]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - arch/powerpc/kvm/powerpc.c
ASoC: ep93xx-ac97: Fix platform_get_irq's error checking
[mirror_ubuntu-disco-kernel.git] / arch / powerpc / kvm / powerpc.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42
43 #include "timing.h"
44 #include "irq.h"
45 #include "../mm/mmu_decl.h"
46
47 #define CREATE_TRACE_POINTS
48 #include "trace.h"
49
50 struct kvmppc_ops *kvmppc_hv_ops;
51 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
52 struct kvmppc_ops *kvmppc_pr_ops;
53 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
54
55
56 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
57 {
58 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
59 }
60
61 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
62 {
63 return false;
64 }
65
66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68 return 1;
69 }
70
71 /*
72 * Common checks before entering the guest world. Call with interrupts
73 * disabled.
74 *
75 * returns:
76 *
77 * == 1 if we're ready to go into guest state
78 * <= 0 if we need to go back to the host with return value
79 */
80 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
81 {
82 int r;
83
84 WARN_ON(irqs_disabled());
85 hard_irq_disable();
86
87 while (true) {
88 if (need_resched()) {
89 local_irq_enable();
90 cond_resched();
91 hard_irq_disable();
92 continue;
93 }
94
95 if (signal_pending(current)) {
96 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
97 vcpu->run->exit_reason = KVM_EXIT_INTR;
98 r = -EINTR;
99 break;
100 }
101
102 vcpu->mode = IN_GUEST_MODE;
103
104 /*
105 * Reading vcpu->requests must happen after setting vcpu->mode,
106 * so we don't miss a request because the requester sees
107 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
108 * before next entering the guest (and thus doesn't IPI).
109 * This also orders the write to mode from any reads
110 * to the page tables done while the VCPU is running.
111 * Please see the comment in kvm_flush_remote_tlbs.
112 */
113 smp_mb();
114
115 if (kvm_request_pending(vcpu)) {
116 /* Make sure we process requests preemptable */
117 local_irq_enable();
118 trace_kvm_check_requests(vcpu);
119 r = kvmppc_core_check_requests(vcpu);
120 hard_irq_disable();
121 if (r > 0)
122 continue;
123 break;
124 }
125
126 if (kvmppc_core_prepare_to_enter(vcpu)) {
127 /* interrupts got enabled in between, so we
128 are back at square 1 */
129 continue;
130 }
131
132 guest_enter_irqoff();
133 return 1;
134 }
135
136 /* return to host */
137 local_irq_enable();
138 return r;
139 }
140 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
141
142 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
143 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
144 {
145 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
146 int i;
147
148 shared->sprg0 = swab64(shared->sprg0);
149 shared->sprg1 = swab64(shared->sprg1);
150 shared->sprg2 = swab64(shared->sprg2);
151 shared->sprg3 = swab64(shared->sprg3);
152 shared->srr0 = swab64(shared->srr0);
153 shared->srr1 = swab64(shared->srr1);
154 shared->dar = swab64(shared->dar);
155 shared->msr = swab64(shared->msr);
156 shared->dsisr = swab32(shared->dsisr);
157 shared->int_pending = swab32(shared->int_pending);
158 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
159 shared->sr[i] = swab32(shared->sr[i]);
160 }
161 #endif
162
163 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
164 {
165 int nr = kvmppc_get_gpr(vcpu, 11);
166 int r;
167 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
168 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
169 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
170 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
171 unsigned long r2 = 0;
172
173 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
174 /* 32 bit mode */
175 param1 &= 0xffffffff;
176 param2 &= 0xffffffff;
177 param3 &= 0xffffffff;
178 param4 &= 0xffffffff;
179 }
180
181 switch (nr) {
182 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
183 {
184 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
185 /* Book3S can be little endian, find it out here */
186 int shared_big_endian = true;
187 if (vcpu->arch.intr_msr & MSR_LE)
188 shared_big_endian = false;
189 if (shared_big_endian != vcpu->arch.shared_big_endian)
190 kvmppc_swab_shared(vcpu);
191 vcpu->arch.shared_big_endian = shared_big_endian;
192 #endif
193
194 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
195 /*
196 * Older versions of the Linux magic page code had
197 * a bug where they would map their trampoline code
198 * NX. If that's the case, remove !PR NX capability.
199 */
200 vcpu->arch.disable_kernel_nx = true;
201 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
202 }
203
204 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
205 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
206
207 #ifdef CONFIG_PPC_64K_PAGES
208 /*
209 * Make sure our 4k magic page is in the same window of a 64k
210 * page within the guest and within the host's page.
211 */
212 if ((vcpu->arch.magic_page_pa & 0xf000) !=
213 ((ulong)vcpu->arch.shared & 0xf000)) {
214 void *old_shared = vcpu->arch.shared;
215 ulong shared = (ulong)vcpu->arch.shared;
216 void *new_shared;
217
218 shared &= PAGE_MASK;
219 shared |= vcpu->arch.magic_page_pa & 0xf000;
220 new_shared = (void*)shared;
221 memcpy(new_shared, old_shared, 0x1000);
222 vcpu->arch.shared = new_shared;
223 }
224 #endif
225
226 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
227
228 r = EV_SUCCESS;
229 break;
230 }
231 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
232 r = EV_SUCCESS;
233 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
234 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
235 #endif
236
237 /* Second return value is in r4 */
238 break;
239 case EV_HCALL_TOKEN(EV_IDLE):
240 r = EV_SUCCESS;
241 kvm_vcpu_block(vcpu);
242 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
243 break;
244 default:
245 r = EV_UNIMPLEMENTED;
246 break;
247 }
248
249 kvmppc_set_gpr(vcpu, 4, r2);
250
251 return r;
252 }
253 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
254
255 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
256 {
257 int r = false;
258
259 /* We have to know what CPU to virtualize */
260 if (!vcpu->arch.pvr)
261 goto out;
262
263 /* PAPR only works with book3s_64 */
264 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
265 goto out;
266
267 /* HV KVM can only do PAPR mode for now */
268 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
269 goto out;
270
271 #ifdef CONFIG_KVM_BOOKE_HV
272 if (!cpu_has_feature(CPU_FTR_EMB_HV))
273 goto out;
274 #endif
275
276 r = true;
277
278 out:
279 vcpu->arch.sane = r;
280 return r ? 0 : -EINVAL;
281 }
282 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
283
284 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
285 {
286 enum emulation_result er;
287 int r;
288
289 er = kvmppc_emulate_loadstore(vcpu);
290 switch (er) {
291 case EMULATE_DONE:
292 /* Future optimization: only reload non-volatiles if they were
293 * actually modified. */
294 r = RESUME_GUEST_NV;
295 break;
296 case EMULATE_AGAIN:
297 r = RESUME_GUEST;
298 break;
299 case EMULATE_DO_MMIO:
300 run->exit_reason = KVM_EXIT_MMIO;
301 /* We must reload nonvolatiles because "update" load/store
302 * instructions modify register state. */
303 /* Future optimization: only reload non-volatiles if they were
304 * actually modified. */
305 r = RESUME_HOST_NV;
306 break;
307 case EMULATE_FAIL:
308 {
309 u32 last_inst;
310
311 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
312 /* XXX Deliver Program interrupt to guest. */
313 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
314 r = RESUME_HOST;
315 break;
316 }
317 default:
318 WARN_ON(1);
319 r = RESUME_GUEST;
320 }
321
322 return r;
323 }
324 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
325
326 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
327 bool data)
328 {
329 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
330 struct kvmppc_pte pte;
331 int r;
332
333 vcpu->stat.st++;
334
335 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
336 XLATE_WRITE, &pte);
337 if (r < 0)
338 return r;
339
340 *eaddr = pte.raddr;
341
342 if (!pte.may_write)
343 return -EPERM;
344
345 /* Magic page override */
346 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
347 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
348 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
349 void *magic = vcpu->arch.shared;
350 magic += pte.eaddr & 0xfff;
351 memcpy(magic, ptr, size);
352 return EMULATE_DONE;
353 }
354
355 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
356 return EMULATE_DO_MMIO;
357
358 return EMULATE_DONE;
359 }
360 EXPORT_SYMBOL_GPL(kvmppc_st);
361
362 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
363 bool data)
364 {
365 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
366 struct kvmppc_pte pte;
367 int rc;
368
369 vcpu->stat.ld++;
370
371 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
372 XLATE_READ, &pte);
373 if (rc)
374 return rc;
375
376 *eaddr = pte.raddr;
377
378 if (!pte.may_read)
379 return -EPERM;
380
381 if (!data && !pte.may_execute)
382 return -ENOEXEC;
383
384 /* Magic page override */
385 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
386 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
387 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
388 void *magic = vcpu->arch.shared;
389 magic += pte.eaddr & 0xfff;
390 memcpy(ptr, magic, size);
391 return EMULATE_DONE;
392 }
393
394 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
395 return EMULATE_DO_MMIO;
396
397 return EMULATE_DONE;
398 }
399 EXPORT_SYMBOL_GPL(kvmppc_ld);
400
401 int kvm_arch_hardware_enable(void)
402 {
403 return 0;
404 }
405
406 int kvm_arch_hardware_setup(void)
407 {
408 return 0;
409 }
410
411 void kvm_arch_check_processor_compat(void *rtn)
412 {
413 *(int *)rtn = kvmppc_core_check_processor_compat();
414 }
415
416 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
417 {
418 struct kvmppc_ops *kvm_ops = NULL;
419 /*
420 * if we have both HV and PR enabled, default is HV
421 */
422 if (type == 0) {
423 if (kvmppc_hv_ops)
424 kvm_ops = kvmppc_hv_ops;
425 else
426 kvm_ops = kvmppc_pr_ops;
427 if (!kvm_ops)
428 goto err_out;
429 } else if (type == KVM_VM_PPC_HV) {
430 if (!kvmppc_hv_ops)
431 goto err_out;
432 kvm_ops = kvmppc_hv_ops;
433 } else if (type == KVM_VM_PPC_PR) {
434 if (!kvmppc_pr_ops)
435 goto err_out;
436 kvm_ops = kvmppc_pr_ops;
437 } else
438 goto err_out;
439
440 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
441 return -ENOENT;
442
443 kvm->arch.kvm_ops = kvm_ops;
444 return kvmppc_core_init_vm(kvm);
445 err_out:
446 return -EINVAL;
447 }
448
449 bool kvm_arch_has_vcpu_debugfs(void)
450 {
451 return false;
452 }
453
454 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
455 {
456 return 0;
457 }
458
459 void kvm_arch_destroy_vm(struct kvm *kvm)
460 {
461 unsigned int i;
462 struct kvm_vcpu *vcpu;
463
464 #ifdef CONFIG_KVM_XICS
465 /*
466 * We call kick_all_cpus_sync() to ensure that all
467 * CPUs have executed any pending IPIs before we
468 * continue and free VCPUs structures below.
469 */
470 if (is_kvmppc_hv_enabled(kvm))
471 kick_all_cpus_sync();
472 #endif
473
474 kvm_for_each_vcpu(i, vcpu, kvm)
475 kvm_arch_vcpu_free(vcpu);
476
477 mutex_lock(&kvm->lock);
478 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
479 kvm->vcpus[i] = NULL;
480
481 atomic_set(&kvm->online_vcpus, 0);
482
483 kvmppc_core_destroy_vm(kvm);
484
485 mutex_unlock(&kvm->lock);
486
487 /* drop the module reference */
488 module_put(kvm->arch.kvm_ops->owner);
489 }
490
491 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
492 {
493 int r;
494 /* Assume we're using HV mode when the HV module is loaded */
495 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
496
497 if (kvm) {
498 /*
499 * Hooray - we know which VM type we're running on. Depend on
500 * that rather than the guess above.
501 */
502 hv_enabled = is_kvmppc_hv_enabled(kvm);
503 }
504
505 switch (ext) {
506 #ifdef CONFIG_BOOKE
507 case KVM_CAP_PPC_BOOKE_SREGS:
508 case KVM_CAP_PPC_BOOKE_WATCHDOG:
509 case KVM_CAP_PPC_EPR:
510 #else
511 case KVM_CAP_PPC_SEGSTATE:
512 case KVM_CAP_PPC_HIOR:
513 case KVM_CAP_PPC_PAPR:
514 #endif
515 case KVM_CAP_PPC_UNSET_IRQ:
516 case KVM_CAP_PPC_IRQ_LEVEL:
517 case KVM_CAP_ENABLE_CAP:
518 case KVM_CAP_ENABLE_CAP_VM:
519 case KVM_CAP_ONE_REG:
520 case KVM_CAP_IOEVENTFD:
521 case KVM_CAP_DEVICE_CTRL:
522 case KVM_CAP_IMMEDIATE_EXIT:
523 r = 1;
524 break;
525 case KVM_CAP_PPC_PAIRED_SINGLES:
526 case KVM_CAP_PPC_OSI:
527 case KVM_CAP_PPC_GET_PVINFO:
528 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
529 case KVM_CAP_SW_TLB:
530 #endif
531 /* We support this only for PR */
532 r = !hv_enabled;
533 break;
534 #ifdef CONFIG_KVM_MPIC
535 case KVM_CAP_IRQ_MPIC:
536 r = 1;
537 break;
538 #endif
539
540 #ifdef CONFIG_PPC_BOOK3S_64
541 case KVM_CAP_SPAPR_TCE:
542 case KVM_CAP_SPAPR_TCE_64:
543 /* fallthrough */
544 case KVM_CAP_SPAPR_TCE_VFIO:
545 case KVM_CAP_PPC_RTAS:
546 case KVM_CAP_PPC_FIXUP_HCALL:
547 case KVM_CAP_PPC_ENABLE_HCALL:
548 #ifdef CONFIG_KVM_XICS
549 case KVM_CAP_IRQ_XICS:
550 #endif
551 r = 1;
552 break;
553
554 case KVM_CAP_PPC_ALLOC_HTAB:
555 r = hv_enabled;
556 break;
557 #endif /* CONFIG_PPC_BOOK3S_64 */
558 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
559 case KVM_CAP_PPC_SMT:
560 r = 0;
561 if (kvm) {
562 if (kvm->arch.emul_smt_mode > 1)
563 r = kvm->arch.emul_smt_mode;
564 else
565 r = kvm->arch.smt_mode;
566 } else if (hv_enabled) {
567 if (cpu_has_feature(CPU_FTR_ARCH_300))
568 r = 1;
569 else
570 r = threads_per_subcore;
571 }
572 break;
573 case KVM_CAP_PPC_SMT_POSSIBLE:
574 r = 1;
575 if (hv_enabled) {
576 if (!cpu_has_feature(CPU_FTR_ARCH_300))
577 r = ((threads_per_subcore << 1) - 1);
578 else
579 /* P9 can emulate dbells, so allow any mode */
580 r = 8 | 4 | 2 | 1;
581 }
582 break;
583 case KVM_CAP_PPC_RMA:
584 r = 0;
585 break;
586 case KVM_CAP_PPC_HWRNG:
587 r = kvmppc_hwrng_present();
588 break;
589 case KVM_CAP_PPC_MMU_RADIX:
590 r = !!(hv_enabled && radix_enabled());
591 break;
592 case KVM_CAP_PPC_MMU_HASH_V3:
593 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
594 break;
595 #endif
596 case KVM_CAP_SYNC_MMU:
597 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
598 r = hv_enabled;
599 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
600 r = 1;
601 #else
602 r = 0;
603 #endif
604 break;
605 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
606 case KVM_CAP_PPC_HTAB_FD:
607 r = hv_enabled;
608 break;
609 #endif
610 case KVM_CAP_NR_VCPUS:
611 /*
612 * Recommending a number of CPUs is somewhat arbitrary; we
613 * return the number of present CPUs for -HV (since a host
614 * will have secondary threads "offline"), and for other KVM
615 * implementations just count online CPUs.
616 */
617 if (hv_enabled)
618 r = num_present_cpus();
619 else
620 r = num_online_cpus();
621 break;
622 case KVM_CAP_NR_MEMSLOTS:
623 r = KVM_USER_MEM_SLOTS;
624 break;
625 case KVM_CAP_MAX_VCPUS:
626 r = KVM_MAX_VCPUS;
627 break;
628 #ifdef CONFIG_PPC_BOOK3S_64
629 case KVM_CAP_PPC_GET_SMMU_INFO:
630 r = 1;
631 break;
632 case KVM_CAP_SPAPR_MULTITCE:
633 r = 1;
634 break;
635 case KVM_CAP_SPAPR_RESIZE_HPT:
636 /* Disable this on POWER9 until code handles new HPTE format */
637 r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
638 break;
639 #endif
640 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
641 case KVM_CAP_PPC_FWNMI:
642 r = hv_enabled;
643 break;
644 #endif
645 case KVM_CAP_PPC_HTM:
646 r = hv_enabled &&
647 (cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM_COMP);
648 break;
649 default:
650 r = 0;
651 break;
652 }
653 return r;
654
655 }
656
657 long kvm_arch_dev_ioctl(struct file *filp,
658 unsigned int ioctl, unsigned long arg)
659 {
660 return -EINVAL;
661 }
662
663 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
664 struct kvm_memory_slot *dont)
665 {
666 kvmppc_core_free_memslot(kvm, free, dont);
667 }
668
669 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
670 unsigned long npages)
671 {
672 return kvmppc_core_create_memslot(kvm, slot, npages);
673 }
674
675 int kvm_arch_prepare_memory_region(struct kvm *kvm,
676 struct kvm_memory_slot *memslot,
677 const struct kvm_userspace_memory_region *mem,
678 enum kvm_mr_change change)
679 {
680 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
681 }
682
683 void kvm_arch_commit_memory_region(struct kvm *kvm,
684 const struct kvm_userspace_memory_region *mem,
685 const struct kvm_memory_slot *old,
686 const struct kvm_memory_slot *new,
687 enum kvm_mr_change change)
688 {
689 kvmppc_core_commit_memory_region(kvm, mem, old, new);
690 }
691
692 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
693 struct kvm_memory_slot *slot)
694 {
695 kvmppc_core_flush_memslot(kvm, slot);
696 }
697
698 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
699 {
700 struct kvm_vcpu *vcpu;
701 vcpu = kvmppc_core_vcpu_create(kvm, id);
702 if (!IS_ERR(vcpu)) {
703 vcpu->arch.wqp = &vcpu->wq;
704 kvmppc_create_vcpu_debugfs(vcpu, id);
705 }
706 return vcpu;
707 }
708
709 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
710 {
711 }
712
713 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
714 {
715 /* Make sure we're not using the vcpu anymore */
716 hrtimer_cancel(&vcpu->arch.dec_timer);
717
718 kvmppc_remove_vcpu_debugfs(vcpu);
719
720 switch (vcpu->arch.irq_type) {
721 case KVMPPC_IRQ_MPIC:
722 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
723 break;
724 case KVMPPC_IRQ_XICS:
725 if (xive_enabled())
726 kvmppc_xive_cleanup_vcpu(vcpu);
727 else
728 kvmppc_xics_free_icp(vcpu);
729 break;
730 }
731
732 kvmppc_core_vcpu_free(vcpu);
733 }
734
735 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
736 {
737 kvm_arch_vcpu_free(vcpu);
738 }
739
740 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
741 {
742 return kvmppc_core_pending_dec(vcpu);
743 }
744
745 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
746 {
747 struct kvm_vcpu *vcpu;
748
749 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
750 kvmppc_decrementer_func(vcpu);
751
752 return HRTIMER_NORESTART;
753 }
754
755 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
756 {
757 int ret;
758
759 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
760 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
761 vcpu->arch.dec_expires = ~(u64)0;
762
763 #ifdef CONFIG_KVM_EXIT_TIMING
764 mutex_init(&vcpu->arch.exit_timing_lock);
765 #endif
766 ret = kvmppc_subarch_vcpu_init(vcpu);
767 return ret;
768 }
769
770 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
771 {
772 kvmppc_mmu_destroy(vcpu);
773 kvmppc_subarch_vcpu_uninit(vcpu);
774 }
775
776 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
777 {
778 #ifdef CONFIG_BOOKE
779 /*
780 * vrsave (formerly usprg0) isn't used by Linux, but may
781 * be used by the guest.
782 *
783 * On non-booke this is associated with Altivec and
784 * is handled by code in book3s.c.
785 */
786 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
787 #endif
788 kvmppc_core_vcpu_load(vcpu, cpu);
789 }
790
791 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
792 {
793 kvmppc_core_vcpu_put(vcpu);
794 #ifdef CONFIG_BOOKE
795 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
796 #endif
797 }
798
799 /*
800 * irq_bypass_add_producer and irq_bypass_del_producer are only
801 * useful if the architecture supports PCI passthrough.
802 * irq_bypass_stop and irq_bypass_start are not needed and so
803 * kvm_ops are not defined for them.
804 */
805 bool kvm_arch_has_irq_bypass(void)
806 {
807 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
808 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
809 }
810
811 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
812 struct irq_bypass_producer *prod)
813 {
814 struct kvm_kernel_irqfd *irqfd =
815 container_of(cons, struct kvm_kernel_irqfd, consumer);
816 struct kvm *kvm = irqfd->kvm;
817
818 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
819 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
820
821 return 0;
822 }
823
824 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
825 struct irq_bypass_producer *prod)
826 {
827 struct kvm_kernel_irqfd *irqfd =
828 container_of(cons, struct kvm_kernel_irqfd, consumer);
829 struct kvm *kvm = irqfd->kvm;
830
831 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
832 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
833 }
834
835 #ifdef CONFIG_VSX
836 static inline int kvmppc_get_vsr_dword_offset(int index)
837 {
838 int offset;
839
840 if ((index != 0) && (index != 1))
841 return -1;
842
843 #ifdef __BIG_ENDIAN
844 offset = index;
845 #else
846 offset = 1 - index;
847 #endif
848
849 return offset;
850 }
851
852 static inline int kvmppc_get_vsr_word_offset(int index)
853 {
854 int offset;
855
856 if ((index > 3) || (index < 0))
857 return -1;
858
859 #ifdef __BIG_ENDIAN
860 offset = index;
861 #else
862 offset = 3 - index;
863 #endif
864 return offset;
865 }
866
867 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
868 u64 gpr)
869 {
870 union kvmppc_one_reg val;
871 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
872 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
873
874 if (offset == -1)
875 return;
876
877 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
878 val.vval = VCPU_VSX_VR(vcpu, index);
879 val.vsxval[offset] = gpr;
880 VCPU_VSX_VR(vcpu, index) = val.vval;
881 } else {
882 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
883 }
884 }
885
886 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
887 u64 gpr)
888 {
889 union kvmppc_one_reg val;
890 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
891
892 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
893 val.vval = VCPU_VSX_VR(vcpu, index);
894 val.vsxval[0] = gpr;
895 val.vsxval[1] = gpr;
896 VCPU_VSX_VR(vcpu, index) = val.vval;
897 } else {
898 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
899 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
900 }
901 }
902
903 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
904 u32 gpr32)
905 {
906 union kvmppc_one_reg val;
907 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
908 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
909 int dword_offset, word_offset;
910
911 if (offset == -1)
912 return;
913
914 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
915 val.vval = VCPU_VSX_VR(vcpu, index);
916 val.vsx32val[offset] = gpr32;
917 VCPU_VSX_VR(vcpu, index) = val.vval;
918 } else {
919 dword_offset = offset / 2;
920 word_offset = offset % 2;
921 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
922 val.vsx32val[word_offset] = gpr32;
923 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
924 }
925 }
926 #endif /* CONFIG_VSX */
927
928 #ifdef CONFIG_PPC_FPU
929 static inline u64 sp_to_dp(u32 fprs)
930 {
931 u64 fprd;
932
933 preempt_disable();
934 enable_kernel_fp();
935 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
936 : "fr0");
937 preempt_enable();
938 return fprd;
939 }
940
941 static inline u32 dp_to_sp(u64 fprd)
942 {
943 u32 fprs;
944
945 preempt_disable();
946 enable_kernel_fp();
947 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
948 : "fr0");
949 preempt_enable();
950 return fprs;
951 }
952
953 #else
954 #define sp_to_dp(x) (x)
955 #define dp_to_sp(x) (x)
956 #endif /* CONFIG_PPC_FPU */
957
958 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
959 struct kvm_run *run)
960 {
961 u64 uninitialized_var(gpr);
962
963 if (run->mmio.len > sizeof(gpr)) {
964 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
965 return;
966 }
967
968 if (!vcpu->arch.mmio_host_swabbed) {
969 switch (run->mmio.len) {
970 case 8: gpr = *(u64 *)run->mmio.data; break;
971 case 4: gpr = *(u32 *)run->mmio.data; break;
972 case 2: gpr = *(u16 *)run->mmio.data; break;
973 case 1: gpr = *(u8 *)run->mmio.data; break;
974 }
975 } else {
976 switch (run->mmio.len) {
977 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
978 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
979 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
980 case 1: gpr = *(u8 *)run->mmio.data; break;
981 }
982 }
983
984 /* conversion between single and double precision */
985 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
986 gpr = sp_to_dp(gpr);
987
988 if (vcpu->arch.mmio_sign_extend) {
989 switch (run->mmio.len) {
990 #ifdef CONFIG_PPC64
991 case 4:
992 gpr = (s64)(s32)gpr;
993 break;
994 #endif
995 case 2:
996 gpr = (s64)(s16)gpr;
997 break;
998 case 1:
999 gpr = (s64)(s8)gpr;
1000 break;
1001 }
1002 }
1003
1004 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1005 case KVM_MMIO_REG_GPR:
1006 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1007 break;
1008 case KVM_MMIO_REG_FPR:
1009 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1010 break;
1011 #ifdef CONFIG_PPC_BOOK3S
1012 case KVM_MMIO_REG_QPR:
1013 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1014 break;
1015 case KVM_MMIO_REG_FQPR:
1016 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1017 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1018 break;
1019 #endif
1020 #ifdef CONFIG_VSX
1021 case KVM_MMIO_REG_VSX:
1022 if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1023 kvmppc_set_vsr_dword(vcpu, gpr);
1024 else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1025 kvmppc_set_vsr_word(vcpu, gpr);
1026 else if (vcpu->arch.mmio_vsx_copy_type ==
1027 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1028 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1029 break;
1030 #endif
1031 default:
1032 BUG();
1033 }
1034 }
1035
1036 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1037 unsigned int rt, unsigned int bytes,
1038 int is_default_endian, int sign_extend)
1039 {
1040 int idx, ret;
1041 bool host_swabbed;
1042
1043 /* Pity C doesn't have a logical XOR operator */
1044 if (kvmppc_need_byteswap(vcpu)) {
1045 host_swabbed = is_default_endian;
1046 } else {
1047 host_swabbed = !is_default_endian;
1048 }
1049
1050 if (bytes > sizeof(run->mmio.data)) {
1051 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1052 run->mmio.len);
1053 }
1054
1055 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1056 run->mmio.len = bytes;
1057 run->mmio.is_write = 0;
1058
1059 vcpu->arch.io_gpr = rt;
1060 vcpu->arch.mmio_host_swabbed = host_swabbed;
1061 vcpu->mmio_needed = 1;
1062 vcpu->mmio_is_write = 0;
1063 vcpu->arch.mmio_sign_extend = sign_extend;
1064
1065 idx = srcu_read_lock(&vcpu->kvm->srcu);
1066
1067 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1068 bytes, &run->mmio.data);
1069
1070 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1071
1072 if (!ret) {
1073 kvmppc_complete_mmio_load(vcpu, run);
1074 vcpu->mmio_needed = 0;
1075 return EMULATE_DONE;
1076 }
1077
1078 return EMULATE_DO_MMIO;
1079 }
1080
1081 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1082 unsigned int rt, unsigned int bytes,
1083 int is_default_endian)
1084 {
1085 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1086 }
1087 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1088
1089 /* Same as above, but sign extends */
1090 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1091 unsigned int rt, unsigned int bytes,
1092 int is_default_endian)
1093 {
1094 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1095 }
1096
1097 #ifdef CONFIG_VSX
1098 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1099 unsigned int rt, unsigned int bytes,
1100 int is_default_endian, int mmio_sign_extend)
1101 {
1102 enum emulation_result emulated = EMULATE_DONE;
1103
1104 /* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1105 if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1106 (vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1107 return EMULATE_FAIL;
1108 }
1109
1110 while (vcpu->arch.mmio_vsx_copy_nums) {
1111 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1112 is_default_endian, mmio_sign_extend);
1113
1114 if (emulated != EMULATE_DONE)
1115 break;
1116
1117 vcpu->arch.paddr_accessed += run->mmio.len;
1118
1119 vcpu->arch.mmio_vsx_copy_nums--;
1120 vcpu->arch.mmio_vsx_offset++;
1121 }
1122 return emulated;
1123 }
1124 #endif /* CONFIG_VSX */
1125
1126 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1127 u64 val, unsigned int bytes, int is_default_endian)
1128 {
1129 void *data = run->mmio.data;
1130 int idx, ret;
1131 bool host_swabbed;
1132
1133 /* Pity C doesn't have a logical XOR operator */
1134 if (kvmppc_need_byteswap(vcpu)) {
1135 host_swabbed = is_default_endian;
1136 } else {
1137 host_swabbed = !is_default_endian;
1138 }
1139
1140 if (bytes > sizeof(run->mmio.data)) {
1141 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1142 run->mmio.len);
1143 }
1144
1145 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1146 run->mmio.len = bytes;
1147 run->mmio.is_write = 1;
1148 vcpu->mmio_needed = 1;
1149 vcpu->mmio_is_write = 1;
1150
1151 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1152 val = dp_to_sp(val);
1153
1154 /* Store the value at the lowest bytes in 'data'. */
1155 if (!host_swabbed) {
1156 switch (bytes) {
1157 case 8: *(u64 *)data = val; break;
1158 case 4: *(u32 *)data = val; break;
1159 case 2: *(u16 *)data = val; break;
1160 case 1: *(u8 *)data = val; break;
1161 }
1162 } else {
1163 switch (bytes) {
1164 case 8: *(u64 *)data = swab64(val); break;
1165 case 4: *(u32 *)data = swab32(val); break;
1166 case 2: *(u16 *)data = swab16(val); break;
1167 case 1: *(u8 *)data = val; break;
1168 }
1169 }
1170
1171 idx = srcu_read_lock(&vcpu->kvm->srcu);
1172
1173 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1174 bytes, &run->mmio.data);
1175
1176 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1177
1178 if (!ret) {
1179 vcpu->mmio_needed = 0;
1180 return EMULATE_DONE;
1181 }
1182
1183 return EMULATE_DO_MMIO;
1184 }
1185 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1186
1187 #ifdef CONFIG_VSX
1188 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1189 {
1190 u32 dword_offset, word_offset;
1191 union kvmppc_one_reg reg;
1192 int vsx_offset = 0;
1193 int copy_type = vcpu->arch.mmio_vsx_copy_type;
1194 int result = 0;
1195
1196 switch (copy_type) {
1197 case KVMPPC_VSX_COPY_DWORD:
1198 vsx_offset =
1199 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1200
1201 if (vsx_offset == -1) {
1202 result = -1;
1203 break;
1204 }
1205
1206 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1207 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1208 } else {
1209 reg.vval = VCPU_VSX_VR(vcpu, rs);
1210 *val = reg.vsxval[vsx_offset];
1211 }
1212 break;
1213
1214 case KVMPPC_VSX_COPY_WORD:
1215 vsx_offset =
1216 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1217
1218 if (vsx_offset == -1) {
1219 result = -1;
1220 break;
1221 }
1222
1223 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1224 dword_offset = vsx_offset / 2;
1225 word_offset = vsx_offset % 2;
1226 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1227 *val = reg.vsx32val[word_offset];
1228 } else {
1229 reg.vval = VCPU_VSX_VR(vcpu, rs);
1230 *val = reg.vsx32val[vsx_offset];
1231 }
1232 break;
1233
1234 default:
1235 result = -1;
1236 break;
1237 }
1238
1239 return result;
1240 }
1241
1242 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1243 int rs, unsigned int bytes, int is_default_endian)
1244 {
1245 u64 val;
1246 enum emulation_result emulated = EMULATE_DONE;
1247
1248 vcpu->arch.io_gpr = rs;
1249
1250 /* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1251 if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1252 (vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1253 return EMULATE_FAIL;
1254 }
1255
1256 while (vcpu->arch.mmio_vsx_copy_nums) {
1257 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1258 return EMULATE_FAIL;
1259
1260 emulated = kvmppc_handle_store(run, vcpu,
1261 val, bytes, is_default_endian);
1262
1263 if (emulated != EMULATE_DONE)
1264 break;
1265
1266 vcpu->arch.paddr_accessed += run->mmio.len;
1267
1268 vcpu->arch.mmio_vsx_copy_nums--;
1269 vcpu->arch.mmio_vsx_offset++;
1270 }
1271
1272 return emulated;
1273 }
1274
1275 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1276 struct kvm_run *run)
1277 {
1278 enum emulation_result emulated = EMULATE_FAIL;
1279 int r;
1280
1281 vcpu->arch.paddr_accessed += run->mmio.len;
1282
1283 if (!vcpu->mmio_is_write) {
1284 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1285 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1286 } else {
1287 emulated = kvmppc_handle_vsx_store(run, vcpu,
1288 vcpu->arch.io_gpr, run->mmio.len, 1);
1289 }
1290
1291 switch (emulated) {
1292 case EMULATE_DO_MMIO:
1293 run->exit_reason = KVM_EXIT_MMIO;
1294 r = RESUME_HOST;
1295 break;
1296 case EMULATE_FAIL:
1297 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1298 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1299 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1300 r = RESUME_HOST;
1301 break;
1302 default:
1303 r = RESUME_GUEST;
1304 break;
1305 }
1306 return r;
1307 }
1308 #endif /* CONFIG_VSX */
1309
1310 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1311 {
1312 int r = 0;
1313 union kvmppc_one_reg val;
1314 int size;
1315
1316 size = one_reg_size(reg->id);
1317 if (size > sizeof(val))
1318 return -EINVAL;
1319
1320 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1321 if (r == -EINVAL) {
1322 r = 0;
1323 switch (reg->id) {
1324 #ifdef CONFIG_ALTIVEC
1325 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1326 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1327 r = -ENXIO;
1328 break;
1329 }
1330 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1331 break;
1332 case KVM_REG_PPC_VSCR:
1333 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1334 r = -ENXIO;
1335 break;
1336 }
1337 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1338 break;
1339 case KVM_REG_PPC_VRSAVE:
1340 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1341 break;
1342 #endif /* CONFIG_ALTIVEC */
1343 default:
1344 r = -EINVAL;
1345 break;
1346 }
1347 }
1348
1349 if (r)
1350 return r;
1351
1352 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1353 r = -EFAULT;
1354
1355 return r;
1356 }
1357
1358 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1359 {
1360 int r;
1361 union kvmppc_one_reg val;
1362 int size;
1363
1364 size = one_reg_size(reg->id);
1365 if (size > sizeof(val))
1366 return -EINVAL;
1367
1368 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1369 return -EFAULT;
1370
1371 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1372 if (r == -EINVAL) {
1373 r = 0;
1374 switch (reg->id) {
1375 #ifdef CONFIG_ALTIVEC
1376 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1377 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1378 r = -ENXIO;
1379 break;
1380 }
1381 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1382 break;
1383 case KVM_REG_PPC_VSCR:
1384 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1385 r = -ENXIO;
1386 break;
1387 }
1388 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1389 break;
1390 case KVM_REG_PPC_VRSAVE:
1391 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1392 r = -ENXIO;
1393 break;
1394 }
1395 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1396 break;
1397 #endif /* CONFIG_ALTIVEC */
1398 default:
1399 r = -EINVAL;
1400 break;
1401 }
1402 }
1403
1404 return r;
1405 }
1406
1407 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1408 {
1409 int r;
1410 sigset_t sigsaved;
1411
1412 if (vcpu->mmio_needed) {
1413 vcpu->mmio_needed = 0;
1414 if (!vcpu->mmio_is_write)
1415 kvmppc_complete_mmio_load(vcpu, run);
1416 #ifdef CONFIG_VSX
1417 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1418 vcpu->arch.mmio_vsx_copy_nums--;
1419 vcpu->arch.mmio_vsx_offset++;
1420 }
1421
1422 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1423 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1424 if (r == RESUME_HOST) {
1425 vcpu->mmio_needed = 1;
1426 return r;
1427 }
1428 }
1429 #endif
1430 } else if (vcpu->arch.osi_needed) {
1431 u64 *gprs = run->osi.gprs;
1432 int i;
1433
1434 for (i = 0; i < 32; i++)
1435 kvmppc_set_gpr(vcpu, i, gprs[i]);
1436 vcpu->arch.osi_needed = 0;
1437 } else if (vcpu->arch.hcall_needed) {
1438 int i;
1439
1440 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1441 for (i = 0; i < 9; ++i)
1442 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1443 vcpu->arch.hcall_needed = 0;
1444 #ifdef CONFIG_BOOKE
1445 } else if (vcpu->arch.epr_needed) {
1446 kvmppc_set_epr(vcpu, run->epr.epr);
1447 vcpu->arch.epr_needed = 0;
1448 #endif
1449 }
1450
1451 if (vcpu->sigset_active)
1452 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1453
1454 if (run->immediate_exit)
1455 r = -EINTR;
1456 else
1457 r = kvmppc_vcpu_run(run, vcpu);
1458
1459 if (vcpu->sigset_active)
1460 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1461
1462 return r;
1463 }
1464
1465 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1466 {
1467 if (irq->irq == KVM_INTERRUPT_UNSET) {
1468 kvmppc_core_dequeue_external(vcpu);
1469 return 0;
1470 }
1471
1472 kvmppc_core_queue_external(vcpu, irq);
1473
1474 kvm_vcpu_kick(vcpu);
1475
1476 return 0;
1477 }
1478
1479 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1480 struct kvm_enable_cap *cap)
1481 {
1482 int r;
1483
1484 if (cap->flags)
1485 return -EINVAL;
1486
1487 switch (cap->cap) {
1488 case KVM_CAP_PPC_OSI:
1489 r = 0;
1490 vcpu->arch.osi_enabled = true;
1491 break;
1492 case KVM_CAP_PPC_PAPR:
1493 r = 0;
1494 vcpu->arch.papr_enabled = true;
1495 break;
1496 case KVM_CAP_PPC_EPR:
1497 r = 0;
1498 if (cap->args[0])
1499 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1500 else
1501 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1502 break;
1503 #ifdef CONFIG_BOOKE
1504 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1505 r = 0;
1506 vcpu->arch.watchdog_enabled = true;
1507 break;
1508 #endif
1509 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1510 case KVM_CAP_SW_TLB: {
1511 struct kvm_config_tlb cfg;
1512 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1513
1514 r = -EFAULT;
1515 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1516 break;
1517
1518 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1519 break;
1520 }
1521 #endif
1522 #ifdef CONFIG_KVM_MPIC
1523 case KVM_CAP_IRQ_MPIC: {
1524 struct fd f;
1525 struct kvm_device *dev;
1526
1527 r = -EBADF;
1528 f = fdget(cap->args[0]);
1529 if (!f.file)
1530 break;
1531
1532 r = -EPERM;
1533 dev = kvm_device_from_filp(f.file);
1534 if (dev)
1535 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1536
1537 fdput(f);
1538 break;
1539 }
1540 #endif
1541 #ifdef CONFIG_KVM_XICS
1542 case KVM_CAP_IRQ_XICS: {
1543 struct fd f;
1544 struct kvm_device *dev;
1545
1546 r = -EBADF;
1547 f = fdget(cap->args[0]);
1548 if (!f.file)
1549 break;
1550
1551 r = -EPERM;
1552 dev = kvm_device_from_filp(f.file);
1553 if (dev) {
1554 if (xive_enabled())
1555 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1556 else
1557 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1558 }
1559
1560 fdput(f);
1561 break;
1562 }
1563 #endif /* CONFIG_KVM_XICS */
1564 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1565 case KVM_CAP_PPC_FWNMI:
1566 r = -EINVAL;
1567 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1568 break;
1569 r = 0;
1570 vcpu->kvm->arch.fwnmi_enabled = true;
1571 break;
1572 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1573 default:
1574 r = -EINVAL;
1575 break;
1576 }
1577
1578 if (!r)
1579 r = kvmppc_sanity_check(vcpu);
1580
1581 return r;
1582 }
1583
1584 bool kvm_arch_intc_initialized(struct kvm *kvm)
1585 {
1586 #ifdef CONFIG_KVM_MPIC
1587 if (kvm->arch.mpic)
1588 return true;
1589 #endif
1590 #ifdef CONFIG_KVM_XICS
1591 if (kvm->arch.xics || kvm->arch.xive)
1592 return true;
1593 #endif
1594 return false;
1595 }
1596
1597 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1598 struct kvm_mp_state *mp_state)
1599 {
1600 return -EINVAL;
1601 }
1602
1603 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1604 struct kvm_mp_state *mp_state)
1605 {
1606 return -EINVAL;
1607 }
1608
1609 long kvm_arch_vcpu_ioctl(struct file *filp,
1610 unsigned int ioctl, unsigned long arg)
1611 {
1612 struct kvm_vcpu *vcpu = filp->private_data;
1613 void __user *argp = (void __user *)arg;
1614 long r;
1615
1616 switch (ioctl) {
1617 case KVM_INTERRUPT: {
1618 struct kvm_interrupt irq;
1619 r = -EFAULT;
1620 if (copy_from_user(&irq, argp, sizeof(irq)))
1621 goto out;
1622 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1623 goto out;
1624 }
1625
1626 case KVM_ENABLE_CAP:
1627 {
1628 struct kvm_enable_cap cap;
1629 r = -EFAULT;
1630 if (copy_from_user(&cap, argp, sizeof(cap)))
1631 goto out;
1632 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1633 break;
1634 }
1635
1636 case KVM_SET_ONE_REG:
1637 case KVM_GET_ONE_REG:
1638 {
1639 struct kvm_one_reg reg;
1640 r = -EFAULT;
1641 if (copy_from_user(&reg, argp, sizeof(reg)))
1642 goto out;
1643 if (ioctl == KVM_SET_ONE_REG)
1644 r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1645 else
1646 r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1647 break;
1648 }
1649
1650 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1651 case KVM_DIRTY_TLB: {
1652 struct kvm_dirty_tlb dirty;
1653 r = -EFAULT;
1654 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1655 goto out;
1656 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1657 break;
1658 }
1659 #endif
1660 default:
1661 r = -EINVAL;
1662 }
1663
1664 out:
1665 return r;
1666 }
1667
1668 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1669 {
1670 return VM_FAULT_SIGBUS;
1671 }
1672
1673 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1674 {
1675 u32 inst_nop = 0x60000000;
1676 #ifdef CONFIG_KVM_BOOKE_HV
1677 u32 inst_sc1 = 0x44000022;
1678 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1679 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1680 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1681 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1682 #else
1683 u32 inst_lis = 0x3c000000;
1684 u32 inst_ori = 0x60000000;
1685 u32 inst_sc = 0x44000002;
1686 u32 inst_imm_mask = 0xffff;
1687
1688 /*
1689 * The hypercall to get into KVM from within guest context is as
1690 * follows:
1691 *
1692 * lis r0, r0, KVM_SC_MAGIC_R0@h
1693 * ori r0, KVM_SC_MAGIC_R0@l
1694 * sc
1695 * nop
1696 */
1697 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1698 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1699 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1700 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1701 #endif
1702
1703 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1704
1705 return 0;
1706 }
1707
1708 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1709 bool line_status)
1710 {
1711 if (!irqchip_in_kernel(kvm))
1712 return -ENXIO;
1713
1714 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1715 irq_event->irq, irq_event->level,
1716 line_status);
1717 return 0;
1718 }
1719
1720
1721 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1722 struct kvm_enable_cap *cap)
1723 {
1724 int r;
1725
1726 if (cap->flags)
1727 return -EINVAL;
1728
1729 switch (cap->cap) {
1730 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1731 case KVM_CAP_PPC_ENABLE_HCALL: {
1732 unsigned long hcall = cap->args[0];
1733
1734 r = -EINVAL;
1735 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1736 cap->args[1] > 1)
1737 break;
1738 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1739 break;
1740 if (cap->args[1])
1741 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1742 else
1743 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1744 r = 0;
1745 break;
1746 }
1747 case KVM_CAP_PPC_SMT: {
1748 unsigned long mode = cap->args[0];
1749 unsigned long flags = cap->args[1];
1750
1751 r = -EINVAL;
1752 if (kvm->arch.kvm_ops->set_smt_mode)
1753 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
1754 break;
1755 }
1756 #endif
1757 default:
1758 r = -EINVAL;
1759 break;
1760 }
1761
1762 return r;
1763 }
1764
1765 long kvm_arch_vm_ioctl(struct file *filp,
1766 unsigned int ioctl, unsigned long arg)
1767 {
1768 struct kvm *kvm __maybe_unused = filp->private_data;
1769 void __user *argp = (void __user *)arg;
1770 long r;
1771
1772 switch (ioctl) {
1773 case KVM_PPC_GET_PVINFO: {
1774 struct kvm_ppc_pvinfo pvinfo;
1775 memset(&pvinfo, 0, sizeof(pvinfo));
1776 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1777 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1778 r = -EFAULT;
1779 goto out;
1780 }
1781
1782 break;
1783 }
1784 case KVM_ENABLE_CAP:
1785 {
1786 struct kvm_enable_cap cap;
1787 r = -EFAULT;
1788 if (copy_from_user(&cap, argp, sizeof(cap)))
1789 goto out;
1790 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1791 break;
1792 }
1793 #ifdef CONFIG_SPAPR_TCE_IOMMU
1794 case KVM_CREATE_SPAPR_TCE_64: {
1795 struct kvm_create_spapr_tce_64 create_tce_64;
1796
1797 r = -EFAULT;
1798 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1799 goto out;
1800 if (create_tce_64.flags) {
1801 r = -EINVAL;
1802 goto out;
1803 }
1804 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1805 goto out;
1806 }
1807 case KVM_CREATE_SPAPR_TCE: {
1808 struct kvm_create_spapr_tce create_tce;
1809 struct kvm_create_spapr_tce_64 create_tce_64;
1810
1811 r = -EFAULT;
1812 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1813 goto out;
1814
1815 create_tce_64.liobn = create_tce.liobn;
1816 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1817 create_tce_64.offset = 0;
1818 create_tce_64.size = create_tce.window_size >>
1819 IOMMU_PAGE_SHIFT_4K;
1820 create_tce_64.flags = 0;
1821 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1822 goto out;
1823 }
1824 #endif
1825 #ifdef CONFIG_PPC_BOOK3S_64
1826 case KVM_PPC_GET_SMMU_INFO: {
1827 struct kvm_ppc_smmu_info info;
1828 struct kvm *kvm = filp->private_data;
1829
1830 memset(&info, 0, sizeof(info));
1831 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1832 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1833 r = -EFAULT;
1834 break;
1835 }
1836 case KVM_PPC_RTAS_DEFINE_TOKEN: {
1837 struct kvm *kvm = filp->private_data;
1838
1839 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1840 break;
1841 }
1842 case KVM_PPC_CONFIGURE_V3_MMU: {
1843 struct kvm *kvm = filp->private_data;
1844 struct kvm_ppc_mmuv3_cfg cfg;
1845
1846 r = -EINVAL;
1847 if (!kvm->arch.kvm_ops->configure_mmu)
1848 goto out;
1849 r = -EFAULT;
1850 if (copy_from_user(&cfg, argp, sizeof(cfg)))
1851 goto out;
1852 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1853 break;
1854 }
1855 case KVM_PPC_GET_RMMU_INFO: {
1856 struct kvm *kvm = filp->private_data;
1857 struct kvm_ppc_rmmu_info info;
1858
1859 r = -EINVAL;
1860 if (!kvm->arch.kvm_ops->get_rmmu_info)
1861 goto out;
1862 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1863 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1864 r = -EFAULT;
1865 break;
1866 }
1867 default: {
1868 struct kvm *kvm = filp->private_data;
1869 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1870 }
1871 #else /* CONFIG_PPC_BOOK3S_64 */
1872 default:
1873 r = -ENOTTY;
1874 #endif
1875 }
1876 out:
1877 return r;
1878 }
1879
1880 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1881 static unsigned long nr_lpids;
1882
1883 long kvmppc_alloc_lpid(void)
1884 {
1885 long lpid;
1886
1887 do {
1888 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1889 if (lpid >= nr_lpids) {
1890 pr_err("%s: No LPIDs free\n", __func__);
1891 return -ENOMEM;
1892 }
1893 } while (test_and_set_bit(lpid, lpid_inuse));
1894
1895 return lpid;
1896 }
1897 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1898
1899 void kvmppc_claim_lpid(long lpid)
1900 {
1901 set_bit(lpid, lpid_inuse);
1902 }
1903 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1904
1905 void kvmppc_free_lpid(long lpid)
1906 {
1907 clear_bit(lpid, lpid_inuse);
1908 }
1909 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1910
1911 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1912 {
1913 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1914 memset(lpid_inuse, 0, sizeof(lpid_inuse));
1915 }
1916 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1917
1918 int kvm_arch_init(void *opaque)
1919 {
1920 return 0;
1921 }
1922
1923 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);