]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
KVM: Consolidate XX_VECTOR defines
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "irq.h"
19 #include "vmx.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
31
32 #include <asm/io.h>
33 #include <asm/desc.h>
34
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
36
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
39
40 static int bypass_guest_pf = 1;
41 module_param(bypass_guest_pf, bool, 0);
42
43 static int enable_vpid = 1;
44 module_param(enable_vpid, bool, 0);
45
46 static int flexpriority_enabled = 1;
47 module_param(flexpriority_enabled, bool, 0);
48
49 static int enable_ept = 1;
50 module_param(enable_ept, bool, 0);
51
52 struct vmcs {
53 u32 revision_id;
54 u32 abort;
55 char data[0];
56 };
57
58 struct vcpu_vmx {
59 struct kvm_vcpu vcpu;
60 struct list_head local_vcpus_link;
61 int launched;
62 u8 fail;
63 u32 idt_vectoring_info;
64 struct kvm_msr_entry *guest_msrs;
65 struct kvm_msr_entry *host_msrs;
66 int nmsrs;
67 int save_nmsrs;
68 int msr_offset_efer;
69 #ifdef CONFIG_X86_64
70 int msr_offset_kernel_gs_base;
71 #endif
72 struct vmcs *vmcs;
73 struct {
74 int loaded;
75 u16 fs_sel, gs_sel, ldt_sel;
76 int gs_ldt_reload_needed;
77 int fs_reload_needed;
78 int guest_efer_loaded;
79 } host_state;
80 struct {
81 struct {
82 bool pending;
83 u8 vector;
84 unsigned rip;
85 } irq;
86 } rmode;
87 int vpid;
88 };
89
90 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
91 {
92 return container_of(vcpu, struct vcpu_vmx, vcpu);
93 }
94
95 static int init_rmode(struct kvm *kvm);
96 static u64 construct_eptp(unsigned long root_hpa);
97
98 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
99 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
100 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
101
102 static struct page *vmx_io_bitmap_a;
103 static struct page *vmx_io_bitmap_b;
104 static struct page *vmx_msr_bitmap;
105
106 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
107 static DEFINE_SPINLOCK(vmx_vpid_lock);
108
109 static struct vmcs_config {
110 int size;
111 int order;
112 u32 revision_id;
113 u32 pin_based_exec_ctrl;
114 u32 cpu_based_exec_ctrl;
115 u32 cpu_based_2nd_exec_ctrl;
116 u32 vmexit_ctrl;
117 u32 vmentry_ctrl;
118 } vmcs_config;
119
120 struct vmx_capability {
121 u32 ept;
122 u32 vpid;
123 } vmx_capability;
124
125 #define VMX_SEGMENT_FIELD(seg) \
126 [VCPU_SREG_##seg] = { \
127 .selector = GUEST_##seg##_SELECTOR, \
128 .base = GUEST_##seg##_BASE, \
129 .limit = GUEST_##seg##_LIMIT, \
130 .ar_bytes = GUEST_##seg##_AR_BYTES, \
131 }
132
133 static struct kvm_vmx_segment_field {
134 unsigned selector;
135 unsigned base;
136 unsigned limit;
137 unsigned ar_bytes;
138 } kvm_vmx_segment_fields[] = {
139 VMX_SEGMENT_FIELD(CS),
140 VMX_SEGMENT_FIELD(DS),
141 VMX_SEGMENT_FIELD(ES),
142 VMX_SEGMENT_FIELD(FS),
143 VMX_SEGMENT_FIELD(GS),
144 VMX_SEGMENT_FIELD(SS),
145 VMX_SEGMENT_FIELD(TR),
146 VMX_SEGMENT_FIELD(LDTR),
147 };
148
149 /*
150 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
151 * away by decrementing the array size.
152 */
153 static const u32 vmx_msr_index[] = {
154 #ifdef CONFIG_X86_64
155 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
156 #endif
157 MSR_EFER, MSR_K6_STAR,
158 };
159 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
160
161 static void load_msrs(struct kvm_msr_entry *e, int n)
162 {
163 int i;
164
165 for (i = 0; i < n; ++i)
166 wrmsrl(e[i].index, e[i].data);
167 }
168
169 static void save_msrs(struct kvm_msr_entry *e, int n)
170 {
171 int i;
172
173 for (i = 0; i < n; ++i)
174 rdmsrl(e[i].index, e[i].data);
175 }
176
177 static inline int is_page_fault(u32 intr_info)
178 {
179 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
180 INTR_INFO_VALID_MASK)) ==
181 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
182 }
183
184 static inline int is_no_device(u32 intr_info)
185 {
186 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
187 INTR_INFO_VALID_MASK)) ==
188 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
189 }
190
191 static inline int is_invalid_opcode(u32 intr_info)
192 {
193 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
194 INTR_INFO_VALID_MASK)) ==
195 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
196 }
197
198 static inline int is_external_interrupt(u32 intr_info)
199 {
200 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
201 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
202 }
203
204 static inline int cpu_has_vmx_msr_bitmap(void)
205 {
206 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
207 }
208
209 static inline int cpu_has_vmx_tpr_shadow(void)
210 {
211 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
212 }
213
214 static inline int vm_need_tpr_shadow(struct kvm *kvm)
215 {
216 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
217 }
218
219 static inline int cpu_has_secondary_exec_ctrls(void)
220 {
221 return (vmcs_config.cpu_based_exec_ctrl &
222 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
223 }
224
225 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
226 {
227 return flexpriority_enabled
228 && (vmcs_config.cpu_based_2nd_exec_ctrl &
229 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
230 }
231
232 static inline int cpu_has_vmx_invept_individual_addr(void)
233 {
234 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
235 }
236
237 static inline int cpu_has_vmx_invept_context(void)
238 {
239 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
240 }
241
242 static inline int cpu_has_vmx_invept_global(void)
243 {
244 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
245 }
246
247 static inline int cpu_has_vmx_ept(void)
248 {
249 return (vmcs_config.cpu_based_2nd_exec_ctrl &
250 SECONDARY_EXEC_ENABLE_EPT);
251 }
252
253 static inline int vm_need_ept(void)
254 {
255 return (cpu_has_vmx_ept() && enable_ept);
256 }
257
258 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
259 {
260 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
261 (irqchip_in_kernel(kvm)));
262 }
263
264 static inline int cpu_has_vmx_vpid(void)
265 {
266 return (vmcs_config.cpu_based_2nd_exec_ctrl &
267 SECONDARY_EXEC_ENABLE_VPID);
268 }
269
270 static inline int cpu_has_virtual_nmis(void)
271 {
272 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
273 }
274
275 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
276 {
277 int i;
278
279 for (i = 0; i < vmx->nmsrs; ++i)
280 if (vmx->guest_msrs[i].index == msr)
281 return i;
282 return -1;
283 }
284
285 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
286 {
287 struct {
288 u64 vpid : 16;
289 u64 rsvd : 48;
290 u64 gva;
291 } operand = { vpid, 0, gva };
292
293 asm volatile (__ex(ASM_VMX_INVVPID)
294 /* CF==1 or ZF==1 --> rc = -1 */
295 "; ja 1f ; ud2 ; 1:"
296 : : "a"(&operand), "c"(ext) : "cc", "memory");
297 }
298
299 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
300 {
301 struct {
302 u64 eptp, gpa;
303 } operand = {eptp, gpa};
304
305 asm volatile (__ex(ASM_VMX_INVEPT)
306 /* CF==1 or ZF==1 --> rc = -1 */
307 "; ja 1f ; ud2 ; 1:\n"
308 : : "a" (&operand), "c" (ext) : "cc", "memory");
309 }
310
311 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
312 {
313 int i;
314
315 i = __find_msr_index(vmx, msr);
316 if (i >= 0)
317 return &vmx->guest_msrs[i];
318 return NULL;
319 }
320
321 static void vmcs_clear(struct vmcs *vmcs)
322 {
323 u64 phys_addr = __pa(vmcs);
324 u8 error;
325
326 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
327 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
328 : "cc", "memory");
329 if (error)
330 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
331 vmcs, phys_addr);
332 }
333
334 static void __vcpu_clear(void *arg)
335 {
336 struct vcpu_vmx *vmx = arg;
337 int cpu = raw_smp_processor_id();
338
339 if (vmx->vcpu.cpu == cpu)
340 vmcs_clear(vmx->vmcs);
341 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
342 per_cpu(current_vmcs, cpu) = NULL;
343 rdtscll(vmx->vcpu.arch.host_tsc);
344 list_del(&vmx->local_vcpus_link);
345 vmx->vcpu.cpu = -1;
346 vmx->launched = 0;
347 }
348
349 static void vcpu_clear(struct vcpu_vmx *vmx)
350 {
351 if (vmx->vcpu.cpu == -1)
352 return;
353 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
354 }
355
356 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
357 {
358 if (vmx->vpid == 0)
359 return;
360
361 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
362 }
363
364 static inline void ept_sync_global(void)
365 {
366 if (cpu_has_vmx_invept_global())
367 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
368 }
369
370 static inline void ept_sync_context(u64 eptp)
371 {
372 if (vm_need_ept()) {
373 if (cpu_has_vmx_invept_context())
374 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
375 else
376 ept_sync_global();
377 }
378 }
379
380 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
381 {
382 if (vm_need_ept()) {
383 if (cpu_has_vmx_invept_individual_addr())
384 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
385 eptp, gpa);
386 else
387 ept_sync_context(eptp);
388 }
389 }
390
391 static unsigned long vmcs_readl(unsigned long field)
392 {
393 unsigned long value;
394
395 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
396 : "=a"(value) : "d"(field) : "cc");
397 return value;
398 }
399
400 static u16 vmcs_read16(unsigned long field)
401 {
402 return vmcs_readl(field);
403 }
404
405 static u32 vmcs_read32(unsigned long field)
406 {
407 return vmcs_readl(field);
408 }
409
410 static u64 vmcs_read64(unsigned long field)
411 {
412 #ifdef CONFIG_X86_64
413 return vmcs_readl(field);
414 #else
415 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
416 #endif
417 }
418
419 static noinline void vmwrite_error(unsigned long field, unsigned long value)
420 {
421 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
422 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
423 dump_stack();
424 }
425
426 static void vmcs_writel(unsigned long field, unsigned long value)
427 {
428 u8 error;
429
430 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
431 : "=q"(error) : "a"(value), "d"(field) : "cc");
432 if (unlikely(error))
433 vmwrite_error(field, value);
434 }
435
436 static void vmcs_write16(unsigned long field, u16 value)
437 {
438 vmcs_writel(field, value);
439 }
440
441 static void vmcs_write32(unsigned long field, u32 value)
442 {
443 vmcs_writel(field, value);
444 }
445
446 static void vmcs_write64(unsigned long field, u64 value)
447 {
448 vmcs_writel(field, value);
449 #ifndef CONFIG_X86_64
450 asm volatile ("");
451 vmcs_writel(field+1, value >> 32);
452 #endif
453 }
454
455 static void vmcs_clear_bits(unsigned long field, u32 mask)
456 {
457 vmcs_writel(field, vmcs_readl(field) & ~mask);
458 }
459
460 static void vmcs_set_bits(unsigned long field, u32 mask)
461 {
462 vmcs_writel(field, vmcs_readl(field) | mask);
463 }
464
465 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
466 {
467 u32 eb;
468
469 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
470 if (!vcpu->fpu_active)
471 eb |= 1u << NM_VECTOR;
472 if (vcpu->guest_debug.enabled)
473 eb |= 1u << DB_VECTOR;
474 if (vcpu->arch.rmode.active)
475 eb = ~0;
476 if (vm_need_ept())
477 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
478 vmcs_write32(EXCEPTION_BITMAP, eb);
479 }
480
481 static void reload_tss(void)
482 {
483 /*
484 * VT restores TR but not its size. Useless.
485 */
486 struct descriptor_table gdt;
487 struct desc_struct *descs;
488
489 kvm_get_gdt(&gdt);
490 descs = (void *)gdt.base;
491 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
492 load_TR_desc();
493 }
494
495 static void load_transition_efer(struct vcpu_vmx *vmx)
496 {
497 int efer_offset = vmx->msr_offset_efer;
498 u64 host_efer = vmx->host_msrs[efer_offset].data;
499 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
500 u64 ignore_bits;
501
502 if (efer_offset < 0)
503 return;
504 /*
505 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
506 * outside long mode
507 */
508 ignore_bits = EFER_NX | EFER_SCE;
509 #ifdef CONFIG_X86_64
510 ignore_bits |= EFER_LMA | EFER_LME;
511 /* SCE is meaningful only in long mode on Intel */
512 if (guest_efer & EFER_LMA)
513 ignore_bits &= ~(u64)EFER_SCE;
514 #endif
515 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
516 return;
517
518 vmx->host_state.guest_efer_loaded = 1;
519 guest_efer &= ~ignore_bits;
520 guest_efer |= host_efer & ignore_bits;
521 wrmsrl(MSR_EFER, guest_efer);
522 vmx->vcpu.stat.efer_reload++;
523 }
524
525 static void reload_host_efer(struct vcpu_vmx *vmx)
526 {
527 if (vmx->host_state.guest_efer_loaded) {
528 vmx->host_state.guest_efer_loaded = 0;
529 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
530 }
531 }
532
533 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
534 {
535 struct vcpu_vmx *vmx = to_vmx(vcpu);
536
537 if (vmx->host_state.loaded)
538 return;
539
540 vmx->host_state.loaded = 1;
541 /*
542 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
543 * allow segment selectors with cpl > 0 or ti == 1.
544 */
545 vmx->host_state.ldt_sel = kvm_read_ldt();
546 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
547 vmx->host_state.fs_sel = kvm_read_fs();
548 if (!(vmx->host_state.fs_sel & 7)) {
549 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
550 vmx->host_state.fs_reload_needed = 0;
551 } else {
552 vmcs_write16(HOST_FS_SELECTOR, 0);
553 vmx->host_state.fs_reload_needed = 1;
554 }
555 vmx->host_state.gs_sel = kvm_read_gs();
556 if (!(vmx->host_state.gs_sel & 7))
557 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
558 else {
559 vmcs_write16(HOST_GS_SELECTOR, 0);
560 vmx->host_state.gs_ldt_reload_needed = 1;
561 }
562
563 #ifdef CONFIG_X86_64
564 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
565 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
566 #else
567 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
568 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
569 #endif
570
571 #ifdef CONFIG_X86_64
572 if (is_long_mode(&vmx->vcpu))
573 save_msrs(vmx->host_msrs +
574 vmx->msr_offset_kernel_gs_base, 1);
575
576 #endif
577 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
578 load_transition_efer(vmx);
579 }
580
581 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
582 {
583 unsigned long flags;
584
585 if (!vmx->host_state.loaded)
586 return;
587
588 ++vmx->vcpu.stat.host_state_reload;
589 vmx->host_state.loaded = 0;
590 if (vmx->host_state.fs_reload_needed)
591 kvm_load_fs(vmx->host_state.fs_sel);
592 if (vmx->host_state.gs_ldt_reload_needed) {
593 kvm_load_ldt(vmx->host_state.ldt_sel);
594 /*
595 * If we have to reload gs, we must take care to
596 * preserve our gs base.
597 */
598 local_irq_save(flags);
599 kvm_load_gs(vmx->host_state.gs_sel);
600 #ifdef CONFIG_X86_64
601 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
602 #endif
603 local_irq_restore(flags);
604 }
605 reload_tss();
606 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
607 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
608 reload_host_efer(vmx);
609 }
610
611 static void vmx_load_host_state(struct vcpu_vmx *vmx)
612 {
613 preempt_disable();
614 __vmx_load_host_state(vmx);
615 preempt_enable();
616 }
617
618 /*
619 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
620 * vcpu mutex is already taken.
621 */
622 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
623 {
624 struct vcpu_vmx *vmx = to_vmx(vcpu);
625 u64 phys_addr = __pa(vmx->vmcs);
626 u64 tsc_this, delta, new_offset;
627
628 if (vcpu->cpu != cpu) {
629 vcpu_clear(vmx);
630 kvm_migrate_timers(vcpu);
631 vpid_sync_vcpu_all(vmx);
632 local_irq_disable();
633 list_add(&vmx->local_vcpus_link,
634 &per_cpu(vcpus_on_cpu, cpu));
635 local_irq_enable();
636 }
637
638 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
639 u8 error;
640
641 per_cpu(current_vmcs, cpu) = vmx->vmcs;
642 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
643 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
644 : "cc");
645 if (error)
646 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
647 vmx->vmcs, phys_addr);
648 }
649
650 if (vcpu->cpu != cpu) {
651 struct descriptor_table dt;
652 unsigned long sysenter_esp;
653
654 vcpu->cpu = cpu;
655 /*
656 * Linux uses per-cpu TSS and GDT, so set these when switching
657 * processors.
658 */
659 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
660 kvm_get_gdt(&dt);
661 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
662
663 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
664 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
665
666 /*
667 * Make sure the time stamp counter is monotonous.
668 */
669 rdtscll(tsc_this);
670 if (tsc_this < vcpu->arch.host_tsc) {
671 delta = vcpu->arch.host_tsc - tsc_this;
672 new_offset = vmcs_read64(TSC_OFFSET) + delta;
673 vmcs_write64(TSC_OFFSET, new_offset);
674 }
675 }
676 }
677
678 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
679 {
680 __vmx_load_host_state(to_vmx(vcpu));
681 }
682
683 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
684 {
685 if (vcpu->fpu_active)
686 return;
687 vcpu->fpu_active = 1;
688 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
689 if (vcpu->arch.cr0 & X86_CR0_TS)
690 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
691 update_exception_bitmap(vcpu);
692 }
693
694 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
695 {
696 if (!vcpu->fpu_active)
697 return;
698 vcpu->fpu_active = 0;
699 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
700 update_exception_bitmap(vcpu);
701 }
702
703 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
704 {
705 return vmcs_readl(GUEST_RFLAGS);
706 }
707
708 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
709 {
710 if (vcpu->arch.rmode.active)
711 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
712 vmcs_writel(GUEST_RFLAGS, rflags);
713 }
714
715 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
716 {
717 unsigned long rip;
718 u32 interruptibility;
719
720 rip = kvm_rip_read(vcpu);
721 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
722 kvm_rip_write(vcpu, rip);
723
724 /*
725 * We emulated an instruction, so temporary interrupt blocking
726 * should be removed, if set.
727 */
728 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
729 if (interruptibility & 3)
730 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
731 interruptibility & ~3);
732 vcpu->arch.interrupt_window_open = 1;
733 }
734
735 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
736 bool has_error_code, u32 error_code)
737 {
738 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
739 nr | INTR_TYPE_EXCEPTION
740 | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
741 | INTR_INFO_VALID_MASK);
742 if (has_error_code)
743 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
744 }
745
746 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
747 {
748 return false;
749 }
750
751 /*
752 * Swap MSR entry in host/guest MSR entry array.
753 */
754 #ifdef CONFIG_X86_64
755 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
756 {
757 struct kvm_msr_entry tmp;
758
759 tmp = vmx->guest_msrs[to];
760 vmx->guest_msrs[to] = vmx->guest_msrs[from];
761 vmx->guest_msrs[from] = tmp;
762 tmp = vmx->host_msrs[to];
763 vmx->host_msrs[to] = vmx->host_msrs[from];
764 vmx->host_msrs[from] = tmp;
765 }
766 #endif
767
768 /*
769 * Set up the vmcs to automatically save and restore system
770 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
771 * mode, as fiddling with msrs is very expensive.
772 */
773 static void setup_msrs(struct vcpu_vmx *vmx)
774 {
775 int save_nmsrs;
776
777 vmx_load_host_state(vmx);
778 save_nmsrs = 0;
779 #ifdef CONFIG_X86_64
780 if (is_long_mode(&vmx->vcpu)) {
781 int index;
782
783 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
784 if (index >= 0)
785 move_msr_up(vmx, index, save_nmsrs++);
786 index = __find_msr_index(vmx, MSR_LSTAR);
787 if (index >= 0)
788 move_msr_up(vmx, index, save_nmsrs++);
789 index = __find_msr_index(vmx, MSR_CSTAR);
790 if (index >= 0)
791 move_msr_up(vmx, index, save_nmsrs++);
792 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
793 if (index >= 0)
794 move_msr_up(vmx, index, save_nmsrs++);
795 /*
796 * MSR_K6_STAR is only needed on long mode guests, and only
797 * if efer.sce is enabled.
798 */
799 index = __find_msr_index(vmx, MSR_K6_STAR);
800 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
801 move_msr_up(vmx, index, save_nmsrs++);
802 }
803 #endif
804 vmx->save_nmsrs = save_nmsrs;
805
806 #ifdef CONFIG_X86_64
807 vmx->msr_offset_kernel_gs_base =
808 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
809 #endif
810 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
811 }
812
813 /*
814 * reads and returns guest's timestamp counter "register"
815 * guest_tsc = host_tsc + tsc_offset -- 21.3
816 */
817 static u64 guest_read_tsc(void)
818 {
819 u64 host_tsc, tsc_offset;
820
821 rdtscll(host_tsc);
822 tsc_offset = vmcs_read64(TSC_OFFSET);
823 return host_tsc + tsc_offset;
824 }
825
826 /*
827 * writes 'guest_tsc' into guest's timestamp counter "register"
828 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
829 */
830 static void guest_write_tsc(u64 guest_tsc)
831 {
832 u64 host_tsc;
833
834 rdtscll(host_tsc);
835 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
836 }
837
838 /*
839 * Reads an msr value (of 'msr_index') into 'pdata'.
840 * Returns 0 on success, non-0 otherwise.
841 * Assumes vcpu_load() was already called.
842 */
843 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
844 {
845 u64 data;
846 struct kvm_msr_entry *msr;
847
848 if (!pdata) {
849 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
850 return -EINVAL;
851 }
852
853 switch (msr_index) {
854 #ifdef CONFIG_X86_64
855 case MSR_FS_BASE:
856 data = vmcs_readl(GUEST_FS_BASE);
857 break;
858 case MSR_GS_BASE:
859 data = vmcs_readl(GUEST_GS_BASE);
860 break;
861 case MSR_EFER:
862 return kvm_get_msr_common(vcpu, msr_index, pdata);
863 #endif
864 case MSR_IA32_TIME_STAMP_COUNTER:
865 data = guest_read_tsc();
866 break;
867 case MSR_IA32_SYSENTER_CS:
868 data = vmcs_read32(GUEST_SYSENTER_CS);
869 break;
870 case MSR_IA32_SYSENTER_EIP:
871 data = vmcs_readl(GUEST_SYSENTER_EIP);
872 break;
873 case MSR_IA32_SYSENTER_ESP:
874 data = vmcs_readl(GUEST_SYSENTER_ESP);
875 break;
876 default:
877 msr = find_msr_entry(to_vmx(vcpu), msr_index);
878 if (msr) {
879 data = msr->data;
880 break;
881 }
882 return kvm_get_msr_common(vcpu, msr_index, pdata);
883 }
884
885 *pdata = data;
886 return 0;
887 }
888
889 /*
890 * Writes msr value into into the appropriate "register".
891 * Returns 0 on success, non-0 otherwise.
892 * Assumes vcpu_load() was already called.
893 */
894 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
895 {
896 struct vcpu_vmx *vmx = to_vmx(vcpu);
897 struct kvm_msr_entry *msr;
898 int ret = 0;
899
900 switch (msr_index) {
901 #ifdef CONFIG_X86_64
902 case MSR_EFER:
903 vmx_load_host_state(vmx);
904 ret = kvm_set_msr_common(vcpu, msr_index, data);
905 break;
906 case MSR_FS_BASE:
907 vmcs_writel(GUEST_FS_BASE, data);
908 break;
909 case MSR_GS_BASE:
910 vmcs_writel(GUEST_GS_BASE, data);
911 break;
912 #endif
913 case MSR_IA32_SYSENTER_CS:
914 vmcs_write32(GUEST_SYSENTER_CS, data);
915 break;
916 case MSR_IA32_SYSENTER_EIP:
917 vmcs_writel(GUEST_SYSENTER_EIP, data);
918 break;
919 case MSR_IA32_SYSENTER_ESP:
920 vmcs_writel(GUEST_SYSENTER_ESP, data);
921 break;
922 case MSR_IA32_TIME_STAMP_COUNTER:
923 guest_write_tsc(data);
924 break;
925 case MSR_P6_PERFCTR0:
926 case MSR_P6_PERFCTR1:
927 case MSR_P6_EVNTSEL0:
928 case MSR_P6_EVNTSEL1:
929 /*
930 * Just discard all writes to the performance counters; this
931 * should keep both older linux and windows 64-bit guests
932 * happy
933 */
934 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
935
936 break;
937 default:
938 vmx_load_host_state(vmx);
939 msr = find_msr_entry(vmx, msr_index);
940 if (msr) {
941 msr->data = data;
942 break;
943 }
944 ret = kvm_set_msr_common(vcpu, msr_index, data);
945 }
946
947 return ret;
948 }
949
950 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
951 {
952 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
953 switch (reg) {
954 case VCPU_REGS_RSP:
955 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
956 break;
957 case VCPU_REGS_RIP:
958 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
959 break;
960 default:
961 break;
962 }
963 }
964
965 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
966 {
967 unsigned long dr7 = 0x400;
968 int old_singlestep;
969
970 old_singlestep = vcpu->guest_debug.singlestep;
971
972 vcpu->guest_debug.enabled = dbg->enabled;
973 if (vcpu->guest_debug.enabled) {
974 int i;
975
976 dr7 |= 0x200; /* exact */
977 for (i = 0; i < 4; ++i) {
978 if (!dbg->breakpoints[i].enabled)
979 continue;
980 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
981 dr7 |= 2 << (i*2); /* global enable */
982 dr7 |= 0 << (i*4+16); /* execution breakpoint */
983 }
984
985 vcpu->guest_debug.singlestep = dbg->singlestep;
986 } else
987 vcpu->guest_debug.singlestep = 0;
988
989 if (old_singlestep && !vcpu->guest_debug.singlestep) {
990 unsigned long flags;
991
992 flags = vmcs_readl(GUEST_RFLAGS);
993 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
994 vmcs_writel(GUEST_RFLAGS, flags);
995 }
996
997 update_exception_bitmap(vcpu);
998 vmcs_writel(GUEST_DR7, dr7);
999
1000 return 0;
1001 }
1002
1003 static int vmx_get_irq(struct kvm_vcpu *vcpu)
1004 {
1005 if (!vcpu->arch.interrupt.pending)
1006 return -1;
1007 return vcpu->arch.interrupt.nr;
1008 }
1009
1010 static __init int cpu_has_kvm_support(void)
1011 {
1012 unsigned long ecx = cpuid_ecx(1);
1013 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
1014 }
1015
1016 static __init int vmx_disabled_by_bios(void)
1017 {
1018 u64 msr;
1019
1020 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1021 return (msr & (IA32_FEATURE_CONTROL_LOCKED_BIT |
1022 IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
1023 == IA32_FEATURE_CONTROL_LOCKED_BIT;
1024 /* locked but not enabled */
1025 }
1026
1027 static void hardware_enable(void *garbage)
1028 {
1029 int cpu = raw_smp_processor_id();
1030 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1031 u64 old;
1032
1033 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1034 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1035 if ((old & (IA32_FEATURE_CONTROL_LOCKED_BIT |
1036 IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
1037 != (IA32_FEATURE_CONTROL_LOCKED_BIT |
1038 IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
1039 /* enable and lock */
1040 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1041 IA32_FEATURE_CONTROL_LOCKED_BIT |
1042 IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT);
1043 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1044 asm volatile (ASM_VMX_VMXON_RAX
1045 : : "a"(&phys_addr), "m"(phys_addr)
1046 : "memory", "cc");
1047 }
1048
1049 static void vmclear_local_vcpus(void)
1050 {
1051 int cpu = raw_smp_processor_id();
1052 struct vcpu_vmx *vmx, *n;
1053
1054 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1055 local_vcpus_link)
1056 __vcpu_clear(vmx);
1057 }
1058
1059 static void hardware_disable(void *garbage)
1060 {
1061 vmclear_local_vcpus();
1062 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1063 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1064 }
1065
1066 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1067 u32 msr, u32 *result)
1068 {
1069 u32 vmx_msr_low, vmx_msr_high;
1070 u32 ctl = ctl_min | ctl_opt;
1071
1072 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1073
1074 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1075 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1076
1077 /* Ensure minimum (required) set of control bits are supported. */
1078 if (ctl_min & ~ctl)
1079 return -EIO;
1080
1081 *result = ctl;
1082 return 0;
1083 }
1084
1085 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1086 {
1087 u32 vmx_msr_low, vmx_msr_high;
1088 u32 min, opt, min2, opt2;
1089 u32 _pin_based_exec_control = 0;
1090 u32 _cpu_based_exec_control = 0;
1091 u32 _cpu_based_2nd_exec_control = 0;
1092 u32 _vmexit_control = 0;
1093 u32 _vmentry_control = 0;
1094
1095 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1096 opt = PIN_BASED_VIRTUAL_NMIS;
1097 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1098 &_pin_based_exec_control) < 0)
1099 return -EIO;
1100
1101 min = CPU_BASED_HLT_EXITING |
1102 #ifdef CONFIG_X86_64
1103 CPU_BASED_CR8_LOAD_EXITING |
1104 CPU_BASED_CR8_STORE_EXITING |
1105 #endif
1106 CPU_BASED_CR3_LOAD_EXITING |
1107 CPU_BASED_CR3_STORE_EXITING |
1108 CPU_BASED_USE_IO_BITMAPS |
1109 CPU_BASED_MOV_DR_EXITING |
1110 CPU_BASED_USE_TSC_OFFSETING;
1111 opt = CPU_BASED_TPR_SHADOW |
1112 CPU_BASED_USE_MSR_BITMAPS |
1113 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1114 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1115 &_cpu_based_exec_control) < 0)
1116 return -EIO;
1117 #ifdef CONFIG_X86_64
1118 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1119 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1120 ~CPU_BASED_CR8_STORE_EXITING;
1121 #endif
1122 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1123 min2 = 0;
1124 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1125 SECONDARY_EXEC_WBINVD_EXITING |
1126 SECONDARY_EXEC_ENABLE_VPID |
1127 SECONDARY_EXEC_ENABLE_EPT;
1128 if (adjust_vmx_controls(min2, opt2,
1129 MSR_IA32_VMX_PROCBASED_CTLS2,
1130 &_cpu_based_2nd_exec_control) < 0)
1131 return -EIO;
1132 }
1133 #ifndef CONFIG_X86_64
1134 if (!(_cpu_based_2nd_exec_control &
1135 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1136 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1137 #endif
1138 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1139 /* CR3 accesses don't need to cause VM Exits when EPT enabled */
1140 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1141 CPU_BASED_CR3_STORE_EXITING);
1142 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1143 &_cpu_based_exec_control) < 0)
1144 return -EIO;
1145 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1146 vmx_capability.ept, vmx_capability.vpid);
1147 }
1148
1149 min = 0;
1150 #ifdef CONFIG_X86_64
1151 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1152 #endif
1153 opt = 0;
1154 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1155 &_vmexit_control) < 0)
1156 return -EIO;
1157
1158 min = opt = 0;
1159 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1160 &_vmentry_control) < 0)
1161 return -EIO;
1162
1163 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1164
1165 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1166 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1167 return -EIO;
1168
1169 #ifdef CONFIG_X86_64
1170 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1171 if (vmx_msr_high & (1u<<16))
1172 return -EIO;
1173 #endif
1174
1175 /* Require Write-Back (WB) memory type for VMCS accesses. */
1176 if (((vmx_msr_high >> 18) & 15) != 6)
1177 return -EIO;
1178
1179 vmcs_conf->size = vmx_msr_high & 0x1fff;
1180 vmcs_conf->order = get_order(vmcs_config.size);
1181 vmcs_conf->revision_id = vmx_msr_low;
1182
1183 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1184 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1185 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1186 vmcs_conf->vmexit_ctrl = _vmexit_control;
1187 vmcs_conf->vmentry_ctrl = _vmentry_control;
1188
1189 return 0;
1190 }
1191
1192 static struct vmcs *alloc_vmcs_cpu(int cpu)
1193 {
1194 int node = cpu_to_node(cpu);
1195 struct page *pages;
1196 struct vmcs *vmcs;
1197
1198 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1199 if (!pages)
1200 return NULL;
1201 vmcs = page_address(pages);
1202 memset(vmcs, 0, vmcs_config.size);
1203 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1204 return vmcs;
1205 }
1206
1207 static struct vmcs *alloc_vmcs(void)
1208 {
1209 return alloc_vmcs_cpu(raw_smp_processor_id());
1210 }
1211
1212 static void free_vmcs(struct vmcs *vmcs)
1213 {
1214 free_pages((unsigned long)vmcs, vmcs_config.order);
1215 }
1216
1217 static void free_kvm_area(void)
1218 {
1219 int cpu;
1220
1221 for_each_online_cpu(cpu)
1222 free_vmcs(per_cpu(vmxarea, cpu));
1223 }
1224
1225 static __init int alloc_kvm_area(void)
1226 {
1227 int cpu;
1228
1229 for_each_online_cpu(cpu) {
1230 struct vmcs *vmcs;
1231
1232 vmcs = alloc_vmcs_cpu(cpu);
1233 if (!vmcs) {
1234 free_kvm_area();
1235 return -ENOMEM;
1236 }
1237
1238 per_cpu(vmxarea, cpu) = vmcs;
1239 }
1240 return 0;
1241 }
1242
1243 static __init int hardware_setup(void)
1244 {
1245 if (setup_vmcs_config(&vmcs_config) < 0)
1246 return -EIO;
1247
1248 if (boot_cpu_has(X86_FEATURE_NX))
1249 kvm_enable_efer_bits(EFER_NX);
1250
1251 return alloc_kvm_area();
1252 }
1253
1254 static __exit void hardware_unsetup(void)
1255 {
1256 free_kvm_area();
1257 }
1258
1259 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1260 {
1261 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1262
1263 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1264 vmcs_write16(sf->selector, save->selector);
1265 vmcs_writel(sf->base, save->base);
1266 vmcs_write32(sf->limit, save->limit);
1267 vmcs_write32(sf->ar_bytes, save->ar);
1268 } else {
1269 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1270 << AR_DPL_SHIFT;
1271 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1272 }
1273 }
1274
1275 static void enter_pmode(struct kvm_vcpu *vcpu)
1276 {
1277 unsigned long flags;
1278
1279 vcpu->arch.rmode.active = 0;
1280
1281 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1282 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1283 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1284
1285 flags = vmcs_readl(GUEST_RFLAGS);
1286 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1287 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1288 vmcs_writel(GUEST_RFLAGS, flags);
1289
1290 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1291 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1292
1293 update_exception_bitmap(vcpu);
1294
1295 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1296 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1297 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1298 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1299
1300 vmcs_write16(GUEST_SS_SELECTOR, 0);
1301 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1302
1303 vmcs_write16(GUEST_CS_SELECTOR,
1304 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1305 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1306 }
1307
1308 static gva_t rmode_tss_base(struct kvm *kvm)
1309 {
1310 if (!kvm->arch.tss_addr) {
1311 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1312 kvm->memslots[0].npages - 3;
1313 return base_gfn << PAGE_SHIFT;
1314 }
1315 return kvm->arch.tss_addr;
1316 }
1317
1318 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1319 {
1320 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1321
1322 save->selector = vmcs_read16(sf->selector);
1323 save->base = vmcs_readl(sf->base);
1324 save->limit = vmcs_read32(sf->limit);
1325 save->ar = vmcs_read32(sf->ar_bytes);
1326 vmcs_write16(sf->selector, save->base >> 4);
1327 vmcs_write32(sf->base, save->base & 0xfffff);
1328 vmcs_write32(sf->limit, 0xffff);
1329 vmcs_write32(sf->ar_bytes, 0xf3);
1330 }
1331
1332 static void enter_rmode(struct kvm_vcpu *vcpu)
1333 {
1334 unsigned long flags;
1335
1336 vcpu->arch.rmode.active = 1;
1337
1338 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1339 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1340
1341 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1342 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1343
1344 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1345 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1346
1347 flags = vmcs_readl(GUEST_RFLAGS);
1348 vcpu->arch.rmode.save_iopl
1349 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1350
1351 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1352
1353 vmcs_writel(GUEST_RFLAGS, flags);
1354 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1355 update_exception_bitmap(vcpu);
1356
1357 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1358 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1359 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1360
1361 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1362 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1363 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1364 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1365 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1366
1367 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1368 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1369 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1370 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1371
1372 kvm_mmu_reset_context(vcpu);
1373 init_rmode(vcpu->kvm);
1374 }
1375
1376 #ifdef CONFIG_X86_64
1377
1378 static void enter_lmode(struct kvm_vcpu *vcpu)
1379 {
1380 u32 guest_tr_ar;
1381
1382 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1383 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1384 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1385 __func__);
1386 vmcs_write32(GUEST_TR_AR_BYTES,
1387 (guest_tr_ar & ~AR_TYPE_MASK)
1388 | AR_TYPE_BUSY_64_TSS);
1389 }
1390
1391 vcpu->arch.shadow_efer |= EFER_LMA;
1392
1393 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1394 vmcs_write32(VM_ENTRY_CONTROLS,
1395 vmcs_read32(VM_ENTRY_CONTROLS)
1396 | VM_ENTRY_IA32E_MODE);
1397 }
1398
1399 static void exit_lmode(struct kvm_vcpu *vcpu)
1400 {
1401 vcpu->arch.shadow_efer &= ~EFER_LMA;
1402
1403 vmcs_write32(VM_ENTRY_CONTROLS,
1404 vmcs_read32(VM_ENTRY_CONTROLS)
1405 & ~VM_ENTRY_IA32E_MODE);
1406 }
1407
1408 #endif
1409
1410 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1411 {
1412 vpid_sync_vcpu_all(to_vmx(vcpu));
1413 if (vm_need_ept())
1414 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1415 }
1416
1417 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1418 {
1419 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1420 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1421 }
1422
1423 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1424 {
1425 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1426 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1427 printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1428 return;
1429 }
1430 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1431 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1432 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1433 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1434 }
1435 }
1436
1437 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1438
1439 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1440 unsigned long cr0,
1441 struct kvm_vcpu *vcpu)
1442 {
1443 if (!(cr0 & X86_CR0_PG)) {
1444 /* From paging/starting to nonpaging */
1445 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1446 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1447 (CPU_BASED_CR3_LOAD_EXITING |
1448 CPU_BASED_CR3_STORE_EXITING));
1449 vcpu->arch.cr0 = cr0;
1450 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1451 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1452 *hw_cr0 &= ~X86_CR0_WP;
1453 } else if (!is_paging(vcpu)) {
1454 /* From nonpaging to paging */
1455 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1456 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1457 ~(CPU_BASED_CR3_LOAD_EXITING |
1458 CPU_BASED_CR3_STORE_EXITING));
1459 vcpu->arch.cr0 = cr0;
1460 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1461 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1462 *hw_cr0 &= ~X86_CR0_WP;
1463 }
1464 }
1465
1466 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1467 struct kvm_vcpu *vcpu)
1468 {
1469 if (!is_paging(vcpu)) {
1470 *hw_cr4 &= ~X86_CR4_PAE;
1471 *hw_cr4 |= X86_CR4_PSE;
1472 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1473 *hw_cr4 &= ~X86_CR4_PAE;
1474 }
1475
1476 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1477 {
1478 unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1479 KVM_VM_CR0_ALWAYS_ON;
1480
1481 vmx_fpu_deactivate(vcpu);
1482
1483 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1484 enter_pmode(vcpu);
1485
1486 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1487 enter_rmode(vcpu);
1488
1489 #ifdef CONFIG_X86_64
1490 if (vcpu->arch.shadow_efer & EFER_LME) {
1491 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1492 enter_lmode(vcpu);
1493 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1494 exit_lmode(vcpu);
1495 }
1496 #endif
1497
1498 if (vm_need_ept())
1499 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1500
1501 vmcs_writel(CR0_READ_SHADOW, cr0);
1502 vmcs_writel(GUEST_CR0, hw_cr0);
1503 vcpu->arch.cr0 = cr0;
1504
1505 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1506 vmx_fpu_activate(vcpu);
1507 }
1508
1509 static u64 construct_eptp(unsigned long root_hpa)
1510 {
1511 u64 eptp;
1512
1513 /* TODO write the value reading from MSR */
1514 eptp = VMX_EPT_DEFAULT_MT |
1515 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1516 eptp |= (root_hpa & PAGE_MASK);
1517
1518 return eptp;
1519 }
1520
1521 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1522 {
1523 unsigned long guest_cr3;
1524 u64 eptp;
1525
1526 guest_cr3 = cr3;
1527 if (vm_need_ept()) {
1528 eptp = construct_eptp(cr3);
1529 vmcs_write64(EPT_POINTER, eptp);
1530 ept_sync_context(eptp);
1531 ept_load_pdptrs(vcpu);
1532 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1533 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1534 }
1535
1536 vmx_flush_tlb(vcpu);
1537 vmcs_writel(GUEST_CR3, guest_cr3);
1538 if (vcpu->arch.cr0 & X86_CR0_PE)
1539 vmx_fpu_deactivate(vcpu);
1540 }
1541
1542 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1543 {
1544 unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1545 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1546
1547 vcpu->arch.cr4 = cr4;
1548 if (vm_need_ept())
1549 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1550
1551 vmcs_writel(CR4_READ_SHADOW, cr4);
1552 vmcs_writel(GUEST_CR4, hw_cr4);
1553 }
1554
1555 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1556 {
1557 struct vcpu_vmx *vmx = to_vmx(vcpu);
1558 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1559
1560 vcpu->arch.shadow_efer = efer;
1561 if (!msr)
1562 return;
1563 if (efer & EFER_LMA) {
1564 vmcs_write32(VM_ENTRY_CONTROLS,
1565 vmcs_read32(VM_ENTRY_CONTROLS) |
1566 VM_ENTRY_IA32E_MODE);
1567 msr->data = efer;
1568
1569 } else {
1570 vmcs_write32(VM_ENTRY_CONTROLS,
1571 vmcs_read32(VM_ENTRY_CONTROLS) &
1572 ~VM_ENTRY_IA32E_MODE);
1573
1574 msr->data = efer & ~EFER_LME;
1575 }
1576 setup_msrs(vmx);
1577 }
1578
1579 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1580 {
1581 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1582
1583 return vmcs_readl(sf->base);
1584 }
1585
1586 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1587 struct kvm_segment *var, int seg)
1588 {
1589 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1590 u32 ar;
1591
1592 var->base = vmcs_readl(sf->base);
1593 var->limit = vmcs_read32(sf->limit);
1594 var->selector = vmcs_read16(sf->selector);
1595 ar = vmcs_read32(sf->ar_bytes);
1596 if (ar & AR_UNUSABLE_MASK)
1597 ar = 0;
1598 var->type = ar & 15;
1599 var->s = (ar >> 4) & 1;
1600 var->dpl = (ar >> 5) & 3;
1601 var->present = (ar >> 7) & 1;
1602 var->avl = (ar >> 12) & 1;
1603 var->l = (ar >> 13) & 1;
1604 var->db = (ar >> 14) & 1;
1605 var->g = (ar >> 15) & 1;
1606 var->unusable = (ar >> 16) & 1;
1607 }
1608
1609 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1610 {
1611 struct kvm_segment kvm_seg;
1612
1613 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1614 return 0;
1615
1616 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1617 return 3;
1618
1619 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1620 return kvm_seg.selector & 3;
1621 }
1622
1623 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1624 {
1625 u32 ar;
1626
1627 if (var->unusable)
1628 ar = 1 << 16;
1629 else {
1630 ar = var->type & 15;
1631 ar |= (var->s & 1) << 4;
1632 ar |= (var->dpl & 3) << 5;
1633 ar |= (var->present & 1) << 7;
1634 ar |= (var->avl & 1) << 12;
1635 ar |= (var->l & 1) << 13;
1636 ar |= (var->db & 1) << 14;
1637 ar |= (var->g & 1) << 15;
1638 }
1639 if (ar == 0) /* a 0 value means unusable */
1640 ar = AR_UNUSABLE_MASK;
1641
1642 return ar;
1643 }
1644
1645 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1646 struct kvm_segment *var, int seg)
1647 {
1648 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1649 u32 ar;
1650
1651 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1652 vcpu->arch.rmode.tr.selector = var->selector;
1653 vcpu->arch.rmode.tr.base = var->base;
1654 vcpu->arch.rmode.tr.limit = var->limit;
1655 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1656 return;
1657 }
1658 vmcs_writel(sf->base, var->base);
1659 vmcs_write32(sf->limit, var->limit);
1660 vmcs_write16(sf->selector, var->selector);
1661 if (vcpu->arch.rmode.active && var->s) {
1662 /*
1663 * Hack real-mode segments into vm86 compatibility.
1664 */
1665 if (var->base == 0xffff0000 && var->selector == 0xf000)
1666 vmcs_writel(sf->base, 0xf0000);
1667 ar = 0xf3;
1668 } else
1669 ar = vmx_segment_access_rights(var);
1670 vmcs_write32(sf->ar_bytes, ar);
1671 }
1672
1673 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1674 {
1675 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1676
1677 *db = (ar >> 14) & 1;
1678 *l = (ar >> 13) & 1;
1679 }
1680
1681 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1682 {
1683 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1684 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1685 }
1686
1687 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1688 {
1689 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1690 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1691 }
1692
1693 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1694 {
1695 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1696 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1697 }
1698
1699 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1700 {
1701 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1702 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1703 }
1704
1705 static int init_rmode_tss(struct kvm *kvm)
1706 {
1707 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1708 u16 data = 0;
1709 int ret = 0;
1710 int r;
1711
1712 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1713 if (r < 0)
1714 goto out;
1715 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1716 r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1717 if (r < 0)
1718 goto out;
1719 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1720 if (r < 0)
1721 goto out;
1722 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1723 if (r < 0)
1724 goto out;
1725 data = ~0;
1726 r = kvm_write_guest_page(kvm, fn, &data,
1727 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1728 sizeof(u8));
1729 if (r < 0)
1730 goto out;
1731
1732 ret = 1;
1733 out:
1734 return ret;
1735 }
1736
1737 static int init_rmode_identity_map(struct kvm *kvm)
1738 {
1739 int i, r, ret;
1740 pfn_t identity_map_pfn;
1741 u32 tmp;
1742
1743 if (!vm_need_ept())
1744 return 1;
1745 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1746 printk(KERN_ERR "EPT: identity-mapping pagetable "
1747 "haven't been allocated!\n");
1748 return 0;
1749 }
1750 if (likely(kvm->arch.ept_identity_pagetable_done))
1751 return 1;
1752 ret = 0;
1753 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
1754 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
1755 if (r < 0)
1756 goto out;
1757 /* Set up identity-mapping pagetable for EPT in real mode */
1758 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
1759 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
1760 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
1761 r = kvm_write_guest_page(kvm, identity_map_pfn,
1762 &tmp, i * sizeof(tmp), sizeof(tmp));
1763 if (r < 0)
1764 goto out;
1765 }
1766 kvm->arch.ept_identity_pagetable_done = true;
1767 ret = 1;
1768 out:
1769 return ret;
1770 }
1771
1772 static void seg_setup(int seg)
1773 {
1774 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1775
1776 vmcs_write16(sf->selector, 0);
1777 vmcs_writel(sf->base, 0);
1778 vmcs_write32(sf->limit, 0xffff);
1779 vmcs_write32(sf->ar_bytes, 0x93);
1780 }
1781
1782 static int alloc_apic_access_page(struct kvm *kvm)
1783 {
1784 struct kvm_userspace_memory_region kvm_userspace_mem;
1785 int r = 0;
1786
1787 down_write(&kvm->slots_lock);
1788 if (kvm->arch.apic_access_page)
1789 goto out;
1790 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1791 kvm_userspace_mem.flags = 0;
1792 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1793 kvm_userspace_mem.memory_size = PAGE_SIZE;
1794 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1795 if (r)
1796 goto out;
1797
1798 down_read(&current->mm->mmap_sem);
1799 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1800 up_read(&current->mm->mmap_sem);
1801 out:
1802 up_write(&kvm->slots_lock);
1803 return r;
1804 }
1805
1806 static int alloc_identity_pagetable(struct kvm *kvm)
1807 {
1808 struct kvm_userspace_memory_region kvm_userspace_mem;
1809 int r = 0;
1810
1811 down_write(&kvm->slots_lock);
1812 if (kvm->arch.ept_identity_pagetable)
1813 goto out;
1814 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
1815 kvm_userspace_mem.flags = 0;
1816 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1817 kvm_userspace_mem.memory_size = PAGE_SIZE;
1818 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1819 if (r)
1820 goto out;
1821
1822 down_read(&current->mm->mmap_sem);
1823 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
1824 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
1825 up_read(&current->mm->mmap_sem);
1826 out:
1827 up_write(&kvm->slots_lock);
1828 return r;
1829 }
1830
1831 static void allocate_vpid(struct vcpu_vmx *vmx)
1832 {
1833 int vpid;
1834
1835 vmx->vpid = 0;
1836 if (!enable_vpid || !cpu_has_vmx_vpid())
1837 return;
1838 spin_lock(&vmx_vpid_lock);
1839 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
1840 if (vpid < VMX_NR_VPIDS) {
1841 vmx->vpid = vpid;
1842 __set_bit(vpid, vmx_vpid_bitmap);
1843 }
1844 spin_unlock(&vmx_vpid_lock);
1845 }
1846
1847 static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
1848 {
1849 void *va;
1850
1851 if (!cpu_has_vmx_msr_bitmap())
1852 return;
1853
1854 /*
1855 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
1856 * have the write-low and read-high bitmap offsets the wrong way round.
1857 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
1858 */
1859 va = kmap(msr_bitmap);
1860 if (msr <= 0x1fff) {
1861 __clear_bit(msr, va + 0x000); /* read-low */
1862 __clear_bit(msr, va + 0x800); /* write-low */
1863 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1864 msr &= 0x1fff;
1865 __clear_bit(msr, va + 0x400); /* read-high */
1866 __clear_bit(msr, va + 0xc00); /* write-high */
1867 }
1868 kunmap(msr_bitmap);
1869 }
1870
1871 /*
1872 * Sets up the vmcs for emulated real mode.
1873 */
1874 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1875 {
1876 u32 host_sysenter_cs;
1877 u32 junk;
1878 unsigned long a;
1879 struct descriptor_table dt;
1880 int i;
1881 unsigned long kvm_vmx_return;
1882 u32 exec_control;
1883
1884 /* I/O */
1885 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1886 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1887
1888 if (cpu_has_vmx_msr_bitmap())
1889 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
1890
1891 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1892
1893 /* Control */
1894 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1895 vmcs_config.pin_based_exec_ctrl);
1896
1897 exec_control = vmcs_config.cpu_based_exec_ctrl;
1898 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1899 exec_control &= ~CPU_BASED_TPR_SHADOW;
1900 #ifdef CONFIG_X86_64
1901 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1902 CPU_BASED_CR8_LOAD_EXITING;
1903 #endif
1904 }
1905 if (!vm_need_ept())
1906 exec_control |= CPU_BASED_CR3_STORE_EXITING |
1907 CPU_BASED_CR3_LOAD_EXITING;
1908 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1909
1910 if (cpu_has_secondary_exec_ctrls()) {
1911 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1912 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1913 exec_control &=
1914 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1915 if (vmx->vpid == 0)
1916 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
1917 if (!vm_need_ept())
1918 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
1919 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1920 }
1921
1922 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1923 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1924 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1925
1926 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1927 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1928 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1929
1930 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1931 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1932 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1933 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
1934 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
1935 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1936 #ifdef CONFIG_X86_64
1937 rdmsrl(MSR_FS_BASE, a);
1938 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1939 rdmsrl(MSR_GS_BASE, a);
1940 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1941 #else
1942 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1943 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1944 #endif
1945
1946 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1947
1948 kvm_get_idt(&dt);
1949 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1950
1951 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1952 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1953 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1954 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1955 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1956
1957 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1958 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1959 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1960 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1961 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1962 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1963
1964 for (i = 0; i < NR_VMX_MSR; ++i) {
1965 u32 index = vmx_msr_index[i];
1966 u32 data_low, data_high;
1967 u64 data;
1968 int j = vmx->nmsrs;
1969
1970 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1971 continue;
1972 if (wrmsr_safe(index, data_low, data_high) < 0)
1973 continue;
1974 data = data_low | ((u64)data_high << 32);
1975 vmx->host_msrs[j].index = index;
1976 vmx->host_msrs[j].reserved = 0;
1977 vmx->host_msrs[j].data = data;
1978 vmx->guest_msrs[j] = vmx->host_msrs[j];
1979 ++vmx->nmsrs;
1980 }
1981
1982 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1983
1984 /* 22.2.1, 20.8.1 */
1985 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1986
1987 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1988 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1989
1990
1991 return 0;
1992 }
1993
1994 static int init_rmode(struct kvm *kvm)
1995 {
1996 if (!init_rmode_tss(kvm))
1997 return 0;
1998 if (!init_rmode_identity_map(kvm))
1999 return 0;
2000 return 1;
2001 }
2002
2003 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2004 {
2005 struct vcpu_vmx *vmx = to_vmx(vcpu);
2006 u64 msr;
2007 int ret;
2008
2009 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2010 down_read(&vcpu->kvm->slots_lock);
2011 if (!init_rmode(vmx->vcpu.kvm)) {
2012 ret = -ENOMEM;
2013 goto out;
2014 }
2015
2016 vmx->vcpu.arch.rmode.active = 0;
2017
2018 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2019 kvm_set_cr8(&vmx->vcpu, 0);
2020 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2021 if (vmx->vcpu.vcpu_id == 0)
2022 msr |= MSR_IA32_APICBASE_BSP;
2023 kvm_set_apic_base(&vmx->vcpu, msr);
2024
2025 fx_init(&vmx->vcpu);
2026
2027 /*
2028 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2029 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2030 */
2031 if (vmx->vcpu.vcpu_id == 0) {
2032 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2033 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2034 } else {
2035 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2036 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2037 }
2038 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2039 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2040
2041 seg_setup(VCPU_SREG_DS);
2042 seg_setup(VCPU_SREG_ES);
2043 seg_setup(VCPU_SREG_FS);
2044 seg_setup(VCPU_SREG_GS);
2045 seg_setup(VCPU_SREG_SS);
2046
2047 vmcs_write16(GUEST_TR_SELECTOR, 0);
2048 vmcs_writel(GUEST_TR_BASE, 0);
2049 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2050 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2051
2052 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2053 vmcs_writel(GUEST_LDTR_BASE, 0);
2054 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2055 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2056
2057 vmcs_write32(GUEST_SYSENTER_CS, 0);
2058 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2059 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2060
2061 vmcs_writel(GUEST_RFLAGS, 0x02);
2062 if (vmx->vcpu.vcpu_id == 0)
2063 kvm_rip_write(vcpu, 0xfff0);
2064 else
2065 kvm_rip_write(vcpu, 0);
2066 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2067
2068 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
2069 vmcs_writel(GUEST_DR7, 0x400);
2070
2071 vmcs_writel(GUEST_GDTR_BASE, 0);
2072 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2073
2074 vmcs_writel(GUEST_IDTR_BASE, 0);
2075 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2076
2077 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2078 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2079 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2080
2081 guest_write_tsc(0);
2082
2083 /* Special registers */
2084 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2085
2086 setup_msrs(vmx);
2087
2088 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2089
2090 if (cpu_has_vmx_tpr_shadow()) {
2091 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2092 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2093 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2094 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2095 vmcs_write32(TPR_THRESHOLD, 0);
2096 }
2097
2098 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2099 vmcs_write64(APIC_ACCESS_ADDR,
2100 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2101
2102 if (vmx->vpid != 0)
2103 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2104
2105 vmx->vcpu.arch.cr0 = 0x60000010;
2106 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2107 vmx_set_cr4(&vmx->vcpu, 0);
2108 vmx_set_efer(&vmx->vcpu, 0);
2109 vmx_fpu_activate(&vmx->vcpu);
2110 update_exception_bitmap(&vmx->vcpu);
2111
2112 vpid_sync_vcpu_all(vmx);
2113
2114 ret = 0;
2115
2116 out:
2117 up_read(&vcpu->kvm->slots_lock);
2118 return ret;
2119 }
2120
2121 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2122 {
2123 struct vcpu_vmx *vmx = to_vmx(vcpu);
2124
2125 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2126
2127 if (vcpu->arch.rmode.active) {
2128 vmx->rmode.irq.pending = true;
2129 vmx->rmode.irq.vector = irq;
2130 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2131 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2132 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2133 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2134 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2135 return;
2136 }
2137 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2138 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2139 }
2140
2141 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2142 {
2143 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2144 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2145 }
2146
2147 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
2148 {
2149 int word_index = __ffs(vcpu->arch.irq_summary);
2150 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
2151 int irq = word_index * BITS_PER_LONG + bit_index;
2152
2153 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
2154 if (!vcpu->arch.irq_pending[word_index])
2155 clear_bit(word_index, &vcpu->arch.irq_summary);
2156 vmx_inject_irq(vcpu, irq);
2157 }
2158
2159
2160 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2161 struct kvm_run *kvm_run)
2162 {
2163 u32 cpu_based_vm_exec_control;
2164
2165 vcpu->arch.interrupt_window_open =
2166 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2167 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2168
2169 if (vcpu->arch.interrupt_window_open &&
2170 vcpu->arch.irq_summary &&
2171 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
2172 /*
2173 * If interrupts enabled, and not blocked by sti or mov ss. Good.
2174 */
2175 kvm_do_inject_irq(vcpu);
2176
2177 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2178 if (!vcpu->arch.interrupt_window_open &&
2179 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2180 /*
2181 * Interrupts blocked. Wait for unblock.
2182 */
2183 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2184 else
2185 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2186 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2187 }
2188
2189 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2190 {
2191 int ret;
2192 struct kvm_userspace_memory_region tss_mem = {
2193 .slot = 8,
2194 .guest_phys_addr = addr,
2195 .memory_size = PAGE_SIZE * 3,
2196 .flags = 0,
2197 };
2198
2199 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2200 if (ret)
2201 return ret;
2202 kvm->arch.tss_addr = addr;
2203 return 0;
2204 }
2205
2206 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
2207 {
2208 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
2209
2210 set_debugreg(dbg->bp[0], 0);
2211 set_debugreg(dbg->bp[1], 1);
2212 set_debugreg(dbg->bp[2], 2);
2213 set_debugreg(dbg->bp[3], 3);
2214
2215 if (dbg->singlestep) {
2216 unsigned long flags;
2217
2218 flags = vmcs_readl(GUEST_RFLAGS);
2219 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
2220 vmcs_writel(GUEST_RFLAGS, flags);
2221 }
2222 }
2223
2224 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2225 int vec, u32 err_code)
2226 {
2227 /*
2228 * Instruction with address size override prefix opcode 0x67
2229 * Cause the #SS fault with 0 error code in VM86 mode.
2230 */
2231 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2232 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2233 return 1;
2234 return 0;
2235 }
2236
2237 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2238 {
2239 struct vcpu_vmx *vmx = to_vmx(vcpu);
2240 u32 intr_info, error_code;
2241 unsigned long cr2, rip;
2242 u32 vect_info;
2243 enum emulation_result er;
2244
2245 vect_info = vmx->idt_vectoring_info;
2246 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2247
2248 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2249 !is_page_fault(intr_info))
2250 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2251 "intr info 0x%x\n", __func__, vect_info, intr_info);
2252
2253 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2254 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2255 set_bit(irq, vcpu->arch.irq_pending);
2256 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2257 }
2258
2259 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2260 return 1; /* already handled by vmx_vcpu_run() */
2261
2262 if (is_no_device(intr_info)) {
2263 vmx_fpu_activate(vcpu);
2264 return 1;
2265 }
2266
2267 if (is_invalid_opcode(intr_info)) {
2268 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2269 if (er != EMULATE_DONE)
2270 kvm_queue_exception(vcpu, UD_VECTOR);
2271 return 1;
2272 }
2273
2274 error_code = 0;
2275 rip = kvm_rip_read(vcpu);
2276 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2277 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2278 if (is_page_fault(intr_info)) {
2279 /* EPT won't cause page fault directly */
2280 if (vm_need_ept())
2281 BUG();
2282 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2283 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2284 (u32)((u64)cr2 >> 32), handler);
2285 if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
2286 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2287 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2288 }
2289
2290 if (vcpu->arch.rmode.active &&
2291 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2292 error_code)) {
2293 if (vcpu->arch.halt_request) {
2294 vcpu->arch.halt_request = 0;
2295 return kvm_emulate_halt(vcpu);
2296 }
2297 return 1;
2298 }
2299
2300 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2301 (INTR_TYPE_EXCEPTION | 1)) {
2302 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2303 return 0;
2304 }
2305 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2306 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2307 kvm_run->ex.error_code = error_code;
2308 return 0;
2309 }
2310
2311 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2312 struct kvm_run *kvm_run)
2313 {
2314 ++vcpu->stat.irq_exits;
2315 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2316 return 1;
2317 }
2318
2319 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2320 {
2321 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2322 return 0;
2323 }
2324
2325 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2326 {
2327 unsigned long exit_qualification;
2328 int size, down, in, string, rep;
2329 unsigned port;
2330
2331 ++vcpu->stat.io_exits;
2332 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2333 string = (exit_qualification & 16) != 0;
2334
2335 if (string) {
2336 if (emulate_instruction(vcpu,
2337 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2338 return 0;
2339 return 1;
2340 }
2341
2342 size = (exit_qualification & 7) + 1;
2343 in = (exit_qualification & 8) != 0;
2344 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2345 rep = (exit_qualification & 32) != 0;
2346 port = exit_qualification >> 16;
2347
2348 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2349 }
2350
2351 static void
2352 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2353 {
2354 /*
2355 * Patch in the VMCALL instruction:
2356 */
2357 hypercall[0] = 0x0f;
2358 hypercall[1] = 0x01;
2359 hypercall[2] = 0xc1;
2360 }
2361
2362 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2363 {
2364 unsigned long exit_qualification;
2365 int cr;
2366 int reg;
2367
2368 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2369 cr = exit_qualification & 15;
2370 reg = (exit_qualification >> 8) & 15;
2371 switch ((exit_qualification >> 4) & 3) {
2372 case 0: /* mov to cr */
2373 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2374 (u32)kvm_register_read(vcpu, reg),
2375 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2376 handler);
2377 switch (cr) {
2378 case 0:
2379 kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2380 skip_emulated_instruction(vcpu);
2381 return 1;
2382 case 3:
2383 kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2384 skip_emulated_instruction(vcpu);
2385 return 1;
2386 case 4:
2387 kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2388 skip_emulated_instruction(vcpu);
2389 return 1;
2390 case 8:
2391 kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
2392 skip_emulated_instruction(vcpu);
2393 if (irqchip_in_kernel(vcpu->kvm))
2394 return 1;
2395 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2396 return 0;
2397 };
2398 break;
2399 case 2: /* clts */
2400 vmx_fpu_deactivate(vcpu);
2401 vcpu->arch.cr0 &= ~X86_CR0_TS;
2402 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2403 vmx_fpu_activate(vcpu);
2404 KVMTRACE_0D(CLTS, vcpu, handler);
2405 skip_emulated_instruction(vcpu);
2406 return 1;
2407 case 1: /*mov from cr*/
2408 switch (cr) {
2409 case 3:
2410 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2411 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2412 (u32)kvm_register_read(vcpu, reg),
2413 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2414 handler);
2415 skip_emulated_instruction(vcpu);
2416 return 1;
2417 case 8:
2418 kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2419 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2420 (u32)kvm_register_read(vcpu, reg), handler);
2421 skip_emulated_instruction(vcpu);
2422 return 1;
2423 }
2424 break;
2425 case 3: /* lmsw */
2426 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2427
2428 skip_emulated_instruction(vcpu);
2429 return 1;
2430 default:
2431 break;
2432 }
2433 kvm_run->exit_reason = 0;
2434 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2435 (int)(exit_qualification >> 4) & 3, cr);
2436 return 0;
2437 }
2438
2439 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2440 {
2441 unsigned long exit_qualification;
2442 unsigned long val;
2443 int dr, reg;
2444
2445 /*
2446 * FIXME: this code assumes the host is debugging the guest.
2447 * need to deal with guest debugging itself too.
2448 */
2449 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2450 dr = exit_qualification & 7;
2451 reg = (exit_qualification >> 8) & 15;
2452 if (exit_qualification & 16) {
2453 /* mov from dr */
2454 switch (dr) {
2455 case 6:
2456 val = 0xffff0ff0;
2457 break;
2458 case 7:
2459 val = 0x400;
2460 break;
2461 default:
2462 val = 0;
2463 }
2464 kvm_register_write(vcpu, reg, val);
2465 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2466 } else {
2467 /* mov to dr */
2468 }
2469 skip_emulated_instruction(vcpu);
2470 return 1;
2471 }
2472
2473 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2474 {
2475 kvm_emulate_cpuid(vcpu);
2476 return 1;
2477 }
2478
2479 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2480 {
2481 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2482 u64 data;
2483
2484 if (vmx_get_msr(vcpu, ecx, &data)) {
2485 kvm_inject_gp(vcpu, 0);
2486 return 1;
2487 }
2488
2489 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2490 handler);
2491
2492 /* FIXME: handling of bits 32:63 of rax, rdx */
2493 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2494 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2495 skip_emulated_instruction(vcpu);
2496 return 1;
2497 }
2498
2499 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2500 {
2501 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2502 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2503 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2504
2505 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2506 handler);
2507
2508 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2509 kvm_inject_gp(vcpu, 0);
2510 return 1;
2511 }
2512
2513 skip_emulated_instruction(vcpu);
2514 return 1;
2515 }
2516
2517 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2518 struct kvm_run *kvm_run)
2519 {
2520 return 1;
2521 }
2522
2523 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2524 struct kvm_run *kvm_run)
2525 {
2526 u32 cpu_based_vm_exec_control;
2527
2528 /* clear pending irq */
2529 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2530 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2531 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2532
2533 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2534
2535 /*
2536 * If the user space waits to inject interrupts, exit as soon as
2537 * possible
2538 */
2539 if (kvm_run->request_interrupt_window &&
2540 !vcpu->arch.irq_summary) {
2541 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2542 ++vcpu->stat.irq_window_exits;
2543 return 0;
2544 }
2545 return 1;
2546 }
2547
2548 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2549 {
2550 skip_emulated_instruction(vcpu);
2551 return kvm_emulate_halt(vcpu);
2552 }
2553
2554 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2555 {
2556 skip_emulated_instruction(vcpu);
2557 kvm_emulate_hypercall(vcpu);
2558 return 1;
2559 }
2560
2561 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2562 {
2563 skip_emulated_instruction(vcpu);
2564 /* TODO: Add support for VT-d/pass-through device */
2565 return 1;
2566 }
2567
2568 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2569 {
2570 u64 exit_qualification;
2571 enum emulation_result er;
2572 unsigned long offset;
2573
2574 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2575 offset = exit_qualification & 0xffful;
2576
2577 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2578
2579 if (er != EMULATE_DONE) {
2580 printk(KERN_ERR
2581 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2582 offset);
2583 return -ENOTSUPP;
2584 }
2585 return 1;
2586 }
2587
2588 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2589 {
2590 unsigned long exit_qualification;
2591 u16 tss_selector;
2592 int reason;
2593
2594 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2595
2596 reason = (u32)exit_qualification >> 30;
2597 tss_selector = exit_qualification;
2598
2599 return kvm_task_switch(vcpu, tss_selector, reason);
2600 }
2601
2602 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2603 {
2604 u64 exit_qualification;
2605 enum emulation_result er;
2606 gpa_t gpa;
2607 unsigned long hva;
2608 int gla_validity;
2609 int r;
2610
2611 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2612
2613 if (exit_qualification & (1 << 6)) {
2614 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
2615 return -ENOTSUPP;
2616 }
2617
2618 gla_validity = (exit_qualification >> 7) & 0x3;
2619 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
2620 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
2621 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2622 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2623 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2624 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2625 (long unsigned int)exit_qualification);
2626 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2627 kvm_run->hw.hardware_exit_reason = 0;
2628 return -ENOTSUPP;
2629 }
2630
2631 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
2632 hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
2633 if (!kvm_is_error_hva(hva)) {
2634 r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
2635 if (r < 0) {
2636 printk(KERN_ERR "EPT: Not enough memory!\n");
2637 return -ENOMEM;
2638 }
2639 return 1;
2640 } else {
2641 /* must be MMIO */
2642 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2643
2644 if (er == EMULATE_FAIL) {
2645 printk(KERN_ERR
2646 "EPT: Fail to handle EPT violation vmexit!er is %d\n",
2647 er);
2648 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2649 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2650 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2651 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2652 (long unsigned int)exit_qualification);
2653 return -ENOTSUPP;
2654 } else if (er == EMULATE_DO_MMIO)
2655 return 0;
2656 }
2657 return 1;
2658 }
2659
2660 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2661 {
2662 u32 cpu_based_vm_exec_control;
2663
2664 /* clear pending NMI */
2665 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2666 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2667 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2668 ++vcpu->stat.nmi_window_exits;
2669
2670 return 1;
2671 }
2672
2673 /*
2674 * The exit handlers return 1 if the exit was handled fully and guest execution
2675 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2676 * to be done to userspace and return 0.
2677 */
2678 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2679 struct kvm_run *kvm_run) = {
2680 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2681 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2682 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2683 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
2684 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2685 [EXIT_REASON_CR_ACCESS] = handle_cr,
2686 [EXIT_REASON_DR_ACCESS] = handle_dr,
2687 [EXIT_REASON_CPUID] = handle_cpuid,
2688 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2689 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2690 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2691 [EXIT_REASON_HLT] = handle_halt,
2692 [EXIT_REASON_VMCALL] = handle_vmcall,
2693 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
2694 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
2695 [EXIT_REASON_WBINVD] = handle_wbinvd,
2696 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
2697 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
2698 };
2699
2700 static const int kvm_vmx_max_exit_handlers =
2701 ARRAY_SIZE(kvm_vmx_exit_handlers);
2702
2703 /*
2704 * The guest has exited. See if we can fix it or if we need userspace
2705 * assistance.
2706 */
2707 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2708 {
2709 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2710 struct vcpu_vmx *vmx = to_vmx(vcpu);
2711 u32 vectoring_info = vmx->idt_vectoring_info;
2712
2713 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
2714 (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
2715
2716 /* Access CR3 don't cause VMExit in paging mode, so we need
2717 * to sync with guest real CR3. */
2718 if (vm_need_ept() && is_paging(vcpu)) {
2719 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2720 ept_load_pdptrs(vcpu);
2721 }
2722
2723 if (unlikely(vmx->fail)) {
2724 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2725 kvm_run->fail_entry.hardware_entry_failure_reason
2726 = vmcs_read32(VM_INSTRUCTION_ERROR);
2727 return 0;
2728 }
2729
2730 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2731 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
2732 exit_reason != EXIT_REASON_EPT_VIOLATION))
2733 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2734 "exit reason is 0x%x\n", __func__, exit_reason);
2735 if (exit_reason < kvm_vmx_max_exit_handlers
2736 && kvm_vmx_exit_handlers[exit_reason])
2737 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2738 else {
2739 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2740 kvm_run->hw.hardware_exit_reason = exit_reason;
2741 }
2742 return 0;
2743 }
2744
2745 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2746 {
2747 int max_irr, tpr;
2748
2749 if (!vm_need_tpr_shadow(vcpu->kvm))
2750 return;
2751
2752 if (!kvm_lapic_enabled(vcpu) ||
2753 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2754 vmcs_write32(TPR_THRESHOLD, 0);
2755 return;
2756 }
2757
2758 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2759 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2760 }
2761
2762 static void enable_irq_window(struct kvm_vcpu *vcpu)
2763 {
2764 u32 cpu_based_vm_exec_control;
2765
2766 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2767 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2768 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2769 }
2770
2771 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2772 {
2773 u32 cpu_based_vm_exec_control;
2774
2775 if (!cpu_has_virtual_nmis())
2776 return;
2777
2778 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2779 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2780 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2781 }
2782
2783 static int vmx_nmi_enabled(struct kvm_vcpu *vcpu)
2784 {
2785 u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2786 return !(guest_intr & (GUEST_INTR_STATE_NMI |
2787 GUEST_INTR_STATE_MOV_SS |
2788 GUEST_INTR_STATE_STI));
2789 }
2790
2791 static int vmx_irq_enabled(struct kvm_vcpu *vcpu)
2792 {
2793 u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2794 return (!(guest_intr & (GUEST_INTR_STATE_MOV_SS |
2795 GUEST_INTR_STATE_STI)) &&
2796 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
2797 }
2798
2799 static void enable_intr_window(struct kvm_vcpu *vcpu)
2800 {
2801 if (vcpu->arch.nmi_pending)
2802 enable_nmi_window(vcpu);
2803 else if (kvm_cpu_has_interrupt(vcpu))
2804 enable_irq_window(vcpu);
2805 }
2806
2807 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
2808 {
2809 u32 exit_intr_info;
2810 u32 idt_vectoring_info;
2811 bool unblock_nmi;
2812 u8 vector;
2813 int type;
2814 bool idtv_info_valid;
2815 u32 error;
2816
2817 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2818 if (cpu_has_virtual_nmis()) {
2819 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
2820 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
2821 /*
2822 * SDM 3: 25.7.1.2
2823 * Re-set bit "block by NMI" before VM entry if vmexit caused by
2824 * a guest IRET fault.
2825 */
2826 if (unblock_nmi && vector != DF_VECTOR)
2827 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2828 GUEST_INTR_STATE_NMI);
2829 }
2830
2831 idt_vectoring_info = vmx->idt_vectoring_info;
2832 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
2833 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
2834 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
2835 if (vmx->vcpu.arch.nmi_injected) {
2836 /*
2837 * SDM 3: 25.7.1.2
2838 * Clear bit "block by NMI" before VM entry if a NMI delivery
2839 * faulted.
2840 */
2841 if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
2842 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2843 GUEST_INTR_STATE_NMI);
2844 else
2845 vmx->vcpu.arch.nmi_injected = false;
2846 }
2847 kvm_clear_exception_queue(&vmx->vcpu);
2848 if (idtv_info_valid && type == INTR_TYPE_EXCEPTION) {
2849 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
2850 error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
2851 kvm_queue_exception_e(&vmx->vcpu, vector, error);
2852 } else
2853 kvm_queue_exception(&vmx->vcpu, vector);
2854 vmx->idt_vectoring_info = 0;
2855 }
2856 kvm_clear_interrupt_queue(&vmx->vcpu);
2857 if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
2858 kvm_queue_interrupt(&vmx->vcpu, vector);
2859 vmx->idt_vectoring_info = 0;
2860 }
2861 }
2862
2863 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2864 {
2865 u32 intr_info_field;
2866
2867 update_tpr_threshold(vcpu);
2868
2869 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2870 if (cpu_has_virtual_nmis()) {
2871 if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
2872 if (vmx_nmi_enabled(vcpu)) {
2873 vcpu->arch.nmi_pending = false;
2874 vcpu->arch.nmi_injected = true;
2875 } else {
2876 enable_intr_window(vcpu);
2877 return;
2878 }
2879 }
2880 if (vcpu->arch.nmi_injected) {
2881 vmx_inject_nmi(vcpu);
2882 enable_intr_window(vcpu);
2883 return;
2884 }
2885 }
2886 if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
2887 if (vmx_irq_enabled(vcpu))
2888 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
2889 else
2890 enable_irq_window(vcpu);
2891 }
2892 if (vcpu->arch.interrupt.pending) {
2893 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
2894 kvm_timer_intr_post(vcpu, vcpu->arch.interrupt.nr);
2895 }
2896 }
2897
2898 /*
2899 * Failure to inject an interrupt should give us the information
2900 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2901 * when fetching the interrupt redirection bitmap in the real-mode
2902 * tss, this doesn't happen. So we do it ourselves.
2903 */
2904 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2905 {
2906 vmx->rmode.irq.pending = 0;
2907 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
2908 return;
2909 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
2910 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2911 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2912 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2913 return;
2914 }
2915 vmx->idt_vectoring_info =
2916 VECTORING_INFO_VALID_MASK
2917 | INTR_TYPE_EXT_INTR
2918 | vmx->rmode.irq.vector;
2919 }
2920
2921 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2922 {
2923 struct vcpu_vmx *vmx = to_vmx(vcpu);
2924 u32 intr_info;
2925
2926 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
2927 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
2928 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
2929 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
2930
2931 /*
2932 * Loading guest fpu may have cleared host cr0.ts
2933 */
2934 vmcs_writel(HOST_CR0, read_cr0());
2935
2936 asm(
2937 /* Store host registers */
2938 #ifdef CONFIG_X86_64
2939 "push %%rdx; push %%rbp;"
2940 "push %%rcx \n\t"
2941 #else
2942 "push %%edx; push %%ebp;"
2943 "push %%ecx \n\t"
2944 #endif
2945 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
2946 /* Check if vmlaunch of vmresume is needed */
2947 "cmpl $0, %c[launched](%0) \n\t"
2948 /* Load guest registers. Don't clobber flags. */
2949 #ifdef CONFIG_X86_64
2950 "mov %c[cr2](%0), %%rax \n\t"
2951 "mov %%rax, %%cr2 \n\t"
2952 "mov %c[rax](%0), %%rax \n\t"
2953 "mov %c[rbx](%0), %%rbx \n\t"
2954 "mov %c[rdx](%0), %%rdx \n\t"
2955 "mov %c[rsi](%0), %%rsi \n\t"
2956 "mov %c[rdi](%0), %%rdi \n\t"
2957 "mov %c[rbp](%0), %%rbp \n\t"
2958 "mov %c[r8](%0), %%r8 \n\t"
2959 "mov %c[r9](%0), %%r9 \n\t"
2960 "mov %c[r10](%0), %%r10 \n\t"
2961 "mov %c[r11](%0), %%r11 \n\t"
2962 "mov %c[r12](%0), %%r12 \n\t"
2963 "mov %c[r13](%0), %%r13 \n\t"
2964 "mov %c[r14](%0), %%r14 \n\t"
2965 "mov %c[r15](%0), %%r15 \n\t"
2966 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2967 #else
2968 "mov %c[cr2](%0), %%eax \n\t"
2969 "mov %%eax, %%cr2 \n\t"
2970 "mov %c[rax](%0), %%eax \n\t"
2971 "mov %c[rbx](%0), %%ebx \n\t"
2972 "mov %c[rdx](%0), %%edx \n\t"
2973 "mov %c[rsi](%0), %%esi \n\t"
2974 "mov %c[rdi](%0), %%edi \n\t"
2975 "mov %c[rbp](%0), %%ebp \n\t"
2976 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2977 #endif
2978 /* Enter guest mode */
2979 "jne .Llaunched \n\t"
2980 __ex(ASM_VMX_VMLAUNCH) "\n\t"
2981 "jmp .Lkvm_vmx_return \n\t"
2982 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
2983 ".Lkvm_vmx_return: "
2984 /* Save guest registers, load host registers, keep flags */
2985 #ifdef CONFIG_X86_64
2986 "xchg %0, (%%rsp) \n\t"
2987 "mov %%rax, %c[rax](%0) \n\t"
2988 "mov %%rbx, %c[rbx](%0) \n\t"
2989 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2990 "mov %%rdx, %c[rdx](%0) \n\t"
2991 "mov %%rsi, %c[rsi](%0) \n\t"
2992 "mov %%rdi, %c[rdi](%0) \n\t"
2993 "mov %%rbp, %c[rbp](%0) \n\t"
2994 "mov %%r8, %c[r8](%0) \n\t"
2995 "mov %%r9, %c[r9](%0) \n\t"
2996 "mov %%r10, %c[r10](%0) \n\t"
2997 "mov %%r11, %c[r11](%0) \n\t"
2998 "mov %%r12, %c[r12](%0) \n\t"
2999 "mov %%r13, %c[r13](%0) \n\t"
3000 "mov %%r14, %c[r14](%0) \n\t"
3001 "mov %%r15, %c[r15](%0) \n\t"
3002 "mov %%cr2, %%rax \n\t"
3003 "mov %%rax, %c[cr2](%0) \n\t"
3004
3005 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
3006 #else
3007 "xchg %0, (%%esp) \n\t"
3008 "mov %%eax, %c[rax](%0) \n\t"
3009 "mov %%ebx, %c[rbx](%0) \n\t"
3010 "pushl (%%esp); popl %c[rcx](%0) \n\t"
3011 "mov %%edx, %c[rdx](%0) \n\t"
3012 "mov %%esi, %c[rsi](%0) \n\t"
3013 "mov %%edi, %c[rdi](%0) \n\t"
3014 "mov %%ebp, %c[rbp](%0) \n\t"
3015 "mov %%cr2, %%eax \n\t"
3016 "mov %%eax, %c[cr2](%0) \n\t"
3017
3018 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
3019 #endif
3020 "setbe %c[fail](%0) \n\t"
3021 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3022 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3023 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3024 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3025 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3026 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3027 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3028 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3029 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3030 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3031 #ifdef CONFIG_X86_64
3032 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3033 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3034 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3035 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3036 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3037 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3038 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3039 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3040 #endif
3041 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3042 : "cc", "memory"
3043 #ifdef CONFIG_X86_64
3044 , "rbx", "rdi", "rsi"
3045 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3046 #else
3047 , "ebx", "edi", "rsi"
3048 #endif
3049 );
3050
3051 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3052 vcpu->arch.regs_dirty = 0;
3053
3054 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3055 if (vmx->rmode.irq.pending)
3056 fixup_rmode_irq(vmx);
3057
3058 vcpu->arch.interrupt_window_open =
3059 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3060 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)) == 0;
3061
3062 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3063 vmx->launched = 1;
3064
3065 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3066
3067 /* We need to handle NMIs before interrupts are enabled */
3068 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200 &&
3069 (intr_info & INTR_INFO_VALID_MASK)) {
3070 KVMTRACE_0D(NMI, vcpu, handler);
3071 asm("int $2");
3072 }
3073
3074 vmx_complete_interrupts(vmx);
3075 }
3076
3077 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3078 {
3079 struct vcpu_vmx *vmx = to_vmx(vcpu);
3080
3081 if (vmx->vmcs) {
3082 vcpu_clear(vmx);
3083 free_vmcs(vmx->vmcs);
3084 vmx->vmcs = NULL;
3085 }
3086 }
3087
3088 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3089 {
3090 struct vcpu_vmx *vmx = to_vmx(vcpu);
3091
3092 spin_lock(&vmx_vpid_lock);
3093 if (vmx->vpid != 0)
3094 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3095 spin_unlock(&vmx_vpid_lock);
3096 vmx_free_vmcs(vcpu);
3097 kfree(vmx->host_msrs);
3098 kfree(vmx->guest_msrs);
3099 kvm_vcpu_uninit(vcpu);
3100 kmem_cache_free(kvm_vcpu_cache, vmx);
3101 }
3102
3103 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3104 {
3105 int err;
3106 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3107 int cpu;
3108
3109 if (!vmx)
3110 return ERR_PTR(-ENOMEM);
3111
3112 allocate_vpid(vmx);
3113
3114 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3115 if (err)
3116 goto free_vcpu;
3117
3118 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3119 if (!vmx->guest_msrs) {
3120 err = -ENOMEM;
3121 goto uninit_vcpu;
3122 }
3123
3124 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3125 if (!vmx->host_msrs)
3126 goto free_guest_msrs;
3127
3128 vmx->vmcs = alloc_vmcs();
3129 if (!vmx->vmcs)
3130 goto free_msrs;
3131
3132 vmcs_clear(vmx->vmcs);
3133
3134 cpu = get_cpu();
3135 vmx_vcpu_load(&vmx->vcpu, cpu);
3136 err = vmx_vcpu_setup(vmx);
3137 vmx_vcpu_put(&vmx->vcpu);
3138 put_cpu();
3139 if (err)
3140 goto free_vmcs;
3141 if (vm_need_virtualize_apic_accesses(kvm))
3142 if (alloc_apic_access_page(kvm) != 0)
3143 goto free_vmcs;
3144
3145 if (vm_need_ept())
3146 if (alloc_identity_pagetable(kvm) != 0)
3147 goto free_vmcs;
3148
3149 return &vmx->vcpu;
3150
3151 free_vmcs:
3152 free_vmcs(vmx->vmcs);
3153 free_msrs:
3154 kfree(vmx->host_msrs);
3155 free_guest_msrs:
3156 kfree(vmx->guest_msrs);
3157 uninit_vcpu:
3158 kvm_vcpu_uninit(&vmx->vcpu);
3159 free_vcpu:
3160 kmem_cache_free(kvm_vcpu_cache, vmx);
3161 return ERR_PTR(err);
3162 }
3163
3164 static void __init vmx_check_processor_compat(void *rtn)
3165 {
3166 struct vmcs_config vmcs_conf;
3167
3168 *(int *)rtn = 0;
3169 if (setup_vmcs_config(&vmcs_conf) < 0)
3170 *(int *)rtn = -EIO;
3171 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3172 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3173 smp_processor_id());
3174 *(int *)rtn = -EIO;
3175 }
3176 }
3177
3178 static int get_ept_level(void)
3179 {
3180 return VMX_EPT_DEFAULT_GAW + 1;
3181 }
3182
3183 static struct kvm_x86_ops vmx_x86_ops = {
3184 .cpu_has_kvm_support = cpu_has_kvm_support,
3185 .disabled_by_bios = vmx_disabled_by_bios,
3186 .hardware_setup = hardware_setup,
3187 .hardware_unsetup = hardware_unsetup,
3188 .check_processor_compatibility = vmx_check_processor_compat,
3189 .hardware_enable = hardware_enable,
3190 .hardware_disable = hardware_disable,
3191 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
3192
3193 .vcpu_create = vmx_create_vcpu,
3194 .vcpu_free = vmx_free_vcpu,
3195 .vcpu_reset = vmx_vcpu_reset,
3196
3197 .prepare_guest_switch = vmx_save_host_state,
3198 .vcpu_load = vmx_vcpu_load,
3199 .vcpu_put = vmx_vcpu_put,
3200
3201 .set_guest_debug = set_guest_debug,
3202 .guest_debug_pre = kvm_guest_debug_pre,
3203 .get_msr = vmx_get_msr,
3204 .set_msr = vmx_set_msr,
3205 .get_segment_base = vmx_get_segment_base,
3206 .get_segment = vmx_get_segment,
3207 .set_segment = vmx_set_segment,
3208 .get_cpl = vmx_get_cpl,
3209 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3210 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3211 .set_cr0 = vmx_set_cr0,
3212 .set_cr3 = vmx_set_cr3,
3213 .set_cr4 = vmx_set_cr4,
3214 .set_efer = vmx_set_efer,
3215 .get_idt = vmx_get_idt,
3216 .set_idt = vmx_set_idt,
3217 .get_gdt = vmx_get_gdt,
3218 .set_gdt = vmx_set_gdt,
3219 .cache_reg = vmx_cache_reg,
3220 .get_rflags = vmx_get_rflags,
3221 .set_rflags = vmx_set_rflags,
3222
3223 .tlb_flush = vmx_flush_tlb,
3224
3225 .run = vmx_vcpu_run,
3226 .handle_exit = kvm_handle_exit,
3227 .skip_emulated_instruction = skip_emulated_instruction,
3228 .patch_hypercall = vmx_patch_hypercall,
3229 .get_irq = vmx_get_irq,
3230 .set_irq = vmx_inject_irq,
3231 .queue_exception = vmx_queue_exception,
3232 .exception_injected = vmx_exception_injected,
3233 .inject_pending_irq = vmx_intr_assist,
3234 .inject_pending_vectors = do_interrupt_requests,
3235
3236 .set_tss_addr = vmx_set_tss_addr,
3237 .get_tdp_level = get_ept_level,
3238 };
3239
3240 static int __init vmx_init(void)
3241 {
3242 void *va;
3243 int r;
3244
3245 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3246 if (!vmx_io_bitmap_a)
3247 return -ENOMEM;
3248
3249 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3250 if (!vmx_io_bitmap_b) {
3251 r = -ENOMEM;
3252 goto out;
3253 }
3254
3255 vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3256 if (!vmx_msr_bitmap) {
3257 r = -ENOMEM;
3258 goto out1;
3259 }
3260
3261 /*
3262 * Allow direct access to the PC debug port (it is often used for I/O
3263 * delays, but the vmexits simply slow things down).
3264 */
3265 va = kmap(vmx_io_bitmap_a);
3266 memset(va, 0xff, PAGE_SIZE);
3267 clear_bit(0x80, va);
3268 kunmap(vmx_io_bitmap_a);
3269
3270 va = kmap(vmx_io_bitmap_b);
3271 memset(va, 0xff, PAGE_SIZE);
3272 kunmap(vmx_io_bitmap_b);
3273
3274 va = kmap(vmx_msr_bitmap);
3275 memset(va, 0xff, PAGE_SIZE);
3276 kunmap(vmx_msr_bitmap);
3277
3278 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3279
3280 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3281 if (r)
3282 goto out2;
3283
3284 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
3285 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
3286 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
3287 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
3288 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
3289
3290 if (vm_need_ept()) {
3291 bypass_guest_pf = 0;
3292 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3293 VMX_EPT_WRITABLE_MASK |
3294 VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3295 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3296 VMX_EPT_EXECUTABLE_MASK);
3297 kvm_enable_tdp();
3298 } else
3299 kvm_disable_tdp();
3300
3301 if (bypass_guest_pf)
3302 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3303
3304 ept_sync_global();
3305
3306 return 0;
3307
3308 out2:
3309 __free_page(vmx_msr_bitmap);
3310 out1:
3311 __free_page(vmx_io_bitmap_b);
3312 out:
3313 __free_page(vmx_io_bitmap_a);
3314 return r;
3315 }
3316
3317 static void __exit vmx_exit(void)
3318 {
3319 __free_page(vmx_msr_bitmap);
3320 __free_page(vmx_io_bitmap_b);
3321 __free_page(vmx_io_bitmap_a);
3322
3323 kvm_exit();
3324 }
3325
3326 module_init(vmx_init)
3327 module_exit(vmx_exit)