]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
KVM: Disable CR8 intercept if tpr patching is active
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include "kvm_cache_regs.h"
29 #include "x86.h"
30
31 #include <asm/io.h>
32 #include <asm/desc.h>
33 #include <asm/vmx.h>
34 #include <asm/virtext.h>
35
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
40
41 static int __read_mostly bypass_guest_pf = 1;
42 module_param(bypass_guest_pf, bool, S_IRUGO);
43
44 static int __read_mostly enable_vpid = 1;
45 module_param_named(vpid, enable_vpid, bool, 0444);
46
47 static int __read_mostly flexpriority_enabled = 1;
48 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
49
50 static int __read_mostly enable_ept = 1;
51 module_param_named(ept, enable_ept, bool, S_IRUGO);
52
53 static int __read_mostly emulate_invalid_guest_state = 0;
54 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
55
56 struct vmcs {
57 u32 revision_id;
58 u32 abort;
59 char data[0];
60 };
61
62 struct vcpu_vmx {
63 struct kvm_vcpu vcpu;
64 struct list_head local_vcpus_link;
65 unsigned long host_rsp;
66 int launched;
67 u8 fail;
68 u32 idt_vectoring_info;
69 struct kvm_msr_entry *guest_msrs;
70 struct kvm_msr_entry *host_msrs;
71 int nmsrs;
72 int save_nmsrs;
73 int msr_offset_efer;
74 #ifdef CONFIG_X86_64
75 int msr_offset_kernel_gs_base;
76 #endif
77 struct vmcs *vmcs;
78 struct {
79 int loaded;
80 u16 fs_sel, gs_sel, ldt_sel;
81 int gs_ldt_reload_needed;
82 int fs_reload_needed;
83 int guest_efer_loaded;
84 } host_state;
85 struct {
86 struct {
87 bool pending;
88 u8 vector;
89 unsigned rip;
90 } irq;
91 } rmode;
92 int vpid;
93 bool emulation_required;
94 enum emulation_result invalid_state_emulation_result;
95
96 /* Support for vnmi-less CPUs */
97 int soft_vnmi_blocked;
98 ktime_t entry_time;
99 s64 vnmi_blocked_time;
100 };
101
102 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
103 {
104 return container_of(vcpu, struct vcpu_vmx, vcpu);
105 }
106
107 static int init_rmode(struct kvm *kvm);
108 static u64 construct_eptp(unsigned long root_hpa);
109
110 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
111 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
112 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
113
114 static unsigned long *vmx_io_bitmap_a;
115 static unsigned long *vmx_io_bitmap_b;
116 static unsigned long *vmx_msr_bitmap_legacy;
117 static unsigned long *vmx_msr_bitmap_longmode;
118
119 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
120 static DEFINE_SPINLOCK(vmx_vpid_lock);
121
122 static struct vmcs_config {
123 int size;
124 int order;
125 u32 revision_id;
126 u32 pin_based_exec_ctrl;
127 u32 cpu_based_exec_ctrl;
128 u32 cpu_based_2nd_exec_ctrl;
129 u32 vmexit_ctrl;
130 u32 vmentry_ctrl;
131 } vmcs_config;
132
133 static struct vmx_capability {
134 u32 ept;
135 u32 vpid;
136 } vmx_capability;
137
138 #define VMX_SEGMENT_FIELD(seg) \
139 [VCPU_SREG_##seg] = { \
140 .selector = GUEST_##seg##_SELECTOR, \
141 .base = GUEST_##seg##_BASE, \
142 .limit = GUEST_##seg##_LIMIT, \
143 .ar_bytes = GUEST_##seg##_AR_BYTES, \
144 }
145
146 static struct kvm_vmx_segment_field {
147 unsigned selector;
148 unsigned base;
149 unsigned limit;
150 unsigned ar_bytes;
151 } kvm_vmx_segment_fields[] = {
152 VMX_SEGMENT_FIELD(CS),
153 VMX_SEGMENT_FIELD(DS),
154 VMX_SEGMENT_FIELD(ES),
155 VMX_SEGMENT_FIELD(FS),
156 VMX_SEGMENT_FIELD(GS),
157 VMX_SEGMENT_FIELD(SS),
158 VMX_SEGMENT_FIELD(TR),
159 VMX_SEGMENT_FIELD(LDTR),
160 };
161
162 /*
163 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
164 * away by decrementing the array size.
165 */
166 static const u32 vmx_msr_index[] = {
167 #ifdef CONFIG_X86_64
168 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
169 #endif
170 MSR_EFER, MSR_K6_STAR,
171 };
172 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
173
174 static void load_msrs(struct kvm_msr_entry *e, int n)
175 {
176 int i;
177
178 for (i = 0; i < n; ++i)
179 wrmsrl(e[i].index, e[i].data);
180 }
181
182 static void save_msrs(struct kvm_msr_entry *e, int n)
183 {
184 int i;
185
186 for (i = 0; i < n; ++i)
187 rdmsrl(e[i].index, e[i].data);
188 }
189
190 static inline int is_page_fault(u32 intr_info)
191 {
192 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
193 INTR_INFO_VALID_MASK)) ==
194 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
195 }
196
197 static inline int is_no_device(u32 intr_info)
198 {
199 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
200 INTR_INFO_VALID_MASK)) ==
201 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
202 }
203
204 static inline int is_invalid_opcode(u32 intr_info)
205 {
206 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
207 INTR_INFO_VALID_MASK)) ==
208 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
209 }
210
211 static inline int is_external_interrupt(u32 intr_info)
212 {
213 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
214 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
215 }
216
217 static inline int cpu_has_vmx_msr_bitmap(void)
218 {
219 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
220 }
221
222 static inline int cpu_has_vmx_tpr_shadow(void)
223 {
224 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
225 }
226
227 static inline int vm_need_tpr_shadow(struct kvm *kvm)
228 {
229 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
230 }
231
232 static inline int cpu_has_secondary_exec_ctrls(void)
233 {
234 return vmcs_config.cpu_based_exec_ctrl &
235 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
236 }
237
238 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
239 {
240 return vmcs_config.cpu_based_2nd_exec_ctrl &
241 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
242 }
243
244 static inline bool cpu_has_vmx_flexpriority(void)
245 {
246 return cpu_has_vmx_tpr_shadow() &&
247 cpu_has_vmx_virtualize_apic_accesses();
248 }
249
250 static inline int cpu_has_vmx_invept_individual_addr(void)
251 {
252 return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
253 }
254
255 static inline int cpu_has_vmx_invept_context(void)
256 {
257 return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
258 }
259
260 static inline int cpu_has_vmx_invept_global(void)
261 {
262 return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
263 }
264
265 static inline int cpu_has_vmx_ept(void)
266 {
267 return vmcs_config.cpu_based_2nd_exec_ctrl &
268 SECONDARY_EXEC_ENABLE_EPT;
269 }
270
271 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
272 {
273 return flexpriority_enabled &&
274 (cpu_has_vmx_virtualize_apic_accesses()) &&
275 (irqchip_in_kernel(kvm));
276 }
277
278 static inline int cpu_has_vmx_vpid(void)
279 {
280 return vmcs_config.cpu_based_2nd_exec_ctrl &
281 SECONDARY_EXEC_ENABLE_VPID;
282 }
283
284 static inline int cpu_has_virtual_nmis(void)
285 {
286 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
287 }
288
289 static inline bool report_flexpriority(void)
290 {
291 return flexpriority_enabled;
292 }
293
294 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
295 {
296 int i;
297
298 for (i = 0; i < vmx->nmsrs; ++i)
299 if (vmx->guest_msrs[i].index == msr)
300 return i;
301 return -1;
302 }
303
304 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
305 {
306 struct {
307 u64 vpid : 16;
308 u64 rsvd : 48;
309 u64 gva;
310 } operand = { vpid, 0, gva };
311
312 asm volatile (__ex(ASM_VMX_INVVPID)
313 /* CF==1 or ZF==1 --> rc = -1 */
314 "; ja 1f ; ud2 ; 1:"
315 : : "a"(&operand), "c"(ext) : "cc", "memory");
316 }
317
318 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
319 {
320 struct {
321 u64 eptp, gpa;
322 } operand = {eptp, gpa};
323
324 asm volatile (__ex(ASM_VMX_INVEPT)
325 /* CF==1 or ZF==1 --> rc = -1 */
326 "; ja 1f ; ud2 ; 1:\n"
327 : : "a" (&operand), "c" (ext) : "cc", "memory");
328 }
329
330 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
331 {
332 int i;
333
334 i = __find_msr_index(vmx, msr);
335 if (i >= 0)
336 return &vmx->guest_msrs[i];
337 return NULL;
338 }
339
340 static void vmcs_clear(struct vmcs *vmcs)
341 {
342 u64 phys_addr = __pa(vmcs);
343 u8 error;
344
345 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
346 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
347 : "cc", "memory");
348 if (error)
349 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
350 vmcs, phys_addr);
351 }
352
353 static void __vcpu_clear(void *arg)
354 {
355 struct vcpu_vmx *vmx = arg;
356 int cpu = raw_smp_processor_id();
357
358 if (vmx->vcpu.cpu == cpu)
359 vmcs_clear(vmx->vmcs);
360 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
361 per_cpu(current_vmcs, cpu) = NULL;
362 rdtscll(vmx->vcpu.arch.host_tsc);
363 list_del(&vmx->local_vcpus_link);
364 vmx->vcpu.cpu = -1;
365 vmx->launched = 0;
366 }
367
368 static void vcpu_clear(struct vcpu_vmx *vmx)
369 {
370 if (vmx->vcpu.cpu == -1)
371 return;
372 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
373 }
374
375 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
376 {
377 if (vmx->vpid == 0)
378 return;
379
380 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
381 }
382
383 static inline void ept_sync_global(void)
384 {
385 if (cpu_has_vmx_invept_global())
386 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
387 }
388
389 static inline void ept_sync_context(u64 eptp)
390 {
391 if (enable_ept) {
392 if (cpu_has_vmx_invept_context())
393 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
394 else
395 ept_sync_global();
396 }
397 }
398
399 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
400 {
401 if (enable_ept) {
402 if (cpu_has_vmx_invept_individual_addr())
403 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
404 eptp, gpa);
405 else
406 ept_sync_context(eptp);
407 }
408 }
409
410 static unsigned long vmcs_readl(unsigned long field)
411 {
412 unsigned long value;
413
414 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
415 : "=a"(value) : "d"(field) : "cc");
416 return value;
417 }
418
419 static u16 vmcs_read16(unsigned long field)
420 {
421 return vmcs_readl(field);
422 }
423
424 static u32 vmcs_read32(unsigned long field)
425 {
426 return vmcs_readl(field);
427 }
428
429 static u64 vmcs_read64(unsigned long field)
430 {
431 #ifdef CONFIG_X86_64
432 return vmcs_readl(field);
433 #else
434 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
435 #endif
436 }
437
438 static noinline void vmwrite_error(unsigned long field, unsigned long value)
439 {
440 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
441 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
442 dump_stack();
443 }
444
445 static void vmcs_writel(unsigned long field, unsigned long value)
446 {
447 u8 error;
448
449 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
450 : "=q"(error) : "a"(value), "d"(field) : "cc");
451 if (unlikely(error))
452 vmwrite_error(field, value);
453 }
454
455 static void vmcs_write16(unsigned long field, u16 value)
456 {
457 vmcs_writel(field, value);
458 }
459
460 static void vmcs_write32(unsigned long field, u32 value)
461 {
462 vmcs_writel(field, value);
463 }
464
465 static void vmcs_write64(unsigned long field, u64 value)
466 {
467 vmcs_writel(field, value);
468 #ifndef CONFIG_X86_64
469 asm volatile ("");
470 vmcs_writel(field+1, value >> 32);
471 #endif
472 }
473
474 static void vmcs_clear_bits(unsigned long field, u32 mask)
475 {
476 vmcs_writel(field, vmcs_readl(field) & ~mask);
477 }
478
479 static void vmcs_set_bits(unsigned long field, u32 mask)
480 {
481 vmcs_writel(field, vmcs_readl(field) | mask);
482 }
483
484 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
485 {
486 u32 eb;
487
488 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
489 if (!vcpu->fpu_active)
490 eb |= 1u << NM_VECTOR;
491 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
492 if (vcpu->guest_debug &
493 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
494 eb |= 1u << DB_VECTOR;
495 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
496 eb |= 1u << BP_VECTOR;
497 }
498 if (vcpu->arch.rmode.active)
499 eb = ~0;
500 if (enable_ept)
501 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
502 vmcs_write32(EXCEPTION_BITMAP, eb);
503 }
504
505 static void reload_tss(void)
506 {
507 /*
508 * VT restores TR but not its size. Useless.
509 */
510 struct descriptor_table gdt;
511 struct desc_struct *descs;
512
513 kvm_get_gdt(&gdt);
514 descs = (void *)gdt.base;
515 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
516 load_TR_desc();
517 }
518
519 static void load_transition_efer(struct vcpu_vmx *vmx)
520 {
521 int efer_offset = vmx->msr_offset_efer;
522 u64 host_efer = vmx->host_msrs[efer_offset].data;
523 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
524 u64 ignore_bits;
525
526 if (efer_offset < 0)
527 return;
528 /*
529 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
530 * outside long mode
531 */
532 ignore_bits = EFER_NX | EFER_SCE;
533 #ifdef CONFIG_X86_64
534 ignore_bits |= EFER_LMA | EFER_LME;
535 /* SCE is meaningful only in long mode on Intel */
536 if (guest_efer & EFER_LMA)
537 ignore_bits &= ~(u64)EFER_SCE;
538 #endif
539 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
540 return;
541
542 vmx->host_state.guest_efer_loaded = 1;
543 guest_efer &= ~ignore_bits;
544 guest_efer |= host_efer & ignore_bits;
545 wrmsrl(MSR_EFER, guest_efer);
546 vmx->vcpu.stat.efer_reload++;
547 }
548
549 static void reload_host_efer(struct vcpu_vmx *vmx)
550 {
551 if (vmx->host_state.guest_efer_loaded) {
552 vmx->host_state.guest_efer_loaded = 0;
553 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
554 }
555 }
556
557 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
558 {
559 struct vcpu_vmx *vmx = to_vmx(vcpu);
560
561 if (vmx->host_state.loaded)
562 return;
563
564 vmx->host_state.loaded = 1;
565 /*
566 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
567 * allow segment selectors with cpl > 0 or ti == 1.
568 */
569 vmx->host_state.ldt_sel = kvm_read_ldt();
570 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
571 vmx->host_state.fs_sel = kvm_read_fs();
572 if (!(vmx->host_state.fs_sel & 7)) {
573 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
574 vmx->host_state.fs_reload_needed = 0;
575 } else {
576 vmcs_write16(HOST_FS_SELECTOR, 0);
577 vmx->host_state.fs_reload_needed = 1;
578 }
579 vmx->host_state.gs_sel = kvm_read_gs();
580 if (!(vmx->host_state.gs_sel & 7))
581 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
582 else {
583 vmcs_write16(HOST_GS_SELECTOR, 0);
584 vmx->host_state.gs_ldt_reload_needed = 1;
585 }
586
587 #ifdef CONFIG_X86_64
588 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
589 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
590 #else
591 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
592 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
593 #endif
594
595 #ifdef CONFIG_X86_64
596 if (is_long_mode(&vmx->vcpu))
597 save_msrs(vmx->host_msrs +
598 vmx->msr_offset_kernel_gs_base, 1);
599
600 #endif
601 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
602 load_transition_efer(vmx);
603 }
604
605 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
606 {
607 unsigned long flags;
608
609 if (!vmx->host_state.loaded)
610 return;
611
612 ++vmx->vcpu.stat.host_state_reload;
613 vmx->host_state.loaded = 0;
614 if (vmx->host_state.fs_reload_needed)
615 kvm_load_fs(vmx->host_state.fs_sel);
616 if (vmx->host_state.gs_ldt_reload_needed) {
617 kvm_load_ldt(vmx->host_state.ldt_sel);
618 /*
619 * If we have to reload gs, we must take care to
620 * preserve our gs base.
621 */
622 local_irq_save(flags);
623 kvm_load_gs(vmx->host_state.gs_sel);
624 #ifdef CONFIG_X86_64
625 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
626 #endif
627 local_irq_restore(flags);
628 }
629 reload_tss();
630 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
631 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
632 reload_host_efer(vmx);
633 }
634
635 static void vmx_load_host_state(struct vcpu_vmx *vmx)
636 {
637 preempt_disable();
638 __vmx_load_host_state(vmx);
639 preempt_enable();
640 }
641
642 /*
643 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
644 * vcpu mutex is already taken.
645 */
646 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
647 {
648 struct vcpu_vmx *vmx = to_vmx(vcpu);
649 u64 phys_addr = __pa(vmx->vmcs);
650 u64 tsc_this, delta, new_offset;
651
652 if (vcpu->cpu != cpu) {
653 vcpu_clear(vmx);
654 kvm_migrate_timers(vcpu);
655 vpid_sync_vcpu_all(vmx);
656 local_irq_disable();
657 list_add(&vmx->local_vcpus_link,
658 &per_cpu(vcpus_on_cpu, cpu));
659 local_irq_enable();
660 }
661
662 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
663 u8 error;
664
665 per_cpu(current_vmcs, cpu) = vmx->vmcs;
666 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
667 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
668 : "cc");
669 if (error)
670 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
671 vmx->vmcs, phys_addr);
672 }
673
674 if (vcpu->cpu != cpu) {
675 struct descriptor_table dt;
676 unsigned long sysenter_esp;
677
678 vcpu->cpu = cpu;
679 /*
680 * Linux uses per-cpu TSS and GDT, so set these when switching
681 * processors.
682 */
683 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
684 kvm_get_gdt(&dt);
685 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
686
687 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
688 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
689
690 /*
691 * Make sure the time stamp counter is monotonous.
692 */
693 rdtscll(tsc_this);
694 if (tsc_this < vcpu->arch.host_tsc) {
695 delta = vcpu->arch.host_tsc - tsc_this;
696 new_offset = vmcs_read64(TSC_OFFSET) + delta;
697 vmcs_write64(TSC_OFFSET, new_offset);
698 }
699 }
700 }
701
702 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
703 {
704 __vmx_load_host_state(to_vmx(vcpu));
705 }
706
707 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
708 {
709 if (vcpu->fpu_active)
710 return;
711 vcpu->fpu_active = 1;
712 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
713 if (vcpu->arch.cr0 & X86_CR0_TS)
714 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
715 update_exception_bitmap(vcpu);
716 }
717
718 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
719 {
720 if (!vcpu->fpu_active)
721 return;
722 vcpu->fpu_active = 0;
723 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
724 update_exception_bitmap(vcpu);
725 }
726
727 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
728 {
729 return vmcs_readl(GUEST_RFLAGS);
730 }
731
732 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
733 {
734 if (vcpu->arch.rmode.active)
735 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
736 vmcs_writel(GUEST_RFLAGS, rflags);
737 }
738
739 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
740 {
741 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
742 int ret = 0;
743
744 if (interruptibility & GUEST_INTR_STATE_STI)
745 ret |= X86_SHADOW_INT_STI;
746 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
747 ret |= X86_SHADOW_INT_MOV_SS;
748
749 return ret & mask;
750 }
751
752 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
753 {
754 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
755 u32 interruptibility = interruptibility_old;
756
757 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
758
759 if (mask & X86_SHADOW_INT_MOV_SS)
760 interruptibility |= GUEST_INTR_STATE_MOV_SS;
761 if (mask & X86_SHADOW_INT_STI)
762 interruptibility |= GUEST_INTR_STATE_STI;
763
764 if ((interruptibility != interruptibility_old))
765 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
766 }
767
768 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
769 {
770 unsigned long rip;
771
772 rip = kvm_rip_read(vcpu);
773 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
774 kvm_rip_write(vcpu, rip);
775
776 /* skipping an emulated instruction also counts */
777 vmx_set_interrupt_shadow(vcpu, 0);
778 }
779
780 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
781 bool has_error_code, u32 error_code)
782 {
783 struct vcpu_vmx *vmx = to_vmx(vcpu);
784 u32 intr_info = nr | INTR_INFO_VALID_MASK;
785
786 if (has_error_code) {
787 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
788 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
789 }
790
791 if (vcpu->arch.rmode.active) {
792 vmx->rmode.irq.pending = true;
793 vmx->rmode.irq.vector = nr;
794 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
795 if (nr == BP_VECTOR || nr == OF_VECTOR)
796 vmx->rmode.irq.rip++;
797 intr_info |= INTR_TYPE_SOFT_INTR;
798 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
799 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
800 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
801 return;
802 }
803
804 if (kvm_exception_is_soft(nr)) {
805 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
806 vmx->vcpu.arch.event_exit_inst_len);
807 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
808 } else
809 intr_info |= INTR_TYPE_HARD_EXCEPTION;
810
811 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
812 }
813
814 /*
815 * Swap MSR entry in host/guest MSR entry array.
816 */
817 #ifdef CONFIG_X86_64
818 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
819 {
820 struct kvm_msr_entry tmp;
821
822 tmp = vmx->guest_msrs[to];
823 vmx->guest_msrs[to] = vmx->guest_msrs[from];
824 vmx->guest_msrs[from] = tmp;
825 tmp = vmx->host_msrs[to];
826 vmx->host_msrs[to] = vmx->host_msrs[from];
827 vmx->host_msrs[from] = tmp;
828 }
829 #endif
830
831 /*
832 * Set up the vmcs to automatically save and restore system
833 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
834 * mode, as fiddling with msrs is very expensive.
835 */
836 static void setup_msrs(struct vcpu_vmx *vmx)
837 {
838 int save_nmsrs;
839 unsigned long *msr_bitmap;
840
841 vmx_load_host_state(vmx);
842 save_nmsrs = 0;
843 #ifdef CONFIG_X86_64
844 if (is_long_mode(&vmx->vcpu)) {
845 int index;
846
847 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
848 if (index >= 0)
849 move_msr_up(vmx, index, save_nmsrs++);
850 index = __find_msr_index(vmx, MSR_LSTAR);
851 if (index >= 0)
852 move_msr_up(vmx, index, save_nmsrs++);
853 index = __find_msr_index(vmx, MSR_CSTAR);
854 if (index >= 0)
855 move_msr_up(vmx, index, save_nmsrs++);
856 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
857 if (index >= 0)
858 move_msr_up(vmx, index, save_nmsrs++);
859 /*
860 * MSR_K6_STAR is only needed on long mode guests, and only
861 * if efer.sce is enabled.
862 */
863 index = __find_msr_index(vmx, MSR_K6_STAR);
864 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
865 move_msr_up(vmx, index, save_nmsrs++);
866 }
867 #endif
868 vmx->save_nmsrs = save_nmsrs;
869
870 #ifdef CONFIG_X86_64
871 vmx->msr_offset_kernel_gs_base =
872 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
873 #endif
874 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
875
876 if (cpu_has_vmx_msr_bitmap()) {
877 if (is_long_mode(&vmx->vcpu))
878 msr_bitmap = vmx_msr_bitmap_longmode;
879 else
880 msr_bitmap = vmx_msr_bitmap_legacy;
881
882 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
883 }
884 }
885
886 /*
887 * reads and returns guest's timestamp counter "register"
888 * guest_tsc = host_tsc + tsc_offset -- 21.3
889 */
890 static u64 guest_read_tsc(void)
891 {
892 u64 host_tsc, tsc_offset;
893
894 rdtscll(host_tsc);
895 tsc_offset = vmcs_read64(TSC_OFFSET);
896 return host_tsc + tsc_offset;
897 }
898
899 /*
900 * writes 'guest_tsc' into guest's timestamp counter "register"
901 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
902 */
903 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
904 {
905 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
906 }
907
908 /*
909 * Reads an msr value (of 'msr_index') into 'pdata'.
910 * Returns 0 on success, non-0 otherwise.
911 * Assumes vcpu_load() was already called.
912 */
913 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
914 {
915 u64 data;
916 struct kvm_msr_entry *msr;
917
918 if (!pdata) {
919 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
920 return -EINVAL;
921 }
922
923 switch (msr_index) {
924 #ifdef CONFIG_X86_64
925 case MSR_FS_BASE:
926 data = vmcs_readl(GUEST_FS_BASE);
927 break;
928 case MSR_GS_BASE:
929 data = vmcs_readl(GUEST_GS_BASE);
930 break;
931 case MSR_EFER:
932 return kvm_get_msr_common(vcpu, msr_index, pdata);
933 #endif
934 case MSR_IA32_TIME_STAMP_COUNTER:
935 data = guest_read_tsc();
936 break;
937 case MSR_IA32_SYSENTER_CS:
938 data = vmcs_read32(GUEST_SYSENTER_CS);
939 break;
940 case MSR_IA32_SYSENTER_EIP:
941 data = vmcs_readl(GUEST_SYSENTER_EIP);
942 break;
943 case MSR_IA32_SYSENTER_ESP:
944 data = vmcs_readl(GUEST_SYSENTER_ESP);
945 break;
946 default:
947 vmx_load_host_state(to_vmx(vcpu));
948 msr = find_msr_entry(to_vmx(vcpu), msr_index);
949 if (msr) {
950 data = msr->data;
951 break;
952 }
953 return kvm_get_msr_common(vcpu, msr_index, pdata);
954 }
955
956 *pdata = data;
957 return 0;
958 }
959
960 /*
961 * Writes msr value into into the appropriate "register".
962 * Returns 0 on success, non-0 otherwise.
963 * Assumes vcpu_load() was already called.
964 */
965 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
966 {
967 struct vcpu_vmx *vmx = to_vmx(vcpu);
968 struct kvm_msr_entry *msr;
969 u64 host_tsc;
970 int ret = 0;
971
972 switch (msr_index) {
973 case MSR_EFER:
974 vmx_load_host_state(vmx);
975 ret = kvm_set_msr_common(vcpu, msr_index, data);
976 break;
977 #ifdef CONFIG_X86_64
978 case MSR_FS_BASE:
979 vmcs_writel(GUEST_FS_BASE, data);
980 break;
981 case MSR_GS_BASE:
982 vmcs_writel(GUEST_GS_BASE, data);
983 break;
984 #endif
985 case MSR_IA32_SYSENTER_CS:
986 vmcs_write32(GUEST_SYSENTER_CS, data);
987 break;
988 case MSR_IA32_SYSENTER_EIP:
989 vmcs_writel(GUEST_SYSENTER_EIP, data);
990 break;
991 case MSR_IA32_SYSENTER_ESP:
992 vmcs_writel(GUEST_SYSENTER_ESP, data);
993 break;
994 case MSR_IA32_TIME_STAMP_COUNTER:
995 rdtscll(host_tsc);
996 guest_write_tsc(data, host_tsc);
997 break;
998 case MSR_P6_PERFCTR0:
999 case MSR_P6_PERFCTR1:
1000 case MSR_P6_EVNTSEL0:
1001 case MSR_P6_EVNTSEL1:
1002 /*
1003 * Just discard all writes to the performance counters; this
1004 * should keep both older linux and windows 64-bit guests
1005 * happy
1006 */
1007 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
1008
1009 break;
1010 case MSR_IA32_CR_PAT:
1011 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1012 vmcs_write64(GUEST_IA32_PAT, data);
1013 vcpu->arch.pat = data;
1014 break;
1015 }
1016 /* Otherwise falls through to kvm_set_msr_common */
1017 default:
1018 vmx_load_host_state(vmx);
1019 msr = find_msr_entry(vmx, msr_index);
1020 if (msr) {
1021 msr->data = data;
1022 break;
1023 }
1024 ret = kvm_set_msr_common(vcpu, msr_index, data);
1025 }
1026
1027 return ret;
1028 }
1029
1030 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1031 {
1032 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1033 switch (reg) {
1034 case VCPU_REGS_RSP:
1035 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1036 break;
1037 case VCPU_REGS_RIP:
1038 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1039 break;
1040 default:
1041 break;
1042 }
1043 }
1044
1045 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1046 {
1047 int old_debug = vcpu->guest_debug;
1048 unsigned long flags;
1049
1050 vcpu->guest_debug = dbg->control;
1051 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
1052 vcpu->guest_debug = 0;
1053
1054 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1055 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1056 else
1057 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1058
1059 flags = vmcs_readl(GUEST_RFLAGS);
1060 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1061 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1062 else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1063 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1064 vmcs_writel(GUEST_RFLAGS, flags);
1065
1066 update_exception_bitmap(vcpu);
1067
1068 return 0;
1069 }
1070
1071 static __init int cpu_has_kvm_support(void)
1072 {
1073 return cpu_has_vmx();
1074 }
1075
1076 static __init int vmx_disabled_by_bios(void)
1077 {
1078 u64 msr;
1079
1080 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1081 return (msr & (FEATURE_CONTROL_LOCKED |
1082 FEATURE_CONTROL_VMXON_ENABLED))
1083 == FEATURE_CONTROL_LOCKED;
1084 /* locked but not enabled */
1085 }
1086
1087 static void hardware_enable(void *garbage)
1088 {
1089 int cpu = raw_smp_processor_id();
1090 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1091 u64 old;
1092
1093 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1094 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1095 if ((old & (FEATURE_CONTROL_LOCKED |
1096 FEATURE_CONTROL_VMXON_ENABLED))
1097 != (FEATURE_CONTROL_LOCKED |
1098 FEATURE_CONTROL_VMXON_ENABLED))
1099 /* enable and lock */
1100 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1101 FEATURE_CONTROL_LOCKED |
1102 FEATURE_CONTROL_VMXON_ENABLED);
1103 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1104 asm volatile (ASM_VMX_VMXON_RAX
1105 : : "a"(&phys_addr), "m"(phys_addr)
1106 : "memory", "cc");
1107 }
1108
1109 static void vmclear_local_vcpus(void)
1110 {
1111 int cpu = raw_smp_processor_id();
1112 struct vcpu_vmx *vmx, *n;
1113
1114 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1115 local_vcpus_link)
1116 __vcpu_clear(vmx);
1117 }
1118
1119
1120 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1121 * tricks.
1122 */
1123 static void kvm_cpu_vmxoff(void)
1124 {
1125 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1126 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1127 }
1128
1129 static void hardware_disable(void *garbage)
1130 {
1131 vmclear_local_vcpus();
1132 kvm_cpu_vmxoff();
1133 }
1134
1135 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1136 u32 msr, u32 *result)
1137 {
1138 u32 vmx_msr_low, vmx_msr_high;
1139 u32 ctl = ctl_min | ctl_opt;
1140
1141 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1142
1143 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1144 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1145
1146 /* Ensure minimum (required) set of control bits are supported. */
1147 if (ctl_min & ~ctl)
1148 return -EIO;
1149
1150 *result = ctl;
1151 return 0;
1152 }
1153
1154 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1155 {
1156 u32 vmx_msr_low, vmx_msr_high;
1157 u32 min, opt, min2, opt2;
1158 u32 _pin_based_exec_control = 0;
1159 u32 _cpu_based_exec_control = 0;
1160 u32 _cpu_based_2nd_exec_control = 0;
1161 u32 _vmexit_control = 0;
1162 u32 _vmentry_control = 0;
1163
1164 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1165 opt = PIN_BASED_VIRTUAL_NMIS;
1166 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1167 &_pin_based_exec_control) < 0)
1168 return -EIO;
1169
1170 min = CPU_BASED_HLT_EXITING |
1171 #ifdef CONFIG_X86_64
1172 CPU_BASED_CR8_LOAD_EXITING |
1173 CPU_BASED_CR8_STORE_EXITING |
1174 #endif
1175 CPU_BASED_CR3_LOAD_EXITING |
1176 CPU_BASED_CR3_STORE_EXITING |
1177 CPU_BASED_USE_IO_BITMAPS |
1178 CPU_BASED_MOV_DR_EXITING |
1179 CPU_BASED_USE_TSC_OFFSETING |
1180 CPU_BASED_INVLPG_EXITING;
1181 opt = CPU_BASED_TPR_SHADOW |
1182 CPU_BASED_USE_MSR_BITMAPS |
1183 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1184 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1185 &_cpu_based_exec_control) < 0)
1186 return -EIO;
1187 #ifdef CONFIG_X86_64
1188 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1189 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1190 ~CPU_BASED_CR8_STORE_EXITING;
1191 #endif
1192 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1193 min2 = 0;
1194 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1195 SECONDARY_EXEC_WBINVD_EXITING |
1196 SECONDARY_EXEC_ENABLE_VPID |
1197 SECONDARY_EXEC_ENABLE_EPT;
1198 if (adjust_vmx_controls(min2, opt2,
1199 MSR_IA32_VMX_PROCBASED_CTLS2,
1200 &_cpu_based_2nd_exec_control) < 0)
1201 return -EIO;
1202 }
1203 #ifndef CONFIG_X86_64
1204 if (!(_cpu_based_2nd_exec_control &
1205 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1206 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1207 #endif
1208 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1209 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1210 enabled */
1211 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1212 CPU_BASED_CR3_STORE_EXITING |
1213 CPU_BASED_INVLPG_EXITING);
1214 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1215 &_cpu_based_exec_control) < 0)
1216 return -EIO;
1217 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1218 vmx_capability.ept, vmx_capability.vpid);
1219 }
1220
1221 min = 0;
1222 #ifdef CONFIG_X86_64
1223 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1224 #endif
1225 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1226 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1227 &_vmexit_control) < 0)
1228 return -EIO;
1229
1230 min = 0;
1231 opt = VM_ENTRY_LOAD_IA32_PAT;
1232 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1233 &_vmentry_control) < 0)
1234 return -EIO;
1235
1236 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1237
1238 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1239 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1240 return -EIO;
1241
1242 #ifdef CONFIG_X86_64
1243 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1244 if (vmx_msr_high & (1u<<16))
1245 return -EIO;
1246 #endif
1247
1248 /* Require Write-Back (WB) memory type for VMCS accesses. */
1249 if (((vmx_msr_high >> 18) & 15) != 6)
1250 return -EIO;
1251
1252 vmcs_conf->size = vmx_msr_high & 0x1fff;
1253 vmcs_conf->order = get_order(vmcs_config.size);
1254 vmcs_conf->revision_id = vmx_msr_low;
1255
1256 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1257 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1258 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1259 vmcs_conf->vmexit_ctrl = _vmexit_control;
1260 vmcs_conf->vmentry_ctrl = _vmentry_control;
1261
1262 return 0;
1263 }
1264
1265 static struct vmcs *alloc_vmcs_cpu(int cpu)
1266 {
1267 int node = cpu_to_node(cpu);
1268 struct page *pages;
1269 struct vmcs *vmcs;
1270
1271 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1272 if (!pages)
1273 return NULL;
1274 vmcs = page_address(pages);
1275 memset(vmcs, 0, vmcs_config.size);
1276 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1277 return vmcs;
1278 }
1279
1280 static struct vmcs *alloc_vmcs(void)
1281 {
1282 return alloc_vmcs_cpu(raw_smp_processor_id());
1283 }
1284
1285 static void free_vmcs(struct vmcs *vmcs)
1286 {
1287 free_pages((unsigned long)vmcs, vmcs_config.order);
1288 }
1289
1290 static void free_kvm_area(void)
1291 {
1292 int cpu;
1293
1294 for_each_online_cpu(cpu)
1295 free_vmcs(per_cpu(vmxarea, cpu));
1296 }
1297
1298 static __init int alloc_kvm_area(void)
1299 {
1300 int cpu;
1301
1302 for_each_online_cpu(cpu) {
1303 struct vmcs *vmcs;
1304
1305 vmcs = alloc_vmcs_cpu(cpu);
1306 if (!vmcs) {
1307 free_kvm_area();
1308 return -ENOMEM;
1309 }
1310
1311 per_cpu(vmxarea, cpu) = vmcs;
1312 }
1313 return 0;
1314 }
1315
1316 static __init int hardware_setup(void)
1317 {
1318 if (setup_vmcs_config(&vmcs_config) < 0)
1319 return -EIO;
1320
1321 if (boot_cpu_has(X86_FEATURE_NX))
1322 kvm_enable_efer_bits(EFER_NX);
1323
1324 if (!cpu_has_vmx_vpid())
1325 enable_vpid = 0;
1326
1327 if (!cpu_has_vmx_ept())
1328 enable_ept = 0;
1329
1330 if (!cpu_has_vmx_flexpriority())
1331 flexpriority_enabled = 0;
1332
1333 if (!cpu_has_vmx_tpr_shadow())
1334 kvm_x86_ops->update_cr8_intercept = NULL;
1335
1336 return alloc_kvm_area();
1337 }
1338
1339 static __exit void hardware_unsetup(void)
1340 {
1341 free_kvm_area();
1342 }
1343
1344 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1345 {
1346 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1347
1348 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1349 vmcs_write16(sf->selector, save->selector);
1350 vmcs_writel(sf->base, save->base);
1351 vmcs_write32(sf->limit, save->limit);
1352 vmcs_write32(sf->ar_bytes, save->ar);
1353 } else {
1354 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1355 << AR_DPL_SHIFT;
1356 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1357 }
1358 }
1359
1360 static void enter_pmode(struct kvm_vcpu *vcpu)
1361 {
1362 unsigned long flags;
1363 struct vcpu_vmx *vmx = to_vmx(vcpu);
1364
1365 vmx->emulation_required = 1;
1366 vcpu->arch.rmode.active = 0;
1367
1368 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1369 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1370 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1371
1372 flags = vmcs_readl(GUEST_RFLAGS);
1373 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1374 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1375 vmcs_writel(GUEST_RFLAGS, flags);
1376
1377 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1378 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1379
1380 update_exception_bitmap(vcpu);
1381
1382 if (emulate_invalid_guest_state)
1383 return;
1384
1385 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1386 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1387 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1388 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1389
1390 vmcs_write16(GUEST_SS_SELECTOR, 0);
1391 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1392
1393 vmcs_write16(GUEST_CS_SELECTOR,
1394 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1395 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1396 }
1397
1398 static gva_t rmode_tss_base(struct kvm *kvm)
1399 {
1400 if (!kvm->arch.tss_addr) {
1401 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1402 kvm->memslots[0].npages - 3;
1403 return base_gfn << PAGE_SHIFT;
1404 }
1405 return kvm->arch.tss_addr;
1406 }
1407
1408 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1409 {
1410 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1411
1412 save->selector = vmcs_read16(sf->selector);
1413 save->base = vmcs_readl(sf->base);
1414 save->limit = vmcs_read32(sf->limit);
1415 save->ar = vmcs_read32(sf->ar_bytes);
1416 vmcs_write16(sf->selector, save->base >> 4);
1417 vmcs_write32(sf->base, save->base & 0xfffff);
1418 vmcs_write32(sf->limit, 0xffff);
1419 vmcs_write32(sf->ar_bytes, 0xf3);
1420 }
1421
1422 static void enter_rmode(struct kvm_vcpu *vcpu)
1423 {
1424 unsigned long flags;
1425 struct vcpu_vmx *vmx = to_vmx(vcpu);
1426
1427 vmx->emulation_required = 1;
1428 vcpu->arch.rmode.active = 1;
1429
1430 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1431 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1432
1433 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1434 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1435
1436 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1437 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1438
1439 flags = vmcs_readl(GUEST_RFLAGS);
1440 vcpu->arch.rmode.save_iopl
1441 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1442
1443 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1444
1445 vmcs_writel(GUEST_RFLAGS, flags);
1446 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1447 update_exception_bitmap(vcpu);
1448
1449 if (emulate_invalid_guest_state)
1450 goto continue_rmode;
1451
1452 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1453 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1454 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1455
1456 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1457 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1458 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1459 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1460 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1461
1462 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1463 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1464 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1465 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1466
1467 continue_rmode:
1468 kvm_mmu_reset_context(vcpu);
1469 init_rmode(vcpu->kvm);
1470 }
1471
1472 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1473 {
1474 struct vcpu_vmx *vmx = to_vmx(vcpu);
1475 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1476
1477 vcpu->arch.shadow_efer = efer;
1478 if (!msr)
1479 return;
1480 if (efer & EFER_LMA) {
1481 vmcs_write32(VM_ENTRY_CONTROLS,
1482 vmcs_read32(VM_ENTRY_CONTROLS) |
1483 VM_ENTRY_IA32E_MODE);
1484 msr->data = efer;
1485 } else {
1486 vmcs_write32(VM_ENTRY_CONTROLS,
1487 vmcs_read32(VM_ENTRY_CONTROLS) &
1488 ~VM_ENTRY_IA32E_MODE);
1489
1490 msr->data = efer & ~EFER_LME;
1491 }
1492 setup_msrs(vmx);
1493 }
1494
1495 #ifdef CONFIG_X86_64
1496
1497 static void enter_lmode(struct kvm_vcpu *vcpu)
1498 {
1499 u32 guest_tr_ar;
1500
1501 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1502 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1503 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1504 __func__);
1505 vmcs_write32(GUEST_TR_AR_BYTES,
1506 (guest_tr_ar & ~AR_TYPE_MASK)
1507 | AR_TYPE_BUSY_64_TSS);
1508 }
1509 vcpu->arch.shadow_efer |= EFER_LMA;
1510 vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1511 }
1512
1513 static void exit_lmode(struct kvm_vcpu *vcpu)
1514 {
1515 vcpu->arch.shadow_efer &= ~EFER_LMA;
1516
1517 vmcs_write32(VM_ENTRY_CONTROLS,
1518 vmcs_read32(VM_ENTRY_CONTROLS)
1519 & ~VM_ENTRY_IA32E_MODE);
1520 }
1521
1522 #endif
1523
1524 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1525 {
1526 vpid_sync_vcpu_all(to_vmx(vcpu));
1527 if (enable_ept)
1528 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1529 }
1530
1531 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1532 {
1533 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1534 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1535 }
1536
1537 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1538 {
1539 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1540 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1541 printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1542 return;
1543 }
1544 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1545 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1546 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1547 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1548 }
1549 }
1550
1551 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1552
1553 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1554 unsigned long cr0,
1555 struct kvm_vcpu *vcpu)
1556 {
1557 if (!(cr0 & X86_CR0_PG)) {
1558 /* From paging/starting to nonpaging */
1559 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1560 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1561 (CPU_BASED_CR3_LOAD_EXITING |
1562 CPU_BASED_CR3_STORE_EXITING));
1563 vcpu->arch.cr0 = cr0;
1564 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1565 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1566 *hw_cr0 &= ~X86_CR0_WP;
1567 } else if (!is_paging(vcpu)) {
1568 /* From nonpaging to paging */
1569 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1570 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1571 ~(CPU_BASED_CR3_LOAD_EXITING |
1572 CPU_BASED_CR3_STORE_EXITING));
1573 vcpu->arch.cr0 = cr0;
1574 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1575 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1576 *hw_cr0 &= ~X86_CR0_WP;
1577 }
1578 }
1579
1580 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1581 struct kvm_vcpu *vcpu)
1582 {
1583 if (!is_paging(vcpu)) {
1584 *hw_cr4 &= ~X86_CR4_PAE;
1585 *hw_cr4 |= X86_CR4_PSE;
1586 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1587 *hw_cr4 &= ~X86_CR4_PAE;
1588 }
1589
1590 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1591 {
1592 unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1593 KVM_VM_CR0_ALWAYS_ON;
1594
1595 vmx_fpu_deactivate(vcpu);
1596
1597 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1598 enter_pmode(vcpu);
1599
1600 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1601 enter_rmode(vcpu);
1602
1603 #ifdef CONFIG_X86_64
1604 if (vcpu->arch.shadow_efer & EFER_LME) {
1605 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1606 enter_lmode(vcpu);
1607 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1608 exit_lmode(vcpu);
1609 }
1610 #endif
1611
1612 if (enable_ept)
1613 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1614
1615 vmcs_writel(CR0_READ_SHADOW, cr0);
1616 vmcs_writel(GUEST_CR0, hw_cr0);
1617 vcpu->arch.cr0 = cr0;
1618
1619 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1620 vmx_fpu_activate(vcpu);
1621 }
1622
1623 static u64 construct_eptp(unsigned long root_hpa)
1624 {
1625 u64 eptp;
1626
1627 /* TODO write the value reading from MSR */
1628 eptp = VMX_EPT_DEFAULT_MT |
1629 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1630 eptp |= (root_hpa & PAGE_MASK);
1631
1632 return eptp;
1633 }
1634
1635 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1636 {
1637 unsigned long guest_cr3;
1638 u64 eptp;
1639
1640 guest_cr3 = cr3;
1641 if (enable_ept) {
1642 eptp = construct_eptp(cr3);
1643 vmcs_write64(EPT_POINTER, eptp);
1644 ept_sync_context(eptp);
1645 ept_load_pdptrs(vcpu);
1646 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1647 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1648 }
1649
1650 vmx_flush_tlb(vcpu);
1651 vmcs_writel(GUEST_CR3, guest_cr3);
1652 if (vcpu->arch.cr0 & X86_CR0_PE)
1653 vmx_fpu_deactivate(vcpu);
1654 }
1655
1656 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1657 {
1658 unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1659 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1660
1661 vcpu->arch.cr4 = cr4;
1662 if (enable_ept)
1663 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1664
1665 vmcs_writel(CR4_READ_SHADOW, cr4);
1666 vmcs_writel(GUEST_CR4, hw_cr4);
1667 }
1668
1669 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1670 {
1671 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1672
1673 return vmcs_readl(sf->base);
1674 }
1675
1676 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1677 struct kvm_segment *var, int seg)
1678 {
1679 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1680 u32 ar;
1681
1682 var->base = vmcs_readl(sf->base);
1683 var->limit = vmcs_read32(sf->limit);
1684 var->selector = vmcs_read16(sf->selector);
1685 ar = vmcs_read32(sf->ar_bytes);
1686 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1687 ar = 0;
1688 var->type = ar & 15;
1689 var->s = (ar >> 4) & 1;
1690 var->dpl = (ar >> 5) & 3;
1691 var->present = (ar >> 7) & 1;
1692 var->avl = (ar >> 12) & 1;
1693 var->l = (ar >> 13) & 1;
1694 var->db = (ar >> 14) & 1;
1695 var->g = (ar >> 15) & 1;
1696 var->unusable = (ar >> 16) & 1;
1697 }
1698
1699 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1700 {
1701 struct kvm_segment kvm_seg;
1702
1703 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1704 return 0;
1705
1706 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1707 return 3;
1708
1709 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1710 return kvm_seg.selector & 3;
1711 }
1712
1713 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1714 {
1715 u32 ar;
1716
1717 if (var->unusable)
1718 ar = 1 << 16;
1719 else {
1720 ar = var->type & 15;
1721 ar |= (var->s & 1) << 4;
1722 ar |= (var->dpl & 3) << 5;
1723 ar |= (var->present & 1) << 7;
1724 ar |= (var->avl & 1) << 12;
1725 ar |= (var->l & 1) << 13;
1726 ar |= (var->db & 1) << 14;
1727 ar |= (var->g & 1) << 15;
1728 }
1729 if (ar == 0) /* a 0 value means unusable */
1730 ar = AR_UNUSABLE_MASK;
1731
1732 return ar;
1733 }
1734
1735 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1736 struct kvm_segment *var, int seg)
1737 {
1738 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1739 u32 ar;
1740
1741 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1742 vcpu->arch.rmode.tr.selector = var->selector;
1743 vcpu->arch.rmode.tr.base = var->base;
1744 vcpu->arch.rmode.tr.limit = var->limit;
1745 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1746 return;
1747 }
1748 vmcs_writel(sf->base, var->base);
1749 vmcs_write32(sf->limit, var->limit);
1750 vmcs_write16(sf->selector, var->selector);
1751 if (vcpu->arch.rmode.active && var->s) {
1752 /*
1753 * Hack real-mode segments into vm86 compatibility.
1754 */
1755 if (var->base == 0xffff0000 && var->selector == 0xf000)
1756 vmcs_writel(sf->base, 0xf0000);
1757 ar = 0xf3;
1758 } else
1759 ar = vmx_segment_access_rights(var);
1760 vmcs_write32(sf->ar_bytes, ar);
1761 }
1762
1763 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1764 {
1765 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1766
1767 *db = (ar >> 14) & 1;
1768 *l = (ar >> 13) & 1;
1769 }
1770
1771 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1772 {
1773 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1774 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1775 }
1776
1777 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1778 {
1779 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1780 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1781 }
1782
1783 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1784 {
1785 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1786 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1787 }
1788
1789 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1790 {
1791 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1792 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1793 }
1794
1795 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1796 {
1797 struct kvm_segment var;
1798 u32 ar;
1799
1800 vmx_get_segment(vcpu, &var, seg);
1801 ar = vmx_segment_access_rights(&var);
1802
1803 if (var.base != (var.selector << 4))
1804 return false;
1805 if (var.limit != 0xffff)
1806 return false;
1807 if (ar != 0xf3)
1808 return false;
1809
1810 return true;
1811 }
1812
1813 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1814 {
1815 struct kvm_segment cs;
1816 unsigned int cs_rpl;
1817
1818 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1819 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1820
1821 if (cs.unusable)
1822 return false;
1823 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1824 return false;
1825 if (!cs.s)
1826 return false;
1827 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1828 if (cs.dpl > cs_rpl)
1829 return false;
1830 } else {
1831 if (cs.dpl != cs_rpl)
1832 return false;
1833 }
1834 if (!cs.present)
1835 return false;
1836
1837 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1838 return true;
1839 }
1840
1841 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1842 {
1843 struct kvm_segment ss;
1844 unsigned int ss_rpl;
1845
1846 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1847 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1848
1849 if (ss.unusable)
1850 return true;
1851 if (ss.type != 3 && ss.type != 7)
1852 return false;
1853 if (!ss.s)
1854 return false;
1855 if (ss.dpl != ss_rpl) /* DPL != RPL */
1856 return false;
1857 if (!ss.present)
1858 return false;
1859
1860 return true;
1861 }
1862
1863 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1864 {
1865 struct kvm_segment var;
1866 unsigned int rpl;
1867
1868 vmx_get_segment(vcpu, &var, seg);
1869 rpl = var.selector & SELECTOR_RPL_MASK;
1870
1871 if (var.unusable)
1872 return true;
1873 if (!var.s)
1874 return false;
1875 if (!var.present)
1876 return false;
1877 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1878 if (var.dpl < rpl) /* DPL < RPL */
1879 return false;
1880 }
1881
1882 /* TODO: Add other members to kvm_segment_field to allow checking for other access
1883 * rights flags
1884 */
1885 return true;
1886 }
1887
1888 static bool tr_valid(struct kvm_vcpu *vcpu)
1889 {
1890 struct kvm_segment tr;
1891
1892 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1893
1894 if (tr.unusable)
1895 return false;
1896 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1897 return false;
1898 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
1899 return false;
1900 if (!tr.present)
1901 return false;
1902
1903 return true;
1904 }
1905
1906 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1907 {
1908 struct kvm_segment ldtr;
1909
1910 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1911
1912 if (ldtr.unusable)
1913 return true;
1914 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1915 return false;
1916 if (ldtr.type != 2)
1917 return false;
1918 if (!ldtr.present)
1919 return false;
1920
1921 return true;
1922 }
1923
1924 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
1925 {
1926 struct kvm_segment cs, ss;
1927
1928 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1929 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1930
1931 return ((cs.selector & SELECTOR_RPL_MASK) ==
1932 (ss.selector & SELECTOR_RPL_MASK));
1933 }
1934
1935 /*
1936 * Check if guest state is valid. Returns true if valid, false if
1937 * not.
1938 * We assume that registers are always usable
1939 */
1940 static bool guest_state_valid(struct kvm_vcpu *vcpu)
1941 {
1942 /* real mode guest state checks */
1943 if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
1944 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
1945 return false;
1946 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
1947 return false;
1948 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
1949 return false;
1950 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
1951 return false;
1952 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
1953 return false;
1954 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
1955 return false;
1956 } else {
1957 /* protected mode guest state checks */
1958 if (!cs_ss_rpl_check(vcpu))
1959 return false;
1960 if (!code_segment_valid(vcpu))
1961 return false;
1962 if (!stack_segment_valid(vcpu))
1963 return false;
1964 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
1965 return false;
1966 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
1967 return false;
1968 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
1969 return false;
1970 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
1971 return false;
1972 if (!tr_valid(vcpu))
1973 return false;
1974 if (!ldtr_valid(vcpu))
1975 return false;
1976 }
1977 /* TODO:
1978 * - Add checks on RIP
1979 * - Add checks on RFLAGS
1980 */
1981
1982 return true;
1983 }
1984
1985 static int init_rmode_tss(struct kvm *kvm)
1986 {
1987 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1988 u16 data = 0;
1989 int ret = 0;
1990 int r;
1991
1992 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1993 if (r < 0)
1994 goto out;
1995 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1996 r = kvm_write_guest_page(kvm, fn++, &data,
1997 TSS_IOPB_BASE_OFFSET, sizeof(u16));
1998 if (r < 0)
1999 goto out;
2000 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2001 if (r < 0)
2002 goto out;
2003 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2004 if (r < 0)
2005 goto out;
2006 data = ~0;
2007 r = kvm_write_guest_page(kvm, fn, &data,
2008 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2009 sizeof(u8));
2010 if (r < 0)
2011 goto out;
2012
2013 ret = 1;
2014 out:
2015 return ret;
2016 }
2017
2018 static int init_rmode_identity_map(struct kvm *kvm)
2019 {
2020 int i, r, ret;
2021 pfn_t identity_map_pfn;
2022 u32 tmp;
2023
2024 if (!enable_ept)
2025 return 1;
2026 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2027 printk(KERN_ERR "EPT: identity-mapping pagetable "
2028 "haven't been allocated!\n");
2029 return 0;
2030 }
2031 if (likely(kvm->arch.ept_identity_pagetable_done))
2032 return 1;
2033 ret = 0;
2034 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
2035 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2036 if (r < 0)
2037 goto out;
2038 /* Set up identity-mapping pagetable for EPT in real mode */
2039 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2040 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2041 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2042 r = kvm_write_guest_page(kvm, identity_map_pfn,
2043 &tmp, i * sizeof(tmp), sizeof(tmp));
2044 if (r < 0)
2045 goto out;
2046 }
2047 kvm->arch.ept_identity_pagetable_done = true;
2048 ret = 1;
2049 out:
2050 return ret;
2051 }
2052
2053 static void seg_setup(int seg)
2054 {
2055 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2056
2057 vmcs_write16(sf->selector, 0);
2058 vmcs_writel(sf->base, 0);
2059 vmcs_write32(sf->limit, 0xffff);
2060 vmcs_write32(sf->ar_bytes, 0xf3);
2061 }
2062
2063 static int alloc_apic_access_page(struct kvm *kvm)
2064 {
2065 struct kvm_userspace_memory_region kvm_userspace_mem;
2066 int r = 0;
2067
2068 down_write(&kvm->slots_lock);
2069 if (kvm->arch.apic_access_page)
2070 goto out;
2071 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2072 kvm_userspace_mem.flags = 0;
2073 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2074 kvm_userspace_mem.memory_size = PAGE_SIZE;
2075 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2076 if (r)
2077 goto out;
2078
2079 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2080 out:
2081 up_write(&kvm->slots_lock);
2082 return r;
2083 }
2084
2085 static int alloc_identity_pagetable(struct kvm *kvm)
2086 {
2087 struct kvm_userspace_memory_region kvm_userspace_mem;
2088 int r = 0;
2089
2090 down_write(&kvm->slots_lock);
2091 if (kvm->arch.ept_identity_pagetable)
2092 goto out;
2093 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2094 kvm_userspace_mem.flags = 0;
2095 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
2096 kvm_userspace_mem.memory_size = PAGE_SIZE;
2097 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2098 if (r)
2099 goto out;
2100
2101 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2102 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
2103 out:
2104 up_write(&kvm->slots_lock);
2105 return r;
2106 }
2107
2108 static void allocate_vpid(struct vcpu_vmx *vmx)
2109 {
2110 int vpid;
2111
2112 vmx->vpid = 0;
2113 if (!enable_vpid)
2114 return;
2115 spin_lock(&vmx_vpid_lock);
2116 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2117 if (vpid < VMX_NR_VPIDS) {
2118 vmx->vpid = vpid;
2119 __set_bit(vpid, vmx_vpid_bitmap);
2120 }
2121 spin_unlock(&vmx_vpid_lock);
2122 }
2123
2124 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2125 {
2126 int f = sizeof(unsigned long);
2127
2128 if (!cpu_has_vmx_msr_bitmap())
2129 return;
2130
2131 /*
2132 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2133 * have the write-low and read-high bitmap offsets the wrong way round.
2134 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2135 */
2136 if (msr <= 0x1fff) {
2137 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2138 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2139 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2140 msr &= 0x1fff;
2141 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2142 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2143 }
2144 }
2145
2146 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2147 {
2148 if (!longmode_only)
2149 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2150 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2151 }
2152
2153 /*
2154 * Sets up the vmcs for emulated real mode.
2155 */
2156 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2157 {
2158 u32 host_sysenter_cs, msr_low, msr_high;
2159 u32 junk;
2160 u64 host_pat, tsc_this, tsc_base;
2161 unsigned long a;
2162 struct descriptor_table dt;
2163 int i;
2164 unsigned long kvm_vmx_return;
2165 u32 exec_control;
2166
2167 /* I/O */
2168 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2169 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2170
2171 if (cpu_has_vmx_msr_bitmap())
2172 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2173
2174 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2175
2176 /* Control */
2177 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2178 vmcs_config.pin_based_exec_ctrl);
2179
2180 exec_control = vmcs_config.cpu_based_exec_ctrl;
2181 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2182 exec_control &= ~CPU_BASED_TPR_SHADOW;
2183 #ifdef CONFIG_X86_64
2184 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2185 CPU_BASED_CR8_LOAD_EXITING;
2186 #endif
2187 }
2188 if (!enable_ept)
2189 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2190 CPU_BASED_CR3_LOAD_EXITING |
2191 CPU_BASED_INVLPG_EXITING;
2192 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2193
2194 if (cpu_has_secondary_exec_ctrls()) {
2195 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2196 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2197 exec_control &=
2198 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2199 if (vmx->vpid == 0)
2200 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2201 if (!enable_ept)
2202 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2203 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2204 }
2205
2206 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2207 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2208 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2209
2210 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
2211 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2212 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2213
2214 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2215 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2216 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2217 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
2218 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
2219 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2220 #ifdef CONFIG_X86_64
2221 rdmsrl(MSR_FS_BASE, a);
2222 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2223 rdmsrl(MSR_GS_BASE, a);
2224 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2225 #else
2226 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2227 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2228 #endif
2229
2230 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2231
2232 kvm_get_idt(&dt);
2233 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
2234
2235 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2236 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2237 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2238 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2239 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2240
2241 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2242 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2243 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2244 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2245 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2246 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2247
2248 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2249 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2250 host_pat = msr_low | ((u64) msr_high << 32);
2251 vmcs_write64(HOST_IA32_PAT, host_pat);
2252 }
2253 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2254 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2255 host_pat = msr_low | ((u64) msr_high << 32);
2256 /* Write the default value follow host pat */
2257 vmcs_write64(GUEST_IA32_PAT, host_pat);
2258 /* Keep arch.pat sync with GUEST_IA32_PAT */
2259 vmx->vcpu.arch.pat = host_pat;
2260 }
2261
2262 for (i = 0; i < NR_VMX_MSR; ++i) {
2263 u32 index = vmx_msr_index[i];
2264 u32 data_low, data_high;
2265 u64 data;
2266 int j = vmx->nmsrs;
2267
2268 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2269 continue;
2270 if (wrmsr_safe(index, data_low, data_high) < 0)
2271 continue;
2272 data = data_low | ((u64)data_high << 32);
2273 vmx->host_msrs[j].index = index;
2274 vmx->host_msrs[j].reserved = 0;
2275 vmx->host_msrs[j].data = data;
2276 vmx->guest_msrs[j] = vmx->host_msrs[j];
2277 ++vmx->nmsrs;
2278 }
2279
2280 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2281
2282 /* 22.2.1, 20.8.1 */
2283 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2284
2285 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2286 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2287
2288 tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2289 rdtscll(tsc_this);
2290 if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2291 tsc_base = tsc_this;
2292
2293 guest_write_tsc(0, tsc_base);
2294
2295 return 0;
2296 }
2297
2298 static int init_rmode(struct kvm *kvm)
2299 {
2300 if (!init_rmode_tss(kvm))
2301 return 0;
2302 if (!init_rmode_identity_map(kvm))
2303 return 0;
2304 return 1;
2305 }
2306
2307 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2308 {
2309 struct vcpu_vmx *vmx = to_vmx(vcpu);
2310 u64 msr;
2311 int ret;
2312
2313 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2314 down_read(&vcpu->kvm->slots_lock);
2315 if (!init_rmode(vmx->vcpu.kvm)) {
2316 ret = -ENOMEM;
2317 goto out;
2318 }
2319
2320 vmx->vcpu.arch.rmode.active = 0;
2321
2322 vmx->soft_vnmi_blocked = 0;
2323
2324 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2325 kvm_set_cr8(&vmx->vcpu, 0);
2326 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2327 if (vmx->vcpu.vcpu_id == 0)
2328 msr |= MSR_IA32_APICBASE_BSP;
2329 kvm_set_apic_base(&vmx->vcpu, msr);
2330
2331 fx_init(&vmx->vcpu);
2332
2333 seg_setup(VCPU_SREG_CS);
2334 /*
2335 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2336 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2337 */
2338 if (vmx->vcpu.vcpu_id == 0) {
2339 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2340 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2341 } else {
2342 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2343 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2344 }
2345
2346 seg_setup(VCPU_SREG_DS);
2347 seg_setup(VCPU_SREG_ES);
2348 seg_setup(VCPU_SREG_FS);
2349 seg_setup(VCPU_SREG_GS);
2350 seg_setup(VCPU_SREG_SS);
2351
2352 vmcs_write16(GUEST_TR_SELECTOR, 0);
2353 vmcs_writel(GUEST_TR_BASE, 0);
2354 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2355 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2356
2357 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2358 vmcs_writel(GUEST_LDTR_BASE, 0);
2359 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2360 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2361
2362 vmcs_write32(GUEST_SYSENTER_CS, 0);
2363 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2364 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2365
2366 vmcs_writel(GUEST_RFLAGS, 0x02);
2367 if (vmx->vcpu.vcpu_id == 0)
2368 kvm_rip_write(vcpu, 0xfff0);
2369 else
2370 kvm_rip_write(vcpu, 0);
2371 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2372
2373 vmcs_writel(GUEST_DR7, 0x400);
2374
2375 vmcs_writel(GUEST_GDTR_BASE, 0);
2376 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2377
2378 vmcs_writel(GUEST_IDTR_BASE, 0);
2379 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2380
2381 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2382 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2383 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2384
2385 /* Special registers */
2386 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2387
2388 setup_msrs(vmx);
2389
2390 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2391
2392 if (cpu_has_vmx_tpr_shadow()) {
2393 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2394 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2395 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2396 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2397 vmcs_write32(TPR_THRESHOLD, 0);
2398 }
2399
2400 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2401 vmcs_write64(APIC_ACCESS_ADDR,
2402 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2403
2404 if (vmx->vpid != 0)
2405 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2406
2407 vmx->vcpu.arch.cr0 = 0x60000010;
2408 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2409 vmx_set_cr4(&vmx->vcpu, 0);
2410 vmx_set_efer(&vmx->vcpu, 0);
2411 vmx_fpu_activate(&vmx->vcpu);
2412 update_exception_bitmap(&vmx->vcpu);
2413
2414 vpid_sync_vcpu_all(vmx);
2415
2416 ret = 0;
2417
2418 /* HACK: Don't enable emulation on guest boot/reset */
2419 vmx->emulation_required = 0;
2420
2421 out:
2422 up_read(&vcpu->kvm->slots_lock);
2423 return ret;
2424 }
2425
2426 static void enable_irq_window(struct kvm_vcpu *vcpu)
2427 {
2428 u32 cpu_based_vm_exec_control;
2429
2430 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2431 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2432 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2433 }
2434
2435 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2436 {
2437 u32 cpu_based_vm_exec_control;
2438
2439 if (!cpu_has_virtual_nmis()) {
2440 enable_irq_window(vcpu);
2441 return;
2442 }
2443
2444 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2445 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2446 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2447 }
2448
2449 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2450 {
2451 struct vcpu_vmx *vmx = to_vmx(vcpu);
2452 uint32_t intr;
2453 int irq = vcpu->arch.interrupt.nr;
2454
2455 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2456
2457 ++vcpu->stat.irq_injections;
2458 if (vcpu->arch.rmode.active) {
2459 vmx->rmode.irq.pending = true;
2460 vmx->rmode.irq.vector = irq;
2461 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2462 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2463 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2464 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2465 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2466 return;
2467 }
2468 intr = irq | INTR_INFO_VALID_MASK;
2469 if (vcpu->arch.interrupt.soft) {
2470 intr |= INTR_TYPE_SOFT_INTR;
2471 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2472 vmx->vcpu.arch.event_exit_inst_len);
2473 } else
2474 intr |= INTR_TYPE_EXT_INTR;
2475 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2476 }
2477
2478 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2479 {
2480 struct vcpu_vmx *vmx = to_vmx(vcpu);
2481
2482 if (!cpu_has_virtual_nmis()) {
2483 /*
2484 * Tracking the NMI-blocked state in software is built upon
2485 * finding the next open IRQ window. This, in turn, depends on
2486 * well-behaving guests: They have to keep IRQs disabled at
2487 * least as long as the NMI handler runs. Otherwise we may
2488 * cause NMI nesting, maybe breaking the guest. But as this is
2489 * highly unlikely, we can live with the residual risk.
2490 */
2491 vmx->soft_vnmi_blocked = 1;
2492 vmx->vnmi_blocked_time = 0;
2493 }
2494
2495 ++vcpu->stat.nmi_injections;
2496 if (vcpu->arch.rmode.active) {
2497 vmx->rmode.irq.pending = true;
2498 vmx->rmode.irq.vector = NMI_VECTOR;
2499 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2500 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2501 NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2502 INTR_INFO_VALID_MASK);
2503 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2504 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2505 return;
2506 }
2507 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2508 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2509 }
2510
2511 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2512 {
2513 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2514 return 0;
2515
2516 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2517 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2518 GUEST_INTR_STATE_NMI));
2519 }
2520
2521 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2522 {
2523 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2524 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2525 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2526 }
2527
2528 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2529 {
2530 int ret;
2531 struct kvm_userspace_memory_region tss_mem = {
2532 .slot = TSS_PRIVATE_MEMSLOT,
2533 .guest_phys_addr = addr,
2534 .memory_size = PAGE_SIZE * 3,
2535 .flags = 0,
2536 };
2537
2538 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2539 if (ret)
2540 return ret;
2541 kvm->arch.tss_addr = addr;
2542 return 0;
2543 }
2544
2545 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2546 int vec, u32 err_code)
2547 {
2548 /*
2549 * Instruction with address size override prefix opcode 0x67
2550 * Cause the #SS fault with 0 error code in VM86 mode.
2551 */
2552 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2553 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2554 return 1;
2555 /*
2556 * Forward all other exceptions that are valid in real mode.
2557 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2558 * the required debugging infrastructure rework.
2559 */
2560 switch (vec) {
2561 case DB_VECTOR:
2562 if (vcpu->guest_debug &
2563 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2564 return 0;
2565 kvm_queue_exception(vcpu, vec);
2566 return 1;
2567 case BP_VECTOR:
2568 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2569 return 0;
2570 /* fall through */
2571 case DE_VECTOR:
2572 case OF_VECTOR:
2573 case BR_VECTOR:
2574 case UD_VECTOR:
2575 case DF_VECTOR:
2576 case SS_VECTOR:
2577 case GP_VECTOR:
2578 case MF_VECTOR:
2579 kvm_queue_exception(vcpu, vec);
2580 return 1;
2581 }
2582 return 0;
2583 }
2584
2585 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2586 {
2587 struct vcpu_vmx *vmx = to_vmx(vcpu);
2588 u32 intr_info, ex_no, error_code;
2589 unsigned long cr2, rip, dr6;
2590 u32 vect_info;
2591 enum emulation_result er;
2592
2593 vect_info = vmx->idt_vectoring_info;
2594 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2595
2596 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2597 !is_page_fault(intr_info))
2598 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2599 "intr info 0x%x\n", __func__, vect_info, intr_info);
2600
2601 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2602 return 1; /* already handled by vmx_vcpu_run() */
2603
2604 if (is_no_device(intr_info)) {
2605 vmx_fpu_activate(vcpu);
2606 return 1;
2607 }
2608
2609 if (is_invalid_opcode(intr_info)) {
2610 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2611 if (er != EMULATE_DONE)
2612 kvm_queue_exception(vcpu, UD_VECTOR);
2613 return 1;
2614 }
2615
2616 error_code = 0;
2617 rip = kvm_rip_read(vcpu);
2618 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2619 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2620 if (is_page_fault(intr_info)) {
2621 /* EPT won't cause page fault directly */
2622 if (enable_ept)
2623 BUG();
2624 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2625 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2626 (u32)((u64)cr2 >> 32), handler);
2627 if (kvm_event_needs_reinjection(vcpu))
2628 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2629 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2630 }
2631
2632 if (vcpu->arch.rmode.active &&
2633 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2634 error_code)) {
2635 if (vcpu->arch.halt_request) {
2636 vcpu->arch.halt_request = 0;
2637 return kvm_emulate_halt(vcpu);
2638 }
2639 return 1;
2640 }
2641
2642 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2643 switch (ex_no) {
2644 case DB_VECTOR:
2645 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2646 if (!(vcpu->guest_debug &
2647 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2648 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2649 kvm_queue_exception(vcpu, DB_VECTOR);
2650 return 1;
2651 }
2652 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2653 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2654 /* fall through */
2655 case BP_VECTOR:
2656 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2657 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2658 kvm_run->debug.arch.exception = ex_no;
2659 break;
2660 default:
2661 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2662 kvm_run->ex.exception = ex_no;
2663 kvm_run->ex.error_code = error_code;
2664 break;
2665 }
2666 return 0;
2667 }
2668
2669 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2670 struct kvm_run *kvm_run)
2671 {
2672 ++vcpu->stat.irq_exits;
2673 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2674 return 1;
2675 }
2676
2677 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2678 {
2679 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2680 return 0;
2681 }
2682
2683 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2684 {
2685 unsigned long exit_qualification;
2686 int size, in, string;
2687 unsigned port;
2688
2689 ++vcpu->stat.io_exits;
2690 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2691 string = (exit_qualification & 16) != 0;
2692
2693 if (string) {
2694 if (emulate_instruction(vcpu,
2695 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2696 return 0;
2697 return 1;
2698 }
2699
2700 size = (exit_qualification & 7) + 1;
2701 in = (exit_qualification & 8) != 0;
2702 port = exit_qualification >> 16;
2703
2704 skip_emulated_instruction(vcpu);
2705 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2706 }
2707
2708 static void
2709 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2710 {
2711 /*
2712 * Patch in the VMCALL instruction:
2713 */
2714 hypercall[0] = 0x0f;
2715 hypercall[1] = 0x01;
2716 hypercall[2] = 0xc1;
2717 }
2718
2719 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2720 {
2721 unsigned long exit_qualification;
2722 int cr;
2723 int reg;
2724
2725 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2726 cr = exit_qualification & 15;
2727 reg = (exit_qualification >> 8) & 15;
2728 switch ((exit_qualification >> 4) & 3) {
2729 case 0: /* mov to cr */
2730 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2731 (u32)kvm_register_read(vcpu, reg),
2732 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2733 handler);
2734 switch (cr) {
2735 case 0:
2736 kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2737 skip_emulated_instruction(vcpu);
2738 return 1;
2739 case 3:
2740 kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2741 skip_emulated_instruction(vcpu);
2742 return 1;
2743 case 4:
2744 kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2745 skip_emulated_instruction(vcpu);
2746 return 1;
2747 case 8: {
2748 u8 cr8_prev = kvm_get_cr8(vcpu);
2749 u8 cr8 = kvm_register_read(vcpu, reg);
2750 kvm_set_cr8(vcpu, cr8);
2751 skip_emulated_instruction(vcpu);
2752 if (irqchip_in_kernel(vcpu->kvm))
2753 return 1;
2754 if (cr8_prev <= cr8)
2755 return 1;
2756 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2757 return 0;
2758 }
2759 };
2760 break;
2761 case 2: /* clts */
2762 vmx_fpu_deactivate(vcpu);
2763 vcpu->arch.cr0 &= ~X86_CR0_TS;
2764 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2765 vmx_fpu_activate(vcpu);
2766 KVMTRACE_0D(CLTS, vcpu, handler);
2767 skip_emulated_instruction(vcpu);
2768 return 1;
2769 case 1: /*mov from cr*/
2770 switch (cr) {
2771 case 3:
2772 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2773 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2774 (u32)kvm_register_read(vcpu, reg),
2775 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2776 handler);
2777 skip_emulated_instruction(vcpu);
2778 return 1;
2779 case 8:
2780 kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2781 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2782 (u32)kvm_register_read(vcpu, reg), handler);
2783 skip_emulated_instruction(vcpu);
2784 return 1;
2785 }
2786 break;
2787 case 3: /* lmsw */
2788 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2789
2790 skip_emulated_instruction(vcpu);
2791 return 1;
2792 default:
2793 break;
2794 }
2795 kvm_run->exit_reason = 0;
2796 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2797 (int)(exit_qualification >> 4) & 3, cr);
2798 return 0;
2799 }
2800
2801 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2802 {
2803 unsigned long exit_qualification;
2804 unsigned long val;
2805 int dr, reg;
2806
2807 dr = vmcs_readl(GUEST_DR7);
2808 if (dr & DR7_GD) {
2809 /*
2810 * As the vm-exit takes precedence over the debug trap, we
2811 * need to emulate the latter, either for the host or the
2812 * guest debugging itself.
2813 */
2814 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2815 kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
2816 kvm_run->debug.arch.dr7 = dr;
2817 kvm_run->debug.arch.pc =
2818 vmcs_readl(GUEST_CS_BASE) +
2819 vmcs_readl(GUEST_RIP);
2820 kvm_run->debug.arch.exception = DB_VECTOR;
2821 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2822 return 0;
2823 } else {
2824 vcpu->arch.dr7 &= ~DR7_GD;
2825 vcpu->arch.dr6 |= DR6_BD;
2826 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2827 kvm_queue_exception(vcpu, DB_VECTOR);
2828 return 1;
2829 }
2830 }
2831
2832 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2833 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
2834 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
2835 if (exit_qualification & TYPE_MOV_FROM_DR) {
2836 switch (dr) {
2837 case 0 ... 3:
2838 val = vcpu->arch.db[dr];
2839 break;
2840 case 6:
2841 val = vcpu->arch.dr6;
2842 break;
2843 case 7:
2844 val = vcpu->arch.dr7;
2845 break;
2846 default:
2847 val = 0;
2848 }
2849 kvm_register_write(vcpu, reg, val);
2850 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2851 } else {
2852 val = vcpu->arch.regs[reg];
2853 switch (dr) {
2854 case 0 ... 3:
2855 vcpu->arch.db[dr] = val;
2856 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
2857 vcpu->arch.eff_db[dr] = val;
2858 break;
2859 case 4 ... 5:
2860 if (vcpu->arch.cr4 & X86_CR4_DE)
2861 kvm_queue_exception(vcpu, UD_VECTOR);
2862 break;
2863 case 6:
2864 if (val & 0xffffffff00000000ULL) {
2865 kvm_queue_exception(vcpu, GP_VECTOR);
2866 break;
2867 }
2868 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
2869 break;
2870 case 7:
2871 if (val & 0xffffffff00000000ULL) {
2872 kvm_queue_exception(vcpu, GP_VECTOR);
2873 break;
2874 }
2875 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
2876 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
2877 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2878 vcpu->arch.switch_db_regs =
2879 (val & DR7_BP_EN_MASK);
2880 }
2881 break;
2882 }
2883 KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
2884 }
2885 skip_emulated_instruction(vcpu);
2886 return 1;
2887 }
2888
2889 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2890 {
2891 kvm_emulate_cpuid(vcpu);
2892 return 1;
2893 }
2894
2895 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2896 {
2897 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2898 u64 data;
2899
2900 if (vmx_get_msr(vcpu, ecx, &data)) {
2901 kvm_inject_gp(vcpu, 0);
2902 return 1;
2903 }
2904
2905 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2906 handler);
2907
2908 /* FIXME: handling of bits 32:63 of rax, rdx */
2909 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2910 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2911 skip_emulated_instruction(vcpu);
2912 return 1;
2913 }
2914
2915 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2916 {
2917 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2918 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2919 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2920
2921 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2922 handler);
2923
2924 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2925 kvm_inject_gp(vcpu, 0);
2926 return 1;
2927 }
2928
2929 skip_emulated_instruction(vcpu);
2930 return 1;
2931 }
2932
2933 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2934 struct kvm_run *kvm_run)
2935 {
2936 return 1;
2937 }
2938
2939 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2940 struct kvm_run *kvm_run)
2941 {
2942 u32 cpu_based_vm_exec_control;
2943
2944 /* clear pending irq */
2945 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2946 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2947 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2948
2949 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2950 ++vcpu->stat.irq_window_exits;
2951
2952 /*
2953 * If the user space waits to inject interrupts, exit as soon as
2954 * possible
2955 */
2956 if (!irqchip_in_kernel(vcpu->kvm) &&
2957 kvm_run->request_interrupt_window &&
2958 !kvm_cpu_has_interrupt(vcpu)) {
2959 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2960 return 0;
2961 }
2962 return 1;
2963 }
2964
2965 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2966 {
2967 skip_emulated_instruction(vcpu);
2968 return kvm_emulate_halt(vcpu);
2969 }
2970
2971 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2972 {
2973 skip_emulated_instruction(vcpu);
2974 kvm_emulate_hypercall(vcpu);
2975 return 1;
2976 }
2977
2978 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2979 {
2980 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2981
2982 kvm_mmu_invlpg(vcpu, exit_qualification);
2983 skip_emulated_instruction(vcpu);
2984 return 1;
2985 }
2986
2987 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2988 {
2989 skip_emulated_instruction(vcpu);
2990 /* TODO: Add support for VT-d/pass-through device */
2991 return 1;
2992 }
2993
2994 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2995 {
2996 unsigned long exit_qualification;
2997 enum emulation_result er;
2998 unsigned long offset;
2999
3000 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3001 offset = exit_qualification & 0xffful;
3002
3003 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3004
3005 if (er != EMULATE_DONE) {
3006 printk(KERN_ERR
3007 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3008 offset);
3009 return -ENOTSUPP;
3010 }
3011 return 1;
3012 }
3013
3014 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3015 {
3016 struct vcpu_vmx *vmx = to_vmx(vcpu);
3017 unsigned long exit_qualification;
3018 u16 tss_selector;
3019 int reason, type, idt_v;
3020
3021 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3022 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3023
3024 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3025
3026 reason = (u32)exit_qualification >> 30;
3027 if (reason == TASK_SWITCH_GATE && idt_v) {
3028 switch (type) {
3029 case INTR_TYPE_NMI_INTR:
3030 vcpu->arch.nmi_injected = false;
3031 if (cpu_has_virtual_nmis())
3032 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3033 GUEST_INTR_STATE_NMI);
3034 break;
3035 case INTR_TYPE_EXT_INTR:
3036 case INTR_TYPE_SOFT_INTR:
3037 kvm_clear_interrupt_queue(vcpu);
3038 break;
3039 case INTR_TYPE_HARD_EXCEPTION:
3040 case INTR_TYPE_SOFT_EXCEPTION:
3041 kvm_clear_exception_queue(vcpu);
3042 break;
3043 default:
3044 break;
3045 }
3046 }
3047 tss_selector = exit_qualification;
3048
3049 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3050 type != INTR_TYPE_EXT_INTR &&
3051 type != INTR_TYPE_NMI_INTR))
3052 skip_emulated_instruction(vcpu);
3053
3054 if (!kvm_task_switch(vcpu, tss_selector, reason))
3055 return 0;
3056
3057 /* clear all local breakpoint enable flags */
3058 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3059
3060 /*
3061 * TODO: What about debug traps on tss switch?
3062 * Are we supposed to inject them and update dr6?
3063 */
3064
3065 return 1;
3066 }
3067
3068 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3069 {
3070 unsigned long exit_qualification;
3071 gpa_t gpa;
3072 int gla_validity;
3073
3074 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3075
3076 if (exit_qualification & (1 << 6)) {
3077 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3078 return -ENOTSUPP;
3079 }
3080
3081 gla_validity = (exit_qualification >> 7) & 0x3;
3082 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3083 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3084 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3085 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3086 vmcs_readl(GUEST_LINEAR_ADDRESS));
3087 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3088 (long unsigned int)exit_qualification);
3089 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3090 kvm_run->hw.hardware_exit_reason = 0;
3091 return -ENOTSUPP;
3092 }
3093
3094 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3095 return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3096 }
3097
3098 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3099 {
3100 u32 cpu_based_vm_exec_control;
3101
3102 /* clear pending NMI */
3103 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3104 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3105 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3106 ++vcpu->stat.nmi_window_exits;
3107
3108 return 1;
3109 }
3110
3111 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3112 struct kvm_run *kvm_run)
3113 {
3114 struct vcpu_vmx *vmx = to_vmx(vcpu);
3115 enum emulation_result err = EMULATE_DONE;
3116
3117 preempt_enable();
3118 local_irq_enable();
3119
3120 while (!guest_state_valid(vcpu)) {
3121 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3122
3123 if (err == EMULATE_DO_MMIO)
3124 break;
3125
3126 if (err != EMULATE_DONE) {
3127 kvm_report_emulation_failure(vcpu, "emulation failure");
3128 return;
3129 }
3130
3131 if (signal_pending(current))
3132 break;
3133 if (need_resched())
3134 schedule();
3135 }
3136
3137 local_irq_disable();
3138 preempt_disable();
3139
3140 vmx->invalid_state_emulation_result = err;
3141 }
3142
3143 /*
3144 * The exit handlers return 1 if the exit was handled fully and guest execution
3145 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3146 * to be done to userspace and return 0.
3147 */
3148 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3149 struct kvm_run *kvm_run) = {
3150 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3151 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3152 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3153 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3154 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3155 [EXIT_REASON_CR_ACCESS] = handle_cr,
3156 [EXIT_REASON_DR_ACCESS] = handle_dr,
3157 [EXIT_REASON_CPUID] = handle_cpuid,
3158 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3159 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3160 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3161 [EXIT_REASON_HLT] = handle_halt,
3162 [EXIT_REASON_INVLPG] = handle_invlpg,
3163 [EXIT_REASON_VMCALL] = handle_vmcall,
3164 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3165 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3166 [EXIT_REASON_WBINVD] = handle_wbinvd,
3167 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3168 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3169 };
3170
3171 static const int kvm_vmx_max_exit_handlers =
3172 ARRAY_SIZE(kvm_vmx_exit_handlers);
3173
3174 /*
3175 * The guest has exited. See if we can fix it or if we need userspace
3176 * assistance.
3177 */
3178 static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3179 {
3180 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
3181 struct vcpu_vmx *vmx = to_vmx(vcpu);
3182 u32 vectoring_info = vmx->idt_vectoring_info;
3183
3184 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
3185 (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
3186
3187 /* If we need to emulate an MMIO from handle_invalid_guest_state
3188 * we just return 0 */
3189 if (vmx->emulation_required && emulate_invalid_guest_state) {
3190 if (guest_state_valid(vcpu))
3191 vmx->emulation_required = 0;
3192 return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
3193 }
3194
3195 /* Access CR3 don't cause VMExit in paging mode, so we need
3196 * to sync with guest real CR3. */
3197 if (enable_ept && is_paging(vcpu)) {
3198 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3199 ept_load_pdptrs(vcpu);
3200 }
3201
3202 if (unlikely(vmx->fail)) {
3203 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3204 kvm_run->fail_entry.hardware_entry_failure_reason
3205 = vmcs_read32(VM_INSTRUCTION_ERROR);
3206 return 0;
3207 }
3208
3209 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3210 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3211 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3212 exit_reason != EXIT_REASON_TASK_SWITCH))
3213 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3214 "(0x%x) and exit reason is 0x%x\n",
3215 __func__, vectoring_info, exit_reason);
3216
3217 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3218 if (vmx_interrupt_allowed(vcpu)) {
3219 vmx->soft_vnmi_blocked = 0;
3220 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3221 vcpu->arch.nmi_pending) {
3222 /*
3223 * This CPU don't support us in finding the end of an
3224 * NMI-blocked window if the guest runs with IRQs
3225 * disabled. So we pull the trigger after 1 s of
3226 * futile waiting, but inform the user about this.
3227 */
3228 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3229 "state on VCPU %d after 1 s timeout\n",
3230 __func__, vcpu->vcpu_id);
3231 vmx->soft_vnmi_blocked = 0;
3232 }
3233 }
3234
3235 if (exit_reason < kvm_vmx_max_exit_handlers
3236 && kvm_vmx_exit_handlers[exit_reason])
3237 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3238 else {
3239 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3240 kvm_run->hw.hardware_exit_reason = exit_reason;
3241 }
3242 return 0;
3243 }
3244
3245 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3246 {
3247 if (irr == -1 || tpr < irr) {
3248 vmcs_write32(TPR_THRESHOLD, 0);
3249 return;
3250 }
3251
3252 vmcs_write32(TPR_THRESHOLD, irr);
3253 }
3254
3255 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3256 {
3257 u32 exit_intr_info;
3258 u32 idt_vectoring_info = vmx->idt_vectoring_info;
3259 bool unblock_nmi;
3260 u8 vector;
3261 int type;
3262 bool idtv_info_valid;
3263
3264 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3265 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3266 if (cpu_has_virtual_nmis()) {
3267 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3268 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3269 /*
3270 * SDM 3: 27.7.1.2 (September 2008)
3271 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3272 * a guest IRET fault.
3273 * SDM 3: 23.2.2 (September 2008)
3274 * Bit 12 is undefined in any of the following cases:
3275 * If the VM exit sets the valid bit in the IDT-vectoring
3276 * information field.
3277 * If the VM exit is due to a double fault.
3278 */
3279 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3280 vector != DF_VECTOR && !idtv_info_valid)
3281 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3282 GUEST_INTR_STATE_NMI);
3283 } else if (unlikely(vmx->soft_vnmi_blocked))
3284 vmx->vnmi_blocked_time +=
3285 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3286
3287 vmx->vcpu.arch.nmi_injected = false;
3288 kvm_clear_exception_queue(&vmx->vcpu);
3289 kvm_clear_interrupt_queue(&vmx->vcpu);
3290
3291 if (!idtv_info_valid)
3292 return;
3293
3294 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3295 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3296
3297 switch (type) {
3298 case INTR_TYPE_NMI_INTR:
3299 vmx->vcpu.arch.nmi_injected = true;
3300 /*
3301 * SDM 3: 27.7.1.2 (September 2008)
3302 * Clear bit "block by NMI" before VM entry if a NMI
3303 * delivery faulted.
3304 */
3305 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3306 GUEST_INTR_STATE_NMI);
3307 break;
3308 case INTR_TYPE_SOFT_EXCEPTION:
3309 vmx->vcpu.arch.event_exit_inst_len =
3310 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3311 /* fall through */
3312 case INTR_TYPE_HARD_EXCEPTION:
3313 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3314 u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3315 kvm_queue_exception_e(&vmx->vcpu, vector, err);
3316 } else
3317 kvm_queue_exception(&vmx->vcpu, vector);
3318 break;
3319 case INTR_TYPE_SOFT_INTR:
3320 vmx->vcpu.arch.event_exit_inst_len =
3321 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3322 /* fall through */
3323 case INTR_TYPE_EXT_INTR:
3324 kvm_queue_interrupt(&vmx->vcpu, vector,
3325 type == INTR_TYPE_SOFT_INTR);
3326 break;
3327 default:
3328 break;
3329 }
3330 }
3331
3332 /*
3333 * Failure to inject an interrupt should give us the information
3334 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3335 * when fetching the interrupt redirection bitmap in the real-mode
3336 * tss, this doesn't happen. So we do it ourselves.
3337 */
3338 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3339 {
3340 vmx->rmode.irq.pending = 0;
3341 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3342 return;
3343 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3344 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3345 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3346 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3347 return;
3348 }
3349 vmx->idt_vectoring_info =
3350 VECTORING_INFO_VALID_MASK
3351 | INTR_TYPE_EXT_INTR
3352 | vmx->rmode.irq.vector;
3353 }
3354
3355 #ifdef CONFIG_X86_64
3356 #define R "r"
3357 #define Q "q"
3358 #else
3359 #define R "e"
3360 #define Q "l"
3361 #endif
3362
3363 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3364 {
3365 struct vcpu_vmx *vmx = to_vmx(vcpu);
3366 u32 intr_info;
3367
3368 /* Record the guest's net vcpu time for enforced NMI injections. */
3369 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3370 vmx->entry_time = ktime_get();
3371
3372 /* Handle invalid guest state instead of entering VMX */
3373 if (vmx->emulation_required && emulate_invalid_guest_state) {
3374 handle_invalid_guest_state(vcpu, kvm_run);
3375 return;
3376 }
3377
3378 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3379 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3380 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3381 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3382
3383 /*
3384 * Loading guest fpu may have cleared host cr0.ts
3385 */
3386 vmcs_writel(HOST_CR0, read_cr0());
3387
3388 set_debugreg(vcpu->arch.dr6, 6);
3389
3390 asm(
3391 /* Store host registers */
3392 "push %%"R"dx; push %%"R"bp;"
3393 "push %%"R"cx \n\t"
3394 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3395 "je 1f \n\t"
3396 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3397 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3398 "1: \n\t"
3399 /* Check if vmlaunch of vmresume is needed */
3400 "cmpl $0, %c[launched](%0) \n\t"
3401 /* Load guest registers. Don't clobber flags. */
3402 "mov %c[cr2](%0), %%"R"ax \n\t"
3403 "mov %%"R"ax, %%cr2 \n\t"
3404 "mov %c[rax](%0), %%"R"ax \n\t"
3405 "mov %c[rbx](%0), %%"R"bx \n\t"
3406 "mov %c[rdx](%0), %%"R"dx \n\t"
3407 "mov %c[rsi](%0), %%"R"si \n\t"
3408 "mov %c[rdi](%0), %%"R"di \n\t"
3409 "mov %c[rbp](%0), %%"R"bp \n\t"
3410 #ifdef CONFIG_X86_64
3411 "mov %c[r8](%0), %%r8 \n\t"
3412 "mov %c[r9](%0), %%r9 \n\t"
3413 "mov %c[r10](%0), %%r10 \n\t"
3414 "mov %c[r11](%0), %%r11 \n\t"
3415 "mov %c[r12](%0), %%r12 \n\t"
3416 "mov %c[r13](%0), %%r13 \n\t"
3417 "mov %c[r14](%0), %%r14 \n\t"
3418 "mov %c[r15](%0), %%r15 \n\t"
3419 #endif
3420 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3421
3422 /* Enter guest mode */
3423 "jne .Llaunched \n\t"
3424 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3425 "jmp .Lkvm_vmx_return \n\t"
3426 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3427 ".Lkvm_vmx_return: "
3428 /* Save guest registers, load host registers, keep flags */
3429 "xchg %0, (%%"R"sp) \n\t"
3430 "mov %%"R"ax, %c[rax](%0) \n\t"
3431 "mov %%"R"bx, %c[rbx](%0) \n\t"
3432 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3433 "mov %%"R"dx, %c[rdx](%0) \n\t"
3434 "mov %%"R"si, %c[rsi](%0) \n\t"
3435 "mov %%"R"di, %c[rdi](%0) \n\t"
3436 "mov %%"R"bp, %c[rbp](%0) \n\t"
3437 #ifdef CONFIG_X86_64
3438 "mov %%r8, %c[r8](%0) \n\t"
3439 "mov %%r9, %c[r9](%0) \n\t"
3440 "mov %%r10, %c[r10](%0) \n\t"
3441 "mov %%r11, %c[r11](%0) \n\t"
3442 "mov %%r12, %c[r12](%0) \n\t"
3443 "mov %%r13, %c[r13](%0) \n\t"
3444 "mov %%r14, %c[r14](%0) \n\t"
3445 "mov %%r15, %c[r15](%0) \n\t"
3446 #endif
3447 "mov %%cr2, %%"R"ax \n\t"
3448 "mov %%"R"ax, %c[cr2](%0) \n\t"
3449
3450 "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
3451 "setbe %c[fail](%0) \n\t"
3452 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3453 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3454 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3455 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3456 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3457 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3458 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3459 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3460 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3461 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3462 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3463 #ifdef CONFIG_X86_64
3464 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3465 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3466 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3467 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3468 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3469 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3470 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3471 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3472 #endif
3473 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3474 : "cc", "memory"
3475 , R"bx", R"di", R"si"
3476 #ifdef CONFIG_X86_64
3477 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3478 #endif
3479 );
3480
3481 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3482 vcpu->arch.regs_dirty = 0;
3483
3484 get_debugreg(vcpu->arch.dr6, 6);
3485
3486 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3487 if (vmx->rmode.irq.pending)
3488 fixup_rmode_irq(vmx);
3489
3490 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3491 vmx->launched = 1;
3492
3493 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3494
3495 /* We need to handle NMIs before interrupts are enabled */
3496 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3497 (intr_info & INTR_INFO_VALID_MASK)) {
3498 KVMTRACE_0D(NMI, vcpu, handler);
3499 asm("int $2");
3500 }
3501
3502 vmx_complete_interrupts(vmx);
3503 }
3504
3505 #undef R
3506 #undef Q
3507
3508 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3509 {
3510 struct vcpu_vmx *vmx = to_vmx(vcpu);
3511
3512 if (vmx->vmcs) {
3513 vcpu_clear(vmx);
3514 free_vmcs(vmx->vmcs);
3515 vmx->vmcs = NULL;
3516 }
3517 }
3518
3519 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3520 {
3521 struct vcpu_vmx *vmx = to_vmx(vcpu);
3522
3523 spin_lock(&vmx_vpid_lock);
3524 if (vmx->vpid != 0)
3525 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3526 spin_unlock(&vmx_vpid_lock);
3527 vmx_free_vmcs(vcpu);
3528 kfree(vmx->host_msrs);
3529 kfree(vmx->guest_msrs);
3530 kvm_vcpu_uninit(vcpu);
3531 kmem_cache_free(kvm_vcpu_cache, vmx);
3532 }
3533
3534 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3535 {
3536 int err;
3537 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3538 int cpu;
3539
3540 if (!vmx)
3541 return ERR_PTR(-ENOMEM);
3542
3543 allocate_vpid(vmx);
3544
3545 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3546 if (err)
3547 goto free_vcpu;
3548
3549 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3550 if (!vmx->guest_msrs) {
3551 err = -ENOMEM;
3552 goto uninit_vcpu;
3553 }
3554
3555 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3556 if (!vmx->host_msrs)
3557 goto free_guest_msrs;
3558
3559 vmx->vmcs = alloc_vmcs();
3560 if (!vmx->vmcs)
3561 goto free_msrs;
3562
3563 vmcs_clear(vmx->vmcs);
3564
3565 cpu = get_cpu();
3566 vmx_vcpu_load(&vmx->vcpu, cpu);
3567 err = vmx_vcpu_setup(vmx);
3568 vmx_vcpu_put(&vmx->vcpu);
3569 put_cpu();
3570 if (err)
3571 goto free_vmcs;
3572 if (vm_need_virtualize_apic_accesses(kvm))
3573 if (alloc_apic_access_page(kvm) != 0)
3574 goto free_vmcs;
3575
3576 if (enable_ept)
3577 if (alloc_identity_pagetable(kvm) != 0)
3578 goto free_vmcs;
3579
3580 return &vmx->vcpu;
3581
3582 free_vmcs:
3583 free_vmcs(vmx->vmcs);
3584 free_msrs:
3585 kfree(vmx->host_msrs);
3586 free_guest_msrs:
3587 kfree(vmx->guest_msrs);
3588 uninit_vcpu:
3589 kvm_vcpu_uninit(&vmx->vcpu);
3590 free_vcpu:
3591 kmem_cache_free(kvm_vcpu_cache, vmx);
3592 return ERR_PTR(err);
3593 }
3594
3595 static void __init vmx_check_processor_compat(void *rtn)
3596 {
3597 struct vmcs_config vmcs_conf;
3598
3599 *(int *)rtn = 0;
3600 if (setup_vmcs_config(&vmcs_conf) < 0)
3601 *(int *)rtn = -EIO;
3602 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3603 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3604 smp_processor_id());
3605 *(int *)rtn = -EIO;
3606 }
3607 }
3608
3609 static int get_ept_level(void)
3610 {
3611 return VMX_EPT_DEFAULT_GAW + 1;
3612 }
3613
3614 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3615 {
3616 u64 ret;
3617
3618 /* For VT-d and EPT combination
3619 * 1. MMIO: always map as UC
3620 * 2. EPT with VT-d:
3621 * a. VT-d without snooping control feature: can't guarantee the
3622 * result, try to trust guest.
3623 * b. VT-d with snooping control feature: snooping control feature of
3624 * VT-d engine can guarantee the cache correctness. Just set it
3625 * to WB to keep consistent with host. So the same as item 3.
3626 * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3627 * consistent with host MTRR
3628 */
3629 if (is_mmio)
3630 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3631 else if (vcpu->kvm->arch.iommu_domain &&
3632 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3633 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3634 VMX_EPT_MT_EPTE_SHIFT;
3635 else
3636 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3637 | VMX_EPT_IGMT_BIT;
3638
3639 return ret;
3640 }
3641
3642 static struct kvm_x86_ops vmx_x86_ops = {
3643 .cpu_has_kvm_support = cpu_has_kvm_support,
3644 .disabled_by_bios = vmx_disabled_by_bios,
3645 .hardware_setup = hardware_setup,
3646 .hardware_unsetup = hardware_unsetup,
3647 .check_processor_compatibility = vmx_check_processor_compat,
3648 .hardware_enable = hardware_enable,
3649 .hardware_disable = hardware_disable,
3650 .cpu_has_accelerated_tpr = report_flexpriority,
3651
3652 .vcpu_create = vmx_create_vcpu,
3653 .vcpu_free = vmx_free_vcpu,
3654 .vcpu_reset = vmx_vcpu_reset,
3655
3656 .prepare_guest_switch = vmx_save_host_state,
3657 .vcpu_load = vmx_vcpu_load,
3658 .vcpu_put = vmx_vcpu_put,
3659
3660 .set_guest_debug = set_guest_debug,
3661 .get_msr = vmx_get_msr,
3662 .set_msr = vmx_set_msr,
3663 .get_segment_base = vmx_get_segment_base,
3664 .get_segment = vmx_get_segment,
3665 .set_segment = vmx_set_segment,
3666 .get_cpl = vmx_get_cpl,
3667 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3668 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3669 .set_cr0 = vmx_set_cr0,
3670 .set_cr3 = vmx_set_cr3,
3671 .set_cr4 = vmx_set_cr4,
3672 .set_efer = vmx_set_efer,
3673 .get_idt = vmx_get_idt,
3674 .set_idt = vmx_set_idt,
3675 .get_gdt = vmx_get_gdt,
3676 .set_gdt = vmx_set_gdt,
3677 .cache_reg = vmx_cache_reg,
3678 .get_rflags = vmx_get_rflags,
3679 .set_rflags = vmx_set_rflags,
3680
3681 .tlb_flush = vmx_flush_tlb,
3682
3683 .run = vmx_vcpu_run,
3684 .handle_exit = vmx_handle_exit,
3685 .skip_emulated_instruction = skip_emulated_instruction,
3686 .set_interrupt_shadow = vmx_set_interrupt_shadow,
3687 .get_interrupt_shadow = vmx_get_interrupt_shadow,
3688 .patch_hypercall = vmx_patch_hypercall,
3689 .set_irq = vmx_inject_irq,
3690 .set_nmi = vmx_inject_nmi,
3691 .queue_exception = vmx_queue_exception,
3692 .interrupt_allowed = vmx_interrupt_allowed,
3693 .nmi_allowed = vmx_nmi_allowed,
3694 .enable_nmi_window = enable_nmi_window,
3695 .enable_irq_window = enable_irq_window,
3696 .update_cr8_intercept = update_cr8_intercept,
3697
3698 .set_tss_addr = vmx_set_tss_addr,
3699 .get_tdp_level = get_ept_level,
3700 .get_mt_mask = vmx_get_mt_mask,
3701 };
3702
3703 static int __init vmx_init(void)
3704 {
3705 int r;
3706
3707 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
3708 if (!vmx_io_bitmap_a)
3709 return -ENOMEM;
3710
3711 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
3712 if (!vmx_io_bitmap_b) {
3713 r = -ENOMEM;
3714 goto out;
3715 }
3716
3717 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
3718 if (!vmx_msr_bitmap_legacy) {
3719 r = -ENOMEM;
3720 goto out1;
3721 }
3722
3723 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
3724 if (!vmx_msr_bitmap_longmode) {
3725 r = -ENOMEM;
3726 goto out2;
3727 }
3728
3729 /*
3730 * Allow direct access to the PC debug port (it is often used for I/O
3731 * delays, but the vmexits simply slow things down).
3732 */
3733 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
3734 clear_bit(0x80, vmx_io_bitmap_a);
3735
3736 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
3737
3738 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
3739 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3740
3741 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3742
3743 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3744 if (r)
3745 goto out3;
3746
3747 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
3748 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
3749 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
3750 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
3751 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
3752 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
3753
3754 if (enable_ept) {
3755 bypass_guest_pf = 0;
3756 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3757 VMX_EPT_WRITABLE_MASK);
3758 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3759 VMX_EPT_EXECUTABLE_MASK);
3760 kvm_enable_tdp();
3761 } else
3762 kvm_disable_tdp();
3763
3764 if (bypass_guest_pf)
3765 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3766
3767 ept_sync_global();
3768
3769 return 0;
3770
3771 out3:
3772 free_page((unsigned long)vmx_msr_bitmap_longmode);
3773 out2:
3774 free_page((unsigned long)vmx_msr_bitmap_legacy);
3775 out1:
3776 free_page((unsigned long)vmx_io_bitmap_b);
3777 out:
3778 free_page((unsigned long)vmx_io_bitmap_a);
3779 return r;
3780 }
3781
3782 static void __exit vmx_exit(void)
3783 {
3784 free_page((unsigned long)vmx_msr_bitmap_legacy);
3785 free_page((unsigned long)vmx_msr_bitmap_longmode);
3786 free_page((unsigned long)vmx_io_bitmap_b);
3787 free_page((unsigned long)vmx_io_bitmap_a);
3788
3789 kvm_exit();
3790 }
3791
3792 module_init(vmx_init)
3793 module_exit(vmx_exit)