]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - arch/x86/include/asm/mmu_context.h
x86/mm: Move the CR3 construction functions to tlbflush.h
[mirror_ubuntu-disco-kernel.git] / arch / x86 / include / asm / mmu_context.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MMU_CONTEXT_H
3 #define _ASM_X86_MMU_CONTEXT_H
4
5 #include <asm/desc.h>
6 #include <linux/atomic.h>
7 #include <linux/mm_types.h>
8 #include <linux/pkeys.h>
9
10 #include <trace/events/tlb.h>
11
12 #include <asm/pgalloc.h>
13 #include <asm/tlbflush.h>
14 #include <asm/paravirt.h>
15 #include <asm/mpx.h>
16
17 extern atomic64_t last_mm_ctx_id;
18
19 #ifndef CONFIG_PARAVIRT
20 static inline void paravirt_activate_mm(struct mm_struct *prev,
21 struct mm_struct *next)
22 {
23 }
24 #endif /* !CONFIG_PARAVIRT */
25
26 #ifdef CONFIG_PERF_EVENTS
27 extern struct static_key rdpmc_always_available;
28
29 static inline void load_mm_cr4(struct mm_struct *mm)
30 {
31 if (static_key_false(&rdpmc_always_available) ||
32 atomic_read(&mm->context.perf_rdpmc_allowed))
33 cr4_set_bits(X86_CR4_PCE);
34 else
35 cr4_clear_bits(X86_CR4_PCE);
36 }
37 #else
38 static inline void load_mm_cr4(struct mm_struct *mm) {}
39 #endif
40
41 #ifdef CONFIG_MODIFY_LDT_SYSCALL
42 /*
43 * ldt_structs can be allocated, used, and freed, but they are never
44 * modified while live.
45 */
46 struct ldt_struct {
47 /*
48 * Xen requires page-aligned LDTs with special permissions. This is
49 * needed to prevent us from installing evil descriptors such as
50 * call gates. On native, we could merge the ldt_struct and LDT
51 * allocations, but it's not worth trying to optimize.
52 */
53 struct desc_struct *entries;
54 unsigned int nr_entries;
55 };
56
57 /*
58 * Used for LDT copy/destruction.
59 */
60 static inline void init_new_context_ldt(struct mm_struct *mm)
61 {
62 mm->context.ldt = NULL;
63 init_rwsem(&mm->context.ldt_usr_sem);
64 }
65 int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
66 void destroy_context_ldt(struct mm_struct *mm);
67 #else /* CONFIG_MODIFY_LDT_SYSCALL */
68 static inline void init_new_context_ldt(struct mm_struct *mm) { }
69 static inline int ldt_dup_context(struct mm_struct *oldmm,
70 struct mm_struct *mm)
71 {
72 return 0;
73 }
74 static inline void destroy_context_ldt(struct mm_struct *mm) {}
75 #endif
76
77 static inline void load_mm_ldt(struct mm_struct *mm)
78 {
79 #ifdef CONFIG_MODIFY_LDT_SYSCALL
80 struct ldt_struct *ldt;
81
82 /* READ_ONCE synchronizes with smp_store_release */
83 ldt = READ_ONCE(mm->context.ldt);
84
85 /*
86 * Any change to mm->context.ldt is followed by an IPI to all
87 * CPUs with the mm active. The LDT will not be freed until
88 * after the IPI is handled by all such CPUs. This means that,
89 * if the ldt_struct changes before we return, the values we see
90 * will be safe, and the new values will be loaded before we run
91 * any user code.
92 *
93 * NB: don't try to convert this to use RCU without extreme care.
94 * We would still need IRQs off, because we don't want to change
95 * the local LDT after an IPI loaded a newer value than the one
96 * that we can see.
97 */
98
99 if (unlikely(ldt))
100 set_ldt(ldt->entries, ldt->nr_entries);
101 else
102 clear_LDT();
103 #else
104 clear_LDT();
105 #endif
106 }
107
108 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
109 {
110 #ifdef CONFIG_MODIFY_LDT_SYSCALL
111 /*
112 * Load the LDT if either the old or new mm had an LDT.
113 *
114 * An mm will never go from having an LDT to not having an LDT. Two
115 * mms never share an LDT, so we don't gain anything by checking to
116 * see whether the LDT changed. There's also no guarantee that
117 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
118 * then prev->context.ldt will also be non-NULL.
119 *
120 * If we really cared, we could optimize the case where prev == next
121 * and we're exiting lazy mode. Most of the time, if this happens,
122 * we don't actually need to reload LDTR, but modify_ldt() is mostly
123 * used by legacy code and emulators where we don't need this level of
124 * performance.
125 *
126 * This uses | instead of || because it generates better code.
127 */
128 if (unlikely((unsigned long)prev->context.ldt |
129 (unsigned long)next->context.ldt))
130 load_mm_ldt(next);
131 #endif
132
133 DEBUG_LOCKS_WARN_ON(preemptible());
134 }
135
136 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
137
138 static inline int init_new_context(struct task_struct *tsk,
139 struct mm_struct *mm)
140 {
141 mutex_init(&mm->context.lock);
142
143 mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
144 atomic64_set(&mm->context.tlb_gen, 0);
145
146 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
147 if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
148 /* pkey 0 is the default and always allocated */
149 mm->context.pkey_allocation_map = 0x1;
150 /* -1 means unallocated or invalid */
151 mm->context.execute_only_pkey = -1;
152 }
153 #endif
154 init_new_context_ldt(mm);
155 return 0;
156 }
157 static inline void destroy_context(struct mm_struct *mm)
158 {
159 destroy_context_ldt(mm);
160 }
161
162 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
163 struct task_struct *tsk);
164
165 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
166 struct task_struct *tsk);
167 #define switch_mm_irqs_off switch_mm_irqs_off
168
169 #define activate_mm(prev, next) \
170 do { \
171 paravirt_activate_mm((prev), (next)); \
172 switch_mm((prev), (next), NULL); \
173 } while (0);
174
175 #ifdef CONFIG_X86_32
176 #define deactivate_mm(tsk, mm) \
177 do { \
178 lazy_load_gs(0); \
179 } while (0)
180 #else
181 #define deactivate_mm(tsk, mm) \
182 do { \
183 load_gs_index(0); \
184 loadsegment(fs, 0); \
185 } while (0)
186 #endif
187
188 static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
189 {
190 paravirt_arch_dup_mmap(oldmm, mm);
191 return ldt_dup_context(oldmm, mm);
192 }
193
194 static inline void arch_exit_mmap(struct mm_struct *mm)
195 {
196 paravirt_arch_exit_mmap(mm);
197 }
198
199 #ifdef CONFIG_X86_64
200 static inline bool is_64bit_mm(struct mm_struct *mm)
201 {
202 return !IS_ENABLED(CONFIG_IA32_EMULATION) ||
203 !(mm->context.ia32_compat == TIF_IA32);
204 }
205 #else
206 static inline bool is_64bit_mm(struct mm_struct *mm)
207 {
208 return false;
209 }
210 #endif
211
212 static inline void arch_bprm_mm_init(struct mm_struct *mm,
213 struct vm_area_struct *vma)
214 {
215 mpx_mm_init(mm);
216 }
217
218 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
219 unsigned long start, unsigned long end)
220 {
221 /*
222 * mpx_notify_unmap() goes and reads a rarely-hot
223 * cacheline in the mm_struct. That can be expensive
224 * enough to be seen in profiles.
225 *
226 * The mpx_notify_unmap() call and its contents have been
227 * observed to affect munmap() performance on hardware
228 * where MPX is not present.
229 *
230 * The unlikely() optimizes for the fast case: no MPX
231 * in the CPU, or no MPX use in the process. Even if
232 * we get this wrong (in the unlikely event that MPX
233 * is widely enabled on some system) the overhead of
234 * MPX itself (reading bounds tables) is expected to
235 * overwhelm the overhead of getting this unlikely()
236 * consistently wrong.
237 */
238 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
239 mpx_notify_unmap(mm, vma, start, end);
240 }
241
242 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
243 static inline int vma_pkey(struct vm_area_struct *vma)
244 {
245 unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
246 VM_PKEY_BIT2 | VM_PKEY_BIT3;
247
248 return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
249 }
250 #else
251 static inline int vma_pkey(struct vm_area_struct *vma)
252 {
253 return 0;
254 }
255 #endif
256
257 /*
258 * We only want to enforce protection keys on the current process
259 * because we effectively have no access to PKRU for other
260 * processes or any way to tell *which * PKRU in a threaded
261 * process we could use.
262 *
263 * So do not enforce things if the VMA is not from the current
264 * mm, or if we are in a kernel thread.
265 */
266 static inline bool vma_is_foreign(struct vm_area_struct *vma)
267 {
268 if (!current->mm)
269 return true;
270 /*
271 * Should PKRU be enforced on the access to this VMA? If
272 * the VMA is from another process, then PKRU has no
273 * relevance and should not be enforced.
274 */
275 if (current->mm != vma->vm_mm)
276 return true;
277
278 return false;
279 }
280
281 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
282 bool write, bool execute, bool foreign)
283 {
284 /* pkeys never affect instruction fetches */
285 if (execute)
286 return true;
287 /* allow access if the VMA is not one from this process */
288 if (foreign || vma_is_foreign(vma))
289 return true;
290 return __pkru_allows_pkey(vma_pkey(vma), write);
291 }
292
293 /*
294 * This can be used from process context to figure out what the value of
295 * CR3 is without needing to do a (slow) __read_cr3().
296 *
297 * It's intended to be used for code like KVM that sneakily changes CR3
298 * and needs to restore it. It needs to be used very carefully.
299 */
300 static inline unsigned long __get_current_cr3_fast(void)
301 {
302 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
303 this_cpu_read(cpu_tlbstate.loaded_mm_asid));
304
305 /* For now, be very restrictive about when this can be called. */
306 VM_WARN_ON(in_nmi() || preemptible());
307
308 VM_BUG_ON(cr3 != __read_cr3());
309 return cr3;
310 }
311
312 #endif /* _ASM_X86_MMU_CONTEXT_H */