]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - arch/powerpc/include/asm/book3s/64/radix.h
Merge branch 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[mirror_ubuntu-disco-kernel.git] / arch / powerpc / include / asm / book3s / 64 / radix.h
1 #ifndef _ASM_POWERPC_PGTABLE_RADIX_H
2 #define _ASM_POWERPC_PGTABLE_RADIX_H
3
4 #ifndef __ASSEMBLY__
5 #include <asm/cmpxchg.h>
6 #endif
7
8 #ifdef CONFIG_PPC_64K_PAGES
9 #include <asm/book3s/64/radix-64k.h>
10 #else
11 #include <asm/book3s/64/radix-4k.h>
12 #endif
13
14 /*
15 * For P9 DD1 only, we need to track whether the pte's huge.
16 */
17 #define R_PAGE_LARGE _RPAGE_RSV1
18
19
20 #ifndef __ASSEMBLY__
21 #include <asm/book3s/64/tlbflush-radix.h>
22 #include <asm/cpu_has_feature.h>
23 #endif
24
25 /* An empty PTE can still have a R or C writeback */
26 #define RADIX_PTE_NONE_MASK (_PAGE_DIRTY | _PAGE_ACCESSED)
27
28 /* Bits to set in a RPMD/RPUD/RPGD */
29 #define RADIX_PMD_VAL_BITS (0x8000000000000000UL | RADIX_PTE_INDEX_SIZE)
30 #define RADIX_PUD_VAL_BITS (0x8000000000000000UL | RADIX_PMD_INDEX_SIZE)
31 #define RADIX_PGD_VAL_BITS (0x8000000000000000UL | RADIX_PUD_INDEX_SIZE)
32
33 /* Don't have anything in the reserved bits and leaf bits */
34 #define RADIX_PMD_BAD_BITS 0x60000000000000e0UL
35 #define RADIX_PUD_BAD_BITS 0x60000000000000e0UL
36 #define RADIX_PGD_BAD_BITS 0x60000000000000e0UL
37
38 /*
39 * Size of EA range mapped by our pagetables.
40 */
41 #define RADIX_PGTABLE_EADDR_SIZE (RADIX_PTE_INDEX_SIZE + RADIX_PMD_INDEX_SIZE + \
42 RADIX_PUD_INDEX_SIZE + RADIX_PGD_INDEX_SIZE + PAGE_SHIFT)
43 #define RADIX_PGTABLE_RANGE (ASM_CONST(1) << RADIX_PGTABLE_EADDR_SIZE)
44
45 /*
46 * We support 52 bit address space, Use top bit for kernel
47 * virtual mapping. Also make sure kernel fit in the top
48 * quadrant.
49 *
50 * +------------------+
51 * +------------------+ Kernel virtual map (0xc008000000000000)
52 * | |
53 * | |
54 * | |
55 * 0b11......+------------------+ Kernel linear map (0xc....)
56 * | |
57 * | 2 quadrant |
58 * | |
59 * 0b10......+------------------+
60 * | |
61 * | 1 quadrant |
62 * | |
63 * 0b01......+------------------+
64 * | |
65 * | 0 quadrant |
66 * | |
67 * 0b00......+------------------+
68 *
69 *
70 * 3rd quadrant expanded:
71 * +------------------------------+
72 * | |
73 * | |
74 * | |
75 * +------------------------------+ Kernel IO map end (0xc010000000000000)
76 * | |
77 * | |
78 * | 1/2 of virtual map |
79 * | |
80 * | |
81 * +------------------------------+ Kernel IO map start
82 * | |
83 * | 1/4 of virtual map |
84 * | |
85 * +------------------------------+ Kernel vmemap start
86 * | |
87 * | 1/4 of virtual map |
88 * | |
89 * +------------------------------+ Kernel virt start (0xc008000000000000)
90 * | |
91 * | |
92 * | |
93 * +------------------------------+ Kernel linear (0xc.....)
94 */
95
96 #define RADIX_KERN_VIRT_START ASM_CONST(0xc008000000000000)
97 #define RADIX_KERN_VIRT_SIZE ASM_CONST(0x0008000000000000)
98
99 /*
100 * The vmalloc space starts at the beginning of that region, and
101 * occupies a quarter of it on radix config.
102 * (we keep a quarter for the virtual memmap)
103 */
104 #define RADIX_VMALLOC_START RADIX_KERN_VIRT_START
105 #define RADIX_VMALLOC_SIZE (RADIX_KERN_VIRT_SIZE >> 2)
106 #define RADIX_VMALLOC_END (RADIX_VMALLOC_START + RADIX_VMALLOC_SIZE)
107 /*
108 * Defines the address of the vmemap area, in its own region on
109 * hash table CPUs.
110 */
111 #define RADIX_VMEMMAP_BASE (RADIX_VMALLOC_END)
112
113 #define RADIX_KERN_IO_START (RADIX_KERN_VIRT_START + (RADIX_KERN_VIRT_SIZE >> 1))
114
115 #ifndef __ASSEMBLY__
116 #define RADIX_PTE_TABLE_SIZE (sizeof(pte_t) << RADIX_PTE_INDEX_SIZE)
117 #define RADIX_PMD_TABLE_SIZE (sizeof(pmd_t) << RADIX_PMD_INDEX_SIZE)
118 #define RADIX_PUD_TABLE_SIZE (sizeof(pud_t) << RADIX_PUD_INDEX_SIZE)
119 #define RADIX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE)
120
121 #ifdef CONFIG_STRICT_KERNEL_RWX
122 extern void radix__mark_rodata_ro(void);
123 extern void radix__mark_initmem_nx(void);
124 #endif
125
126 static inline unsigned long __radix_pte_update(pte_t *ptep, unsigned long clr,
127 unsigned long set)
128 {
129 pte_t pte;
130 unsigned long old_pte, new_pte;
131
132 do {
133 pte = READ_ONCE(*ptep);
134 old_pte = pte_val(pte);
135 new_pte = (old_pte | set) & ~clr;
136
137 } while (!pte_xchg(ptep, __pte(old_pte), __pte(new_pte)));
138
139 return old_pte;
140 }
141
142
143 static inline unsigned long radix__pte_update(struct mm_struct *mm,
144 unsigned long addr,
145 pte_t *ptep, unsigned long clr,
146 unsigned long set,
147 int huge)
148 {
149 unsigned long old_pte;
150
151 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
152
153 unsigned long new_pte;
154
155 old_pte = __radix_pte_update(ptep, ~0ul, 0);
156 /*
157 * new value of pte
158 */
159 new_pte = (old_pte | set) & ~clr;
160 radix__flush_tlb_pte_p9_dd1(old_pte, mm, addr);
161 if (new_pte)
162 __radix_pte_update(ptep, 0, new_pte);
163 } else
164 old_pte = __radix_pte_update(ptep, clr, set);
165 if (!huge)
166 assert_pte_locked(mm, addr);
167
168 return old_pte;
169 }
170
171 static inline pte_t radix__ptep_get_and_clear_full(struct mm_struct *mm,
172 unsigned long addr,
173 pte_t *ptep, int full)
174 {
175 unsigned long old_pte;
176
177 if (full) {
178 /*
179 * If we are trying to clear the pte, we can skip
180 * the DD1 pte update sequence and batch the tlb flush. The
181 * tlb flush batching is done by mmu gather code. We
182 * still keep the cmp_xchg update to make sure we get
183 * correct R/C bit which might be updated via Nest MMU.
184 */
185 old_pte = __radix_pte_update(ptep, ~0ul, 0);
186 } else
187 old_pte = radix__pte_update(mm, addr, ptep, ~0ul, 0, 0);
188
189 return __pte(old_pte);
190 }
191
192 /*
193 * Set the dirty and/or accessed bits atomically in a linux PTE, this
194 * function doesn't need to invalidate tlb.
195 */
196 static inline void radix__ptep_set_access_flags(struct mm_struct *mm,
197 pte_t *ptep, pte_t entry,
198 unsigned long address)
199 {
200
201 unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
202 _PAGE_RW | _PAGE_EXEC);
203
204 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
205
206 unsigned long old_pte, new_pte;
207
208 old_pte = __radix_pte_update(ptep, ~0, 0);
209 /*
210 * new value of pte
211 */
212 new_pte = old_pte | set;
213 radix__flush_tlb_pte_p9_dd1(old_pte, mm, address);
214 __radix_pte_update(ptep, 0, new_pte);
215 } else
216 __radix_pte_update(ptep, 0, set);
217 asm volatile("ptesync" : : : "memory");
218 }
219
220 static inline int radix__pte_same(pte_t pte_a, pte_t pte_b)
221 {
222 return ((pte_raw(pte_a) ^ pte_raw(pte_b)) == 0);
223 }
224
225 static inline int radix__pte_none(pte_t pte)
226 {
227 return (pte_val(pte) & ~RADIX_PTE_NONE_MASK) == 0;
228 }
229
230 static inline void radix__set_pte_at(struct mm_struct *mm, unsigned long addr,
231 pte_t *ptep, pte_t pte, int percpu)
232 {
233 *ptep = pte;
234 asm volatile("ptesync" : : : "memory");
235 }
236
237 static inline int radix__pmd_bad(pmd_t pmd)
238 {
239 return !!(pmd_val(pmd) & RADIX_PMD_BAD_BITS);
240 }
241
242 static inline int radix__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
243 {
244 return ((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) == 0);
245 }
246
247 static inline int radix__pud_bad(pud_t pud)
248 {
249 return !!(pud_val(pud) & RADIX_PUD_BAD_BITS);
250 }
251
252
253 static inline int radix__pgd_bad(pgd_t pgd)
254 {
255 return !!(pgd_val(pgd) & RADIX_PGD_BAD_BITS);
256 }
257
258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
259
260 static inline int radix__pmd_trans_huge(pmd_t pmd)
261 {
262 return (pmd_val(pmd) & (_PAGE_PTE | _PAGE_DEVMAP)) == _PAGE_PTE;
263 }
264
265 static inline pmd_t radix__pmd_mkhuge(pmd_t pmd)
266 {
267 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
268 return __pmd(pmd_val(pmd) | _PAGE_PTE | R_PAGE_LARGE);
269 return __pmd(pmd_val(pmd) | _PAGE_PTE);
270 }
271 static inline void radix__pmdp_huge_split_prepare(struct vm_area_struct *vma,
272 unsigned long address, pmd_t *pmdp)
273 {
274 /* Nothing to do for radix. */
275 return;
276 }
277
278 extern unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
279 pmd_t *pmdp, unsigned long clr,
280 unsigned long set);
281 extern pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma,
282 unsigned long address, pmd_t *pmdp);
283 extern void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
284 pgtable_t pgtable);
285 extern pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
286 extern pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
287 unsigned long addr, pmd_t *pmdp);
288 extern int radix__has_transparent_hugepage(void);
289 #endif
290
291 extern int __meminit radix__vmemmap_create_mapping(unsigned long start,
292 unsigned long page_size,
293 unsigned long phys);
294 extern void radix__vmemmap_remove_mapping(unsigned long start,
295 unsigned long page_size);
296
297 extern int radix__map_kernel_page(unsigned long ea, unsigned long pa,
298 pgprot_t flags, unsigned int psz);
299
300 static inline unsigned long radix__get_tree_size(void)
301 {
302 unsigned long rts_field;
303 /*
304 * We support 52 bits, hence:
305 * DD1 52-28 = 24, 0b11000
306 * Others 52-31 = 21, 0b10101
307 * RTS encoding details
308 * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
309 * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
310 */
311 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
312 rts_field = (0x3UL << 61);
313 else {
314 rts_field = (0x5UL << 5); /* 6 - 8 bits */
315 rts_field |= (0x2UL << 61);
316 }
317 return rts_field;
318 }
319
320 #ifdef CONFIG_MEMORY_HOTPLUG
321 int radix__create_section_mapping(unsigned long start, unsigned long end);
322 int radix__remove_section_mapping(unsigned long start, unsigned long end);
323 #endif /* CONFIG_MEMORY_HOTPLUG */
324 #endif /* __ASSEMBLY__ */
325 #endif