]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - arch/powerpc/mm/pgtable-radix.c
UBUNTU: Ubuntu-5.0.0-29.31
[mirror_ubuntu-disco-kernel.git] / arch / powerpc / mm / pgtable-radix.c
1 /*
2 * Page table handling routines for radix page table.
3 *
4 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #define pr_fmt(fmt) "radix-mmu: " fmt
13
14 #include <linux/kernel.h>
15 #include <linux/sched/mm.h>
16 #include <linux/memblock.h>
17 #include <linux/of_fdt.h>
18 #include <linux/mm.h>
19 #include <linux/string_helpers.h>
20 #include <linux/stop_machine.h>
21
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/mmu_context.h>
25 #include <asm/dma.h>
26 #include <asm/machdep.h>
27 #include <asm/mmu.h>
28 #include <asm/firmware.h>
29 #include <asm/powernv.h>
30 #include <asm/sections.h>
31 #include <asm/trace.h>
32
33 #include <trace/events/thp.h>
34
35 unsigned int mmu_pid_bits;
36 unsigned int mmu_base_pid;
37
38 static int native_register_process_table(unsigned long base, unsigned long pg_sz,
39 unsigned long table_size)
40 {
41 unsigned long patb0, patb1;
42
43 patb0 = be64_to_cpu(partition_tb[0].patb0);
44 patb1 = base | table_size | PATB_GR;
45
46 mmu_partition_table_set_entry(0, patb0, patb1);
47
48 return 0;
49 }
50
51 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
52 unsigned long region_start, unsigned long region_end)
53 {
54 unsigned long pa = 0;
55 void *pt;
56
57 if (region_start || region_end) /* has region hint */
58 pa = memblock_alloc_range(size, size, region_start, region_end,
59 MEMBLOCK_NONE);
60 else if (nid != -1) /* has node hint */
61 pa = memblock_alloc_base_nid(size, size,
62 MEMBLOCK_ALLOC_ANYWHERE,
63 nid, MEMBLOCK_NONE);
64
65 if (!pa)
66 pa = memblock_alloc_base(size, size, MEMBLOCK_ALLOC_ANYWHERE);
67
68 BUG_ON(!pa);
69
70 pt = __va(pa);
71 memset(pt, 0, size);
72
73 return pt;
74 }
75
76 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
77 pgprot_t flags,
78 unsigned int map_page_size,
79 int nid,
80 unsigned long region_start, unsigned long region_end)
81 {
82 unsigned long pfn = pa >> PAGE_SHIFT;
83 pgd_t *pgdp;
84 pud_t *pudp;
85 pmd_t *pmdp;
86 pte_t *ptep;
87
88 pgdp = pgd_offset_k(ea);
89 if (pgd_none(*pgdp)) {
90 pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid,
91 region_start, region_end);
92 pgd_populate(&init_mm, pgdp, pudp);
93 }
94 pudp = pud_offset(pgdp, ea);
95 if (map_page_size == PUD_SIZE) {
96 ptep = (pte_t *)pudp;
97 goto set_the_pte;
98 }
99 if (pud_none(*pudp)) {
100 pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid,
101 region_start, region_end);
102 pud_populate(&init_mm, pudp, pmdp);
103 }
104 pmdp = pmd_offset(pudp, ea);
105 if (map_page_size == PMD_SIZE) {
106 ptep = pmdp_ptep(pmdp);
107 goto set_the_pte;
108 }
109 if (!pmd_present(*pmdp)) {
110 ptep = early_alloc_pgtable(PAGE_SIZE, nid,
111 region_start, region_end);
112 pmd_populate_kernel(&init_mm, pmdp, ptep);
113 }
114 ptep = pte_offset_kernel(pmdp, ea);
115
116 set_the_pte:
117 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
118 smp_wmb();
119 return 0;
120 }
121
122 /*
123 * nid, region_start, and region_end are hints to try to place the page
124 * table memory in the same node or region.
125 */
126 static int __map_kernel_page(unsigned long ea, unsigned long pa,
127 pgprot_t flags,
128 unsigned int map_page_size,
129 int nid,
130 unsigned long region_start, unsigned long region_end)
131 {
132 unsigned long pfn = pa >> PAGE_SHIFT;
133 pgd_t *pgdp;
134 pud_t *pudp;
135 pmd_t *pmdp;
136 pte_t *ptep;
137 /*
138 * Make sure task size is correct as per the max adddr
139 */
140 BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
141
142 if (unlikely(!slab_is_available()))
143 return early_map_kernel_page(ea, pa, flags, map_page_size,
144 nid, region_start, region_end);
145
146 /*
147 * Should make page table allocation functions be able to take a
148 * node, so we can place kernel page tables on the right nodes after
149 * boot.
150 */
151 pgdp = pgd_offset_k(ea);
152 pudp = pud_alloc(&init_mm, pgdp, ea);
153 if (!pudp)
154 return -ENOMEM;
155 if (map_page_size == PUD_SIZE) {
156 ptep = (pte_t *)pudp;
157 goto set_the_pte;
158 }
159 pmdp = pmd_alloc(&init_mm, pudp, ea);
160 if (!pmdp)
161 return -ENOMEM;
162 if (map_page_size == PMD_SIZE) {
163 ptep = pmdp_ptep(pmdp);
164 goto set_the_pte;
165 }
166 ptep = pte_alloc_kernel(pmdp, ea);
167 if (!ptep)
168 return -ENOMEM;
169
170 set_the_pte:
171 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
172 smp_wmb();
173 return 0;
174 }
175
176 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
177 pgprot_t flags,
178 unsigned int map_page_size)
179 {
180 return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
181 }
182
183 #ifdef CONFIG_STRICT_KERNEL_RWX
184 void radix__change_memory_range(unsigned long start, unsigned long end,
185 unsigned long clear)
186 {
187 unsigned long idx;
188 pgd_t *pgdp;
189 pud_t *pudp;
190 pmd_t *pmdp;
191 pte_t *ptep;
192
193 start = ALIGN_DOWN(start, PAGE_SIZE);
194 end = PAGE_ALIGN(end); // aligns up
195
196 pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
197 start, end, clear);
198
199 for (idx = start; idx < end; idx += PAGE_SIZE) {
200 pgdp = pgd_offset_k(idx);
201 pudp = pud_alloc(&init_mm, pgdp, idx);
202 if (!pudp)
203 continue;
204 if (pud_huge(*pudp)) {
205 ptep = (pte_t *)pudp;
206 goto update_the_pte;
207 }
208 pmdp = pmd_alloc(&init_mm, pudp, idx);
209 if (!pmdp)
210 continue;
211 if (pmd_huge(*pmdp)) {
212 ptep = pmdp_ptep(pmdp);
213 goto update_the_pte;
214 }
215 ptep = pte_alloc_kernel(pmdp, idx);
216 if (!ptep)
217 continue;
218 update_the_pte:
219 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
220 }
221
222 radix__flush_tlb_kernel_range(start, end);
223 }
224
225 void radix__mark_rodata_ro(void)
226 {
227 unsigned long start, end;
228
229 start = (unsigned long)_stext;
230 end = (unsigned long)__init_begin;
231
232 radix__change_memory_range(start, end, _PAGE_WRITE);
233 }
234
235 void radix__mark_initmem_nx(void)
236 {
237 unsigned long start = (unsigned long)__init_begin;
238 unsigned long end = (unsigned long)__init_end;
239
240 radix__change_memory_range(start, end, _PAGE_EXEC);
241 }
242 #endif /* CONFIG_STRICT_KERNEL_RWX */
243
244 static inline void __meminit
245 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
246 {
247 char buf[10];
248
249 if (end <= start)
250 return;
251
252 string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
253
254 pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
255 exec ? " (exec)" : "");
256 }
257
258 static unsigned long next_boundary(unsigned long addr, unsigned long end)
259 {
260 #ifdef CONFIG_STRICT_KERNEL_RWX
261 if (addr < __pa_symbol(__init_begin))
262 return __pa_symbol(__init_begin);
263 #endif
264 return end;
265 }
266
267 static int __meminit create_physical_mapping(unsigned long start,
268 unsigned long end,
269 int nid)
270 {
271 unsigned long vaddr, addr, mapping_size = 0;
272 bool prev_exec, exec = false;
273 pgprot_t prot;
274 int psize;
275
276 start = _ALIGN_UP(start, PAGE_SIZE);
277 for (addr = start; addr < end; addr += mapping_size) {
278 unsigned long gap, previous_size;
279 int rc;
280
281 gap = next_boundary(addr, end) - addr;
282 previous_size = mapping_size;
283 prev_exec = exec;
284
285 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
286 mmu_psize_defs[MMU_PAGE_1G].shift) {
287 mapping_size = PUD_SIZE;
288 psize = MMU_PAGE_1G;
289 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
290 mmu_psize_defs[MMU_PAGE_2M].shift) {
291 mapping_size = PMD_SIZE;
292 psize = MMU_PAGE_2M;
293 } else {
294 mapping_size = PAGE_SIZE;
295 psize = mmu_virtual_psize;
296 }
297
298 vaddr = (unsigned long)__va(addr);
299
300 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
301 overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
302 prot = PAGE_KERNEL_X;
303 exec = true;
304 } else {
305 prot = PAGE_KERNEL;
306 exec = false;
307 }
308
309 if (mapping_size != previous_size || exec != prev_exec) {
310 print_mapping(start, addr, previous_size, prev_exec);
311 start = addr;
312 }
313
314 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
315 if (rc)
316 return rc;
317
318 update_page_count(psize, 1);
319 }
320
321 print_mapping(start, addr, mapping_size, exec);
322 return 0;
323 }
324
325 void __init radix_init_pgtable(void)
326 {
327 unsigned long rts_field;
328 struct memblock_region *reg;
329
330 /* We don't support slb for radix */
331 mmu_slb_size = 0;
332 /*
333 * Create the linear mapping, using standard page size for now
334 */
335 for_each_memblock(memory, reg) {
336 /*
337 * The memblock allocator is up at this point, so the
338 * page tables will be allocated within the range. No
339 * need or a node (which we don't have yet).
340 */
341 WARN_ON(create_physical_mapping(reg->base,
342 reg->base + reg->size,
343 -1));
344 }
345
346 /* Find out how many PID bits are supported */
347 if (cpu_has_feature(CPU_FTR_HVMODE)) {
348 if (!mmu_pid_bits)
349 mmu_pid_bits = 20;
350 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
351 /*
352 * When KVM is possible, we only use the top half of the
353 * PID space to avoid collisions between host and guest PIDs
354 * which can cause problems due to prefetch when exiting the
355 * guest with AIL=3
356 */
357 mmu_base_pid = 1 << (mmu_pid_bits - 1);
358 #else
359 mmu_base_pid = 1;
360 #endif
361 } else {
362 /* The guest uses the bottom half of the PID space */
363 if (!mmu_pid_bits)
364 mmu_pid_bits = 19;
365 mmu_base_pid = 1;
366 }
367
368 /*
369 * Allocate Partition table and process table for the
370 * host.
371 */
372 BUG_ON(PRTB_SIZE_SHIFT > 36);
373 process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
374 /*
375 * Fill in the process table.
376 */
377 rts_field = radix__get_tree_size();
378 process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
379 /*
380 * Fill in the partition table. We are suppose to use effective address
381 * of process table here. But our linear mapping also enable us to use
382 * physical address here.
383 */
384 register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12);
385 pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd);
386 asm volatile("ptesync" : : : "memory");
387 asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
388 "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
389 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
390 trace_tlbie(0, 0, TLBIEL_INVAL_SET_LPID, 0, 2, 1, 1);
391
392 /*
393 * The init_mm context is given the first available (non-zero) PID,
394 * which is the "guard PID" and contains no page table. PIDR should
395 * never be set to zero because that duplicates the kernel address
396 * space at the 0x0... offset (quadrant 0)!
397 *
398 * An arbitrary PID that may later be allocated by the PID allocator
399 * for userspace processes must not be used either, because that
400 * would cause stale user mappings for that PID on CPUs outside of
401 * the TLB invalidation scheme (because it won't be in mm_cpumask).
402 *
403 * So permanently carve out one PID for the purpose of a guard PID.
404 */
405 init_mm.context.id = mmu_base_pid;
406 mmu_base_pid++;
407 }
408
409 static void __init radix_init_partition_table(void)
410 {
411 unsigned long rts_field, dw0;
412
413 mmu_partition_table_init();
414 rts_field = radix__get_tree_size();
415 dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
416 mmu_partition_table_set_entry(0, dw0, 0);
417
418 pr_info("Initializing Radix MMU\n");
419 pr_info("Partition table %p\n", partition_tb);
420 }
421
422 void __init radix_init_native(void)
423 {
424 register_process_table = native_register_process_table;
425 }
426
427 static int __init get_idx_from_shift(unsigned int shift)
428 {
429 int idx = -1;
430
431 switch (shift) {
432 case 0xc:
433 idx = MMU_PAGE_4K;
434 break;
435 case 0x10:
436 idx = MMU_PAGE_64K;
437 break;
438 case 0x15:
439 idx = MMU_PAGE_2M;
440 break;
441 case 0x1e:
442 idx = MMU_PAGE_1G;
443 break;
444 }
445 return idx;
446 }
447
448 static int __init radix_dt_scan_page_sizes(unsigned long node,
449 const char *uname, int depth,
450 void *data)
451 {
452 int size = 0;
453 int shift, idx;
454 unsigned int ap;
455 const __be32 *prop;
456 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
457
458 /* We are scanning "cpu" nodes only */
459 if (type == NULL || strcmp(type, "cpu") != 0)
460 return 0;
461
462 /* Find MMU PID size */
463 prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
464 if (prop && size == 4)
465 mmu_pid_bits = be32_to_cpup(prop);
466
467 /* Grab page size encodings */
468 prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
469 if (!prop)
470 return 0;
471
472 pr_info("Page sizes from device-tree:\n");
473 for (; size >= 4; size -= 4, ++prop) {
474
475 struct mmu_psize_def *def;
476
477 /* top 3 bit is AP encoding */
478 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
479 ap = be32_to_cpu(prop[0]) >> 29;
480 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
481
482 idx = get_idx_from_shift(shift);
483 if (idx < 0)
484 continue;
485
486 def = &mmu_psize_defs[idx];
487 def->shift = shift;
488 def->ap = ap;
489 }
490
491 /* needed ? */
492 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
493 return 1;
494 }
495
496 void __init radix__early_init_devtree(void)
497 {
498 int rc;
499
500 /*
501 * Try to find the available page sizes in the device-tree
502 */
503 rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
504 if (rc != 0) /* Found */
505 goto found;
506 /*
507 * let's assume we have page 4k and 64k support
508 */
509 mmu_psize_defs[MMU_PAGE_4K].shift = 12;
510 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
511
512 mmu_psize_defs[MMU_PAGE_64K].shift = 16;
513 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
514 found:
515 #ifdef CONFIG_SPARSEMEM_VMEMMAP
516 if (mmu_psize_defs[MMU_PAGE_2M].shift) {
517 /*
518 * map vmemmap using 2M if available
519 */
520 mmu_vmemmap_psize = MMU_PAGE_2M;
521 }
522 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
523 return;
524 }
525
526 static void radix_init_amor(void)
527 {
528 /*
529 * In HV mode, we init AMOR (Authority Mask Override Register) so that
530 * the hypervisor and guest can setup IAMR (Instruction Authority Mask
531 * Register), enable key 0 and set it to 1.
532 *
533 * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
534 */
535 mtspr(SPRN_AMOR, (3ul << 62));
536 }
537
538 static void radix_init_iamr(void)
539 {
540 /*
541 * Radix always uses key0 of the IAMR to determine if an access is
542 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
543 * fetch.
544 */
545 mtspr(SPRN_IAMR, (1ul << 62));
546 }
547
548 void __init radix__early_init_mmu(void)
549 {
550 unsigned long lpcr;
551
552 #ifdef CONFIG_PPC_64K_PAGES
553 /* PAGE_SIZE mappings */
554 mmu_virtual_psize = MMU_PAGE_64K;
555 #else
556 mmu_virtual_psize = MMU_PAGE_4K;
557 #endif
558
559 #ifdef CONFIG_SPARSEMEM_VMEMMAP
560 /* vmemmap mapping */
561 mmu_vmemmap_psize = mmu_virtual_psize;
562 #endif
563 /*
564 * initialize page table size
565 */
566 __pte_index_size = RADIX_PTE_INDEX_SIZE;
567 __pmd_index_size = RADIX_PMD_INDEX_SIZE;
568 __pud_index_size = RADIX_PUD_INDEX_SIZE;
569 __pgd_index_size = RADIX_PGD_INDEX_SIZE;
570 __pud_cache_index = RADIX_PUD_INDEX_SIZE;
571 __pte_table_size = RADIX_PTE_TABLE_SIZE;
572 __pmd_table_size = RADIX_PMD_TABLE_SIZE;
573 __pud_table_size = RADIX_PUD_TABLE_SIZE;
574 __pgd_table_size = RADIX_PGD_TABLE_SIZE;
575
576 __pmd_val_bits = RADIX_PMD_VAL_BITS;
577 __pud_val_bits = RADIX_PUD_VAL_BITS;
578 __pgd_val_bits = RADIX_PGD_VAL_BITS;
579
580 __kernel_virt_start = RADIX_KERN_VIRT_START;
581 __kernel_virt_size = RADIX_KERN_VIRT_SIZE;
582 __vmalloc_start = RADIX_VMALLOC_START;
583 __vmalloc_end = RADIX_VMALLOC_END;
584 __kernel_io_start = RADIX_KERN_IO_START;
585 vmemmap = (struct page *)RADIX_VMEMMAP_BASE;
586 ioremap_bot = IOREMAP_BASE;
587
588 #ifdef CONFIG_PCI
589 pci_io_base = ISA_IO_BASE;
590 #endif
591 __pte_frag_nr = RADIX_PTE_FRAG_NR;
592 __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
593 __pmd_frag_nr = RADIX_PMD_FRAG_NR;
594 __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
595
596 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
597 radix_init_native();
598 lpcr = mfspr(SPRN_LPCR);
599 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
600 radix_init_partition_table();
601 radix_init_amor();
602 } else {
603 radix_init_pseries();
604 }
605
606 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
607
608 radix_init_iamr();
609 radix_init_pgtable();
610 /* Switch to the guard PID before turning on MMU */
611 radix__switch_mmu_context(NULL, &init_mm);
612 if (cpu_has_feature(CPU_FTR_HVMODE))
613 tlbiel_all();
614 }
615
616 void radix__early_init_mmu_secondary(void)
617 {
618 unsigned long lpcr;
619 /*
620 * update partition table control register and UPRT
621 */
622 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
623 lpcr = mfspr(SPRN_LPCR);
624 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
625
626 mtspr(SPRN_PTCR,
627 __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
628 radix_init_amor();
629 }
630 radix_init_iamr();
631
632 radix__switch_mmu_context(NULL, &init_mm);
633 if (cpu_has_feature(CPU_FTR_HVMODE))
634 tlbiel_all();
635 }
636
637 void radix__mmu_cleanup_all(void)
638 {
639 unsigned long lpcr;
640
641 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
642 lpcr = mfspr(SPRN_LPCR);
643 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
644 mtspr(SPRN_PTCR, 0);
645 powernv_set_nmmu_ptcr(0);
646 radix__flush_tlb_all();
647 }
648 }
649
650 void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
651 phys_addr_t first_memblock_size)
652 {
653 /* We don't currently support the first MEMBLOCK not mapping 0
654 * physical on those processors
655 */
656 BUG_ON(first_memblock_base != 0);
657
658 /*
659 * Radix mode is not limited by RMA / VRMA addressing.
660 */
661 ppc64_rma_size = ULONG_MAX;
662 }
663
664 #ifdef CONFIG_MEMORY_HOTPLUG
665 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
666 {
667 pte_t *pte;
668 int i;
669
670 for (i = 0; i < PTRS_PER_PTE; i++) {
671 pte = pte_start + i;
672 if (!pte_none(*pte))
673 return;
674 }
675
676 pte_free_kernel(&init_mm, pte_start);
677 pmd_clear(pmd);
678 }
679
680 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
681 {
682 pmd_t *pmd;
683 int i;
684
685 for (i = 0; i < PTRS_PER_PMD; i++) {
686 pmd = pmd_start + i;
687 if (!pmd_none(*pmd))
688 return;
689 }
690
691 pmd_free(&init_mm, pmd_start);
692 pud_clear(pud);
693 }
694
695 struct change_mapping_params {
696 pte_t *pte;
697 unsigned long start;
698 unsigned long end;
699 unsigned long aligned_start;
700 unsigned long aligned_end;
701 };
702
703 static int __meminit stop_machine_change_mapping(void *data)
704 {
705 struct change_mapping_params *params =
706 (struct change_mapping_params *)data;
707
708 if (!data)
709 return -1;
710
711 spin_unlock(&init_mm.page_table_lock);
712 pte_clear(&init_mm, params->aligned_start, params->pte);
713 create_physical_mapping(params->aligned_start, params->start, -1);
714 create_physical_mapping(params->end, params->aligned_end, -1);
715 spin_lock(&init_mm.page_table_lock);
716 return 0;
717 }
718
719 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
720 unsigned long end)
721 {
722 unsigned long next;
723 pte_t *pte;
724
725 pte = pte_start + pte_index(addr);
726 for (; addr < end; addr = next, pte++) {
727 next = (addr + PAGE_SIZE) & PAGE_MASK;
728 if (next > end)
729 next = end;
730
731 if (!pte_present(*pte))
732 continue;
733
734 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
735 /*
736 * The vmemmap_free() and remove_section_mapping()
737 * codepaths call us with aligned addresses.
738 */
739 WARN_ONCE(1, "%s: unaligned range\n", __func__);
740 continue;
741 }
742
743 pte_clear(&init_mm, addr, pte);
744 }
745 }
746
747 /*
748 * clear the pte and potentially split the mapping helper
749 */
750 static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end,
751 unsigned long size, pte_t *pte)
752 {
753 unsigned long mask = ~(size - 1);
754 unsigned long aligned_start = addr & mask;
755 unsigned long aligned_end = addr + size;
756 struct change_mapping_params params;
757 bool split_region = false;
758
759 if ((end - addr) < size) {
760 /*
761 * We're going to clear the PTE, but not flushed
762 * the mapping, time to remap and flush. The
763 * effects if visible outside the processor or
764 * if we are running in code close to the
765 * mapping we cleared, we are in trouble.
766 */
767 if (overlaps_kernel_text(aligned_start, addr) ||
768 overlaps_kernel_text(end, aligned_end)) {
769 /*
770 * Hack, just return, don't pte_clear
771 */
772 WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
773 "text, not splitting\n", addr, end);
774 return;
775 }
776 split_region = true;
777 }
778
779 if (split_region) {
780 params.pte = pte;
781 params.start = addr;
782 params.end = end;
783 params.aligned_start = addr & ~(size - 1);
784 params.aligned_end = min_t(unsigned long, aligned_end,
785 (unsigned long)__va(memblock_end_of_DRAM()));
786 stop_machine(stop_machine_change_mapping, &params, NULL);
787 return;
788 }
789
790 pte_clear(&init_mm, addr, pte);
791 }
792
793 static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
794 unsigned long end)
795 {
796 unsigned long next;
797 pte_t *pte_base;
798 pmd_t *pmd;
799
800 pmd = pmd_start + pmd_index(addr);
801 for (; addr < end; addr = next, pmd++) {
802 next = pmd_addr_end(addr, end);
803
804 if (!pmd_present(*pmd))
805 continue;
806
807 if (pmd_huge(*pmd)) {
808 split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
809 continue;
810 }
811
812 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
813 remove_pte_table(pte_base, addr, next);
814 free_pte_table(pte_base, pmd);
815 }
816 }
817
818 static void remove_pud_table(pud_t *pud_start, unsigned long addr,
819 unsigned long end)
820 {
821 unsigned long next;
822 pmd_t *pmd_base;
823 pud_t *pud;
824
825 pud = pud_start + pud_index(addr);
826 for (; addr < end; addr = next, pud++) {
827 next = pud_addr_end(addr, end);
828
829 if (!pud_present(*pud))
830 continue;
831
832 if (pud_huge(*pud)) {
833 split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
834 continue;
835 }
836
837 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
838 remove_pmd_table(pmd_base, addr, next);
839 free_pmd_table(pmd_base, pud);
840 }
841 }
842
843 static void __meminit remove_pagetable(unsigned long start, unsigned long end)
844 {
845 unsigned long addr, next;
846 pud_t *pud_base;
847 pgd_t *pgd;
848
849 spin_lock(&init_mm.page_table_lock);
850
851 for (addr = start; addr < end; addr = next) {
852 next = pgd_addr_end(addr, end);
853
854 pgd = pgd_offset_k(addr);
855 if (!pgd_present(*pgd))
856 continue;
857
858 if (pgd_huge(*pgd)) {
859 split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd);
860 continue;
861 }
862
863 pud_base = (pud_t *)pgd_page_vaddr(*pgd);
864 remove_pud_table(pud_base, addr, next);
865 }
866
867 spin_unlock(&init_mm.page_table_lock);
868 radix__flush_tlb_kernel_range(start, end);
869 }
870
871 int __meminit radix__create_section_mapping(unsigned long start, unsigned long end, int nid)
872 {
873 return create_physical_mapping(start, end, nid);
874 }
875
876 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
877 {
878 remove_pagetable(start, end);
879 return 0;
880 }
881 #endif /* CONFIG_MEMORY_HOTPLUG */
882
883 #ifdef CONFIG_SPARSEMEM_VMEMMAP
884 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
885 pgprot_t flags, unsigned int map_page_size,
886 int nid)
887 {
888 return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
889 }
890
891 int __meminit radix__vmemmap_create_mapping(unsigned long start,
892 unsigned long page_size,
893 unsigned long phys)
894 {
895 /* Create a PTE encoding */
896 unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
897 int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
898 int ret;
899
900 ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
901 BUG_ON(ret);
902
903 return 0;
904 }
905
906 #ifdef CONFIG_MEMORY_HOTPLUG
907 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
908 {
909 remove_pagetable(start, start + page_size);
910 }
911 #endif
912 #endif
913
914 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
915
916 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
917 pmd_t *pmdp, unsigned long clr,
918 unsigned long set)
919 {
920 unsigned long old;
921
922 #ifdef CONFIG_DEBUG_VM
923 WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
924 assert_spin_locked(pmd_lockptr(mm, pmdp));
925 #endif
926
927 old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
928 trace_hugepage_update(addr, old, clr, set);
929
930 return old;
931 }
932
933 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
934 pmd_t *pmdp)
935
936 {
937 pmd_t pmd;
938
939 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
940 VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
941 VM_BUG_ON(pmd_devmap(*pmdp));
942 /*
943 * khugepaged calls this for normal pmd
944 */
945 pmd = *pmdp;
946 pmd_clear(pmdp);
947
948 /*FIXME!! Verify whether we need this kick below */
949 serialize_against_pte_lookup(vma->vm_mm);
950
951 radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
952
953 return pmd;
954 }
955
956 /*
957 * For us pgtable_t is pte_t *. Inorder to save the deposisted
958 * page table, we consider the allocated page table as a list
959 * head. On withdraw we need to make sure we zero out the used
960 * list_head memory area.
961 */
962 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
963 pgtable_t pgtable)
964 {
965 struct list_head *lh = (struct list_head *) pgtable;
966
967 assert_spin_locked(pmd_lockptr(mm, pmdp));
968
969 /* FIFO */
970 if (!pmd_huge_pte(mm, pmdp))
971 INIT_LIST_HEAD(lh);
972 else
973 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
974 pmd_huge_pte(mm, pmdp) = pgtable;
975 }
976
977 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
978 {
979 pte_t *ptep;
980 pgtable_t pgtable;
981 struct list_head *lh;
982
983 assert_spin_locked(pmd_lockptr(mm, pmdp));
984
985 /* FIFO */
986 pgtable = pmd_huge_pte(mm, pmdp);
987 lh = (struct list_head *) pgtable;
988 if (list_empty(lh))
989 pmd_huge_pte(mm, pmdp) = NULL;
990 else {
991 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
992 list_del(lh);
993 }
994 ptep = (pte_t *) pgtable;
995 *ptep = __pte(0);
996 ptep++;
997 *ptep = __pte(0);
998 return pgtable;
999 }
1000
1001
1002 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1003 unsigned long addr, pmd_t *pmdp)
1004 {
1005 pmd_t old_pmd;
1006 unsigned long old;
1007
1008 old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1009 old_pmd = __pmd(old);
1010 /*
1011 * Serialize against find_current_mm_pte which does lock-less
1012 * lookup in page tables with local interrupts disabled. For huge pages
1013 * it casts pmd_t to pte_t. Since format of pte_t is different from
1014 * pmd_t we want to prevent transit from pmd pointing to page table
1015 * to pmd pointing to huge page (and back) while interrupts are disabled.
1016 * We clear pmd to possibly replace it with page table pointer in
1017 * different code paths. So make sure we wait for the parallel
1018 * find_current_mm_pte to finish.
1019 */
1020 serialize_against_pte_lookup(mm);
1021 return old_pmd;
1022 }
1023
1024 int radix__has_transparent_hugepage(void)
1025 {
1026 /* For radix 2M at PMD level means thp */
1027 if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT)
1028 return 1;
1029 return 0;
1030 }
1031 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1032
1033 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1034 pte_t entry, unsigned long address, int psize)
1035 {
1036 struct mm_struct *mm = vma->vm_mm;
1037 unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
1038 _PAGE_RW | _PAGE_EXEC);
1039
1040 unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1041 /*
1042 * To avoid NMMU hang while relaxing access, we need mark
1043 * the pte invalid in between.
1044 */
1045 if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
1046 unsigned long old_pte, new_pte;
1047
1048 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1049 /*
1050 * new value of pte
1051 */
1052 new_pte = old_pte | set;
1053 radix__flush_tlb_page_psize(mm, address, psize);
1054 __radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1055 } else {
1056 __radix_pte_update(ptep, 0, set);
1057 /*
1058 * Book3S does not require a TLB flush when relaxing access
1059 * restrictions when the address space is not attached to a
1060 * NMMU, because the core MMU will reload the pte after taking
1061 * an access fault, which is defined by the architectue.
1062 */
1063 }
1064 /* See ptesync comment in radix__set_pte_at */
1065 }