]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - arch/powerpc/include/asm/book3s/64/pgalloc.h
block: Cleanup license notice
[mirror_ubuntu-disco-kernel.git] / arch / powerpc / include / asm / book3s / 64 / pgalloc.h
1 #ifndef _ASM_POWERPC_BOOK3S_64_PGALLOC_H
2 #define _ASM_POWERPC_BOOK3S_64_PGALLOC_H
3 /*
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 */
9
10 #include <linux/slab.h>
11 #include <linux/cpumask.h>
12 #include <linux/kmemleak.h>
13 #include <linux/percpu.h>
14
15 struct vmemmap_backing {
16 struct vmemmap_backing *list;
17 unsigned long phys;
18 unsigned long virt_addr;
19 };
20 extern struct vmemmap_backing *vmemmap_list;
21
22 /*
23 * Functions that deal with pagetables that could be at any level of
24 * the table need to be passed an "index_size" so they know how to
25 * handle allocation. For PTE pages (which are linked to a struct
26 * page for now, and drawn from the main get_free_pages() pool), the
27 * allocation size will be (2^index_size * sizeof(pointer)) and
28 * allocations are drawn from the kmem_cache in PGT_CACHE(index_size).
29 *
30 * The maximum index size needs to be big enough to allow any
31 * pagetable sizes we need, but small enough to fit in the low bits of
32 * any page table pointer. In other words all pagetables, even tiny
33 * ones, must be aligned to allow at least enough low 0 bits to
34 * contain this value. This value is also used as a mask, so it must
35 * be one less than a power of two.
36 */
37 #define MAX_PGTABLE_INDEX_SIZE 0xf
38
39 extern struct kmem_cache *pgtable_cache[];
40 #define PGT_CACHE(shift) pgtable_cache[shift]
41
42 extern pte_t *pte_fragment_alloc(struct mm_struct *, unsigned long, int);
43 extern pmd_t *pmd_fragment_alloc(struct mm_struct *, unsigned long);
44 extern void pte_fragment_free(unsigned long *, int);
45 extern void pmd_fragment_free(unsigned long *);
46 extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift);
47 #ifdef CONFIG_SMP
48 extern void __tlb_remove_table(void *_table);
49 #endif
50 void pte_frag_destroy(void *pte_frag);
51
52 static inline pgd_t *radix__pgd_alloc(struct mm_struct *mm)
53 {
54 #ifdef CONFIG_PPC_64K_PAGES
55 return (pgd_t *)__get_free_page(pgtable_gfp_flags(mm, PGALLOC_GFP));
56 #else
57 struct page *page;
58 page = alloc_pages(pgtable_gfp_flags(mm, PGALLOC_GFP | __GFP_RETRY_MAYFAIL),
59 4);
60 if (!page)
61 return NULL;
62 return (pgd_t *) page_address(page);
63 #endif
64 }
65
66 static inline void radix__pgd_free(struct mm_struct *mm, pgd_t *pgd)
67 {
68 #ifdef CONFIG_PPC_64K_PAGES
69 free_page((unsigned long)pgd);
70 #else
71 free_pages((unsigned long)pgd, 4);
72 #endif
73 }
74
75 static inline pgd_t *pgd_alloc(struct mm_struct *mm)
76 {
77 pgd_t *pgd;
78
79 if (radix_enabled())
80 return radix__pgd_alloc(mm);
81
82 pgd = kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE),
83 pgtable_gfp_flags(mm, GFP_KERNEL));
84 /*
85 * Don't scan the PGD for pointers, it contains references to PUDs but
86 * those references are not full pointers and so can't be recognised by
87 * kmemleak.
88 */
89 kmemleak_no_scan(pgd);
90
91 /*
92 * With hugetlb, we don't clear the second half of the page table.
93 * If we share the same slab cache with the pmd or pud level table,
94 * we need to make sure we zero out the full table on alloc.
95 * With 4K we don't store slot in the second half. Hence we don't
96 * need to do this for 4k.
97 */
98 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_PPC_64K_PAGES) && \
99 (H_PGD_INDEX_SIZE == H_PUD_CACHE_INDEX)
100 memset(pgd, 0, PGD_TABLE_SIZE);
101 #endif
102 return pgd;
103 }
104
105 static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd)
106 {
107 if (radix_enabled())
108 return radix__pgd_free(mm, pgd);
109 kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd);
110 }
111
112 static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pud_t *pud)
113 {
114 pgd_set(pgd, __pgtable_ptr_val(pud) | PGD_VAL_BITS);
115 }
116
117 static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
118 {
119 pud_t *pud;
120
121 pud = kmem_cache_alloc(PGT_CACHE(PUD_CACHE_INDEX),
122 pgtable_gfp_flags(mm, GFP_KERNEL));
123 /*
124 * Tell kmemleak to ignore the PUD, that means don't scan it for
125 * pointers and don't consider it a leak. PUDs are typically only
126 * referred to by their PGD, but kmemleak is not able to recognise those
127 * as pointers, leading to false leak reports.
128 */
129 kmemleak_ignore(pud);
130
131 return pud;
132 }
133
134 static inline void pud_free(struct mm_struct *mm, pud_t *pud)
135 {
136 kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), pud);
137 }
138
139 static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
140 {
141 pud_set(pud, __pgtable_ptr_val(pmd) | PUD_VAL_BITS);
142 }
143
144 static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud,
145 unsigned long address)
146 {
147 /*
148 * By now all the pud entries should be none entries. So go
149 * ahead and flush the page walk cache
150 */
151 flush_tlb_pgtable(tlb, address);
152 pgtable_free_tlb(tlb, pud, PUD_INDEX);
153 }
154
155 static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
156 {
157 return pmd_fragment_alloc(mm, addr);
158 }
159
160 static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
161 {
162 pmd_fragment_free((unsigned long *)pmd);
163 }
164
165 static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd,
166 unsigned long address)
167 {
168 /*
169 * By now all the pud entries should be none entries. So go
170 * ahead and flush the page walk cache
171 */
172 flush_tlb_pgtable(tlb, address);
173 return pgtable_free_tlb(tlb, pmd, PMD_INDEX);
174 }
175
176 static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd,
177 pte_t *pte)
178 {
179 pmd_set(pmd, __pgtable_ptr_val(pte) | PMD_VAL_BITS);
180 }
181
182 static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
183 pgtable_t pte_page)
184 {
185 pmd_set(pmd, __pgtable_ptr_val(pte_page) | PMD_VAL_BITS);
186 }
187
188 static inline pgtable_t pmd_pgtable(pmd_t pmd)
189 {
190 return (pgtable_t)pmd_page_vaddr(pmd);
191 }
192
193 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
194 unsigned long address)
195 {
196 return (pte_t *)pte_fragment_alloc(mm, address, 1);
197 }
198
199 static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
200 unsigned long address)
201 {
202 return (pgtable_t)pte_fragment_alloc(mm, address, 0);
203 }
204
205 static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
206 {
207 pte_fragment_free((unsigned long *)pte, 1);
208 }
209
210 static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
211 {
212 pte_fragment_free((unsigned long *)ptepage, 0);
213 }
214
215 static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
216 unsigned long address)
217 {
218 /*
219 * By now all the pud entries should be none entries. So go
220 * ahead and flush the page walk cache
221 */
222 flush_tlb_pgtable(tlb, address);
223 pgtable_free_tlb(tlb, table, PTE_INDEX);
224 }
225
226 #define check_pgt_cache() do { } while (0)
227
228 extern atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
229 static inline void update_page_count(int psize, long count)
230 {
231 if (IS_ENABLED(CONFIG_PROC_FS))
232 atomic_long_add(count, &direct_pages_count[psize]);
233 }
234
235 #endif /* _ASM_POWERPC_BOOK3S_64_PGALLOC_H */