]> git.proxmox.com Git - mirror_edk2.git/blob - StdLib/LibC/gdtoa/gdtoaimp.h
StdLib/LibC: Fix ARM symbol problems
[mirror_edk2.git] / StdLib / LibC / gdtoa / gdtoaimp.h
1 /** @file
2 This is a variation on dtoa.c that converts arbitary binary
3 floating-point formats to and from decimal notation. It uses
4 double-precision arithmetic internally, so there are still
5 various #ifdefs that adapt the calculations to the native
6 double-precision arithmetic (any of IEEE, VAX D_floating,
7 or IBM mainframe arithmetic).
8
9 Please send bug reports to David M. Gay (dmg at acm dot org,
10 with " at " changed at "@" and " dot " changed to ".").
11
12 Copyright (c) 2010 - 2014, Intel Corporation. All rights reserved.<BR>
13 This program and the accompanying materials are licensed and made available under
14 the terms and conditions of the BSD License that accompanies this distribution.
15 The full text of the license may be found at
16 http://opensource.org/licenses/bsd-license.
17
18 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
19 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
20
21 The author of this software is David M. Gay.
22
23 Copyright (C) 1998-2000 by Lucent Technologies
24 All Rights Reserved
25
26 Permission to use, copy, modify, and distribute this software and
27 its documentation for any purpose and without fee is hereby
28 granted, provided that the above copyright notice appear in all
29 copies and that both that the copyright notice and this
30 permission notice and warranty disclaimer appear in supporting
31 documentation, and that the name of Lucent or any of its entities
32 not be used in advertising or publicity pertaining to
33 distribution of the software without specific, written prior
34 permission.
35
36 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
37 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
38 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
39 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
40 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
41 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
42 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
43 THIS SOFTWARE.
44
45 $NetBSD: gdtoaimp.h,v 1.5.4.1 2007/05/07 19:49:06 pavel Exp
46 **/
47
48 /* On a machine with IEEE extended-precision registers, it is
49 * necessary to specify double-precision (53-bit) rounding precision
50 * before invoking strtod or dtoa. If the machine uses (the equivalent
51 * of) Intel 80x87 arithmetic, the call
52 * _control87(PC_53, MCW_PC);
53 * does this with many compilers. Whether this or another call is
54 * appropriate depends on the compiler; for this to work, it may be
55 * necessary to #include "float.h" or another system-dependent header
56 * file.
57 */
58
59 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
60 *
61 * This strtod returns a nearest machine number to the input decimal
62 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
63 * broken by the IEEE round-even rule. Otherwise ties are broken by
64 * biased rounding (add half and chop).
65 *
66 * Inspired loosely by William D. Clinger's paper "How to Read Floating
67 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
68 *
69 * Modifications:
70 *
71 * 1. We only require IEEE, IBM, or VAX double-precision
72 * arithmetic (not IEEE double-extended).
73 * 2. We get by with floating-point arithmetic in a case that
74 * Clinger missed -- when we're computing d * 10^n
75 * for a small integer d and the integer n is not too
76 * much larger than 22 (the maximum integer k for which
77 * we can represent 10^k exactly), we may be able to
78 * compute (d*10^k) * 10^(e-k) with just one roundoff.
79 * 3. Rather than a bit-at-a-time adjustment of the binary
80 * result in the hard case, we use floating-point
81 * arithmetic to determine the adjustment to within
82 * one bit; only in really hard cases do we need to
83 * compute a second residual.
84 * 4. Because of 3., we don't need a large table of powers of 10
85 * for ten-to-e (just some small tables, e.g. of 10^k
86 * for 0 <= k <= 22).
87 */
88
89 /*
90 * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
91 * significant byte has the lowest address.
92 * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
93 * significant byte has the lowest address.
94 * #define Long int on machines with 32-bit ints and 64-bit longs.
95 * #define Sudden_Underflow for IEEE-format machines without gradual
96 * underflow (i.e., that flush to zero on underflow).
97 * #define IBM for IBM mainframe-style floating-point arithmetic.
98 * #define VAX for VAX-style floating-point arithmetic (D_floating).
99 * #define No_leftright to omit left-right logic in fast floating-point
100 * computation of dtoa.
101 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
102 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
103 * that use extended-precision instructions to compute rounded
104 * products and quotients) with IBM.
105 * #define ROUND_BIASED for IEEE-format with biased rounding.
106 * #define Inaccurate_Divide for IEEE-format with correctly rounded
107 * products but inaccurate quotients, e.g., for Intel i860.
108 * #define NO_LONG_LONG on machines that do not have a "long long"
109 * integer type (of >= 64 bits). On such machines, you can
110 * #define Just_16 to store 16 bits per 32-bit Long when doing
111 * high-precision integer arithmetic. Whether this speeds things
112 * up or slows things down depends on the machine and the number
113 * being converted. If long long is available and the name is
114 * something other than "long long", #define Llong to be the name,
115 * and if "unsigned Llong" does not work as an unsigned version of
116 * Llong, #define #ULLong to be the corresponding unsigned type.
117 * #define KR_headers for old-style C function headers.
118 * #define Bad_float_h if your system lacks a float.h or if it does not
119 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
120 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
121 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
122 * if memory is available and otherwise does something you deem
123 * appropriate. If MALLOC is undefined, malloc will be invoked
124 * directly -- and assumed always to succeed.
125 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
126 * memory allocations from a private pool of memory when possible.
127 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
128 * unless #defined to be a different length. This default length
129 * suffices to get rid of MALLOC calls except for unusual cases,
130 * such as decimal-to-binary conversion of a very long string of
131 * digits. When converting IEEE double precision values, the
132 * longest string gdtoa can return is about 751 bytes long. For
133 * conversions by strtod of strings of 800 digits and all gdtoa
134 * conversions of IEEE doubles in single-threaded executions with
135 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
136 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
137 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
138 * Infinity and NaN (case insensitively).
139 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
140 * strtodg also accepts (case insensitively) strings of the form
141 * NaN(x), where x is a string of hexadecimal digits and spaces;
142 * if there is only one string of hexadecimal digits, it is taken
143 * for the fraction bits of the resulting NaN; if there are two or
144 * more strings of hexadecimal digits, each string is assigned
145 * to the next available sequence of 32-bit words of fractions
146 * bits (starting with the most significant), right-aligned in
147 * each sequence.
148 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
149 * multiple threads. In this case, you must provide (or suitably
150 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
151 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
152 * in pow5mult, ensures lazy evaluation of only one copy of high
153 * powers of 5; omitting this lock would introduce a small
154 * probability of wasting memory, but would otherwise be harmless.)
155 * You must also invoke freedtoa(s) to free the value s returned by
156 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
157 * #define IMPRECISE_INEXACT if you do not care about the setting of
158 * the STRTOG_Inexact bits in the special case of doing IEEE double
159 * precision conversions (which could also be done by the strtog in
160 * dtoa.c).
161 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
162 * floating-point constants.
163 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
164 * strtodg.c).
165 * #define NO_STRING_H to use private versions of memcpy.
166 * On some K&R systems, it may also be necessary to
167 * #define DECLARE_SIZE_T in this case.
168 * #define YES_ALIAS to permit aliasing certain double values with
169 * arrays of ULongs. This leads to slightly better code with
170 * some compilers and was always used prior to 19990916, but it
171 * is not strictly legal and can cause trouble with aggressively
172 * optimizing compilers (e.g., gcc 2.95.1 under -O2).
173 * #define USE_LOCALE to use the current locale's decimal_point value.
174 */
175
176 /* #define IEEE_{BIG,LITTLE}_ENDIAN in ${ARCHDIR}/gdtoa/arith.h */
177 #include <LibConfig.h>
178
179 #include <stdint.h>
180 #define Short int16_t
181 #define UShort uint16_t
182 #define Long int32_t
183 #define ULong uint32_t
184 #define LLong int64_t
185 #define ULLong uint64_t
186
187 #define INFNAN_CHECK
188 #ifdef _REENTRANT
189 #define MULTIPLE_THREADS
190 #endif
191 #define USE_LOCALE
192
193 #ifndef GDTOAIMP_H_INCLUDED
194 #define GDTOAIMP_H_INCLUDED
195 #include "gdtoa.h"
196 #include "gd_qnan.h"
197
198 #ifdef DEBUG
199 #include "stdio.h"
200 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
201 #endif
202
203 #include "stdlib.h"
204 #include "string.h"
205
206 #ifdef KR_headers
207 #define Char char
208 #else
209 #define Char void
210 #endif
211
212 #ifdef MALLOC
213 extern Char *MALLOC ANSI((size_t));
214 #else
215 #define MALLOC malloc
216 #endif
217
218 #undef IEEE_Arith
219 #undef Avoid_Underflow
220 #ifdef IEEE_BIG_ENDIAN
221 #define IEEE_Arith
222 #endif
223 #ifdef IEEE_LITTLE_ENDIAN
224 #define IEEE_Arith
225 #endif
226
227 #include "errno.h"
228 #ifdef Bad_float_h
229
230 #ifdef IEEE_Arith
231 #define DBL_DIG 15
232 #define DBL_MAX_10_EXP 308
233 #define DBL_MAX_EXP 1024
234 #define FLT_RADIX 2
235 #define DBL_MAX 1.7976931348623157e+308
236 #endif
237
238 #ifdef IBM
239 #define DBL_DIG 16
240 #define DBL_MAX_10_EXP 75
241 #define DBL_MAX_EXP 63
242 #define FLT_RADIX 16
243 #define DBL_MAX 7.2370055773322621e+75
244 #endif
245
246 #ifdef VAX
247 #define DBL_DIG 16
248 #define DBL_MAX_10_EXP 38
249 #define DBL_MAX_EXP 127
250 #define FLT_RADIX 2
251 #define DBL_MAX 1.7014118346046923e+38
252 #define n_bigtens 2
253 #endif
254
255 #ifndef LONG_MAX
256 #define LONG_MAX 2147483647
257 #endif
258
259 #else /* ifndef Bad_float_h */
260 #include "float.h"
261 #endif /* Bad_float_h */
262
263 #ifdef IEEE_Arith
264 #define Scale_Bit 0x10
265 #define n_bigtens 5
266 #endif
267
268 #ifdef IBM
269 #define n_bigtens 3
270 #endif
271
272 #ifdef VAX
273 #define n_bigtens 2
274 #endif
275
276 #include "math.h"
277
278 #ifdef __cplusplus
279 extern "C" {
280 #endif
281
282 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + defined(IBM) != 1
283 Exactly one of IEEE_LITTLE_ENDIAN, IEEE_BIG_ENDIAN, VAX, or IBM should be defined.
284 #endif
285
286 /* This union assumes that:
287 sizeof(double) == 8
288 sizeof(UINT32) == 4
289
290 If this is not the case, the type and dimension of the L member will
291 have to be modified.
292 */
293 typedef union { double d; UINT32 L[2]; } U;
294
295 #ifdef YES_ALIAS
296 #define dval(x) x
297 #ifdef IEEE_LITTLE_ENDIAN
298 #define word0(x) ((ULong *)&x)[1]
299 #define word1(x) ((ULong *)&x)[0]
300 #else
301 #define word0(x) ((ULong *)&x)[0]
302 #define word1(x) ((ULong *)&x)[1]
303 #endif
304 #else /* !YES_ALIAS */
305 #ifdef IEEE_LITTLE_ENDIAN
306 #define word0(x) ( /* LINTED */ (U*)&x)->L[1]
307 #define word1(x) ( /* LINTED */ (U*)&x)->L[0]
308 #else
309 #define word0(x) ( /* LINTED */ (U*)&x)->L[0]
310 #define word1(x) ( /* LINTED */ (U*)&x)->L[1]
311 #endif
312 #define dval(x) ( /* LINTED */ (U*)&x)->d
313 #endif /* YES_ALIAS */
314
315 /* The following definition of Storeinc is appropriate for MIPS processors.
316 * An alternative that might be better on some machines is
317 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
318 */
319 #if defined(IEEE_LITTLE_ENDIAN) + defined(VAX)
320 #define Storeinc(a,b,c) \
321 (((unsigned short *)(void *)a)[1] = (unsigned short)b, \
322 ((unsigned short *)(void *)a)[0] = (unsigned short)c, \
323 a++)
324 #else
325 #define Storeinc(a,b,c) \
326 (((unsigned short *)(void *)a)[0] = (unsigned short)b, \
327 ((unsigned short *)(void *)a)[1] = (unsigned short)c, \
328 a++)
329 #endif
330
331 /* #define P DBL_MANT_DIG */
332 /* Ten_pmax = floor(P*log(2)/log(5)) */
333 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
334 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
335 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
336
337 #ifdef IEEE_Arith
338 #define Exp_shift 20
339 #define Exp_shift1 20
340 #define Exp_msk1 0x100000
341 #define Exp_msk11 0x100000
342 #define Exp_mask 0x7ff00000
343 #define P 53
344 #define Bias 1023
345 #define Emin (-1022)
346 #define Exp_1 0x3ff00000
347 #define Exp_11 0x3ff00000
348 #define Ebits 11
349 #define Frac_mask 0xfffffU
350 #define Frac_mask1 0xfffffU
351 #define Ten_pmax 22
352 #define Bletch 0x10
353 #define Bndry_mask 0xfffffU
354 #define Bndry_mask1 0xfffffU
355 #define LSB 1
356 #define Sign_bit 0x80000000
357 #define Log2P 1
358 #define Tiny0 0
359 #define Tiny1 1
360 #define Quick_max 14
361 #define Int_max 14
362
363 #ifndef Flt_Rounds
364 #ifdef FLT_ROUNDS
365 #define Flt_Rounds FLT_ROUNDS
366 #else
367 #define Flt_Rounds 1
368 #endif
369 #endif /*Flt_Rounds*/
370
371 #else /* ifndef IEEE_Arith */
372 #undef Sudden_Underflow
373 #define Sudden_Underflow
374 #ifdef IBM
375 #undef Flt_Rounds
376 #define Flt_Rounds 0
377 #define Exp_shift 24
378 #define Exp_shift1 24
379 #define Exp_msk1 0x1000000
380 #define Exp_msk11 0x1000000
381 #define Exp_mask 0x7f000000
382 #define P 14
383 #define Bias 65
384 #define Exp_1 0x41000000
385 #define Exp_11 0x41000000
386 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
387 #define Frac_mask 0xffffff
388 #define Frac_mask1 0xffffff
389 #define Bletch 4
390 #define Ten_pmax 22
391 #define Bndry_mask 0xefffff
392 #define Bndry_mask1 0xffffff
393 #define LSB 1
394 #define Sign_bit 0x80000000
395 #define Log2P 4
396 #define Tiny0 0x100000
397 #define Tiny1 0
398 #define Quick_max 14
399 #define Int_max 15
400 #else /* VAX */
401 #undef Flt_Rounds
402 #define Flt_Rounds 1
403 #define Exp_shift 23
404 #define Exp_shift1 7
405 #define Exp_msk1 0x80
406 #define Exp_msk11 0x800000
407 #define Exp_mask 0x7f80
408 #define P 56
409 #define Bias 129
410 #define Exp_1 0x40800000
411 #define Exp_11 0x4080
412 #define Ebits 8
413 #define Frac_mask 0x7fffff
414 #define Frac_mask1 0xffff007f
415 #define Ten_pmax 24
416 #define Bletch 2
417 #define Bndry_mask 0xffff007f
418 #define Bndry_mask1 0xffff007f
419 #define LSB 0x10000
420 #define Sign_bit 0x8000
421 #define Log2P 1
422 #define Tiny0 0x80
423 #define Tiny1 0
424 #define Quick_max 15
425 #define Int_max 15
426 #endif /* IBM, VAX */
427 #endif /* IEEE_Arith */
428
429 #ifndef IEEE_Arith
430 #define ROUND_BIASED
431 #endif
432
433 #ifdef RND_PRODQUOT
434 #define rounded_product(a,b) a = rnd_prod(a, b)
435 #define rounded_quotient(a,b) a = rnd_quot(a, b)
436 #ifdef KR_headers
437 extern double rnd_prod(), rnd_quot();
438 #else
439 extern double rnd_prod(double, double), rnd_quot(double, double);
440 #endif
441 #else
442 #define rounded_product(a,b) a *= b
443 #define rounded_quotient(a,b) a /= b
444 #endif
445
446 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
447 #define Big1 0xffffffffU
448
449 #undef Pack_16
450 #ifndef Pack_32
451 #define Pack_32
452 #endif
453
454 #ifdef NO_LONG_LONG
455 #undef ULLong
456 #ifdef Just_16
457 #undef Pack_32
458 #define Pack_16
459 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
460 * This makes some inner loops simpler and sometimes saves work
461 * during multiplications, but it often seems to make things slightly
462 * slower. Hence the default is now to store 32 bits per Long.
463 */
464 #endif
465 #else /* long long available */
466 #ifndef Llong
467 #define Llong long long
468 #endif
469 #ifndef ULLong
470 #define ULLong unsigned Llong
471 #endif
472 #endif /* NO_LONG_LONG */
473
474 #ifdef Pack_32
475 #define ULbits 32
476 #define kshift 5
477 #define kmask 31
478 #define ALL_ON 0xffffffff
479 #else
480 #define ULbits 16
481 #define kshift 4
482 #define kmask 15
483 #define ALL_ON 0xffff
484 #endif
485
486 #ifndef MULTIPLE_THREADS
487 #define ACQUIRE_DTOA_LOCK(n) /*nothing*/
488 #define FREE_DTOA_LOCK(n) /*nothing*/
489 #else
490 #include "reentrant.h"
491
492 extern mutex_t __gdtoa_locks[2];
493
494 #define ACQUIRE_DTOA_LOCK(n) \
495 do { \
496 if (__isthreaded) \
497 mutex_lock(&__gdtoa_locks[n]); \
498 } while (/* CONSTCOND */ 0)
499 #define FREE_DTOA_LOCK(n) \
500 do { \
501 if (__isthreaded) \
502 mutex_unlock(&__gdtoa_locks[n]); \
503 } while (/* CONSTCOND */ 0)
504 #endif
505
506 #define Kmax 15
507
508 struct
509 Bigint {
510 struct Bigint *next;
511 int k, maxwds, sign, wds;
512 ULong x[1];
513 };
514
515 typedef struct Bigint Bigint;
516
517 #ifdef NO_STRING_H
518 #ifdef DECLARE_SIZE_T
519 typedef unsigned int size_t;
520 #endif
521 extern void memcpy_D2A ANSI((void*, const void*, size_t));
522 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
523 #else /* !NO_STRING_H */
524 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
525 #endif /* NO_STRING_H */
526
527 #define Balloc __Balloc_D2A
528 #define Bfree __Bfree_D2A
529 #define ULtoQ __ULtoQ_D2A
530 #define ULtof __ULtof_D2A
531 #define ULtod __ULtod_D2A
532 #define ULtodd __ULtodd_D2A
533 #define ULtox __ULtox_D2A
534 #define ULtoxL __ULtoxL_D2A
535 #define any_on __any_on_D2A
536 #define b2d __b2d_D2A
537 #define bigtens __bigtens_D2A
538 #define cmp __cmp_D2A
539 #define copybits __copybits_D2A
540 #define d2b __d2b_D2A
541 #define decrement __decrement_D2A
542 #define diff __diff_D2A
543 #define dtoa_result __dtoa_result_D2A
544 #define g__fmt __g__fmt_D2A
545 #define gethex __gethex_D2A
546 #define hexdig __hexdig_D2A
547 #define hexdig_init_D2A __hexdig_init_D2A
548 #define hexnan __hexnan_D2A
549 #define hi0bits __hi0bits_D2A
550 #define hi0bits_D2A __hi0bits_D2A
551 #define i2b __i2b_D2A
552 #define increment __increment_D2A
553 #define lo0bits __lo0bits_D2A
554 #define lshift __lshift_D2A
555 #define match __match_D2A
556 #define mult __mult_D2A
557 #define multadd __multadd_D2A
558 #define nrv_alloc __nrv_alloc_D2A
559 #define pow5mult __pow5mult_D2A
560 #define quorem __quorem_D2A
561 #define ratio __ratio_D2A
562 #define rshift __rshift_D2A
563 #define rv_alloc __rv_alloc_D2A
564 #define s2b __s2b_D2A
565 #define set_ones __set_ones_D2A
566 #define strcp __strcp_D2A
567 #define strcp_D2A __strcp_D2A
568 #define strtoIg __strtoIg_D2A
569 #define sum __sum_D2A
570 #define tens __tens_D2A
571 #define tinytens __tinytens_D2A
572 #define tinytens __tinytens_D2A
573 #define trailz __trailz_D2A
574 #define ulp __ulp_D2A
575
576 extern char *dtoa_result;
577 extern CONST double bigtens[], tens[], tinytens[];
578 extern unsigned char hexdig[];
579
580 extern Bigint *Balloc (int);
581 extern void Bfree (Bigint*);
582 extern void ULtof (ULong*, ULong*, Long, int);
583 extern void ULtod (ULong*, ULong*, Long, int);
584 extern void ULtodd (ULong*, ULong*, Long, int);
585 extern void ULtoQ (ULong*, ULong*, Long, int);
586 extern void ULtox (UShort*, ULong*, Long, int);
587 extern void ULtoxL (ULong*, ULong*, Long, int);
588 extern ULong any_on (Bigint*, int);
589 extern double b2d (Bigint*, int*);
590 extern int cmp (Bigint*, Bigint*);
591 extern void copybits (ULong*, int, Bigint*);
592 extern Bigint *d2b (double, int*, int*);
593 extern int decrement (Bigint*);
594 extern Bigint *diff (Bigint*, Bigint*);
595 extern char *dtoa (double d, int mode, int ndigits,
596 int *decpt, int *sign, char **rve);
597 extern char *g__fmt (char*, char*, char*, int, ULong);
598 extern int gethex (CONST char**, CONST FPI*, Long*, Bigint**, int);
599 extern void hexdig_init_D2A(Void);
600 extern int hexnan (CONST char**, CONST FPI*, ULong*);
601 extern int hi0bits_D2A (ULong);
602 extern Bigint *i2b (int);
603 extern Bigint *increment (Bigint*);
604 extern int lo0bits (ULong*);
605 extern Bigint *lshift (Bigint*, int);
606 extern int match (CONST char**, CONST char*);
607 extern Bigint *mult (Bigint*, Bigint*);
608 extern Bigint *multadd (Bigint*, int, int);
609 extern char *nrv_alloc (CONST char*, char **, size_t);
610 extern Bigint *pow5mult (Bigint*, int);
611 extern int quorem (Bigint*, Bigint*);
612 extern double ratio (Bigint*, Bigint*);
613 extern void rshift (Bigint*, int);
614 extern char *rv_alloc (size_t);
615 extern Bigint *s2b (CONST char*, int, int, ULong);
616 extern Bigint *set_ones (Bigint*, int);
617 extern char *strcp (char*, const char*);
618 extern int strtoIg (CONST char*, char**, FPI*, Long*, Bigint**, int*);
619 extern double strtod (const char *s00, char **se);
620 extern Bigint *sum (Bigint*, Bigint*);
621 extern int trailz (CONST Bigint*);
622 extern double ulp (double);
623
624 #ifdef __cplusplus
625 }
626 #endif
627 /*
628 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to
629 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
630 * respectively), but now are determined by compiling and running
631 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
632 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
633 * and -DNAN_WORD1=... values if necessary. This should still work.
634 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
635 */
636 #ifdef IEEE_Arith
637 #ifdef IEEE_BIG_ENDIAN
638 #define _0 0
639 #define _1 1
640 #ifndef NAN_WORD0
641 #define NAN_WORD0 d_QNAN0
642 #endif
643 #ifndef NAN_WORD1
644 #define NAN_WORD1 d_QNAN1
645 #endif
646 #else
647 #define _0 1
648 #define _1 0
649 #ifndef NAN_WORD0
650 #define NAN_WORD0 d_QNAN1
651 #endif
652 #ifndef NAN_WORD1
653 #define NAN_WORD1 d_QNAN0
654 #endif
655 #endif
656 #else
657 #undef INFNAN_CHECK
658 #endif
659
660 #undef SI
661 #ifdef Sudden_Underflow
662 #define SI 1
663 #else
664 #define SI 0
665 #endif
666
667 #endif /* GDTOAIMP_H_INCLUDED */