]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - arch/arm64/kernel/process.c
ASoC: ep93xx-ac97: Fix platform_get_irq's error checking
[mirror_ubuntu-disco-kernel.git] / arch / arm64 / kernel / process.c
1 /*
2 * Based on arch/arm/kernel/process.c
3 *
4 * Original Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include <stdarg.h>
22
23 #include <linux/compat.h>
24 #include <linux/efi.h>
25 #include <linux/export.h>
26 #include <linux/sched.h>
27 #include <linux/sched/debug.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/user.h>
35 #include <linux/delay.h>
36 #include <linux/reboot.h>
37 #include <linux/interrupt.h>
38 #include <linux/kallsyms.h>
39 #include <linux/init.h>
40 #include <linux/cpu.h>
41 #include <linux/elfcore.h>
42 #include <linux/pm.h>
43 #include <linux/tick.h>
44 #include <linux/utsname.h>
45 #include <linux/uaccess.h>
46 #include <linux/random.h>
47 #include <linux/hw_breakpoint.h>
48 #include <linux/personality.h>
49 #include <linux/notifier.h>
50 #include <trace/events/power.h>
51 #include <linux/percpu.h>
52 #include <linux/thread_info.h>
53
54 #include <asm/alternative.h>
55 #include <asm/compat.h>
56 #include <asm/cacheflush.h>
57 #include <asm/exec.h>
58 #include <asm/fpsimd.h>
59 #include <asm/mmu_context.h>
60 #include <asm/processor.h>
61 #include <asm/stacktrace.h>
62
63 #ifdef CONFIG_CC_STACKPROTECTOR
64 #include <linux/stackprotector.h>
65 unsigned long __stack_chk_guard __read_mostly;
66 EXPORT_SYMBOL(__stack_chk_guard);
67 #endif
68
69 /*
70 * Function pointers to optional machine specific functions
71 */
72 void (*pm_power_off)(void);
73 EXPORT_SYMBOL_GPL(pm_power_off);
74
75 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
76
77 /*
78 * This is our default idle handler.
79 */
80 void arch_cpu_idle(void)
81 {
82 /*
83 * This should do all the clock switching and wait for interrupt
84 * tricks
85 */
86 trace_cpu_idle_rcuidle(1, smp_processor_id());
87 cpu_do_idle();
88 local_irq_enable();
89 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
90 }
91
92 #ifdef CONFIG_HOTPLUG_CPU
93 void arch_cpu_idle_dead(void)
94 {
95 cpu_die();
96 }
97 #endif
98
99 /*
100 * Called by kexec, immediately prior to machine_kexec().
101 *
102 * This must completely disable all secondary CPUs; simply causing those CPUs
103 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
104 * kexec'd kernel to use any and all RAM as it sees fit, without having to
105 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
106 * functionality embodied in disable_nonboot_cpus() to achieve this.
107 */
108 void machine_shutdown(void)
109 {
110 disable_nonboot_cpus();
111 }
112
113 /*
114 * Halting simply requires that the secondary CPUs stop performing any
115 * activity (executing tasks, handling interrupts). smp_send_stop()
116 * achieves this.
117 */
118 void machine_halt(void)
119 {
120 local_irq_disable();
121 smp_send_stop();
122 while (1);
123 }
124
125 /*
126 * Power-off simply requires that the secondary CPUs stop performing any
127 * activity (executing tasks, handling interrupts). smp_send_stop()
128 * achieves this. When the system power is turned off, it will take all CPUs
129 * with it.
130 */
131 void machine_power_off(void)
132 {
133 local_irq_disable();
134 smp_send_stop();
135 if (pm_power_off)
136 pm_power_off();
137 }
138
139 /*
140 * Restart requires that the secondary CPUs stop performing any activity
141 * while the primary CPU resets the system. Systems with multiple CPUs must
142 * provide a HW restart implementation, to ensure that all CPUs reset at once.
143 * This is required so that any code running after reset on the primary CPU
144 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
145 * executing pre-reset code, and using RAM that the primary CPU's code wishes
146 * to use. Implementing such co-ordination would be essentially impossible.
147 */
148 void machine_restart(char *cmd)
149 {
150 /* Disable interrupts first */
151 local_irq_disable();
152 smp_send_stop();
153
154 /*
155 * UpdateCapsule() depends on the system being reset via
156 * ResetSystem().
157 */
158 if (efi_enabled(EFI_RUNTIME_SERVICES))
159 efi_reboot(reboot_mode, NULL);
160
161 /* Now call the architecture specific reboot code. */
162 if (arm_pm_restart)
163 arm_pm_restart(reboot_mode, cmd);
164 else
165 do_kernel_restart(cmd);
166
167 /*
168 * Whoops - the architecture was unable to reboot.
169 */
170 printk("Reboot failed -- System halted\n");
171 while (1);
172 }
173
174 static void print_pstate(struct pt_regs *regs)
175 {
176 u64 pstate = regs->pstate;
177
178 if (compat_user_mode(regs)) {
179 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
180 pstate,
181 pstate & COMPAT_PSR_N_BIT ? 'N' : 'n',
182 pstate & COMPAT_PSR_Z_BIT ? 'Z' : 'z',
183 pstate & COMPAT_PSR_C_BIT ? 'C' : 'c',
184 pstate & COMPAT_PSR_V_BIT ? 'V' : 'v',
185 pstate & COMPAT_PSR_Q_BIT ? 'Q' : 'q',
186 pstate & COMPAT_PSR_T_BIT ? "T32" : "A32",
187 pstate & COMPAT_PSR_E_BIT ? "BE" : "LE",
188 pstate & COMPAT_PSR_A_BIT ? 'A' : 'a',
189 pstate & COMPAT_PSR_I_BIT ? 'I' : 'i',
190 pstate & COMPAT_PSR_F_BIT ? 'F' : 'f');
191 } else {
192 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
193 pstate,
194 pstate & PSR_N_BIT ? 'N' : 'n',
195 pstate & PSR_Z_BIT ? 'Z' : 'z',
196 pstate & PSR_C_BIT ? 'C' : 'c',
197 pstate & PSR_V_BIT ? 'V' : 'v',
198 pstate & PSR_D_BIT ? 'D' : 'd',
199 pstate & PSR_A_BIT ? 'A' : 'a',
200 pstate & PSR_I_BIT ? 'I' : 'i',
201 pstate & PSR_F_BIT ? 'F' : 'f',
202 pstate & PSR_PAN_BIT ? '+' : '-',
203 pstate & PSR_UAO_BIT ? '+' : '-');
204 }
205 }
206
207 void __show_regs(struct pt_regs *regs)
208 {
209 int i, top_reg;
210 u64 lr, sp;
211
212 if (compat_user_mode(regs)) {
213 lr = regs->compat_lr;
214 sp = regs->compat_sp;
215 top_reg = 12;
216 } else {
217 lr = regs->regs[30];
218 sp = regs->sp;
219 top_reg = 29;
220 }
221
222 show_regs_print_info(KERN_DEFAULT);
223 print_pstate(regs);
224 print_symbol("pc : %s\n", regs->pc);
225 print_symbol("lr : %s\n", lr);
226 printk("sp : %016llx\n", sp);
227
228 i = top_reg;
229
230 while (i >= 0) {
231 printk("x%-2d: %016llx ", i, regs->regs[i]);
232 i--;
233
234 if (i % 2 == 0) {
235 pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
236 i--;
237 }
238
239 pr_cont("\n");
240 }
241 }
242
243 void show_regs(struct pt_regs * regs)
244 {
245 __show_regs(regs);
246 dump_backtrace(regs, NULL);
247 }
248
249 static void tls_thread_flush(void)
250 {
251 write_sysreg(0, tpidr_el0);
252
253 if (is_compat_task()) {
254 current->thread.tp_value = 0;
255
256 /*
257 * We need to ensure ordering between the shadow state and the
258 * hardware state, so that we don't corrupt the hardware state
259 * with a stale shadow state during context switch.
260 */
261 barrier();
262 write_sysreg(0, tpidrro_el0);
263 }
264 }
265
266 void flush_thread(void)
267 {
268 fpsimd_flush_thread();
269 tls_thread_flush();
270 flush_ptrace_hw_breakpoint(current);
271 }
272
273 void release_thread(struct task_struct *dead_task)
274 {
275 }
276
277 void arch_release_task_struct(struct task_struct *tsk)
278 {
279 fpsimd_release_task(tsk);
280 }
281
282 /*
283 * src and dst may temporarily have aliased sve_state after task_struct
284 * is copied. We cannot fix this properly here, because src may have
285 * live SVE state and dst's thread_info may not exist yet, so tweaking
286 * either src's or dst's TIF_SVE is not safe.
287 *
288 * The unaliasing is done in copy_thread() instead. This works because
289 * dst is not schedulable or traceable until both of these functions
290 * have been called.
291 */
292 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
293 {
294 if (current->mm)
295 fpsimd_preserve_current_state();
296 *dst = *src;
297
298 return 0;
299 }
300
301 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
302
303 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
304 unsigned long stk_sz, struct task_struct *p)
305 {
306 struct pt_regs *childregs = task_pt_regs(p);
307
308 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
309
310 /*
311 * Unalias p->thread.sve_state (if any) from the parent task
312 * and disable discard SVE state for p:
313 */
314 clear_tsk_thread_flag(p, TIF_SVE);
315 p->thread.sve_state = NULL;
316
317 if (likely(!(p->flags & PF_KTHREAD))) {
318 *childregs = *current_pt_regs();
319 childregs->regs[0] = 0;
320
321 /*
322 * Read the current TLS pointer from tpidr_el0 as it may be
323 * out-of-sync with the saved value.
324 */
325 *task_user_tls(p) = read_sysreg(tpidr_el0);
326
327 if (stack_start) {
328 if (is_compat_thread(task_thread_info(p)))
329 childregs->compat_sp = stack_start;
330 else
331 childregs->sp = stack_start;
332 }
333
334 /*
335 * If a TLS pointer was passed to clone (4th argument), use it
336 * for the new thread.
337 */
338 if (clone_flags & CLONE_SETTLS)
339 p->thread.tp_value = childregs->regs[3];
340 } else {
341 memset(childregs, 0, sizeof(struct pt_regs));
342 childregs->pstate = PSR_MODE_EL1h;
343 if (IS_ENABLED(CONFIG_ARM64_UAO) &&
344 cpus_have_const_cap(ARM64_HAS_UAO))
345 childregs->pstate |= PSR_UAO_BIT;
346 p->thread.cpu_context.x19 = stack_start;
347 p->thread.cpu_context.x20 = stk_sz;
348 }
349 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
350 p->thread.cpu_context.sp = (unsigned long)childregs;
351
352 ptrace_hw_copy_thread(p);
353
354 return 0;
355 }
356
357 void tls_preserve_current_state(void)
358 {
359 *task_user_tls(current) = read_sysreg(tpidr_el0);
360 }
361
362 static void tls_thread_switch(struct task_struct *next)
363 {
364 unsigned long tpidr, tpidrro;
365
366 tls_preserve_current_state();
367
368 tpidr = *task_user_tls(next);
369 tpidrro = is_compat_thread(task_thread_info(next)) ?
370 next->thread.tp_value : 0;
371
372 write_sysreg(tpidr, tpidr_el0);
373 write_sysreg(tpidrro, tpidrro_el0);
374 }
375
376 /* Restore the UAO state depending on next's addr_limit */
377 void uao_thread_switch(struct task_struct *next)
378 {
379 if (IS_ENABLED(CONFIG_ARM64_UAO)) {
380 if (task_thread_info(next)->addr_limit == KERNEL_DS)
381 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
382 else
383 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
384 }
385 }
386
387 /*
388 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
389 * shadow copy so that we can restore this upon entry from userspace.
390 *
391 * This is *only* for exception entry from EL0, and is not valid until we
392 * __switch_to() a user task.
393 */
394 DEFINE_PER_CPU(struct task_struct *, __entry_task);
395
396 static void entry_task_switch(struct task_struct *next)
397 {
398 __this_cpu_write(__entry_task, next);
399 }
400
401 /*
402 * Thread switching.
403 */
404 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
405 struct task_struct *next)
406 {
407 struct task_struct *last;
408
409 fpsimd_thread_switch(next);
410 tls_thread_switch(next);
411 hw_breakpoint_thread_switch(next);
412 contextidr_thread_switch(next);
413 entry_task_switch(next);
414 uao_thread_switch(next);
415
416 /*
417 * Complete any pending TLB or cache maintenance on this CPU in case
418 * the thread migrates to a different CPU.
419 * This full barrier is also required by the membarrier system
420 * call.
421 */
422 dsb(ish);
423
424 /* the actual thread switch */
425 last = cpu_switch_to(prev, next);
426
427 return last;
428 }
429
430 unsigned long get_wchan(struct task_struct *p)
431 {
432 struct stackframe frame;
433 unsigned long stack_page, ret = 0;
434 int count = 0;
435 if (!p || p == current || p->state == TASK_RUNNING)
436 return 0;
437
438 stack_page = (unsigned long)try_get_task_stack(p);
439 if (!stack_page)
440 return 0;
441
442 frame.fp = thread_saved_fp(p);
443 frame.pc = thread_saved_pc(p);
444 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
445 frame.graph = p->curr_ret_stack;
446 #endif
447 do {
448 if (unwind_frame(p, &frame))
449 goto out;
450 if (!in_sched_functions(frame.pc)) {
451 ret = frame.pc;
452 goto out;
453 }
454 } while (count ++ < 16);
455
456 out:
457 put_task_stack(p);
458 return ret;
459 }
460
461 unsigned long arch_align_stack(unsigned long sp)
462 {
463 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
464 sp -= get_random_int() & ~PAGE_MASK;
465 return sp & ~0xf;
466 }
467
468 unsigned long arch_randomize_brk(struct mm_struct *mm)
469 {
470 if (is_compat_task())
471 return randomize_page(mm->brk, SZ_32M);
472 else
473 return randomize_page(mm->brk, SZ_1G);
474 }
475
476 /*
477 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
478 */
479 void arch_setup_new_exec(void)
480 {
481 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
482 }