockNum) \
1479 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
1480
1481 #define NET_BUF_SIZE(BlockOpNum) \
1482 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
1483
1484 #define NET_HEADSPACE(BlockOp) \
1485 (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)
1486
1487 #define NET_TAILSPACE(BlockOp) \
1488 (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)
1489
1490 /**
1491 Allocate a single block NET_BUF. Upon allocation, all the
1492 free space is in the tail room.
1493
1494 @param[in] Len The length of the block.
1495
1496 @return The pointer to the allocated NET_BUF, or NULL if the
1497 allocation failed due to resource limitations.
1498
1499 **/
1500 NET_BUF *
1501 EFIAPI
1502 NetbufAlloc (
1503 IN UINT32 Len
1504 );
1505
1506 /**
1507 Free the net buffer and its associated NET_VECTOR.
1508
1509 Decrease the reference count of the net buffer by one. Free the associated net
1510 vector and itself if the reference count of the net buffer is decreased to 0.
1511 The net vector free operation decreases the reference count of the net
1512 vector by one, and performs the resource free operation when the reference count
1513 of the net vector is 0.
1514
1515 @param[in] Nbuf The pointer to the NET_BUF to be freed.
1516
1517 **/
1518 VOID
1519 EFIAPI
1520 NetbufFree (
1521 IN NET_BUF *Nbuf
1522 );
1523
1524 /**
1525 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
1526 buffer.
1527
1528 For example, this function can be used to retrieve the IP header in the packet. It
1529 also can be used to get the fragment that contains the byte used
1530 mainly by the library implementation itself.
1531
1532 @param[in] Nbuf The pointer to the net buffer.
1533 @param[in] Offset The offset of the byte.
1534 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at
1535 Offset.
1536
1537 @return The pointer to the Offset'th byte of data in the net buffer, or NULL
1538 if there is no such data in the net buffer.
1539
1540 **/
1541 UINT8 *
1542 EFIAPI
1543 NetbufGetByte (
1544 IN NET_BUF *Nbuf,
1545 IN UINT32 Offset,
1546 OUT UINT32 *Index OPTIONAL
1547 );
1548
1549 /**
1550 Create a copy of the net buffer that shares the associated net vector.
1551
1552 The reference count of the newly created net buffer is set to 1. The reference
1553 count of the associated net vector is increased by one.
1554
1555 @param[in] Nbuf The pointer to the net buffer to be cloned.
1556
1557 @return The pointer to the cloned net buffer, or NULL if the
1558 allocation failed due to resource limitations.
1559
1560 **/
1561 NET_BUF *
1562 EFIAPI
1563 NetbufClone (
1564 IN NET_BUF *Nbuf
1565 );
1566
1567 /**
1568 Create a duplicated copy of the net buffer with data copied and HeadSpace
1569 bytes of head space reserved.
1570
1571 The duplicated net buffer will allocate its own memory to hold the data of the
1572 source net buffer.
1573
1574 @param[in] Nbuf The pointer to the net buffer to be duplicated from.
1575 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If
1576 NULL, a new net buffer is allocated.
1577 @param[in] HeadSpace The length of the head space to reserve.
1578
1579 @return The pointer to the duplicated net buffer, or NULL if
1580 the allocation failed due to resource limitations.
1581
1582 **/
1583 NET_BUF *
1584 EFIAPI
1585 NetbufDuplicate (
1586 IN NET_BUF *Nbuf,
1587 IN OUT NET_BUF *Duplicate OPTIONAL,
1588 IN UINT32 HeadSpace
1589 );
1590
1591 /**
1592 Create a NET_BUF structure which contains Len byte data of Nbuf starting from
1593 Offset.
1594
1595 A new NET_BUF structure will be created but the associated data in NET_VECTOR
1596 is shared. This function exists to perform IP packet fragmentation.
1597
1598 @param[in] Nbuf The pointer to the net buffer to be extracted.
1599 @param[in] Offset Starting point of the data to be included in the new
1600 net buffer.
1601 @param[in] Len The bytes of data to be included in the new net buffer.
1602 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header.
1603
1604 @return The pointer to the cloned net buffer, or NULL if the
1605 allocation failed due to resource limitations.
1606
1607 **/
1608 NET_BUF *
1609 EFIAPI
1610 NetbufGetFragment (
1611 IN NET_BUF *Nbuf,
1612 IN UINT32 Offset,
1613 IN UINT32 Len,
1614 IN UINT32 HeadSpace
1615 );
1616
1617 /**
1618 Reserve some space in the header room of the net buffer.
1619
1620 Upon allocation, all the space is in the tail room of the buffer. Call this
1621 function to move space to the header room. This function is quite limited
1622 in that it can only reserve space from the first block of an empty NET_BUF not
1623 built from the external. However, it should be enough for the network stack.
1624
1625 @param[in, out] Nbuf The pointer to the net buffer.
1626 @param[in] Len The length of buffer to be reserved from the header.
1627
1628 **/
1629 VOID
1630 EFIAPI
1631 NetbufReserve (
1632 IN OUT NET_BUF *Nbuf,
1633 IN UINT32 Len
1634 );
1635
1636 /**
1637 Allocate Len bytes of space from the header or tail of the buffer.
1638
1639 @param[in, out] Nbuf The pointer to the net buffer.
1640 @param[in] Len The length of the buffer to be allocated.
1641 @param[in] FromHead The flag to indicate whether to reserve the data
1642 from head (TRUE) or tail (FALSE).
1643
1644 @return The pointer to the first byte of the allocated buffer,
1645 or NULL, if there is no sufficient space.
1646
1647 **/
1648 UINT8*
1649 EFIAPI
1650 NetbufAllocSpace (
1651 IN OUT NET_BUF *Nbuf,
1652 IN UINT32 Len,
1653 IN BOOLEAN FromHead
1654 );
1655
1656 /**
1657 Trim Len bytes from the header or the tail of the net buffer.
1658
1659 @param[in, out] Nbuf The pointer to the net buffer.
1660 @param[in] Len The length of the data to be trimmed.
1661 @param[in] FromHead The flag to indicate whether trim data is from the
1662 head (TRUE) or the tail (FALSE).
1663
1664 @return The length of the actual trimmed data, which may be less
1665 than Len if the TotalSize of Nbuf is less than Len.
1666
1667 **/
1668 UINT32
1669 EFIAPI
1670 NetbufTrim (
1671 IN OUT NET_BUF *Nbuf,
1672 IN UINT32 Len,
1673 IN BOOLEAN FromHead
1674 );
1675
1676 /**
1677 Copy Len bytes of data from the specific offset of the net buffer to the
1678 destination memory.
1679
1680 The Len bytes of data may cross several fragments of the net buffer.
1681
1682 @param[in] Nbuf The pointer to the net buffer.
1683 @param[in] Offset The sequence number of the first byte to copy.
1684 @param[in] Len The length of the data to copy.
1685 @param[in] Dest The destination of the data to copy to.
1686
1687 @return The length of the actual copied data, or 0 if the offset
1688 specified exceeds the total size of net buffer.
1689
1690 **/
1691 UINT32
1692 EFIAPI
1693 NetbufCopy (
1694 IN NET_BUF *Nbuf,
1695 IN UINT32 Offset,
1696 IN UINT32 Len,
1697 IN UINT8 *Dest
1698 );
1699
1700 /**
1701 Build a NET_BUF from external blocks.
1702
1703 A new NET_BUF structure will be created from external blocks. An additional block
1704 of memory will be allocated to hold reserved HeadSpace bytes of header room
1705 and existing HeadLen bytes of header, but the external blocks are shared by the
1706 net buffer to avoid data copying.
1707
1708 @param[in] ExtFragment The pointer to the data block.
1709 @param[in] ExtNum The number of the data blocks.
1710 @param[in] HeadSpace The head space to be reserved.
1711 @param[in] HeadLen The length of the protocol header. The function
1712 pulls this amount of data into a linear block.
1713 @param[in] ExtFree The pointer to the caller-provided free function.
1714 @param[in] Arg The argument passed to ExtFree when ExtFree is
1715 called.
1716
1717 @return The pointer to the net buffer built from the data blocks,
1718 or NULL if the allocation failed due to resource
1719 limit.
1720
1721 **/
1722 NET_BUF *
1723 EFIAPI
1724 NetbufFromExt (
1725 IN NET_FRAGMENT *ExtFragment,
1726 IN UINT32 ExtNum,
1727 IN UINT32 HeadSpace,
1728 IN UINT32 HeadLen,
1729 IN NET_VECTOR_EXT_FREE ExtFree,
1730 IN VOID *Arg OPTIONAL
1731 );
1732
1733 /**
1734 Build a fragment table to contain the fragments in the net buffer. This is the
1735 opposite operation of the NetbufFromExt.
1736
1737 @param[in] Nbuf Points to the net buffer.
1738 @param[in, out] ExtFragment The pointer to the data block.
1739 @param[in, out] ExtNum The number of the data blocks.
1740
1741 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than
1742 ExtNum.
1743 @retval EFI_SUCCESS The fragment table was built successfully.
1744
1745 **/
1746 EFI_STATUS
1747 EFIAPI
1748 NetbufBuildExt (
1749 IN NET_BUF *Nbuf,
1750 IN OUT NET_FRAGMENT *ExtFragment,
1751 IN OUT UINT32 *ExtNum
1752 );
1753
1754 /**
1755 Build a net buffer from a list of net buffers.
1756
1757 All the fragments will be collected from the list of NEW_BUF, and then a new
1758 net buffer will be created through NetbufFromExt.
1759
1760 @param[in] BufList A List of the net buffer.
1761 @param[in] HeadSpace The head space to be reserved.
1762 @param[in] HeaderLen The length of the protocol header. The function
1763 pulls this amount of data into a linear block.
1764 @param[in] ExtFree The pointer to the caller provided free function.
1765 @param[in] Arg The argument passed to ExtFree when ExtFree is called.
1766
1767 @return The pointer to the net buffer built from the list of net
1768 buffers.
1769
1770 **/
1771 NET_BUF *
1772 EFIAPI
1773 NetbufFromBufList (
1774 IN LIST_ENTRY *BufList,
1775 IN UINT32 HeadSpace,
1776 IN UINT32 HeaderLen,
1777 IN NET_VECTOR_EXT_FREE ExtFree,
1778 IN VOID *Arg OPTIONAL
1779 );
1780
1781 /**
1782 Free a list of net buffers.
1783
1784 @param[in, out] Head The pointer to the head of linked net buffers.
1785
1786 **/
1787 VOID
1788 EFIAPI
1789 NetbufFreeList (
1790 IN OUT LIST_ENTRY *Head
1791 );
1792
1793 /**
1794 Initiate the net buffer queue.
1795
1796 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized.
1797
1798 **/
1799 VOID
1800 EFIAPI
1801 NetbufQueInit (
1802 IN OUT NET_BUF_QUEUE *NbufQue
1803 );
1804
1805 /**
1806 Allocate and initialize a net buffer queue.
1807
1808 @return The pointer to the allocated net buffer queue, or NULL if the
1809 allocation failed due to resource limit.
1810
1811 **/
1812 NET_BUF_QUEUE *
1813 EFIAPI
1814 NetbufQueAlloc (
1815 VOID
1816 );
1817
1818 /**
1819 Free a net buffer queue.
1820
1821 Decrease the reference count of the net buffer queue by one. The real resource
1822 free operation isn't performed until the reference count of the net buffer
1823 queue is decreased to 0.
1824
1825 @param[in] NbufQue The pointer to the net buffer queue to be freed.
1826
1827 **/
1828 VOID
1829 EFIAPI
1830 NetbufQueFree (
1831 IN NET_BUF_QUEUE *NbufQue
1832 );
1833
1834 /**
1835 Remove a net buffer from the head in the specific queue and return it.
1836
1837 @param[in, out] NbufQue The pointer to the net buffer queue.
1838
1839 @return The pointer to the net buffer removed from the specific queue,
1840 or NULL if there is no net buffer in the specific queue.
1841
1842 **/
1843 NET_BUF *
1844 EFIAPI
1845 NetbufQueRemove (
1846 IN OUT NET_BUF_QUEUE *NbufQue
1847 );
1848
1849 /**
1850 Append a net buffer to the net buffer queue.
1851
1852 @param[in, out] NbufQue The pointer to the net buffer queue.
1853 @param[in, out] Nbuf The pointer to the net buffer to be appended.
1854
1855 **/
1856 VOID
1857 EFIAPI
1858 NetbufQueAppend (
1859 IN OUT NET_BUF_QUEUE *NbufQue,
1860 IN OUT NET_BUF *Nbuf
1861 );
1862
1863 /**
1864 Copy Len bytes of data from the net buffer queue at the specific offset to the
1865 destination memory.
1866
1867 The copying operation is the same as NetbufCopy, but applies to the net buffer
1868 queue instead of the net buffer.
1869
1870 @param[in] NbufQue The pointer to the net buffer queue.
1871 @param[in] Offset The sequence number of the first byte to copy.
1872 @param[in] Len The length of the data to copy.
1873 @param[out] Dest The destination of the data to copy to.
1874
1875 @return The length of the actual copied data, or 0 if the offset
1876 specified exceeds the total size of net buffer queue.
1877
1878 **/
1879 UINT32
1880 EFIAPI
1881 NetbufQueCopy (
1882 IN NET_BUF_QUEUE *NbufQue,
1883 IN UINT32 Offset,
1884 IN UINT32 Len,
1885 OUT UINT8 *Dest
1886 );
1887
1888 /**
1889 Trim Len bytes of data from the buffer queue and free any net buffer
1890 that is completely trimmed.
1891
1892 The trimming operation is the same as NetbufTrim but applies to the net buffer
1893 queue instead of the net buffer.
1894
1895 @param[in, out] NbufQue The pointer to the net buffer queue.
1896 @param[in] Len The length of the data to trim.
1897
1898 @return The actual length of the data trimmed.
1899
1900 **/
1901 UINT32
1902 EFIAPI
1903 NetbufQueTrim (
1904 IN OUT NET_BUF_QUEUE *NbufQue,
1905 IN UINT32 Len
1906 );
1907
1908
1909 /**
1910 Flush the net buffer queue.
1911
1912 @param[in, out] NbufQue The pointer to the queue to be flushed.
1913
1914 **/
1915 VOID
1916 EFIAPI
1917 NetbufQueFlush (
1918 IN OUT NET_BUF_QUEUE *NbufQue
1919 );
1920
1921 /**
1922 Compute the checksum for a bulk of data.
1923
1924 @param[in] Bulk The pointer to the data.
1925 @param[in] Len The length of the data, in bytes.
1926
1927 @return The computed checksum.
1928
1929 **/
1930 UINT16
1931 EFIAPI
1932 NetblockChecksum (
1933 IN UINT8 *Bulk,
1934 IN UINT32 Len
1935 );
1936
1937 /**
1938 Add two checksums.
1939
1940 @param[in] Checksum1 The first checksum to be added.
1941 @param[in] Checksum2 The second checksum to be added.
1942
1943 @return The new checksum.
1944
1945 **/
1946 UINT16
1947 EFIAPI
1948 NetAddChecksum (
1949 IN UINT16 Checksum1,
1950 IN UINT16 Checksum2
1951 );
1952
1953 /**
1954 Compute the checksum for a NET_BUF.
1955
1956 @param[in] Nbuf The pointer to the net buffer.
1957
1958 @return The computed checksum.
1959
1960 **/
1961 UINT16
1962 EFIAPI
1963 NetbufChecksum (
1964 IN NET_BUF *Nbuf
1965 );
1966
1967 /**
1968 Compute the checksum for TCP/UDP pseudo header.
1969
1970 Src and Dst are in network byte order, and Len is in host byte order.
1971
1972 @param[in] Src The source address of the packet.
1973 @param[in] Dst The destination address of the packet.
1974 @param[in] Proto The protocol type of the packet.
1975 @param[in] Len The length of the packet.
1976
1977 @return The computed checksum.
1978
1979 **/
1980 UINT16
1981 EFIAPI
1982 NetPseudoHeadChecksum (
1983 IN IP4_ADDR Src,
1984 IN IP4_ADDR Dst,
1985 IN UINT8 Proto,
1986 IN UINT16 Len
1987 );
1988
1989 /**
1990 Compute the checksum for the TCP6/UDP6 pseudo header.
1991
1992 Src and Dst are in network byte order, and Len is in host byte order.
1993
1994 @param[in] Src The source address of the packet.
1995 @param[in] Dst The destination address of the packet.
1996 @param[in] NextHeader The protocol type of the packet.
1997 @param[in] Len The length of the packet.
1998
1999 @return The computed checksum.
2000
2001 **/
2002 UINT16
2003 EFIAPI
2004 NetIp6PseudoHeadChecksum (
2005 IN EFI_IPv6_ADDRESS *Src,
2006 IN EFI_IPv6_ADDRESS *Dst,
2007 IN UINT8 NextHeader,
2008 IN UINT32 Len
2009 );
2010
2011 /**
2012 The function frees the net buffer which allocated by the IP protocol. It releases
2013 only the net buffer and doesn't call the external free function.
2014
2015 This function should be called after finishing the process of mIpSec->ProcessExt()
2016 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new
2017 buffer for the ESP, so there needs a function to free the old net buffer.
2018
2019 @param[in] Nbuf The network buffer to be freed.
2020
2021 **/
2022 VOID
2023 NetIpSecNetbufFree (
2024 NET_BUF *Nbuf
2025 );
2026
2027 /**
2028 This function obtains the system guid from the smbios table.
2029
2030 @param[out] SystemGuid The pointer of the returned system guid.
2031
2032 @retval EFI_SUCCESS Successfully obtained the system guid.
2033 @retval EFI_NOT_FOUND Did not find the SMBIOS table.
2034
2035 **/
2036 EFI_STATUS
2037 EFIAPI
2038 NetLibGetSystemGuid (
2039 OUT EFI_GUID *SystemGuid
2040 );
2041
2042 #endif