]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cputlb.c
accel/tcg: Replace CPUState.env_ptr with cpu_env()
[mirror_qemu.git] / accel / tcg / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto-common.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 #include "tcg/oversized-guest.h"
44
45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
46 /* #define DEBUG_TLB */
47 /* #define DEBUG_TLB_LOG */
48
49 #ifdef DEBUG_TLB
50 # define DEBUG_TLB_GATE 1
51 # ifdef DEBUG_TLB_LOG
52 # define DEBUG_TLB_LOG_GATE 1
53 # else
54 # define DEBUG_TLB_LOG_GATE 0
55 # endif
56 #else
57 # define DEBUG_TLB_GATE 0
58 # define DEBUG_TLB_LOG_GATE 0
59 #endif
60
61 #define tlb_debug(fmt, ...) do { \
62 if (DEBUG_TLB_LOG_GATE) { \
63 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64 ## __VA_ARGS__); \
65 } else if (DEBUG_TLB_GATE) { \
66 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
67 } \
68 } while (0)
69
70 #define assert_cpu_is_self(cpu) do { \
71 if (DEBUG_TLB_GATE) { \
72 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
73 } \
74 } while (0)
75
76 /* run_on_cpu_data.target_ptr should always be big enough for a
77 * vaddr even on 32 bit builds
78 */
79 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
80
81 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
82 */
83 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
84 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
85
86 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
87 {
88 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
89 }
90
91 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
92 {
93 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
94 }
95
96 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
97 size_t max_entries)
98 {
99 desc->window_begin_ns = ns;
100 desc->window_max_entries = max_entries;
101 }
102
103 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
104 {
105 CPUJumpCache *jc = cpu->tb_jmp_cache;
106 int i, i0;
107
108 if (unlikely(!jc)) {
109 return;
110 }
111
112 i0 = tb_jmp_cache_hash_page(page_addr);
113 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
114 qatomic_set(&jc->array[i0 + i].tb, NULL);
115 }
116 }
117
118 /**
119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
120 * @desc: The CPUTLBDesc portion of the TLB
121 * @fast: The CPUTLBDescFast portion of the same TLB
122 *
123 * Called with tlb_lock_held.
124 *
125 * We have two main constraints when resizing a TLB: (1) we only resize it
126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
127 * the array or unnecessarily flushing it), which means we do not control how
128 * frequently the resizing can occur; (2) we don't have access to the guest's
129 * future scheduling decisions, and therefore have to decide the magnitude of
130 * the resize based on past observations.
131 *
132 * In general, a memory-hungry process can benefit greatly from an appropriately
133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
134 * we just have to make the TLB as large as possible; while an oversized TLB
135 * results in minimal TLB miss rates, it also takes longer to be flushed
136 * (flushes can be _very_ frequent), and the reduced locality can also hurt
137 * performance.
138 *
139 * To achieve near-optimal performance for all kinds of workloads, we:
140 *
141 * 1. Aggressively increase the size of the TLB when the use rate of the
142 * TLB being flushed is high, since it is likely that in the near future this
143 * memory-hungry process will execute again, and its memory hungriness will
144 * probably be similar.
145 *
146 * 2. Slowly reduce the size of the TLB as the use rate declines over a
147 * reasonably large time window. The rationale is that if in such a time window
148 * we have not observed a high TLB use rate, it is likely that we won't observe
149 * it in the near future. In that case, once a time window expires we downsize
150 * the TLB to match the maximum use rate observed in the window.
151 *
152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
153 * since in that range performance is likely near-optimal. Recall that the TLB
154 * is direct mapped, so we want the use rate to be low (or at least not too
155 * high), since otherwise we are likely to have a significant amount of
156 * conflict misses.
157 */
158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
159 int64_t now)
160 {
161 size_t old_size = tlb_n_entries(fast);
162 size_t rate;
163 size_t new_size = old_size;
164 int64_t window_len_ms = 100;
165 int64_t window_len_ns = window_len_ms * 1000 * 1000;
166 bool window_expired = now > desc->window_begin_ns + window_len_ns;
167
168 if (desc->n_used_entries > desc->window_max_entries) {
169 desc->window_max_entries = desc->n_used_entries;
170 }
171 rate = desc->window_max_entries * 100 / old_size;
172
173 if (rate > 70) {
174 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
175 } else if (rate < 30 && window_expired) {
176 size_t ceil = pow2ceil(desc->window_max_entries);
177 size_t expected_rate = desc->window_max_entries * 100 / ceil;
178
179 /*
180 * Avoid undersizing when the max number of entries seen is just below
181 * a pow2. For instance, if max_entries == 1025, the expected use rate
182 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
183 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
184 * later. Thus, make sure that the expected use rate remains below 70%.
185 * (and since we double the size, that means the lowest rate we'd
186 * expect to get is 35%, which is still in the 30-70% range where
187 * we consider that the size is appropriate.)
188 */
189 if (expected_rate > 70) {
190 ceil *= 2;
191 }
192 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
193 }
194
195 if (new_size == old_size) {
196 if (window_expired) {
197 tlb_window_reset(desc, now, desc->n_used_entries);
198 }
199 return;
200 }
201
202 g_free(fast->table);
203 g_free(desc->fulltlb);
204
205 tlb_window_reset(desc, now, 0);
206 /* desc->n_used_entries is cleared by the caller */
207 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
208 fast->table = g_try_new(CPUTLBEntry, new_size);
209 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
210
211 /*
212 * If the allocations fail, try smaller sizes. We just freed some
213 * memory, so going back to half of new_size has a good chance of working.
214 * Increased memory pressure elsewhere in the system might cause the
215 * allocations to fail though, so we progressively reduce the allocation
216 * size, aborting if we cannot even allocate the smallest TLB we support.
217 */
218 while (fast->table == NULL || desc->fulltlb == NULL) {
219 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
220 error_report("%s: %s", __func__, strerror(errno));
221 abort();
222 }
223 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
224 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
225
226 g_free(fast->table);
227 g_free(desc->fulltlb);
228 fast->table = g_try_new(CPUTLBEntry, new_size);
229 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
230 }
231 }
232
233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
234 {
235 desc->n_used_entries = 0;
236 desc->large_page_addr = -1;
237 desc->large_page_mask = -1;
238 desc->vindex = 0;
239 memset(fast->table, -1, sizeof_tlb(fast));
240 memset(desc->vtable, -1, sizeof(desc->vtable));
241 }
242
243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
244 int64_t now)
245 {
246 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
247 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
248
249 tlb_mmu_resize_locked(desc, fast, now);
250 tlb_mmu_flush_locked(desc, fast);
251 }
252
253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
254 {
255 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
256
257 tlb_window_reset(desc, now, 0);
258 desc->n_used_entries = 0;
259 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
260 fast->table = g_new(CPUTLBEntry, n_entries);
261 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
262 tlb_mmu_flush_locked(desc, fast);
263 }
264
265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
266 {
267 env_tlb(env)->d[mmu_idx].n_used_entries++;
268 }
269
270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
271 {
272 env_tlb(env)->d[mmu_idx].n_used_entries--;
273 }
274
275 void tlb_init(CPUState *cpu)
276 {
277 CPUArchState *env = cpu_env(cpu);
278 int64_t now = get_clock_realtime();
279 int i;
280
281 qemu_spin_init(&env_tlb(env)->c.lock);
282
283 /* All tlbs are initialized flushed. */
284 env_tlb(env)->c.dirty = 0;
285
286 for (i = 0; i < NB_MMU_MODES; i++) {
287 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
288 }
289 }
290
291 void tlb_destroy(CPUState *cpu)
292 {
293 CPUArchState *env = cpu_env(cpu);
294 int i;
295
296 qemu_spin_destroy(&env_tlb(env)->c.lock);
297 for (i = 0; i < NB_MMU_MODES; i++) {
298 CPUTLBDesc *desc = &env_tlb(env)->d[i];
299 CPUTLBDescFast *fast = &env_tlb(env)->f[i];
300
301 g_free(fast->table);
302 g_free(desc->fulltlb);
303 }
304 }
305
306 /* flush_all_helper: run fn across all cpus
307 *
308 * If the wait flag is set then the src cpu's helper will be queued as
309 * "safe" work and the loop exited creating a synchronisation point
310 * where all queued work will be finished before execution starts
311 * again.
312 */
313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
314 run_on_cpu_data d)
315 {
316 CPUState *cpu;
317
318 CPU_FOREACH(cpu) {
319 if (cpu != src) {
320 async_run_on_cpu(cpu, fn, d);
321 }
322 }
323 }
324
325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
326 {
327 CPUState *cpu;
328 size_t full = 0, part = 0, elide = 0;
329
330 CPU_FOREACH(cpu) {
331 CPUArchState *env = cpu_env(cpu);
332
333 full += qatomic_read(&env_tlb(env)->c.full_flush_count);
334 part += qatomic_read(&env_tlb(env)->c.part_flush_count);
335 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
336 }
337 *pfull = full;
338 *ppart = part;
339 *pelide = elide;
340 }
341
342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
343 {
344 CPUArchState *env = cpu_env(cpu);
345 uint16_t asked = data.host_int;
346 uint16_t all_dirty, work, to_clean;
347 int64_t now = get_clock_realtime();
348
349 assert_cpu_is_self(cpu);
350
351 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
352
353 qemu_spin_lock(&env_tlb(env)->c.lock);
354
355 all_dirty = env_tlb(env)->c.dirty;
356 to_clean = asked & all_dirty;
357 all_dirty &= ~to_clean;
358 env_tlb(env)->c.dirty = all_dirty;
359
360 for (work = to_clean; work != 0; work &= work - 1) {
361 int mmu_idx = ctz32(work);
362 tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
363 }
364
365 qemu_spin_unlock(&env_tlb(env)->c.lock);
366
367 tcg_flush_jmp_cache(cpu);
368
369 if (to_clean == ALL_MMUIDX_BITS) {
370 qatomic_set(&env_tlb(env)->c.full_flush_count,
371 env_tlb(env)->c.full_flush_count + 1);
372 } else {
373 qatomic_set(&env_tlb(env)->c.part_flush_count,
374 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
375 if (to_clean != asked) {
376 qatomic_set(&env_tlb(env)->c.elide_flush_count,
377 env_tlb(env)->c.elide_flush_count +
378 ctpop16(asked & ~to_clean));
379 }
380 }
381 }
382
383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
384 {
385 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
386
387 if (cpu->created && !qemu_cpu_is_self(cpu)) {
388 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
389 RUN_ON_CPU_HOST_INT(idxmap));
390 } else {
391 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
392 }
393 }
394
395 void tlb_flush(CPUState *cpu)
396 {
397 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
398 }
399
400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
401 {
402 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
403
404 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
405
406 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
407 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
408 }
409
410 void tlb_flush_all_cpus(CPUState *src_cpu)
411 {
412 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
413 }
414
415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
416 {
417 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
418
419 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
420
421 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
423 }
424
425 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
426 {
427 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
428 }
429
430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
431 vaddr page, vaddr mask)
432 {
433 page &= mask;
434 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
435
436 return (page == (tlb_entry->addr_read & mask) ||
437 page == (tlb_addr_write(tlb_entry) & mask) ||
438 page == (tlb_entry->addr_code & mask));
439 }
440
441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
442 {
443 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
444 }
445
446 /**
447 * tlb_entry_is_empty - return true if the entry is not in use
448 * @te: pointer to CPUTLBEntry
449 */
450 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
451 {
452 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
453 }
454
455 /* Called with tlb_c.lock held */
456 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
457 vaddr page,
458 vaddr mask)
459 {
460 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
461 memset(tlb_entry, -1, sizeof(*tlb_entry));
462 return true;
463 }
464 return false;
465 }
466
467 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
468 {
469 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
470 }
471
472 /* Called with tlb_c.lock held */
473 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
474 vaddr page,
475 vaddr mask)
476 {
477 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
478 int k;
479
480 assert_cpu_is_self(env_cpu(env));
481 for (k = 0; k < CPU_VTLB_SIZE; k++) {
482 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
483 tlb_n_used_entries_dec(env, mmu_idx);
484 }
485 }
486 }
487
488 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
489 vaddr page)
490 {
491 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
492 }
493
494 static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page)
495 {
496 vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr;
497 vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask;
498
499 /* Check if we need to flush due to large pages. */
500 if ((page & lp_mask) == lp_addr) {
501 tlb_debug("forcing full flush midx %d (%016"
502 VADDR_PRIx "/%016" VADDR_PRIx ")\n",
503 midx, lp_addr, lp_mask);
504 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
505 } else {
506 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
507 tlb_n_used_entries_dec(env, midx);
508 }
509 tlb_flush_vtlb_page_locked(env, midx, page);
510 }
511 }
512
513 /**
514 * tlb_flush_page_by_mmuidx_async_0:
515 * @cpu: cpu on which to flush
516 * @addr: page of virtual address to flush
517 * @idxmap: set of mmu_idx to flush
518 *
519 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
520 * at @addr from the tlbs indicated by @idxmap from @cpu.
521 */
522 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
523 vaddr addr,
524 uint16_t idxmap)
525 {
526 CPUArchState *env = cpu_env(cpu);
527 int mmu_idx;
528
529 assert_cpu_is_self(cpu);
530
531 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
532
533 qemu_spin_lock(&env_tlb(env)->c.lock);
534 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
535 if ((idxmap >> mmu_idx) & 1) {
536 tlb_flush_page_locked(env, mmu_idx, addr);
537 }
538 }
539 qemu_spin_unlock(&env_tlb(env)->c.lock);
540
541 /*
542 * Discard jump cache entries for any tb which might potentially
543 * overlap the flushed page, which includes the previous.
544 */
545 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
546 tb_jmp_cache_clear_page(cpu, addr);
547 }
548
549 /**
550 * tlb_flush_page_by_mmuidx_async_1:
551 * @cpu: cpu on which to flush
552 * @data: encoded addr + idxmap
553 *
554 * Helper for tlb_flush_page_by_mmuidx and friends, called through
555 * async_run_on_cpu. The idxmap parameter is encoded in the page
556 * offset of the target_ptr field. This limits the set of mmu_idx
557 * that can be passed via this method.
558 */
559 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
560 run_on_cpu_data data)
561 {
562 vaddr addr_and_idxmap = data.target_ptr;
563 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
564 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
565
566 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
567 }
568
569 typedef struct {
570 vaddr addr;
571 uint16_t idxmap;
572 } TLBFlushPageByMMUIdxData;
573
574 /**
575 * tlb_flush_page_by_mmuidx_async_2:
576 * @cpu: cpu on which to flush
577 * @data: allocated addr + idxmap
578 *
579 * Helper for tlb_flush_page_by_mmuidx and friends, called through
580 * async_run_on_cpu. The addr+idxmap parameters are stored in a
581 * TLBFlushPageByMMUIdxData structure that has been allocated
582 * specifically for this helper. Free the structure when done.
583 */
584 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
585 run_on_cpu_data data)
586 {
587 TLBFlushPageByMMUIdxData *d = data.host_ptr;
588
589 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
590 g_free(d);
591 }
592
593 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
594 {
595 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
596
597 /* This should already be page aligned */
598 addr &= TARGET_PAGE_MASK;
599
600 if (qemu_cpu_is_self(cpu)) {
601 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
602 } else if (idxmap < TARGET_PAGE_SIZE) {
603 /*
604 * Most targets have only a few mmu_idx. In the case where
605 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
606 * allocating memory for this operation.
607 */
608 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
609 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
610 } else {
611 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
612
613 /* Otherwise allocate a structure, freed by the worker. */
614 d->addr = addr;
615 d->idxmap = idxmap;
616 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
617 RUN_ON_CPU_HOST_PTR(d));
618 }
619 }
620
621 void tlb_flush_page(CPUState *cpu, vaddr addr)
622 {
623 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
624 }
625
626 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
627 uint16_t idxmap)
628 {
629 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
630
631 /* This should already be page aligned */
632 addr &= TARGET_PAGE_MASK;
633
634 /*
635 * Allocate memory to hold addr+idxmap only when needed.
636 * See tlb_flush_page_by_mmuidx for details.
637 */
638 if (idxmap < TARGET_PAGE_SIZE) {
639 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
640 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
641 } else {
642 CPUState *dst_cpu;
643
644 /* Allocate a separate data block for each destination cpu. */
645 CPU_FOREACH(dst_cpu) {
646 if (dst_cpu != src_cpu) {
647 TLBFlushPageByMMUIdxData *d
648 = g_new(TLBFlushPageByMMUIdxData, 1);
649
650 d->addr = addr;
651 d->idxmap = idxmap;
652 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
653 RUN_ON_CPU_HOST_PTR(d));
654 }
655 }
656 }
657
658 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
659 }
660
661 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
662 {
663 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
664 }
665
666 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
667 vaddr addr,
668 uint16_t idxmap)
669 {
670 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
671
672 /* This should already be page aligned */
673 addr &= TARGET_PAGE_MASK;
674
675 /*
676 * Allocate memory to hold addr+idxmap only when needed.
677 * See tlb_flush_page_by_mmuidx for details.
678 */
679 if (idxmap < TARGET_PAGE_SIZE) {
680 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
681 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
682 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
683 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
684 } else {
685 CPUState *dst_cpu;
686 TLBFlushPageByMMUIdxData *d;
687
688 /* Allocate a separate data block for each destination cpu. */
689 CPU_FOREACH(dst_cpu) {
690 if (dst_cpu != src_cpu) {
691 d = g_new(TLBFlushPageByMMUIdxData, 1);
692 d->addr = addr;
693 d->idxmap = idxmap;
694 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
695 RUN_ON_CPU_HOST_PTR(d));
696 }
697 }
698
699 d = g_new(TLBFlushPageByMMUIdxData, 1);
700 d->addr = addr;
701 d->idxmap = idxmap;
702 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
703 RUN_ON_CPU_HOST_PTR(d));
704 }
705 }
706
707 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
708 {
709 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
710 }
711
712 static void tlb_flush_range_locked(CPUArchState *env, int midx,
713 vaddr addr, vaddr len,
714 unsigned bits)
715 {
716 CPUTLBDesc *d = &env_tlb(env)->d[midx];
717 CPUTLBDescFast *f = &env_tlb(env)->f[midx];
718 vaddr mask = MAKE_64BIT_MASK(0, bits);
719
720 /*
721 * If @bits is smaller than the tlb size, there may be multiple entries
722 * within the TLB; otherwise all addresses that match under @mask hit
723 * the same TLB entry.
724 * TODO: Perhaps allow bits to be a few bits less than the size.
725 * For now, just flush the entire TLB.
726 *
727 * If @len is larger than the tlb size, then it will take longer to
728 * test all of the entries in the TLB than it will to flush it all.
729 */
730 if (mask < f->mask || len > f->mask) {
731 tlb_debug("forcing full flush midx %d ("
732 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
733 midx, addr, mask, len);
734 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
735 return;
736 }
737
738 /*
739 * Check if we need to flush due to large pages.
740 * Because large_page_mask contains all 1's from the msb,
741 * we only need to test the end of the range.
742 */
743 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
744 tlb_debug("forcing full flush midx %d ("
745 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
746 midx, d->large_page_addr, d->large_page_mask);
747 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
748 return;
749 }
750
751 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
752 vaddr page = addr + i;
753 CPUTLBEntry *entry = tlb_entry(env, midx, page);
754
755 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
756 tlb_n_used_entries_dec(env, midx);
757 }
758 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
759 }
760 }
761
762 typedef struct {
763 vaddr addr;
764 vaddr len;
765 uint16_t idxmap;
766 uint16_t bits;
767 } TLBFlushRangeData;
768
769 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
770 TLBFlushRangeData d)
771 {
772 CPUArchState *env = cpu_env(cpu);
773 int mmu_idx;
774
775 assert_cpu_is_self(cpu);
776
777 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
778 d.addr, d.bits, d.len, d.idxmap);
779
780 qemu_spin_lock(&env_tlb(env)->c.lock);
781 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
782 if ((d.idxmap >> mmu_idx) & 1) {
783 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
784 }
785 }
786 qemu_spin_unlock(&env_tlb(env)->c.lock);
787
788 /*
789 * If the length is larger than the jump cache size, then it will take
790 * longer to clear each entry individually than it will to clear it all.
791 */
792 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
793 tcg_flush_jmp_cache(cpu);
794 return;
795 }
796
797 /*
798 * Discard jump cache entries for any tb which might potentially
799 * overlap the flushed pages, which includes the previous.
800 */
801 d.addr -= TARGET_PAGE_SIZE;
802 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
803 tb_jmp_cache_clear_page(cpu, d.addr);
804 d.addr += TARGET_PAGE_SIZE;
805 }
806 }
807
808 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
809 run_on_cpu_data data)
810 {
811 TLBFlushRangeData *d = data.host_ptr;
812 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
813 g_free(d);
814 }
815
816 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
817 vaddr len, uint16_t idxmap,
818 unsigned bits)
819 {
820 TLBFlushRangeData d;
821
822 /*
823 * If all bits are significant, and len is small,
824 * this devolves to tlb_flush_page.
825 */
826 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
827 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
828 return;
829 }
830 /* If no page bits are significant, this devolves to tlb_flush. */
831 if (bits < TARGET_PAGE_BITS) {
832 tlb_flush_by_mmuidx(cpu, idxmap);
833 return;
834 }
835
836 /* This should already be page aligned */
837 d.addr = addr & TARGET_PAGE_MASK;
838 d.len = len;
839 d.idxmap = idxmap;
840 d.bits = bits;
841
842 if (qemu_cpu_is_self(cpu)) {
843 tlb_flush_range_by_mmuidx_async_0(cpu, d);
844 } else {
845 /* Otherwise allocate a structure, freed by the worker. */
846 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
847 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
848 RUN_ON_CPU_HOST_PTR(p));
849 }
850 }
851
852 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
853 uint16_t idxmap, unsigned bits)
854 {
855 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
856 }
857
858 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
859 vaddr addr, vaddr len,
860 uint16_t idxmap, unsigned bits)
861 {
862 TLBFlushRangeData d;
863 CPUState *dst_cpu;
864
865 /*
866 * If all bits are significant, and len is small,
867 * this devolves to tlb_flush_page.
868 */
869 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
870 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
871 return;
872 }
873 /* If no page bits are significant, this devolves to tlb_flush. */
874 if (bits < TARGET_PAGE_BITS) {
875 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
876 return;
877 }
878
879 /* This should already be page aligned */
880 d.addr = addr & TARGET_PAGE_MASK;
881 d.len = len;
882 d.idxmap = idxmap;
883 d.bits = bits;
884
885 /* Allocate a separate data block for each destination cpu. */
886 CPU_FOREACH(dst_cpu) {
887 if (dst_cpu != src_cpu) {
888 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
889 async_run_on_cpu(dst_cpu,
890 tlb_flush_range_by_mmuidx_async_1,
891 RUN_ON_CPU_HOST_PTR(p));
892 }
893 }
894
895 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
896 }
897
898 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
899 vaddr addr, uint16_t idxmap,
900 unsigned bits)
901 {
902 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
903 idxmap, bits);
904 }
905
906 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
907 vaddr addr,
908 vaddr len,
909 uint16_t idxmap,
910 unsigned bits)
911 {
912 TLBFlushRangeData d, *p;
913 CPUState *dst_cpu;
914
915 /*
916 * If all bits are significant, and len is small,
917 * this devolves to tlb_flush_page.
918 */
919 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
920 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
921 return;
922 }
923 /* If no page bits are significant, this devolves to tlb_flush. */
924 if (bits < TARGET_PAGE_BITS) {
925 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
926 return;
927 }
928
929 /* This should already be page aligned */
930 d.addr = addr & TARGET_PAGE_MASK;
931 d.len = len;
932 d.idxmap = idxmap;
933 d.bits = bits;
934
935 /* Allocate a separate data block for each destination cpu. */
936 CPU_FOREACH(dst_cpu) {
937 if (dst_cpu != src_cpu) {
938 p = g_memdup(&d, sizeof(d));
939 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
940 RUN_ON_CPU_HOST_PTR(p));
941 }
942 }
943
944 p = g_memdup(&d, sizeof(d));
945 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
946 RUN_ON_CPU_HOST_PTR(p));
947 }
948
949 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
950 vaddr addr,
951 uint16_t idxmap,
952 unsigned bits)
953 {
954 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
955 idxmap, bits);
956 }
957
958 /* update the TLBs so that writes to code in the virtual page 'addr'
959 can be detected */
960 void tlb_protect_code(ram_addr_t ram_addr)
961 {
962 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
963 TARGET_PAGE_SIZE,
964 DIRTY_MEMORY_CODE);
965 }
966
967 /* update the TLB so that writes in physical page 'phys_addr' are no longer
968 tested for self modifying code */
969 void tlb_unprotect_code(ram_addr_t ram_addr)
970 {
971 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
972 }
973
974
975 /*
976 * Dirty write flag handling
977 *
978 * When the TCG code writes to a location it looks up the address in
979 * the TLB and uses that data to compute the final address. If any of
980 * the lower bits of the address are set then the slow path is forced.
981 * There are a number of reasons to do this but for normal RAM the
982 * most usual is detecting writes to code regions which may invalidate
983 * generated code.
984 *
985 * Other vCPUs might be reading their TLBs during guest execution, so we update
986 * te->addr_write with qatomic_set. We don't need to worry about this for
987 * oversized guests as MTTCG is disabled for them.
988 *
989 * Called with tlb_c.lock held.
990 */
991 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
992 uintptr_t start, uintptr_t length)
993 {
994 uintptr_t addr = tlb_entry->addr_write;
995
996 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
997 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
998 addr &= TARGET_PAGE_MASK;
999 addr += tlb_entry->addend;
1000 if ((addr - start) < length) {
1001 #if TARGET_LONG_BITS == 32
1002 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
1003 ptr_write += HOST_BIG_ENDIAN;
1004 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
1005 #elif TCG_OVERSIZED_GUEST
1006 tlb_entry->addr_write |= TLB_NOTDIRTY;
1007 #else
1008 qatomic_set(&tlb_entry->addr_write,
1009 tlb_entry->addr_write | TLB_NOTDIRTY);
1010 #endif
1011 }
1012 }
1013 }
1014
1015 /*
1016 * Called with tlb_c.lock held.
1017 * Called only from the vCPU context, i.e. the TLB's owner thread.
1018 */
1019 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1020 {
1021 *d = *s;
1022 }
1023
1024 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1025 * the target vCPU).
1026 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1027 * thing actually updated is the target TLB entry ->addr_write flags.
1028 */
1029 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1030 {
1031 CPUArchState *env;
1032
1033 int mmu_idx;
1034
1035 env = cpu_env(cpu);
1036 qemu_spin_lock(&env_tlb(env)->c.lock);
1037 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1038 unsigned int i;
1039 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1040
1041 for (i = 0; i < n; i++) {
1042 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1043 start1, length);
1044 }
1045
1046 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1047 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1048 start1, length);
1049 }
1050 }
1051 qemu_spin_unlock(&env_tlb(env)->c.lock);
1052 }
1053
1054 /* Called with tlb_c.lock held */
1055 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1056 vaddr addr)
1057 {
1058 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
1059 tlb_entry->addr_write = addr;
1060 }
1061 }
1062
1063 /* update the TLB corresponding to virtual page vaddr
1064 so that it is no longer dirty */
1065 void tlb_set_dirty(CPUState *cpu, vaddr addr)
1066 {
1067 CPUArchState *env = cpu_env(cpu);
1068 int mmu_idx;
1069
1070 assert_cpu_is_self(cpu);
1071
1072 addr &= TARGET_PAGE_MASK;
1073 qemu_spin_lock(&env_tlb(env)->c.lock);
1074 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1075 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr);
1076 }
1077
1078 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1079 int k;
1080 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1081 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr);
1082 }
1083 }
1084 qemu_spin_unlock(&env_tlb(env)->c.lock);
1085 }
1086
1087 /* Our TLB does not support large pages, so remember the area covered by
1088 large pages and trigger a full TLB flush if these are invalidated. */
1089 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1090 vaddr addr, uint64_t size)
1091 {
1092 vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1093 vaddr lp_mask = ~(size - 1);
1094
1095 if (lp_addr == (vaddr)-1) {
1096 /* No previous large page. */
1097 lp_addr = addr;
1098 } else {
1099 /* Extend the existing region to include the new page.
1100 This is a compromise between unnecessary flushes and
1101 the cost of maintaining a full variable size TLB. */
1102 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1103 while (((lp_addr ^ addr) & lp_mask) != 0) {
1104 lp_mask <<= 1;
1105 }
1106 }
1107 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1108 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1109 }
1110
1111 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
1112 vaddr address, int flags,
1113 MMUAccessType access_type, bool enable)
1114 {
1115 if (enable) {
1116 address |= flags & TLB_FLAGS_MASK;
1117 flags &= TLB_SLOW_FLAGS_MASK;
1118 if (flags) {
1119 address |= TLB_FORCE_SLOW;
1120 }
1121 } else {
1122 address = -1;
1123 flags = 0;
1124 }
1125 ent->addr_idx[access_type] = address;
1126 full->slow_flags[access_type] = flags;
1127 }
1128
1129 /*
1130 * Add a new TLB entry. At most one entry for a given virtual address
1131 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1132 * supplied size is only used by tlb_flush_page.
1133 *
1134 * Called from TCG-generated code, which is under an RCU read-side
1135 * critical section.
1136 */
1137 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1138 vaddr addr, CPUTLBEntryFull *full)
1139 {
1140 CPUArchState *env = cpu_env(cpu);
1141 CPUTLB *tlb = env_tlb(env);
1142 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1143 MemoryRegionSection *section;
1144 unsigned int index, read_flags, write_flags;
1145 uintptr_t addend;
1146 CPUTLBEntry *te, tn;
1147 hwaddr iotlb, xlat, sz, paddr_page;
1148 vaddr addr_page;
1149 int asidx, wp_flags, prot;
1150 bool is_ram, is_romd;
1151
1152 assert_cpu_is_self(cpu);
1153
1154 if (full->lg_page_size <= TARGET_PAGE_BITS) {
1155 sz = TARGET_PAGE_SIZE;
1156 } else {
1157 sz = (hwaddr)1 << full->lg_page_size;
1158 tlb_add_large_page(env, mmu_idx, addr, sz);
1159 }
1160 addr_page = addr & TARGET_PAGE_MASK;
1161 paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1162
1163 prot = full->prot;
1164 asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1165 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1166 &xlat, &sz, full->attrs, &prot);
1167 assert(sz >= TARGET_PAGE_SIZE);
1168
1169 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1170 " prot=%x idx=%d\n",
1171 addr, full->phys_addr, prot, mmu_idx);
1172
1173 read_flags = 0;
1174 if (full->lg_page_size < TARGET_PAGE_BITS) {
1175 /* Repeat the MMU check and TLB fill on every access. */
1176 read_flags |= TLB_INVALID_MASK;
1177 }
1178 if (full->attrs.byte_swap) {
1179 read_flags |= TLB_BSWAP;
1180 }
1181
1182 is_ram = memory_region_is_ram(section->mr);
1183 is_romd = memory_region_is_romd(section->mr);
1184
1185 if (is_ram || is_romd) {
1186 /* RAM and ROMD both have associated host memory. */
1187 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1188 } else {
1189 /* I/O does not; force the host address to NULL. */
1190 addend = 0;
1191 }
1192
1193 write_flags = read_flags;
1194 if (is_ram) {
1195 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1196 assert(!(iotlb & ~TARGET_PAGE_MASK));
1197 /*
1198 * Computing is_clean is expensive; avoid all that unless
1199 * the page is actually writable.
1200 */
1201 if (prot & PAGE_WRITE) {
1202 if (section->readonly) {
1203 write_flags |= TLB_DISCARD_WRITE;
1204 } else if (cpu_physical_memory_is_clean(iotlb)) {
1205 write_flags |= TLB_NOTDIRTY;
1206 }
1207 }
1208 } else {
1209 /* I/O or ROMD */
1210 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1211 /*
1212 * Writes to romd devices must go through MMIO to enable write.
1213 * Reads to romd devices go through the ram_ptr found above,
1214 * but of course reads to I/O must go through MMIO.
1215 */
1216 write_flags |= TLB_MMIO;
1217 if (!is_romd) {
1218 read_flags = write_flags;
1219 }
1220 }
1221
1222 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1223 TARGET_PAGE_SIZE);
1224
1225 index = tlb_index(env, mmu_idx, addr_page);
1226 te = tlb_entry(env, mmu_idx, addr_page);
1227
1228 /*
1229 * Hold the TLB lock for the rest of the function. We could acquire/release
1230 * the lock several times in the function, but it is faster to amortize the
1231 * acquisition cost by acquiring it just once. Note that this leads to
1232 * a longer critical section, but this is not a concern since the TLB lock
1233 * is unlikely to be contended.
1234 */
1235 qemu_spin_lock(&tlb->c.lock);
1236
1237 /* Note that the tlb is no longer clean. */
1238 tlb->c.dirty |= 1 << mmu_idx;
1239
1240 /* Make sure there's no cached translation for the new page. */
1241 tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page);
1242
1243 /*
1244 * Only evict the old entry to the victim tlb if it's for a
1245 * different page; otherwise just overwrite the stale data.
1246 */
1247 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1248 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1249 CPUTLBEntry *tv = &desc->vtable[vidx];
1250
1251 /* Evict the old entry into the victim tlb. */
1252 copy_tlb_helper_locked(tv, te);
1253 desc->vfulltlb[vidx] = desc->fulltlb[index];
1254 tlb_n_used_entries_dec(env, mmu_idx);
1255 }
1256
1257 /* refill the tlb */
1258 /*
1259 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS
1260 * aligned ram_addr_t of the page base of the target RAM.
1261 * Otherwise, iotlb contains
1262 * - a physical section number in the lower TARGET_PAGE_BITS
1263 * - the offset within section->mr of the page base (I/O, ROMD) with the
1264 * TARGET_PAGE_BITS masked off.
1265 * We subtract addr_page (which is page aligned and thus won't
1266 * disturb the low bits) to give an offset which can be added to the
1267 * (non-page-aligned) vaddr of the eventual memory access to get
1268 * the MemoryRegion offset for the access. Note that the vaddr we
1269 * subtract here is that of the page base, and not the same as the
1270 * vaddr we add back in io_prepare()/get_page_addr_code().
1271 */
1272 desc->fulltlb[index] = *full;
1273 full = &desc->fulltlb[index];
1274 full->xlat_section = iotlb - addr_page;
1275 full->phys_addr = paddr_page;
1276
1277 /* Now calculate the new entry */
1278 tn.addend = addend - addr_page;
1279
1280 tlb_set_compare(full, &tn, addr_page, read_flags,
1281 MMU_INST_FETCH, prot & PAGE_EXEC);
1282
1283 if (wp_flags & BP_MEM_READ) {
1284 read_flags |= TLB_WATCHPOINT;
1285 }
1286 tlb_set_compare(full, &tn, addr_page, read_flags,
1287 MMU_DATA_LOAD, prot & PAGE_READ);
1288
1289 if (prot & PAGE_WRITE_INV) {
1290 write_flags |= TLB_INVALID_MASK;
1291 }
1292 if (wp_flags & BP_MEM_WRITE) {
1293 write_flags |= TLB_WATCHPOINT;
1294 }
1295 tlb_set_compare(full, &tn, addr_page, write_flags,
1296 MMU_DATA_STORE, prot & PAGE_WRITE);
1297
1298 copy_tlb_helper_locked(te, &tn);
1299 tlb_n_used_entries_inc(env, mmu_idx);
1300 qemu_spin_unlock(&tlb->c.lock);
1301 }
1302
1303 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1304 hwaddr paddr, MemTxAttrs attrs, int prot,
1305 int mmu_idx, uint64_t size)
1306 {
1307 CPUTLBEntryFull full = {
1308 .phys_addr = paddr,
1309 .attrs = attrs,
1310 .prot = prot,
1311 .lg_page_size = ctz64(size)
1312 };
1313
1314 assert(is_power_of_2(size));
1315 tlb_set_page_full(cpu, mmu_idx, addr, &full);
1316 }
1317
1318 void tlb_set_page(CPUState *cpu, vaddr addr,
1319 hwaddr paddr, int prot,
1320 int mmu_idx, uint64_t size)
1321 {
1322 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1323 prot, mmu_idx, size);
1324 }
1325
1326 /*
1327 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1328 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1329 * be discarded and looked up again (e.g. via tlb_entry()).
1330 */
1331 static void tlb_fill(CPUState *cpu, vaddr addr, int size,
1332 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1333 {
1334 bool ok;
1335
1336 /*
1337 * This is not a probe, so only valid return is success; failure
1338 * should result in exception + longjmp to the cpu loop.
1339 */
1340 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1341 access_type, mmu_idx, false, retaddr);
1342 assert(ok);
1343 }
1344
1345 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1346 MMUAccessType access_type,
1347 int mmu_idx, uintptr_t retaddr)
1348 {
1349 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1350 mmu_idx, retaddr);
1351 }
1352
1353 static MemoryRegionSection *
1354 io_prepare(hwaddr *out_offset, CPUArchState *env, hwaddr xlat,
1355 MemTxAttrs attrs, vaddr addr, uintptr_t retaddr)
1356 {
1357 CPUState *cpu = env_cpu(env);
1358 MemoryRegionSection *section;
1359 hwaddr mr_offset;
1360
1361 section = iotlb_to_section(cpu, xlat, attrs);
1362 mr_offset = (xlat & TARGET_PAGE_MASK) + addr;
1363 cpu->mem_io_pc = retaddr;
1364 if (!cpu->neg.can_do_io) {
1365 cpu_io_recompile(cpu, retaddr);
1366 }
1367
1368 *out_offset = mr_offset;
1369 return section;
1370 }
1371
1372 static void io_failed(CPUArchState *env, CPUTLBEntryFull *full, vaddr addr,
1373 unsigned size, MMUAccessType access_type, int mmu_idx,
1374 MemTxResult response, uintptr_t retaddr)
1375 {
1376 CPUState *cpu = env_cpu(env);
1377
1378 if (!cpu->ignore_memory_transaction_failures) {
1379 CPUClass *cc = CPU_GET_CLASS(cpu);
1380
1381 if (cc->tcg_ops->do_transaction_failed) {
1382 hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1383
1384 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1385 access_type, mmu_idx,
1386 full->attrs, response, retaddr);
1387 }
1388 }
1389 }
1390
1391 /* Return true if ADDR is present in the victim tlb, and has been copied
1392 back to the main tlb. */
1393 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1394 MMUAccessType access_type, vaddr page)
1395 {
1396 size_t vidx;
1397
1398 assert_cpu_is_self(env_cpu(env));
1399 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1400 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1401 uint64_t cmp = tlb_read_idx(vtlb, access_type);
1402
1403 if (cmp == page) {
1404 /* Found entry in victim tlb, swap tlb and iotlb. */
1405 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1406
1407 qemu_spin_lock(&env_tlb(env)->c.lock);
1408 copy_tlb_helper_locked(&tmptlb, tlb);
1409 copy_tlb_helper_locked(tlb, vtlb);
1410 copy_tlb_helper_locked(vtlb, &tmptlb);
1411 qemu_spin_unlock(&env_tlb(env)->c.lock);
1412
1413 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1414 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1415 CPUTLBEntryFull tmpf;
1416 tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1417 return true;
1418 }
1419 }
1420 return false;
1421 }
1422
1423 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1424 CPUTLBEntryFull *full, uintptr_t retaddr)
1425 {
1426 ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1427
1428 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1429
1430 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1431 tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1432 }
1433
1434 /*
1435 * Set both VGA and migration bits for simplicity and to remove
1436 * the notdirty callback faster.
1437 */
1438 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1439
1440 /* We remove the notdirty callback only if the code has been flushed. */
1441 if (!cpu_physical_memory_is_clean(ram_addr)) {
1442 trace_memory_notdirty_set_dirty(mem_vaddr);
1443 tlb_set_dirty(cpu, mem_vaddr);
1444 }
1445 }
1446
1447 static int probe_access_internal(CPUArchState *env, vaddr addr,
1448 int fault_size, MMUAccessType access_type,
1449 int mmu_idx, bool nonfault,
1450 void **phost, CPUTLBEntryFull **pfull,
1451 uintptr_t retaddr, bool check_mem_cbs)
1452 {
1453 uintptr_t index = tlb_index(env, mmu_idx, addr);
1454 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1455 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1456 vaddr page_addr = addr & TARGET_PAGE_MASK;
1457 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1458 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(env_cpu(env));
1459 CPUTLBEntryFull *full;
1460
1461 if (!tlb_hit_page(tlb_addr, page_addr)) {
1462 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) {
1463 CPUState *cs = env_cpu(env);
1464
1465 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1466 mmu_idx, nonfault, retaddr)) {
1467 /* Non-faulting page table read failed. */
1468 *phost = NULL;
1469 *pfull = NULL;
1470 return TLB_INVALID_MASK;
1471 }
1472
1473 /* TLB resize via tlb_fill may have moved the entry. */
1474 index = tlb_index(env, mmu_idx, addr);
1475 entry = tlb_entry(env, mmu_idx, addr);
1476
1477 /*
1478 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1479 * to force the next access through tlb_fill. We've just
1480 * called tlb_fill, so we know that this entry *is* valid.
1481 */
1482 flags &= ~TLB_INVALID_MASK;
1483 }
1484 tlb_addr = tlb_read_idx(entry, access_type);
1485 }
1486 flags &= tlb_addr;
1487
1488 *pfull = full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1489 flags |= full->slow_flags[access_type];
1490
1491 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1492 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))
1493 ||
1494 (access_type != MMU_INST_FETCH && force_mmio)) {
1495 *phost = NULL;
1496 return TLB_MMIO;
1497 }
1498
1499 /* Everything else is RAM. */
1500 *phost = (void *)((uintptr_t)addr + entry->addend);
1501 return flags;
1502 }
1503
1504 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1505 MMUAccessType access_type, int mmu_idx,
1506 bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1507 uintptr_t retaddr)
1508 {
1509 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1510 nonfault, phost, pfull, retaddr, true);
1511
1512 /* Handle clean RAM pages. */
1513 if (unlikely(flags & TLB_NOTDIRTY)) {
1514 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1515 flags &= ~TLB_NOTDIRTY;
1516 }
1517
1518 return flags;
1519 }
1520
1521 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1522 MMUAccessType access_type, int mmu_idx,
1523 void **phost, CPUTLBEntryFull **pfull)
1524 {
1525 void *discard_phost;
1526 CPUTLBEntryFull *discard_tlb;
1527
1528 /* privately handle users that don't need full results */
1529 phost = phost ? phost : &discard_phost;
1530 pfull = pfull ? pfull : &discard_tlb;
1531
1532 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1533 true, phost, pfull, 0, false);
1534
1535 /* Handle clean RAM pages. */
1536 if (unlikely(flags & TLB_NOTDIRTY)) {
1537 notdirty_write(env_cpu(env), addr, 1, *pfull, 0);
1538 flags &= ~TLB_NOTDIRTY;
1539 }
1540
1541 return flags;
1542 }
1543
1544 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1545 MMUAccessType access_type, int mmu_idx,
1546 bool nonfault, void **phost, uintptr_t retaddr)
1547 {
1548 CPUTLBEntryFull *full;
1549 int flags;
1550
1551 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1552
1553 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1554 nonfault, phost, &full, retaddr, true);
1555
1556 /* Handle clean RAM pages. */
1557 if (unlikely(flags & TLB_NOTDIRTY)) {
1558 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1559 flags &= ~TLB_NOTDIRTY;
1560 }
1561
1562 return flags;
1563 }
1564
1565 void *probe_access(CPUArchState *env, vaddr addr, int size,
1566 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1567 {
1568 CPUTLBEntryFull *full;
1569 void *host;
1570 int flags;
1571
1572 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1573
1574 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1575 false, &host, &full, retaddr, true);
1576
1577 /* Per the interface, size == 0 merely faults the access. */
1578 if (size == 0) {
1579 return NULL;
1580 }
1581
1582 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1583 /* Handle watchpoints. */
1584 if (flags & TLB_WATCHPOINT) {
1585 int wp_access = (access_type == MMU_DATA_STORE
1586 ? BP_MEM_WRITE : BP_MEM_READ);
1587 cpu_check_watchpoint(env_cpu(env), addr, size,
1588 full->attrs, wp_access, retaddr);
1589 }
1590
1591 /* Handle clean RAM pages. */
1592 if (flags & TLB_NOTDIRTY) {
1593 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1594 }
1595 }
1596
1597 return host;
1598 }
1599
1600 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1601 MMUAccessType access_type, int mmu_idx)
1602 {
1603 CPUTLBEntryFull *full;
1604 void *host;
1605 int flags;
1606
1607 flags = probe_access_internal(env, addr, 0, access_type,
1608 mmu_idx, true, &host, &full, 0, false);
1609
1610 /* No combination of flags are expected by the caller. */
1611 return flags ? NULL : host;
1612 }
1613
1614 /*
1615 * Return a ram_addr_t for the virtual address for execution.
1616 *
1617 * Return -1 if we can't translate and execute from an entire page
1618 * of RAM. This will force us to execute by loading and translating
1619 * one insn at a time, without caching.
1620 *
1621 * NOTE: This function will trigger an exception if the page is
1622 * not executable.
1623 */
1624 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1625 void **hostp)
1626 {
1627 CPUTLBEntryFull *full;
1628 void *p;
1629
1630 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1631 cpu_mmu_index(env, true), false,
1632 &p, &full, 0, false);
1633 if (p == NULL) {
1634 return -1;
1635 }
1636
1637 if (full->lg_page_size < TARGET_PAGE_BITS) {
1638 return -1;
1639 }
1640
1641 if (hostp) {
1642 *hostp = p;
1643 }
1644 return qemu_ram_addr_from_host_nofail(p);
1645 }
1646
1647 /* Load/store with atomicity primitives. */
1648 #include "ldst_atomicity.c.inc"
1649
1650 #ifdef CONFIG_PLUGIN
1651 /*
1652 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1653 * This should be a hot path as we will have just looked this path up
1654 * in the softmmu lookup code (or helper). We don't handle re-fills or
1655 * checking the victim table. This is purely informational.
1656 *
1657 * The one corner case is i/o write, which can cause changes to the
1658 * address space. Those changes, and the corresponding tlb flush,
1659 * should be delayed until the next TB, so even then this ought not fail.
1660 * But check, Just in Case.
1661 */
1662 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1663 bool is_store, struct qemu_plugin_hwaddr *data)
1664 {
1665 CPUArchState *env = cpu_env(cpu);
1666 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1667 uintptr_t index = tlb_index(env, mmu_idx, addr);
1668 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD;
1669 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type);
1670 CPUTLBEntryFull *full;
1671
1672 if (unlikely(!tlb_hit(tlb_addr, addr))) {
1673 return false;
1674 }
1675
1676 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1677 data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1678
1679 /* We must have an iotlb entry for MMIO */
1680 if (tlb_addr & TLB_MMIO) {
1681 MemoryRegionSection *section =
1682 iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK,
1683 full->attrs);
1684 data->is_io = true;
1685 data->mr = section->mr;
1686 } else {
1687 data->is_io = false;
1688 data->mr = NULL;
1689 }
1690 return true;
1691 }
1692 #endif
1693
1694 /*
1695 * Probe for a load/store operation.
1696 * Return the host address and into @flags.
1697 */
1698
1699 typedef struct MMULookupPageData {
1700 CPUTLBEntryFull *full;
1701 void *haddr;
1702 vaddr addr;
1703 int flags;
1704 int size;
1705 } MMULookupPageData;
1706
1707 typedef struct MMULookupLocals {
1708 MMULookupPageData page[2];
1709 MemOp memop;
1710 int mmu_idx;
1711 } MMULookupLocals;
1712
1713 /**
1714 * mmu_lookup1: translate one page
1715 * @env: cpu context
1716 * @data: lookup parameters
1717 * @mmu_idx: virtual address context
1718 * @access_type: load/store/code
1719 * @ra: return address into tcg generated code, or 0
1720 *
1721 * Resolve the translation for the one page at @data.addr, filling in
1722 * the rest of @data with the results. If the translation fails,
1723 * tlb_fill will longjmp out. Return true if the softmmu tlb for
1724 * @mmu_idx may have resized.
1725 */
1726 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data,
1727 int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1728 {
1729 vaddr addr = data->addr;
1730 uintptr_t index = tlb_index(env, mmu_idx, addr);
1731 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1732 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1733 bool maybe_resized = false;
1734 CPUTLBEntryFull *full;
1735 int flags;
1736
1737 /* If the TLB entry is for a different page, reload and try again. */
1738 if (!tlb_hit(tlb_addr, addr)) {
1739 if (!victim_tlb_hit(env, mmu_idx, index, access_type,
1740 addr & TARGET_PAGE_MASK)) {
1741 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra);
1742 maybe_resized = true;
1743 index = tlb_index(env, mmu_idx, addr);
1744 entry = tlb_entry(env, mmu_idx, addr);
1745 }
1746 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1747 }
1748
1749 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1750 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1751 flags |= full->slow_flags[access_type];
1752
1753 data->full = full;
1754 data->flags = flags;
1755 /* Compute haddr speculatively; depending on flags it might be invalid. */
1756 data->haddr = (void *)((uintptr_t)addr + entry->addend);
1757
1758 return maybe_resized;
1759 }
1760
1761 /**
1762 * mmu_watch_or_dirty
1763 * @env: cpu context
1764 * @data: lookup parameters
1765 * @access_type: load/store/code
1766 * @ra: return address into tcg generated code, or 0
1767 *
1768 * Trigger watchpoints for @data.addr:@data.size;
1769 * record writes to protected clean pages.
1770 */
1771 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data,
1772 MMUAccessType access_type, uintptr_t ra)
1773 {
1774 CPUTLBEntryFull *full = data->full;
1775 vaddr addr = data->addr;
1776 int flags = data->flags;
1777 int size = data->size;
1778
1779 /* On watchpoint hit, this will longjmp out. */
1780 if (flags & TLB_WATCHPOINT) {
1781 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1782 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra);
1783 flags &= ~TLB_WATCHPOINT;
1784 }
1785
1786 /* Note that notdirty is only set for writes. */
1787 if (flags & TLB_NOTDIRTY) {
1788 notdirty_write(env_cpu(env), addr, size, full, ra);
1789 flags &= ~TLB_NOTDIRTY;
1790 }
1791 data->flags = flags;
1792 }
1793
1794 /**
1795 * mmu_lookup: translate page(s)
1796 * @env: cpu context
1797 * @addr: virtual address
1798 * @oi: combined mmu_idx and MemOp
1799 * @ra: return address into tcg generated code, or 0
1800 * @access_type: load/store/code
1801 * @l: output result
1802 *
1803 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1804 * bytes. Return true if the lookup crosses a page boundary.
1805 */
1806 static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1807 uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1808 {
1809 unsigned a_bits;
1810 bool crosspage;
1811 int flags;
1812
1813 l->memop = get_memop(oi);
1814 l->mmu_idx = get_mmuidx(oi);
1815
1816 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1817
1818 /* Handle CPU specific unaligned behaviour */
1819 a_bits = get_alignment_bits(l->memop);
1820 if (addr & ((1 << a_bits) - 1)) {
1821 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra);
1822 }
1823
1824 l->page[0].addr = addr;
1825 l->page[0].size = memop_size(l->memop);
1826 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1827 l->page[1].size = 0;
1828 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1829
1830 if (likely(!crosspage)) {
1831 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1832
1833 flags = l->page[0].flags;
1834 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1835 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1836 }
1837 if (unlikely(flags & TLB_BSWAP)) {
1838 l->memop ^= MO_BSWAP;
1839 }
1840 } else {
1841 /* Finish compute of page crossing. */
1842 int size0 = l->page[1].addr - addr;
1843 l->page[1].size = l->page[0].size - size0;
1844 l->page[0].size = size0;
1845
1846 /*
1847 * Lookup both pages, recognizing exceptions from either. If the
1848 * second lookup potentially resized, refresh first CPUTLBEntryFull.
1849 */
1850 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1851 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) {
1852 uintptr_t index = tlb_index(env, l->mmu_idx, addr);
1853 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index];
1854 }
1855
1856 flags = l->page[0].flags | l->page[1].flags;
1857 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1858 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1859 mmu_watch_or_dirty(env, &l->page[1], type, ra);
1860 }
1861
1862 /*
1863 * Since target/sparc is the only user of TLB_BSWAP, and all
1864 * Sparc accesses are aligned, any treatment across two pages
1865 * would be arbitrary. Refuse it until there's a use.
1866 */
1867 tcg_debug_assert((flags & TLB_BSWAP) == 0);
1868 }
1869
1870 return crosspage;
1871 }
1872
1873 /*
1874 * Probe for an atomic operation. Do not allow unaligned operations,
1875 * or io operations to proceed. Return the host address.
1876 */
1877 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1878 int size, uintptr_t retaddr)
1879 {
1880 uintptr_t mmu_idx = get_mmuidx(oi);
1881 MemOp mop = get_memop(oi);
1882 int a_bits = get_alignment_bits(mop);
1883 uintptr_t index;
1884 CPUTLBEntry *tlbe;
1885 vaddr tlb_addr;
1886 void *hostaddr;
1887 CPUTLBEntryFull *full;
1888
1889 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1890
1891 /* Adjust the given return address. */
1892 retaddr -= GETPC_ADJ;
1893
1894 /* Enforce guest required alignment. */
1895 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1896 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1897 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1898 mmu_idx, retaddr);
1899 }
1900
1901 /* Enforce qemu required alignment. */
1902 if (unlikely(addr & (size - 1))) {
1903 /* We get here if guest alignment was not requested,
1904 or was not enforced by cpu_unaligned_access above.
1905 We might widen the access and emulate, but for now
1906 mark an exception and exit the cpu loop. */
1907 goto stop_the_world;
1908 }
1909
1910 index = tlb_index(env, mmu_idx, addr);
1911 tlbe = tlb_entry(env, mmu_idx, addr);
1912
1913 /* Check TLB entry and enforce page permissions. */
1914 tlb_addr = tlb_addr_write(tlbe);
1915 if (!tlb_hit(tlb_addr, addr)) {
1916 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE,
1917 addr & TARGET_PAGE_MASK)) {
1918 tlb_fill(env_cpu(env), addr, size,
1919 MMU_DATA_STORE, mmu_idx, retaddr);
1920 index = tlb_index(env, mmu_idx, addr);
1921 tlbe = tlb_entry(env, mmu_idx, addr);
1922 }
1923 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1924 }
1925
1926 /*
1927 * Let the guest notice RMW on a write-only page.
1928 * We have just verified that the page is writable.
1929 * Subpage lookups may have left TLB_INVALID_MASK set,
1930 * but addr_read will only be -1 if PAGE_READ was unset.
1931 */
1932 if (unlikely(tlbe->addr_read == -1)) {
1933 tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
1934 /*
1935 * Since we don't support reads and writes to different
1936 * addresses, and we do have the proper page loaded for
1937 * write, this shouldn't ever return. But just in case,
1938 * handle via stop-the-world.
1939 */
1940 goto stop_the_world;
1941 }
1942 /* Collect tlb flags for read. */
1943 tlb_addr |= tlbe->addr_read;
1944
1945 /* Notice an IO access or a needs-MMU-lookup access */
1946 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1947 /* There's really nothing that can be done to
1948 support this apart from stop-the-world. */
1949 goto stop_the_world;
1950 }
1951
1952 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1953 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1954
1955 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1956 notdirty_write(env_cpu(env), addr, size, full, retaddr);
1957 }
1958
1959 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
1960 int wp_flags = 0;
1961
1962 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
1963 wp_flags |= BP_MEM_WRITE;
1964 }
1965 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
1966 wp_flags |= BP_MEM_READ;
1967 }
1968 if (wp_flags) {
1969 cpu_check_watchpoint(env_cpu(env), addr, size,
1970 full->attrs, wp_flags, retaddr);
1971 }
1972 }
1973
1974 return hostaddr;
1975
1976 stop_the_world:
1977 cpu_loop_exit_atomic(env_cpu(env), retaddr);
1978 }
1979
1980 /*
1981 * Load Helpers
1982 *
1983 * We support two different access types. SOFTMMU_CODE_ACCESS is
1984 * specifically for reading instructions from system memory. It is
1985 * called by the translation loop and in some helpers where the code
1986 * is disassembled. It shouldn't be called directly by guest code.
1987 *
1988 * For the benefit of TCG generated code, we want to avoid the
1989 * complication of ABI-specific return type promotion and always
1990 * return a value extended to the register size of the host. This is
1991 * tcg_target_long, except in the case of a 32-bit host and 64-bit
1992 * data, and for that we always have uint64_t.
1993 *
1994 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1995 */
1996
1997 /**
1998 * do_ld_mmio_beN:
1999 * @env: cpu context
2000 * @full: page parameters
2001 * @ret_be: accumulated data
2002 * @addr: virtual address
2003 * @size: number of bytes
2004 * @mmu_idx: virtual address context
2005 * @ra: return address into tcg generated code, or 0
2006 * Context: iothread lock held
2007 *
2008 * Load @size bytes from @addr, which is memory-mapped i/o.
2009 * The bytes are concatenated in big-endian order with @ret_be.
2010 */
2011 static uint64_t int_ld_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full,
2012 uint64_t ret_be, vaddr addr, int size,
2013 int mmu_idx, MMUAccessType type, uintptr_t ra,
2014 MemoryRegion *mr, hwaddr mr_offset)
2015 {
2016 do {
2017 MemOp this_mop;
2018 unsigned this_size;
2019 uint64_t val;
2020 MemTxResult r;
2021
2022 /* Read aligned pieces up to 8 bytes. */
2023 this_mop = ctz32(size | (int)addr | 8);
2024 this_size = 1 << this_mop;
2025 this_mop |= MO_BE;
2026
2027 r = memory_region_dispatch_read(mr, mr_offset, &val,
2028 this_mop, full->attrs);
2029 if (unlikely(r != MEMTX_OK)) {
2030 io_failed(env, full, addr, this_size, type, mmu_idx, r, ra);
2031 }
2032 if (this_size == 8) {
2033 return val;
2034 }
2035
2036 ret_be = (ret_be << (this_size * 8)) | val;
2037 addr += this_size;
2038 mr_offset += this_size;
2039 size -= this_size;
2040 } while (size);
2041
2042 return ret_be;
2043 }
2044
2045 static uint64_t do_ld_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full,
2046 uint64_t ret_be, vaddr addr, int size,
2047 int mmu_idx, MMUAccessType type, uintptr_t ra)
2048 {
2049 MemoryRegionSection *section;
2050 MemoryRegion *mr;
2051 hwaddr mr_offset;
2052 MemTxAttrs attrs;
2053 uint64_t ret;
2054
2055 tcg_debug_assert(size > 0 && size <= 8);
2056
2057 attrs = full->attrs;
2058 section = io_prepare(&mr_offset, env, full->xlat_section, attrs, addr, ra);
2059 mr = section->mr;
2060
2061 qemu_mutex_lock_iothread();
2062 ret = int_ld_mmio_beN(env, full, ret_be, addr, size, mmu_idx,
2063 type, ra, mr, mr_offset);
2064 qemu_mutex_unlock_iothread();
2065
2066 return ret;
2067 }
2068
2069 static Int128 do_ld16_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full,
2070 uint64_t ret_be, vaddr addr, int size,
2071 int mmu_idx, uintptr_t ra)
2072 {
2073 MemoryRegionSection *section;
2074 MemoryRegion *mr;
2075 hwaddr mr_offset;
2076 MemTxAttrs attrs;
2077 uint64_t a, b;
2078
2079 tcg_debug_assert(size > 8 && size <= 16);
2080
2081 attrs = full->attrs;
2082 section = io_prepare(&mr_offset, env, full->xlat_section, attrs, addr, ra);
2083 mr = section->mr;
2084
2085 qemu_mutex_lock_iothread();
2086 a = int_ld_mmio_beN(env, full, ret_be, addr, size - 8, mmu_idx,
2087 MMU_DATA_LOAD, ra, mr, mr_offset);
2088 b = int_ld_mmio_beN(env, full, ret_be, addr + size - 8, 8, mmu_idx,
2089 MMU_DATA_LOAD, ra, mr, mr_offset + size - 8);
2090 qemu_mutex_unlock_iothread();
2091
2092 return int128_make128(b, a);
2093 }
2094
2095 /**
2096 * do_ld_bytes_beN
2097 * @p: translation parameters
2098 * @ret_be: accumulated data
2099 *
2100 * Load @p->size bytes from @p->haddr, which is RAM.
2101 * The bytes to concatenated in big-endian order with @ret_be.
2102 */
2103 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2104 {
2105 uint8_t *haddr = p->haddr;
2106 int i, size = p->size;
2107
2108 for (i = 0; i < size; i++) {
2109 ret_be = (ret_be << 8) | haddr[i];
2110 }
2111 return ret_be;
2112 }
2113
2114 /**
2115 * do_ld_parts_beN
2116 * @p: translation parameters
2117 * @ret_be: accumulated data
2118 *
2119 * As do_ld_bytes_beN, but atomically on each aligned part.
2120 */
2121 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2122 {
2123 void *haddr = p->haddr;
2124 int size = p->size;
2125
2126 do {
2127 uint64_t x;
2128 int n;
2129
2130 /*
2131 * Find minimum of alignment and size.
2132 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2133 * would have only checked the low bits of addr|size once at the start,
2134 * but is just as easy.
2135 */
2136 switch (((uintptr_t)haddr | size) & 7) {
2137 case 4:
2138 x = cpu_to_be32(load_atomic4(haddr));
2139 ret_be = (ret_be << 32) | x;
2140 n = 4;
2141 break;
2142 case 2:
2143 case 6:
2144 x = cpu_to_be16(load_atomic2(haddr));
2145 ret_be = (ret_be << 16) | x;
2146 n = 2;
2147 break;
2148 default:
2149 x = *(uint8_t *)haddr;
2150 ret_be = (ret_be << 8) | x;
2151 n = 1;
2152 break;
2153 case 0:
2154 g_assert_not_reached();
2155 }
2156 haddr += n;
2157 size -= n;
2158 } while (size != 0);
2159 return ret_be;
2160 }
2161
2162 /**
2163 * do_ld_parts_be4
2164 * @p: translation parameters
2165 * @ret_be: accumulated data
2166 *
2167 * As do_ld_bytes_beN, but with one atomic load.
2168 * Four aligned bytes are guaranteed to cover the load.
2169 */
2170 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2171 {
2172 int o = p->addr & 3;
2173 uint32_t x = load_atomic4(p->haddr - o);
2174
2175 x = cpu_to_be32(x);
2176 x <<= o * 8;
2177 x >>= (4 - p->size) * 8;
2178 return (ret_be << (p->size * 8)) | x;
2179 }
2180
2181 /**
2182 * do_ld_parts_be8
2183 * @p: translation parameters
2184 * @ret_be: accumulated data
2185 *
2186 * As do_ld_bytes_beN, but with one atomic load.
2187 * Eight aligned bytes are guaranteed to cover the load.
2188 */
2189 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
2190 MMULookupPageData *p, uint64_t ret_be)
2191 {
2192 int o = p->addr & 7;
2193 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
2194
2195 x = cpu_to_be64(x);
2196 x <<= o * 8;
2197 x >>= (8 - p->size) * 8;
2198 return (ret_be << (p->size * 8)) | x;
2199 }
2200
2201 /**
2202 * do_ld_parts_be16
2203 * @p: translation parameters
2204 * @ret_be: accumulated data
2205 *
2206 * As do_ld_bytes_beN, but with one atomic load.
2207 * 16 aligned bytes are guaranteed to cover the load.
2208 */
2209 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra,
2210 MMULookupPageData *p, uint64_t ret_be)
2211 {
2212 int o = p->addr & 15;
2213 Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o);
2214 int size = p->size;
2215
2216 if (!HOST_BIG_ENDIAN) {
2217 y = bswap128(y);
2218 }
2219 y = int128_lshift(y, o * 8);
2220 y = int128_urshift(y, (16 - size) * 8);
2221 x = int128_make64(ret_be);
2222 x = int128_lshift(x, size * 8);
2223 return int128_or(x, y);
2224 }
2225
2226 /*
2227 * Wrapper for the above.
2228 */
2229 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
2230 uint64_t ret_be, int mmu_idx, MMUAccessType type,
2231 MemOp mop, uintptr_t ra)
2232 {
2233 MemOp atom;
2234 unsigned tmp, half_size;
2235
2236 if (unlikely(p->flags & TLB_MMIO)) {
2237 return do_ld_mmio_beN(env, p->full, ret_be, p->addr, p->size,
2238 mmu_idx, type, ra);
2239 }
2240
2241 /*
2242 * It is a given that we cross a page and therefore there is no
2243 * atomicity for the load as a whole, but subobjects may need attention.
2244 */
2245 atom = mop & MO_ATOM_MASK;
2246 switch (atom) {
2247 case MO_ATOM_SUBALIGN:
2248 return do_ld_parts_beN(p, ret_be);
2249
2250 case MO_ATOM_IFALIGN_PAIR:
2251 case MO_ATOM_WITHIN16_PAIR:
2252 tmp = mop & MO_SIZE;
2253 tmp = tmp ? tmp - 1 : 0;
2254 half_size = 1 << tmp;
2255 if (atom == MO_ATOM_IFALIGN_PAIR
2256 ? p->size == half_size
2257 : p->size >= half_size) {
2258 if (!HAVE_al8_fast && p->size < 4) {
2259 return do_ld_whole_be4(p, ret_be);
2260 } else {
2261 return do_ld_whole_be8(env, ra, p, ret_be);
2262 }
2263 }
2264 /* fall through */
2265
2266 case MO_ATOM_IFALIGN:
2267 case MO_ATOM_WITHIN16:
2268 case MO_ATOM_NONE:
2269 return do_ld_bytes_beN(p, ret_be);
2270
2271 default:
2272 g_assert_not_reached();
2273 }
2274 }
2275
2276 /*
2277 * Wrapper for the above, for 8 < size < 16.
2278 */
2279 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p,
2280 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2281 {
2282 int size = p->size;
2283 uint64_t b;
2284 MemOp atom;
2285
2286 if (unlikely(p->flags & TLB_MMIO)) {
2287 return do_ld16_mmio_beN(env, p->full, a, p->addr, size, mmu_idx, ra);
2288 }
2289
2290 /*
2291 * It is a given that we cross a page and therefore there is no
2292 * atomicity for the load as a whole, but subobjects may need attention.
2293 */
2294 atom = mop & MO_ATOM_MASK;
2295 switch (atom) {
2296 case MO_ATOM_SUBALIGN:
2297 p->size = size - 8;
2298 a = do_ld_parts_beN(p, a);
2299 p->haddr += size - 8;
2300 p->size = 8;
2301 b = do_ld_parts_beN(p, 0);
2302 break;
2303
2304 case MO_ATOM_WITHIN16_PAIR:
2305 /* Since size > 8, this is the half that must be atomic. */
2306 return do_ld_whole_be16(env, ra, p, a);
2307
2308 case MO_ATOM_IFALIGN_PAIR:
2309 /*
2310 * Since size > 8, both halves are misaligned,
2311 * and so neither is atomic.
2312 */
2313 case MO_ATOM_IFALIGN:
2314 case MO_ATOM_WITHIN16:
2315 case MO_ATOM_NONE:
2316 p->size = size - 8;
2317 a = do_ld_bytes_beN(p, a);
2318 b = ldq_be_p(p->haddr + size - 8);
2319 break;
2320
2321 default:
2322 g_assert_not_reached();
2323 }
2324
2325 return int128_make128(b, a);
2326 }
2327
2328 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2329 MMUAccessType type, uintptr_t ra)
2330 {
2331 if (unlikely(p->flags & TLB_MMIO)) {
2332 return do_ld_mmio_beN(env, p->full, 0, p->addr, 1, mmu_idx, type, ra);
2333 } else {
2334 return *(uint8_t *)p->haddr;
2335 }
2336 }
2337
2338 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2339 MMUAccessType type, MemOp memop, uintptr_t ra)
2340 {
2341 uint16_t ret;
2342
2343 if (unlikely(p->flags & TLB_MMIO)) {
2344 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2345 if ((memop & MO_BSWAP) == MO_LE) {
2346 ret = bswap16(ret);
2347 }
2348 } else {
2349 /* Perform the load host endian, then swap if necessary. */
2350 ret = load_atom_2(env, ra, p->haddr, memop);
2351 if (memop & MO_BSWAP) {
2352 ret = bswap16(ret);
2353 }
2354 }
2355 return ret;
2356 }
2357
2358 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2359 MMUAccessType type, MemOp memop, uintptr_t ra)
2360 {
2361 uint32_t ret;
2362
2363 if (unlikely(p->flags & TLB_MMIO)) {
2364 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2365 if ((memop & MO_BSWAP) == MO_LE) {
2366 ret = bswap32(ret);
2367 }
2368 } else {
2369 /* Perform the load host endian. */
2370 ret = load_atom_4(env, ra, p->haddr, memop);
2371 if (memop & MO_BSWAP) {
2372 ret = bswap32(ret);
2373 }
2374 }
2375 return ret;
2376 }
2377
2378 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2379 MMUAccessType type, MemOp memop, uintptr_t ra)
2380 {
2381 uint64_t ret;
2382
2383 if (unlikely(p->flags & TLB_MMIO)) {
2384 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2385 if ((memop & MO_BSWAP) == MO_LE) {
2386 ret = bswap64(ret);
2387 }
2388 } else {
2389 /* Perform the load host endian. */
2390 ret = load_atom_8(env, ra, p->haddr, memop);
2391 if (memop & MO_BSWAP) {
2392 ret = bswap64(ret);
2393 }
2394 }
2395 return ret;
2396 }
2397
2398 static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2399 uintptr_t ra, MMUAccessType access_type)
2400 {
2401 MMULookupLocals l;
2402 bool crosspage;
2403
2404 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2405 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2406 tcg_debug_assert(!crosspage);
2407
2408 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2409 }
2410
2411 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
2412 MemOpIdx oi, uintptr_t retaddr)
2413 {
2414 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2415 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2416 }
2417
2418 static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2419 uintptr_t ra, MMUAccessType access_type)
2420 {
2421 MMULookupLocals l;
2422 bool crosspage;
2423 uint16_t ret;
2424 uint8_t a, b;
2425
2426 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2427 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2428 if (likely(!crosspage)) {
2429 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2430 }
2431
2432 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2433 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra);
2434
2435 if ((l.memop & MO_BSWAP) == MO_LE) {
2436 ret = a | (b << 8);
2437 } else {
2438 ret = b | (a << 8);
2439 }
2440 return ret;
2441 }
2442
2443 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
2444 MemOpIdx oi, uintptr_t retaddr)
2445 {
2446 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2447 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2448 }
2449
2450 static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2451 uintptr_t ra, MMUAccessType access_type)
2452 {
2453 MMULookupLocals l;
2454 bool crosspage;
2455 uint32_t ret;
2456
2457 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2458 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2459 if (likely(!crosspage)) {
2460 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2461 }
2462
2463 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2464 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2465 if ((l.memop & MO_BSWAP) == MO_LE) {
2466 ret = bswap32(ret);
2467 }
2468 return ret;
2469 }
2470
2471 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
2472 MemOpIdx oi, uintptr_t retaddr)
2473 {
2474 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2475 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2476 }
2477
2478 static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2479 uintptr_t ra, MMUAccessType access_type)
2480 {
2481 MMULookupLocals l;
2482 bool crosspage;
2483 uint64_t ret;
2484
2485 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2486 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2487 if (likely(!crosspage)) {
2488 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2489 }
2490
2491 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2492 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2493 if ((l.memop & MO_BSWAP) == MO_LE) {
2494 ret = bswap64(ret);
2495 }
2496 return ret;
2497 }
2498
2499 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
2500 MemOpIdx oi, uintptr_t retaddr)
2501 {
2502 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2503 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2504 }
2505
2506 /*
2507 * Provide signed versions of the load routines as well. We can of course
2508 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2509 */
2510
2511 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
2512 MemOpIdx oi, uintptr_t retaddr)
2513 {
2514 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr);
2515 }
2516
2517 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
2518 MemOpIdx oi, uintptr_t retaddr)
2519 {
2520 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr);
2521 }
2522
2523 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
2524 MemOpIdx oi, uintptr_t retaddr)
2525 {
2526 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr);
2527 }
2528
2529 static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr,
2530 MemOpIdx oi, uintptr_t ra)
2531 {
2532 MMULookupLocals l;
2533 bool crosspage;
2534 uint64_t a, b;
2535 Int128 ret;
2536 int first;
2537
2538 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2539 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l);
2540 if (likely(!crosspage)) {
2541 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2542 ret = do_ld16_mmio_beN(env, l.page[0].full, 0, addr, 16,
2543 l.mmu_idx, ra);
2544 if ((l.memop & MO_BSWAP) == MO_LE) {
2545 ret = bswap128(ret);
2546 }
2547 } else {
2548 /* Perform the load host endian. */
2549 ret = load_atom_16(env, ra, l.page[0].haddr, l.memop);
2550 if (l.memop & MO_BSWAP) {
2551 ret = bswap128(ret);
2552 }
2553 }
2554 return ret;
2555 }
2556
2557 first = l.page[0].size;
2558 if (first == 8) {
2559 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2560
2561 a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2562 b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2563 if ((mop8 & MO_BSWAP) == MO_LE) {
2564 ret = int128_make128(a, b);
2565 } else {
2566 ret = int128_make128(b, a);
2567 }
2568 return ret;
2569 }
2570
2571 if (first < 8) {
2572 a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx,
2573 MMU_DATA_LOAD, l.memop, ra);
2574 ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra);
2575 } else {
2576 ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2577 b = int128_getlo(ret);
2578 ret = int128_lshift(ret, l.page[1].size * 8);
2579 a = int128_gethi(ret);
2580 b = do_ld_beN(env, &l.page[1], b, l.mmu_idx,
2581 MMU_DATA_LOAD, l.memop, ra);
2582 ret = int128_make128(b, a);
2583 }
2584 if ((l.memop & MO_BSWAP) == MO_LE) {
2585 ret = bswap128(ret);
2586 }
2587 return ret;
2588 }
2589
2590 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
2591 uint32_t oi, uintptr_t retaddr)
2592 {
2593 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2594 return do_ld16_mmu(env, addr, oi, retaddr);
2595 }
2596
2597 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi)
2598 {
2599 return helper_ld16_mmu(env, addr, oi, GETPC());
2600 }
2601
2602 /*
2603 * Load helpers for cpu_ldst.h.
2604 */
2605
2606 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2607 {
2608 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2609 }
2610
2611 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2612 {
2613 uint8_t ret;
2614
2615 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB);
2616 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2617 plugin_load_cb(env, addr, oi);
2618 return ret;
2619 }
2620
2621 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
2622 MemOpIdx oi, uintptr_t ra)
2623 {
2624 uint16_t ret;
2625
2626 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2627 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2628 plugin_load_cb(env, addr, oi);
2629 return ret;
2630 }
2631
2632 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
2633 MemOpIdx oi, uintptr_t ra)
2634 {
2635 uint32_t ret;
2636
2637 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2638 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2639 plugin_load_cb(env, addr, oi);
2640 return ret;
2641 }
2642
2643 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
2644 MemOpIdx oi, uintptr_t ra)
2645 {
2646 uint64_t ret;
2647
2648 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2649 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2650 plugin_load_cb(env, addr, oi);
2651 return ret;
2652 }
2653
2654 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
2655 MemOpIdx oi, uintptr_t ra)
2656 {
2657 Int128 ret;
2658
2659 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2660 ret = do_ld16_mmu(env, addr, oi, ra);
2661 plugin_load_cb(env, addr, oi);
2662 return ret;
2663 }
2664
2665 /*
2666 * Store Helpers
2667 */
2668
2669 /**
2670 * do_st_mmio_leN:
2671 * @env: cpu context
2672 * @full: page parameters
2673 * @val_le: data to store
2674 * @addr: virtual address
2675 * @size: number of bytes
2676 * @mmu_idx: virtual address context
2677 * @ra: return address into tcg generated code, or 0
2678 * Context: iothread lock held
2679 *
2680 * Store @size bytes at @addr, which is memory-mapped i/o.
2681 * The bytes to store are extracted in little-endian order from @val_le;
2682 * return the bytes of @val_le beyond @p->size that have not been stored.
2683 */
2684 static uint64_t int_st_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full,
2685 uint64_t val_le, vaddr addr, int size,
2686 int mmu_idx, uintptr_t ra,
2687 MemoryRegion *mr, hwaddr mr_offset)
2688 {
2689 do {
2690 MemOp this_mop;
2691 unsigned this_size;
2692 MemTxResult r;
2693
2694 /* Store aligned pieces up to 8 bytes. */
2695 this_mop = ctz32(size | (int)addr | 8);
2696 this_size = 1 << this_mop;
2697 this_mop |= MO_LE;
2698
2699 r = memory_region_dispatch_write(mr, mr_offset, val_le,
2700 this_mop, full->attrs);
2701 if (unlikely(r != MEMTX_OK)) {
2702 io_failed(env, full, addr, this_size, MMU_DATA_STORE,
2703 mmu_idx, r, ra);
2704 }
2705 if (this_size == 8) {
2706 return 0;
2707 }
2708
2709 val_le >>= this_size * 8;
2710 addr += this_size;
2711 mr_offset += this_size;
2712 size -= this_size;
2713 } while (size);
2714
2715 return val_le;
2716 }
2717
2718 static uint64_t do_st_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full,
2719 uint64_t val_le, vaddr addr, int size,
2720 int mmu_idx, uintptr_t ra)
2721 {
2722 MemoryRegionSection *section;
2723 hwaddr mr_offset;
2724 MemoryRegion *mr;
2725 MemTxAttrs attrs;
2726 uint64_t ret;
2727
2728 tcg_debug_assert(size > 0 && size <= 8);
2729
2730 attrs = full->attrs;
2731 section = io_prepare(&mr_offset, env, full->xlat_section, attrs, addr, ra);
2732 mr = section->mr;
2733
2734 qemu_mutex_lock_iothread();
2735 ret = int_st_mmio_leN(env, full, val_le, addr, size, mmu_idx,
2736 ra, mr, mr_offset);
2737 qemu_mutex_unlock_iothread();
2738
2739 return ret;
2740 }
2741
2742 static uint64_t do_st16_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full,
2743 Int128 val_le, vaddr addr, int size,
2744 int mmu_idx, uintptr_t ra)
2745 {
2746 MemoryRegionSection *section;
2747 MemoryRegion *mr;
2748 hwaddr mr_offset;
2749 MemTxAttrs attrs;
2750 uint64_t ret;
2751
2752 tcg_debug_assert(size > 8 && size <= 16);
2753
2754 attrs = full->attrs;
2755 section = io_prepare(&mr_offset, env, full->xlat_section, attrs, addr, ra);
2756 mr = section->mr;
2757
2758 qemu_mutex_lock_iothread();
2759 int_st_mmio_leN(env, full, int128_getlo(val_le), addr, 8,
2760 mmu_idx, ra, mr, mr_offset);
2761 ret = int_st_mmio_leN(env, full, int128_gethi(val_le), addr + 8,
2762 size - 8, mmu_idx, ra, mr, mr_offset + 8);
2763 qemu_mutex_unlock_iothread();
2764
2765 return ret;
2766 }
2767
2768 /*
2769 * Wrapper for the above.
2770 */
2771 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p,
2772 uint64_t val_le, int mmu_idx,
2773 MemOp mop, uintptr_t ra)
2774 {
2775 MemOp atom;
2776 unsigned tmp, half_size;
2777
2778 if (unlikely(p->flags & TLB_MMIO)) {
2779 return do_st_mmio_leN(env, p->full, val_le, p->addr,
2780 p->size, mmu_idx, ra);
2781 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2782 return val_le >> (p->size * 8);
2783 }
2784
2785 /*
2786 * It is a given that we cross a page and therefore there is no atomicity
2787 * for the store as a whole, but subobjects may need attention.
2788 */
2789 atom = mop & MO_ATOM_MASK;
2790 switch (atom) {
2791 case MO_ATOM_SUBALIGN:
2792 return store_parts_leN(p->haddr, p->size, val_le);
2793
2794 case MO_ATOM_IFALIGN_PAIR:
2795 case MO_ATOM_WITHIN16_PAIR:
2796 tmp = mop & MO_SIZE;
2797 tmp = tmp ? tmp - 1 : 0;
2798 half_size = 1 << tmp;
2799 if (atom == MO_ATOM_IFALIGN_PAIR
2800 ? p->size == half_size
2801 : p->size >= half_size) {
2802 if (!HAVE_al8_fast && p->size <= 4) {
2803 return store_whole_le4(p->haddr, p->size, val_le);
2804 } else if (HAVE_al8) {
2805 return store_whole_le8(p->haddr, p->size, val_le);
2806 } else {
2807 cpu_loop_exit_atomic(env_cpu(env), ra);
2808 }
2809 }
2810 /* fall through */
2811
2812 case MO_ATOM_IFALIGN:
2813 case MO_ATOM_WITHIN16:
2814 case MO_ATOM_NONE:
2815 return store_bytes_leN(p->haddr, p->size, val_le);
2816
2817 default:
2818 g_assert_not_reached();
2819 }
2820 }
2821
2822 /*
2823 * Wrapper for the above, for 8 < size < 16.
2824 */
2825 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p,
2826 Int128 val_le, int mmu_idx,
2827 MemOp mop, uintptr_t ra)
2828 {
2829 int size = p->size;
2830 MemOp atom;
2831
2832 if (unlikely(p->flags & TLB_MMIO)) {
2833 return do_st16_mmio_leN(env, p->full, val_le, p->addr,
2834 size, mmu_idx, ra);
2835 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2836 return int128_gethi(val_le) >> ((size - 8) * 8);
2837 }
2838
2839 /*
2840 * It is a given that we cross a page and therefore there is no atomicity
2841 * for the store as a whole, but subobjects may need attention.
2842 */
2843 atom = mop & MO_ATOM_MASK;
2844 switch (atom) {
2845 case MO_ATOM_SUBALIGN:
2846 store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2847 return store_parts_leN(p->haddr + 8, p->size - 8,
2848 int128_gethi(val_le));
2849
2850 case MO_ATOM_WITHIN16_PAIR:
2851 /* Since size > 8, this is the half that must be atomic. */
2852 if (!HAVE_ATOMIC128_RW) {
2853 cpu_loop_exit_atomic(env_cpu(env), ra);
2854 }
2855 return store_whole_le16(p->haddr, p->size, val_le);
2856
2857 case MO_ATOM_IFALIGN_PAIR:
2858 /*
2859 * Since size > 8, both halves are misaligned,
2860 * and so neither is atomic.
2861 */
2862 case MO_ATOM_IFALIGN:
2863 case MO_ATOM_WITHIN16:
2864 case MO_ATOM_NONE:
2865 stq_le_p(p->haddr, int128_getlo(val_le));
2866 return store_bytes_leN(p->haddr + 8, p->size - 8,
2867 int128_gethi(val_le));
2868
2869 default:
2870 g_assert_not_reached();
2871 }
2872 }
2873
2874 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val,
2875 int mmu_idx, uintptr_t ra)
2876 {
2877 if (unlikely(p->flags & TLB_MMIO)) {
2878 do_st_mmio_leN(env, p->full, val, p->addr, 1, mmu_idx, ra);
2879 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2880 /* nothing */
2881 } else {
2882 *(uint8_t *)p->haddr = val;
2883 }
2884 }
2885
2886 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val,
2887 int mmu_idx, MemOp memop, uintptr_t ra)
2888 {
2889 if (unlikely(p->flags & TLB_MMIO)) {
2890 if ((memop & MO_BSWAP) != MO_LE) {
2891 val = bswap16(val);
2892 }
2893 do_st_mmio_leN(env, p->full, val, p->addr, 2, mmu_idx, ra);
2894 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2895 /* nothing */
2896 } else {
2897 /* Swap to host endian if necessary, then store. */
2898 if (memop & MO_BSWAP) {
2899 val = bswap16(val);
2900 }
2901 store_atom_2(env, ra, p->haddr, memop, val);
2902 }
2903 }
2904
2905 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val,
2906 int mmu_idx, MemOp memop, uintptr_t ra)
2907 {
2908 if (unlikely(p->flags & TLB_MMIO)) {
2909 if ((memop & MO_BSWAP) != MO_LE) {
2910 val = bswap32(val);
2911 }
2912 do_st_mmio_leN(env, p->full, val, p->addr, 4, mmu_idx, ra);
2913 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2914 /* nothing */
2915 } else {
2916 /* Swap to host endian if necessary, then store. */
2917 if (memop & MO_BSWAP) {
2918 val = bswap32(val);
2919 }
2920 store_atom_4(env, ra, p->haddr, memop, val);
2921 }
2922 }
2923
2924 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val,
2925 int mmu_idx, MemOp memop, uintptr_t ra)
2926 {
2927 if (unlikely(p->flags & TLB_MMIO)) {
2928 if ((memop & MO_BSWAP) != MO_LE) {
2929 val = bswap64(val);
2930 }
2931 do_st_mmio_leN(env, p->full, val, p->addr, 8, mmu_idx, ra);
2932 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2933 /* nothing */
2934 } else {
2935 /* Swap to host endian if necessary, then store. */
2936 if (memop & MO_BSWAP) {
2937 val = bswap64(val);
2938 }
2939 store_atom_8(env, ra, p->haddr, memop, val);
2940 }
2941 }
2942
2943 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2944 MemOpIdx oi, uintptr_t ra)
2945 {
2946 MMULookupLocals l;
2947 bool crosspage;
2948
2949 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2950 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2951 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2952 tcg_debug_assert(!crosspage);
2953
2954 do_st_1(env, &l.page[0], val, l.mmu_idx, ra);
2955 }
2956
2957 static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val,
2958 MemOpIdx oi, uintptr_t ra)
2959 {
2960 MMULookupLocals l;
2961 bool crosspage;
2962 uint8_t a, b;
2963
2964 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2965 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2966 if (likely(!crosspage)) {
2967 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2968 return;
2969 }
2970
2971 if ((l.memop & MO_BSWAP) == MO_LE) {
2972 a = val, b = val >> 8;
2973 } else {
2974 b = val, a = val >> 8;
2975 }
2976 do_st_1(env, &l.page[0], a, l.mmu_idx, ra);
2977 do_st_1(env, &l.page[1], b, l.mmu_idx, ra);
2978 }
2979
2980 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2981 MemOpIdx oi, uintptr_t retaddr)
2982 {
2983 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2984 do_st2_mmu(env, addr, val, oi, retaddr);
2985 }
2986
2987 static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val,
2988 MemOpIdx oi, uintptr_t ra)
2989 {
2990 MMULookupLocals l;
2991 bool crosspage;
2992
2993 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2994 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2995 if (likely(!crosspage)) {
2996 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2997 return;
2998 }
2999
3000 /* Swap to little endian for simplicity, then store by bytes. */
3001 if ((l.memop & MO_BSWAP) != MO_LE) {
3002 val = bswap32(val);
3003 }
3004 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3005 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3006 }
3007
3008 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
3009 MemOpIdx oi, uintptr_t retaddr)
3010 {
3011 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3012 do_st4_mmu(env, addr, val, oi, retaddr);
3013 }
3014
3015 static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val,
3016 MemOpIdx oi, uintptr_t ra)
3017 {
3018 MMULookupLocals l;
3019 bool crosspage;
3020
3021 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3022 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3023 if (likely(!crosspage)) {
3024 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3025 return;
3026 }
3027
3028 /* Swap to little endian for simplicity, then store by bytes. */
3029 if ((l.memop & MO_BSWAP) != MO_LE) {
3030 val = bswap64(val);
3031 }
3032 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3033 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3034 }
3035
3036 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
3037 MemOpIdx oi, uintptr_t retaddr)
3038 {
3039 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3040 do_st8_mmu(env, addr, val, oi, retaddr);
3041 }
3042
3043 static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val,
3044 MemOpIdx oi, uintptr_t ra)
3045 {
3046 MMULookupLocals l;
3047 bool crosspage;
3048 uint64_t a, b;
3049 int first;
3050
3051 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3052 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3053 if (likely(!crosspage)) {
3054 if (unlikely(l.page[0].flags & TLB_MMIO)) {
3055 if ((l.memop & MO_BSWAP) != MO_LE) {
3056 val = bswap128(val);
3057 }
3058 do_st16_mmio_leN(env, l.page[0].full, val, addr, 16, l.mmu_idx, ra);
3059 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
3060 /* nothing */
3061 } else {
3062 /* Swap to host endian if necessary, then store. */
3063 if (l.memop & MO_BSWAP) {
3064 val = bswap128(val);
3065 }
3066 store_atom_16(env, ra, l.page[0].haddr, l.memop, val);
3067 }
3068 return;
3069 }
3070
3071 first = l.page[0].size;
3072 if (first == 8) {
3073 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
3074
3075 if (l.memop & MO_BSWAP) {
3076 val = bswap128(val);
3077 }
3078 if (HOST_BIG_ENDIAN) {
3079 b = int128_getlo(val), a = int128_gethi(val);
3080 } else {
3081 a = int128_getlo(val), b = int128_gethi(val);
3082 }
3083 do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra);
3084 do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra);
3085 return;
3086 }
3087
3088 if ((l.memop & MO_BSWAP) != MO_LE) {
3089 val = bswap128(val);
3090 }
3091 if (first < 8) {
3092 do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
3093 val = int128_urshift(val, first * 8);
3094 do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3095 } else {
3096 b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3097 do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra);
3098 }
3099 }
3100
3101 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
3102 MemOpIdx oi, uintptr_t retaddr)
3103 {
3104 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3105 do_st16_mmu(env, addr, val, oi, retaddr);
3106 }
3107
3108 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
3109 {
3110 helper_st16_mmu(env, addr, val, oi, GETPC());
3111 }
3112
3113 /*
3114 * Store Helpers for cpu_ldst.h
3115 */
3116
3117 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
3118 {
3119 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
3120 }
3121
3122 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
3123 MemOpIdx oi, uintptr_t retaddr)
3124 {
3125 helper_stb_mmu(env, addr, val, oi, retaddr);
3126 plugin_store_cb(env, addr, oi);
3127 }
3128
3129 void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
3130 MemOpIdx oi, uintptr_t retaddr)
3131 {
3132 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
3133 do_st2_mmu(env, addr, val, oi, retaddr);
3134 plugin_store_cb(env, addr, oi);
3135 }
3136
3137 void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
3138 MemOpIdx oi, uintptr_t retaddr)
3139 {
3140 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3141 do_st4_mmu(env, addr, val, oi, retaddr);
3142 plugin_store_cb(env, addr, oi);
3143 }
3144
3145 void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
3146 MemOpIdx oi, uintptr_t retaddr)
3147 {
3148 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3149 do_st8_mmu(env, addr, val, oi, retaddr);
3150 plugin_store_cb(env, addr, oi);
3151 }
3152
3153 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
3154 MemOpIdx oi, uintptr_t retaddr)
3155 {
3156 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3157 do_st16_mmu(env, addr, val, oi, retaddr);
3158 plugin_store_cb(env, addr, oi);
3159 }
3160
3161 #include "ldst_common.c.inc"
3162
3163 /*
3164 * First set of functions passes in OI and RETADDR.
3165 * This makes them callable from other helpers.
3166 */
3167
3168 #define ATOMIC_NAME(X) \
3169 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
3170
3171 #define ATOMIC_MMU_CLEANUP
3172
3173 #include "atomic_common.c.inc"
3174
3175 #define DATA_SIZE 1
3176 #include "atomic_template.h"
3177
3178 #define DATA_SIZE 2
3179 #include "atomic_template.h"
3180
3181 #define DATA_SIZE 4
3182 #include "atomic_template.h"
3183
3184 #ifdef CONFIG_ATOMIC64
3185 #define DATA_SIZE 8
3186 #include "atomic_template.h"
3187 #endif
3188
3189 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
3190 #define DATA_SIZE 16
3191 #include "atomic_template.h"
3192 #endif
3193
3194 /* Code access functions. */
3195
3196 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
3197 {
3198 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
3199 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3200 }
3201
3202 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
3203 {
3204 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
3205 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3206 }
3207
3208 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
3209 {
3210 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
3211 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3212 }
3213
3214 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
3215 {
3216 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
3217 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3218 }
3219
3220 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
3221 MemOpIdx oi, uintptr_t retaddr)
3222 {
3223 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3224 }
3225
3226 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
3227 MemOpIdx oi, uintptr_t retaddr)
3228 {
3229 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3230 }
3231
3232 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3233 MemOpIdx oi, uintptr_t retaddr)
3234 {
3235 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3236 }
3237
3238 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3239 MemOpIdx oi, uintptr_t retaddr)
3240 {
3241 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3242 }