]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
KVM: x86: Break kvm_for_each_vcpu loop after finding the VP_INDEX
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
36
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45 #include <asm/kexec.h>
46
47 #include "trace.h"
48
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50 #define __ex_clear(x, reg) \
51 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id vmx_cpu_id[] = {
57 X86_FEATURE_MATCH(X86_FEATURE_VMX),
58 {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
62 static bool __read_mostly enable_vpid = 1;
63 module_param_named(vpid, enable_vpid, bool, 0444);
64
65 static bool __read_mostly flexpriority_enabled = 1;
66 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
67
68 static bool __read_mostly enable_ept = 1;
69 module_param_named(ept, enable_ept, bool, S_IRUGO);
70
71 static bool __read_mostly enable_unrestricted_guest = 1;
72 module_param_named(unrestricted_guest,
73 enable_unrestricted_guest, bool, S_IRUGO);
74
75 static bool __read_mostly enable_ept_ad_bits = 1;
76 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
78 static bool __read_mostly emulate_invalid_guest_state = true;
79 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
80
81 static bool __read_mostly vmm_exclusive = 1;
82 module_param(vmm_exclusive, bool, S_IRUGO);
83
84 static bool __read_mostly fasteoi = 1;
85 module_param(fasteoi, bool, S_IRUGO);
86
87 static bool __read_mostly enable_apicv = 1;
88 module_param(enable_apicv, bool, S_IRUGO);
89
90 static bool __read_mostly enable_shadow_vmcs = 1;
91 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
92 /*
93 * If nested=1, nested virtualization is supported, i.e., guests may use
94 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
95 * use VMX instructions.
96 */
97 static bool __read_mostly nested = 0;
98 module_param(nested, bool, S_IRUGO);
99
100 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
101 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
102 #define KVM_VM_CR0_ALWAYS_ON \
103 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
104 #define KVM_CR4_GUEST_OWNED_BITS \
105 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
106 | X86_CR4_OSXMMEXCPT)
107
108 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
109 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
110
111 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
112
113 /*
114 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
115 * ple_gap: upper bound on the amount of time between two successive
116 * executions of PAUSE in a loop. Also indicate if ple enabled.
117 * According to test, this time is usually smaller than 128 cycles.
118 * ple_window: upper bound on the amount of time a guest is allowed to execute
119 * in a PAUSE loop. Tests indicate that most spinlocks are held for
120 * less than 2^12 cycles
121 * Time is measured based on a counter that runs at the same rate as the TSC,
122 * refer SDM volume 3b section 21.6.13 & 22.1.3.
123 */
124 #define KVM_VMX_DEFAULT_PLE_GAP 128
125 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
126 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
127 module_param(ple_gap, int, S_IRUGO);
128
129 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
130 module_param(ple_window, int, S_IRUGO);
131
132 extern const ulong vmx_return;
133
134 #define NR_AUTOLOAD_MSRS 8
135 #define VMCS02_POOL_SIZE 1
136
137 struct vmcs {
138 u32 revision_id;
139 u32 abort;
140 char data[0];
141 };
142
143 /*
144 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
145 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
146 * loaded on this CPU (so we can clear them if the CPU goes down).
147 */
148 struct loaded_vmcs {
149 struct vmcs *vmcs;
150 int cpu;
151 int launched;
152 struct list_head loaded_vmcss_on_cpu_link;
153 };
154
155 struct shared_msr_entry {
156 unsigned index;
157 u64 data;
158 u64 mask;
159 };
160
161 /*
162 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
163 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
164 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
165 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
166 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
167 * More than one of these structures may exist, if L1 runs multiple L2 guests.
168 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
169 * underlying hardware which will be used to run L2.
170 * This structure is packed to ensure that its layout is identical across
171 * machines (necessary for live migration).
172 * If there are changes in this struct, VMCS12_REVISION must be changed.
173 */
174 typedef u64 natural_width;
175 struct __packed vmcs12 {
176 /* According to the Intel spec, a VMCS region must start with the
177 * following two fields. Then follow implementation-specific data.
178 */
179 u32 revision_id;
180 u32 abort;
181
182 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
183 u32 padding[7]; /* room for future expansion */
184
185 u64 io_bitmap_a;
186 u64 io_bitmap_b;
187 u64 msr_bitmap;
188 u64 vm_exit_msr_store_addr;
189 u64 vm_exit_msr_load_addr;
190 u64 vm_entry_msr_load_addr;
191 u64 tsc_offset;
192 u64 virtual_apic_page_addr;
193 u64 apic_access_addr;
194 u64 ept_pointer;
195 u64 guest_physical_address;
196 u64 vmcs_link_pointer;
197 u64 guest_ia32_debugctl;
198 u64 guest_ia32_pat;
199 u64 guest_ia32_efer;
200 u64 guest_ia32_perf_global_ctrl;
201 u64 guest_pdptr0;
202 u64 guest_pdptr1;
203 u64 guest_pdptr2;
204 u64 guest_pdptr3;
205 u64 host_ia32_pat;
206 u64 host_ia32_efer;
207 u64 host_ia32_perf_global_ctrl;
208 u64 padding64[8]; /* room for future expansion */
209 /*
210 * To allow migration of L1 (complete with its L2 guests) between
211 * machines of different natural widths (32 or 64 bit), we cannot have
212 * unsigned long fields with no explict size. We use u64 (aliased
213 * natural_width) instead. Luckily, x86 is little-endian.
214 */
215 natural_width cr0_guest_host_mask;
216 natural_width cr4_guest_host_mask;
217 natural_width cr0_read_shadow;
218 natural_width cr4_read_shadow;
219 natural_width cr3_target_value0;
220 natural_width cr3_target_value1;
221 natural_width cr3_target_value2;
222 natural_width cr3_target_value3;
223 natural_width exit_qualification;
224 natural_width guest_linear_address;
225 natural_width guest_cr0;
226 natural_width guest_cr3;
227 natural_width guest_cr4;
228 natural_width guest_es_base;
229 natural_width guest_cs_base;
230 natural_width guest_ss_base;
231 natural_width guest_ds_base;
232 natural_width guest_fs_base;
233 natural_width guest_gs_base;
234 natural_width guest_ldtr_base;
235 natural_width guest_tr_base;
236 natural_width guest_gdtr_base;
237 natural_width guest_idtr_base;
238 natural_width guest_dr7;
239 natural_width guest_rsp;
240 natural_width guest_rip;
241 natural_width guest_rflags;
242 natural_width guest_pending_dbg_exceptions;
243 natural_width guest_sysenter_esp;
244 natural_width guest_sysenter_eip;
245 natural_width host_cr0;
246 natural_width host_cr3;
247 natural_width host_cr4;
248 natural_width host_fs_base;
249 natural_width host_gs_base;
250 natural_width host_tr_base;
251 natural_width host_gdtr_base;
252 natural_width host_idtr_base;
253 natural_width host_ia32_sysenter_esp;
254 natural_width host_ia32_sysenter_eip;
255 natural_width host_rsp;
256 natural_width host_rip;
257 natural_width paddingl[8]; /* room for future expansion */
258 u32 pin_based_vm_exec_control;
259 u32 cpu_based_vm_exec_control;
260 u32 exception_bitmap;
261 u32 page_fault_error_code_mask;
262 u32 page_fault_error_code_match;
263 u32 cr3_target_count;
264 u32 vm_exit_controls;
265 u32 vm_exit_msr_store_count;
266 u32 vm_exit_msr_load_count;
267 u32 vm_entry_controls;
268 u32 vm_entry_msr_load_count;
269 u32 vm_entry_intr_info_field;
270 u32 vm_entry_exception_error_code;
271 u32 vm_entry_instruction_len;
272 u32 tpr_threshold;
273 u32 secondary_vm_exec_control;
274 u32 vm_instruction_error;
275 u32 vm_exit_reason;
276 u32 vm_exit_intr_info;
277 u32 vm_exit_intr_error_code;
278 u32 idt_vectoring_info_field;
279 u32 idt_vectoring_error_code;
280 u32 vm_exit_instruction_len;
281 u32 vmx_instruction_info;
282 u32 guest_es_limit;
283 u32 guest_cs_limit;
284 u32 guest_ss_limit;
285 u32 guest_ds_limit;
286 u32 guest_fs_limit;
287 u32 guest_gs_limit;
288 u32 guest_ldtr_limit;
289 u32 guest_tr_limit;
290 u32 guest_gdtr_limit;
291 u32 guest_idtr_limit;
292 u32 guest_es_ar_bytes;
293 u32 guest_cs_ar_bytes;
294 u32 guest_ss_ar_bytes;
295 u32 guest_ds_ar_bytes;
296 u32 guest_fs_ar_bytes;
297 u32 guest_gs_ar_bytes;
298 u32 guest_ldtr_ar_bytes;
299 u32 guest_tr_ar_bytes;
300 u32 guest_interruptibility_info;
301 u32 guest_activity_state;
302 u32 guest_sysenter_cs;
303 u32 host_ia32_sysenter_cs;
304 u32 vmx_preemption_timer_value;
305 u32 padding32[7]; /* room for future expansion */
306 u16 virtual_processor_id;
307 u16 guest_es_selector;
308 u16 guest_cs_selector;
309 u16 guest_ss_selector;
310 u16 guest_ds_selector;
311 u16 guest_fs_selector;
312 u16 guest_gs_selector;
313 u16 guest_ldtr_selector;
314 u16 guest_tr_selector;
315 u16 host_es_selector;
316 u16 host_cs_selector;
317 u16 host_ss_selector;
318 u16 host_ds_selector;
319 u16 host_fs_selector;
320 u16 host_gs_selector;
321 u16 host_tr_selector;
322 };
323
324 /*
325 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
326 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
327 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
328 */
329 #define VMCS12_REVISION 0x11e57ed0
330
331 /*
332 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
333 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
334 * current implementation, 4K are reserved to avoid future complications.
335 */
336 #define VMCS12_SIZE 0x1000
337
338 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
339 struct vmcs02_list {
340 struct list_head list;
341 gpa_t vmptr;
342 struct loaded_vmcs vmcs02;
343 };
344
345 /*
346 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
347 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
348 */
349 struct nested_vmx {
350 /* Has the level1 guest done vmxon? */
351 bool vmxon;
352
353 /* The guest-physical address of the current VMCS L1 keeps for L2 */
354 gpa_t current_vmptr;
355 /* The host-usable pointer to the above */
356 struct page *current_vmcs12_page;
357 struct vmcs12 *current_vmcs12;
358 struct vmcs *current_shadow_vmcs;
359 /*
360 * Indicates if the shadow vmcs must be updated with the
361 * data hold by vmcs12
362 */
363 bool sync_shadow_vmcs;
364
365 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
366 struct list_head vmcs02_pool;
367 int vmcs02_num;
368 u64 vmcs01_tsc_offset;
369 /* L2 must run next, and mustn't decide to exit to L1. */
370 bool nested_run_pending;
371 /*
372 * Guest pages referred to in vmcs02 with host-physical pointers, so
373 * we must keep them pinned while L2 runs.
374 */
375 struct page *apic_access_page;
376 u64 msr_ia32_feature_control;
377 };
378
379 #define POSTED_INTR_ON 0
380 /* Posted-Interrupt Descriptor */
381 struct pi_desc {
382 u32 pir[8]; /* Posted interrupt requested */
383 u32 control; /* bit 0 of control is outstanding notification bit */
384 u32 rsvd[7];
385 } __aligned(64);
386
387 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
388 {
389 return test_and_set_bit(POSTED_INTR_ON,
390 (unsigned long *)&pi_desc->control);
391 }
392
393 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
394 {
395 return test_and_clear_bit(POSTED_INTR_ON,
396 (unsigned long *)&pi_desc->control);
397 }
398
399 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
400 {
401 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
402 }
403
404 struct vcpu_vmx {
405 struct kvm_vcpu vcpu;
406 unsigned long host_rsp;
407 u8 fail;
408 u8 cpl;
409 bool nmi_known_unmasked;
410 u32 exit_intr_info;
411 u32 idt_vectoring_info;
412 ulong rflags;
413 struct shared_msr_entry *guest_msrs;
414 int nmsrs;
415 int save_nmsrs;
416 unsigned long host_idt_base;
417 #ifdef CONFIG_X86_64
418 u64 msr_host_kernel_gs_base;
419 u64 msr_guest_kernel_gs_base;
420 #endif
421 u32 vm_entry_controls_shadow;
422 u32 vm_exit_controls_shadow;
423 /*
424 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
425 * non-nested (L1) guest, it always points to vmcs01. For a nested
426 * guest (L2), it points to a different VMCS.
427 */
428 struct loaded_vmcs vmcs01;
429 struct loaded_vmcs *loaded_vmcs;
430 bool __launched; /* temporary, used in vmx_vcpu_run */
431 struct msr_autoload {
432 unsigned nr;
433 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
434 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
435 } msr_autoload;
436 struct {
437 int loaded;
438 u16 fs_sel, gs_sel, ldt_sel;
439 #ifdef CONFIG_X86_64
440 u16 ds_sel, es_sel;
441 #endif
442 int gs_ldt_reload_needed;
443 int fs_reload_needed;
444 u64 msr_host_bndcfgs;
445 } host_state;
446 struct {
447 int vm86_active;
448 ulong save_rflags;
449 struct kvm_segment segs[8];
450 } rmode;
451 struct {
452 u32 bitmask; /* 4 bits per segment (1 bit per field) */
453 struct kvm_save_segment {
454 u16 selector;
455 unsigned long base;
456 u32 limit;
457 u32 ar;
458 } seg[8];
459 } segment_cache;
460 int vpid;
461 bool emulation_required;
462
463 /* Support for vnmi-less CPUs */
464 int soft_vnmi_blocked;
465 ktime_t entry_time;
466 s64 vnmi_blocked_time;
467 u32 exit_reason;
468
469 bool rdtscp_enabled;
470
471 /* Posted interrupt descriptor */
472 struct pi_desc pi_desc;
473
474 /* Support for a guest hypervisor (nested VMX) */
475 struct nested_vmx nested;
476 };
477
478 enum segment_cache_field {
479 SEG_FIELD_SEL = 0,
480 SEG_FIELD_BASE = 1,
481 SEG_FIELD_LIMIT = 2,
482 SEG_FIELD_AR = 3,
483
484 SEG_FIELD_NR = 4
485 };
486
487 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
488 {
489 return container_of(vcpu, struct vcpu_vmx, vcpu);
490 }
491
492 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
493 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
494 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
495 [number##_HIGH] = VMCS12_OFFSET(name)+4
496
497
498 static const unsigned long shadow_read_only_fields[] = {
499 /*
500 * We do NOT shadow fields that are modified when L0
501 * traps and emulates any vmx instruction (e.g. VMPTRLD,
502 * VMXON...) executed by L1.
503 * For example, VM_INSTRUCTION_ERROR is read
504 * by L1 if a vmx instruction fails (part of the error path).
505 * Note the code assumes this logic. If for some reason
506 * we start shadowing these fields then we need to
507 * force a shadow sync when L0 emulates vmx instructions
508 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
509 * by nested_vmx_failValid)
510 */
511 VM_EXIT_REASON,
512 VM_EXIT_INTR_INFO,
513 VM_EXIT_INSTRUCTION_LEN,
514 IDT_VECTORING_INFO_FIELD,
515 IDT_VECTORING_ERROR_CODE,
516 VM_EXIT_INTR_ERROR_CODE,
517 EXIT_QUALIFICATION,
518 GUEST_LINEAR_ADDRESS,
519 GUEST_PHYSICAL_ADDRESS
520 };
521 static const int max_shadow_read_only_fields =
522 ARRAY_SIZE(shadow_read_only_fields);
523
524 static const unsigned long shadow_read_write_fields[] = {
525 GUEST_RIP,
526 GUEST_RSP,
527 GUEST_CR0,
528 GUEST_CR3,
529 GUEST_CR4,
530 GUEST_INTERRUPTIBILITY_INFO,
531 GUEST_RFLAGS,
532 GUEST_CS_SELECTOR,
533 GUEST_CS_AR_BYTES,
534 GUEST_CS_LIMIT,
535 GUEST_CS_BASE,
536 GUEST_ES_BASE,
537 CR0_GUEST_HOST_MASK,
538 CR0_READ_SHADOW,
539 CR4_READ_SHADOW,
540 TSC_OFFSET,
541 EXCEPTION_BITMAP,
542 CPU_BASED_VM_EXEC_CONTROL,
543 VM_ENTRY_EXCEPTION_ERROR_CODE,
544 VM_ENTRY_INTR_INFO_FIELD,
545 VM_ENTRY_INSTRUCTION_LEN,
546 VM_ENTRY_EXCEPTION_ERROR_CODE,
547 HOST_FS_BASE,
548 HOST_GS_BASE,
549 HOST_FS_SELECTOR,
550 HOST_GS_SELECTOR
551 };
552 static const int max_shadow_read_write_fields =
553 ARRAY_SIZE(shadow_read_write_fields);
554
555 static const unsigned short vmcs_field_to_offset_table[] = {
556 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
557 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
558 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
559 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
560 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
561 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
562 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
563 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
564 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
565 FIELD(HOST_ES_SELECTOR, host_es_selector),
566 FIELD(HOST_CS_SELECTOR, host_cs_selector),
567 FIELD(HOST_SS_SELECTOR, host_ss_selector),
568 FIELD(HOST_DS_SELECTOR, host_ds_selector),
569 FIELD(HOST_FS_SELECTOR, host_fs_selector),
570 FIELD(HOST_GS_SELECTOR, host_gs_selector),
571 FIELD(HOST_TR_SELECTOR, host_tr_selector),
572 FIELD64(IO_BITMAP_A, io_bitmap_a),
573 FIELD64(IO_BITMAP_B, io_bitmap_b),
574 FIELD64(MSR_BITMAP, msr_bitmap),
575 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
576 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
577 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
578 FIELD64(TSC_OFFSET, tsc_offset),
579 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
580 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
581 FIELD64(EPT_POINTER, ept_pointer),
582 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
583 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
584 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
585 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
586 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
587 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
588 FIELD64(GUEST_PDPTR0, guest_pdptr0),
589 FIELD64(GUEST_PDPTR1, guest_pdptr1),
590 FIELD64(GUEST_PDPTR2, guest_pdptr2),
591 FIELD64(GUEST_PDPTR3, guest_pdptr3),
592 FIELD64(HOST_IA32_PAT, host_ia32_pat),
593 FIELD64(HOST_IA32_EFER, host_ia32_efer),
594 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
595 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
596 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
597 FIELD(EXCEPTION_BITMAP, exception_bitmap),
598 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
599 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
600 FIELD(CR3_TARGET_COUNT, cr3_target_count),
601 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
602 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
603 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
604 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
605 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
606 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
607 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
608 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
609 FIELD(TPR_THRESHOLD, tpr_threshold),
610 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
611 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
612 FIELD(VM_EXIT_REASON, vm_exit_reason),
613 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
614 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
615 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
616 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
617 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
618 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
619 FIELD(GUEST_ES_LIMIT, guest_es_limit),
620 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
621 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
622 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
623 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
624 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
625 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
626 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
627 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
628 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
629 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
630 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
631 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
632 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
633 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
634 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
635 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
636 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
637 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
638 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
639 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
640 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
641 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
642 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
643 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
644 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
645 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
646 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
647 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
648 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
649 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
650 FIELD(EXIT_QUALIFICATION, exit_qualification),
651 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
652 FIELD(GUEST_CR0, guest_cr0),
653 FIELD(GUEST_CR3, guest_cr3),
654 FIELD(GUEST_CR4, guest_cr4),
655 FIELD(GUEST_ES_BASE, guest_es_base),
656 FIELD(GUEST_CS_BASE, guest_cs_base),
657 FIELD(GUEST_SS_BASE, guest_ss_base),
658 FIELD(GUEST_DS_BASE, guest_ds_base),
659 FIELD(GUEST_FS_BASE, guest_fs_base),
660 FIELD(GUEST_GS_BASE, guest_gs_base),
661 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
662 FIELD(GUEST_TR_BASE, guest_tr_base),
663 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
664 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
665 FIELD(GUEST_DR7, guest_dr7),
666 FIELD(GUEST_RSP, guest_rsp),
667 FIELD(GUEST_RIP, guest_rip),
668 FIELD(GUEST_RFLAGS, guest_rflags),
669 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
670 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
671 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
672 FIELD(HOST_CR0, host_cr0),
673 FIELD(HOST_CR3, host_cr3),
674 FIELD(HOST_CR4, host_cr4),
675 FIELD(HOST_FS_BASE, host_fs_base),
676 FIELD(HOST_GS_BASE, host_gs_base),
677 FIELD(HOST_TR_BASE, host_tr_base),
678 FIELD(HOST_GDTR_BASE, host_gdtr_base),
679 FIELD(HOST_IDTR_BASE, host_idtr_base),
680 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
681 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
682 FIELD(HOST_RSP, host_rsp),
683 FIELD(HOST_RIP, host_rip),
684 };
685 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
686
687 static inline short vmcs_field_to_offset(unsigned long field)
688 {
689 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
690 return -1;
691 return vmcs_field_to_offset_table[field];
692 }
693
694 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
695 {
696 return to_vmx(vcpu)->nested.current_vmcs12;
697 }
698
699 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
700 {
701 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
702 if (is_error_page(page))
703 return NULL;
704
705 return page;
706 }
707
708 static void nested_release_page(struct page *page)
709 {
710 kvm_release_page_dirty(page);
711 }
712
713 static void nested_release_page_clean(struct page *page)
714 {
715 kvm_release_page_clean(page);
716 }
717
718 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
719 static u64 construct_eptp(unsigned long root_hpa);
720 static void kvm_cpu_vmxon(u64 addr);
721 static void kvm_cpu_vmxoff(void);
722 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
723 static void vmx_set_segment(struct kvm_vcpu *vcpu,
724 struct kvm_segment *var, int seg);
725 static void vmx_get_segment(struct kvm_vcpu *vcpu,
726 struct kvm_segment *var, int seg);
727 static bool guest_state_valid(struct kvm_vcpu *vcpu);
728 static u32 vmx_segment_access_rights(struct kvm_segment *var);
729 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
730 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
731 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
732
733 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
734 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
735 /*
736 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
737 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
738 */
739 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
740 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
741
742 static unsigned long *vmx_io_bitmap_a;
743 static unsigned long *vmx_io_bitmap_b;
744 static unsigned long *vmx_msr_bitmap_legacy;
745 static unsigned long *vmx_msr_bitmap_longmode;
746 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
747 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
748 static unsigned long *vmx_vmread_bitmap;
749 static unsigned long *vmx_vmwrite_bitmap;
750
751 static bool cpu_has_load_ia32_efer;
752 static bool cpu_has_load_perf_global_ctrl;
753
754 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
755 static DEFINE_SPINLOCK(vmx_vpid_lock);
756
757 static struct vmcs_config {
758 int size;
759 int order;
760 u32 revision_id;
761 u32 pin_based_exec_ctrl;
762 u32 cpu_based_exec_ctrl;
763 u32 cpu_based_2nd_exec_ctrl;
764 u32 vmexit_ctrl;
765 u32 vmentry_ctrl;
766 } vmcs_config;
767
768 static struct vmx_capability {
769 u32 ept;
770 u32 vpid;
771 } vmx_capability;
772
773 #define VMX_SEGMENT_FIELD(seg) \
774 [VCPU_SREG_##seg] = { \
775 .selector = GUEST_##seg##_SELECTOR, \
776 .base = GUEST_##seg##_BASE, \
777 .limit = GUEST_##seg##_LIMIT, \
778 .ar_bytes = GUEST_##seg##_AR_BYTES, \
779 }
780
781 static const struct kvm_vmx_segment_field {
782 unsigned selector;
783 unsigned base;
784 unsigned limit;
785 unsigned ar_bytes;
786 } kvm_vmx_segment_fields[] = {
787 VMX_SEGMENT_FIELD(CS),
788 VMX_SEGMENT_FIELD(DS),
789 VMX_SEGMENT_FIELD(ES),
790 VMX_SEGMENT_FIELD(FS),
791 VMX_SEGMENT_FIELD(GS),
792 VMX_SEGMENT_FIELD(SS),
793 VMX_SEGMENT_FIELD(TR),
794 VMX_SEGMENT_FIELD(LDTR),
795 };
796
797 static u64 host_efer;
798
799 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
800
801 /*
802 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
803 * away by decrementing the array size.
804 */
805 static const u32 vmx_msr_index[] = {
806 #ifdef CONFIG_X86_64
807 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
808 #endif
809 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
810 };
811 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
812
813 static inline bool is_page_fault(u32 intr_info)
814 {
815 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
816 INTR_INFO_VALID_MASK)) ==
817 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
818 }
819
820 static inline bool is_no_device(u32 intr_info)
821 {
822 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
823 INTR_INFO_VALID_MASK)) ==
824 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
825 }
826
827 static inline bool is_invalid_opcode(u32 intr_info)
828 {
829 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
830 INTR_INFO_VALID_MASK)) ==
831 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
832 }
833
834 static inline bool is_external_interrupt(u32 intr_info)
835 {
836 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
837 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
838 }
839
840 static inline bool is_machine_check(u32 intr_info)
841 {
842 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
843 INTR_INFO_VALID_MASK)) ==
844 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
845 }
846
847 static inline bool cpu_has_vmx_msr_bitmap(void)
848 {
849 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
850 }
851
852 static inline bool cpu_has_vmx_tpr_shadow(void)
853 {
854 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
855 }
856
857 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
858 {
859 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
860 }
861
862 static inline bool cpu_has_secondary_exec_ctrls(void)
863 {
864 return vmcs_config.cpu_based_exec_ctrl &
865 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
866 }
867
868 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
869 {
870 return vmcs_config.cpu_based_2nd_exec_ctrl &
871 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
872 }
873
874 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
875 {
876 return vmcs_config.cpu_based_2nd_exec_ctrl &
877 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
878 }
879
880 static inline bool cpu_has_vmx_apic_register_virt(void)
881 {
882 return vmcs_config.cpu_based_2nd_exec_ctrl &
883 SECONDARY_EXEC_APIC_REGISTER_VIRT;
884 }
885
886 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
887 {
888 return vmcs_config.cpu_based_2nd_exec_ctrl &
889 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
890 }
891
892 static inline bool cpu_has_vmx_posted_intr(void)
893 {
894 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
895 }
896
897 static inline bool cpu_has_vmx_apicv(void)
898 {
899 return cpu_has_vmx_apic_register_virt() &&
900 cpu_has_vmx_virtual_intr_delivery() &&
901 cpu_has_vmx_posted_intr();
902 }
903
904 static inline bool cpu_has_vmx_flexpriority(void)
905 {
906 return cpu_has_vmx_tpr_shadow() &&
907 cpu_has_vmx_virtualize_apic_accesses();
908 }
909
910 static inline bool cpu_has_vmx_ept_execute_only(void)
911 {
912 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
913 }
914
915 static inline bool cpu_has_vmx_eptp_uncacheable(void)
916 {
917 return vmx_capability.ept & VMX_EPTP_UC_BIT;
918 }
919
920 static inline bool cpu_has_vmx_eptp_writeback(void)
921 {
922 return vmx_capability.ept & VMX_EPTP_WB_BIT;
923 }
924
925 static inline bool cpu_has_vmx_ept_2m_page(void)
926 {
927 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
928 }
929
930 static inline bool cpu_has_vmx_ept_1g_page(void)
931 {
932 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
933 }
934
935 static inline bool cpu_has_vmx_ept_4levels(void)
936 {
937 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
938 }
939
940 static inline bool cpu_has_vmx_ept_ad_bits(void)
941 {
942 return vmx_capability.ept & VMX_EPT_AD_BIT;
943 }
944
945 static inline bool cpu_has_vmx_invept_context(void)
946 {
947 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
948 }
949
950 static inline bool cpu_has_vmx_invept_global(void)
951 {
952 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
953 }
954
955 static inline bool cpu_has_vmx_invvpid_single(void)
956 {
957 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
958 }
959
960 static inline bool cpu_has_vmx_invvpid_global(void)
961 {
962 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
963 }
964
965 static inline bool cpu_has_vmx_ept(void)
966 {
967 return vmcs_config.cpu_based_2nd_exec_ctrl &
968 SECONDARY_EXEC_ENABLE_EPT;
969 }
970
971 static inline bool cpu_has_vmx_unrestricted_guest(void)
972 {
973 return vmcs_config.cpu_based_2nd_exec_ctrl &
974 SECONDARY_EXEC_UNRESTRICTED_GUEST;
975 }
976
977 static inline bool cpu_has_vmx_ple(void)
978 {
979 return vmcs_config.cpu_based_2nd_exec_ctrl &
980 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
981 }
982
983 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
984 {
985 return flexpriority_enabled && irqchip_in_kernel(kvm);
986 }
987
988 static inline bool cpu_has_vmx_vpid(void)
989 {
990 return vmcs_config.cpu_based_2nd_exec_ctrl &
991 SECONDARY_EXEC_ENABLE_VPID;
992 }
993
994 static inline bool cpu_has_vmx_rdtscp(void)
995 {
996 return vmcs_config.cpu_based_2nd_exec_ctrl &
997 SECONDARY_EXEC_RDTSCP;
998 }
999
1000 static inline bool cpu_has_vmx_invpcid(void)
1001 {
1002 return vmcs_config.cpu_based_2nd_exec_ctrl &
1003 SECONDARY_EXEC_ENABLE_INVPCID;
1004 }
1005
1006 static inline bool cpu_has_virtual_nmis(void)
1007 {
1008 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1009 }
1010
1011 static inline bool cpu_has_vmx_wbinvd_exit(void)
1012 {
1013 return vmcs_config.cpu_based_2nd_exec_ctrl &
1014 SECONDARY_EXEC_WBINVD_EXITING;
1015 }
1016
1017 static inline bool cpu_has_vmx_shadow_vmcs(void)
1018 {
1019 u64 vmx_msr;
1020 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1021 /* check if the cpu supports writing r/o exit information fields */
1022 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1023 return false;
1024
1025 return vmcs_config.cpu_based_2nd_exec_ctrl &
1026 SECONDARY_EXEC_SHADOW_VMCS;
1027 }
1028
1029 static inline bool report_flexpriority(void)
1030 {
1031 return flexpriority_enabled;
1032 }
1033
1034 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1035 {
1036 return vmcs12->cpu_based_vm_exec_control & bit;
1037 }
1038
1039 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1040 {
1041 return (vmcs12->cpu_based_vm_exec_control &
1042 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1043 (vmcs12->secondary_vm_exec_control & bit);
1044 }
1045
1046 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1047 {
1048 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1049 }
1050
1051 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1052 {
1053 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1054 }
1055
1056 static inline bool is_exception(u32 intr_info)
1057 {
1058 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1059 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1060 }
1061
1062 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1063 u32 exit_intr_info,
1064 unsigned long exit_qualification);
1065 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1066 struct vmcs12 *vmcs12,
1067 u32 reason, unsigned long qualification);
1068
1069 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1070 {
1071 int i;
1072
1073 for (i = 0; i < vmx->nmsrs; ++i)
1074 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1075 return i;
1076 return -1;
1077 }
1078
1079 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1080 {
1081 struct {
1082 u64 vpid : 16;
1083 u64 rsvd : 48;
1084 u64 gva;
1085 } operand = { vpid, 0, gva };
1086
1087 asm volatile (__ex(ASM_VMX_INVVPID)
1088 /* CF==1 or ZF==1 --> rc = -1 */
1089 "; ja 1f ; ud2 ; 1:"
1090 : : "a"(&operand), "c"(ext) : "cc", "memory");
1091 }
1092
1093 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1094 {
1095 struct {
1096 u64 eptp, gpa;
1097 } operand = {eptp, gpa};
1098
1099 asm volatile (__ex(ASM_VMX_INVEPT)
1100 /* CF==1 or ZF==1 --> rc = -1 */
1101 "; ja 1f ; ud2 ; 1:\n"
1102 : : "a" (&operand), "c" (ext) : "cc", "memory");
1103 }
1104
1105 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1106 {
1107 int i;
1108
1109 i = __find_msr_index(vmx, msr);
1110 if (i >= 0)
1111 return &vmx->guest_msrs[i];
1112 return NULL;
1113 }
1114
1115 static void vmcs_clear(struct vmcs *vmcs)
1116 {
1117 u64 phys_addr = __pa(vmcs);
1118 u8 error;
1119
1120 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1121 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1122 : "cc", "memory");
1123 if (error)
1124 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1125 vmcs, phys_addr);
1126 }
1127
1128 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1129 {
1130 vmcs_clear(loaded_vmcs->vmcs);
1131 loaded_vmcs->cpu = -1;
1132 loaded_vmcs->launched = 0;
1133 }
1134
1135 static void vmcs_load(struct vmcs *vmcs)
1136 {
1137 u64 phys_addr = __pa(vmcs);
1138 u8 error;
1139
1140 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1141 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1142 : "cc", "memory");
1143 if (error)
1144 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1145 vmcs, phys_addr);
1146 }
1147
1148 #ifdef CONFIG_KEXEC
1149 /*
1150 * This bitmap is used to indicate whether the vmclear
1151 * operation is enabled on all cpus. All disabled by
1152 * default.
1153 */
1154 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1155
1156 static inline void crash_enable_local_vmclear(int cpu)
1157 {
1158 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1159 }
1160
1161 static inline void crash_disable_local_vmclear(int cpu)
1162 {
1163 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1164 }
1165
1166 static inline int crash_local_vmclear_enabled(int cpu)
1167 {
1168 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1169 }
1170
1171 static void crash_vmclear_local_loaded_vmcss(void)
1172 {
1173 int cpu = raw_smp_processor_id();
1174 struct loaded_vmcs *v;
1175
1176 if (!crash_local_vmclear_enabled(cpu))
1177 return;
1178
1179 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1180 loaded_vmcss_on_cpu_link)
1181 vmcs_clear(v->vmcs);
1182 }
1183 #else
1184 static inline void crash_enable_local_vmclear(int cpu) { }
1185 static inline void crash_disable_local_vmclear(int cpu) { }
1186 #endif /* CONFIG_KEXEC */
1187
1188 static void __loaded_vmcs_clear(void *arg)
1189 {
1190 struct loaded_vmcs *loaded_vmcs = arg;
1191 int cpu = raw_smp_processor_id();
1192
1193 if (loaded_vmcs->cpu != cpu)
1194 return; /* vcpu migration can race with cpu offline */
1195 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1196 per_cpu(current_vmcs, cpu) = NULL;
1197 crash_disable_local_vmclear(cpu);
1198 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1199
1200 /*
1201 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1202 * is before setting loaded_vmcs->vcpu to -1 which is done in
1203 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1204 * then adds the vmcs into percpu list before it is deleted.
1205 */
1206 smp_wmb();
1207
1208 loaded_vmcs_init(loaded_vmcs);
1209 crash_enable_local_vmclear(cpu);
1210 }
1211
1212 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1213 {
1214 int cpu = loaded_vmcs->cpu;
1215
1216 if (cpu != -1)
1217 smp_call_function_single(cpu,
1218 __loaded_vmcs_clear, loaded_vmcs, 1);
1219 }
1220
1221 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1222 {
1223 if (vmx->vpid == 0)
1224 return;
1225
1226 if (cpu_has_vmx_invvpid_single())
1227 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1228 }
1229
1230 static inline void vpid_sync_vcpu_global(void)
1231 {
1232 if (cpu_has_vmx_invvpid_global())
1233 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1234 }
1235
1236 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1237 {
1238 if (cpu_has_vmx_invvpid_single())
1239 vpid_sync_vcpu_single(vmx);
1240 else
1241 vpid_sync_vcpu_global();
1242 }
1243
1244 static inline void ept_sync_global(void)
1245 {
1246 if (cpu_has_vmx_invept_global())
1247 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1248 }
1249
1250 static inline void ept_sync_context(u64 eptp)
1251 {
1252 if (enable_ept) {
1253 if (cpu_has_vmx_invept_context())
1254 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1255 else
1256 ept_sync_global();
1257 }
1258 }
1259
1260 static __always_inline unsigned long vmcs_readl(unsigned long field)
1261 {
1262 unsigned long value;
1263
1264 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1265 : "=a"(value) : "d"(field) : "cc");
1266 return value;
1267 }
1268
1269 static __always_inline u16 vmcs_read16(unsigned long field)
1270 {
1271 return vmcs_readl(field);
1272 }
1273
1274 static __always_inline u32 vmcs_read32(unsigned long field)
1275 {
1276 return vmcs_readl(field);
1277 }
1278
1279 static __always_inline u64 vmcs_read64(unsigned long field)
1280 {
1281 #ifdef CONFIG_X86_64
1282 return vmcs_readl(field);
1283 #else
1284 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1285 #endif
1286 }
1287
1288 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1289 {
1290 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1291 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1292 dump_stack();
1293 }
1294
1295 static void vmcs_writel(unsigned long field, unsigned long value)
1296 {
1297 u8 error;
1298
1299 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1300 : "=q"(error) : "a"(value), "d"(field) : "cc");
1301 if (unlikely(error))
1302 vmwrite_error(field, value);
1303 }
1304
1305 static void vmcs_write16(unsigned long field, u16 value)
1306 {
1307 vmcs_writel(field, value);
1308 }
1309
1310 static void vmcs_write32(unsigned long field, u32 value)
1311 {
1312 vmcs_writel(field, value);
1313 }
1314
1315 static void vmcs_write64(unsigned long field, u64 value)
1316 {
1317 vmcs_writel(field, value);
1318 #ifndef CONFIG_X86_64
1319 asm volatile ("");
1320 vmcs_writel(field+1, value >> 32);
1321 #endif
1322 }
1323
1324 static void vmcs_clear_bits(unsigned long field, u32 mask)
1325 {
1326 vmcs_writel(field, vmcs_readl(field) & ~mask);
1327 }
1328
1329 static void vmcs_set_bits(unsigned long field, u32 mask)
1330 {
1331 vmcs_writel(field, vmcs_readl(field) | mask);
1332 }
1333
1334 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1335 {
1336 vmcs_write32(VM_ENTRY_CONTROLS, val);
1337 vmx->vm_entry_controls_shadow = val;
1338 }
1339
1340 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1341 {
1342 if (vmx->vm_entry_controls_shadow != val)
1343 vm_entry_controls_init(vmx, val);
1344 }
1345
1346 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1347 {
1348 return vmx->vm_entry_controls_shadow;
1349 }
1350
1351
1352 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1353 {
1354 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1355 }
1356
1357 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1358 {
1359 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1360 }
1361
1362 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1363 {
1364 vmcs_write32(VM_EXIT_CONTROLS, val);
1365 vmx->vm_exit_controls_shadow = val;
1366 }
1367
1368 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1369 {
1370 if (vmx->vm_exit_controls_shadow != val)
1371 vm_exit_controls_init(vmx, val);
1372 }
1373
1374 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1375 {
1376 return vmx->vm_exit_controls_shadow;
1377 }
1378
1379
1380 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1381 {
1382 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1383 }
1384
1385 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1386 {
1387 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1388 }
1389
1390 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1391 {
1392 vmx->segment_cache.bitmask = 0;
1393 }
1394
1395 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1396 unsigned field)
1397 {
1398 bool ret;
1399 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1400
1401 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1402 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1403 vmx->segment_cache.bitmask = 0;
1404 }
1405 ret = vmx->segment_cache.bitmask & mask;
1406 vmx->segment_cache.bitmask |= mask;
1407 return ret;
1408 }
1409
1410 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1411 {
1412 u16 *p = &vmx->segment_cache.seg[seg].selector;
1413
1414 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1415 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1416 return *p;
1417 }
1418
1419 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1420 {
1421 ulong *p = &vmx->segment_cache.seg[seg].base;
1422
1423 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1424 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1425 return *p;
1426 }
1427
1428 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1429 {
1430 u32 *p = &vmx->segment_cache.seg[seg].limit;
1431
1432 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1433 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1434 return *p;
1435 }
1436
1437 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1438 {
1439 u32 *p = &vmx->segment_cache.seg[seg].ar;
1440
1441 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1442 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1443 return *p;
1444 }
1445
1446 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1447 {
1448 u32 eb;
1449
1450 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1451 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1452 if ((vcpu->guest_debug &
1453 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1454 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1455 eb |= 1u << BP_VECTOR;
1456 if (to_vmx(vcpu)->rmode.vm86_active)
1457 eb = ~0;
1458 if (enable_ept)
1459 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1460 if (vcpu->fpu_active)
1461 eb &= ~(1u << NM_VECTOR);
1462
1463 /* When we are running a nested L2 guest and L1 specified for it a
1464 * certain exception bitmap, we must trap the same exceptions and pass
1465 * them to L1. When running L2, we will only handle the exceptions
1466 * specified above if L1 did not want them.
1467 */
1468 if (is_guest_mode(vcpu))
1469 eb |= get_vmcs12(vcpu)->exception_bitmap;
1470
1471 vmcs_write32(EXCEPTION_BITMAP, eb);
1472 }
1473
1474 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1475 unsigned long entry, unsigned long exit)
1476 {
1477 vm_entry_controls_clearbit(vmx, entry);
1478 vm_exit_controls_clearbit(vmx, exit);
1479 }
1480
1481 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1482 {
1483 unsigned i;
1484 struct msr_autoload *m = &vmx->msr_autoload;
1485
1486 switch (msr) {
1487 case MSR_EFER:
1488 if (cpu_has_load_ia32_efer) {
1489 clear_atomic_switch_msr_special(vmx,
1490 VM_ENTRY_LOAD_IA32_EFER,
1491 VM_EXIT_LOAD_IA32_EFER);
1492 return;
1493 }
1494 break;
1495 case MSR_CORE_PERF_GLOBAL_CTRL:
1496 if (cpu_has_load_perf_global_ctrl) {
1497 clear_atomic_switch_msr_special(vmx,
1498 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1499 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1500 return;
1501 }
1502 break;
1503 }
1504
1505 for (i = 0; i < m->nr; ++i)
1506 if (m->guest[i].index == msr)
1507 break;
1508
1509 if (i == m->nr)
1510 return;
1511 --m->nr;
1512 m->guest[i] = m->guest[m->nr];
1513 m->host[i] = m->host[m->nr];
1514 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1515 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1516 }
1517
1518 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1519 unsigned long entry, unsigned long exit,
1520 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1521 u64 guest_val, u64 host_val)
1522 {
1523 vmcs_write64(guest_val_vmcs, guest_val);
1524 vmcs_write64(host_val_vmcs, host_val);
1525 vm_entry_controls_setbit(vmx, entry);
1526 vm_exit_controls_setbit(vmx, exit);
1527 }
1528
1529 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1530 u64 guest_val, u64 host_val)
1531 {
1532 unsigned i;
1533 struct msr_autoload *m = &vmx->msr_autoload;
1534
1535 switch (msr) {
1536 case MSR_EFER:
1537 if (cpu_has_load_ia32_efer) {
1538 add_atomic_switch_msr_special(vmx,
1539 VM_ENTRY_LOAD_IA32_EFER,
1540 VM_EXIT_LOAD_IA32_EFER,
1541 GUEST_IA32_EFER,
1542 HOST_IA32_EFER,
1543 guest_val, host_val);
1544 return;
1545 }
1546 break;
1547 case MSR_CORE_PERF_GLOBAL_CTRL:
1548 if (cpu_has_load_perf_global_ctrl) {
1549 add_atomic_switch_msr_special(vmx,
1550 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1551 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1552 GUEST_IA32_PERF_GLOBAL_CTRL,
1553 HOST_IA32_PERF_GLOBAL_CTRL,
1554 guest_val, host_val);
1555 return;
1556 }
1557 break;
1558 }
1559
1560 for (i = 0; i < m->nr; ++i)
1561 if (m->guest[i].index == msr)
1562 break;
1563
1564 if (i == NR_AUTOLOAD_MSRS) {
1565 printk_once(KERN_WARNING "Not enough msr switch entries. "
1566 "Can't add msr %x\n", msr);
1567 return;
1568 } else if (i == m->nr) {
1569 ++m->nr;
1570 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1571 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1572 }
1573
1574 m->guest[i].index = msr;
1575 m->guest[i].value = guest_val;
1576 m->host[i].index = msr;
1577 m->host[i].value = host_val;
1578 }
1579
1580 static void reload_tss(void)
1581 {
1582 /*
1583 * VT restores TR but not its size. Useless.
1584 */
1585 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1586 struct desc_struct *descs;
1587
1588 descs = (void *)gdt->address;
1589 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1590 load_TR_desc();
1591 }
1592
1593 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1594 {
1595 u64 guest_efer;
1596 u64 ignore_bits;
1597
1598 guest_efer = vmx->vcpu.arch.efer;
1599
1600 /*
1601 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1602 * outside long mode
1603 */
1604 ignore_bits = EFER_NX | EFER_SCE;
1605 #ifdef CONFIG_X86_64
1606 ignore_bits |= EFER_LMA | EFER_LME;
1607 /* SCE is meaningful only in long mode on Intel */
1608 if (guest_efer & EFER_LMA)
1609 ignore_bits &= ~(u64)EFER_SCE;
1610 #endif
1611 guest_efer &= ~ignore_bits;
1612 guest_efer |= host_efer & ignore_bits;
1613 vmx->guest_msrs[efer_offset].data = guest_efer;
1614 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1615
1616 clear_atomic_switch_msr(vmx, MSR_EFER);
1617 /* On ept, can't emulate nx, and must switch nx atomically */
1618 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1619 guest_efer = vmx->vcpu.arch.efer;
1620 if (!(guest_efer & EFER_LMA))
1621 guest_efer &= ~EFER_LME;
1622 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1623 return false;
1624 }
1625
1626 return true;
1627 }
1628
1629 static unsigned long segment_base(u16 selector)
1630 {
1631 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1632 struct desc_struct *d;
1633 unsigned long table_base;
1634 unsigned long v;
1635
1636 if (!(selector & ~3))
1637 return 0;
1638
1639 table_base = gdt->address;
1640
1641 if (selector & 4) { /* from ldt */
1642 u16 ldt_selector = kvm_read_ldt();
1643
1644 if (!(ldt_selector & ~3))
1645 return 0;
1646
1647 table_base = segment_base(ldt_selector);
1648 }
1649 d = (struct desc_struct *)(table_base + (selector & ~7));
1650 v = get_desc_base(d);
1651 #ifdef CONFIG_X86_64
1652 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1653 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1654 #endif
1655 return v;
1656 }
1657
1658 static inline unsigned long kvm_read_tr_base(void)
1659 {
1660 u16 tr;
1661 asm("str %0" : "=g"(tr));
1662 return segment_base(tr);
1663 }
1664
1665 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1666 {
1667 struct vcpu_vmx *vmx = to_vmx(vcpu);
1668 int i;
1669
1670 if (vmx->host_state.loaded)
1671 return;
1672
1673 vmx->host_state.loaded = 1;
1674 /*
1675 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1676 * allow segment selectors with cpl > 0 or ti == 1.
1677 */
1678 vmx->host_state.ldt_sel = kvm_read_ldt();
1679 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1680 savesegment(fs, vmx->host_state.fs_sel);
1681 if (!(vmx->host_state.fs_sel & 7)) {
1682 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1683 vmx->host_state.fs_reload_needed = 0;
1684 } else {
1685 vmcs_write16(HOST_FS_SELECTOR, 0);
1686 vmx->host_state.fs_reload_needed = 1;
1687 }
1688 savesegment(gs, vmx->host_state.gs_sel);
1689 if (!(vmx->host_state.gs_sel & 7))
1690 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1691 else {
1692 vmcs_write16(HOST_GS_SELECTOR, 0);
1693 vmx->host_state.gs_ldt_reload_needed = 1;
1694 }
1695
1696 #ifdef CONFIG_X86_64
1697 savesegment(ds, vmx->host_state.ds_sel);
1698 savesegment(es, vmx->host_state.es_sel);
1699 #endif
1700
1701 #ifdef CONFIG_X86_64
1702 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1703 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1704 #else
1705 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1706 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1707 #endif
1708
1709 #ifdef CONFIG_X86_64
1710 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1711 if (is_long_mode(&vmx->vcpu))
1712 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1713 #endif
1714 if (boot_cpu_has(X86_FEATURE_MPX))
1715 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1716 for (i = 0; i < vmx->save_nmsrs; ++i)
1717 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1718 vmx->guest_msrs[i].data,
1719 vmx->guest_msrs[i].mask);
1720 }
1721
1722 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1723 {
1724 if (!vmx->host_state.loaded)
1725 return;
1726
1727 ++vmx->vcpu.stat.host_state_reload;
1728 vmx->host_state.loaded = 0;
1729 #ifdef CONFIG_X86_64
1730 if (is_long_mode(&vmx->vcpu))
1731 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1732 #endif
1733 if (vmx->host_state.gs_ldt_reload_needed) {
1734 kvm_load_ldt(vmx->host_state.ldt_sel);
1735 #ifdef CONFIG_X86_64
1736 load_gs_index(vmx->host_state.gs_sel);
1737 #else
1738 loadsegment(gs, vmx->host_state.gs_sel);
1739 #endif
1740 }
1741 if (vmx->host_state.fs_reload_needed)
1742 loadsegment(fs, vmx->host_state.fs_sel);
1743 #ifdef CONFIG_X86_64
1744 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1745 loadsegment(ds, vmx->host_state.ds_sel);
1746 loadsegment(es, vmx->host_state.es_sel);
1747 }
1748 #endif
1749 reload_tss();
1750 #ifdef CONFIG_X86_64
1751 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1752 #endif
1753 if (vmx->host_state.msr_host_bndcfgs)
1754 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1755 /*
1756 * If the FPU is not active (through the host task or
1757 * the guest vcpu), then restore the cr0.TS bit.
1758 */
1759 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1760 stts();
1761 load_gdt(&__get_cpu_var(host_gdt));
1762 }
1763
1764 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1765 {
1766 preempt_disable();
1767 __vmx_load_host_state(vmx);
1768 preempt_enable();
1769 }
1770
1771 /*
1772 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1773 * vcpu mutex is already taken.
1774 */
1775 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1776 {
1777 struct vcpu_vmx *vmx = to_vmx(vcpu);
1778 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1779
1780 if (!vmm_exclusive)
1781 kvm_cpu_vmxon(phys_addr);
1782 else if (vmx->loaded_vmcs->cpu != cpu)
1783 loaded_vmcs_clear(vmx->loaded_vmcs);
1784
1785 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1786 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1787 vmcs_load(vmx->loaded_vmcs->vmcs);
1788 }
1789
1790 if (vmx->loaded_vmcs->cpu != cpu) {
1791 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1792 unsigned long sysenter_esp;
1793
1794 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1795 local_irq_disable();
1796 crash_disable_local_vmclear(cpu);
1797
1798 /*
1799 * Read loaded_vmcs->cpu should be before fetching
1800 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1801 * See the comments in __loaded_vmcs_clear().
1802 */
1803 smp_rmb();
1804
1805 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1806 &per_cpu(loaded_vmcss_on_cpu, cpu));
1807 crash_enable_local_vmclear(cpu);
1808 local_irq_enable();
1809
1810 /*
1811 * Linux uses per-cpu TSS and GDT, so set these when switching
1812 * processors.
1813 */
1814 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1815 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1816
1817 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1818 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1819 vmx->loaded_vmcs->cpu = cpu;
1820 }
1821 }
1822
1823 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1824 {
1825 __vmx_load_host_state(to_vmx(vcpu));
1826 if (!vmm_exclusive) {
1827 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1828 vcpu->cpu = -1;
1829 kvm_cpu_vmxoff();
1830 }
1831 }
1832
1833 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1834 {
1835 ulong cr0;
1836
1837 if (vcpu->fpu_active)
1838 return;
1839 vcpu->fpu_active = 1;
1840 cr0 = vmcs_readl(GUEST_CR0);
1841 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1842 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1843 vmcs_writel(GUEST_CR0, cr0);
1844 update_exception_bitmap(vcpu);
1845 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1846 if (is_guest_mode(vcpu))
1847 vcpu->arch.cr0_guest_owned_bits &=
1848 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1849 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1850 }
1851
1852 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1853
1854 /*
1855 * Return the cr0 value that a nested guest would read. This is a combination
1856 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1857 * its hypervisor (cr0_read_shadow).
1858 */
1859 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1860 {
1861 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1862 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1863 }
1864 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1865 {
1866 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1867 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1868 }
1869
1870 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1871 {
1872 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1873 * set this *before* calling this function.
1874 */
1875 vmx_decache_cr0_guest_bits(vcpu);
1876 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1877 update_exception_bitmap(vcpu);
1878 vcpu->arch.cr0_guest_owned_bits = 0;
1879 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1880 if (is_guest_mode(vcpu)) {
1881 /*
1882 * L1's specified read shadow might not contain the TS bit,
1883 * so now that we turned on shadowing of this bit, we need to
1884 * set this bit of the shadow. Like in nested_vmx_run we need
1885 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1886 * up-to-date here because we just decached cr0.TS (and we'll
1887 * only update vmcs12->guest_cr0 on nested exit).
1888 */
1889 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1890 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1891 (vcpu->arch.cr0 & X86_CR0_TS);
1892 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1893 } else
1894 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1895 }
1896
1897 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1898 {
1899 unsigned long rflags, save_rflags;
1900
1901 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1902 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1903 rflags = vmcs_readl(GUEST_RFLAGS);
1904 if (to_vmx(vcpu)->rmode.vm86_active) {
1905 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1906 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1907 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1908 }
1909 to_vmx(vcpu)->rflags = rflags;
1910 }
1911 return to_vmx(vcpu)->rflags;
1912 }
1913
1914 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1915 {
1916 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1917 to_vmx(vcpu)->rflags = rflags;
1918 if (to_vmx(vcpu)->rmode.vm86_active) {
1919 to_vmx(vcpu)->rmode.save_rflags = rflags;
1920 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1921 }
1922 vmcs_writel(GUEST_RFLAGS, rflags);
1923 }
1924
1925 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1926 {
1927 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1928 int ret = 0;
1929
1930 if (interruptibility & GUEST_INTR_STATE_STI)
1931 ret |= KVM_X86_SHADOW_INT_STI;
1932 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1933 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1934
1935 return ret & mask;
1936 }
1937
1938 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1939 {
1940 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1941 u32 interruptibility = interruptibility_old;
1942
1943 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1944
1945 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1946 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1947 else if (mask & KVM_X86_SHADOW_INT_STI)
1948 interruptibility |= GUEST_INTR_STATE_STI;
1949
1950 if ((interruptibility != interruptibility_old))
1951 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1952 }
1953
1954 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1955 {
1956 unsigned long rip;
1957
1958 rip = kvm_rip_read(vcpu);
1959 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1960 kvm_rip_write(vcpu, rip);
1961
1962 /* skipping an emulated instruction also counts */
1963 vmx_set_interrupt_shadow(vcpu, 0);
1964 }
1965
1966 /*
1967 * KVM wants to inject page-faults which it got to the guest. This function
1968 * checks whether in a nested guest, we need to inject them to L1 or L2.
1969 */
1970 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
1971 {
1972 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1973
1974 if (!(vmcs12->exception_bitmap & (1u << nr)))
1975 return 0;
1976
1977 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
1978 vmcs_read32(VM_EXIT_INTR_INFO),
1979 vmcs_readl(EXIT_QUALIFICATION));
1980 return 1;
1981 }
1982
1983 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1984 bool has_error_code, u32 error_code,
1985 bool reinject)
1986 {
1987 struct vcpu_vmx *vmx = to_vmx(vcpu);
1988 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1989
1990 if (!reinject && is_guest_mode(vcpu) &&
1991 nested_vmx_check_exception(vcpu, nr))
1992 return;
1993
1994 if (has_error_code) {
1995 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1996 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1997 }
1998
1999 if (vmx->rmode.vm86_active) {
2000 int inc_eip = 0;
2001 if (kvm_exception_is_soft(nr))
2002 inc_eip = vcpu->arch.event_exit_inst_len;
2003 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2004 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2005 return;
2006 }
2007
2008 if (kvm_exception_is_soft(nr)) {
2009 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2010 vmx->vcpu.arch.event_exit_inst_len);
2011 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2012 } else
2013 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2014
2015 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2016 }
2017
2018 static bool vmx_rdtscp_supported(void)
2019 {
2020 return cpu_has_vmx_rdtscp();
2021 }
2022
2023 static bool vmx_invpcid_supported(void)
2024 {
2025 return cpu_has_vmx_invpcid() && enable_ept;
2026 }
2027
2028 /*
2029 * Swap MSR entry in host/guest MSR entry array.
2030 */
2031 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2032 {
2033 struct shared_msr_entry tmp;
2034
2035 tmp = vmx->guest_msrs[to];
2036 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2037 vmx->guest_msrs[from] = tmp;
2038 }
2039
2040 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2041 {
2042 unsigned long *msr_bitmap;
2043
2044 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2045 if (is_long_mode(vcpu))
2046 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2047 else
2048 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2049 } else {
2050 if (is_long_mode(vcpu))
2051 msr_bitmap = vmx_msr_bitmap_longmode;
2052 else
2053 msr_bitmap = vmx_msr_bitmap_legacy;
2054 }
2055
2056 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2057 }
2058
2059 /*
2060 * Set up the vmcs to automatically save and restore system
2061 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2062 * mode, as fiddling with msrs is very expensive.
2063 */
2064 static void setup_msrs(struct vcpu_vmx *vmx)
2065 {
2066 int save_nmsrs, index;
2067
2068 save_nmsrs = 0;
2069 #ifdef CONFIG_X86_64
2070 if (is_long_mode(&vmx->vcpu)) {
2071 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2072 if (index >= 0)
2073 move_msr_up(vmx, index, save_nmsrs++);
2074 index = __find_msr_index(vmx, MSR_LSTAR);
2075 if (index >= 0)
2076 move_msr_up(vmx, index, save_nmsrs++);
2077 index = __find_msr_index(vmx, MSR_CSTAR);
2078 if (index >= 0)
2079 move_msr_up(vmx, index, save_nmsrs++);
2080 index = __find_msr_index(vmx, MSR_TSC_AUX);
2081 if (index >= 0 && vmx->rdtscp_enabled)
2082 move_msr_up(vmx, index, save_nmsrs++);
2083 /*
2084 * MSR_STAR is only needed on long mode guests, and only
2085 * if efer.sce is enabled.
2086 */
2087 index = __find_msr_index(vmx, MSR_STAR);
2088 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2089 move_msr_up(vmx, index, save_nmsrs++);
2090 }
2091 #endif
2092 index = __find_msr_index(vmx, MSR_EFER);
2093 if (index >= 0 && update_transition_efer(vmx, index))
2094 move_msr_up(vmx, index, save_nmsrs++);
2095
2096 vmx->save_nmsrs = save_nmsrs;
2097
2098 if (cpu_has_vmx_msr_bitmap())
2099 vmx_set_msr_bitmap(&vmx->vcpu);
2100 }
2101
2102 /*
2103 * reads and returns guest's timestamp counter "register"
2104 * guest_tsc = host_tsc + tsc_offset -- 21.3
2105 */
2106 static u64 guest_read_tsc(void)
2107 {
2108 u64 host_tsc, tsc_offset;
2109
2110 rdtscll(host_tsc);
2111 tsc_offset = vmcs_read64(TSC_OFFSET);
2112 return host_tsc + tsc_offset;
2113 }
2114
2115 /*
2116 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2117 * counter, even if a nested guest (L2) is currently running.
2118 */
2119 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2120 {
2121 u64 tsc_offset;
2122
2123 tsc_offset = is_guest_mode(vcpu) ?
2124 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2125 vmcs_read64(TSC_OFFSET);
2126 return host_tsc + tsc_offset;
2127 }
2128
2129 /*
2130 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2131 * software catchup for faster rates on slower CPUs.
2132 */
2133 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2134 {
2135 if (!scale)
2136 return;
2137
2138 if (user_tsc_khz > tsc_khz) {
2139 vcpu->arch.tsc_catchup = 1;
2140 vcpu->arch.tsc_always_catchup = 1;
2141 } else
2142 WARN(1, "user requested TSC rate below hardware speed\n");
2143 }
2144
2145 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2146 {
2147 return vmcs_read64(TSC_OFFSET);
2148 }
2149
2150 /*
2151 * writes 'offset' into guest's timestamp counter offset register
2152 */
2153 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2154 {
2155 if (is_guest_mode(vcpu)) {
2156 /*
2157 * We're here if L1 chose not to trap WRMSR to TSC. According
2158 * to the spec, this should set L1's TSC; The offset that L1
2159 * set for L2 remains unchanged, and still needs to be added
2160 * to the newly set TSC to get L2's TSC.
2161 */
2162 struct vmcs12 *vmcs12;
2163 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2164 /* recalculate vmcs02.TSC_OFFSET: */
2165 vmcs12 = get_vmcs12(vcpu);
2166 vmcs_write64(TSC_OFFSET, offset +
2167 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2168 vmcs12->tsc_offset : 0));
2169 } else {
2170 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2171 vmcs_read64(TSC_OFFSET), offset);
2172 vmcs_write64(TSC_OFFSET, offset);
2173 }
2174 }
2175
2176 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2177 {
2178 u64 offset = vmcs_read64(TSC_OFFSET);
2179
2180 vmcs_write64(TSC_OFFSET, offset + adjustment);
2181 if (is_guest_mode(vcpu)) {
2182 /* Even when running L2, the adjustment needs to apply to L1 */
2183 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2184 } else
2185 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2186 offset + adjustment);
2187 }
2188
2189 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2190 {
2191 return target_tsc - native_read_tsc();
2192 }
2193
2194 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2195 {
2196 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2197 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2198 }
2199
2200 /*
2201 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2202 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2203 * all guests if the "nested" module option is off, and can also be disabled
2204 * for a single guest by disabling its VMX cpuid bit.
2205 */
2206 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2207 {
2208 return nested && guest_cpuid_has_vmx(vcpu);
2209 }
2210
2211 /*
2212 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2213 * returned for the various VMX controls MSRs when nested VMX is enabled.
2214 * The same values should also be used to verify that vmcs12 control fields are
2215 * valid during nested entry from L1 to L2.
2216 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2217 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2218 * bit in the high half is on if the corresponding bit in the control field
2219 * may be on. See also vmx_control_verify().
2220 * TODO: allow these variables to be modified (downgraded) by module options
2221 * or other means.
2222 */
2223 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2224 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2225 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2226 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2227 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2228 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2229 static u32 nested_vmx_ept_caps;
2230 static __init void nested_vmx_setup_ctls_msrs(void)
2231 {
2232 /*
2233 * Note that as a general rule, the high half of the MSRs (bits in
2234 * the control fields which may be 1) should be initialized by the
2235 * intersection of the underlying hardware's MSR (i.e., features which
2236 * can be supported) and the list of features we want to expose -
2237 * because they are known to be properly supported in our code.
2238 * Also, usually, the low half of the MSRs (bits which must be 1) can
2239 * be set to 0, meaning that L1 may turn off any of these bits. The
2240 * reason is that if one of these bits is necessary, it will appear
2241 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2242 * fields of vmcs01 and vmcs02, will turn these bits off - and
2243 * nested_vmx_exit_handled() will not pass related exits to L1.
2244 * These rules have exceptions below.
2245 */
2246
2247 /* pin-based controls */
2248 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2249 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2250 /*
2251 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2252 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2253 */
2254 nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2255 nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2256 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
2257 PIN_BASED_VMX_PREEMPTION_TIMER;
2258 nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2259
2260 /*
2261 * Exit controls
2262 * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2263 * 17 must be 1.
2264 */
2265 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2266 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2267 nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2268 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2269 nested_vmx_exit_ctls_high &=
2270 #ifdef CONFIG_X86_64
2271 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2272 #endif
2273 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
2274 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
2275 if (!(nested_vmx_pinbased_ctls_high & PIN_BASED_VMX_PREEMPTION_TIMER) ||
2276 !(nested_vmx_exit_ctls_high & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)) {
2277 nested_vmx_exit_ctls_high &= ~VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
2278 nested_vmx_pinbased_ctls_high &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2279 }
2280 nested_vmx_exit_ctls_high |= (VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2281 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER);
2282
2283 /* entry controls */
2284 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2285 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2286 /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2287 nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2288 nested_vmx_entry_ctls_high &=
2289 #ifdef CONFIG_X86_64
2290 VM_ENTRY_IA32E_MODE |
2291 #endif
2292 VM_ENTRY_LOAD_IA32_PAT;
2293 nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2294 VM_ENTRY_LOAD_IA32_EFER);
2295
2296 /* cpu-based controls */
2297 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2298 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2299 nested_vmx_procbased_ctls_low = 0;
2300 nested_vmx_procbased_ctls_high &=
2301 CPU_BASED_VIRTUAL_INTR_PENDING |
2302 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2303 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2304 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2305 CPU_BASED_CR3_STORE_EXITING |
2306 #ifdef CONFIG_X86_64
2307 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2308 #endif
2309 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2310 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2311 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2312 CPU_BASED_PAUSE_EXITING |
2313 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2314 /*
2315 * We can allow some features even when not supported by the
2316 * hardware. For example, L1 can specify an MSR bitmap - and we
2317 * can use it to avoid exits to L1 - even when L0 runs L2
2318 * without MSR bitmaps.
2319 */
2320 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2321
2322 /* secondary cpu-based controls */
2323 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2324 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2325 nested_vmx_secondary_ctls_low = 0;
2326 nested_vmx_secondary_ctls_high &=
2327 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2328 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2329 SECONDARY_EXEC_WBINVD_EXITING;
2330
2331 if (enable_ept) {
2332 /* nested EPT: emulate EPT also to L1 */
2333 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2334 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2335 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2336 VMX_EPT_INVEPT_BIT;
2337 nested_vmx_ept_caps &= vmx_capability.ept;
2338 /*
2339 * Since invept is completely emulated we support both global
2340 * and context invalidation independent of what host cpu
2341 * supports
2342 */
2343 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2344 VMX_EPT_EXTENT_CONTEXT_BIT;
2345 } else
2346 nested_vmx_ept_caps = 0;
2347
2348 /* miscellaneous data */
2349 rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2350 nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
2351 VMX_MISC_SAVE_EFER_LMA;
2352 nested_vmx_misc_low |= VMX_MISC_ACTIVITY_HLT;
2353 nested_vmx_misc_high = 0;
2354 }
2355
2356 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2357 {
2358 /*
2359 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2360 */
2361 return ((control & high) | low) == control;
2362 }
2363
2364 static inline u64 vmx_control_msr(u32 low, u32 high)
2365 {
2366 return low | ((u64)high << 32);
2367 }
2368
2369 /* Returns 0 on success, non-0 otherwise. */
2370 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2371 {
2372 switch (msr_index) {
2373 case MSR_IA32_VMX_BASIC:
2374 /*
2375 * This MSR reports some information about VMX support. We
2376 * should return information about the VMX we emulate for the
2377 * guest, and the VMCS structure we give it - not about the
2378 * VMX support of the underlying hardware.
2379 */
2380 *pdata = VMCS12_REVISION |
2381 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2382 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2383 break;
2384 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2385 case MSR_IA32_VMX_PINBASED_CTLS:
2386 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2387 nested_vmx_pinbased_ctls_high);
2388 break;
2389 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2390 case MSR_IA32_VMX_PROCBASED_CTLS:
2391 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2392 nested_vmx_procbased_ctls_high);
2393 break;
2394 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2395 case MSR_IA32_VMX_EXIT_CTLS:
2396 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2397 nested_vmx_exit_ctls_high);
2398 break;
2399 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2400 case MSR_IA32_VMX_ENTRY_CTLS:
2401 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2402 nested_vmx_entry_ctls_high);
2403 break;
2404 case MSR_IA32_VMX_MISC:
2405 *pdata = vmx_control_msr(nested_vmx_misc_low,
2406 nested_vmx_misc_high);
2407 break;
2408 /*
2409 * These MSRs specify bits which the guest must keep fixed (on or off)
2410 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2411 * We picked the standard core2 setting.
2412 */
2413 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2414 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2415 case MSR_IA32_VMX_CR0_FIXED0:
2416 *pdata = VMXON_CR0_ALWAYSON;
2417 break;
2418 case MSR_IA32_VMX_CR0_FIXED1:
2419 *pdata = -1ULL;
2420 break;
2421 case MSR_IA32_VMX_CR4_FIXED0:
2422 *pdata = VMXON_CR4_ALWAYSON;
2423 break;
2424 case MSR_IA32_VMX_CR4_FIXED1:
2425 *pdata = -1ULL;
2426 break;
2427 case MSR_IA32_VMX_VMCS_ENUM:
2428 *pdata = 0x1f;
2429 break;
2430 case MSR_IA32_VMX_PROCBASED_CTLS2:
2431 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2432 nested_vmx_secondary_ctls_high);
2433 break;
2434 case MSR_IA32_VMX_EPT_VPID_CAP:
2435 /* Currently, no nested vpid support */
2436 *pdata = nested_vmx_ept_caps;
2437 break;
2438 default:
2439 return 1;
2440 }
2441
2442 return 0;
2443 }
2444
2445 /*
2446 * Reads an msr value (of 'msr_index') into 'pdata'.
2447 * Returns 0 on success, non-0 otherwise.
2448 * Assumes vcpu_load() was already called.
2449 */
2450 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2451 {
2452 u64 data;
2453 struct shared_msr_entry *msr;
2454
2455 if (!pdata) {
2456 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2457 return -EINVAL;
2458 }
2459
2460 switch (msr_index) {
2461 #ifdef CONFIG_X86_64
2462 case MSR_FS_BASE:
2463 data = vmcs_readl(GUEST_FS_BASE);
2464 break;
2465 case MSR_GS_BASE:
2466 data = vmcs_readl(GUEST_GS_BASE);
2467 break;
2468 case MSR_KERNEL_GS_BASE:
2469 vmx_load_host_state(to_vmx(vcpu));
2470 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2471 break;
2472 #endif
2473 case MSR_EFER:
2474 return kvm_get_msr_common(vcpu, msr_index, pdata);
2475 case MSR_IA32_TSC:
2476 data = guest_read_tsc();
2477 break;
2478 case MSR_IA32_SYSENTER_CS:
2479 data = vmcs_read32(GUEST_SYSENTER_CS);
2480 break;
2481 case MSR_IA32_SYSENTER_EIP:
2482 data = vmcs_readl(GUEST_SYSENTER_EIP);
2483 break;
2484 case MSR_IA32_SYSENTER_ESP:
2485 data = vmcs_readl(GUEST_SYSENTER_ESP);
2486 break;
2487 case MSR_IA32_BNDCFGS:
2488 data = vmcs_read64(GUEST_BNDCFGS);
2489 break;
2490 case MSR_IA32_FEATURE_CONTROL:
2491 if (!nested_vmx_allowed(vcpu))
2492 return 1;
2493 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2494 break;
2495 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2496 if (!nested_vmx_allowed(vcpu))
2497 return 1;
2498 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2499 case MSR_TSC_AUX:
2500 if (!to_vmx(vcpu)->rdtscp_enabled)
2501 return 1;
2502 /* Otherwise falls through */
2503 default:
2504 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2505 if (msr) {
2506 data = msr->data;
2507 break;
2508 }
2509 return kvm_get_msr_common(vcpu, msr_index, pdata);
2510 }
2511
2512 *pdata = data;
2513 return 0;
2514 }
2515
2516 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2517
2518 /*
2519 * Writes msr value into into the appropriate "register".
2520 * Returns 0 on success, non-0 otherwise.
2521 * Assumes vcpu_load() was already called.
2522 */
2523 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2524 {
2525 struct vcpu_vmx *vmx = to_vmx(vcpu);
2526 struct shared_msr_entry *msr;
2527 int ret = 0;
2528 u32 msr_index = msr_info->index;
2529 u64 data = msr_info->data;
2530
2531 switch (msr_index) {
2532 case MSR_EFER:
2533 ret = kvm_set_msr_common(vcpu, msr_info);
2534 break;
2535 #ifdef CONFIG_X86_64
2536 case MSR_FS_BASE:
2537 vmx_segment_cache_clear(vmx);
2538 vmcs_writel(GUEST_FS_BASE, data);
2539 break;
2540 case MSR_GS_BASE:
2541 vmx_segment_cache_clear(vmx);
2542 vmcs_writel(GUEST_GS_BASE, data);
2543 break;
2544 case MSR_KERNEL_GS_BASE:
2545 vmx_load_host_state(vmx);
2546 vmx->msr_guest_kernel_gs_base = data;
2547 break;
2548 #endif
2549 case MSR_IA32_SYSENTER_CS:
2550 vmcs_write32(GUEST_SYSENTER_CS, data);
2551 break;
2552 case MSR_IA32_SYSENTER_EIP:
2553 vmcs_writel(GUEST_SYSENTER_EIP, data);
2554 break;
2555 case MSR_IA32_SYSENTER_ESP:
2556 vmcs_writel(GUEST_SYSENTER_ESP, data);
2557 break;
2558 case MSR_IA32_BNDCFGS:
2559 vmcs_write64(GUEST_BNDCFGS, data);
2560 break;
2561 case MSR_IA32_TSC:
2562 kvm_write_tsc(vcpu, msr_info);
2563 break;
2564 case MSR_IA32_CR_PAT:
2565 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2566 vmcs_write64(GUEST_IA32_PAT, data);
2567 vcpu->arch.pat = data;
2568 break;
2569 }
2570 ret = kvm_set_msr_common(vcpu, msr_info);
2571 break;
2572 case MSR_IA32_TSC_ADJUST:
2573 ret = kvm_set_msr_common(vcpu, msr_info);
2574 break;
2575 case MSR_IA32_FEATURE_CONTROL:
2576 if (!nested_vmx_allowed(vcpu) ||
2577 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2578 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2579 return 1;
2580 vmx->nested.msr_ia32_feature_control = data;
2581 if (msr_info->host_initiated && data == 0)
2582 vmx_leave_nested(vcpu);
2583 break;
2584 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2585 return 1; /* they are read-only */
2586 case MSR_TSC_AUX:
2587 if (!vmx->rdtscp_enabled)
2588 return 1;
2589 /* Check reserved bit, higher 32 bits should be zero */
2590 if ((data >> 32) != 0)
2591 return 1;
2592 /* Otherwise falls through */
2593 default:
2594 msr = find_msr_entry(vmx, msr_index);
2595 if (msr) {
2596 msr->data = data;
2597 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2598 preempt_disable();
2599 kvm_set_shared_msr(msr->index, msr->data,
2600 msr->mask);
2601 preempt_enable();
2602 }
2603 break;
2604 }
2605 ret = kvm_set_msr_common(vcpu, msr_info);
2606 }
2607
2608 return ret;
2609 }
2610
2611 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2612 {
2613 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2614 switch (reg) {
2615 case VCPU_REGS_RSP:
2616 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2617 break;
2618 case VCPU_REGS_RIP:
2619 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2620 break;
2621 case VCPU_EXREG_PDPTR:
2622 if (enable_ept)
2623 ept_save_pdptrs(vcpu);
2624 break;
2625 default:
2626 break;
2627 }
2628 }
2629
2630 static __init int cpu_has_kvm_support(void)
2631 {
2632 return cpu_has_vmx();
2633 }
2634
2635 static __init int vmx_disabled_by_bios(void)
2636 {
2637 u64 msr;
2638
2639 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2640 if (msr & FEATURE_CONTROL_LOCKED) {
2641 /* launched w/ TXT and VMX disabled */
2642 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2643 && tboot_enabled())
2644 return 1;
2645 /* launched w/o TXT and VMX only enabled w/ TXT */
2646 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2647 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2648 && !tboot_enabled()) {
2649 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2650 "activate TXT before enabling KVM\n");
2651 return 1;
2652 }
2653 /* launched w/o TXT and VMX disabled */
2654 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2655 && !tboot_enabled())
2656 return 1;
2657 }
2658
2659 return 0;
2660 }
2661
2662 static void kvm_cpu_vmxon(u64 addr)
2663 {
2664 asm volatile (ASM_VMX_VMXON_RAX
2665 : : "a"(&addr), "m"(addr)
2666 : "memory", "cc");
2667 }
2668
2669 static int hardware_enable(void *garbage)
2670 {
2671 int cpu = raw_smp_processor_id();
2672 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2673 u64 old, test_bits;
2674
2675 if (read_cr4() & X86_CR4_VMXE)
2676 return -EBUSY;
2677
2678 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2679
2680 /*
2681 * Now we can enable the vmclear operation in kdump
2682 * since the loaded_vmcss_on_cpu list on this cpu
2683 * has been initialized.
2684 *
2685 * Though the cpu is not in VMX operation now, there
2686 * is no problem to enable the vmclear operation
2687 * for the loaded_vmcss_on_cpu list is empty!
2688 */
2689 crash_enable_local_vmclear(cpu);
2690
2691 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2692
2693 test_bits = FEATURE_CONTROL_LOCKED;
2694 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2695 if (tboot_enabled())
2696 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2697
2698 if ((old & test_bits) != test_bits) {
2699 /* enable and lock */
2700 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2701 }
2702 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2703
2704 if (vmm_exclusive) {
2705 kvm_cpu_vmxon(phys_addr);
2706 ept_sync_global();
2707 }
2708
2709 native_store_gdt(&__get_cpu_var(host_gdt));
2710
2711 return 0;
2712 }
2713
2714 static void vmclear_local_loaded_vmcss(void)
2715 {
2716 int cpu = raw_smp_processor_id();
2717 struct loaded_vmcs *v, *n;
2718
2719 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2720 loaded_vmcss_on_cpu_link)
2721 __loaded_vmcs_clear(v);
2722 }
2723
2724
2725 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2726 * tricks.
2727 */
2728 static void kvm_cpu_vmxoff(void)
2729 {
2730 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2731 }
2732
2733 static void hardware_disable(void *garbage)
2734 {
2735 if (vmm_exclusive) {
2736 vmclear_local_loaded_vmcss();
2737 kvm_cpu_vmxoff();
2738 }
2739 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2740 }
2741
2742 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2743 u32 msr, u32 *result)
2744 {
2745 u32 vmx_msr_low, vmx_msr_high;
2746 u32 ctl = ctl_min | ctl_opt;
2747
2748 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2749
2750 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2751 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2752
2753 /* Ensure minimum (required) set of control bits are supported. */
2754 if (ctl_min & ~ctl)
2755 return -EIO;
2756
2757 *result = ctl;
2758 return 0;
2759 }
2760
2761 static __init bool allow_1_setting(u32 msr, u32 ctl)
2762 {
2763 u32 vmx_msr_low, vmx_msr_high;
2764
2765 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2766 return vmx_msr_high & ctl;
2767 }
2768
2769 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2770 {
2771 u32 vmx_msr_low, vmx_msr_high;
2772 u32 min, opt, min2, opt2;
2773 u32 _pin_based_exec_control = 0;
2774 u32 _cpu_based_exec_control = 0;
2775 u32 _cpu_based_2nd_exec_control = 0;
2776 u32 _vmexit_control = 0;
2777 u32 _vmentry_control = 0;
2778
2779 min = CPU_BASED_HLT_EXITING |
2780 #ifdef CONFIG_X86_64
2781 CPU_BASED_CR8_LOAD_EXITING |
2782 CPU_BASED_CR8_STORE_EXITING |
2783 #endif
2784 CPU_BASED_CR3_LOAD_EXITING |
2785 CPU_BASED_CR3_STORE_EXITING |
2786 CPU_BASED_USE_IO_BITMAPS |
2787 CPU_BASED_MOV_DR_EXITING |
2788 CPU_BASED_USE_TSC_OFFSETING |
2789 CPU_BASED_MWAIT_EXITING |
2790 CPU_BASED_MONITOR_EXITING |
2791 CPU_BASED_INVLPG_EXITING |
2792 CPU_BASED_RDPMC_EXITING;
2793
2794 opt = CPU_BASED_TPR_SHADOW |
2795 CPU_BASED_USE_MSR_BITMAPS |
2796 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2797 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2798 &_cpu_based_exec_control) < 0)
2799 return -EIO;
2800 #ifdef CONFIG_X86_64
2801 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2802 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2803 ~CPU_BASED_CR8_STORE_EXITING;
2804 #endif
2805 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2806 min2 = 0;
2807 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2808 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2809 SECONDARY_EXEC_WBINVD_EXITING |
2810 SECONDARY_EXEC_ENABLE_VPID |
2811 SECONDARY_EXEC_ENABLE_EPT |
2812 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2813 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2814 SECONDARY_EXEC_RDTSCP |
2815 SECONDARY_EXEC_ENABLE_INVPCID |
2816 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2817 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2818 SECONDARY_EXEC_SHADOW_VMCS;
2819 if (adjust_vmx_controls(min2, opt2,
2820 MSR_IA32_VMX_PROCBASED_CTLS2,
2821 &_cpu_based_2nd_exec_control) < 0)
2822 return -EIO;
2823 }
2824 #ifndef CONFIG_X86_64
2825 if (!(_cpu_based_2nd_exec_control &
2826 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2827 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2828 #endif
2829
2830 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2831 _cpu_based_2nd_exec_control &= ~(
2832 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2833 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2834 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2835
2836 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2837 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2838 enabled */
2839 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2840 CPU_BASED_CR3_STORE_EXITING |
2841 CPU_BASED_INVLPG_EXITING);
2842 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2843 vmx_capability.ept, vmx_capability.vpid);
2844 }
2845
2846 min = 0;
2847 #ifdef CONFIG_X86_64
2848 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2849 #endif
2850 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2851 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
2852 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2853 &_vmexit_control) < 0)
2854 return -EIO;
2855
2856 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2857 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2858 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2859 &_pin_based_exec_control) < 0)
2860 return -EIO;
2861
2862 if (!(_cpu_based_2nd_exec_control &
2863 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2864 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2865 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2866
2867 min = 0;
2868 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
2869 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2870 &_vmentry_control) < 0)
2871 return -EIO;
2872
2873 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2874
2875 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2876 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2877 return -EIO;
2878
2879 #ifdef CONFIG_X86_64
2880 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2881 if (vmx_msr_high & (1u<<16))
2882 return -EIO;
2883 #endif
2884
2885 /* Require Write-Back (WB) memory type for VMCS accesses. */
2886 if (((vmx_msr_high >> 18) & 15) != 6)
2887 return -EIO;
2888
2889 vmcs_conf->size = vmx_msr_high & 0x1fff;
2890 vmcs_conf->order = get_order(vmcs_config.size);
2891 vmcs_conf->revision_id = vmx_msr_low;
2892
2893 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2894 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2895 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2896 vmcs_conf->vmexit_ctrl = _vmexit_control;
2897 vmcs_conf->vmentry_ctrl = _vmentry_control;
2898
2899 cpu_has_load_ia32_efer =
2900 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2901 VM_ENTRY_LOAD_IA32_EFER)
2902 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2903 VM_EXIT_LOAD_IA32_EFER);
2904
2905 cpu_has_load_perf_global_ctrl =
2906 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2907 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2908 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2909 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2910
2911 /*
2912 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2913 * but due to arrata below it can't be used. Workaround is to use
2914 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2915 *
2916 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2917 *
2918 * AAK155 (model 26)
2919 * AAP115 (model 30)
2920 * AAT100 (model 37)
2921 * BC86,AAY89,BD102 (model 44)
2922 * BA97 (model 46)
2923 *
2924 */
2925 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2926 switch (boot_cpu_data.x86_model) {
2927 case 26:
2928 case 30:
2929 case 37:
2930 case 44:
2931 case 46:
2932 cpu_has_load_perf_global_ctrl = false;
2933 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2934 "does not work properly. Using workaround\n");
2935 break;
2936 default:
2937 break;
2938 }
2939 }
2940
2941 return 0;
2942 }
2943
2944 static struct vmcs *alloc_vmcs_cpu(int cpu)
2945 {
2946 int node = cpu_to_node(cpu);
2947 struct page *pages;
2948 struct vmcs *vmcs;
2949
2950 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2951 if (!pages)
2952 return NULL;
2953 vmcs = page_address(pages);
2954 memset(vmcs, 0, vmcs_config.size);
2955 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2956 return vmcs;
2957 }
2958
2959 static struct vmcs *alloc_vmcs(void)
2960 {
2961 return alloc_vmcs_cpu(raw_smp_processor_id());
2962 }
2963
2964 static void free_vmcs(struct vmcs *vmcs)
2965 {
2966 free_pages((unsigned long)vmcs, vmcs_config.order);
2967 }
2968
2969 /*
2970 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2971 */
2972 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2973 {
2974 if (!loaded_vmcs->vmcs)
2975 return;
2976 loaded_vmcs_clear(loaded_vmcs);
2977 free_vmcs(loaded_vmcs->vmcs);
2978 loaded_vmcs->vmcs = NULL;
2979 }
2980
2981 static void free_kvm_area(void)
2982 {
2983 int cpu;
2984
2985 for_each_possible_cpu(cpu) {
2986 free_vmcs(per_cpu(vmxarea, cpu));
2987 per_cpu(vmxarea, cpu) = NULL;
2988 }
2989 }
2990
2991 static __init int alloc_kvm_area(void)
2992 {
2993 int cpu;
2994
2995 for_each_possible_cpu(cpu) {
2996 struct vmcs *vmcs;
2997
2998 vmcs = alloc_vmcs_cpu(cpu);
2999 if (!vmcs) {
3000 free_kvm_area();
3001 return -ENOMEM;
3002 }
3003
3004 per_cpu(vmxarea, cpu) = vmcs;
3005 }
3006 return 0;
3007 }
3008
3009 static __init int hardware_setup(void)
3010 {
3011 if (setup_vmcs_config(&vmcs_config) < 0)
3012 return -EIO;
3013
3014 if (boot_cpu_has(X86_FEATURE_NX))
3015 kvm_enable_efer_bits(EFER_NX);
3016
3017 if (!cpu_has_vmx_vpid())
3018 enable_vpid = 0;
3019 if (!cpu_has_vmx_shadow_vmcs())
3020 enable_shadow_vmcs = 0;
3021
3022 if (!cpu_has_vmx_ept() ||
3023 !cpu_has_vmx_ept_4levels()) {
3024 enable_ept = 0;
3025 enable_unrestricted_guest = 0;
3026 enable_ept_ad_bits = 0;
3027 }
3028
3029 if (!cpu_has_vmx_ept_ad_bits())
3030 enable_ept_ad_bits = 0;
3031
3032 if (!cpu_has_vmx_unrestricted_guest())
3033 enable_unrestricted_guest = 0;
3034
3035 if (!cpu_has_vmx_flexpriority())
3036 flexpriority_enabled = 0;
3037
3038 if (!cpu_has_vmx_tpr_shadow())
3039 kvm_x86_ops->update_cr8_intercept = NULL;
3040
3041 if (enable_ept && !cpu_has_vmx_ept_2m_page())
3042 kvm_disable_largepages();
3043
3044 if (!cpu_has_vmx_ple())
3045 ple_gap = 0;
3046
3047 if (!cpu_has_vmx_apicv())
3048 enable_apicv = 0;
3049
3050 if (enable_apicv)
3051 kvm_x86_ops->update_cr8_intercept = NULL;
3052 else {
3053 kvm_x86_ops->hwapic_irr_update = NULL;
3054 kvm_x86_ops->deliver_posted_interrupt = NULL;
3055 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3056 }
3057
3058 if (nested)
3059 nested_vmx_setup_ctls_msrs();
3060
3061 return alloc_kvm_area();
3062 }
3063
3064 static __exit void hardware_unsetup(void)
3065 {
3066 free_kvm_area();
3067 }
3068
3069 static bool emulation_required(struct kvm_vcpu *vcpu)
3070 {
3071 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3072 }
3073
3074 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3075 struct kvm_segment *save)
3076 {
3077 if (!emulate_invalid_guest_state) {
3078 /*
3079 * CS and SS RPL should be equal during guest entry according
3080 * to VMX spec, but in reality it is not always so. Since vcpu
3081 * is in the middle of the transition from real mode to
3082 * protected mode it is safe to assume that RPL 0 is a good
3083 * default value.
3084 */
3085 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3086 save->selector &= ~SELECTOR_RPL_MASK;
3087 save->dpl = save->selector & SELECTOR_RPL_MASK;
3088 save->s = 1;
3089 }
3090 vmx_set_segment(vcpu, save, seg);
3091 }
3092
3093 static void enter_pmode(struct kvm_vcpu *vcpu)
3094 {
3095 unsigned long flags;
3096 struct vcpu_vmx *vmx = to_vmx(vcpu);
3097
3098 /*
3099 * Update real mode segment cache. It may be not up-to-date if sement
3100 * register was written while vcpu was in a guest mode.
3101 */
3102 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3103 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3104 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3105 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3106 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3107 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3108
3109 vmx->rmode.vm86_active = 0;
3110
3111 vmx_segment_cache_clear(vmx);
3112
3113 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3114
3115 flags = vmcs_readl(GUEST_RFLAGS);
3116 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3117 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3118 vmcs_writel(GUEST_RFLAGS, flags);
3119
3120 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3121 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3122
3123 update_exception_bitmap(vcpu);
3124
3125 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3126 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3127 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3128 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3129 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3130 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3131
3132 /* CPL is always 0 when CPU enters protected mode */
3133 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3134 vmx->cpl = 0;
3135 }
3136
3137 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3138 {
3139 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3140 struct kvm_segment var = *save;
3141
3142 var.dpl = 0x3;
3143 if (seg == VCPU_SREG_CS)
3144 var.type = 0x3;
3145
3146 if (!emulate_invalid_guest_state) {
3147 var.selector = var.base >> 4;
3148 var.base = var.base & 0xffff0;
3149 var.limit = 0xffff;
3150 var.g = 0;
3151 var.db = 0;
3152 var.present = 1;
3153 var.s = 1;
3154 var.l = 0;
3155 var.unusable = 0;
3156 var.type = 0x3;
3157 var.avl = 0;
3158 if (save->base & 0xf)
3159 printk_once(KERN_WARNING "kvm: segment base is not "
3160 "paragraph aligned when entering "
3161 "protected mode (seg=%d)", seg);
3162 }
3163
3164 vmcs_write16(sf->selector, var.selector);
3165 vmcs_write32(sf->base, var.base);
3166 vmcs_write32(sf->limit, var.limit);
3167 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3168 }
3169
3170 static void enter_rmode(struct kvm_vcpu *vcpu)
3171 {
3172 unsigned long flags;
3173 struct vcpu_vmx *vmx = to_vmx(vcpu);
3174
3175 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3176 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3177 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3178 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3179 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3180 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3181 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3182
3183 vmx->rmode.vm86_active = 1;
3184
3185 /*
3186 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3187 * vcpu. Warn the user that an update is overdue.
3188 */
3189 if (!vcpu->kvm->arch.tss_addr)
3190 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3191 "called before entering vcpu\n");
3192
3193 vmx_segment_cache_clear(vmx);
3194
3195 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3196 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3197 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3198
3199 flags = vmcs_readl(GUEST_RFLAGS);
3200 vmx->rmode.save_rflags = flags;
3201
3202 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3203
3204 vmcs_writel(GUEST_RFLAGS, flags);
3205 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3206 update_exception_bitmap(vcpu);
3207
3208 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3209 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3210 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3211 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3212 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3213 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3214
3215 kvm_mmu_reset_context(vcpu);
3216 }
3217
3218 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3219 {
3220 struct vcpu_vmx *vmx = to_vmx(vcpu);
3221 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3222
3223 if (!msr)
3224 return;
3225
3226 /*
3227 * Force kernel_gs_base reloading before EFER changes, as control
3228 * of this msr depends on is_long_mode().
3229 */
3230 vmx_load_host_state(to_vmx(vcpu));
3231 vcpu->arch.efer = efer;
3232 if (efer & EFER_LMA) {
3233 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3234 msr->data = efer;
3235 } else {
3236 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3237
3238 msr->data = efer & ~EFER_LME;
3239 }
3240 setup_msrs(vmx);
3241 }
3242
3243 #ifdef CONFIG_X86_64
3244
3245 static void enter_lmode(struct kvm_vcpu *vcpu)
3246 {
3247 u32 guest_tr_ar;
3248
3249 vmx_segment_cache_clear(to_vmx(vcpu));
3250
3251 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3252 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3253 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3254 __func__);
3255 vmcs_write32(GUEST_TR_AR_BYTES,
3256 (guest_tr_ar & ~AR_TYPE_MASK)
3257 | AR_TYPE_BUSY_64_TSS);
3258 }
3259 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3260 }
3261
3262 static void exit_lmode(struct kvm_vcpu *vcpu)
3263 {
3264 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3265 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3266 }
3267
3268 #endif
3269
3270 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3271 {
3272 vpid_sync_context(to_vmx(vcpu));
3273 if (enable_ept) {
3274 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3275 return;
3276 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3277 }
3278 }
3279
3280 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3281 {
3282 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3283
3284 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3285 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3286 }
3287
3288 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3289 {
3290 if (enable_ept && is_paging(vcpu))
3291 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3292 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3293 }
3294
3295 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3296 {
3297 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3298
3299 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3300 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3301 }
3302
3303 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3304 {
3305 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3306
3307 if (!test_bit(VCPU_EXREG_PDPTR,
3308 (unsigned long *)&vcpu->arch.regs_dirty))
3309 return;
3310
3311 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3312 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3313 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3314 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3315 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3316 }
3317 }
3318
3319 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3320 {
3321 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3322
3323 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3324 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3325 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3326 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3327 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3328 }
3329
3330 __set_bit(VCPU_EXREG_PDPTR,
3331 (unsigned long *)&vcpu->arch.regs_avail);
3332 __set_bit(VCPU_EXREG_PDPTR,
3333 (unsigned long *)&vcpu->arch.regs_dirty);
3334 }
3335
3336 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3337
3338 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3339 unsigned long cr0,
3340 struct kvm_vcpu *vcpu)
3341 {
3342 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3343 vmx_decache_cr3(vcpu);
3344 if (!(cr0 & X86_CR0_PG)) {
3345 /* From paging/starting to nonpaging */
3346 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3347 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3348 (CPU_BASED_CR3_LOAD_EXITING |
3349 CPU_BASED_CR3_STORE_EXITING));
3350 vcpu->arch.cr0 = cr0;
3351 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3352 } else if (!is_paging(vcpu)) {
3353 /* From nonpaging to paging */
3354 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3355 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3356 ~(CPU_BASED_CR3_LOAD_EXITING |
3357 CPU_BASED_CR3_STORE_EXITING));
3358 vcpu->arch.cr0 = cr0;
3359 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3360 }
3361
3362 if (!(cr0 & X86_CR0_WP))
3363 *hw_cr0 &= ~X86_CR0_WP;
3364 }
3365
3366 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3367 {
3368 struct vcpu_vmx *vmx = to_vmx(vcpu);
3369 unsigned long hw_cr0;
3370
3371 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3372 if (enable_unrestricted_guest)
3373 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3374 else {
3375 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3376
3377 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3378 enter_pmode(vcpu);
3379
3380 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3381 enter_rmode(vcpu);
3382 }
3383
3384 #ifdef CONFIG_X86_64
3385 if (vcpu->arch.efer & EFER_LME) {
3386 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3387 enter_lmode(vcpu);
3388 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3389 exit_lmode(vcpu);
3390 }
3391 #endif
3392
3393 if (enable_ept)
3394 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3395
3396 if (!vcpu->fpu_active)
3397 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3398
3399 vmcs_writel(CR0_READ_SHADOW, cr0);
3400 vmcs_writel(GUEST_CR0, hw_cr0);
3401 vcpu->arch.cr0 = cr0;
3402
3403 /* depends on vcpu->arch.cr0 to be set to a new value */
3404 vmx->emulation_required = emulation_required(vcpu);
3405 }
3406
3407 static u64 construct_eptp(unsigned long root_hpa)
3408 {
3409 u64 eptp;
3410
3411 /* TODO write the value reading from MSR */
3412 eptp = VMX_EPT_DEFAULT_MT |
3413 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3414 if (enable_ept_ad_bits)
3415 eptp |= VMX_EPT_AD_ENABLE_BIT;
3416 eptp |= (root_hpa & PAGE_MASK);
3417
3418 return eptp;
3419 }
3420
3421 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3422 {
3423 unsigned long guest_cr3;
3424 u64 eptp;
3425
3426 guest_cr3 = cr3;
3427 if (enable_ept) {
3428 eptp = construct_eptp(cr3);
3429 vmcs_write64(EPT_POINTER, eptp);
3430 if (is_paging(vcpu) || is_guest_mode(vcpu))
3431 guest_cr3 = kvm_read_cr3(vcpu);
3432 else
3433 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3434 ept_load_pdptrs(vcpu);
3435 }
3436
3437 vmx_flush_tlb(vcpu);
3438 vmcs_writel(GUEST_CR3, guest_cr3);
3439 }
3440
3441 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3442 {
3443 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3444 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3445
3446 if (cr4 & X86_CR4_VMXE) {
3447 /*
3448 * To use VMXON (and later other VMX instructions), a guest
3449 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3450 * So basically the check on whether to allow nested VMX
3451 * is here.
3452 */
3453 if (!nested_vmx_allowed(vcpu))
3454 return 1;
3455 }
3456 if (to_vmx(vcpu)->nested.vmxon &&
3457 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3458 return 1;
3459
3460 vcpu->arch.cr4 = cr4;
3461 if (enable_ept) {
3462 if (!is_paging(vcpu)) {
3463 hw_cr4 &= ~X86_CR4_PAE;
3464 hw_cr4 |= X86_CR4_PSE;
3465 /*
3466 * SMEP is disabled if CPU is in non-paging mode in
3467 * hardware. However KVM always uses paging mode to
3468 * emulate guest non-paging mode with TDP.
3469 * To emulate this behavior, SMEP needs to be manually
3470 * disabled when guest switches to non-paging mode.
3471 */
3472 hw_cr4 &= ~X86_CR4_SMEP;
3473 } else if (!(cr4 & X86_CR4_PAE)) {
3474 hw_cr4 &= ~X86_CR4_PAE;
3475 }
3476 }
3477
3478 vmcs_writel(CR4_READ_SHADOW, cr4);
3479 vmcs_writel(GUEST_CR4, hw_cr4);
3480 return 0;
3481 }
3482
3483 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3484 struct kvm_segment *var, int seg)
3485 {
3486 struct vcpu_vmx *vmx = to_vmx(vcpu);
3487 u32 ar;
3488
3489 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3490 *var = vmx->rmode.segs[seg];
3491 if (seg == VCPU_SREG_TR
3492 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3493 return;
3494 var->base = vmx_read_guest_seg_base(vmx, seg);
3495 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3496 return;
3497 }
3498 var->base = vmx_read_guest_seg_base(vmx, seg);
3499 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3500 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3501 ar = vmx_read_guest_seg_ar(vmx, seg);
3502 var->unusable = (ar >> 16) & 1;
3503 var->type = ar & 15;
3504 var->s = (ar >> 4) & 1;
3505 var->dpl = (ar >> 5) & 3;
3506 /*
3507 * Some userspaces do not preserve unusable property. Since usable
3508 * segment has to be present according to VMX spec we can use present
3509 * property to amend userspace bug by making unusable segment always
3510 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3511 * segment as unusable.
3512 */
3513 var->present = !var->unusable;
3514 var->avl = (ar >> 12) & 1;
3515 var->l = (ar >> 13) & 1;
3516 var->db = (ar >> 14) & 1;
3517 var->g = (ar >> 15) & 1;
3518 }
3519
3520 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3521 {
3522 struct kvm_segment s;
3523
3524 if (to_vmx(vcpu)->rmode.vm86_active) {
3525 vmx_get_segment(vcpu, &s, seg);
3526 return s.base;
3527 }
3528 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3529 }
3530
3531 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3532 {
3533 struct vcpu_vmx *vmx = to_vmx(vcpu);
3534
3535 if (!is_protmode(vcpu))
3536 return 0;
3537
3538 if (!is_long_mode(vcpu)
3539 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3540 return 3;
3541
3542 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3543 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3544 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
3545 }
3546
3547 return vmx->cpl;
3548 }
3549
3550
3551 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3552 {
3553 u32 ar;
3554
3555 if (var->unusable || !var->present)
3556 ar = 1 << 16;
3557 else {
3558 ar = var->type & 15;
3559 ar |= (var->s & 1) << 4;
3560 ar |= (var->dpl & 3) << 5;
3561 ar |= (var->present & 1) << 7;
3562 ar |= (var->avl & 1) << 12;
3563 ar |= (var->l & 1) << 13;
3564 ar |= (var->db & 1) << 14;
3565 ar |= (var->g & 1) << 15;
3566 }
3567
3568 return ar;
3569 }
3570
3571 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3572 struct kvm_segment *var, int seg)
3573 {
3574 struct vcpu_vmx *vmx = to_vmx(vcpu);
3575 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3576
3577 vmx_segment_cache_clear(vmx);
3578 if (seg == VCPU_SREG_CS)
3579 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3580
3581 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3582 vmx->rmode.segs[seg] = *var;
3583 if (seg == VCPU_SREG_TR)
3584 vmcs_write16(sf->selector, var->selector);
3585 else if (var->s)
3586 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3587 goto out;
3588 }
3589
3590 vmcs_writel(sf->base, var->base);
3591 vmcs_write32(sf->limit, var->limit);
3592 vmcs_write16(sf->selector, var->selector);
3593
3594 /*
3595 * Fix the "Accessed" bit in AR field of segment registers for older
3596 * qemu binaries.
3597 * IA32 arch specifies that at the time of processor reset the
3598 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3599 * is setting it to 0 in the userland code. This causes invalid guest
3600 * state vmexit when "unrestricted guest" mode is turned on.
3601 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3602 * tree. Newer qemu binaries with that qemu fix would not need this
3603 * kvm hack.
3604 */
3605 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3606 var->type |= 0x1; /* Accessed */
3607
3608 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3609
3610 out:
3611 vmx->emulation_required |= emulation_required(vcpu);
3612 }
3613
3614 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3615 {
3616 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3617
3618 *db = (ar >> 14) & 1;
3619 *l = (ar >> 13) & 1;
3620 }
3621
3622 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3623 {
3624 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3625 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3626 }
3627
3628 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3629 {
3630 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3631 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3632 }
3633
3634 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3635 {
3636 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3637 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3638 }
3639
3640 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3641 {
3642 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3643 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3644 }
3645
3646 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3647 {
3648 struct kvm_segment var;
3649 u32 ar;
3650
3651 vmx_get_segment(vcpu, &var, seg);
3652 var.dpl = 0x3;
3653 if (seg == VCPU_SREG_CS)
3654 var.type = 0x3;
3655 ar = vmx_segment_access_rights(&var);
3656
3657 if (var.base != (var.selector << 4))
3658 return false;
3659 if (var.limit != 0xffff)
3660 return false;
3661 if (ar != 0xf3)
3662 return false;
3663
3664 return true;
3665 }
3666
3667 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3668 {
3669 struct kvm_segment cs;
3670 unsigned int cs_rpl;
3671
3672 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3673 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3674
3675 if (cs.unusable)
3676 return false;
3677 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3678 return false;
3679 if (!cs.s)
3680 return false;
3681 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3682 if (cs.dpl > cs_rpl)
3683 return false;
3684 } else {
3685 if (cs.dpl != cs_rpl)
3686 return false;
3687 }
3688 if (!cs.present)
3689 return false;
3690
3691 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3692 return true;
3693 }
3694
3695 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3696 {
3697 struct kvm_segment ss;
3698 unsigned int ss_rpl;
3699
3700 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3701 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3702
3703 if (ss.unusable)
3704 return true;
3705 if (ss.type != 3 && ss.type != 7)
3706 return false;
3707 if (!ss.s)
3708 return false;
3709 if (ss.dpl != ss_rpl) /* DPL != RPL */
3710 return false;
3711 if (!ss.present)
3712 return false;
3713
3714 return true;
3715 }
3716
3717 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3718 {
3719 struct kvm_segment var;
3720 unsigned int rpl;
3721
3722 vmx_get_segment(vcpu, &var, seg);
3723 rpl = var.selector & SELECTOR_RPL_MASK;
3724
3725 if (var.unusable)
3726 return true;
3727 if (!var.s)
3728 return false;
3729 if (!var.present)
3730 return false;
3731 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3732 if (var.dpl < rpl) /* DPL < RPL */
3733 return false;
3734 }
3735
3736 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3737 * rights flags
3738 */
3739 return true;
3740 }
3741
3742 static bool tr_valid(struct kvm_vcpu *vcpu)
3743 {
3744 struct kvm_segment tr;
3745
3746 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3747
3748 if (tr.unusable)
3749 return false;
3750 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3751 return false;
3752 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3753 return false;
3754 if (!tr.present)
3755 return false;
3756
3757 return true;
3758 }
3759
3760 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3761 {
3762 struct kvm_segment ldtr;
3763
3764 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3765
3766 if (ldtr.unusable)
3767 return true;
3768 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3769 return false;
3770 if (ldtr.type != 2)
3771 return false;
3772 if (!ldtr.present)
3773 return false;
3774
3775 return true;
3776 }
3777
3778 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3779 {
3780 struct kvm_segment cs, ss;
3781
3782 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3783 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3784
3785 return ((cs.selector & SELECTOR_RPL_MASK) ==
3786 (ss.selector & SELECTOR_RPL_MASK));
3787 }
3788
3789 /*
3790 * Check if guest state is valid. Returns true if valid, false if
3791 * not.
3792 * We assume that registers are always usable
3793 */
3794 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3795 {
3796 if (enable_unrestricted_guest)
3797 return true;
3798
3799 /* real mode guest state checks */
3800 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3801 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3802 return false;
3803 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3804 return false;
3805 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3806 return false;
3807 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3808 return false;
3809 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3810 return false;
3811 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3812 return false;
3813 } else {
3814 /* protected mode guest state checks */
3815 if (!cs_ss_rpl_check(vcpu))
3816 return false;
3817 if (!code_segment_valid(vcpu))
3818 return false;
3819 if (!stack_segment_valid(vcpu))
3820 return false;
3821 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3822 return false;
3823 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3824 return false;
3825 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3826 return false;
3827 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3828 return false;
3829 if (!tr_valid(vcpu))
3830 return false;
3831 if (!ldtr_valid(vcpu))
3832 return false;
3833 }
3834 /* TODO:
3835 * - Add checks on RIP
3836 * - Add checks on RFLAGS
3837 */
3838
3839 return true;
3840 }
3841
3842 static int init_rmode_tss(struct kvm *kvm)
3843 {
3844 gfn_t fn;
3845 u16 data = 0;
3846 int r, idx, ret = 0;
3847
3848 idx = srcu_read_lock(&kvm->srcu);
3849 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3850 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3851 if (r < 0)
3852 goto out;
3853 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3854 r = kvm_write_guest_page(kvm, fn++, &data,
3855 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3856 if (r < 0)
3857 goto out;
3858 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3859 if (r < 0)
3860 goto out;
3861 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3862 if (r < 0)
3863 goto out;
3864 data = ~0;
3865 r = kvm_write_guest_page(kvm, fn, &data,
3866 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3867 sizeof(u8));
3868 if (r < 0)
3869 goto out;
3870
3871 ret = 1;
3872 out:
3873 srcu_read_unlock(&kvm->srcu, idx);
3874 return ret;
3875 }
3876
3877 static int init_rmode_identity_map(struct kvm *kvm)
3878 {
3879 int i, idx, r, ret;
3880 pfn_t identity_map_pfn;
3881 u32 tmp;
3882
3883 if (!enable_ept)
3884 return 1;
3885 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3886 printk(KERN_ERR "EPT: identity-mapping pagetable "
3887 "haven't been allocated!\n");
3888 return 0;
3889 }
3890 if (likely(kvm->arch.ept_identity_pagetable_done))
3891 return 1;
3892 ret = 0;
3893 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3894 idx = srcu_read_lock(&kvm->srcu);
3895 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3896 if (r < 0)
3897 goto out;
3898 /* Set up identity-mapping pagetable for EPT in real mode */
3899 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3900 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3901 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3902 r = kvm_write_guest_page(kvm, identity_map_pfn,
3903 &tmp, i * sizeof(tmp), sizeof(tmp));
3904 if (r < 0)
3905 goto out;
3906 }
3907 kvm->arch.ept_identity_pagetable_done = true;
3908 ret = 1;
3909 out:
3910 srcu_read_unlock(&kvm->srcu, idx);
3911 return ret;
3912 }
3913
3914 static void seg_setup(int seg)
3915 {
3916 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3917 unsigned int ar;
3918
3919 vmcs_write16(sf->selector, 0);
3920 vmcs_writel(sf->base, 0);
3921 vmcs_write32(sf->limit, 0xffff);
3922 ar = 0x93;
3923 if (seg == VCPU_SREG_CS)
3924 ar |= 0x08; /* code segment */
3925
3926 vmcs_write32(sf->ar_bytes, ar);
3927 }
3928
3929 static int alloc_apic_access_page(struct kvm *kvm)
3930 {
3931 struct page *page;
3932 struct kvm_userspace_memory_region kvm_userspace_mem;
3933 int r = 0;
3934
3935 mutex_lock(&kvm->slots_lock);
3936 if (kvm->arch.apic_access_page)
3937 goto out;
3938 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3939 kvm_userspace_mem.flags = 0;
3940 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3941 kvm_userspace_mem.memory_size = PAGE_SIZE;
3942 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3943 if (r)
3944 goto out;
3945
3946 page = gfn_to_page(kvm, 0xfee00);
3947 if (is_error_page(page)) {
3948 r = -EFAULT;
3949 goto out;
3950 }
3951
3952 kvm->arch.apic_access_page = page;
3953 out:
3954 mutex_unlock(&kvm->slots_lock);
3955 return r;
3956 }
3957
3958 static int alloc_identity_pagetable(struct kvm *kvm)
3959 {
3960 struct page *page;
3961 struct kvm_userspace_memory_region kvm_userspace_mem;
3962 int r = 0;
3963
3964 mutex_lock(&kvm->slots_lock);
3965 if (kvm->arch.ept_identity_pagetable)
3966 goto out;
3967 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3968 kvm_userspace_mem.flags = 0;
3969 kvm_userspace_mem.guest_phys_addr =
3970 kvm->arch.ept_identity_map_addr;
3971 kvm_userspace_mem.memory_size = PAGE_SIZE;
3972 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3973 if (r)
3974 goto out;
3975
3976 page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3977 if (is_error_page(page)) {
3978 r = -EFAULT;
3979 goto out;
3980 }
3981
3982 kvm->arch.ept_identity_pagetable = page;
3983 out:
3984 mutex_unlock(&kvm->slots_lock);
3985 return r;
3986 }
3987
3988 static void allocate_vpid(struct vcpu_vmx *vmx)
3989 {
3990 int vpid;
3991
3992 vmx->vpid = 0;
3993 if (!enable_vpid)
3994 return;
3995 spin_lock(&vmx_vpid_lock);
3996 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3997 if (vpid < VMX_NR_VPIDS) {
3998 vmx->vpid = vpid;
3999 __set_bit(vpid, vmx_vpid_bitmap);
4000 }
4001 spin_unlock(&vmx_vpid_lock);
4002 }
4003
4004 static void free_vpid(struct vcpu_vmx *vmx)
4005 {
4006 if (!enable_vpid)
4007 return;
4008 spin_lock(&vmx_vpid_lock);
4009 if (vmx->vpid != 0)
4010 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4011 spin_unlock(&vmx_vpid_lock);
4012 }
4013
4014 #define MSR_TYPE_R 1
4015 #define MSR_TYPE_W 2
4016 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4017 u32 msr, int type)
4018 {
4019 int f = sizeof(unsigned long);
4020
4021 if (!cpu_has_vmx_msr_bitmap())
4022 return;
4023
4024 /*
4025 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4026 * have the write-low and read-high bitmap offsets the wrong way round.
4027 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4028 */
4029 if (msr <= 0x1fff) {
4030 if (type & MSR_TYPE_R)
4031 /* read-low */
4032 __clear_bit(msr, msr_bitmap + 0x000 / f);
4033
4034 if (type & MSR_TYPE_W)
4035 /* write-low */
4036 __clear_bit(msr, msr_bitmap + 0x800 / f);
4037
4038 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4039 msr &= 0x1fff;
4040 if (type & MSR_TYPE_R)
4041 /* read-high */
4042 __clear_bit(msr, msr_bitmap + 0x400 / f);
4043
4044 if (type & MSR_TYPE_W)
4045 /* write-high */
4046 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4047
4048 }
4049 }
4050
4051 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4052 u32 msr, int type)
4053 {
4054 int f = sizeof(unsigned long);
4055
4056 if (!cpu_has_vmx_msr_bitmap())
4057 return;
4058
4059 /*
4060 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4061 * have the write-low and read-high bitmap offsets the wrong way round.
4062 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4063 */
4064 if (msr <= 0x1fff) {
4065 if (type & MSR_TYPE_R)
4066 /* read-low */
4067 __set_bit(msr, msr_bitmap + 0x000 / f);
4068
4069 if (type & MSR_TYPE_W)
4070 /* write-low */
4071 __set_bit(msr, msr_bitmap + 0x800 / f);
4072
4073 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4074 msr &= 0x1fff;
4075 if (type & MSR_TYPE_R)
4076 /* read-high */
4077 __set_bit(msr, msr_bitmap + 0x400 / f);
4078
4079 if (type & MSR_TYPE_W)
4080 /* write-high */
4081 __set_bit(msr, msr_bitmap + 0xc00 / f);
4082
4083 }
4084 }
4085
4086 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4087 {
4088 if (!longmode_only)
4089 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4090 msr, MSR_TYPE_R | MSR_TYPE_W);
4091 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4092 msr, MSR_TYPE_R | MSR_TYPE_W);
4093 }
4094
4095 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4096 {
4097 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4098 msr, MSR_TYPE_R);
4099 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4100 msr, MSR_TYPE_R);
4101 }
4102
4103 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4104 {
4105 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4106 msr, MSR_TYPE_R);
4107 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4108 msr, MSR_TYPE_R);
4109 }
4110
4111 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4112 {
4113 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4114 msr, MSR_TYPE_W);
4115 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4116 msr, MSR_TYPE_W);
4117 }
4118
4119 static int vmx_vm_has_apicv(struct kvm *kvm)
4120 {
4121 return enable_apicv && irqchip_in_kernel(kvm);
4122 }
4123
4124 /*
4125 * Send interrupt to vcpu via posted interrupt way.
4126 * 1. If target vcpu is running(non-root mode), send posted interrupt
4127 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4128 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4129 * interrupt from PIR in next vmentry.
4130 */
4131 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4132 {
4133 struct vcpu_vmx *vmx = to_vmx(vcpu);
4134 int r;
4135
4136 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4137 return;
4138
4139 r = pi_test_and_set_on(&vmx->pi_desc);
4140 kvm_make_request(KVM_REQ_EVENT, vcpu);
4141 #ifdef CONFIG_SMP
4142 if (!r && (vcpu->mode == IN_GUEST_MODE))
4143 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4144 POSTED_INTR_VECTOR);
4145 else
4146 #endif
4147 kvm_vcpu_kick(vcpu);
4148 }
4149
4150 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4151 {
4152 struct vcpu_vmx *vmx = to_vmx(vcpu);
4153
4154 if (!pi_test_and_clear_on(&vmx->pi_desc))
4155 return;
4156
4157 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4158 }
4159
4160 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4161 {
4162 return;
4163 }
4164
4165 /*
4166 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4167 * will not change in the lifetime of the guest.
4168 * Note that host-state that does change is set elsewhere. E.g., host-state
4169 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4170 */
4171 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4172 {
4173 u32 low32, high32;
4174 unsigned long tmpl;
4175 struct desc_ptr dt;
4176
4177 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4178 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
4179 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4180
4181 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4182 #ifdef CONFIG_X86_64
4183 /*
4184 * Load null selectors, so we can avoid reloading them in
4185 * __vmx_load_host_state(), in case userspace uses the null selectors
4186 * too (the expected case).
4187 */
4188 vmcs_write16(HOST_DS_SELECTOR, 0);
4189 vmcs_write16(HOST_ES_SELECTOR, 0);
4190 #else
4191 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4192 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4193 #endif
4194 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4195 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4196
4197 native_store_idt(&dt);
4198 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4199 vmx->host_idt_base = dt.address;
4200
4201 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4202
4203 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4204 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4205 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4206 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4207
4208 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4209 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4210 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4211 }
4212 }
4213
4214 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4215 {
4216 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4217 if (enable_ept)
4218 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4219 if (is_guest_mode(&vmx->vcpu))
4220 vmx->vcpu.arch.cr4_guest_owned_bits &=
4221 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4222 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4223 }
4224
4225 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4226 {
4227 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4228
4229 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4230 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4231 return pin_based_exec_ctrl;
4232 }
4233
4234 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4235 {
4236 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4237 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4238 exec_control &= ~CPU_BASED_TPR_SHADOW;
4239 #ifdef CONFIG_X86_64
4240 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4241 CPU_BASED_CR8_LOAD_EXITING;
4242 #endif
4243 }
4244 if (!enable_ept)
4245 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4246 CPU_BASED_CR3_LOAD_EXITING |
4247 CPU_BASED_INVLPG_EXITING;
4248 return exec_control;
4249 }
4250
4251 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4252 {
4253 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4254 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4255 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4256 if (vmx->vpid == 0)
4257 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4258 if (!enable_ept) {
4259 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4260 enable_unrestricted_guest = 0;
4261 /* Enable INVPCID for non-ept guests may cause performance regression. */
4262 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4263 }
4264 if (!enable_unrestricted_guest)
4265 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4266 if (!ple_gap)
4267 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4268 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4269 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4270 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4271 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4272 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4273 (handle_vmptrld).
4274 We can NOT enable shadow_vmcs here because we don't have yet
4275 a current VMCS12
4276 */
4277 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4278 return exec_control;
4279 }
4280
4281 static void ept_set_mmio_spte_mask(void)
4282 {
4283 /*
4284 * EPT Misconfigurations can be generated if the value of bits 2:0
4285 * of an EPT paging-structure entry is 110b (write/execute).
4286 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4287 * spte.
4288 */
4289 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4290 }
4291
4292 /*
4293 * Sets up the vmcs for emulated real mode.
4294 */
4295 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4296 {
4297 #ifdef CONFIG_X86_64
4298 unsigned long a;
4299 #endif
4300 int i;
4301
4302 /* I/O */
4303 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4304 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4305
4306 if (enable_shadow_vmcs) {
4307 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4308 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4309 }
4310 if (cpu_has_vmx_msr_bitmap())
4311 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4312
4313 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4314
4315 /* Control */
4316 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4317
4318 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4319
4320 if (cpu_has_secondary_exec_ctrls()) {
4321 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4322 vmx_secondary_exec_control(vmx));
4323 }
4324
4325 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4326 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4327 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4328 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4329 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4330
4331 vmcs_write16(GUEST_INTR_STATUS, 0);
4332
4333 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4334 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4335 }
4336
4337 if (ple_gap) {
4338 vmcs_write32(PLE_GAP, ple_gap);
4339 vmcs_write32(PLE_WINDOW, ple_window);
4340 }
4341
4342 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4343 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4344 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4345
4346 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4347 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4348 vmx_set_constant_host_state(vmx);
4349 #ifdef CONFIG_X86_64
4350 rdmsrl(MSR_FS_BASE, a);
4351 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4352 rdmsrl(MSR_GS_BASE, a);
4353 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4354 #else
4355 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4356 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4357 #endif
4358
4359 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4360 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4361 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4362 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4363 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4364
4365 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4366 u32 msr_low, msr_high;
4367 u64 host_pat;
4368 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4369 host_pat = msr_low | ((u64) msr_high << 32);
4370 /* Write the default value follow host pat */
4371 vmcs_write64(GUEST_IA32_PAT, host_pat);
4372 /* Keep arch.pat sync with GUEST_IA32_PAT */
4373 vmx->vcpu.arch.pat = host_pat;
4374 }
4375
4376 for (i = 0; i < NR_VMX_MSR; ++i) {
4377 u32 index = vmx_msr_index[i];
4378 u32 data_low, data_high;
4379 int j = vmx->nmsrs;
4380
4381 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4382 continue;
4383 if (wrmsr_safe(index, data_low, data_high) < 0)
4384 continue;
4385 vmx->guest_msrs[j].index = i;
4386 vmx->guest_msrs[j].data = 0;
4387 vmx->guest_msrs[j].mask = -1ull;
4388 ++vmx->nmsrs;
4389 }
4390
4391
4392 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4393
4394 /* 22.2.1, 20.8.1 */
4395 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4396
4397 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4398 set_cr4_guest_host_mask(vmx);
4399
4400 return 0;
4401 }
4402
4403 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4404 {
4405 struct vcpu_vmx *vmx = to_vmx(vcpu);
4406 struct msr_data apic_base_msr;
4407
4408 vmx->rmode.vm86_active = 0;
4409
4410 vmx->soft_vnmi_blocked = 0;
4411
4412 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4413 kvm_set_cr8(&vmx->vcpu, 0);
4414 apic_base_msr.data = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4415 if (kvm_vcpu_is_bsp(&vmx->vcpu))
4416 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4417 apic_base_msr.host_initiated = true;
4418 kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4419
4420 vmx_segment_cache_clear(vmx);
4421
4422 seg_setup(VCPU_SREG_CS);
4423 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4424 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4425
4426 seg_setup(VCPU_SREG_DS);
4427 seg_setup(VCPU_SREG_ES);
4428 seg_setup(VCPU_SREG_FS);
4429 seg_setup(VCPU_SREG_GS);
4430 seg_setup(VCPU_SREG_SS);
4431
4432 vmcs_write16(GUEST_TR_SELECTOR, 0);
4433 vmcs_writel(GUEST_TR_BASE, 0);
4434 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4435 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4436
4437 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4438 vmcs_writel(GUEST_LDTR_BASE, 0);
4439 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4440 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4441
4442 vmcs_write32(GUEST_SYSENTER_CS, 0);
4443 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4444 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4445
4446 vmcs_writel(GUEST_RFLAGS, 0x02);
4447 kvm_rip_write(vcpu, 0xfff0);
4448
4449 vmcs_writel(GUEST_GDTR_BASE, 0);
4450 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4451
4452 vmcs_writel(GUEST_IDTR_BASE, 0);
4453 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4454
4455 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4456 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4457 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4458
4459 /* Special registers */
4460 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4461
4462 setup_msrs(vmx);
4463
4464 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4465
4466 if (cpu_has_vmx_tpr_shadow()) {
4467 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4468 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4469 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4470 __pa(vmx->vcpu.arch.apic->regs));
4471 vmcs_write32(TPR_THRESHOLD, 0);
4472 }
4473
4474 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4475 vmcs_write64(APIC_ACCESS_ADDR,
4476 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4477
4478 if (vmx_vm_has_apicv(vcpu->kvm))
4479 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4480
4481 if (vmx->vpid != 0)
4482 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4483
4484 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4485 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4486 vmx_set_cr4(&vmx->vcpu, 0);
4487 vmx_set_efer(&vmx->vcpu, 0);
4488 vmx_fpu_activate(&vmx->vcpu);
4489 update_exception_bitmap(&vmx->vcpu);
4490
4491 vpid_sync_context(vmx);
4492 }
4493
4494 /*
4495 * In nested virtualization, check if L1 asked to exit on external interrupts.
4496 * For most existing hypervisors, this will always return true.
4497 */
4498 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4499 {
4500 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4501 PIN_BASED_EXT_INTR_MASK;
4502 }
4503
4504 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4505 {
4506 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4507 PIN_BASED_NMI_EXITING;
4508 }
4509
4510 static int enable_irq_window(struct kvm_vcpu *vcpu)
4511 {
4512 u32 cpu_based_vm_exec_control;
4513
4514 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4515 /*
4516 * We get here if vmx_interrupt_allowed() said we can't
4517 * inject to L1 now because L2 must run. The caller will have
4518 * to make L2 exit right after entry, so we can inject to L1
4519 * more promptly.
4520 */
4521 return -EBUSY;
4522
4523 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4524 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4525 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4526 return 0;
4527 }
4528
4529 static int enable_nmi_window(struct kvm_vcpu *vcpu)
4530 {
4531 u32 cpu_based_vm_exec_control;
4532
4533 if (!cpu_has_virtual_nmis())
4534 return enable_irq_window(vcpu);
4535
4536 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
4537 return enable_irq_window(vcpu);
4538
4539 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4540 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4541 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4542 return 0;
4543 }
4544
4545 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4546 {
4547 struct vcpu_vmx *vmx = to_vmx(vcpu);
4548 uint32_t intr;
4549 int irq = vcpu->arch.interrupt.nr;
4550
4551 trace_kvm_inj_virq(irq);
4552
4553 ++vcpu->stat.irq_injections;
4554 if (vmx->rmode.vm86_active) {
4555 int inc_eip = 0;
4556 if (vcpu->arch.interrupt.soft)
4557 inc_eip = vcpu->arch.event_exit_inst_len;
4558 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4559 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4560 return;
4561 }
4562 intr = irq | INTR_INFO_VALID_MASK;
4563 if (vcpu->arch.interrupt.soft) {
4564 intr |= INTR_TYPE_SOFT_INTR;
4565 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4566 vmx->vcpu.arch.event_exit_inst_len);
4567 } else
4568 intr |= INTR_TYPE_EXT_INTR;
4569 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4570 }
4571
4572 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4573 {
4574 struct vcpu_vmx *vmx = to_vmx(vcpu);
4575
4576 if (is_guest_mode(vcpu))
4577 return;
4578
4579 if (!cpu_has_virtual_nmis()) {
4580 /*
4581 * Tracking the NMI-blocked state in software is built upon
4582 * finding the next open IRQ window. This, in turn, depends on
4583 * well-behaving guests: They have to keep IRQs disabled at
4584 * least as long as the NMI handler runs. Otherwise we may
4585 * cause NMI nesting, maybe breaking the guest. But as this is
4586 * highly unlikely, we can live with the residual risk.
4587 */
4588 vmx->soft_vnmi_blocked = 1;
4589 vmx->vnmi_blocked_time = 0;
4590 }
4591
4592 ++vcpu->stat.nmi_injections;
4593 vmx->nmi_known_unmasked = false;
4594 if (vmx->rmode.vm86_active) {
4595 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4596 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4597 return;
4598 }
4599 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4600 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4601 }
4602
4603 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4604 {
4605 if (!cpu_has_virtual_nmis())
4606 return to_vmx(vcpu)->soft_vnmi_blocked;
4607 if (to_vmx(vcpu)->nmi_known_unmasked)
4608 return false;
4609 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4610 }
4611
4612 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4613 {
4614 struct vcpu_vmx *vmx = to_vmx(vcpu);
4615
4616 if (!cpu_has_virtual_nmis()) {
4617 if (vmx->soft_vnmi_blocked != masked) {
4618 vmx->soft_vnmi_blocked = masked;
4619 vmx->vnmi_blocked_time = 0;
4620 }
4621 } else {
4622 vmx->nmi_known_unmasked = !masked;
4623 if (masked)
4624 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4625 GUEST_INTR_STATE_NMI);
4626 else
4627 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4628 GUEST_INTR_STATE_NMI);
4629 }
4630 }
4631
4632 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4633 {
4634 if (is_guest_mode(vcpu)) {
4635 if (to_vmx(vcpu)->nested.nested_run_pending)
4636 return 0;
4637 if (nested_exit_on_nmi(vcpu)) {
4638 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4639 NMI_VECTOR | INTR_TYPE_NMI_INTR |
4640 INTR_INFO_VALID_MASK, 0);
4641 /*
4642 * The NMI-triggered VM exit counts as injection:
4643 * clear this one and block further NMIs.
4644 */
4645 vcpu->arch.nmi_pending = 0;
4646 vmx_set_nmi_mask(vcpu, true);
4647 return 0;
4648 }
4649 }
4650
4651 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4652 return 0;
4653
4654 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4655 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4656 | GUEST_INTR_STATE_NMI));
4657 }
4658
4659 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4660 {
4661 if (is_guest_mode(vcpu)) {
4662 if (to_vmx(vcpu)->nested.nested_run_pending)
4663 return 0;
4664 if (nested_exit_on_intr(vcpu)) {
4665 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4666 0, 0);
4667 /*
4668 * fall through to normal code, but now in L1, not L2
4669 */
4670 }
4671 }
4672
4673 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4674 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4675 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4676 }
4677
4678 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4679 {
4680 int ret;
4681 struct kvm_userspace_memory_region tss_mem = {
4682 .slot = TSS_PRIVATE_MEMSLOT,
4683 .guest_phys_addr = addr,
4684 .memory_size = PAGE_SIZE * 3,
4685 .flags = 0,
4686 };
4687
4688 ret = kvm_set_memory_region(kvm, &tss_mem);
4689 if (ret)
4690 return ret;
4691 kvm->arch.tss_addr = addr;
4692 if (!init_rmode_tss(kvm))
4693 return -ENOMEM;
4694
4695 return 0;
4696 }
4697
4698 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4699 {
4700 switch (vec) {
4701 case BP_VECTOR:
4702 /*
4703 * Update instruction length as we may reinject the exception
4704 * from user space while in guest debugging mode.
4705 */
4706 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4707 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4708 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4709 return false;
4710 /* fall through */
4711 case DB_VECTOR:
4712 if (vcpu->guest_debug &
4713 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4714 return false;
4715 /* fall through */
4716 case DE_VECTOR:
4717 case OF_VECTOR:
4718 case BR_VECTOR:
4719 case UD_VECTOR:
4720 case DF_VECTOR:
4721 case SS_VECTOR:
4722 case GP_VECTOR:
4723 case MF_VECTOR:
4724 return true;
4725 break;
4726 }
4727 return false;
4728 }
4729
4730 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4731 int vec, u32 err_code)
4732 {
4733 /*
4734 * Instruction with address size override prefix opcode 0x67
4735 * Cause the #SS fault with 0 error code in VM86 mode.
4736 */
4737 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4738 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4739 if (vcpu->arch.halt_request) {
4740 vcpu->arch.halt_request = 0;
4741 return kvm_emulate_halt(vcpu);
4742 }
4743 return 1;
4744 }
4745 return 0;
4746 }
4747
4748 /*
4749 * Forward all other exceptions that are valid in real mode.
4750 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4751 * the required debugging infrastructure rework.
4752 */
4753 kvm_queue_exception(vcpu, vec);
4754 return 1;
4755 }
4756
4757 /*
4758 * Trigger machine check on the host. We assume all the MSRs are already set up
4759 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4760 * We pass a fake environment to the machine check handler because we want
4761 * the guest to be always treated like user space, no matter what context
4762 * it used internally.
4763 */
4764 static void kvm_machine_check(void)
4765 {
4766 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4767 struct pt_regs regs = {
4768 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4769 .flags = X86_EFLAGS_IF,
4770 };
4771
4772 do_machine_check(&regs, 0);
4773 #endif
4774 }
4775
4776 static int handle_machine_check(struct kvm_vcpu *vcpu)
4777 {
4778 /* already handled by vcpu_run */
4779 return 1;
4780 }
4781
4782 static int handle_exception(struct kvm_vcpu *vcpu)
4783 {
4784 struct vcpu_vmx *vmx = to_vmx(vcpu);
4785 struct kvm_run *kvm_run = vcpu->run;
4786 u32 intr_info, ex_no, error_code;
4787 unsigned long cr2, rip, dr6;
4788 u32 vect_info;
4789 enum emulation_result er;
4790
4791 vect_info = vmx->idt_vectoring_info;
4792 intr_info = vmx->exit_intr_info;
4793
4794 if (is_machine_check(intr_info))
4795 return handle_machine_check(vcpu);
4796
4797 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4798 return 1; /* already handled by vmx_vcpu_run() */
4799
4800 if (is_no_device(intr_info)) {
4801 vmx_fpu_activate(vcpu);
4802 return 1;
4803 }
4804
4805 if (is_invalid_opcode(intr_info)) {
4806 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4807 if (er != EMULATE_DONE)
4808 kvm_queue_exception(vcpu, UD_VECTOR);
4809 return 1;
4810 }
4811
4812 error_code = 0;
4813 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4814 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4815
4816 /*
4817 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4818 * MMIO, it is better to report an internal error.
4819 * See the comments in vmx_handle_exit.
4820 */
4821 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4822 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4823 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4824 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4825 vcpu->run->internal.ndata = 2;
4826 vcpu->run->internal.data[0] = vect_info;
4827 vcpu->run->internal.data[1] = intr_info;
4828 return 0;
4829 }
4830
4831 if (is_page_fault(intr_info)) {
4832 /* EPT won't cause page fault directly */
4833 BUG_ON(enable_ept);
4834 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4835 trace_kvm_page_fault(cr2, error_code);
4836
4837 if (kvm_event_needs_reinjection(vcpu))
4838 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4839 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4840 }
4841
4842 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4843
4844 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4845 return handle_rmode_exception(vcpu, ex_no, error_code);
4846
4847 switch (ex_no) {
4848 case DB_VECTOR:
4849 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4850 if (!(vcpu->guest_debug &
4851 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4852 vcpu->arch.dr6 &= ~15;
4853 vcpu->arch.dr6 |= dr6;
4854 kvm_queue_exception(vcpu, DB_VECTOR);
4855 return 1;
4856 }
4857 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4858 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4859 /* fall through */
4860 case BP_VECTOR:
4861 /*
4862 * Update instruction length as we may reinject #BP from
4863 * user space while in guest debugging mode. Reading it for
4864 * #DB as well causes no harm, it is not used in that case.
4865 */
4866 vmx->vcpu.arch.event_exit_inst_len =
4867 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4868 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4869 rip = kvm_rip_read(vcpu);
4870 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4871 kvm_run->debug.arch.exception = ex_no;
4872 break;
4873 default:
4874 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4875 kvm_run->ex.exception = ex_no;
4876 kvm_run->ex.error_code = error_code;
4877 break;
4878 }
4879 return 0;
4880 }
4881
4882 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4883 {
4884 ++vcpu->stat.irq_exits;
4885 return 1;
4886 }
4887
4888 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4889 {
4890 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4891 return 0;
4892 }
4893
4894 static int handle_io(struct kvm_vcpu *vcpu)
4895 {
4896 unsigned long exit_qualification;
4897 int size, in, string;
4898 unsigned port;
4899
4900 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4901 string = (exit_qualification & 16) != 0;
4902 in = (exit_qualification & 8) != 0;
4903
4904 ++vcpu->stat.io_exits;
4905
4906 if (string || in)
4907 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4908
4909 port = exit_qualification >> 16;
4910 size = (exit_qualification & 7) + 1;
4911 skip_emulated_instruction(vcpu);
4912
4913 return kvm_fast_pio_out(vcpu, size, port);
4914 }
4915
4916 static void
4917 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4918 {
4919 /*
4920 * Patch in the VMCALL instruction:
4921 */
4922 hypercall[0] = 0x0f;
4923 hypercall[1] = 0x01;
4924 hypercall[2] = 0xc1;
4925 }
4926
4927 static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4928 {
4929 unsigned long always_on = VMXON_CR0_ALWAYSON;
4930
4931 if (nested_vmx_secondary_ctls_high &
4932 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4933 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4934 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
4935 return (val & always_on) == always_on;
4936 }
4937
4938 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4939 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4940 {
4941 if (is_guest_mode(vcpu)) {
4942 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4943 unsigned long orig_val = val;
4944
4945 /*
4946 * We get here when L2 changed cr0 in a way that did not change
4947 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4948 * but did change L0 shadowed bits. So we first calculate the
4949 * effective cr0 value that L1 would like to write into the
4950 * hardware. It consists of the L2-owned bits from the new
4951 * value combined with the L1-owned bits from L1's guest_cr0.
4952 */
4953 val = (val & ~vmcs12->cr0_guest_host_mask) |
4954 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4955
4956 if (!nested_cr0_valid(vmcs12, val))
4957 return 1;
4958
4959 if (kvm_set_cr0(vcpu, val))
4960 return 1;
4961 vmcs_writel(CR0_READ_SHADOW, orig_val);
4962 return 0;
4963 } else {
4964 if (to_vmx(vcpu)->nested.vmxon &&
4965 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4966 return 1;
4967 return kvm_set_cr0(vcpu, val);
4968 }
4969 }
4970
4971 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4972 {
4973 if (is_guest_mode(vcpu)) {
4974 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4975 unsigned long orig_val = val;
4976
4977 /* analogously to handle_set_cr0 */
4978 val = (val & ~vmcs12->cr4_guest_host_mask) |
4979 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4980 if (kvm_set_cr4(vcpu, val))
4981 return 1;
4982 vmcs_writel(CR4_READ_SHADOW, orig_val);
4983 return 0;
4984 } else
4985 return kvm_set_cr4(vcpu, val);
4986 }
4987
4988 /* called to set cr0 as approriate for clts instruction exit. */
4989 static void handle_clts(struct kvm_vcpu *vcpu)
4990 {
4991 if (is_guest_mode(vcpu)) {
4992 /*
4993 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4994 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4995 * just pretend it's off (also in arch.cr0 for fpu_activate).
4996 */
4997 vmcs_writel(CR0_READ_SHADOW,
4998 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4999 vcpu->arch.cr0 &= ~X86_CR0_TS;
5000 } else
5001 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5002 }
5003
5004 static int handle_cr(struct kvm_vcpu *vcpu)
5005 {
5006 unsigned long exit_qualification, val;
5007 int cr;
5008 int reg;
5009 int err;
5010
5011 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5012 cr = exit_qualification & 15;
5013 reg = (exit_qualification >> 8) & 15;
5014 switch ((exit_qualification >> 4) & 3) {
5015 case 0: /* mov to cr */
5016 val = kvm_register_read(vcpu, reg);
5017 trace_kvm_cr_write(cr, val);
5018 switch (cr) {
5019 case 0:
5020 err = handle_set_cr0(vcpu, val);
5021 kvm_complete_insn_gp(vcpu, err);
5022 return 1;
5023 case 3:
5024 err = kvm_set_cr3(vcpu, val);
5025 kvm_complete_insn_gp(vcpu, err);
5026 return 1;
5027 case 4:
5028 err = handle_set_cr4(vcpu, val);
5029 kvm_complete_insn_gp(vcpu, err);
5030 return 1;
5031 case 8: {
5032 u8 cr8_prev = kvm_get_cr8(vcpu);
5033 u8 cr8 = kvm_register_read(vcpu, reg);
5034 err = kvm_set_cr8(vcpu, cr8);
5035 kvm_complete_insn_gp(vcpu, err);
5036 if (irqchip_in_kernel(vcpu->kvm))
5037 return 1;
5038 if (cr8_prev <= cr8)
5039 return 1;
5040 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5041 return 0;
5042 }
5043 }
5044 break;
5045 case 2: /* clts */
5046 handle_clts(vcpu);
5047 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5048 skip_emulated_instruction(vcpu);
5049 vmx_fpu_activate(vcpu);
5050 return 1;
5051 case 1: /*mov from cr*/
5052 switch (cr) {
5053 case 3:
5054 val = kvm_read_cr3(vcpu);
5055 kvm_register_write(vcpu, reg, val);
5056 trace_kvm_cr_read(cr, val);
5057 skip_emulated_instruction(vcpu);
5058 return 1;
5059 case 8:
5060 val = kvm_get_cr8(vcpu);
5061 kvm_register_write(vcpu, reg, val);
5062 trace_kvm_cr_read(cr, val);
5063 skip_emulated_instruction(vcpu);
5064 return 1;
5065 }
5066 break;
5067 case 3: /* lmsw */
5068 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5069 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5070 kvm_lmsw(vcpu, val);
5071
5072 skip_emulated_instruction(vcpu);
5073 return 1;
5074 default:
5075 break;
5076 }
5077 vcpu->run->exit_reason = 0;
5078 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5079 (int)(exit_qualification >> 4) & 3, cr);
5080 return 0;
5081 }
5082
5083 static int handle_dr(struct kvm_vcpu *vcpu)
5084 {
5085 unsigned long exit_qualification;
5086 int dr, reg;
5087
5088 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5089 if (!kvm_require_cpl(vcpu, 0))
5090 return 1;
5091 dr = vmcs_readl(GUEST_DR7);
5092 if (dr & DR7_GD) {
5093 /*
5094 * As the vm-exit takes precedence over the debug trap, we
5095 * need to emulate the latter, either for the host or the
5096 * guest debugging itself.
5097 */
5098 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5099 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5100 vcpu->run->debug.arch.dr7 = dr;
5101 vcpu->run->debug.arch.pc =
5102 vmcs_readl(GUEST_CS_BASE) +
5103 vmcs_readl(GUEST_RIP);
5104 vcpu->run->debug.arch.exception = DB_VECTOR;
5105 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5106 return 0;
5107 } else {
5108 vcpu->arch.dr7 &= ~DR7_GD;
5109 vcpu->arch.dr6 |= DR6_BD;
5110 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5111 kvm_queue_exception(vcpu, DB_VECTOR);
5112 return 1;
5113 }
5114 }
5115
5116 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5117 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5118 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5119 if (exit_qualification & TYPE_MOV_FROM_DR) {
5120 unsigned long val;
5121
5122 if (kvm_get_dr(vcpu, dr, &val))
5123 return 1;
5124 kvm_register_write(vcpu, reg, val);
5125 } else
5126 if (kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]))
5127 return 1;
5128
5129 skip_emulated_instruction(vcpu);
5130 return 1;
5131 }
5132
5133 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5134 {
5135 return vcpu->arch.dr6;
5136 }
5137
5138 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5139 {
5140 }
5141
5142 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5143 {
5144 vmcs_writel(GUEST_DR7, val);
5145 }
5146
5147 static int handle_cpuid(struct kvm_vcpu *vcpu)
5148 {
5149 kvm_emulate_cpuid(vcpu);
5150 return 1;
5151 }
5152
5153 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5154 {
5155 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5156 u64 data;
5157
5158 if (vmx_get_msr(vcpu, ecx, &data)) {
5159 trace_kvm_msr_read_ex(ecx);
5160 kvm_inject_gp(vcpu, 0);
5161 return 1;
5162 }
5163
5164 trace_kvm_msr_read(ecx, data);
5165
5166 /* FIXME: handling of bits 32:63 of rax, rdx */
5167 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5168 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5169 skip_emulated_instruction(vcpu);
5170 return 1;
5171 }
5172
5173 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5174 {
5175 struct msr_data msr;
5176 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5177 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5178 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5179
5180 msr.data = data;
5181 msr.index = ecx;
5182 msr.host_initiated = false;
5183 if (vmx_set_msr(vcpu, &msr) != 0) {
5184 trace_kvm_msr_write_ex(ecx, data);
5185 kvm_inject_gp(vcpu, 0);
5186 return 1;
5187 }
5188
5189 trace_kvm_msr_write(ecx, data);
5190 skip_emulated_instruction(vcpu);
5191 return 1;
5192 }
5193
5194 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5195 {
5196 kvm_make_request(KVM_REQ_EVENT, vcpu);
5197 return 1;
5198 }
5199
5200 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5201 {
5202 u32 cpu_based_vm_exec_control;
5203
5204 /* clear pending irq */
5205 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5206 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5207 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5208
5209 kvm_make_request(KVM_REQ_EVENT, vcpu);
5210
5211 ++vcpu->stat.irq_window_exits;
5212
5213 /*
5214 * If the user space waits to inject interrupts, exit as soon as
5215 * possible
5216 */
5217 if (!irqchip_in_kernel(vcpu->kvm) &&
5218 vcpu->run->request_interrupt_window &&
5219 !kvm_cpu_has_interrupt(vcpu)) {
5220 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5221 return 0;
5222 }
5223 return 1;
5224 }
5225
5226 static int handle_halt(struct kvm_vcpu *vcpu)
5227 {
5228 skip_emulated_instruction(vcpu);
5229 return kvm_emulate_halt(vcpu);
5230 }
5231
5232 static int handle_vmcall(struct kvm_vcpu *vcpu)
5233 {
5234 skip_emulated_instruction(vcpu);
5235 kvm_emulate_hypercall(vcpu);
5236 return 1;
5237 }
5238
5239 static int handle_invd(struct kvm_vcpu *vcpu)
5240 {
5241 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5242 }
5243
5244 static int handle_invlpg(struct kvm_vcpu *vcpu)
5245 {
5246 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5247
5248 kvm_mmu_invlpg(vcpu, exit_qualification);
5249 skip_emulated_instruction(vcpu);
5250 return 1;
5251 }
5252
5253 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5254 {
5255 int err;
5256
5257 err = kvm_rdpmc(vcpu);
5258 kvm_complete_insn_gp(vcpu, err);
5259
5260 return 1;
5261 }
5262
5263 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5264 {
5265 skip_emulated_instruction(vcpu);
5266 kvm_emulate_wbinvd(vcpu);
5267 return 1;
5268 }
5269
5270 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5271 {
5272 u64 new_bv = kvm_read_edx_eax(vcpu);
5273 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5274
5275 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5276 skip_emulated_instruction(vcpu);
5277 return 1;
5278 }
5279
5280 static int handle_apic_access(struct kvm_vcpu *vcpu)
5281 {
5282 if (likely(fasteoi)) {
5283 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5284 int access_type, offset;
5285
5286 access_type = exit_qualification & APIC_ACCESS_TYPE;
5287 offset = exit_qualification & APIC_ACCESS_OFFSET;
5288 /*
5289 * Sane guest uses MOV to write EOI, with written value
5290 * not cared. So make a short-circuit here by avoiding
5291 * heavy instruction emulation.
5292 */
5293 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5294 (offset == APIC_EOI)) {
5295 kvm_lapic_set_eoi(vcpu);
5296 skip_emulated_instruction(vcpu);
5297 return 1;
5298 }
5299 }
5300 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5301 }
5302
5303 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5304 {
5305 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5306 int vector = exit_qualification & 0xff;
5307
5308 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5309 kvm_apic_set_eoi_accelerated(vcpu, vector);
5310 return 1;
5311 }
5312
5313 static int handle_apic_write(struct kvm_vcpu *vcpu)
5314 {
5315 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5316 u32 offset = exit_qualification & 0xfff;
5317
5318 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5319 kvm_apic_write_nodecode(vcpu, offset);
5320 return 1;
5321 }
5322
5323 static int handle_task_switch(struct kvm_vcpu *vcpu)
5324 {
5325 struct vcpu_vmx *vmx = to_vmx(vcpu);
5326 unsigned long exit_qualification;
5327 bool has_error_code = false;
5328 u32 error_code = 0;
5329 u16 tss_selector;
5330 int reason, type, idt_v, idt_index;
5331
5332 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5333 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5334 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5335
5336 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5337
5338 reason = (u32)exit_qualification >> 30;
5339 if (reason == TASK_SWITCH_GATE && idt_v) {
5340 switch (type) {
5341 case INTR_TYPE_NMI_INTR:
5342 vcpu->arch.nmi_injected = false;
5343 vmx_set_nmi_mask(vcpu, true);
5344 break;
5345 case INTR_TYPE_EXT_INTR:
5346 case INTR_TYPE_SOFT_INTR:
5347 kvm_clear_interrupt_queue(vcpu);
5348 break;
5349 case INTR_TYPE_HARD_EXCEPTION:
5350 if (vmx->idt_vectoring_info &
5351 VECTORING_INFO_DELIVER_CODE_MASK) {
5352 has_error_code = true;
5353 error_code =
5354 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5355 }
5356 /* fall through */
5357 case INTR_TYPE_SOFT_EXCEPTION:
5358 kvm_clear_exception_queue(vcpu);
5359 break;
5360 default:
5361 break;
5362 }
5363 }
5364 tss_selector = exit_qualification;
5365
5366 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5367 type != INTR_TYPE_EXT_INTR &&
5368 type != INTR_TYPE_NMI_INTR))
5369 skip_emulated_instruction(vcpu);
5370
5371 if (kvm_task_switch(vcpu, tss_selector,
5372 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5373 has_error_code, error_code) == EMULATE_FAIL) {
5374 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5375 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5376 vcpu->run->internal.ndata = 0;
5377 return 0;
5378 }
5379
5380 /* clear all local breakpoint enable flags */
5381 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5382
5383 /*
5384 * TODO: What about debug traps on tss switch?
5385 * Are we supposed to inject them and update dr6?
5386 */
5387
5388 return 1;
5389 }
5390
5391 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5392 {
5393 unsigned long exit_qualification;
5394 gpa_t gpa;
5395 u32 error_code;
5396 int gla_validity;
5397
5398 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5399
5400 gla_validity = (exit_qualification >> 7) & 0x3;
5401 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5402 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5403 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5404 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5405 vmcs_readl(GUEST_LINEAR_ADDRESS));
5406 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5407 (long unsigned int)exit_qualification);
5408 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5409 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5410 return 0;
5411 }
5412
5413 /*
5414 * EPT violation happened while executing iret from NMI,
5415 * "blocked by NMI" bit has to be set before next VM entry.
5416 * There are errata that may cause this bit to not be set:
5417 * AAK134, BY25.
5418 */
5419 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5420 cpu_has_virtual_nmis() &&
5421 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5422 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5423
5424 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5425 trace_kvm_page_fault(gpa, exit_qualification);
5426
5427 /* It is a write fault? */
5428 error_code = exit_qualification & (1U << 1);
5429 /* It is a fetch fault? */
5430 error_code |= (exit_qualification & (1U << 2)) << 2;
5431 /* ept page table is present? */
5432 error_code |= (exit_qualification >> 3) & 0x1;
5433
5434 vcpu->arch.exit_qualification = exit_qualification;
5435
5436 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5437 }
5438
5439 static u64 ept_rsvd_mask(u64 spte, int level)
5440 {
5441 int i;
5442 u64 mask = 0;
5443
5444 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5445 mask |= (1ULL << i);
5446
5447 if (level > 2)
5448 /* bits 7:3 reserved */
5449 mask |= 0xf8;
5450 else if (level == 2) {
5451 if (spte & (1ULL << 7))
5452 /* 2MB ref, bits 20:12 reserved */
5453 mask |= 0x1ff000;
5454 else
5455 /* bits 6:3 reserved */
5456 mask |= 0x78;
5457 }
5458
5459 return mask;
5460 }
5461
5462 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5463 int level)
5464 {
5465 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5466
5467 /* 010b (write-only) */
5468 WARN_ON((spte & 0x7) == 0x2);
5469
5470 /* 110b (write/execute) */
5471 WARN_ON((spte & 0x7) == 0x6);
5472
5473 /* 100b (execute-only) and value not supported by logical processor */
5474 if (!cpu_has_vmx_ept_execute_only())
5475 WARN_ON((spte & 0x7) == 0x4);
5476
5477 /* not 000b */
5478 if ((spte & 0x7)) {
5479 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5480
5481 if (rsvd_bits != 0) {
5482 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5483 __func__, rsvd_bits);
5484 WARN_ON(1);
5485 }
5486
5487 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5488 u64 ept_mem_type = (spte & 0x38) >> 3;
5489
5490 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5491 ept_mem_type == 7) {
5492 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5493 __func__, ept_mem_type);
5494 WARN_ON(1);
5495 }
5496 }
5497 }
5498 }
5499
5500 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5501 {
5502 u64 sptes[4];
5503 int nr_sptes, i, ret;
5504 gpa_t gpa;
5505
5506 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5507
5508 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5509 if (likely(ret == RET_MMIO_PF_EMULATE))
5510 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5511 EMULATE_DONE;
5512
5513 if (unlikely(ret == RET_MMIO_PF_INVALID))
5514 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5515
5516 if (unlikely(ret == RET_MMIO_PF_RETRY))
5517 return 1;
5518
5519 /* It is the real ept misconfig */
5520 printk(KERN_ERR "EPT: Misconfiguration.\n");
5521 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5522
5523 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5524
5525 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5526 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5527
5528 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5529 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5530
5531 return 0;
5532 }
5533
5534 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5535 {
5536 u32 cpu_based_vm_exec_control;
5537
5538 /* clear pending NMI */
5539 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5540 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5541 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5542 ++vcpu->stat.nmi_window_exits;
5543 kvm_make_request(KVM_REQ_EVENT, vcpu);
5544
5545 return 1;
5546 }
5547
5548 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5549 {
5550 struct vcpu_vmx *vmx = to_vmx(vcpu);
5551 enum emulation_result err = EMULATE_DONE;
5552 int ret = 1;
5553 u32 cpu_exec_ctrl;
5554 bool intr_window_requested;
5555 unsigned count = 130;
5556
5557 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5558 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5559
5560 while (!guest_state_valid(vcpu) && count-- != 0) {
5561 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5562 return handle_interrupt_window(&vmx->vcpu);
5563
5564 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5565 return 1;
5566
5567 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5568
5569 if (err == EMULATE_USER_EXIT) {
5570 ++vcpu->stat.mmio_exits;
5571 ret = 0;
5572 goto out;
5573 }
5574
5575 if (err != EMULATE_DONE) {
5576 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5577 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5578 vcpu->run->internal.ndata = 0;
5579 return 0;
5580 }
5581
5582 if (vcpu->arch.halt_request) {
5583 vcpu->arch.halt_request = 0;
5584 ret = kvm_emulate_halt(vcpu);
5585 goto out;
5586 }
5587
5588 if (signal_pending(current))
5589 goto out;
5590 if (need_resched())
5591 schedule();
5592 }
5593
5594 vmx->emulation_required = emulation_required(vcpu);
5595 out:
5596 return ret;
5597 }
5598
5599 /*
5600 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5601 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5602 */
5603 static int handle_pause(struct kvm_vcpu *vcpu)
5604 {
5605 skip_emulated_instruction(vcpu);
5606 kvm_vcpu_on_spin(vcpu);
5607
5608 return 1;
5609 }
5610
5611 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5612 {
5613 kvm_queue_exception(vcpu, UD_VECTOR);
5614 return 1;
5615 }
5616
5617 /*
5618 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5619 * We could reuse a single VMCS for all the L2 guests, but we also want the
5620 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5621 * allows keeping them loaded on the processor, and in the future will allow
5622 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5623 * every entry if they never change.
5624 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5625 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5626 *
5627 * The following functions allocate and free a vmcs02 in this pool.
5628 */
5629
5630 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5631 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5632 {
5633 struct vmcs02_list *item;
5634 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5635 if (item->vmptr == vmx->nested.current_vmptr) {
5636 list_move(&item->list, &vmx->nested.vmcs02_pool);
5637 return &item->vmcs02;
5638 }
5639
5640 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5641 /* Recycle the least recently used VMCS. */
5642 item = list_entry(vmx->nested.vmcs02_pool.prev,
5643 struct vmcs02_list, list);
5644 item->vmptr = vmx->nested.current_vmptr;
5645 list_move(&item->list, &vmx->nested.vmcs02_pool);
5646 return &item->vmcs02;
5647 }
5648
5649 /* Create a new VMCS */
5650 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5651 if (!item)
5652 return NULL;
5653 item->vmcs02.vmcs = alloc_vmcs();
5654 if (!item->vmcs02.vmcs) {
5655 kfree(item);
5656 return NULL;
5657 }
5658 loaded_vmcs_init(&item->vmcs02);
5659 item->vmptr = vmx->nested.current_vmptr;
5660 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5661 vmx->nested.vmcs02_num++;
5662 return &item->vmcs02;
5663 }
5664
5665 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5666 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5667 {
5668 struct vmcs02_list *item;
5669 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5670 if (item->vmptr == vmptr) {
5671 free_loaded_vmcs(&item->vmcs02);
5672 list_del(&item->list);
5673 kfree(item);
5674 vmx->nested.vmcs02_num--;
5675 return;
5676 }
5677 }
5678
5679 /*
5680 * Free all VMCSs saved for this vcpu, except the one pointed by
5681 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5682 * currently used, if running L2), and vmcs01 when running L2.
5683 */
5684 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5685 {
5686 struct vmcs02_list *item, *n;
5687 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5688 if (vmx->loaded_vmcs != &item->vmcs02)
5689 free_loaded_vmcs(&item->vmcs02);
5690 list_del(&item->list);
5691 kfree(item);
5692 }
5693 vmx->nested.vmcs02_num = 0;
5694
5695 if (vmx->loaded_vmcs != &vmx->vmcs01)
5696 free_loaded_vmcs(&vmx->vmcs01);
5697 }
5698
5699 /*
5700 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5701 * set the success or error code of an emulated VMX instruction, as specified
5702 * by Vol 2B, VMX Instruction Reference, "Conventions".
5703 */
5704 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5705 {
5706 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5707 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5708 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5709 }
5710
5711 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5712 {
5713 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5714 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5715 X86_EFLAGS_SF | X86_EFLAGS_OF))
5716 | X86_EFLAGS_CF);
5717 }
5718
5719 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5720 u32 vm_instruction_error)
5721 {
5722 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5723 /*
5724 * failValid writes the error number to the current VMCS, which
5725 * can't be done there isn't a current VMCS.
5726 */
5727 nested_vmx_failInvalid(vcpu);
5728 return;
5729 }
5730 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5731 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5732 X86_EFLAGS_SF | X86_EFLAGS_OF))
5733 | X86_EFLAGS_ZF);
5734 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5735 /*
5736 * We don't need to force a shadow sync because
5737 * VM_INSTRUCTION_ERROR is not shadowed
5738 */
5739 }
5740
5741 /*
5742 * Emulate the VMXON instruction.
5743 * Currently, we just remember that VMX is active, and do not save or even
5744 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5745 * do not currently need to store anything in that guest-allocated memory
5746 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5747 * argument is different from the VMXON pointer (which the spec says they do).
5748 */
5749 static int handle_vmon(struct kvm_vcpu *vcpu)
5750 {
5751 struct kvm_segment cs;
5752 struct vcpu_vmx *vmx = to_vmx(vcpu);
5753 struct vmcs *shadow_vmcs;
5754 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
5755 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
5756
5757 /* The Intel VMX Instruction Reference lists a bunch of bits that
5758 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5759 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5760 * Otherwise, we should fail with #UD. We test these now:
5761 */
5762 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5763 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5764 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5765 kvm_queue_exception(vcpu, UD_VECTOR);
5766 return 1;
5767 }
5768
5769 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5770 if (is_long_mode(vcpu) && !cs.l) {
5771 kvm_queue_exception(vcpu, UD_VECTOR);
5772 return 1;
5773 }
5774
5775 if (vmx_get_cpl(vcpu)) {
5776 kvm_inject_gp(vcpu, 0);
5777 return 1;
5778 }
5779 if (vmx->nested.vmxon) {
5780 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5781 skip_emulated_instruction(vcpu);
5782 return 1;
5783 }
5784
5785 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5786 != VMXON_NEEDED_FEATURES) {
5787 kvm_inject_gp(vcpu, 0);
5788 return 1;
5789 }
5790
5791 if (enable_shadow_vmcs) {
5792 shadow_vmcs = alloc_vmcs();
5793 if (!shadow_vmcs)
5794 return -ENOMEM;
5795 /* mark vmcs as shadow */
5796 shadow_vmcs->revision_id |= (1u << 31);
5797 /* init shadow vmcs */
5798 vmcs_clear(shadow_vmcs);
5799 vmx->nested.current_shadow_vmcs = shadow_vmcs;
5800 }
5801
5802 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5803 vmx->nested.vmcs02_num = 0;
5804
5805 vmx->nested.vmxon = true;
5806
5807 skip_emulated_instruction(vcpu);
5808 nested_vmx_succeed(vcpu);
5809 return 1;
5810 }
5811
5812 /*
5813 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5814 * for running VMX instructions (except VMXON, whose prerequisites are
5815 * slightly different). It also specifies what exception to inject otherwise.
5816 */
5817 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5818 {
5819 struct kvm_segment cs;
5820 struct vcpu_vmx *vmx = to_vmx(vcpu);
5821
5822 if (!vmx->nested.vmxon) {
5823 kvm_queue_exception(vcpu, UD_VECTOR);
5824 return 0;
5825 }
5826
5827 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5828 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5829 (is_long_mode(vcpu) && !cs.l)) {
5830 kvm_queue_exception(vcpu, UD_VECTOR);
5831 return 0;
5832 }
5833
5834 if (vmx_get_cpl(vcpu)) {
5835 kvm_inject_gp(vcpu, 0);
5836 return 0;
5837 }
5838
5839 return 1;
5840 }
5841
5842 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
5843 {
5844 u32 exec_control;
5845 if (enable_shadow_vmcs) {
5846 if (vmx->nested.current_vmcs12 != NULL) {
5847 /* copy to memory all shadowed fields in case
5848 they were modified */
5849 copy_shadow_to_vmcs12(vmx);
5850 vmx->nested.sync_shadow_vmcs = false;
5851 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5852 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5853 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
5854 vmcs_write64(VMCS_LINK_POINTER, -1ull);
5855 }
5856 }
5857 kunmap(vmx->nested.current_vmcs12_page);
5858 nested_release_page(vmx->nested.current_vmcs12_page);
5859 }
5860
5861 /*
5862 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5863 * just stops using VMX.
5864 */
5865 static void free_nested(struct vcpu_vmx *vmx)
5866 {
5867 if (!vmx->nested.vmxon)
5868 return;
5869 vmx->nested.vmxon = false;
5870 if (vmx->nested.current_vmptr != -1ull) {
5871 nested_release_vmcs12(vmx);
5872 vmx->nested.current_vmptr = -1ull;
5873 vmx->nested.current_vmcs12 = NULL;
5874 }
5875 if (enable_shadow_vmcs)
5876 free_vmcs(vmx->nested.current_shadow_vmcs);
5877 /* Unpin physical memory we referred to in current vmcs02 */
5878 if (vmx->nested.apic_access_page) {
5879 nested_release_page(vmx->nested.apic_access_page);
5880 vmx->nested.apic_access_page = 0;
5881 }
5882
5883 nested_free_all_saved_vmcss(vmx);
5884 }
5885
5886 /* Emulate the VMXOFF instruction */
5887 static int handle_vmoff(struct kvm_vcpu *vcpu)
5888 {
5889 if (!nested_vmx_check_permission(vcpu))
5890 return 1;
5891 free_nested(to_vmx(vcpu));
5892 skip_emulated_instruction(vcpu);
5893 nested_vmx_succeed(vcpu);
5894 return 1;
5895 }
5896
5897 /*
5898 * Decode the memory-address operand of a vmx instruction, as recorded on an
5899 * exit caused by such an instruction (run by a guest hypervisor).
5900 * On success, returns 0. When the operand is invalid, returns 1 and throws
5901 * #UD or #GP.
5902 */
5903 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5904 unsigned long exit_qualification,
5905 u32 vmx_instruction_info, gva_t *ret)
5906 {
5907 /*
5908 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5909 * Execution", on an exit, vmx_instruction_info holds most of the
5910 * addressing components of the operand. Only the displacement part
5911 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5912 * For how an actual address is calculated from all these components,
5913 * refer to Vol. 1, "Operand Addressing".
5914 */
5915 int scaling = vmx_instruction_info & 3;
5916 int addr_size = (vmx_instruction_info >> 7) & 7;
5917 bool is_reg = vmx_instruction_info & (1u << 10);
5918 int seg_reg = (vmx_instruction_info >> 15) & 7;
5919 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5920 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5921 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5922 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5923
5924 if (is_reg) {
5925 kvm_queue_exception(vcpu, UD_VECTOR);
5926 return 1;
5927 }
5928
5929 /* Addr = segment_base + offset */
5930 /* offset = base + [index * scale] + displacement */
5931 *ret = vmx_get_segment_base(vcpu, seg_reg);
5932 if (base_is_valid)
5933 *ret += kvm_register_read(vcpu, base_reg);
5934 if (index_is_valid)
5935 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5936 *ret += exit_qualification; /* holds the displacement */
5937
5938 if (addr_size == 1) /* 32 bit */
5939 *ret &= 0xffffffff;
5940
5941 /*
5942 * TODO: throw #GP (and return 1) in various cases that the VM*
5943 * instructions require it - e.g., offset beyond segment limit,
5944 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5945 * address, and so on. Currently these are not checked.
5946 */
5947 return 0;
5948 }
5949
5950 /* Emulate the VMCLEAR instruction */
5951 static int handle_vmclear(struct kvm_vcpu *vcpu)
5952 {
5953 struct vcpu_vmx *vmx = to_vmx(vcpu);
5954 gva_t gva;
5955 gpa_t vmptr;
5956 struct vmcs12 *vmcs12;
5957 struct page *page;
5958 struct x86_exception e;
5959
5960 if (!nested_vmx_check_permission(vcpu))
5961 return 1;
5962
5963 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5964 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5965 return 1;
5966
5967 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5968 sizeof(vmptr), &e)) {
5969 kvm_inject_page_fault(vcpu, &e);
5970 return 1;
5971 }
5972
5973 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5974 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5975 skip_emulated_instruction(vcpu);
5976 return 1;
5977 }
5978
5979 if (vmptr == vmx->nested.current_vmptr) {
5980 nested_release_vmcs12(vmx);
5981 vmx->nested.current_vmptr = -1ull;
5982 vmx->nested.current_vmcs12 = NULL;
5983 }
5984
5985 page = nested_get_page(vcpu, vmptr);
5986 if (page == NULL) {
5987 /*
5988 * For accurate processor emulation, VMCLEAR beyond available
5989 * physical memory should do nothing at all. However, it is
5990 * possible that a nested vmx bug, not a guest hypervisor bug,
5991 * resulted in this case, so let's shut down before doing any
5992 * more damage:
5993 */
5994 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5995 return 1;
5996 }
5997 vmcs12 = kmap(page);
5998 vmcs12->launch_state = 0;
5999 kunmap(page);
6000 nested_release_page(page);
6001
6002 nested_free_vmcs02(vmx, vmptr);
6003
6004 skip_emulated_instruction(vcpu);
6005 nested_vmx_succeed(vcpu);
6006 return 1;
6007 }
6008
6009 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6010
6011 /* Emulate the VMLAUNCH instruction */
6012 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6013 {
6014 return nested_vmx_run(vcpu, true);
6015 }
6016
6017 /* Emulate the VMRESUME instruction */
6018 static int handle_vmresume(struct kvm_vcpu *vcpu)
6019 {
6020
6021 return nested_vmx_run(vcpu, false);
6022 }
6023
6024 enum vmcs_field_type {
6025 VMCS_FIELD_TYPE_U16 = 0,
6026 VMCS_FIELD_TYPE_U64 = 1,
6027 VMCS_FIELD_TYPE_U32 = 2,
6028 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6029 };
6030
6031 static inline int vmcs_field_type(unsigned long field)
6032 {
6033 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6034 return VMCS_FIELD_TYPE_U32;
6035 return (field >> 13) & 0x3 ;
6036 }
6037
6038 static inline int vmcs_field_readonly(unsigned long field)
6039 {
6040 return (((field >> 10) & 0x3) == 1);
6041 }
6042
6043 /*
6044 * Read a vmcs12 field. Since these can have varying lengths and we return
6045 * one type, we chose the biggest type (u64) and zero-extend the return value
6046 * to that size. Note that the caller, handle_vmread, might need to use only
6047 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6048 * 64-bit fields are to be returned).
6049 */
6050 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6051 unsigned long field, u64 *ret)
6052 {
6053 short offset = vmcs_field_to_offset(field);
6054 char *p;
6055
6056 if (offset < 0)
6057 return 0;
6058
6059 p = ((char *)(get_vmcs12(vcpu))) + offset;
6060
6061 switch (vmcs_field_type(field)) {
6062 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6063 *ret = *((natural_width *)p);
6064 return 1;
6065 case VMCS_FIELD_TYPE_U16:
6066 *ret = *((u16 *)p);
6067 return 1;
6068 case VMCS_FIELD_TYPE_U32:
6069 *ret = *((u32 *)p);
6070 return 1;
6071 case VMCS_FIELD_TYPE_U64:
6072 *ret = *((u64 *)p);
6073 return 1;
6074 default:
6075 return 0; /* can never happen. */
6076 }
6077 }
6078
6079
6080 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6081 unsigned long field, u64 field_value){
6082 short offset = vmcs_field_to_offset(field);
6083 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6084 if (offset < 0)
6085 return false;
6086
6087 switch (vmcs_field_type(field)) {
6088 case VMCS_FIELD_TYPE_U16:
6089 *(u16 *)p = field_value;
6090 return true;
6091 case VMCS_FIELD_TYPE_U32:
6092 *(u32 *)p = field_value;
6093 return true;
6094 case VMCS_FIELD_TYPE_U64:
6095 *(u64 *)p = field_value;
6096 return true;
6097 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6098 *(natural_width *)p = field_value;
6099 return true;
6100 default:
6101 return false; /* can never happen. */
6102 }
6103
6104 }
6105
6106 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6107 {
6108 int i;
6109 unsigned long field;
6110 u64 field_value;
6111 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6112 const unsigned long *fields = shadow_read_write_fields;
6113 const int num_fields = max_shadow_read_write_fields;
6114
6115 vmcs_load(shadow_vmcs);
6116
6117 for (i = 0; i < num_fields; i++) {
6118 field = fields[i];
6119 switch (vmcs_field_type(field)) {
6120 case VMCS_FIELD_TYPE_U16:
6121 field_value = vmcs_read16(field);
6122 break;
6123 case VMCS_FIELD_TYPE_U32:
6124 field_value = vmcs_read32(field);
6125 break;
6126 case VMCS_FIELD_TYPE_U64:
6127 field_value = vmcs_read64(field);
6128 break;
6129 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6130 field_value = vmcs_readl(field);
6131 break;
6132 }
6133 vmcs12_write_any(&vmx->vcpu, field, field_value);
6134 }
6135
6136 vmcs_clear(shadow_vmcs);
6137 vmcs_load(vmx->loaded_vmcs->vmcs);
6138 }
6139
6140 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6141 {
6142 const unsigned long *fields[] = {
6143 shadow_read_write_fields,
6144 shadow_read_only_fields
6145 };
6146 const int max_fields[] = {
6147 max_shadow_read_write_fields,
6148 max_shadow_read_only_fields
6149 };
6150 int i, q;
6151 unsigned long field;
6152 u64 field_value = 0;
6153 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6154
6155 vmcs_load(shadow_vmcs);
6156
6157 for (q = 0; q < ARRAY_SIZE(fields); q++) {
6158 for (i = 0; i < max_fields[q]; i++) {
6159 field = fields[q][i];
6160 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6161
6162 switch (vmcs_field_type(field)) {
6163 case VMCS_FIELD_TYPE_U16:
6164 vmcs_write16(field, (u16)field_value);
6165 break;
6166 case VMCS_FIELD_TYPE_U32:
6167 vmcs_write32(field, (u32)field_value);
6168 break;
6169 case VMCS_FIELD_TYPE_U64:
6170 vmcs_write64(field, (u64)field_value);
6171 break;
6172 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6173 vmcs_writel(field, (long)field_value);
6174 break;
6175 }
6176 }
6177 }
6178
6179 vmcs_clear(shadow_vmcs);
6180 vmcs_load(vmx->loaded_vmcs->vmcs);
6181 }
6182
6183 /*
6184 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6185 * used before) all generate the same failure when it is missing.
6186 */
6187 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6188 {
6189 struct vcpu_vmx *vmx = to_vmx(vcpu);
6190 if (vmx->nested.current_vmptr == -1ull) {
6191 nested_vmx_failInvalid(vcpu);
6192 skip_emulated_instruction(vcpu);
6193 return 0;
6194 }
6195 return 1;
6196 }
6197
6198 static int handle_vmread(struct kvm_vcpu *vcpu)
6199 {
6200 unsigned long field;
6201 u64 field_value;
6202 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6203 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6204 gva_t gva = 0;
6205
6206 if (!nested_vmx_check_permission(vcpu) ||
6207 !nested_vmx_check_vmcs12(vcpu))
6208 return 1;
6209
6210 /* Decode instruction info and find the field to read */
6211 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6212 /* Read the field, zero-extended to a u64 field_value */
6213 if (!vmcs12_read_any(vcpu, field, &field_value)) {
6214 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6215 skip_emulated_instruction(vcpu);
6216 return 1;
6217 }
6218 /*
6219 * Now copy part of this value to register or memory, as requested.
6220 * Note that the number of bits actually copied is 32 or 64 depending
6221 * on the guest's mode (32 or 64 bit), not on the given field's length.
6222 */
6223 if (vmx_instruction_info & (1u << 10)) {
6224 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6225 field_value);
6226 } else {
6227 if (get_vmx_mem_address(vcpu, exit_qualification,
6228 vmx_instruction_info, &gva))
6229 return 1;
6230 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6231 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6232 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6233 }
6234
6235 nested_vmx_succeed(vcpu);
6236 skip_emulated_instruction(vcpu);
6237 return 1;
6238 }
6239
6240
6241 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6242 {
6243 unsigned long field;
6244 gva_t gva;
6245 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6246 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6247 /* The value to write might be 32 or 64 bits, depending on L1's long
6248 * mode, and eventually we need to write that into a field of several
6249 * possible lengths. The code below first zero-extends the value to 64
6250 * bit (field_value), and then copies only the approriate number of
6251 * bits into the vmcs12 field.
6252 */
6253 u64 field_value = 0;
6254 struct x86_exception e;
6255
6256 if (!nested_vmx_check_permission(vcpu) ||
6257 !nested_vmx_check_vmcs12(vcpu))
6258 return 1;
6259
6260 if (vmx_instruction_info & (1u << 10))
6261 field_value = kvm_register_read(vcpu,
6262 (((vmx_instruction_info) >> 3) & 0xf));
6263 else {
6264 if (get_vmx_mem_address(vcpu, exit_qualification,
6265 vmx_instruction_info, &gva))
6266 return 1;
6267 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6268 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6269 kvm_inject_page_fault(vcpu, &e);
6270 return 1;
6271 }
6272 }
6273
6274
6275 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6276 if (vmcs_field_readonly(field)) {
6277 nested_vmx_failValid(vcpu,
6278 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6279 skip_emulated_instruction(vcpu);
6280 return 1;
6281 }
6282
6283 if (!vmcs12_write_any(vcpu, field, field_value)) {
6284 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6285 skip_emulated_instruction(vcpu);
6286 return 1;
6287 }
6288
6289 nested_vmx_succeed(vcpu);
6290 skip_emulated_instruction(vcpu);
6291 return 1;
6292 }
6293
6294 /* Emulate the VMPTRLD instruction */
6295 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6296 {
6297 struct vcpu_vmx *vmx = to_vmx(vcpu);
6298 gva_t gva;
6299 gpa_t vmptr;
6300 struct x86_exception e;
6301 u32 exec_control;
6302
6303 if (!nested_vmx_check_permission(vcpu))
6304 return 1;
6305
6306 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6307 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6308 return 1;
6309
6310 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6311 sizeof(vmptr), &e)) {
6312 kvm_inject_page_fault(vcpu, &e);
6313 return 1;
6314 }
6315
6316 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6317 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6318 skip_emulated_instruction(vcpu);
6319 return 1;
6320 }
6321
6322 if (vmx->nested.current_vmptr != vmptr) {
6323 struct vmcs12 *new_vmcs12;
6324 struct page *page;
6325 page = nested_get_page(vcpu, vmptr);
6326 if (page == NULL) {
6327 nested_vmx_failInvalid(vcpu);
6328 skip_emulated_instruction(vcpu);
6329 return 1;
6330 }
6331 new_vmcs12 = kmap(page);
6332 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6333 kunmap(page);
6334 nested_release_page_clean(page);
6335 nested_vmx_failValid(vcpu,
6336 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6337 skip_emulated_instruction(vcpu);
6338 return 1;
6339 }
6340 if (vmx->nested.current_vmptr != -1ull)
6341 nested_release_vmcs12(vmx);
6342
6343 vmx->nested.current_vmptr = vmptr;
6344 vmx->nested.current_vmcs12 = new_vmcs12;
6345 vmx->nested.current_vmcs12_page = page;
6346 if (enable_shadow_vmcs) {
6347 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6348 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6349 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6350 vmcs_write64(VMCS_LINK_POINTER,
6351 __pa(vmx->nested.current_shadow_vmcs));
6352 vmx->nested.sync_shadow_vmcs = true;
6353 }
6354 }
6355
6356 nested_vmx_succeed(vcpu);
6357 skip_emulated_instruction(vcpu);
6358 return 1;
6359 }
6360
6361 /* Emulate the VMPTRST instruction */
6362 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6363 {
6364 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6365 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6366 gva_t vmcs_gva;
6367 struct x86_exception e;
6368
6369 if (!nested_vmx_check_permission(vcpu))
6370 return 1;
6371
6372 if (get_vmx_mem_address(vcpu, exit_qualification,
6373 vmx_instruction_info, &vmcs_gva))
6374 return 1;
6375 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6376 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6377 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6378 sizeof(u64), &e)) {
6379 kvm_inject_page_fault(vcpu, &e);
6380 return 1;
6381 }
6382 nested_vmx_succeed(vcpu);
6383 skip_emulated_instruction(vcpu);
6384 return 1;
6385 }
6386
6387 /* Emulate the INVEPT instruction */
6388 static int handle_invept(struct kvm_vcpu *vcpu)
6389 {
6390 u32 vmx_instruction_info, types;
6391 unsigned long type;
6392 gva_t gva;
6393 struct x86_exception e;
6394 struct {
6395 u64 eptp, gpa;
6396 } operand;
6397 u64 eptp_mask = ((1ull << 51) - 1) & PAGE_MASK;
6398
6399 if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6400 !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6401 kvm_queue_exception(vcpu, UD_VECTOR);
6402 return 1;
6403 }
6404
6405 if (!nested_vmx_check_permission(vcpu))
6406 return 1;
6407
6408 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6409 kvm_queue_exception(vcpu, UD_VECTOR);
6410 return 1;
6411 }
6412
6413 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6414 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
6415
6416 types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6417
6418 if (!(types & (1UL << type))) {
6419 nested_vmx_failValid(vcpu,
6420 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6421 return 1;
6422 }
6423
6424 /* According to the Intel VMX instruction reference, the memory
6425 * operand is read even if it isn't needed (e.g., for type==global)
6426 */
6427 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6428 vmx_instruction_info, &gva))
6429 return 1;
6430 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6431 sizeof(operand), &e)) {
6432 kvm_inject_page_fault(vcpu, &e);
6433 return 1;
6434 }
6435
6436 switch (type) {
6437 case VMX_EPT_EXTENT_CONTEXT:
6438 if ((operand.eptp & eptp_mask) !=
6439 (nested_ept_get_cr3(vcpu) & eptp_mask))
6440 break;
6441 case VMX_EPT_EXTENT_GLOBAL:
6442 kvm_mmu_sync_roots(vcpu);
6443 kvm_mmu_flush_tlb(vcpu);
6444 nested_vmx_succeed(vcpu);
6445 break;
6446 default:
6447 BUG_ON(1);
6448 break;
6449 }
6450
6451 skip_emulated_instruction(vcpu);
6452 return 1;
6453 }
6454
6455 /*
6456 * The exit handlers return 1 if the exit was handled fully and guest execution
6457 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6458 * to be done to userspace and return 0.
6459 */
6460 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6461 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
6462 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6463 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6464 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6465 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6466 [EXIT_REASON_CR_ACCESS] = handle_cr,
6467 [EXIT_REASON_DR_ACCESS] = handle_dr,
6468 [EXIT_REASON_CPUID] = handle_cpuid,
6469 [EXIT_REASON_MSR_READ] = handle_rdmsr,
6470 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
6471 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
6472 [EXIT_REASON_HLT] = handle_halt,
6473 [EXIT_REASON_INVD] = handle_invd,
6474 [EXIT_REASON_INVLPG] = handle_invlpg,
6475 [EXIT_REASON_RDPMC] = handle_rdpmc,
6476 [EXIT_REASON_VMCALL] = handle_vmcall,
6477 [EXIT_REASON_VMCLEAR] = handle_vmclear,
6478 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
6479 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6480 [EXIT_REASON_VMPTRST] = handle_vmptrst,
6481 [EXIT_REASON_VMREAD] = handle_vmread,
6482 [EXIT_REASON_VMRESUME] = handle_vmresume,
6483 [EXIT_REASON_VMWRITE] = handle_vmwrite,
6484 [EXIT_REASON_VMOFF] = handle_vmoff,
6485 [EXIT_REASON_VMON] = handle_vmon,
6486 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6487 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6488 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6489 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6490 [EXIT_REASON_WBINVD] = handle_wbinvd,
6491 [EXIT_REASON_XSETBV] = handle_xsetbv,
6492 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6493 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6494 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6495 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6496 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6497 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
6498 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6499 [EXIT_REASON_INVEPT] = handle_invept,
6500 };
6501
6502 static const int kvm_vmx_max_exit_handlers =
6503 ARRAY_SIZE(kvm_vmx_exit_handlers);
6504
6505 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6506 struct vmcs12 *vmcs12)
6507 {
6508 unsigned long exit_qualification;
6509 gpa_t bitmap, last_bitmap;
6510 unsigned int port;
6511 int size;
6512 u8 b;
6513
6514 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6515 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6516
6517 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6518
6519 port = exit_qualification >> 16;
6520 size = (exit_qualification & 7) + 1;
6521
6522 last_bitmap = (gpa_t)-1;
6523 b = -1;
6524
6525 while (size > 0) {
6526 if (port < 0x8000)
6527 bitmap = vmcs12->io_bitmap_a;
6528 else if (port < 0x10000)
6529 bitmap = vmcs12->io_bitmap_b;
6530 else
6531 return 1;
6532 bitmap += (port & 0x7fff) / 8;
6533
6534 if (last_bitmap != bitmap)
6535 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6536 return 1;
6537 if (b & (1 << (port & 7)))
6538 return 1;
6539
6540 port++;
6541 size--;
6542 last_bitmap = bitmap;
6543 }
6544
6545 return 0;
6546 }
6547
6548 /*
6549 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6550 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6551 * disinterest in the current event (read or write a specific MSR) by using an
6552 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6553 */
6554 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6555 struct vmcs12 *vmcs12, u32 exit_reason)
6556 {
6557 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6558 gpa_t bitmap;
6559
6560 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6561 return 1;
6562
6563 /*
6564 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6565 * for the four combinations of read/write and low/high MSR numbers.
6566 * First we need to figure out which of the four to use:
6567 */
6568 bitmap = vmcs12->msr_bitmap;
6569 if (exit_reason == EXIT_REASON_MSR_WRITE)
6570 bitmap += 2048;
6571 if (msr_index >= 0xc0000000) {
6572 msr_index -= 0xc0000000;
6573 bitmap += 1024;
6574 }
6575
6576 /* Then read the msr_index'th bit from this bitmap: */
6577 if (msr_index < 1024*8) {
6578 unsigned char b;
6579 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6580 return 1;
6581 return 1 & (b >> (msr_index & 7));
6582 } else
6583 return 1; /* let L1 handle the wrong parameter */
6584 }
6585
6586 /*
6587 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6588 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6589 * intercept (via guest_host_mask etc.) the current event.
6590 */
6591 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6592 struct vmcs12 *vmcs12)
6593 {
6594 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6595 int cr = exit_qualification & 15;
6596 int reg = (exit_qualification >> 8) & 15;
6597 unsigned long val = kvm_register_read(vcpu, reg);
6598
6599 switch ((exit_qualification >> 4) & 3) {
6600 case 0: /* mov to cr */
6601 switch (cr) {
6602 case 0:
6603 if (vmcs12->cr0_guest_host_mask &
6604 (val ^ vmcs12->cr0_read_shadow))
6605 return 1;
6606 break;
6607 case 3:
6608 if ((vmcs12->cr3_target_count >= 1 &&
6609 vmcs12->cr3_target_value0 == val) ||
6610 (vmcs12->cr3_target_count >= 2 &&
6611 vmcs12->cr3_target_value1 == val) ||
6612 (vmcs12->cr3_target_count >= 3 &&
6613 vmcs12->cr3_target_value2 == val) ||
6614 (vmcs12->cr3_target_count >= 4 &&
6615 vmcs12->cr3_target_value3 == val))
6616 return 0;
6617 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6618 return 1;
6619 break;
6620 case 4:
6621 if (vmcs12->cr4_guest_host_mask &
6622 (vmcs12->cr4_read_shadow ^ val))
6623 return 1;
6624 break;
6625 case 8:
6626 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6627 return 1;
6628 break;
6629 }
6630 break;
6631 case 2: /* clts */
6632 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6633 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6634 return 1;
6635 break;
6636 case 1: /* mov from cr */
6637 switch (cr) {
6638 case 3:
6639 if (vmcs12->cpu_based_vm_exec_control &
6640 CPU_BASED_CR3_STORE_EXITING)
6641 return 1;
6642 break;
6643 case 8:
6644 if (vmcs12->cpu_based_vm_exec_control &
6645 CPU_BASED_CR8_STORE_EXITING)
6646 return 1;
6647 break;
6648 }
6649 break;
6650 case 3: /* lmsw */
6651 /*
6652 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6653 * cr0. Other attempted changes are ignored, with no exit.
6654 */
6655 if (vmcs12->cr0_guest_host_mask & 0xe &
6656 (val ^ vmcs12->cr0_read_shadow))
6657 return 1;
6658 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6659 !(vmcs12->cr0_read_shadow & 0x1) &&
6660 (val & 0x1))
6661 return 1;
6662 break;
6663 }
6664 return 0;
6665 }
6666
6667 /*
6668 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6669 * should handle it ourselves in L0 (and then continue L2). Only call this
6670 * when in is_guest_mode (L2).
6671 */
6672 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6673 {
6674 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6675 struct vcpu_vmx *vmx = to_vmx(vcpu);
6676 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6677 u32 exit_reason = vmx->exit_reason;
6678
6679 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
6680 vmcs_readl(EXIT_QUALIFICATION),
6681 vmx->idt_vectoring_info,
6682 intr_info,
6683 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6684 KVM_ISA_VMX);
6685
6686 if (vmx->nested.nested_run_pending)
6687 return 0;
6688
6689 if (unlikely(vmx->fail)) {
6690 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6691 vmcs_read32(VM_INSTRUCTION_ERROR));
6692 return 1;
6693 }
6694
6695 switch (exit_reason) {
6696 case EXIT_REASON_EXCEPTION_NMI:
6697 if (!is_exception(intr_info))
6698 return 0;
6699 else if (is_page_fault(intr_info))
6700 return enable_ept;
6701 else if (is_no_device(intr_info) &&
6702 !(nested_read_cr0(vmcs12) & X86_CR0_TS))
6703 return 0;
6704 return vmcs12->exception_bitmap &
6705 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6706 case EXIT_REASON_EXTERNAL_INTERRUPT:
6707 return 0;
6708 case EXIT_REASON_TRIPLE_FAULT:
6709 return 1;
6710 case EXIT_REASON_PENDING_INTERRUPT:
6711 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6712 case EXIT_REASON_NMI_WINDOW:
6713 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6714 case EXIT_REASON_TASK_SWITCH:
6715 return 1;
6716 case EXIT_REASON_CPUID:
6717 return 1;
6718 case EXIT_REASON_HLT:
6719 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6720 case EXIT_REASON_INVD:
6721 return 1;
6722 case EXIT_REASON_INVLPG:
6723 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6724 case EXIT_REASON_RDPMC:
6725 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6726 case EXIT_REASON_RDTSC:
6727 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6728 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6729 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6730 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6731 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6732 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6733 case EXIT_REASON_INVEPT:
6734 /*
6735 * VMX instructions trap unconditionally. This allows L1 to
6736 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6737 */
6738 return 1;
6739 case EXIT_REASON_CR_ACCESS:
6740 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6741 case EXIT_REASON_DR_ACCESS:
6742 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6743 case EXIT_REASON_IO_INSTRUCTION:
6744 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6745 case EXIT_REASON_MSR_READ:
6746 case EXIT_REASON_MSR_WRITE:
6747 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6748 case EXIT_REASON_INVALID_STATE:
6749 return 1;
6750 case EXIT_REASON_MWAIT_INSTRUCTION:
6751 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6752 case EXIT_REASON_MONITOR_INSTRUCTION:
6753 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6754 case EXIT_REASON_PAUSE_INSTRUCTION:
6755 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6756 nested_cpu_has2(vmcs12,
6757 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6758 case EXIT_REASON_MCE_DURING_VMENTRY:
6759 return 0;
6760 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6761 return 1;
6762 case EXIT_REASON_APIC_ACCESS:
6763 return nested_cpu_has2(vmcs12,
6764 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6765 case EXIT_REASON_EPT_VIOLATION:
6766 /*
6767 * L0 always deals with the EPT violation. If nested EPT is
6768 * used, and the nested mmu code discovers that the address is
6769 * missing in the guest EPT table (EPT12), the EPT violation
6770 * will be injected with nested_ept_inject_page_fault()
6771 */
6772 return 0;
6773 case EXIT_REASON_EPT_MISCONFIG:
6774 /*
6775 * L2 never uses directly L1's EPT, but rather L0's own EPT
6776 * table (shadow on EPT) or a merged EPT table that L0 built
6777 * (EPT on EPT). So any problems with the structure of the
6778 * table is L0's fault.
6779 */
6780 return 0;
6781 case EXIT_REASON_PREEMPTION_TIMER:
6782 return vmcs12->pin_based_vm_exec_control &
6783 PIN_BASED_VMX_PREEMPTION_TIMER;
6784 case EXIT_REASON_WBINVD:
6785 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6786 case EXIT_REASON_XSETBV:
6787 return 1;
6788 default:
6789 return 1;
6790 }
6791 }
6792
6793 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6794 {
6795 *info1 = vmcs_readl(EXIT_QUALIFICATION);
6796 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6797 }
6798
6799 static void nested_adjust_preemption_timer(struct kvm_vcpu *vcpu)
6800 {
6801 u64 delta_tsc_l1;
6802 u32 preempt_val_l1, preempt_val_l2, preempt_scale;
6803
6804 if (!(get_vmcs12(vcpu)->pin_based_vm_exec_control &
6805 PIN_BASED_VMX_PREEMPTION_TIMER))
6806 return;
6807 preempt_scale = native_read_msr(MSR_IA32_VMX_MISC) &
6808 MSR_IA32_VMX_MISC_PREEMPTION_TIMER_SCALE;
6809 preempt_val_l2 = vmcs_read32(VMX_PREEMPTION_TIMER_VALUE);
6810 delta_tsc_l1 = vmx_read_l1_tsc(vcpu, native_read_tsc())
6811 - vcpu->arch.last_guest_tsc;
6812 preempt_val_l1 = delta_tsc_l1 >> preempt_scale;
6813 if (preempt_val_l2 <= preempt_val_l1)
6814 preempt_val_l2 = 0;
6815 else
6816 preempt_val_l2 -= preempt_val_l1;
6817 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, preempt_val_l2);
6818 }
6819
6820 /*
6821 * The guest has exited. See if we can fix it or if we need userspace
6822 * assistance.
6823 */
6824 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6825 {
6826 struct vcpu_vmx *vmx = to_vmx(vcpu);
6827 u32 exit_reason = vmx->exit_reason;
6828 u32 vectoring_info = vmx->idt_vectoring_info;
6829
6830 /* If guest state is invalid, start emulating */
6831 if (vmx->emulation_required)
6832 return handle_invalid_guest_state(vcpu);
6833
6834 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6835 nested_vmx_vmexit(vcpu, exit_reason,
6836 vmcs_read32(VM_EXIT_INTR_INFO),
6837 vmcs_readl(EXIT_QUALIFICATION));
6838 return 1;
6839 }
6840
6841 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6842 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6843 vcpu->run->fail_entry.hardware_entry_failure_reason
6844 = exit_reason;
6845 return 0;
6846 }
6847
6848 if (unlikely(vmx->fail)) {
6849 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6850 vcpu->run->fail_entry.hardware_entry_failure_reason
6851 = vmcs_read32(VM_INSTRUCTION_ERROR);
6852 return 0;
6853 }
6854
6855 /*
6856 * Note:
6857 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6858 * delivery event since it indicates guest is accessing MMIO.
6859 * The vm-exit can be triggered again after return to guest that
6860 * will cause infinite loop.
6861 */
6862 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6863 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6864 exit_reason != EXIT_REASON_EPT_VIOLATION &&
6865 exit_reason != EXIT_REASON_TASK_SWITCH)) {
6866 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6867 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6868 vcpu->run->internal.ndata = 2;
6869 vcpu->run->internal.data[0] = vectoring_info;
6870 vcpu->run->internal.data[1] = exit_reason;
6871 return 0;
6872 }
6873
6874 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6875 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6876 get_vmcs12(vcpu))))) {
6877 if (vmx_interrupt_allowed(vcpu)) {
6878 vmx->soft_vnmi_blocked = 0;
6879 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6880 vcpu->arch.nmi_pending) {
6881 /*
6882 * This CPU don't support us in finding the end of an
6883 * NMI-blocked window if the guest runs with IRQs
6884 * disabled. So we pull the trigger after 1 s of
6885 * futile waiting, but inform the user about this.
6886 */
6887 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6888 "state on VCPU %d after 1 s timeout\n",
6889 __func__, vcpu->vcpu_id);
6890 vmx->soft_vnmi_blocked = 0;
6891 }
6892 }
6893
6894 if (exit_reason < kvm_vmx_max_exit_handlers
6895 && kvm_vmx_exit_handlers[exit_reason])
6896 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6897 else {
6898 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6899 vcpu->run->hw.hardware_exit_reason = exit_reason;
6900 }
6901 return 0;
6902 }
6903
6904 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6905 {
6906 if (irr == -1 || tpr < irr) {
6907 vmcs_write32(TPR_THRESHOLD, 0);
6908 return;
6909 }
6910
6911 vmcs_write32(TPR_THRESHOLD, irr);
6912 }
6913
6914 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6915 {
6916 u32 sec_exec_control;
6917
6918 /*
6919 * There is not point to enable virtualize x2apic without enable
6920 * apicv
6921 */
6922 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6923 !vmx_vm_has_apicv(vcpu->kvm))
6924 return;
6925
6926 if (!vm_need_tpr_shadow(vcpu->kvm))
6927 return;
6928
6929 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6930
6931 if (set) {
6932 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6933 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6934 } else {
6935 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6936 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6937 }
6938 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6939
6940 vmx_set_msr_bitmap(vcpu);
6941 }
6942
6943 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6944 {
6945 u16 status;
6946 u8 old;
6947
6948 if (!vmx_vm_has_apicv(kvm))
6949 return;
6950
6951 if (isr == -1)
6952 isr = 0;
6953
6954 status = vmcs_read16(GUEST_INTR_STATUS);
6955 old = status >> 8;
6956 if (isr != old) {
6957 status &= 0xff;
6958 status |= isr << 8;
6959 vmcs_write16(GUEST_INTR_STATUS, status);
6960 }
6961 }
6962
6963 static void vmx_set_rvi(int vector)
6964 {
6965 u16 status;
6966 u8 old;
6967
6968 status = vmcs_read16(GUEST_INTR_STATUS);
6969 old = (u8)status & 0xff;
6970 if ((u8)vector != old) {
6971 status &= ~0xff;
6972 status |= (u8)vector;
6973 vmcs_write16(GUEST_INTR_STATUS, status);
6974 }
6975 }
6976
6977 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6978 {
6979 if (max_irr == -1)
6980 return;
6981
6982 vmx_set_rvi(max_irr);
6983 }
6984
6985 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6986 {
6987 if (!vmx_vm_has_apicv(vcpu->kvm))
6988 return;
6989
6990 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6991 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6992 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6993 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6994 }
6995
6996 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6997 {
6998 u32 exit_intr_info;
6999
7000 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7001 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7002 return;
7003
7004 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7005 exit_intr_info = vmx->exit_intr_info;
7006
7007 /* Handle machine checks before interrupts are enabled */
7008 if (is_machine_check(exit_intr_info))
7009 kvm_machine_check();
7010
7011 /* We need to handle NMIs before interrupts are enabled */
7012 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7013 (exit_intr_info & INTR_INFO_VALID_MASK)) {
7014 kvm_before_handle_nmi(&vmx->vcpu);
7015 asm("int $2");
7016 kvm_after_handle_nmi(&vmx->vcpu);
7017 }
7018 }
7019
7020 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7021 {
7022 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7023
7024 /*
7025 * If external interrupt exists, IF bit is set in rflags/eflags on the
7026 * interrupt stack frame, and interrupt will be enabled on a return
7027 * from interrupt handler.
7028 */
7029 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7030 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7031 unsigned int vector;
7032 unsigned long entry;
7033 gate_desc *desc;
7034 struct vcpu_vmx *vmx = to_vmx(vcpu);
7035 #ifdef CONFIG_X86_64
7036 unsigned long tmp;
7037 #endif
7038
7039 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7040 desc = (gate_desc *)vmx->host_idt_base + vector;
7041 entry = gate_offset(*desc);
7042 asm volatile(
7043 #ifdef CONFIG_X86_64
7044 "mov %%" _ASM_SP ", %[sp]\n\t"
7045 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7046 "push $%c[ss]\n\t"
7047 "push %[sp]\n\t"
7048 #endif
7049 "pushf\n\t"
7050 "orl $0x200, (%%" _ASM_SP ")\n\t"
7051 __ASM_SIZE(push) " $%c[cs]\n\t"
7052 "call *%[entry]\n\t"
7053 :
7054 #ifdef CONFIG_X86_64
7055 [sp]"=&r"(tmp)
7056 #endif
7057 :
7058 [entry]"r"(entry),
7059 [ss]"i"(__KERNEL_DS),
7060 [cs]"i"(__KERNEL_CS)
7061 );
7062 } else
7063 local_irq_enable();
7064 }
7065
7066 static bool vmx_mpx_supported(void)
7067 {
7068 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7069 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7070 }
7071
7072 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7073 {
7074 u32 exit_intr_info;
7075 bool unblock_nmi;
7076 u8 vector;
7077 bool idtv_info_valid;
7078
7079 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7080
7081 if (cpu_has_virtual_nmis()) {
7082 if (vmx->nmi_known_unmasked)
7083 return;
7084 /*
7085 * Can't use vmx->exit_intr_info since we're not sure what
7086 * the exit reason is.
7087 */
7088 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7089 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7090 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7091 /*
7092 * SDM 3: 27.7.1.2 (September 2008)
7093 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7094 * a guest IRET fault.
7095 * SDM 3: 23.2.2 (September 2008)
7096 * Bit 12 is undefined in any of the following cases:
7097 * If the VM exit sets the valid bit in the IDT-vectoring
7098 * information field.
7099 * If the VM exit is due to a double fault.
7100 */
7101 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7102 vector != DF_VECTOR && !idtv_info_valid)
7103 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7104 GUEST_INTR_STATE_NMI);
7105 else
7106 vmx->nmi_known_unmasked =
7107 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7108 & GUEST_INTR_STATE_NMI);
7109 } else if (unlikely(vmx->soft_vnmi_blocked))
7110 vmx->vnmi_blocked_time +=
7111 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7112 }
7113
7114 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7115 u32 idt_vectoring_info,
7116 int instr_len_field,
7117 int error_code_field)
7118 {
7119 u8 vector;
7120 int type;
7121 bool idtv_info_valid;
7122
7123 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7124
7125 vcpu->arch.nmi_injected = false;
7126 kvm_clear_exception_queue(vcpu);
7127 kvm_clear_interrupt_queue(vcpu);
7128
7129 if (!idtv_info_valid)
7130 return;
7131
7132 kvm_make_request(KVM_REQ_EVENT, vcpu);
7133
7134 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7135 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7136
7137 switch (type) {
7138 case INTR_TYPE_NMI_INTR:
7139 vcpu->arch.nmi_injected = true;
7140 /*
7141 * SDM 3: 27.7.1.2 (September 2008)
7142 * Clear bit "block by NMI" before VM entry if a NMI
7143 * delivery faulted.
7144 */
7145 vmx_set_nmi_mask(vcpu, false);
7146 break;
7147 case INTR_TYPE_SOFT_EXCEPTION:
7148 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7149 /* fall through */
7150 case INTR_TYPE_HARD_EXCEPTION:
7151 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7152 u32 err = vmcs_read32(error_code_field);
7153 kvm_requeue_exception_e(vcpu, vector, err);
7154 } else
7155 kvm_requeue_exception(vcpu, vector);
7156 break;
7157 case INTR_TYPE_SOFT_INTR:
7158 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7159 /* fall through */
7160 case INTR_TYPE_EXT_INTR:
7161 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7162 break;
7163 default:
7164 break;
7165 }
7166 }
7167
7168 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7169 {
7170 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7171 VM_EXIT_INSTRUCTION_LEN,
7172 IDT_VECTORING_ERROR_CODE);
7173 }
7174
7175 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7176 {
7177 __vmx_complete_interrupts(vcpu,
7178 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7179 VM_ENTRY_INSTRUCTION_LEN,
7180 VM_ENTRY_EXCEPTION_ERROR_CODE);
7181
7182 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7183 }
7184
7185 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7186 {
7187 int i, nr_msrs;
7188 struct perf_guest_switch_msr *msrs;
7189
7190 msrs = perf_guest_get_msrs(&nr_msrs);
7191
7192 if (!msrs)
7193 return;
7194
7195 for (i = 0; i < nr_msrs; i++)
7196 if (msrs[i].host == msrs[i].guest)
7197 clear_atomic_switch_msr(vmx, msrs[i].msr);
7198 else
7199 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7200 msrs[i].host);
7201 }
7202
7203 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7204 {
7205 struct vcpu_vmx *vmx = to_vmx(vcpu);
7206 unsigned long debugctlmsr;
7207
7208 /* Record the guest's net vcpu time for enforced NMI injections. */
7209 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7210 vmx->entry_time = ktime_get();
7211
7212 /* Don't enter VMX if guest state is invalid, let the exit handler
7213 start emulation until we arrive back to a valid state */
7214 if (vmx->emulation_required)
7215 return;
7216
7217 if (vmx->nested.sync_shadow_vmcs) {
7218 copy_vmcs12_to_shadow(vmx);
7219 vmx->nested.sync_shadow_vmcs = false;
7220 }
7221
7222 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7223 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7224 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7225 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7226
7227 /* When single-stepping over STI and MOV SS, we must clear the
7228 * corresponding interruptibility bits in the guest state. Otherwise
7229 * vmentry fails as it then expects bit 14 (BS) in pending debug
7230 * exceptions being set, but that's not correct for the guest debugging
7231 * case. */
7232 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7233 vmx_set_interrupt_shadow(vcpu, 0);
7234
7235 atomic_switch_perf_msrs(vmx);
7236 debugctlmsr = get_debugctlmsr();
7237
7238 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending)
7239 nested_adjust_preemption_timer(vcpu);
7240 vmx->__launched = vmx->loaded_vmcs->launched;
7241 asm(
7242 /* Store host registers */
7243 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7244 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7245 "push %%" _ASM_CX " \n\t"
7246 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7247 "je 1f \n\t"
7248 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7249 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7250 "1: \n\t"
7251 /* Reload cr2 if changed */
7252 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7253 "mov %%cr2, %%" _ASM_DX " \n\t"
7254 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7255 "je 2f \n\t"
7256 "mov %%" _ASM_AX", %%cr2 \n\t"
7257 "2: \n\t"
7258 /* Check if vmlaunch of vmresume is needed */
7259 "cmpl $0, %c[launched](%0) \n\t"
7260 /* Load guest registers. Don't clobber flags. */
7261 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7262 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7263 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7264 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7265 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7266 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7267 #ifdef CONFIG_X86_64
7268 "mov %c[r8](%0), %%r8 \n\t"
7269 "mov %c[r9](%0), %%r9 \n\t"
7270 "mov %c[r10](%0), %%r10 \n\t"
7271 "mov %c[r11](%0), %%r11 \n\t"
7272 "mov %c[r12](%0), %%r12 \n\t"
7273 "mov %c[r13](%0), %%r13 \n\t"
7274 "mov %c[r14](%0), %%r14 \n\t"
7275 "mov %c[r15](%0), %%r15 \n\t"
7276 #endif
7277 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7278
7279 /* Enter guest mode */
7280 "jne 1f \n\t"
7281 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7282 "jmp 2f \n\t"
7283 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7284 "2: "
7285 /* Save guest registers, load host registers, keep flags */
7286 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7287 "pop %0 \n\t"
7288 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7289 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7290 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7291 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7292 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7293 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7294 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7295 #ifdef CONFIG_X86_64
7296 "mov %%r8, %c[r8](%0) \n\t"
7297 "mov %%r9, %c[r9](%0) \n\t"
7298 "mov %%r10, %c[r10](%0) \n\t"
7299 "mov %%r11, %c[r11](%0) \n\t"
7300 "mov %%r12, %c[r12](%0) \n\t"
7301 "mov %%r13, %c[r13](%0) \n\t"
7302 "mov %%r14, %c[r14](%0) \n\t"
7303 "mov %%r15, %c[r15](%0) \n\t"
7304 #endif
7305 "mov %%cr2, %%" _ASM_AX " \n\t"
7306 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7307
7308 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
7309 "setbe %c[fail](%0) \n\t"
7310 ".pushsection .rodata \n\t"
7311 ".global vmx_return \n\t"
7312 "vmx_return: " _ASM_PTR " 2b \n\t"
7313 ".popsection"
7314 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7315 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7316 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7317 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7318 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7319 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7320 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7321 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7322 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7323 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7324 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7325 #ifdef CONFIG_X86_64
7326 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7327 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7328 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7329 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7330 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7331 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7332 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7333 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7334 #endif
7335 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7336 [wordsize]"i"(sizeof(ulong))
7337 : "cc", "memory"
7338 #ifdef CONFIG_X86_64
7339 , "rax", "rbx", "rdi", "rsi"
7340 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7341 #else
7342 , "eax", "ebx", "edi", "esi"
7343 #endif
7344 );
7345
7346 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7347 if (debugctlmsr)
7348 update_debugctlmsr(debugctlmsr);
7349
7350 #ifndef CONFIG_X86_64
7351 /*
7352 * The sysexit path does not restore ds/es, so we must set them to
7353 * a reasonable value ourselves.
7354 *
7355 * We can't defer this to vmx_load_host_state() since that function
7356 * may be executed in interrupt context, which saves and restore segments
7357 * around it, nullifying its effect.
7358 */
7359 loadsegment(ds, __USER_DS);
7360 loadsegment(es, __USER_DS);
7361 #endif
7362
7363 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7364 | (1 << VCPU_EXREG_RFLAGS)
7365 | (1 << VCPU_EXREG_CPL)
7366 | (1 << VCPU_EXREG_PDPTR)
7367 | (1 << VCPU_EXREG_SEGMENTS)
7368 | (1 << VCPU_EXREG_CR3));
7369 vcpu->arch.regs_dirty = 0;
7370
7371 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7372
7373 vmx->loaded_vmcs->launched = 1;
7374
7375 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7376 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7377
7378 /*
7379 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7380 * we did not inject a still-pending event to L1 now because of
7381 * nested_run_pending, we need to re-enable this bit.
7382 */
7383 if (vmx->nested.nested_run_pending)
7384 kvm_make_request(KVM_REQ_EVENT, vcpu);
7385
7386 vmx->nested.nested_run_pending = 0;
7387
7388 vmx_complete_atomic_exit(vmx);
7389 vmx_recover_nmi_blocking(vmx);
7390 vmx_complete_interrupts(vmx);
7391 }
7392
7393 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7394 {
7395 struct vcpu_vmx *vmx = to_vmx(vcpu);
7396
7397 free_vpid(vmx);
7398 free_loaded_vmcs(vmx->loaded_vmcs);
7399 free_nested(vmx);
7400 kfree(vmx->guest_msrs);
7401 kvm_vcpu_uninit(vcpu);
7402 kmem_cache_free(kvm_vcpu_cache, vmx);
7403 }
7404
7405 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7406 {
7407 int err;
7408 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7409 int cpu;
7410
7411 if (!vmx)
7412 return ERR_PTR(-ENOMEM);
7413
7414 allocate_vpid(vmx);
7415
7416 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7417 if (err)
7418 goto free_vcpu;
7419
7420 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7421 err = -ENOMEM;
7422 if (!vmx->guest_msrs) {
7423 goto uninit_vcpu;
7424 }
7425
7426 vmx->loaded_vmcs = &vmx->vmcs01;
7427 vmx->loaded_vmcs->vmcs = alloc_vmcs();
7428 if (!vmx->loaded_vmcs->vmcs)
7429 goto free_msrs;
7430 if (!vmm_exclusive)
7431 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7432 loaded_vmcs_init(vmx->loaded_vmcs);
7433 if (!vmm_exclusive)
7434 kvm_cpu_vmxoff();
7435
7436 cpu = get_cpu();
7437 vmx_vcpu_load(&vmx->vcpu, cpu);
7438 vmx->vcpu.cpu = cpu;
7439 err = vmx_vcpu_setup(vmx);
7440 vmx_vcpu_put(&vmx->vcpu);
7441 put_cpu();
7442 if (err)
7443 goto free_vmcs;
7444 if (vm_need_virtualize_apic_accesses(kvm)) {
7445 err = alloc_apic_access_page(kvm);
7446 if (err)
7447 goto free_vmcs;
7448 }
7449
7450 if (enable_ept) {
7451 if (!kvm->arch.ept_identity_map_addr)
7452 kvm->arch.ept_identity_map_addr =
7453 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7454 err = -ENOMEM;
7455 if (alloc_identity_pagetable(kvm) != 0)
7456 goto free_vmcs;
7457 if (!init_rmode_identity_map(kvm))
7458 goto free_vmcs;
7459 }
7460
7461 vmx->nested.current_vmptr = -1ull;
7462 vmx->nested.current_vmcs12 = NULL;
7463
7464 return &vmx->vcpu;
7465
7466 free_vmcs:
7467 free_loaded_vmcs(vmx->loaded_vmcs);
7468 free_msrs:
7469 kfree(vmx->guest_msrs);
7470 uninit_vcpu:
7471 kvm_vcpu_uninit(&vmx->vcpu);
7472 free_vcpu:
7473 free_vpid(vmx);
7474 kmem_cache_free(kvm_vcpu_cache, vmx);
7475 return ERR_PTR(err);
7476 }
7477
7478 static void __init vmx_check_processor_compat(void *rtn)
7479 {
7480 struct vmcs_config vmcs_conf;
7481
7482 *(int *)rtn = 0;
7483 if (setup_vmcs_config(&vmcs_conf) < 0)
7484 *(int *)rtn = -EIO;
7485 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7486 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7487 smp_processor_id());
7488 *(int *)rtn = -EIO;
7489 }
7490 }
7491
7492 static int get_ept_level(void)
7493 {
7494 return VMX_EPT_DEFAULT_GAW + 1;
7495 }
7496
7497 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7498 {
7499 u64 ret;
7500
7501 /* For VT-d and EPT combination
7502 * 1. MMIO: always map as UC
7503 * 2. EPT with VT-d:
7504 * a. VT-d without snooping control feature: can't guarantee the
7505 * result, try to trust guest.
7506 * b. VT-d with snooping control feature: snooping control feature of
7507 * VT-d engine can guarantee the cache correctness. Just set it
7508 * to WB to keep consistent with host. So the same as item 3.
7509 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7510 * consistent with host MTRR
7511 */
7512 if (is_mmio)
7513 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7514 else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
7515 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7516 VMX_EPT_MT_EPTE_SHIFT;
7517 else
7518 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7519 | VMX_EPT_IPAT_BIT;
7520
7521 return ret;
7522 }
7523
7524 static int vmx_get_lpage_level(void)
7525 {
7526 if (enable_ept && !cpu_has_vmx_ept_1g_page())
7527 return PT_DIRECTORY_LEVEL;
7528 else
7529 /* For shadow and EPT supported 1GB page */
7530 return PT_PDPE_LEVEL;
7531 }
7532
7533 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7534 {
7535 struct kvm_cpuid_entry2 *best;
7536 struct vcpu_vmx *vmx = to_vmx(vcpu);
7537 u32 exec_control;
7538
7539 vmx->rdtscp_enabled = false;
7540 if (vmx_rdtscp_supported()) {
7541 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7542 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7543 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7544 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7545 vmx->rdtscp_enabled = true;
7546 else {
7547 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7548 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7549 exec_control);
7550 }
7551 }
7552 }
7553
7554 /* Exposing INVPCID only when PCID is exposed */
7555 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7556 if (vmx_invpcid_supported() &&
7557 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7558 guest_cpuid_has_pcid(vcpu)) {
7559 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7560 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7561 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7562 exec_control);
7563 } else {
7564 if (cpu_has_secondary_exec_ctrls()) {
7565 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7566 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7567 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7568 exec_control);
7569 }
7570 if (best)
7571 best->ebx &= ~bit(X86_FEATURE_INVPCID);
7572 }
7573 }
7574
7575 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7576 {
7577 if (func == 1 && nested)
7578 entry->ecx |= bit(X86_FEATURE_VMX);
7579 }
7580
7581 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7582 struct x86_exception *fault)
7583 {
7584 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7585 u32 exit_reason;
7586
7587 if (fault->error_code & PFERR_RSVD_MASK)
7588 exit_reason = EXIT_REASON_EPT_MISCONFIG;
7589 else
7590 exit_reason = EXIT_REASON_EPT_VIOLATION;
7591 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
7592 vmcs12->guest_physical_address = fault->address;
7593 }
7594
7595 /* Callbacks for nested_ept_init_mmu_context: */
7596
7597 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7598 {
7599 /* return the page table to be shadowed - in our case, EPT12 */
7600 return get_vmcs12(vcpu)->ept_pointer;
7601 }
7602
7603 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7604 {
7605 kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7606 nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7607
7608 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
7609 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
7610 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7611
7612 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
7613 }
7614
7615 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7616 {
7617 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7618 }
7619
7620 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
7621 struct x86_exception *fault)
7622 {
7623 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7624
7625 WARN_ON(!is_guest_mode(vcpu));
7626
7627 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7628 if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
7629 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
7630 vmcs_read32(VM_EXIT_INTR_INFO),
7631 vmcs_readl(EXIT_QUALIFICATION));
7632 else
7633 kvm_inject_page_fault(vcpu, fault);
7634 }
7635
7636 /*
7637 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7638 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7639 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7640 * guest in a way that will both be appropriate to L1's requests, and our
7641 * needs. In addition to modifying the active vmcs (which is vmcs02), this
7642 * function also has additional necessary side-effects, like setting various
7643 * vcpu->arch fields.
7644 */
7645 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7646 {
7647 struct vcpu_vmx *vmx = to_vmx(vcpu);
7648 u32 exec_control;
7649 u32 exit_control;
7650
7651 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7652 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7653 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7654 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7655 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7656 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7657 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7658 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7659 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7660 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7661 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7662 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7663 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7664 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7665 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7666 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7667 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7668 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7669 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7670 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7671 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7672 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7673 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7674 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7675 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7676 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7677 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7678 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7679 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7680 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7681 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7682 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7683 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7684 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7685 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7686 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7687
7688 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7689 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7690 vmcs12->vm_entry_intr_info_field);
7691 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7692 vmcs12->vm_entry_exception_error_code);
7693 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7694 vmcs12->vm_entry_instruction_len);
7695 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7696 vmcs12->guest_interruptibility_info);
7697 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
7698 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
7699 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
7700 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7701 vmcs12->guest_pending_dbg_exceptions);
7702 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7703 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7704
7705 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7706
7707 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
7708 (vmcs_config.pin_based_exec_ctrl |
7709 vmcs12->pin_based_vm_exec_control));
7710
7711 if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7712 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
7713 vmcs12->vmx_preemption_timer_value);
7714
7715 /*
7716 * Whether page-faults are trapped is determined by a combination of
7717 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7718 * If enable_ept, L0 doesn't care about page faults and we should
7719 * set all of these to L1's desires. However, if !enable_ept, L0 does
7720 * care about (at least some) page faults, and because it is not easy
7721 * (if at all possible?) to merge L0 and L1's desires, we simply ask
7722 * to exit on each and every L2 page fault. This is done by setting
7723 * MASK=MATCH=0 and (see below) EB.PF=1.
7724 * Note that below we don't need special code to set EB.PF beyond the
7725 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7726 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7727 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7728 *
7729 * A problem with this approach (when !enable_ept) is that L1 may be
7730 * injected with more page faults than it asked for. This could have
7731 * caused problems, but in practice existing hypervisors don't care.
7732 * To fix this, we will need to emulate the PFEC checking (on the L1
7733 * page tables), using walk_addr(), when injecting PFs to L1.
7734 */
7735 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7736 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7737 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7738 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7739
7740 if (cpu_has_secondary_exec_ctrls()) {
7741 u32 exec_control = vmx_secondary_exec_control(vmx);
7742 if (!vmx->rdtscp_enabled)
7743 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7744 /* Take the following fields only from vmcs12 */
7745 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7746 if (nested_cpu_has(vmcs12,
7747 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7748 exec_control |= vmcs12->secondary_vm_exec_control;
7749
7750 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7751 /*
7752 * Translate L1 physical address to host physical
7753 * address for vmcs02. Keep the page pinned, so this
7754 * physical address remains valid. We keep a reference
7755 * to it so we can release it later.
7756 */
7757 if (vmx->nested.apic_access_page) /* shouldn't happen */
7758 nested_release_page(vmx->nested.apic_access_page);
7759 vmx->nested.apic_access_page =
7760 nested_get_page(vcpu, vmcs12->apic_access_addr);
7761 /*
7762 * If translation failed, no matter: This feature asks
7763 * to exit when accessing the given address, and if it
7764 * can never be accessed, this feature won't do
7765 * anything anyway.
7766 */
7767 if (!vmx->nested.apic_access_page)
7768 exec_control &=
7769 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7770 else
7771 vmcs_write64(APIC_ACCESS_ADDR,
7772 page_to_phys(vmx->nested.apic_access_page));
7773 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
7774 exec_control |=
7775 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7776 vmcs_write64(APIC_ACCESS_ADDR,
7777 page_to_phys(vcpu->kvm->arch.apic_access_page));
7778 }
7779
7780 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7781 }
7782
7783
7784 /*
7785 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7786 * Some constant fields are set here by vmx_set_constant_host_state().
7787 * Other fields are different per CPU, and will be set later when
7788 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7789 */
7790 vmx_set_constant_host_state(vmx);
7791
7792 /*
7793 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7794 * entry, but only if the current (host) sp changed from the value
7795 * we wrote last (vmx->host_rsp). This cache is no longer relevant
7796 * if we switch vmcs, and rather than hold a separate cache per vmcs,
7797 * here we just force the write to happen on entry.
7798 */
7799 vmx->host_rsp = 0;
7800
7801 exec_control = vmx_exec_control(vmx); /* L0's desires */
7802 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7803 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7804 exec_control &= ~CPU_BASED_TPR_SHADOW;
7805 exec_control |= vmcs12->cpu_based_vm_exec_control;
7806 /*
7807 * Merging of IO and MSR bitmaps not currently supported.
7808 * Rather, exit every time.
7809 */
7810 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7811 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7812 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7813
7814 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7815
7816 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7817 * bitwise-or of what L1 wants to trap for L2, and what we want to
7818 * trap. Note that CR0.TS also needs updating - we do this later.
7819 */
7820 update_exception_bitmap(vcpu);
7821 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7822 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7823
7824 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
7825 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
7826 * bits are further modified by vmx_set_efer() below.
7827 */
7828 exit_control = vmcs_config.vmexit_ctrl;
7829 if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7830 exit_control |= VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
7831 vm_exit_controls_init(vmx, exit_control);
7832
7833 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
7834 * emulated by vmx_set_efer(), below.
7835 */
7836 vm_entry_controls_init(vmx,
7837 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
7838 ~VM_ENTRY_IA32E_MODE) |
7839 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7840
7841 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
7842 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7843 vcpu->arch.pat = vmcs12->guest_ia32_pat;
7844 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7845 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7846
7847
7848 set_cr4_guest_host_mask(vmx);
7849
7850 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7851 vmcs_write64(TSC_OFFSET,
7852 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7853 else
7854 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7855
7856 if (enable_vpid) {
7857 /*
7858 * Trivially support vpid by letting L2s share their parent
7859 * L1's vpid. TODO: move to a more elaborate solution, giving
7860 * each L2 its own vpid and exposing the vpid feature to L1.
7861 */
7862 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7863 vmx_flush_tlb(vcpu);
7864 }
7865
7866 if (nested_cpu_has_ept(vmcs12)) {
7867 kvm_mmu_unload(vcpu);
7868 nested_ept_init_mmu_context(vcpu);
7869 }
7870
7871 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7872 vcpu->arch.efer = vmcs12->guest_ia32_efer;
7873 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7874 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7875 else
7876 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7877 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7878 vmx_set_efer(vcpu, vcpu->arch.efer);
7879
7880 /*
7881 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7882 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7883 * The CR0_READ_SHADOW is what L2 should have expected to read given
7884 * the specifications by L1; It's not enough to take
7885 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7886 * have more bits than L1 expected.
7887 */
7888 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7889 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7890
7891 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7892 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7893
7894 /* shadow page tables on either EPT or shadow page tables */
7895 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7896 kvm_mmu_reset_context(vcpu);
7897
7898 if (!enable_ept)
7899 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
7900
7901 /*
7902 * L1 may access the L2's PDPTR, so save them to construct vmcs12
7903 */
7904 if (enable_ept) {
7905 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
7906 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
7907 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
7908 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
7909 }
7910
7911 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7912 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7913 }
7914
7915 /*
7916 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7917 * for running an L2 nested guest.
7918 */
7919 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7920 {
7921 struct vmcs12 *vmcs12;
7922 struct vcpu_vmx *vmx = to_vmx(vcpu);
7923 int cpu;
7924 struct loaded_vmcs *vmcs02;
7925 bool ia32e;
7926
7927 if (!nested_vmx_check_permission(vcpu) ||
7928 !nested_vmx_check_vmcs12(vcpu))
7929 return 1;
7930
7931 skip_emulated_instruction(vcpu);
7932 vmcs12 = get_vmcs12(vcpu);
7933
7934 if (enable_shadow_vmcs)
7935 copy_shadow_to_vmcs12(vmx);
7936
7937 /*
7938 * The nested entry process starts with enforcing various prerequisites
7939 * on vmcs12 as required by the Intel SDM, and act appropriately when
7940 * they fail: As the SDM explains, some conditions should cause the
7941 * instruction to fail, while others will cause the instruction to seem
7942 * to succeed, but return an EXIT_REASON_INVALID_STATE.
7943 * To speed up the normal (success) code path, we should avoid checking
7944 * for misconfigurations which will anyway be caught by the processor
7945 * when using the merged vmcs02.
7946 */
7947 if (vmcs12->launch_state == launch) {
7948 nested_vmx_failValid(vcpu,
7949 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7950 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7951 return 1;
7952 }
7953
7954 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
7955 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
7956 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7957 return 1;
7958 }
7959
7960 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7961 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7962 /*TODO: Also verify bits beyond physical address width are 0*/
7963 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7964 return 1;
7965 }
7966
7967 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7968 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7969 /*TODO: Also verify bits beyond physical address width are 0*/
7970 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7971 return 1;
7972 }
7973
7974 if (vmcs12->vm_entry_msr_load_count > 0 ||
7975 vmcs12->vm_exit_msr_load_count > 0 ||
7976 vmcs12->vm_exit_msr_store_count > 0) {
7977 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7978 __func__);
7979 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7980 return 1;
7981 }
7982
7983 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7984 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7985 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7986 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7987 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7988 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7989 !vmx_control_verify(vmcs12->vm_exit_controls,
7990 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7991 !vmx_control_verify(vmcs12->vm_entry_controls,
7992 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7993 {
7994 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7995 return 1;
7996 }
7997
7998 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7999 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8000 nested_vmx_failValid(vcpu,
8001 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
8002 return 1;
8003 }
8004
8005 if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
8006 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8007 nested_vmx_entry_failure(vcpu, vmcs12,
8008 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8009 return 1;
8010 }
8011 if (vmcs12->vmcs_link_pointer != -1ull) {
8012 nested_vmx_entry_failure(vcpu, vmcs12,
8013 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8014 return 1;
8015 }
8016
8017 /*
8018 * If the load IA32_EFER VM-entry control is 1, the following checks
8019 * are performed on the field for the IA32_EFER MSR:
8020 * - Bits reserved in the IA32_EFER MSR must be 0.
8021 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8022 * the IA-32e mode guest VM-exit control. It must also be identical
8023 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8024 * CR0.PG) is 1.
8025 */
8026 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8027 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8028 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8029 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8030 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8031 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8032 nested_vmx_entry_failure(vcpu, vmcs12,
8033 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8034 return 1;
8035 }
8036 }
8037
8038 /*
8039 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8040 * IA32_EFER MSR must be 0 in the field for that register. In addition,
8041 * the values of the LMA and LME bits in the field must each be that of
8042 * the host address-space size VM-exit control.
8043 */
8044 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8045 ia32e = (vmcs12->vm_exit_controls &
8046 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8047 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8048 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8049 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8050 nested_vmx_entry_failure(vcpu, vmcs12,
8051 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8052 return 1;
8053 }
8054 }
8055
8056 /*
8057 * We're finally done with prerequisite checking, and can start with
8058 * the nested entry.
8059 */
8060
8061 vmcs02 = nested_get_current_vmcs02(vmx);
8062 if (!vmcs02)
8063 return -ENOMEM;
8064
8065 enter_guest_mode(vcpu);
8066
8067 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8068
8069 cpu = get_cpu();
8070 vmx->loaded_vmcs = vmcs02;
8071 vmx_vcpu_put(vcpu);
8072 vmx_vcpu_load(vcpu, cpu);
8073 vcpu->cpu = cpu;
8074 put_cpu();
8075
8076 vmx_segment_cache_clear(vmx);
8077
8078 vmcs12->launch_state = 1;
8079
8080 prepare_vmcs02(vcpu, vmcs12);
8081
8082 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8083 return kvm_emulate_halt(vcpu);
8084
8085 vmx->nested.nested_run_pending = 1;
8086
8087 /*
8088 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8089 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8090 * returned as far as L1 is concerned. It will only return (and set
8091 * the success flag) when L2 exits (see nested_vmx_vmexit()).
8092 */
8093 return 1;
8094 }
8095
8096 /*
8097 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8098 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8099 * This function returns the new value we should put in vmcs12.guest_cr0.
8100 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8101 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8102 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8103 * didn't trap the bit, because if L1 did, so would L0).
8104 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8105 * been modified by L2, and L1 knows it. So just leave the old value of
8106 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8107 * isn't relevant, because if L0 traps this bit it can set it to anything.
8108 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8109 * changed these bits, and therefore they need to be updated, but L0
8110 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8111 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8112 */
8113 static inline unsigned long
8114 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8115 {
8116 return
8117 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8118 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8119 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8120 vcpu->arch.cr0_guest_owned_bits));
8121 }
8122
8123 static inline unsigned long
8124 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8125 {
8126 return
8127 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8128 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8129 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8130 vcpu->arch.cr4_guest_owned_bits));
8131 }
8132
8133 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8134 struct vmcs12 *vmcs12)
8135 {
8136 u32 idt_vectoring;
8137 unsigned int nr;
8138
8139 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8140 nr = vcpu->arch.exception.nr;
8141 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8142
8143 if (kvm_exception_is_soft(nr)) {
8144 vmcs12->vm_exit_instruction_len =
8145 vcpu->arch.event_exit_inst_len;
8146 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8147 } else
8148 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8149
8150 if (vcpu->arch.exception.has_error_code) {
8151 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8152 vmcs12->idt_vectoring_error_code =
8153 vcpu->arch.exception.error_code;
8154 }
8155
8156 vmcs12->idt_vectoring_info_field = idt_vectoring;
8157 } else if (vcpu->arch.nmi_injected) {
8158 vmcs12->idt_vectoring_info_field =
8159 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8160 } else if (vcpu->arch.interrupt.pending) {
8161 nr = vcpu->arch.interrupt.nr;
8162 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8163
8164 if (vcpu->arch.interrupt.soft) {
8165 idt_vectoring |= INTR_TYPE_SOFT_INTR;
8166 vmcs12->vm_entry_instruction_len =
8167 vcpu->arch.event_exit_inst_len;
8168 } else
8169 idt_vectoring |= INTR_TYPE_EXT_INTR;
8170
8171 vmcs12->idt_vectoring_info_field = idt_vectoring;
8172 }
8173 }
8174
8175 /*
8176 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8177 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8178 * and this function updates it to reflect the changes to the guest state while
8179 * L2 was running (and perhaps made some exits which were handled directly by L0
8180 * without going back to L1), and to reflect the exit reason.
8181 * Note that we do not have to copy here all VMCS fields, just those that
8182 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8183 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8184 * which already writes to vmcs12 directly.
8185 */
8186 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8187 u32 exit_reason, u32 exit_intr_info,
8188 unsigned long exit_qualification)
8189 {
8190 /* update guest state fields: */
8191 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8192 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8193
8194 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8195 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8196 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8197 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8198
8199 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8200 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8201 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8202 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8203 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8204 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8205 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8206 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8207 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8208 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8209 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8210 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8211 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8212 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8213 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8214 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8215 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8216 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8217 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8218 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8219 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8220 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8221 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8222 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8223 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8224 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8225 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8226 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8227 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8228 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8229 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8230 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8231 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8232 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8233 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8234 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8235
8236 vmcs12->guest_interruptibility_info =
8237 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8238 vmcs12->guest_pending_dbg_exceptions =
8239 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8240 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8241 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8242 else
8243 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
8244
8245 if ((vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER) &&
8246 (vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER))
8247 vmcs12->vmx_preemption_timer_value =
8248 vmcs_read32(VMX_PREEMPTION_TIMER_VALUE);
8249
8250 /*
8251 * In some cases (usually, nested EPT), L2 is allowed to change its
8252 * own CR3 without exiting. If it has changed it, we must keep it.
8253 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8254 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8255 *
8256 * Additionally, restore L2's PDPTR to vmcs12.
8257 */
8258 if (enable_ept) {
8259 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8260 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8261 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8262 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8263 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8264 }
8265
8266 vmcs12->vm_entry_controls =
8267 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8268 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8269
8270 /* TODO: These cannot have changed unless we have MSR bitmaps and
8271 * the relevant bit asks not to trap the change */
8272 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8273 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8274 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8275 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8276 vmcs12->guest_ia32_efer = vcpu->arch.efer;
8277 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8278 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8279 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8280
8281 /* update exit information fields: */
8282
8283 vmcs12->vm_exit_reason = exit_reason;
8284 vmcs12->exit_qualification = exit_qualification;
8285
8286 vmcs12->vm_exit_intr_info = exit_intr_info;
8287 if ((vmcs12->vm_exit_intr_info &
8288 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8289 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8290 vmcs12->vm_exit_intr_error_code =
8291 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8292 vmcs12->idt_vectoring_info_field = 0;
8293 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8294 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8295
8296 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8297 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8298 * instead of reading the real value. */
8299 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8300
8301 /*
8302 * Transfer the event that L0 or L1 may wanted to inject into
8303 * L2 to IDT_VECTORING_INFO_FIELD.
8304 */
8305 vmcs12_save_pending_event(vcpu, vmcs12);
8306 }
8307
8308 /*
8309 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8310 * preserved above and would only end up incorrectly in L1.
8311 */
8312 vcpu->arch.nmi_injected = false;
8313 kvm_clear_exception_queue(vcpu);
8314 kvm_clear_interrupt_queue(vcpu);
8315 }
8316
8317 /*
8318 * A part of what we need to when the nested L2 guest exits and we want to
8319 * run its L1 parent, is to reset L1's guest state to the host state specified
8320 * in vmcs12.
8321 * This function is to be called not only on normal nested exit, but also on
8322 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8323 * Failures During or After Loading Guest State").
8324 * This function should be called when the active VMCS is L1's (vmcs01).
8325 */
8326 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8327 struct vmcs12 *vmcs12)
8328 {
8329 struct kvm_segment seg;
8330
8331 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8332 vcpu->arch.efer = vmcs12->host_ia32_efer;
8333 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8334 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8335 else
8336 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8337 vmx_set_efer(vcpu, vcpu->arch.efer);
8338
8339 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8340 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8341 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8342 /*
8343 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8344 * actually changed, because it depends on the current state of
8345 * fpu_active (which may have changed).
8346 * Note that vmx_set_cr0 refers to efer set above.
8347 */
8348 vmx_set_cr0(vcpu, vmcs12->host_cr0);
8349 /*
8350 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8351 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8352 * but we also need to update cr0_guest_host_mask and exception_bitmap.
8353 */
8354 update_exception_bitmap(vcpu);
8355 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8356 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8357
8358 /*
8359 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8360 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8361 */
8362 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8363 kvm_set_cr4(vcpu, vmcs12->host_cr4);
8364
8365 nested_ept_uninit_mmu_context(vcpu);
8366
8367 kvm_set_cr3(vcpu, vmcs12->host_cr3);
8368 kvm_mmu_reset_context(vcpu);
8369
8370 if (!enable_ept)
8371 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
8372
8373 if (enable_vpid) {
8374 /*
8375 * Trivially support vpid by letting L2s share their parent
8376 * L1's vpid. TODO: move to a more elaborate solution, giving
8377 * each L2 its own vpid and exposing the vpid feature to L1.
8378 */
8379 vmx_flush_tlb(vcpu);
8380 }
8381
8382
8383 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8384 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8385 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8386 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8387 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8388
8389 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8390 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8391 vcpu->arch.pat = vmcs12->host_ia32_pat;
8392 }
8393 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8394 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8395 vmcs12->host_ia32_perf_global_ctrl);
8396
8397 /* Set L1 segment info according to Intel SDM
8398 27.5.2 Loading Host Segment and Descriptor-Table Registers */
8399 seg = (struct kvm_segment) {
8400 .base = 0,
8401 .limit = 0xFFFFFFFF,
8402 .selector = vmcs12->host_cs_selector,
8403 .type = 11,
8404 .present = 1,
8405 .s = 1,
8406 .g = 1
8407 };
8408 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8409 seg.l = 1;
8410 else
8411 seg.db = 1;
8412 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8413 seg = (struct kvm_segment) {
8414 .base = 0,
8415 .limit = 0xFFFFFFFF,
8416 .type = 3,
8417 .present = 1,
8418 .s = 1,
8419 .db = 1,
8420 .g = 1
8421 };
8422 seg.selector = vmcs12->host_ds_selector;
8423 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8424 seg.selector = vmcs12->host_es_selector;
8425 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8426 seg.selector = vmcs12->host_ss_selector;
8427 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8428 seg.selector = vmcs12->host_fs_selector;
8429 seg.base = vmcs12->host_fs_base;
8430 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8431 seg.selector = vmcs12->host_gs_selector;
8432 seg.base = vmcs12->host_gs_base;
8433 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8434 seg = (struct kvm_segment) {
8435 .base = vmcs12->host_tr_base,
8436 .limit = 0x67,
8437 .selector = vmcs12->host_tr_selector,
8438 .type = 11,
8439 .present = 1
8440 };
8441 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8442
8443 kvm_set_dr(vcpu, 7, 0x400);
8444 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8445 }
8446
8447 /*
8448 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8449 * and modify vmcs12 to make it see what it would expect to see there if
8450 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8451 */
8452 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
8453 u32 exit_intr_info,
8454 unsigned long exit_qualification)
8455 {
8456 struct vcpu_vmx *vmx = to_vmx(vcpu);
8457 int cpu;
8458 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8459
8460 /* trying to cancel vmlaunch/vmresume is a bug */
8461 WARN_ON_ONCE(vmx->nested.nested_run_pending);
8462
8463 leave_guest_mode(vcpu);
8464 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
8465 exit_qualification);
8466
8467 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
8468 vmcs12->exit_qualification,
8469 vmcs12->idt_vectoring_info_field,
8470 vmcs12->vm_exit_intr_info,
8471 vmcs12->vm_exit_intr_error_code,
8472 KVM_ISA_VMX);
8473
8474 cpu = get_cpu();
8475 vmx->loaded_vmcs = &vmx->vmcs01;
8476 vmx_vcpu_put(vcpu);
8477 vmx_vcpu_load(vcpu, cpu);
8478 vcpu->cpu = cpu;
8479 put_cpu();
8480
8481 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
8482 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
8483 vmx_segment_cache_clear(vmx);
8484
8485 /* if no vmcs02 cache requested, remove the one we used */
8486 if (VMCS02_POOL_SIZE == 0)
8487 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8488
8489 load_vmcs12_host_state(vcpu, vmcs12);
8490
8491 /* Update TSC_OFFSET if TSC was changed while L2 ran */
8492 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8493
8494 /* This is needed for same reason as it was needed in prepare_vmcs02 */
8495 vmx->host_rsp = 0;
8496
8497 /* Unpin physical memory we referred to in vmcs02 */
8498 if (vmx->nested.apic_access_page) {
8499 nested_release_page(vmx->nested.apic_access_page);
8500 vmx->nested.apic_access_page = 0;
8501 }
8502
8503 /*
8504 * Exiting from L2 to L1, we're now back to L1 which thinks it just
8505 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8506 * success or failure flag accordingly.
8507 */
8508 if (unlikely(vmx->fail)) {
8509 vmx->fail = 0;
8510 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8511 } else
8512 nested_vmx_succeed(vcpu);
8513 if (enable_shadow_vmcs)
8514 vmx->nested.sync_shadow_vmcs = true;
8515 }
8516
8517 /*
8518 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
8519 */
8520 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
8521 {
8522 if (is_guest_mode(vcpu))
8523 nested_vmx_vmexit(vcpu, -1, 0, 0);
8524 free_nested(to_vmx(vcpu));
8525 }
8526
8527 /*
8528 * L1's failure to enter L2 is a subset of a normal exit, as explained in
8529 * 23.7 "VM-entry failures during or after loading guest state" (this also
8530 * lists the acceptable exit-reason and exit-qualification parameters).
8531 * It should only be called before L2 actually succeeded to run, and when
8532 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8533 */
8534 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8535 struct vmcs12 *vmcs12,
8536 u32 reason, unsigned long qualification)
8537 {
8538 load_vmcs12_host_state(vcpu, vmcs12);
8539 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8540 vmcs12->exit_qualification = qualification;
8541 nested_vmx_succeed(vcpu);
8542 if (enable_shadow_vmcs)
8543 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
8544 }
8545
8546 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8547 struct x86_instruction_info *info,
8548 enum x86_intercept_stage stage)
8549 {
8550 return X86EMUL_CONTINUE;
8551 }
8552
8553 static struct kvm_x86_ops vmx_x86_ops = {
8554 .cpu_has_kvm_support = cpu_has_kvm_support,
8555 .disabled_by_bios = vmx_disabled_by_bios,
8556 .hardware_setup = hardware_setup,
8557 .hardware_unsetup = hardware_unsetup,
8558 .check_processor_compatibility = vmx_check_processor_compat,
8559 .hardware_enable = hardware_enable,
8560 .hardware_disable = hardware_disable,
8561 .cpu_has_accelerated_tpr = report_flexpriority,
8562
8563 .vcpu_create = vmx_create_vcpu,
8564 .vcpu_free = vmx_free_vcpu,
8565 .vcpu_reset = vmx_vcpu_reset,
8566
8567 .prepare_guest_switch = vmx_save_host_state,
8568 .vcpu_load = vmx_vcpu_load,
8569 .vcpu_put = vmx_vcpu_put,
8570
8571 .update_db_bp_intercept = update_exception_bitmap,
8572 .get_msr = vmx_get_msr,
8573 .set_msr = vmx_set_msr,
8574 .get_segment_base = vmx_get_segment_base,
8575 .get_segment = vmx_get_segment,
8576 .set_segment = vmx_set_segment,
8577 .get_cpl = vmx_get_cpl,
8578 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8579 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
8580 .decache_cr3 = vmx_decache_cr3,
8581 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
8582 .set_cr0 = vmx_set_cr0,
8583 .set_cr3 = vmx_set_cr3,
8584 .set_cr4 = vmx_set_cr4,
8585 .set_efer = vmx_set_efer,
8586 .get_idt = vmx_get_idt,
8587 .set_idt = vmx_set_idt,
8588 .get_gdt = vmx_get_gdt,
8589 .set_gdt = vmx_set_gdt,
8590 .get_dr6 = vmx_get_dr6,
8591 .set_dr6 = vmx_set_dr6,
8592 .set_dr7 = vmx_set_dr7,
8593 .cache_reg = vmx_cache_reg,
8594 .get_rflags = vmx_get_rflags,
8595 .set_rflags = vmx_set_rflags,
8596 .fpu_activate = vmx_fpu_activate,
8597 .fpu_deactivate = vmx_fpu_deactivate,
8598
8599 .tlb_flush = vmx_flush_tlb,
8600
8601 .run = vmx_vcpu_run,
8602 .handle_exit = vmx_handle_exit,
8603 .skip_emulated_instruction = skip_emulated_instruction,
8604 .set_interrupt_shadow = vmx_set_interrupt_shadow,
8605 .get_interrupt_shadow = vmx_get_interrupt_shadow,
8606 .patch_hypercall = vmx_patch_hypercall,
8607 .set_irq = vmx_inject_irq,
8608 .set_nmi = vmx_inject_nmi,
8609 .queue_exception = vmx_queue_exception,
8610 .cancel_injection = vmx_cancel_injection,
8611 .interrupt_allowed = vmx_interrupt_allowed,
8612 .nmi_allowed = vmx_nmi_allowed,
8613 .get_nmi_mask = vmx_get_nmi_mask,
8614 .set_nmi_mask = vmx_set_nmi_mask,
8615 .enable_nmi_window = enable_nmi_window,
8616 .enable_irq_window = enable_irq_window,
8617 .update_cr8_intercept = update_cr8_intercept,
8618 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
8619 .vm_has_apicv = vmx_vm_has_apicv,
8620 .load_eoi_exitmap = vmx_load_eoi_exitmap,
8621 .hwapic_irr_update = vmx_hwapic_irr_update,
8622 .hwapic_isr_update = vmx_hwapic_isr_update,
8623 .sync_pir_to_irr = vmx_sync_pir_to_irr,
8624 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
8625
8626 .set_tss_addr = vmx_set_tss_addr,
8627 .get_tdp_level = get_ept_level,
8628 .get_mt_mask = vmx_get_mt_mask,
8629
8630 .get_exit_info = vmx_get_exit_info,
8631
8632 .get_lpage_level = vmx_get_lpage_level,
8633
8634 .cpuid_update = vmx_cpuid_update,
8635
8636 .rdtscp_supported = vmx_rdtscp_supported,
8637 .invpcid_supported = vmx_invpcid_supported,
8638
8639 .set_supported_cpuid = vmx_set_supported_cpuid,
8640
8641 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8642
8643 .set_tsc_khz = vmx_set_tsc_khz,
8644 .read_tsc_offset = vmx_read_tsc_offset,
8645 .write_tsc_offset = vmx_write_tsc_offset,
8646 .adjust_tsc_offset = vmx_adjust_tsc_offset,
8647 .compute_tsc_offset = vmx_compute_tsc_offset,
8648 .read_l1_tsc = vmx_read_l1_tsc,
8649
8650 .set_tdp_cr3 = vmx_set_cr3,
8651
8652 .check_intercept = vmx_check_intercept,
8653 .handle_external_intr = vmx_handle_external_intr,
8654 .mpx_supported = vmx_mpx_supported,
8655 };
8656
8657 static int __init vmx_init(void)
8658 {
8659 int r, i, msr;
8660
8661 rdmsrl_safe(MSR_EFER, &host_efer);
8662
8663 for (i = 0; i < NR_VMX_MSR; ++i)
8664 kvm_define_shared_msr(i, vmx_msr_index[i]);
8665
8666 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
8667 if (!vmx_io_bitmap_a)
8668 return -ENOMEM;
8669
8670 r = -ENOMEM;
8671
8672 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
8673 if (!vmx_io_bitmap_b)
8674 goto out;
8675
8676 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
8677 if (!vmx_msr_bitmap_legacy)
8678 goto out1;
8679
8680 vmx_msr_bitmap_legacy_x2apic =
8681 (unsigned long *)__get_free_page(GFP_KERNEL);
8682 if (!vmx_msr_bitmap_legacy_x2apic)
8683 goto out2;
8684
8685 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
8686 if (!vmx_msr_bitmap_longmode)
8687 goto out3;
8688
8689 vmx_msr_bitmap_longmode_x2apic =
8690 (unsigned long *)__get_free_page(GFP_KERNEL);
8691 if (!vmx_msr_bitmap_longmode_x2apic)
8692 goto out4;
8693 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8694 if (!vmx_vmread_bitmap)
8695 goto out5;
8696
8697 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8698 if (!vmx_vmwrite_bitmap)
8699 goto out6;
8700
8701 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8702 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8703 /* shadowed read/write fields */
8704 for (i = 0; i < max_shadow_read_write_fields; i++) {
8705 clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8706 clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8707 }
8708 /* shadowed read only fields */
8709 for (i = 0; i < max_shadow_read_only_fields; i++)
8710 clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
8711
8712 /*
8713 * Allow direct access to the PC debug port (it is often used for I/O
8714 * delays, but the vmexits simply slow things down).
8715 */
8716 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8717 clear_bit(0x80, vmx_io_bitmap_a);
8718
8719 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
8720
8721 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8722 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
8723
8724 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8725
8726 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8727 __alignof__(struct vcpu_vmx), THIS_MODULE);
8728 if (r)
8729 goto out7;
8730
8731 #ifdef CONFIG_KEXEC
8732 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8733 crash_vmclear_local_loaded_vmcss);
8734 #endif
8735
8736 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8737 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8738 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8739 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8740 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8741 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8742 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
8743
8744 memcpy(vmx_msr_bitmap_legacy_x2apic,
8745 vmx_msr_bitmap_legacy, PAGE_SIZE);
8746 memcpy(vmx_msr_bitmap_longmode_x2apic,
8747 vmx_msr_bitmap_longmode, PAGE_SIZE);
8748
8749 if (enable_apicv) {
8750 for (msr = 0x800; msr <= 0x8ff; msr++)
8751 vmx_disable_intercept_msr_read_x2apic(msr);
8752
8753 /* According SDM, in x2apic mode, the whole id reg is used.
8754 * But in KVM, it only use the highest eight bits. Need to
8755 * intercept it */
8756 vmx_enable_intercept_msr_read_x2apic(0x802);
8757 /* TMCCT */
8758 vmx_enable_intercept_msr_read_x2apic(0x839);
8759 /* TPR */
8760 vmx_disable_intercept_msr_write_x2apic(0x808);
8761 /* EOI */
8762 vmx_disable_intercept_msr_write_x2apic(0x80b);
8763 /* SELF-IPI */
8764 vmx_disable_intercept_msr_write_x2apic(0x83f);
8765 }
8766
8767 if (enable_ept) {
8768 kvm_mmu_set_mask_ptes(0ull,
8769 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8770 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8771 0ull, VMX_EPT_EXECUTABLE_MASK);
8772 ept_set_mmio_spte_mask();
8773 kvm_enable_tdp();
8774 } else
8775 kvm_disable_tdp();
8776
8777 return 0;
8778
8779 out7:
8780 free_page((unsigned long)vmx_vmwrite_bitmap);
8781 out6:
8782 free_page((unsigned long)vmx_vmread_bitmap);
8783 out5:
8784 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8785 out4:
8786 free_page((unsigned long)vmx_msr_bitmap_longmode);
8787 out3:
8788 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8789 out2:
8790 free_page((unsigned long)vmx_msr_bitmap_legacy);
8791 out1:
8792 free_page((unsigned long)vmx_io_bitmap_b);
8793 out:
8794 free_page((unsigned long)vmx_io_bitmap_a);
8795 return r;
8796 }
8797
8798 static void __exit vmx_exit(void)
8799 {
8800 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8801 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8802 free_page((unsigned long)vmx_msr_bitmap_legacy);
8803 free_page((unsigned long)vmx_msr_bitmap_longmode);
8804 free_page((unsigned long)vmx_io_bitmap_b);
8805 free_page((unsigned long)vmx_io_bitmap_a);
8806 free_page((unsigned long)vmx_vmwrite_bitmap);
8807 free_page((unsigned long)vmx_vmread_bitmap);
8808
8809 #ifdef CONFIG_KEXEC
8810 rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8811 synchronize_rcu();
8812 #endif
8813
8814 kvm_exit();
8815 }
8816
8817 module_init(vmx_init)
8818 module_exit(vmx_exit)