]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - arch/x86/kernel/setup.c
ASoC: ep93xx-ac97: Fix platform_get_irq's error checking
[mirror_ubuntu-disco-kernel.git] / arch / x86 / kernel / setup.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 *
6 * Memory region support
7 * David Parsons <orc@pell.chi.il.us>, July-August 1999
8 *
9 * Added E820 sanitization routine (removes overlapping memory regions);
10 * Brian Moyle <bmoyle@mvista.com>, February 2001
11 *
12 * Moved CPU detection code to cpu/${cpu}.c
13 * Patrick Mochel <mochel@osdl.org>, March 2002
14 *
15 * Provisions for empty E820 memory regions (reported by certain BIOSes).
16 * Alex Achenbach <xela@slit.de>, December 2002.
17 *
18 */
19
20 /*
21 * This file handles the architecture-dependent parts of initialization
22 */
23
24 #include <linux/sched.h>
25 #include <linux/mm.h>
26 #include <linux/mmzone.h>
27 #include <linux/screen_info.h>
28 #include <linux/ioport.h>
29 #include <linux/acpi.h>
30 #include <linux/sfi.h>
31 #include <linux/apm_bios.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/seq_file.h>
36 #include <linux/console.h>
37 #include <linux/root_dev.h>
38 #include <linux/highmem.h>
39 #include <linux/export.h>
40 #include <linux/efi.h>
41 #include <linux/init.h>
42 #include <linux/edd.h>
43 #include <linux/iscsi_ibft.h>
44 #include <linux/nodemask.h>
45 #include <linux/kexec.h>
46 #include <linux/dmi.h>
47 #include <linux/pfn.h>
48 #include <linux/pci.h>
49 #include <asm/pci-direct.h>
50 #include <linux/init_ohci1394_dma.h>
51 #include <linux/kvm_para.h>
52 #include <linux/dma-contiguous.h>
53
54 #include <linux/errno.h>
55 #include <linux/kernel.h>
56 #include <linux/stddef.h>
57 #include <linux/unistd.h>
58 #include <linux/ptrace.h>
59 #include <linux/user.h>
60 #include <linux/delay.h>
61
62 #include <linux/kallsyms.h>
63 #include <linux/cpufreq.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/ctype.h>
66 #include <linux/uaccess.h>
67
68 #include <linux/percpu.h>
69 #include <linux/crash_dump.h>
70 #include <linux/tboot.h>
71 #include <linux/jiffies.h>
72 #include <linux/mem_encrypt.h>
73
74 #include <linux/usb/xhci-dbgp.h>
75 #include <video/edid.h>
76
77 #include <asm/mtrr.h>
78 #include <asm/apic.h>
79 #include <asm/realmode.h>
80 #include <asm/e820/api.h>
81 #include <asm/mpspec.h>
82 #include <asm/setup.h>
83 #include <asm/efi.h>
84 #include <asm/timer.h>
85 #include <asm/i8259.h>
86 #include <asm/sections.h>
87 #include <asm/io_apic.h>
88 #include <asm/ist.h>
89 #include <asm/setup_arch.h>
90 #include <asm/bios_ebda.h>
91 #include <asm/cacheflush.h>
92 #include <asm/processor.h>
93 #include <asm/bugs.h>
94 #include <asm/kasan.h>
95
96 #include <asm/vsyscall.h>
97 #include <asm/cpu.h>
98 #include <asm/desc.h>
99 #include <asm/dma.h>
100 #include <asm/iommu.h>
101 #include <asm/gart.h>
102 #include <asm/mmu_context.h>
103 #include <asm/proto.h>
104
105 #include <asm/paravirt.h>
106 #include <asm/hypervisor.h>
107 #include <asm/olpc_ofw.h>
108
109 #include <asm/percpu.h>
110 #include <asm/topology.h>
111 #include <asm/apicdef.h>
112 #include <asm/amd_nb.h>
113 #include <asm/mce.h>
114 #include <asm/alternative.h>
115 #include <asm/prom.h>
116 #include <asm/microcode.h>
117 #include <asm/mmu_context.h>
118 #include <asm/kaslr.h>
119 #include <asm/unwind.h>
120
121 /*
122 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
123 * max_pfn_mapped: highest direct mapped pfn over 4GB
124 *
125 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
126 * represented by pfn_mapped
127 */
128 unsigned long max_low_pfn_mapped;
129 unsigned long max_pfn_mapped;
130
131 #ifdef CONFIG_DMI
132 RESERVE_BRK(dmi_alloc, 65536);
133 #endif
134
135
136 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
137 unsigned long _brk_end = (unsigned long)__brk_base;
138
139 struct boot_params boot_params;
140
141 /*
142 * Machine setup..
143 */
144 static struct resource data_resource = {
145 .name = "Kernel data",
146 .start = 0,
147 .end = 0,
148 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
149 };
150
151 static struct resource code_resource = {
152 .name = "Kernel code",
153 .start = 0,
154 .end = 0,
155 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
156 };
157
158 static struct resource bss_resource = {
159 .name = "Kernel bss",
160 .start = 0,
161 .end = 0,
162 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
163 };
164
165
166 #ifdef CONFIG_X86_32
167 /* cpu data as detected by the assembly code in head_32.S */
168 struct cpuinfo_x86 new_cpu_data;
169
170 /* common cpu data for all cpus */
171 struct cpuinfo_x86 boot_cpu_data __read_mostly;
172 EXPORT_SYMBOL(boot_cpu_data);
173
174 unsigned int def_to_bigsmp;
175
176 /* for MCA, but anyone else can use it if they want */
177 unsigned int machine_id;
178 unsigned int machine_submodel_id;
179 unsigned int BIOS_revision;
180
181 struct apm_info apm_info;
182 EXPORT_SYMBOL(apm_info);
183
184 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
185 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
186 struct ist_info ist_info;
187 EXPORT_SYMBOL(ist_info);
188 #else
189 struct ist_info ist_info;
190 #endif
191
192 #else
193 struct cpuinfo_x86 boot_cpu_data __read_mostly = {
194 .x86_phys_bits = MAX_PHYSMEM_BITS,
195 };
196 EXPORT_SYMBOL(boot_cpu_data);
197 #endif
198
199
200 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
201 __visible unsigned long mmu_cr4_features __ro_after_init;
202 #else
203 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
204 #endif
205
206 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
207 int bootloader_type, bootloader_version;
208
209 /*
210 * Setup options
211 */
212 struct screen_info screen_info;
213 EXPORT_SYMBOL(screen_info);
214 struct edid_info edid_info;
215 EXPORT_SYMBOL_GPL(edid_info);
216
217 extern int root_mountflags;
218
219 unsigned long saved_video_mode;
220
221 #define RAMDISK_IMAGE_START_MASK 0x07FF
222 #define RAMDISK_PROMPT_FLAG 0x8000
223 #define RAMDISK_LOAD_FLAG 0x4000
224
225 static char __initdata command_line[COMMAND_LINE_SIZE];
226 #ifdef CONFIG_CMDLINE_BOOL
227 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
228 #endif
229
230 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
231 struct edd edd;
232 #ifdef CONFIG_EDD_MODULE
233 EXPORT_SYMBOL(edd);
234 #endif
235 /**
236 * copy_edd() - Copy the BIOS EDD information
237 * from boot_params into a safe place.
238 *
239 */
240 static inline void __init copy_edd(void)
241 {
242 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
243 sizeof(edd.mbr_signature));
244 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
245 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
246 edd.edd_info_nr = boot_params.eddbuf_entries;
247 }
248 #else
249 static inline void __init copy_edd(void)
250 {
251 }
252 #endif
253
254 void * __init extend_brk(size_t size, size_t align)
255 {
256 size_t mask = align - 1;
257 void *ret;
258
259 BUG_ON(_brk_start == 0);
260 BUG_ON(align & mask);
261
262 _brk_end = (_brk_end + mask) & ~mask;
263 BUG_ON((char *)(_brk_end + size) > __brk_limit);
264
265 ret = (void *)_brk_end;
266 _brk_end += size;
267
268 memset(ret, 0, size);
269
270 return ret;
271 }
272
273 #ifdef CONFIG_X86_32
274 static void __init cleanup_highmap(void)
275 {
276 }
277 #endif
278
279 static void __init reserve_brk(void)
280 {
281 if (_brk_end > _brk_start)
282 memblock_reserve(__pa_symbol(_brk_start),
283 _brk_end - _brk_start);
284
285 /* Mark brk area as locked down and no longer taking any
286 new allocations */
287 _brk_start = 0;
288 }
289
290 u64 relocated_ramdisk;
291
292 #ifdef CONFIG_BLK_DEV_INITRD
293
294 static u64 __init get_ramdisk_image(void)
295 {
296 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
297
298 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
299
300 return ramdisk_image;
301 }
302 static u64 __init get_ramdisk_size(void)
303 {
304 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
305
306 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
307
308 return ramdisk_size;
309 }
310
311 static void __init relocate_initrd(void)
312 {
313 /* Assume only end is not page aligned */
314 u64 ramdisk_image = get_ramdisk_image();
315 u64 ramdisk_size = get_ramdisk_size();
316 u64 area_size = PAGE_ALIGN(ramdisk_size);
317
318 /* We need to move the initrd down into directly mapped mem */
319 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
320 area_size, PAGE_SIZE);
321
322 if (!relocated_ramdisk)
323 panic("Cannot find place for new RAMDISK of size %lld\n",
324 ramdisk_size);
325
326 /* Note: this includes all the mem currently occupied by
327 the initrd, we rely on that fact to keep the data intact. */
328 memblock_reserve(relocated_ramdisk, area_size);
329 initrd_start = relocated_ramdisk + PAGE_OFFSET;
330 initrd_end = initrd_start + ramdisk_size;
331 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
332 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
333
334 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
335
336 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
337 " [mem %#010llx-%#010llx]\n",
338 ramdisk_image, ramdisk_image + ramdisk_size - 1,
339 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
340 }
341
342 static void __init early_reserve_initrd(void)
343 {
344 /* Assume only end is not page aligned */
345 u64 ramdisk_image = get_ramdisk_image();
346 u64 ramdisk_size = get_ramdisk_size();
347 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
348
349 if (!boot_params.hdr.type_of_loader ||
350 !ramdisk_image || !ramdisk_size)
351 return; /* No initrd provided by bootloader */
352
353 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
354 }
355 static void __init reserve_initrd(void)
356 {
357 /* Assume only end is not page aligned */
358 u64 ramdisk_image = get_ramdisk_image();
359 u64 ramdisk_size = get_ramdisk_size();
360 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
361 u64 mapped_size;
362
363 if (!boot_params.hdr.type_of_loader ||
364 !ramdisk_image || !ramdisk_size)
365 return; /* No initrd provided by bootloader */
366
367 /*
368 * If SME is active, this memory will be marked encrypted by the
369 * kernel when it is accessed (including relocation). However, the
370 * ramdisk image was loaded decrypted by the bootloader, so make
371 * sure that it is encrypted before accessing it. For SEV the
372 * ramdisk will already be encrypted, so only do this for SME.
373 */
374 if (sme_active())
375 sme_early_encrypt(ramdisk_image, ramdisk_end - ramdisk_image);
376
377 initrd_start = 0;
378
379 mapped_size = memblock_mem_size(max_pfn_mapped);
380 if (ramdisk_size >= (mapped_size>>1))
381 panic("initrd too large to handle, "
382 "disabling initrd (%lld needed, %lld available)\n",
383 ramdisk_size, mapped_size>>1);
384
385 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
386 ramdisk_end - 1);
387
388 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
389 PFN_DOWN(ramdisk_end))) {
390 /* All are mapped, easy case */
391 initrd_start = ramdisk_image + PAGE_OFFSET;
392 initrd_end = initrd_start + ramdisk_size;
393 return;
394 }
395
396 relocate_initrd();
397
398 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
399 }
400
401 #else
402 static void __init early_reserve_initrd(void)
403 {
404 }
405 static void __init reserve_initrd(void)
406 {
407 }
408 #endif /* CONFIG_BLK_DEV_INITRD */
409
410 static void __init parse_setup_data(void)
411 {
412 struct setup_data *data;
413 u64 pa_data, pa_next;
414
415 pa_data = boot_params.hdr.setup_data;
416 while (pa_data) {
417 u32 data_len, data_type;
418
419 data = early_memremap(pa_data, sizeof(*data));
420 data_len = data->len + sizeof(struct setup_data);
421 data_type = data->type;
422 pa_next = data->next;
423 early_memunmap(data, sizeof(*data));
424
425 switch (data_type) {
426 case SETUP_E820_EXT:
427 e820__memory_setup_extended(pa_data, data_len);
428 break;
429 case SETUP_DTB:
430 add_dtb(pa_data);
431 break;
432 case SETUP_EFI:
433 parse_efi_setup(pa_data, data_len);
434 break;
435 default:
436 break;
437 }
438 pa_data = pa_next;
439 }
440 }
441
442 static void __init memblock_x86_reserve_range_setup_data(void)
443 {
444 struct setup_data *data;
445 u64 pa_data;
446
447 pa_data = boot_params.hdr.setup_data;
448 while (pa_data) {
449 data = early_memremap(pa_data, sizeof(*data));
450 memblock_reserve(pa_data, sizeof(*data) + data->len);
451 pa_data = data->next;
452 early_memunmap(data, sizeof(*data));
453 }
454 }
455
456 /*
457 * --------- Crashkernel reservation ------------------------------
458 */
459
460 #ifdef CONFIG_KEXEC_CORE
461
462 /* 16M alignment for crash kernel regions */
463 #define CRASH_ALIGN (16 << 20)
464
465 /*
466 * Keep the crash kernel below this limit. On 32 bits earlier kernels
467 * would limit the kernel to the low 512 MiB due to mapping restrictions.
468 * On 64bit, old kexec-tools need to under 896MiB.
469 */
470 #ifdef CONFIG_X86_32
471 # define CRASH_ADDR_LOW_MAX (512 << 20)
472 # define CRASH_ADDR_HIGH_MAX (512 << 20)
473 #else
474 # define CRASH_ADDR_LOW_MAX (896UL << 20)
475 # define CRASH_ADDR_HIGH_MAX MAXMEM
476 #endif
477
478 static int __init reserve_crashkernel_low(void)
479 {
480 #ifdef CONFIG_X86_64
481 unsigned long long base, low_base = 0, low_size = 0;
482 unsigned long total_low_mem;
483 int ret;
484
485 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
486
487 /* crashkernel=Y,low */
488 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
489 if (ret) {
490 /*
491 * two parts from lib/swiotlb.c:
492 * -swiotlb size: user-specified with swiotlb= or default.
493 *
494 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
495 * to 8M for other buffers that may need to stay low too. Also
496 * make sure we allocate enough extra low memory so that we
497 * don't run out of DMA buffers for 32-bit devices.
498 */
499 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
500 } else {
501 /* passed with crashkernel=0,low ? */
502 if (!low_size)
503 return 0;
504 }
505
506 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
507 if (!low_base) {
508 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
509 (unsigned long)(low_size >> 20));
510 return -ENOMEM;
511 }
512
513 ret = memblock_reserve(low_base, low_size);
514 if (ret) {
515 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
516 return ret;
517 }
518
519 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
520 (unsigned long)(low_size >> 20),
521 (unsigned long)(low_base >> 20),
522 (unsigned long)(total_low_mem >> 20));
523
524 crashk_low_res.start = low_base;
525 crashk_low_res.end = low_base + low_size - 1;
526 insert_resource(&iomem_resource, &crashk_low_res);
527 #endif
528 return 0;
529 }
530
531 static void __init reserve_crashkernel(void)
532 {
533 unsigned long long crash_size, crash_base, total_mem;
534 bool high = false;
535 int ret;
536
537 total_mem = memblock_phys_mem_size();
538
539 /* crashkernel=XM */
540 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
541 if (ret != 0 || crash_size <= 0) {
542 /* crashkernel=X,high */
543 ret = parse_crashkernel_high(boot_command_line, total_mem,
544 &crash_size, &crash_base);
545 if (ret != 0 || crash_size <= 0)
546 return;
547 high = true;
548 }
549
550 /* 0 means: find the address automatically */
551 if (crash_base <= 0) {
552 /*
553 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
554 * as old kexec-tools loads bzImage below that, unless
555 * "crashkernel=size[KMG],high" is specified.
556 */
557 crash_base = memblock_find_in_range(CRASH_ALIGN,
558 high ? CRASH_ADDR_HIGH_MAX
559 : CRASH_ADDR_LOW_MAX,
560 crash_size, CRASH_ALIGN);
561 if (!crash_base) {
562 pr_info("crashkernel reservation failed - No suitable area found.\n");
563 return;
564 }
565
566 } else {
567 unsigned long long start;
568
569 start = memblock_find_in_range(crash_base,
570 crash_base + crash_size,
571 crash_size, 1 << 20);
572 if (start != crash_base) {
573 pr_info("crashkernel reservation failed - memory is in use.\n");
574 return;
575 }
576 }
577 ret = memblock_reserve(crash_base, crash_size);
578 if (ret) {
579 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
580 return;
581 }
582
583 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
584 memblock_free(crash_base, crash_size);
585 return;
586 }
587
588 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
589 (unsigned long)(crash_size >> 20),
590 (unsigned long)(crash_base >> 20),
591 (unsigned long)(total_mem >> 20));
592
593 crashk_res.start = crash_base;
594 crashk_res.end = crash_base + crash_size - 1;
595 insert_resource(&iomem_resource, &crashk_res);
596 }
597 #else
598 static void __init reserve_crashkernel(void)
599 {
600 }
601 #endif
602
603 static struct resource standard_io_resources[] = {
604 { .name = "dma1", .start = 0x00, .end = 0x1f,
605 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
606 { .name = "pic1", .start = 0x20, .end = 0x21,
607 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
608 { .name = "timer0", .start = 0x40, .end = 0x43,
609 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
610 { .name = "timer1", .start = 0x50, .end = 0x53,
611 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
612 { .name = "keyboard", .start = 0x60, .end = 0x60,
613 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
614 { .name = "keyboard", .start = 0x64, .end = 0x64,
615 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
616 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
617 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
618 { .name = "pic2", .start = 0xa0, .end = 0xa1,
619 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
620 { .name = "dma2", .start = 0xc0, .end = 0xdf,
621 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
622 { .name = "fpu", .start = 0xf0, .end = 0xff,
623 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
624 };
625
626 void __init reserve_standard_io_resources(void)
627 {
628 int i;
629
630 /* request I/O space for devices used on all i[345]86 PCs */
631 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
632 request_resource(&ioport_resource, &standard_io_resources[i]);
633
634 }
635
636 static __init void reserve_ibft_region(void)
637 {
638 unsigned long addr, size = 0;
639
640 addr = find_ibft_region(&size);
641
642 if (size)
643 memblock_reserve(addr, size);
644 }
645
646 static bool __init snb_gfx_workaround_needed(void)
647 {
648 #ifdef CONFIG_PCI
649 int i;
650 u16 vendor, devid;
651 static const __initconst u16 snb_ids[] = {
652 0x0102,
653 0x0112,
654 0x0122,
655 0x0106,
656 0x0116,
657 0x0126,
658 0x010a,
659 };
660
661 /* Assume no if something weird is going on with PCI */
662 if (!early_pci_allowed())
663 return false;
664
665 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
666 if (vendor != 0x8086)
667 return false;
668
669 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
670 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
671 if (devid == snb_ids[i])
672 return true;
673 #endif
674
675 return false;
676 }
677
678 /*
679 * Sandy Bridge graphics has trouble with certain ranges, exclude
680 * them from allocation.
681 */
682 static void __init trim_snb_memory(void)
683 {
684 static const __initconst unsigned long bad_pages[] = {
685 0x20050000,
686 0x20110000,
687 0x20130000,
688 0x20138000,
689 0x40004000,
690 };
691 int i;
692
693 if (!snb_gfx_workaround_needed())
694 return;
695
696 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
697
698 /*
699 * Reserve all memory below the 1 MB mark that has not
700 * already been reserved.
701 */
702 memblock_reserve(0, 1<<20);
703
704 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
705 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
706 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
707 bad_pages[i]);
708 }
709 }
710
711 /*
712 * Here we put platform-specific memory range workarounds, i.e.
713 * memory known to be corrupt or otherwise in need to be reserved on
714 * specific platforms.
715 *
716 * If this gets used more widely it could use a real dispatch mechanism.
717 */
718 static void __init trim_platform_memory_ranges(void)
719 {
720 trim_snb_memory();
721 }
722
723 static void __init trim_bios_range(void)
724 {
725 /*
726 * A special case is the first 4Kb of memory;
727 * This is a BIOS owned area, not kernel ram, but generally
728 * not listed as such in the E820 table.
729 *
730 * This typically reserves additional memory (64KiB by default)
731 * since some BIOSes are known to corrupt low memory. See the
732 * Kconfig help text for X86_RESERVE_LOW.
733 */
734 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
735
736 /*
737 * special case: Some BIOSen report the PC BIOS
738 * area (640->1Mb) as ram even though it is not.
739 * take them out.
740 */
741 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
742
743 e820__update_table(e820_table);
744 }
745
746 /* called before trim_bios_range() to spare extra sanitize */
747 static void __init e820_add_kernel_range(void)
748 {
749 u64 start = __pa_symbol(_text);
750 u64 size = __pa_symbol(_end) - start;
751
752 /*
753 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
754 * attempt to fix it by adding the range. We may have a confused BIOS,
755 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
756 * exclude kernel range. If we really are running on top non-RAM,
757 * we will crash later anyways.
758 */
759 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
760 return;
761
762 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
763 e820__range_remove(start, size, E820_TYPE_RAM, 0);
764 e820__range_add(start, size, E820_TYPE_RAM);
765 }
766
767 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
768
769 static int __init parse_reservelow(char *p)
770 {
771 unsigned long long size;
772
773 if (!p)
774 return -EINVAL;
775
776 size = memparse(p, &p);
777
778 if (size < 4096)
779 size = 4096;
780
781 if (size > 640*1024)
782 size = 640*1024;
783
784 reserve_low = size;
785
786 return 0;
787 }
788
789 early_param("reservelow", parse_reservelow);
790
791 static void __init trim_low_memory_range(void)
792 {
793 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
794 }
795
796 /*
797 * Dump out kernel offset information on panic.
798 */
799 static int
800 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
801 {
802 if (kaslr_enabled()) {
803 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
804 kaslr_offset(),
805 __START_KERNEL,
806 __START_KERNEL_map,
807 MODULES_VADDR-1);
808 } else {
809 pr_emerg("Kernel Offset: disabled\n");
810 }
811
812 return 0;
813 }
814
815 /*
816 * Determine if we were loaded by an EFI loader. If so, then we have also been
817 * passed the efi memmap, systab, etc., so we should use these data structures
818 * for initialization. Note, the efi init code path is determined by the
819 * global efi_enabled. This allows the same kernel image to be used on existing
820 * systems (with a traditional BIOS) as well as on EFI systems.
821 */
822 /*
823 * setup_arch - architecture-specific boot-time initializations
824 *
825 * Note: On x86_64, fixmaps are ready for use even before this is called.
826 */
827
828 void __init setup_arch(char **cmdline_p)
829 {
830 memblock_reserve(__pa_symbol(_text),
831 (unsigned long)__bss_stop - (unsigned long)_text);
832
833 early_reserve_initrd();
834
835 /*
836 * At this point everything still needed from the boot loader
837 * or BIOS or kernel text should be early reserved or marked not
838 * RAM in e820. All other memory is free game.
839 */
840
841 #ifdef CONFIG_X86_32
842 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
843
844 /*
845 * copy kernel address range established so far and switch
846 * to the proper swapper page table
847 */
848 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
849 initial_page_table + KERNEL_PGD_BOUNDARY,
850 KERNEL_PGD_PTRS);
851
852 load_cr3(swapper_pg_dir);
853 /*
854 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
855 * a cr3 based tlb flush, so the following __flush_tlb_all()
856 * will not flush anything because the cpu quirk which clears
857 * X86_FEATURE_PGE has not been invoked yet. Though due to the
858 * load_cr3() above the TLB has been flushed already. The
859 * quirk is invoked before subsequent calls to __flush_tlb_all()
860 * so proper operation is guaranteed.
861 */
862 __flush_tlb_all();
863 #else
864 printk(KERN_INFO "Command line: %s\n", boot_command_line);
865 #endif
866
867 /*
868 * If we have OLPC OFW, we might end up relocating the fixmap due to
869 * reserve_top(), so do this before touching the ioremap area.
870 */
871 olpc_ofw_detect();
872
873 idt_setup_early_traps();
874 early_cpu_init();
875 early_ioremap_init();
876
877 setup_olpc_ofw_pgd();
878
879 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
880 screen_info = boot_params.screen_info;
881 edid_info = boot_params.edid_info;
882 #ifdef CONFIG_X86_32
883 apm_info.bios = boot_params.apm_bios_info;
884 ist_info = boot_params.ist_info;
885 #endif
886 saved_video_mode = boot_params.hdr.vid_mode;
887 bootloader_type = boot_params.hdr.type_of_loader;
888 if ((bootloader_type >> 4) == 0xe) {
889 bootloader_type &= 0xf;
890 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
891 }
892 bootloader_version = bootloader_type & 0xf;
893 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
894
895 #ifdef CONFIG_BLK_DEV_RAM
896 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
897 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
898 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
899 #endif
900 #ifdef CONFIG_EFI
901 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
902 EFI32_LOADER_SIGNATURE, 4)) {
903 set_bit(EFI_BOOT, &efi.flags);
904 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
905 EFI64_LOADER_SIGNATURE, 4)) {
906 set_bit(EFI_BOOT, &efi.flags);
907 set_bit(EFI_64BIT, &efi.flags);
908 }
909
910 if (efi_enabled(EFI_BOOT))
911 efi_memblock_x86_reserve_range();
912 #endif
913
914 x86_init.oem.arch_setup();
915
916 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
917 e820__memory_setup();
918 parse_setup_data();
919
920 copy_edd();
921
922 if (!boot_params.hdr.root_flags)
923 root_mountflags &= ~MS_RDONLY;
924 init_mm.start_code = (unsigned long) _text;
925 init_mm.end_code = (unsigned long) _etext;
926 init_mm.end_data = (unsigned long) _edata;
927 init_mm.brk = _brk_end;
928
929 mpx_mm_init(&init_mm);
930
931 code_resource.start = __pa_symbol(_text);
932 code_resource.end = __pa_symbol(_etext)-1;
933 data_resource.start = __pa_symbol(_etext);
934 data_resource.end = __pa_symbol(_edata)-1;
935 bss_resource.start = __pa_symbol(__bss_start);
936 bss_resource.end = __pa_symbol(__bss_stop)-1;
937
938 #ifdef CONFIG_CMDLINE_BOOL
939 #ifdef CONFIG_CMDLINE_OVERRIDE
940 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
941 #else
942 if (builtin_cmdline[0]) {
943 /* append boot loader cmdline to builtin */
944 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
945 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
946 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
947 }
948 #endif
949 #endif
950
951 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
952 *cmdline_p = command_line;
953
954 /*
955 * x86_configure_nx() is called before parse_early_param() to detect
956 * whether hardware doesn't support NX (so that the early EHCI debug
957 * console setup can safely call set_fixmap()). It may then be called
958 * again from within noexec_setup() during parsing early parameters
959 * to honor the respective command line option.
960 */
961 x86_configure_nx();
962
963 parse_early_param();
964
965 #ifdef CONFIG_MEMORY_HOTPLUG
966 /*
967 * Memory used by the kernel cannot be hot-removed because Linux
968 * cannot migrate the kernel pages. When memory hotplug is
969 * enabled, we should prevent memblock from allocating memory
970 * for the kernel.
971 *
972 * ACPI SRAT records all hotpluggable memory ranges. But before
973 * SRAT is parsed, we don't know about it.
974 *
975 * The kernel image is loaded into memory at very early time. We
976 * cannot prevent this anyway. So on NUMA system, we set any
977 * node the kernel resides in as un-hotpluggable.
978 *
979 * Since on modern servers, one node could have double-digit
980 * gigabytes memory, we can assume the memory around the kernel
981 * image is also un-hotpluggable. So before SRAT is parsed, just
982 * allocate memory near the kernel image to try the best to keep
983 * the kernel away from hotpluggable memory.
984 */
985 if (movable_node_is_enabled())
986 memblock_set_bottom_up(true);
987 #endif
988
989 x86_report_nx();
990
991 /* after early param, so could get panic from serial */
992 memblock_x86_reserve_range_setup_data();
993
994 if (acpi_mps_check()) {
995 #ifdef CONFIG_X86_LOCAL_APIC
996 disable_apic = 1;
997 #endif
998 setup_clear_cpu_cap(X86_FEATURE_APIC);
999 }
1000
1001 #ifdef CONFIG_PCI
1002 if (pci_early_dump_regs)
1003 early_dump_pci_devices();
1004 #endif
1005
1006 e820__reserve_setup_data();
1007 e820__finish_early_params();
1008
1009 if (efi_enabled(EFI_BOOT))
1010 efi_init();
1011
1012 dmi_scan_machine();
1013 dmi_memdev_walk();
1014 dmi_set_dump_stack_arch_desc();
1015
1016 /*
1017 * VMware detection requires dmi to be available, so this
1018 * needs to be done after dmi_scan_machine(), for the boot CPU.
1019 */
1020 init_hypervisor_platform();
1021
1022 x86_init.resources.probe_roms();
1023
1024 /* after parse_early_param, so could debug it */
1025 insert_resource(&iomem_resource, &code_resource);
1026 insert_resource(&iomem_resource, &data_resource);
1027 insert_resource(&iomem_resource, &bss_resource);
1028
1029 e820_add_kernel_range();
1030 trim_bios_range();
1031 #ifdef CONFIG_X86_32
1032 if (ppro_with_ram_bug()) {
1033 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1034 E820_TYPE_RESERVED);
1035 e820__update_table(e820_table);
1036 printk(KERN_INFO "fixed physical RAM map:\n");
1037 e820__print_table("bad_ppro");
1038 }
1039 #else
1040 early_gart_iommu_check();
1041 #endif
1042
1043 /*
1044 * partially used pages are not usable - thus
1045 * we are rounding upwards:
1046 */
1047 max_pfn = e820__end_of_ram_pfn();
1048
1049 /* update e820 for memory not covered by WB MTRRs */
1050 mtrr_bp_init();
1051 if (mtrr_trim_uncached_memory(max_pfn))
1052 max_pfn = e820__end_of_ram_pfn();
1053
1054 max_possible_pfn = max_pfn;
1055
1056 /*
1057 * This call is required when the CPU does not support PAT. If
1058 * mtrr_bp_init() invoked it already via pat_init() the call has no
1059 * effect.
1060 */
1061 init_cache_modes();
1062
1063 /*
1064 * Define random base addresses for memory sections after max_pfn is
1065 * defined and before each memory section base is used.
1066 */
1067 kernel_randomize_memory();
1068
1069 #ifdef CONFIG_X86_32
1070 /* max_low_pfn get updated here */
1071 find_low_pfn_range();
1072 #else
1073 check_x2apic();
1074
1075 /* How many end-of-memory variables you have, grandma! */
1076 /* need this before calling reserve_initrd */
1077 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1078 max_low_pfn = e820__end_of_low_ram_pfn();
1079 else
1080 max_low_pfn = max_pfn;
1081
1082 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1083 #endif
1084
1085 /*
1086 * Find and reserve possible boot-time SMP configuration:
1087 */
1088 find_smp_config();
1089
1090 reserve_ibft_region();
1091
1092 early_alloc_pgt_buf();
1093
1094 /*
1095 * Need to conclude brk, before e820__memblock_setup()
1096 * it could use memblock_find_in_range, could overlap with
1097 * brk area.
1098 */
1099 reserve_brk();
1100
1101 cleanup_highmap();
1102
1103 memblock_set_current_limit(ISA_END_ADDRESS);
1104 e820__memblock_setup();
1105
1106 reserve_bios_regions();
1107
1108 if (efi_enabled(EFI_MEMMAP)) {
1109 efi_fake_memmap();
1110 efi_find_mirror();
1111 efi_esrt_init();
1112
1113 /*
1114 * The EFI specification says that boot service code won't be
1115 * called after ExitBootServices(). This is, in fact, a lie.
1116 */
1117 efi_reserve_boot_services();
1118 }
1119
1120 /* preallocate 4k for mptable mpc */
1121 e820__memblock_alloc_reserved_mpc_new();
1122
1123 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1124 setup_bios_corruption_check();
1125 #endif
1126
1127 #ifdef CONFIG_X86_32
1128 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1129 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1130 #endif
1131
1132 reserve_real_mode();
1133
1134 trim_platform_memory_ranges();
1135 trim_low_memory_range();
1136
1137 init_mem_mapping();
1138
1139 idt_setup_early_pf();
1140
1141 /*
1142 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1143 * with the current CR4 value. This may not be necessary, but
1144 * auditing all the early-boot CR4 manipulation would be needed to
1145 * rule it out.
1146 *
1147 * Mask off features that don't work outside long mode (just
1148 * PCIDE for now).
1149 */
1150 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1151
1152 memblock_set_current_limit(get_max_mapped());
1153
1154 /*
1155 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1156 */
1157
1158 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1159 if (init_ohci1394_dma_early)
1160 init_ohci1394_dma_on_all_controllers();
1161 #endif
1162 /* Allocate bigger log buffer */
1163 setup_log_buf(1);
1164
1165 if (efi_enabled(EFI_BOOT)) {
1166 switch (boot_params.secure_boot) {
1167 case efi_secureboot_mode_disabled:
1168 pr_info("Secure boot disabled\n");
1169 break;
1170 case efi_secureboot_mode_enabled:
1171 pr_info("Secure boot enabled\n");
1172 break;
1173 default:
1174 pr_info("Secure boot could not be determined\n");
1175 break;
1176 }
1177 }
1178
1179 reserve_initrd();
1180
1181 acpi_table_upgrade();
1182
1183 vsmp_init();
1184
1185 io_delay_init();
1186
1187 early_platform_quirks();
1188
1189 /*
1190 * Parse the ACPI tables for possible boot-time SMP configuration.
1191 */
1192 acpi_boot_table_init();
1193
1194 early_acpi_boot_init();
1195
1196 initmem_init();
1197 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1198
1199 /*
1200 * Reserve memory for crash kernel after SRAT is parsed so that it
1201 * won't consume hotpluggable memory.
1202 */
1203 reserve_crashkernel();
1204
1205 memblock_find_dma_reserve();
1206
1207 #ifdef CONFIG_KVM_GUEST
1208 kvmclock_init();
1209 #endif
1210
1211 tsc_early_delay_calibrate();
1212 if (!early_xdbc_setup_hardware())
1213 early_xdbc_register_console();
1214
1215 x86_init.paging.pagetable_init();
1216
1217 kasan_init();
1218
1219 #ifdef CONFIG_X86_32
1220 /* sync back kernel address range */
1221 clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1222 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1223 KERNEL_PGD_PTRS);
1224
1225 /*
1226 * sync back low identity map too. It is used for example
1227 * in the 32-bit EFI stub.
1228 */
1229 clone_pgd_range(initial_page_table,
1230 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1231 min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1232 #endif
1233
1234 tboot_probe();
1235
1236 map_vsyscall();
1237
1238 generic_apic_probe();
1239
1240 early_quirks();
1241
1242 /*
1243 * Read APIC and some other early information from ACPI tables.
1244 */
1245 acpi_boot_init();
1246 sfi_init();
1247 x86_dtb_init();
1248
1249 /*
1250 * get boot-time SMP configuration:
1251 */
1252 get_smp_config();
1253
1254 /*
1255 * Systems w/o ACPI and mptables might not have it mapped the local
1256 * APIC yet, but prefill_possible_map() might need to access it.
1257 */
1258 init_apic_mappings();
1259
1260 prefill_possible_map();
1261
1262 init_cpu_to_node();
1263
1264 io_apic_init_mappings();
1265
1266 x86_init.hyper.guest_late_init();
1267
1268 e820__reserve_resources();
1269 e820__register_nosave_regions(max_low_pfn);
1270
1271 x86_init.resources.reserve_resources();
1272
1273 e820__setup_pci_gap();
1274
1275 #ifdef CONFIG_VT
1276 #if defined(CONFIG_VGA_CONSOLE)
1277 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1278 conswitchp = &vga_con;
1279 #elif defined(CONFIG_DUMMY_CONSOLE)
1280 conswitchp = &dummy_con;
1281 #endif
1282 #endif
1283 x86_init.oem.banner();
1284
1285 x86_init.timers.wallclock_init();
1286
1287 mcheck_init();
1288
1289 arch_init_ideal_nops();
1290
1291 register_refined_jiffies(CLOCK_TICK_RATE);
1292
1293 #ifdef CONFIG_EFI
1294 if (efi_enabled(EFI_BOOT))
1295 efi_apply_memmap_quirks();
1296 #endif
1297
1298 unwind_init();
1299 }
1300
1301 #ifdef CONFIG_X86_32
1302
1303 static struct resource video_ram_resource = {
1304 .name = "Video RAM area",
1305 .start = 0xa0000,
1306 .end = 0xbffff,
1307 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1308 };
1309
1310 void __init i386_reserve_resources(void)
1311 {
1312 request_resource(&iomem_resource, &video_ram_resource);
1313 reserve_standard_io_resources();
1314 }
1315
1316 #endif /* CONFIG_X86_32 */
1317
1318 static struct notifier_block kernel_offset_notifier = {
1319 .notifier_call = dump_kernel_offset
1320 };
1321
1322 static int __init register_kernel_offset_dumper(void)
1323 {
1324 atomic_notifier_chain_register(&panic_notifier_list,
1325 &kernel_offset_notifier);
1326 return 0;
1327 }
1328 __initcall(register_kernel_offset_dumper);
1329
1330 void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1331 {
1332 if (!boot_cpu_has(X86_FEATURE_OSPKE))
1333 return;
1334
1335 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
1336 }