]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
KVM: x86: replace vm_has_apicv hook with cpu_uses_apicv
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/trace_events.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/fpu/internal.h>
44 #include <asm/perf_event.h>
45 #include <asm/debugreg.h>
46 #include <asm/kexec.h>
47 #include <asm/apic.h>
48
49 #include "trace.h"
50 #include "pmu.h"
51
52 #define __ex(x) __kvm_handle_fault_on_reboot(x)
53 #define __ex_clear(x, reg) \
54 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
55
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
58
59 static const struct x86_cpu_id vmx_cpu_id[] = {
60 X86_FEATURE_MATCH(X86_FEATURE_VMX),
61 {}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
64
65 static bool __read_mostly enable_vpid = 1;
66 module_param_named(vpid, enable_vpid, bool, 0444);
67
68 static bool __read_mostly flexpriority_enabled = 1;
69 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
70
71 static bool __read_mostly enable_ept = 1;
72 module_param_named(ept, enable_ept, bool, S_IRUGO);
73
74 static bool __read_mostly enable_unrestricted_guest = 1;
75 module_param_named(unrestricted_guest,
76 enable_unrestricted_guest, bool, S_IRUGO);
77
78 static bool __read_mostly enable_ept_ad_bits = 1;
79 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
80
81 static bool __read_mostly emulate_invalid_guest_state = true;
82 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
83
84 static bool __read_mostly vmm_exclusive = 1;
85 module_param(vmm_exclusive, bool, S_IRUGO);
86
87 static bool __read_mostly fasteoi = 1;
88 module_param(fasteoi, bool, S_IRUGO);
89
90 static bool __read_mostly enable_apicv = 1;
91 module_param(enable_apicv, bool, S_IRUGO);
92
93 static bool __read_mostly enable_shadow_vmcs = 1;
94 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
95 /*
96 * If nested=1, nested virtualization is supported, i.e., guests may use
97 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
98 * use VMX instructions.
99 */
100 static bool __read_mostly nested = 0;
101 module_param(nested, bool, S_IRUGO);
102
103 static u64 __read_mostly host_xss;
104
105 static bool __read_mostly enable_pml = 1;
106 module_param_named(pml, enable_pml, bool, S_IRUGO);
107
108 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
109 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
110 #define KVM_VM_CR0_ALWAYS_ON \
111 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
112 #define KVM_CR4_GUEST_OWNED_BITS \
113 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
114 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
115
116 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
117 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
118
119 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
120
121 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
122
123 /*
124 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
125 * ple_gap: upper bound on the amount of time between two successive
126 * executions of PAUSE in a loop. Also indicate if ple enabled.
127 * According to test, this time is usually smaller than 128 cycles.
128 * ple_window: upper bound on the amount of time a guest is allowed to execute
129 * in a PAUSE loop. Tests indicate that most spinlocks are held for
130 * less than 2^12 cycles
131 * Time is measured based on a counter that runs at the same rate as the TSC,
132 * refer SDM volume 3b section 21.6.13 & 22.1.3.
133 */
134 #define KVM_VMX_DEFAULT_PLE_GAP 128
135 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
136 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
137 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
138 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
139 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
140
141 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
142 module_param(ple_gap, int, S_IRUGO);
143
144 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
145 module_param(ple_window, int, S_IRUGO);
146
147 /* Default doubles per-vcpu window every exit. */
148 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
149 module_param(ple_window_grow, int, S_IRUGO);
150
151 /* Default resets per-vcpu window every exit to ple_window. */
152 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
153 module_param(ple_window_shrink, int, S_IRUGO);
154
155 /* Default is to compute the maximum so we can never overflow. */
156 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
157 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
158 module_param(ple_window_max, int, S_IRUGO);
159
160 extern const ulong vmx_return;
161
162 #define NR_AUTOLOAD_MSRS 8
163 #define VMCS02_POOL_SIZE 1
164
165 struct vmcs {
166 u32 revision_id;
167 u32 abort;
168 char data[0];
169 };
170
171 /*
172 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
173 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
174 * loaded on this CPU (so we can clear them if the CPU goes down).
175 */
176 struct loaded_vmcs {
177 struct vmcs *vmcs;
178 int cpu;
179 int launched;
180 struct list_head loaded_vmcss_on_cpu_link;
181 };
182
183 struct shared_msr_entry {
184 unsigned index;
185 u64 data;
186 u64 mask;
187 };
188
189 /*
190 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
191 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
192 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
193 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
194 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
195 * More than one of these structures may exist, if L1 runs multiple L2 guests.
196 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
197 * underlying hardware which will be used to run L2.
198 * This structure is packed to ensure that its layout is identical across
199 * machines (necessary for live migration).
200 * If there are changes in this struct, VMCS12_REVISION must be changed.
201 */
202 typedef u64 natural_width;
203 struct __packed vmcs12 {
204 /* According to the Intel spec, a VMCS region must start with the
205 * following two fields. Then follow implementation-specific data.
206 */
207 u32 revision_id;
208 u32 abort;
209
210 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
211 u32 padding[7]; /* room for future expansion */
212
213 u64 io_bitmap_a;
214 u64 io_bitmap_b;
215 u64 msr_bitmap;
216 u64 vm_exit_msr_store_addr;
217 u64 vm_exit_msr_load_addr;
218 u64 vm_entry_msr_load_addr;
219 u64 tsc_offset;
220 u64 virtual_apic_page_addr;
221 u64 apic_access_addr;
222 u64 posted_intr_desc_addr;
223 u64 ept_pointer;
224 u64 eoi_exit_bitmap0;
225 u64 eoi_exit_bitmap1;
226 u64 eoi_exit_bitmap2;
227 u64 eoi_exit_bitmap3;
228 u64 xss_exit_bitmap;
229 u64 guest_physical_address;
230 u64 vmcs_link_pointer;
231 u64 guest_ia32_debugctl;
232 u64 guest_ia32_pat;
233 u64 guest_ia32_efer;
234 u64 guest_ia32_perf_global_ctrl;
235 u64 guest_pdptr0;
236 u64 guest_pdptr1;
237 u64 guest_pdptr2;
238 u64 guest_pdptr3;
239 u64 guest_bndcfgs;
240 u64 host_ia32_pat;
241 u64 host_ia32_efer;
242 u64 host_ia32_perf_global_ctrl;
243 u64 padding64[8]; /* room for future expansion */
244 /*
245 * To allow migration of L1 (complete with its L2 guests) between
246 * machines of different natural widths (32 or 64 bit), we cannot have
247 * unsigned long fields with no explict size. We use u64 (aliased
248 * natural_width) instead. Luckily, x86 is little-endian.
249 */
250 natural_width cr0_guest_host_mask;
251 natural_width cr4_guest_host_mask;
252 natural_width cr0_read_shadow;
253 natural_width cr4_read_shadow;
254 natural_width cr3_target_value0;
255 natural_width cr3_target_value1;
256 natural_width cr3_target_value2;
257 natural_width cr3_target_value3;
258 natural_width exit_qualification;
259 natural_width guest_linear_address;
260 natural_width guest_cr0;
261 natural_width guest_cr3;
262 natural_width guest_cr4;
263 natural_width guest_es_base;
264 natural_width guest_cs_base;
265 natural_width guest_ss_base;
266 natural_width guest_ds_base;
267 natural_width guest_fs_base;
268 natural_width guest_gs_base;
269 natural_width guest_ldtr_base;
270 natural_width guest_tr_base;
271 natural_width guest_gdtr_base;
272 natural_width guest_idtr_base;
273 natural_width guest_dr7;
274 natural_width guest_rsp;
275 natural_width guest_rip;
276 natural_width guest_rflags;
277 natural_width guest_pending_dbg_exceptions;
278 natural_width guest_sysenter_esp;
279 natural_width guest_sysenter_eip;
280 natural_width host_cr0;
281 natural_width host_cr3;
282 natural_width host_cr4;
283 natural_width host_fs_base;
284 natural_width host_gs_base;
285 natural_width host_tr_base;
286 natural_width host_gdtr_base;
287 natural_width host_idtr_base;
288 natural_width host_ia32_sysenter_esp;
289 natural_width host_ia32_sysenter_eip;
290 natural_width host_rsp;
291 natural_width host_rip;
292 natural_width paddingl[8]; /* room for future expansion */
293 u32 pin_based_vm_exec_control;
294 u32 cpu_based_vm_exec_control;
295 u32 exception_bitmap;
296 u32 page_fault_error_code_mask;
297 u32 page_fault_error_code_match;
298 u32 cr3_target_count;
299 u32 vm_exit_controls;
300 u32 vm_exit_msr_store_count;
301 u32 vm_exit_msr_load_count;
302 u32 vm_entry_controls;
303 u32 vm_entry_msr_load_count;
304 u32 vm_entry_intr_info_field;
305 u32 vm_entry_exception_error_code;
306 u32 vm_entry_instruction_len;
307 u32 tpr_threshold;
308 u32 secondary_vm_exec_control;
309 u32 vm_instruction_error;
310 u32 vm_exit_reason;
311 u32 vm_exit_intr_info;
312 u32 vm_exit_intr_error_code;
313 u32 idt_vectoring_info_field;
314 u32 idt_vectoring_error_code;
315 u32 vm_exit_instruction_len;
316 u32 vmx_instruction_info;
317 u32 guest_es_limit;
318 u32 guest_cs_limit;
319 u32 guest_ss_limit;
320 u32 guest_ds_limit;
321 u32 guest_fs_limit;
322 u32 guest_gs_limit;
323 u32 guest_ldtr_limit;
324 u32 guest_tr_limit;
325 u32 guest_gdtr_limit;
326 u32 guest_idtr_limit;
327 u32 guest_es_ar_bytes;
328 u32 guest_cs_ar_bytes;
329 u32 guest_ss_ar_bytes;
330 u32 guest_ds_ar_bytes;
331 u32 guest_fs_ar_bytes;
332 u32 guest_gs_ar_bytes;
333 u32 guest_ldtr_ar_bytes;
334 u32 guest_tr_ar_bytes;
335 u32 guest_interruptibility_info;
336 u32 guest_activity_state;
337 u32 guest_sysenter_cs;
338 u32 host_ia32_sysenter_cs;
339 u32 vmx_preemption_timer_value;
340 u32 padding32[7]; /* room for future expansion */
341 u16 virtual_processor_id;
342 u16 posted_intr_nv;
343 u16 guest_es_selector;
344 u16 guest_cs_selector;
345 u16 guest_ss_selector;
346 u16 guest_ds_selector;
347 u16 guest_fs_selector;
348 u16 guest_gs_selector;
349 u16 guest_ldtr_selector;
350 u16 guest_tr_selector;
351 u16 guest_intr_status;
352 u16 host_es_selector;
353 u16 host_cs_selector;
354 u16 host_ss_selector;
355 u16 host_ds_selector;
356 u16 host_fs_selector;
357 u16 host_gs_selector;
358 u16 host_tr_selector;
359 };
360
361 /*
362 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
363 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
364 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
365 */
366 #define VMCS12_REVISION 0x11e57ed0
367
368 /*
369 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
370 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
371 * current implementation, 4K are reserved to avoid future complications.
372 */
373 #define VMCS12_SIZE 0x1000
374
375 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
376 struct vmcs02_list {
377 struct list_head list;
378 gpa_t vmptr;
379 struct loaded_vmcs vmcs02;
380 };
381
382 /*
383 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
384 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
385 */
386 struct nested_vmx {
387 /* Has the level1 guest done vmxon? */
388 bool vmxon;
389 gpa_t vmxon_ptr;
390
391 /* The guest-physical address of the current VMCS L1 keeps for L2 */
392 gpa_t current_vmptr;
393 /* The host-usable pointer to the above */
394 struct page *current_vmcs12_page;
395 struct vmcs12 *current_vmcs12;
396 struct vmcs *current_shadow_vmcs;
397 /*
398 * Indicates if the shadow vmcs must be updated with the
399 * data hold by vmcs12
400 */
401 bool sync_shadow_vmcs;
402
403 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
404 struct list_head vmcs02_pool;
405 int vmcs02_num;
406 u64 vmcs01_tsc_offset;
407 /* L2 must run next, and mustn't decide to exit to L1. */
408 bool nested_run_pending;
409 /*
410 * Guest pages referred to in vmcs02 with host-physical pointers, so
411 * we must keep them pinned while L2 runs.
412 */
413 struct page *apic_access_page;
414 struct page *virtual_apic_page;
415 struct page *pi_desc_page;
416 struct pi_desc *pi_desc;
417 bool pi_pending;
418 u16 posted_intr_nv;
419 u64 msr_ia32_feature_control;
420
421 struct hrtimer preemption_timer;
422 bool preemption_timer_expired;
423
424 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
425 u64 vmcs01_debugctl;
426
427 u32 nested_vmx_procbased_ctls_low;
428 u32 nested_vmx_procbased_ctls_high;
429 u32 nested_vmx_true_procbased_ctls_low;
430 u32 nested_vmx_secondary_ctls_low;
431 u32 nested_vmx_secondary_ctls_high;
432 u32 nested_vmx_pinbased_ctls_low;
433 u32 nested_vmx_pinbased_ctls_high;
434 u32 nested_vmx_exit_ctls_low;
435 u32 nested_vmx_exit_ctls_high;
436 u32 nested_vmx_true_exit_ctls_low;
437 u32 nested_vmx_entry_ctls_low;
438 u32 nested_vmx_entry_ctls_high;
439 u32 nested_vmx_true_entry_ctls_low;
440 u32 nested_vmx_misc_low;
441 u32 nested_vmx_misc_high;
442 u32 nested_vmx_ept_caps;
443 };
444
445 #define POSTED_INTR_ON 0
446 /* Posted-Interrupt Descriptor */
447 struct pi_desc {
448 u32 pir[8]; /* Posted interrupt requested */
449 u32 control; /* bit 0 of control is outstanding notification bit */
450 u32 rsvd[7];
451 } __aligned(64);
452
453 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
454 {
455 return test_and_set_bit(POSTED_INTR_ON,
456 (unsigned long *)&pi_desc->control);
457 }
458
459 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
460 {
461 return test_and_clear_bit(POSTED_INTR_ON,
462 (unsigned long *)&pi_desc->control);
463 }
464
465 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
466 {
467 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
468 }
469
470 struct vcpu_vmx {
471 struct kvm_vcpu vcpu;
472 unsigned long host_rsp;
473 u8 fail;
474 bool nmi_known_unmasked;
475 u32 exit_intr_info;
476 u32 idt_vectoring_info;
477 ulong rflags;
478 struct shared_msr_entry *guest_msrs;
479 int nmsrs;
480 int save_nmsrs;
481 unsigned long host_idt_base;
482 #ifdef CONFIG_X86_64
483 u64 msr_host_kernel_gs_base;
484 u64 msr_guest_kernel_gs_base;
485 #endif
486 u32 vm_entry_controls_shadow;
487 u32 vm_exit_controls_shadow;
488 /*
489 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
490 * non-nested (L1) guest, it always points to vmcs01. For a nested
491 * guest (L2), it points to a different VMCS.
492 */
493 struct loaded_vmcs vmcs01;
494 struct loaded_vmcs *loaded_vmcs;
495 bool __launched; /* temporary, used in vmx_vcpu_run */
496 struct msr_autoload {
497 unsigned nr;
498 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
499 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
500 } msr_autoload;
501 struct {
502 int loaded;
503 u16 fs_sel, gs_sel, ldt_sel;
504 #ifdef CONFIG_X86_64
505 u16 ds_sel, es_sel;
506 #endif
507 int gs_ldt_reload_needed;
508 int fs_reload_needed;
509 u64 msr_host_bndcfgs;
510 unsigned long vmcs_host_cr4; /* May not match real cr4 */
511 } host_state;
512 struct {
513 int vm86_active;
514 ulong save_rflags;
515 struct kvm_segment segs[8];
516 } rmode;
517 struct {
518 u32 bitmask; /* 4 bits per segment (1 bit per field) */
519 struct kvm_save_segment {
520 u16 selector;
521 unsigned long base;
522 u32 limit;
523 u32 ar;
524 } seg[8];
525 } segment_cache;
526 int vpid;
527 bool emulation_required;
528
529 /* Support for vnmi-less CPUs */
530 int soft_vnmi_blocked;
531 ktime_t entry_time;
532 s64 vnmi_blocked_time;
533 u32 exit_reason;
534
535 bool rdtscp_enabled;
536
537 /* Posted interrupt descriptor */
538 struct pi_desc pi_desc;
539
540 /* Support for a guest hypervisor (nested VMX) */
541 struct nested_vmx nested;
542
543 /* Dynamic PLE window. */
544 int ple_window;
545 bool ple_window_dirty;
546
547 /* Support for PML */
548 #define PML_ENTITY_NUM 512
549 struct page *pml_pg;
550 };
551
552 enum segment_cache_field {
553 SEG_FIELD_SEL = 0,
554 SEG_FIELD_BASE = 1,
555 SEG_FIELD_LIMIT = 2,
556 SEG_FIELD_AR = 3,
557
558 SEG_FIELD_NR = 4
559 };
560
561 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
562 {
563 return container_of(vcpu, struct vcpu_vmx, vcpu);
564 }
565
566 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
567 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
568 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
569 [number##_HIGH] = VMCS12_OFFSET(name)+4
570
571
572 static unsigned long shadow_read_only_fields[] = {
573 /*
574 * We do NOT shadow fields that are modified when L0
575 * traps and emulates any vmx instruction (e.g. VMPTRLD,
576 * VMXON...) executed by L1.
577 * For example, VM_INSTRUCTION_ERROR is read
578 * by L1 if a vmx instruction fails (part of the error path).
579 * Note the code assumes this logic. If for some reason
580 * we start shadowing these fields then we need to
581 * force a shadow sync when L0 emulates vmx instructions
582 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
583 * by nested_vmx_failValid)
584 */
585 VM_EXIT_REASON,
586 VM_EXIT_INTR_INFO,
587 VM_EXIT_INSTRUCTION_LEN,
588 IDT_VECTORING_INFO_FIELD,
589 IDT_VECTORING_ERROR_CODE,
590 VM_EXIT_INTR_ERROR_CODE,
591 EXIT_QUALIFICATION,
592 GUEST_LINEAR_ADDRESS,
593 GUEST_PHYSICAL_ADDRESS
594 };
595 static int max_shadow_read_only_fields =
596 ARRAY_SIZE(shadow_read_only_fields);
597
598 static unsigned long shadow_read_write_fields[] = {
599 TPR_THRESHOLD,
600 GUEST_RIP,
601 GUEST_RSP,
602 GUEST_CR0,
603 GUEST_CR3,
604 GUEST_CR4,
605 GUEST_INTERRUPTIBILITY_INFO,
606 GUEST_RFLAGS,
607 GUEST_CS_SELECTOR,
608 GUEST_CS_AR_BYTES,
609 GUEST_CS_LIMIT,
610 GUEST_CS_BASE,
611 GUEST_ES_BASE,
612 GUEST_BNDCFGS,
613 CR0_GUEST_HOST_MASK,
614 CR0_READ_SHADOW,
615 CR4_READ_SHADOW,
616 TSC_OFFSET,
617 EXCEPTION_BITMAP,
618 CPU_BASED_VM_EXEC_CONTROL,
619 VM_ENTRY_EXCEPTION_ERROR_CODE,
620 VM_ENTRY_INTR_INFO_FIELD,
621 VM_ENTRY_INSTRUCTION_LEN,
622 VM_ENTRY_EXCEPTION_ERROR_CODE,
623 HOST_FS_BASE,
624 HOST_GS_BASE,
625 HOST_FS_SELECTOR,
626 HOST_GS_SELECTOR
627 };
628 static int max_shadow_read_write_fields =
629 ARRAY_SIZE(shadow_read_write_fields);
630
631 static const unsigned short vmcs_field_to_offset_table[] = {
632 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
633 FIELD(POSTED_INTR_NV, posted_intr_nv),
634 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
635 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
636 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
637 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
638 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
639 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
640 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
641 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
642 FIELD(GUEST_INTR_STATUS, guest_intr_status),
643 FIELD(HOST_ES_SELECTOR, host_es_selector),
644 FIELD(HOST_CS_SELECTOR, host_cs_selector),
645 FIELD(HOST_SS_SELECTOR, host_ss_selector),
646 FIELD(HOST_DS_SELECTOR, host_ds_selector),
647 FIELD(HOST_FS_SELECTOR, host_fs_selector),
648 FIELD(HOST_GS_SELECTOR, host_gs_selector),
649 FIELD(HOST_TR_SELECTOR, host_tr_selector),
650 FIELD64(IO_BITMAP_A, io_bitmap_a),
651 FIELD64(IO_BITMAP_B, io_bitmap_b),
652 FIELD64(MSR_BITMAP, msr_bitmap),
653 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
654 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
655 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
656 FIELD64(TSC_OFFSET, tsc_offset),
657 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
658 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
659 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
660 FIELD64(EPT_POINTER, ept_pointer),
661 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
662 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
663 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
664 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
665 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
666 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
667 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
668 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
669 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
670 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
671 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
672 FIELD64(GUEST_PDPTR0, guest_pdptr0),
673 FIELD64(GUEST_PDPTR1, guest_pdptr1),
674 FIELD64(GUEST_PDPTR2, guest_pdptr2),
675 FIELD64(GUEST_PDPTR3, guest_pdptr3),
676 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
677 FIELD64(HOST_IA32_PAT, host_ia32_pat),
678 FIELD64(HOST_IA32_EFER, host_ia32_efer),
679 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
680 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
681 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
682 FIELD(EXCEPTION_BITMAP, exception_bitmap),
683 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
684 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
685 FIELD(CR3_TARGET_COUNT, cr3_target_count),
686 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
687 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
688 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
689 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
690 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
691 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
692 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
693 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
694 FIELD(TPR_THRESHOLD, tpr_threshold),
695 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
696 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
697 FIELD(VM_EXIT_REASON, vm_exit_reason),
698 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
699 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
700 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
701 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
702 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
703 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
704 FIELD(GUEST_ES_LIMIT, guest_es_limit),
705 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
706 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
707 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
708 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
709 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
710 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
711 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
712 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
713 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
714 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
715 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
716 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
717 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
718 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
719 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
720 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
721 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
722 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
723 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
724 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
725 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
726 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
727 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
728 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
729 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
730 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
731 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
732 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
733 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
734 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
735 FIELD(EXIT_QUALIFICATION, exit_qualification),
736 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
737 FIELD(GUEST_CR0, guest_cr0),
738 FIELD(GUEST_CR3, guest_cr3),
739 FIELD(GUEST_CR4, guest_cr4),
740 FIELD(GUEST_ES_BASE, guest_es_base),
741 FIELD(GUEST_CS_BASE, guest_cs_base),
742 FIELD(GUEST_SS_BASE, guest_ss_base),
743 FIELD(GUEST_DS_BASE, guest_ds_base),
744 FIELD(GUEST_FS_BASE, guest_fs_base),
745 FIELD(GUEST_GS_BASE, guest_gs_base),
746 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
747 FIELD(GUEST_TR_BASE, guest_tr_base),
748 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
749 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
750 FIELD(GUEST_DR7, guest_dr7),
751 FIELD(GUEST_RSP, guest_rsp),
752 FIELD(GUEST_RIP, guest_rip),
753 FIELD(GUEST_RFLAGS, guest_rflags),
754 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
755 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
756 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
757 FIELD(HOST_CR0, host_cr0),
758 FIELD(HOST_CR3, host_cr3),
759 FIELD(HOST_CR4, host_cr4),
760 FIELD(HOST_FS_BASE, host_fs_base),
761 FIELD(HOST_GS_BASE, host_gs_base),
762 FIELD(HOST_TR_BASE, host_tr_base),
763 FIELD(HOST_GDTR_BASE, host_gdtr_base),
764 FIELD(HOST_IDTR_BASE, host_idtr_base),
765 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
766 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
767 FIELD(HOST_RSP, host_rsp),
768 FIELD(HOST_RIP, host_rip),
769 };
770
771 static inline short vmcs_field_to_offset(unsigned long field)
772 {
773 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
774
775 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
776 vmcs_field_to_offset_table[field] == 0)
777 return -ENOENT;
778
779 return vmcs_field_to_offset_table[field];
780 }
781
782 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
783 {
784 return to_vmx(vcpu)->nested.current_vmcs12;
785 }
786
787 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
788 {
789 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
790 if (is_error_page(page))
791 return NULL;
792
793 return page;
794 }
795
796 static void nested_release_page(struct page *page)
797 {
798 kvm_release_page_dirty(page);
799 }
800
801 static void nested_release_page_clean(struct page *page)
802 {
803 kvm_release_page_clean(page);
804 }
805
806 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
807 static u64 construct_eptp(unsigned long root_hpa);
808 static void kvm_cpu_vmxon(u64 addr);
809 static void kvm_cpu_vmxoff(void);
810 static bool vmx_mpx_supported(void);
811 static bool vmx_xsaves_supported(void);
812 static int vmx_vm_has_apicv(struct kvm *kvm);
813 static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu);
814 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
815 static void vmx_set_segment(struct kvm_vcpu *vcpu,
816 struct kvm_segment *var, int seg);
817 static void vmx_get_segment(struct kvm_vcpu *vcpu,
818 struct kvm_segment *var, int seg);
819 static bool guest_state_valid(struct kvm_vcpu *vcpu);
820 static u32 vmx_segment_access_rights(struct kvm_segment *var);
821 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
822 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
823 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
824 static int alloc_identity_pagetable(struct kvm *kvm);
825
826 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
827 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
828 /*
829 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
830 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
831 */
832 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
833 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
834
835 static unsigned long *vmx_io_bitmap_a;
836 static unsigned long *vmx_io_bitmap_b;
837 static unsigned long *vmx_msr_bitmap_legacy;
838 static unsigned long *vmx_msr_bitmap_longmode;
839 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
840 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
841 static unsigned long *vmx_msr_bitmap_nested;
842 static unsigned long *vmx_vmread_bitmap;
843 static unsigned long *vmx_vmwrite_bitmap;
844
845 static bool cpu_has_load_ia32_efer;
846 static bool cpu_has_load_perf_global_ctrl;
847
848 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
849 static DEFINE_SPINLOCK(vmx_vpid_lock);
850
851 static struct vmcs_config {
852 int size;
853 int order;
854 u32 revision_id;
855 u32 pin_based_exec_ctrl;
856 u32 cpu_based_exec_ctrl;
857 u32 cpu_based_2nd_exec_ctrl;
858 u32 vmexit_ctrl;
859 u32 vmentry_ctrl;
860 } vmcs_config;
861
862 static struct vmx_capability {
863 u32 ept;
864 u32 vpid;
865 } vmx_capability;
866
867 #define VMX_SEGMENT_FIELD(seg) \
868 [VCPU_SREG_##seg] = { \
869 .selector = GUEST_##seg##_SELECTOR, \
870 .base = GUEST_##seg##_BASE, \
871 .limit = GUEST_##seg##_LIMIT, \
872 .ar_bytes = GUEST_##seg##_AR_BYTES, \
873 }
874
875 static const struct kvm_vmx_segment_field {
876 unsigned selector;
877 unsigned base;
878 unsigned limit;
879 unsigned ar_bytes;
880 } kvm_vmx_segment_fields[] = {
881 VMX_SEGMENT_FIELD(CS),
882 VMX_SEGMENT_FIELD(DS),
883 VMX_SEGMENT_FIELD(ES),
884 VMX_SEGMENT_FIELD(FS),
885 VMX_SEGMENT_FIELD(GS),
886 VMX_SEGMENT_FIELD(SS),
887 VMX_SEGMENT_FIELD(TR),
888 VMX_SEGMENT_FIELD(LDTR),
889 };
890
891 static u64 host_efer;
892
893 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
894
895 /*
896 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
897 * away by decrementing the array size.
898 */
899 static const u32 vmx_msr_index[] = {
900 #ifdef CONFIG_X86_64
901 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
902 #endif
903 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
904 };
905
906 static inline bool is_page_fault(u32 intr_info)
907 {
908 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
909 INTR_INFO_VALID_MASK)) ==
910 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
911 }
912
913 static inline bool is_no_device(u32 intr_info)
914 {
915 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
916 INTR_INFO_VALID_MASK)) ==
917 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
918 }
919
920 static inline bool is_invalid_opcode(u32 intr_info)
921 {
922 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
923 INTR_INFO_VALID_MASK)) ==
924 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
925 }
926
927 static inline bool is_external_interrupt(u32 intr_info)
928 {
929 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
930 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
931 }
932
933 static inline bool is_machine_check(u32 intr_info)
934 {
935 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
936 INTR_INFO_VALID_MASK)) ==
937 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
938 }
939
940 static inline bool cpu_has_vmx_msr_bitmap(void)
941 {
942 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
943 }
944
945 static inline bool cpu_has_vmx_tpr_shadow(void)
946 {
947 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
948 }
949
950 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
951 {
952 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
953 }
954
955 static inline bool cpu_has_secondary_exec_ctrls(void)
956 {
957 return vmcs_config.cpu_based_exec_ctrl &
958 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
959 }
960
961 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
962 {
963 return vmcs_config.cpu_based_2nd_exec_ctrl &
964 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
965 }
966
967 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
968 {
969 return vmcs_config.cpu_based_2nd_exec_ctrl &
970 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
971 }
972
973 static inline bool cpu_has_vmx_apic_register_virt(void)
974 {
975 return vmcs_config.cpu_based_2nd_exec_ctrl &
976 SECONDARY_EXEC_APIC_REGISTER_VIRT;
977 }
978
979 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
980 {
981 return vmcs_config.cpu_based_2nd_exec_ctrl &
982 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
983 }
984
985 static inline bool cpu_has_vmx_posted_intr(void)
986 {
987 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
988 }
989
990 static inline bool cpu_has_vmx_apicv(void)
991 {
992 return cpu_has_vmx_apic_register_virt() &&
993 cpu_has_vmx_virtual_intr_delivery() &&
994 cpu_has_vmx_posted_intr();
995 }
996
997 static inline bool cpu_has_vmx_flexpriority(void)
998 {
999 return cpu_has_vmx_tpr_shadow() &&
1000 cpu_has_vmx_virtualize_apic_accesses();
1001 }
1002
1003 static inline bool cpu_has_vmx_ept_execute_only(void)
1004 {
1005 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1006 }
1007
1008 static inline bool cpu_has_vmx_ept_2m_page(void)
1009 {
1010 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1011 }
1012
1013 static inline bool cpu_has_vmx_ept_1g_page(void)
1014 {
1015 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1016 }
1017
1018 static inline bool cpu_has_vmx_ept_4levels(void)
1019 {
1020 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1021 }
1022
1023 static inline bool cpu_has_vmx_ept_ad_bits(void)
1024 {
1025 return vmx_capability.ept & VMX_EPT_AD_BIT;
1026 }
1027
1028 static inline bool cpu_has_vmx_invept_context(void)
1029 {
1030 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1031 }
1032
1033 static inline bool cpu_has_vmx_invept_global(void)
1034 {
1035 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1036 }
1037
1038 static inline bool cpu_has_vmx_invvpid_single(void)
1039 {
1040 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1041 }
1042
1043 static inline bool cpu_has_vmx_invvpid_global(void)
1044 {
1045 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1046 }
1047
1048 static inline bool cpu_has_vmx_ept(void)
1049 {
1050 return vmcs_config.cpu_based_2nd_exec_ctrl &
1051 SECONDARY_EXEC_ENABLE_EPT;
1052 }
1053
1054 static inline bool cpu_has_vmx_unrestricted_guest(void)
1055 {
1056 return vmcs_config.cpu_based_2nd_exec_ctrl &
1057 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1058 }
1059
1060 static inline bool cpu_has_vmx_ple(void)
1061 {
1062 return vmcs_config.cpu_based_2nd_exec_ctrl &
1063 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1064 }
1065
1066 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1067 {
1068 return flexpriority_enabled && irqchip_in_kernel(kvm);
1069 }
1070
1071 static inline bool cpu_has_vmx_vpid(void)
1072 {
1073 return vmcs_config.cpu_based_2nd_exec_ctrl &
1074 SECONDARY_EXEC_ENABLE_VPID;
1075 }
1076
1077 static inline bool cpu_has_vmx_rdtscp(void)
1078 {
1079 return vmcs_config.cpu_based_2nd_exec_ctrl &
1080 SECONDARY_EXEC_RDTSCP;
1081 }
1082
1083 static inline bool cpu_has_vmx_invpcid(void)
1084 {
1085 return vmcs_config.cpu_based_2nd_exec_ctrl &
1086 SECONDARY_EXEC_ENABLE_INVPCID;
1087 }
1088
1089 static inline bool cpu_has_virtual_nmis(void)
1090 {
1091 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1092 }
1093
1094 static inline bool cpu_has_vmx_wbinvd_exit(void)
1095 {
1096 return vmcs_config.cpu_based_2nd_exec_ctrl &
1097 SECONDARY_EXEC_WBINVD_EXITING;
1098 }
1099
1100 static inline bool cpu_has_vmx_shadow_vmcs(void)
1101 {
1102 u64 vmx_msr;
1103 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1104 /* check if the cpu supports writing r/o exit information fields */
1105 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1106 return false;
1107
1108 return vmcs_config.cpu_based_2nd_exec_ctrl &
1109 SECONDARY_EXEC_SHADOW_VMCS;
1110 }
1111
1112 static inline bool cpu_has_vmx_pml(void)
1113 {
1114 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1115 }
1116
1117 static inline bool report_flexpriority(void)
1118 {
1119 return flexpriority_enabled;
1120 }
1121
1122 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1123 {
1124 return vmcs12->cpu_based_vm_exec_control & bit;
1125 }
1126
1127 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1128 {
1129 return (vmcs12->cpu_based_vm_exec_control &
1130 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1131 (vmcs12->secondary_vm_exec_control & bit);
1132 }
1133
1134 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1135 {
1136 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1137 }
1138
1139 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1140 {
1141 return vmcs12->pin_based_vm_exec_control &
1142 PIN_BASED_VMX_PREEMPTION_TIMER;
1143 }
1144
1145 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1146 {
1147 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1148 }
1149
1150 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1151 {
1152 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1153 vmx_xsaves_supported();
1154 }
1155
1156 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1157 {
1158 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1159 }
1160
1161 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1162 {
1163 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1164 }
1165
1166 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1167 {
1168 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1169 }
1170
1171 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1172 {
1173 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1174 }
1175
1176 static inline bool is_exception(u32 intr_info)
1177 {
1178 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1179 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1180 }
1181
1182 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1183 u32 exit_intr_info,
1184 unsigned long exit_qualification);
1185 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1186 struct vmcs12 *vmcs12,
1187 u32 reason, unsigned long qualification);
1188
1189 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1190 {
1191 int i;
1192
1193 for (i = 0; i < vmx->nmsrs; ++i)
1194 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1195 return i;
1196 return -1;
1197 }
1198
1199 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1200 {
1201 struct {
1202 u64 vpid : 16;
1203 u64 rsvd : 48;
1204 u64 gva;
1205 } operand = { vpid, 0, gva };
1206
1207 asm volatile (__ex(ASM_VMX_INVVPID)
1208 /* CF==1 or ZF==1 --> rc = -1 */
1209 "; ja 1f ; ud2 ; 1:"
1210 : : "a"(&operand), "c"(ext) : "cc", "memory");
1211 }
1212
1213 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1214 {
1215 struct {
1216 u64 eptp, gpa;
1217 } operand = {eptp, gpa};
1218
1219 asm volatile (__ex(ASM_VMX_INVEPT)
1220 /* CF==1 or ZF==1 --> rc = -1 */
1221 "; ja 1f ; ud2 ; 1:\n"
1222 : : "a" (&operand), "c" (ext) : "cc", "memory");
1223 }
1224
1225 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1226 {
1227 int i;
1228
1229 i = __find_msr_index(vmx, msr);
1230 if (i >= 0)
1231 return &vmx->guest_msrs[i];
1232 return NULL;
1233 }
1234
1235 static void vmcs_clear(struct vmcs *vmcs)
1236 {
1237 u64 phys_addr = __pa(vmcs);
1238 u8 error;
1239
1240 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1241 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1242 : "cc", "memory");
1243 if (error)
1244 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1245 vmcs, phys_addr);
1246 }
1247
1248 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1249 {
1250 vmcs_clear(loaded_vmcs->vmcs);
1251 loaded_vmcs->cpu = -1;
1252 loaded_vmcs->launched = 0;
1253 }
1254
1255 static void vmcs_load(struct vmcs *vmcs)
1256 {
1257 u64 phys_addr = __pa(vmcs);
1258 u8 error;
1259
1260 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1261 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1262 : "cc", "memory");
1263 if (error)
1264 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1265 vmcs, phys_addr);
1266 }
1267
1268 #ifdef CONFIG_KEXEC_CORE
1269 /*
1270 * This bitmap is used to indicate whether the vmclear
1271 * operation is enabled on all cpus. All disabled by
1272 * default.
1273 */
1274 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1275
1276 static inline void crash_enable_local_vmclear(int cpu)
1277 {
1278 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1279 }
1280
1281 static inline void crash_disable_local_vmclear(int cpu)
1282 {
1283 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1284 }
1285
1286 static inline int crash_local_vmclear_enabled(int cpu)
1287 {
1288 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1289 }
1290
1291 static void crash_vmclear_local_loaded_vmcss(void)
1292 {
1293 int cpu = raw_smp_processor_id();
1294 struct loaded_vmcs *v;
1295
1296 if (!crash_local_vmclear_enabled(cpu))
1297 return;
1298
1299 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1300 loaded_vmcss_on_cpu_link)
1301 vmcs_clear(v->vmcs);
1302 }
1303 #else
1304 static inline void crash_enable_local_vmclear(int cpu) { }
1305 static inline void crash_disable_local_vmclear(int cpu) { }
1306 #endif /* CONFIG_KEXEC_CORE */
1307
1308 static void __loaded_vmcs_clear(void *arg)
1309 {
1310 struct loaded_vmcs *loaded_vmcs = arg;
1311 int cpu = raw_smp_processor_id();
1312
1313 if (loaded_vmcs->cpu != cpu)
1314 return; /* vcpu migration can race with cpu offline */
1315 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1316 per_cpu(current_vmcs, cpu) = NULL;
1317 crash_disable_local_vmclear(cpu);
1318 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1319
1320 /*
1321 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1322 * is before setting loaded_vmcs->vcpu to -1 which is done in
1323 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1324 * then adds the vmcs into percpu list before it is deleted.
1325 */
1326 smp_wmb();
1327
1328 loaded_vmcs_init(loaded_vmcs);
1329 crash_enable_local_vmclear(cpu);
1330 }
1331
1332 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1333 {
1334 int cpu = loaded_vmcs->cpu;
1335
1336 if (cpu != -1)
1337 smp_call_function_single(cpu,
1338 __loaded_vmcs_clear, loaded_vmcs, 1);
1339 }
1340
1341 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1342 {
1343 if (vmx->vpid == 0)
1344 return;
1345
1346 if (cpu_has_vmx_invvpid_single())
1347 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1348 }
1349
1350 static inline void vpid_sync_vcpu_global(void)
1351 {
1352 if (cpu_has_vmx_invvpid_global())
1353 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1354 }
1355
1356 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1357 {
1358 if (cpu_has_vmx_invvpid_single())
1359 vpid_sync_vcpu_single(vmx);
1360 else
1361 vpid_sync_vcpu_global();
1362 }
1363
1364 static inline void ept_sync_global(void)
1365 {
1366 if (cpu_has_vmx_invept_global())
1367 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1368 }
1369
1370 static inline void ept_sync_context(u64 eptp)
1371 {
1372 if (enable_ept) {
1373 if (cpu_has_vmx_invept_context())
1374 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1375 else
1376 ept_sync_global();
1377 }
1378 }
1379
1380 static __always_inline unsigned long vmcs_readl(unsigned long field)
1381 {
1382 unsigned long value;
1383
1384 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1385 : "=a"(value) : "d"(field) : "cc");
1386 return value;
1387 }
1388
1389 static __always_inline u16 vmcs_read16(unsigned long field)
1390 {
1391 return vmcs_readl(field);
1392 }
1393
1394 static __always_inline u32 vmcs_read32(unsigned long field)
1395 {
1396 return vmcs_readl(field);
1397 }
1398
1399 static __always_inline u64 vmcs_read64(unsigned long field)
1400 {
1401 #ifdef CONFIG_X86_64
1402 return vmcs_readl(field);
1403 #else
1404 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1405 #endif
1406 }
1407
1408 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1409 {
1410 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1411 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1412 dump_stack();
1413 }
1414
1415 static void vmcs_writel(unsigned long field, unsigned long value)
1416 {
1417 u8 error;
1418
1419 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1420 : "=q"(error) : "a"(value), "d"(field) : "cc");
1421 if (unlikely(error))
1422 vmwrite_error(field, value);
1423 }
1424
1425 static void vmcs_write16(unsigned long field, u16 value)
1426 {
1427 vmcs_writel(field, value);
1428 }
1429
1430 static void vmcs_write32(unsigned long field, u32 value)
1431 {
1432 vmcs_writel(field, value);
1433 }
1434
1435 static void vmcs_write64(unsigned long field, u64 value)
1436 {
1437 vmcs_writel(field, value);
1438 #ifndef CONFIG_X86_64
1439 asm volatile ("");
1440 vmcs_writel(field+1, value >> 32);
1441 #endif
1442 }
1443
1444 static void vmcs_clear_bits(unsigned long field, u32 mask)
1445 {
1446 vmcs_writel(field, vmcs_readl(field) & ~mask);
1447 }
1448
1449 static void vmcs_set_bits(unsigned long field, u32 mask)
1450 {
1451 vmcs_writel(field, vmcs_readl(field) | mask);
1452 }
1453
1454 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1455 {
1456 vmcs_write32(VM_ENTRY_CONTROLS, val);
1457 vmx->vm_entry_controls_shadow = val;
1458 }
1459
1460 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1461 {
1462 if (vmx->vm_entry_controls_shadow != val)
1463 vm_entry_controls_init(vmx, val);
1464 }
1465
1466 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1467 {
1468 return vmx->vm_entry_controls_shadow;
1469 }
1470
1471
1472 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1473 {
1474 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1475 }
1476
1477 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1478 {
1479 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1480 }
1481
1482 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1483 {
1484 vmcs_write32(VM_EXIT_CONTROLS, val);
1485 vmx->vm_exit_controls_shadow = val;
1486 }
1487
1488 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1489 {
1490 if (vmx->vm_exit_controls_shadow != val)
1491 vm_exit_controls_init(vmx, val);
1492 }
1493
1494 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1495 {
1496 return vmx->vm_exit_controls_shadow;
1497 }
1498
1499
1500 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1501 {
1502 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1503 }
1504
1505 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1506 {
1507 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1508 }
1509
1510 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1511 {
1512 vmx->segment_cache.bitmask = 0;
1513 }
1514
1515 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1516 unsigned field)
1517 {
1518 bool ret;
1519 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1520
1521 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1522 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1523 vmx->segment_cache.bitmask = 0;
1524 }
1525 ret = vmx->segment_cache.bitmask & mask;
1526 vmx->segment_cache.bitmask |= mask;
1527 return ret;
1528 }
1529
1530 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1531 {
1532 u16 *p = &vmx->segment_cache.seg[seg].selector;
1533
1534 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1535 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1536 return *p;
1537 }
1538
1539 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1540 {
1541 ulong *p = &vmx->segment_cache.seg[seg].base;
1542
1543 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1544 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1545 return *p;
1546 }
1547
1548 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1549 {
1550 u32 *p = &vmx->segment_cache.seg[seg].limit;
1551
1552 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1553 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1554 return *p;
1555 }
1556
1557 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1558 {
1559 u32 *p = &vmx->segment_cache.seg[seg].ar;
1560
1561 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1562 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1563 return *p;
1564 }
1565
1566 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1567 {
1568 u32 eb;
1569
1570 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1571 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1572 if ((vcpu->guest_debug &
1573 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1574 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1575 eb |= 1u << BP_VECTOR;
1576 if (to_vmx(vcpu)->rmode.vm86_active)
1577 eb = ~0;
1578 if (enable_ept)
1579 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1580 if (vcpu->fpu_active)
1581 eb &= ~(1u << NM_VECTOR);
1582
1583 /* When we are running a nested L2 guest and L1 specified for it a
1584 * certain exception bitmap, we must trap the same exceptions and pass
1585 * them to L1. When running L2, we will only handle the exceptions
1586 * specified above if L1 did not want them.
1587 */
1588 if (is_guest_mode(vcpu))
1589 eb |= get_vmcs12(vcpu)->exception_bitmap;
1590
1591 vmcs_write32(EXCEPTION_BITMAP, eb);
1592 }
1593
1594 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1595 unsigned long entry, unsigned long exit)
1596 {
1597 vm_entry_controls_clearbit(vmx, entry);
1598 vm_exit_controls_clearbit(vmx, exit);
1599 }
1600
1601 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1602 {
1603 unsigned i;
1604 struct msr_autoload *m = &vmx->msr_autoload;
1605
1606 switch (msr) {
1607 case MSR_EFER:
1608 if (cpu_has_load_ia32_efer) {
1609 clear_atomic_switch_msr_special(vmx,
1610 VM_ENTRY_LOAD_IA32_EFER,
1611 VM_EXIT_LOAD_IA32_EFER);
1612 return;
1613 }
1614 break;
1615 case MSR_CORE_PERF_GLOBAL_CTRL:
1616 if (cpu_has_load_perf_global_ctrl) {
1617 clear_atomic_switch_msr_special(vmx,
1618 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1619 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1620 return;
1621 }
1622 break;
1623 }
1624
1625 for (i = 0; i < m->nr; ++i)
1626 if (m->guest[i].index == msr)
1627 break;
1628
1629 if (i == m->nr)
1630 return;
1631 --m->nr;
1632 m->guest[i] = m->guest[m->nr];
1633 m->host[i] = m->host[m->nr];
1634 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1635 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1636 }
1637
1638 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1639 unsigned long entry, unsigned long exit,
1640 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1641 u64 guest_val, u64 host_val)
1642 {
1643 vmcs_write64(guest_val_vmcs, guest_val);
1644 vmcs_write64(host_val_vmcs, host_val);
1645 vm_entry_controls_setbit(vmx, entry);
1646 vm_exit_controls_setbit(vmx, exit);
1647 }
1648
1649 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1650 u64 guest_val, u64 host_val)
1651 {
1652 unsigned i;
1653 struct msr_autoload *m = &vmx->msr_autoload;
1654
1655 switch (msr) {
1656 case MSR_EFER:
1657 if (cpu_has_load_ia32_efer) {
1658 add_atomic_switch_msr_special(vmx,
1659 VM_ENTRY_LOAD_IA32_EFER,
1660 VM_EXIT_LOAD_IA32_EFER,
1661 GUEST_IA32_EFER,
1662 HOST_IA32_EFER,
1663 guest_val, host_val);
1664 return;
1665 }
1666 break;
1667 case MSR_CORE_PERF_GLOBAL_CTRL:
1668 if (cpu_has_load_perf_global_ctrl) {
1669 add_atomic_switch_msr_special(vmx,
1670 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1671 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1672 GUEST_IA32_PERF_GLOBAL_CTRL,
1673 HOST_IA32_PERF_GLOBAL_CTRL,
1674 guest_val, host_val);
1675 return;
1676 }
1677 break;
1678 }
1679
1680 for (i = 0; i < m->nr; ++i)
1681 if (m->guest[i].index == msr)
1682 break;
1683
1684 if (i == NR_AUTOLOAD_MSRS) {
1685 printk_once(KERN_WARNING "Not enough msr switch entries. "
1686 "Can't add msr %x\n", msr);
1687 return;
1688 } else if (i == m->nr) {
1689 ++m->nr;
1690 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1691 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1692 }
1693
1694 m->guest[i].index = msr;
1695 m->guest[i].value = guest_val;
1696 m->host[i].index = msr;
1697 m->host[i].value = host_val;
1698 }
1699
1700 static void reload_tss(void)
1701 {
1702 /*
1703 * VT restores TR but not its size. Useless.
1704 */
1705 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1706 struct desc_struct *descs;
1707
1708 descs = (void *)gdt->address;
1709 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1710 load_TR_desc();
1711 }
1712
1713 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1714 {
1715 u64 guest_efer;
1716 u64 ignore_bits;
1717
1718 guest_efer = vmx->vcpu.arch.efer;
1719
1720 /*
1721 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1722 * outside long mode
1723 */
1724 ignore_bits = EFER_NX | EFER_SCE;
1725 #ifdef CONFIG_X86_64
1726 ignore_bits |= EFER_LMA | EFER_LME;
1727 /* SCE is meaningful only in long mode on Intel */
1728 if (guest_efer & EFER_LMA)
1729 ignore_bits &= ~(u64)EFER_SCE;
1730 #endif
1731 guest_efer &= ~ignore_bits;
1732 guest_efer |= host_efer & ignore_bits;
1733 vmx->guest_msrs[efer_offset].data = guest_efer;
1734 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1735
1736 clear_atomic_switch_msr(vmx, MSR_EFER);
1737
1738 /*
1739 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1740 * On CPUs that support "load IA32_EFER", always switch EFER
1741 * atomically, since it's faster than switching it manually.
1742 */
1743 if (cpu_has_load_ia32_efer ||
1744 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1745 guest_efer = vmx->vcpu.arch.efer;
1746 if (!(guest_efer & EFER_LMA))
1747 guest_efer &= ~EFER_LME;
1748 if (guest_efer != host_efer)
1749 add_atomic_switch_msr(vmx, MSR_EFER,
1750 guest_efer, host_efer);
1751 return false;
1752 }
1753
1754 return true;
1755 }
1756
1757 static unsigned long segment_base(u16 selector)
1758 {
1759 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1760 struct desc_struct *d;
1761 unsigned long table_base;
1762 unsigned long v;
1763
1764 if (!(selector & ~3))
1765 return 0;
1766
1767 table_base = gdt->address;
1768
1769 if (selector & 4) { /* from ldt */
1770 u16 ldt_selector = kvm_read_ldt();
1771
1772 if (!(ldt_selector & ~3))
1773 return 0;
1774
1775 table_base = segment_base(ldt_selector);
1776 }
1777 d = (struct desc_struct *)(table_base + (selector & ~7));
1778 v = get_desc_base(d);
1779 #ifdef CONFIG_X86_64
1780 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1781 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1782 #endif
1783 return v;
1784 }
1785
1786 static inline unsigned long kvm_read_tr_base(void)
1787 {
1788 u16 tr;
1789 asm("str %0" : "=g"(tr));
1790 return segment_base(tr);
1791 }
1792
1793 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1794 {
1795 struct vcpu_vmx *vmx = to_vmx(vcpu);
1796 int i;
1797
1798 if (vmx->host_state.loaded)
1799 return;
1800
1801 vmx->host_state.loaded = 1;
1802 /*
1803 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1804 * allow segment selectors with cpl > 0 or ti == 1.
1805 */
1806 vmx->host_state.ldt_sel = kvm_read_ldt();
1807 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1808 savesegment(fs, vmx->host_state.fs_sel);
1809 if (!(vmx->host_state.fs_sel & 7)) {
1810 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1811 vmx->host_state.fs_reload_needed = 0;
1812 } else {
1813 vmcs_write16(HOST_FS_SELECTOR, 0);
1814 vmx->host_state.fs_reload_needed = 1;
1815 }
1816 savesegment(gs, vmx->host_state.gs_sel);
1817 if (!(vmx->host_state.gs_sel & 7))
1818 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1819 else {
1820 vmcs_write16(HOST_GS_SELECTOR, 0);
1821 vmx->host_state.gs_ldt_reload_needed = 1;
1822 }
1823
1824 #ifdef CONFIG_X86_64
1825 savesegment(ds, vmx->host_state.ds_sel);
1826 savesegment(es, vmx->host_state.es_sel);
1827 #endif
1828
1829 #ifdef CONFIG_X86_64
1830 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1831 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1832 #else
1833 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1834 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1835 #endif
1836
1837 #ifdef CONFIG_X86_64
1838 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1839 if (is_long_mode(&vmx->vcpu))
1840 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1841 #endif
1842 if (boot_cpu_has(X86_FEATURE_MPX))
1843 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1844 for (i = 0; i < vmx->save_nmsrs; ++i)
1845 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1846 vmx->guest_msrs[i].data,
1847 vmx->guest_msrs[i].mask);
1848 }
1849
1850 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1851 {
1852 if (!vmx->host_state.loaded)
1853 return;
1854
1855 ++vmx->vcpu.stat.host_state_reload;
1856 vmx->host_state.loaded = 0;
1857 #ifdef CONFIG_X86_64
1858 if (is_long_mode(&vmx->vcpu))
1859 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1860 #endif
1861 if (vmx->host_state.gs_ldt_reload_needed) {
1862 kvm_load_ldt(vmx->host_state.ldt_sel);
1863 #ifdef CONFIG_X86_64
1864 load_gs_index(vmx->host_state.gs_sel);
1865 #else
1866 loadsegment(gs, vmx->host_state.gs_sel);
1867 #endif
1868 }
1869 if (vmx->host_state.fs_reload_needed)
1870 loadsegment(fs, vmx->host_state.fs_sel);
1871 #ifdef CONFIG_X86_64
1872 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1873 loadsegment(ds, vmx->host_state.ds_sel);
1874 loadsegment(es, vmx->host_state.es_sel);
1875 }
1876 #endif
1877 reload_tss();
1878 #ifdef CONFIG_X86_64
1879 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1880 #endif
1881 if (vmx->host_state.msr_host_bndcfgs)
1882 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1883 /*
1884 * If the FPU is not active (through the host task or
1885 * the guest vcpu), then restore the cr0.TS bit.
1886 */
1887 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
1888 stts();
1889 load_gdt(this_cpu_ptr(&host_gdt));
1890 }
1891
1892 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1893 {
1894 preempt_disable();
1895 __vmx_load_host_state(vmx);
1896 preempt_enable();
1897 }
1898
1899 /*
1900 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1901 * vcpu mutex is already taken.
1902 */
1903 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1904 {
1905 struct vcpu_vmx *vmx = to_vmx(vcpu);
1906 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1907
1908 if (!vmm_exclusive)
1909 kvm_cpu_vmxon(phys_addr);
1910 else if (vmx->loaded_vmcs->cpu != cpu)
1911 loaded_vmcs_clear(vmx->loaded_vmcs);
1912
1913 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1914 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1915 vmcs_load(vmx->loaded_vmcs->vmcs);
1916 }
1917
1918 if (vmx->loaded_vmcs->cpu != cpu) {
1919 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1920 unsigned long sysenter_esp;
1921
1922 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1923 local_irq_disable();
1924 crash_disable_local_vmclear(cpu);
1925
1926 /*
1927 * Read loaded_vmcs->cpu should be before fetching
1928 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1929 * See the comments in __loaded_vmcs_clear().
1930 */
1931 smp_rmb();
1932
1933 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1934 &per_cpu(loaded_vmcss_on_cpu, cpu));
1935 crash_enable_local_vmclear(cpu);
1936 local_irq_enable();
1937
1938 /*
1939 * Linux uses per-cpu TSS and GDT, so set these when switching
1940 * processors.
1941 */
1942 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1943 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1944
1945 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1946 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1947 vmx->loaded_vmcs->cpu = cpu;
1948 }
1949 }
1950
1951 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1952 {
1953 __vmx_load_host_state(to_vmx(vcpu));
1954 if (!vmm_exclusive) {
1955 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1956 vcpu->cpu = -1;
1957 kvm_cpu_vmxoff();
1958 }
1959 }
1960
1961 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1962 {
1963 ulong cr0;
1964
1965 if (vcpu->fpu_active)
1966 return;
1967 vcpu->fpu_active = 1;
1968 cr0 = vmcs_readl(GUEST_CR0);
1969 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1970 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1971 vmcs_writel(GUEST_CR0, cr0);
1972 update_exception_bitmap(vcpu);
1973 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1974 if (is_guest_mode(vcpu))
1975 vcpu->arch.cr0_guest_owned_bits &=
1976 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1977 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1978 }
1979
1980 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1981
1982 /*
1983 * Return the cr0 value that a nested guest would read. This is a combination
1984 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1985 * its hypervisor (cr0_read_shadow).
1986 */
1987 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1988 {
1989 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1990 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1991 }
1992 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1993 {
1994 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1995 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1996 }
1997
1998 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1999 {
2000 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2001 * set this *before* calling this function.
2002 */
2003 vmx_decache_cr0_guest_bits(vcpu);
2004 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2005 update_exception_bitmap(vcpu);
2006 vcpu->arch.cr0_guest_owned_bits = 0;
2007 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2008 if (is_guest_mode(vcpu)) {
2009 /*
2010 * L1's specified read shadow might not contain the TS bit,
2011 * so now that we turned on shadowing of this bit, we need to
2012 * set this bit of the shadow. Like in nested_vmx_run we need
2013 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2014 * up-to-date here because we just decached cr0.TS (and we'll
2015 * only update vmcs12->guest_cr0 on nested exit).
2016 */
2017 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2018 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2019 (vcpu->arch.cr0 & X86_CR0_TS);
2020 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2021 } else
2022 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2023 }
2024
2025 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2026 {
2027 unsigned long rflags, save_rflags;
2028
2029 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2030 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2031 rflags = vmcs_readl(GUEST_RFLAGS);
2032 if (to_vmx(vcpu)->rmode.vm86_active) {
2033 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2034 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2035 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2036 }
2037 to_vmx(vcpu)->rflags = rflags;
2038 }
2039 return to_vmx(vcpu)->rflags;
2040 }
2041
2042 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2043 {
2044 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2045 to_vmx(vcpu)->rflags = rflags;
2046 if (to_vmx(vcpu)->rmode.vm86_active) {
2047 to_vmx(vcpu)->rmode.save_rflags = rflags;
2048 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2049 }
2050 vmcs_writel(GUEST_RFLAGS, rflags);
2051 }
2052
2053 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2054 {
2055 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2056 int ret = 0;
2057
2058 if (interruptibility & GUEST_INTR_STATE_STI)
2059 ret |= KVM_X86_SHADOW_INT_STI;
2060 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2061 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2062
2063 return ret;
2064 }
2065
2066 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2067 {
2068 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2069 u32 interruptibility = interruptibility_old;
2070
2071 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2072
2073 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2074 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2075 else if (mask & KVM_X86_SHADOW_INT_STI)
2076 interruptibility |= GUEST_INTR_STATE_STI;
2077
2078 if ((interruptibility != interruptibility_old))
2079 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2080 }
2081
2082 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2083 {
2084 unsigned long rip;
2085
2086 rip = kvm_rip_read(vcpu);
2087 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2088 kvm_rip_write(vcpu, rip);
2089
2090 /* skipping an emulated instruction also counts */
2091 vmx_set_interrupt_shadow(vcpu, 0);
2092 }
2093
2094 /*
2095 * KVM wants to inject page-faults which it got to the guest. This function
2096 * checks whether in a nested guest, we need to inject them to L1 or L2.
2097 */
2098 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2099 {
2100 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2101
2102 if (!(vmcs12->exception_bitmap & (1u << nr)))
2103 return 0;
2104
2105 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2106 vmcs_read32(VM_EXIT_INTR_INFO),
2107 vmcs_readl(EXIT_QUALIFICATION));
2108 return 1;
2109 }
2110
2111 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2112 bool has_error_code, u32 error_code,
2113 bool reinject)
2114 {
2115 struct vcpu_vmx *vmx = to_vmx(vcpu);
2116 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2117
2118 if (!reinject && is_guest_mode(vcpu) &&
2119 nested_vmx_check_exception(vcpu, nr))
2120 return;
2121
2122 if (has_error_code) {
2123 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2124 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2125 }
2126
2127 if (vmx->rmode.vm86_active) {
2128 int inc_eip = 0;
2129 if (kvm_exception_is_soft(nr))
2130 inc_eip = vcpu->arch.event_exit_inst_len;
2131 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2132 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2133 return;
2134 }
2135
2136 if (kvm_exception_is_soft(nr)) {
2137 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2138 vmx->vcpu.arch.event_exit_inst_len);
2139 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2140 } else
2141 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2142
2143 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2144 }
2145
2146 static bool vmx_rdtscp_supported(void)
2147 {
2148 return cpu_has_vmx_rdtscp();
2149 }
2150
2151 static bool vmx_invpcid_supported(void)
2152 {
2153 return cpu_has_vmx_invpcid() && enable_ept;
2154 }
2155
2156 /*
2157 * Swap MSR entry in host/guest MSR entry array.
2158 */
2159 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2160 {
2161 struct shared_msr_entry tmp;
2162
2163 tmp = vmx->guest_msrs[to];
2164 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2165 vmx->guest_msrs[from] = tmp;
2166 }
2167
2168 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2169 {
2170 unsigned long *msr_bitmap;
2171
2172 if (is_guest_mode(vcpu))
2173 msr_bitmap = vmx_msr_bitmap_nested;
2174 else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
2175 if (is_long_mode(vcpu))
2176 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2177 else
2178 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2179 } else {
2180 if (is_long_mode(vcpu))
2181 msr_bitmap = vmx_msr_bitmap_longmode;
2182 else
2183 msr_bitmap = vmx_msr_bitmap_legacy;
2184 }
2185
2186 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2187 }
2188
2189 /*
2190 * Set up the vmcs to automatically save and restore system
2191 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2192 * mode, as fiddling with msrs is very expensive.
2193 */
2194 static void setup_msrs(struct vcpu_vmx *vmx)
2195 {
2196 int save_nmsrs, index;
2197
2198 save_nmsrs = 0;
2199 #ifdef CONFIG_X86_64
2200 if (is_long_mode(&vmx->vcpu)) {
2201 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2202 if (index >= 0)
2203 move_msr_up(vmx, index, save_nmsrs++);
2204 index = __find_msr_index(vmx, MSR_LSTAR);
2205 if (index >= 0)
2206 move_msr_up(vmx, index, save_nmsrs++);
2207 index = __find_msr_index(vmx, MSR_CSTAR);
2208 if (index >= 0)
2209 move_msr_up(vmx, index, save_nmsrs++);
2210 index = __find_msr_index(vmx, MSR_TSC_AUX);
2211 if (index >= 0 && vmx->rdtscp_enabled)
2212 move_msr_up(vmx, index, save_nmsrs++);
2213 /*
2214 * MSR_STAR is only needed on long mode guests, and only
2215 * if efer.sce is enabled.
2216 */
2217 index = __find_msr_index(vmx, MSR_STAR);
2218 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2219 move_msr_up(vmx, index, save_nmsrs++);
2220 }
2221 #endif
2222 index = __find_msr_index(vmx, MSR_EFER);
2223 if (index >= 0 && update_transition_efer(vmx, index))
2224 move_msr_up(vmx, index, save_nmsrs++);
2225
2226 vmx->save_nmsrs = save_nmsrs;
2227
2228 if (cpu_has_vmx_msr_bitmap())
2229 vmx_set_msr_bitmap(&vmx->vcpu);
2230 }
2231
2232 /*
2233 * reads and returns guest's timestamp counter "register"
2234 * guest_tsc = host_tsc + tsc_offset -- 21.3
2235 */
2236 static u64 guest_read_tsc(void)
2237 {
2238 u64 host_tsc, tsc_offset;
2239
2240 host_tsc = rdtsc();
2241 tsc_offset = vmcs_read64(TSC_OFFSET);
2242 return host_tsc + tsc_offset;
2243 }
2244
2245 /*
2246 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2247 * counter, even if a nested guest (L2) is currently running.
2248 */
2249 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2250 {
2251 u64 tsc_offset;
2252
2253 tsc_offset = is_guest_mode(vcpu) ?
2254 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2255 vmcs_read64(TSC_OFFSET);
2256 return host_tsc + tsc_offset;
2257 }
2258
2259 /*
2260 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2261 * software catchup for faster rates on slower CPUs.
2262 */
2263 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2264 {
2265 if (!scale)
2266 return;
2267
2268 if (user_tsc_khz > tsc_khz) {
2269 vcpu->arch.tsc_catchup = 1;
2270 vcpu->arch.tsc_always_catchup = 1;
2271 } else
2272 WARN(1, "user requested TSC rate below hardware speed\n");
2273 }
2274
2275 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2276 {
2277 return vmcs_read64(TSC_OFFSET);
2278 }
2279
2280 /*
2281 * writes 'offset' into guest's timestamp counter offset register
2282 */
2283 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2284 {
2285 if (is_guest_mode(vcpu)) {
2286 /*
2287 * We're here if L1 chose not to trap WRMSR to TSC. According
2288 * to the spec, this should set L1's TSC; The offset that L1
2289 * set for L2 remains unchanged, and still needs to be added
2290 * to the newly set TSC to get L2's TSC.
2291 */
2292 struct vmcs12 *vmcs12;
2293 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2294 /* recalculate vmcs02.TSC_OFFSET: */
2295 vmcs12 = get_vmcs12(vcpu);
2296 vmcs_write64(TSC_OFFSET, offset +
2297 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2298 vmcs12->tsc_offset : 0));
2299 } else {
2300 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2301 vmcs_read64(TSC_OFFSET), offset);
2302 vmcs_write64(TSC_OFFSET, offset);
2303 }
2304 }
2305
2306 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2307 {
2308 u64 offset = vmcs_read64(TSC_OFFSET);
2309
2310 vmcs_write64(TSC_OFFSET, offset + adjustment);
2311 if (is_guest_mode(vcpu)) {
2312 /* Even when running L2, the adjustment needs to apply to L1 */
2313 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2314 } else
2315 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2316 offset + adjustment);
2317 }
2318
2319 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2320 {
2321 return target_tsc - rdtsc();
2322 }
2323
2324 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2325 {
2326 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2327 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2328 }
2329
2330 /*
2331 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2332 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2333 * all guests if the "nested" module option is off, and can also be disabled
2334 * for a single guest by disabling its VMX cpuid bit.
2335 */
2336 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2337 {
2338 return nested && guest_cpuid_has_vmx(vcpu);
2339 }
2340
2341 /*
2342 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2343 * returned for the various VMX controls MSRs when nested VMX is enabled.
2344 * The same values should also be used to verify that vmcs12 control fields are
2345 * valid during nested entry from L1 to L2.
2346 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2347 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2348 * bit in the high half is on if the corresponding bit in the control field
2349 * may be on. See also vmx_control_verify().
2350 */
2351 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2352 {
2353 /*
2354 * Note that as a general rule, the high half of the MSRs (bits in
2355 * the control fields which may be 1) should be initialized by the
2356 * intersection of the underlying hardware's MSR (i.e., features which
2357 * can be supported) and the list of features we want to expose -
2358 * because they are known to be properly supported in our code.
2359 * Also, usually, the low half of the MSRs (bits which must be 1) can
2360 * be set to 0, meaning that L1 may turn off any of these bits. The
2361 * reason is that if one of these bits is necessary, it will appear
2362 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2363 * fields of vmcs01 and vmcs02, will turn these bits off - and
2364 * nested_vmx_exit_handled() will not pass related exits to L1.
2365 * These rules have exceptions below.
2366 */
2367
2368 /* pin-based controls */
2369 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2370 vmx->nested.nested_vmx_pinbased_ctls_low,
2371 vmx->nested.nested_vmx_pinbased_ctls_high);
2372 vmx->nested.nested_vmx_pinbased_ctls_low |=
2373 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2374 vmx->nested.nested_vmx_pinbased_ctls_high &=
2375 PIN_BASED_EXT_INTR_MASK |
2376 PIN_BASED_NMI_EXITING |
2377 PIN_BASED_VIRTUAL_NMIS;
2378 vmx->nested.nested_vmx_pinbased_ctls_high |=
2379 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2380 PIN_BASED_VMX_PREEMPTION_TIMER;
2381 if (vmx_vm_has_apicv(vmx->vcpu.kvm))
2382 vmx->nested.nested_vmx_pinbased_ctls_high |=
2383 PIN_BASED_POSTED_INTR;
2384
2385 /* exit controls */
2386 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2387 vmx->nested.nested_vmx_exit_ctls_low,
2388 vmx->nested.nested_vmx_exit_ctls_high);
2389 vmx->nested.nested_vmx_exit_ctls_low =
2390 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2391
2392 vmx->nested.nested_vmx_exit_ctls_high &=
2393 #ifdef CONFIG_X86_64
2394 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2395 #endif
2396 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2397 vmx->nested.nested_vmx_exit_ctls_high |=
2398 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2399 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2400 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2401
2402 if (vmx_mpx_supported())
2403 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2404
2405 /* We support free control of debug control saving. */
2406 vmx->nested.nested_vmx_true_exit_ctls_low =
2407 vmx->nested.nested_vmx_exit_ctls_low &
2408 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2409
2410 /* entry controls */
2411 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2412 vmx->nested.nested_vmx_entry_ctls_low,
2413 vmx->nested.nested_vmx_entry_ctls_high);
2414 vmx->nested.nested_vmx_entry_ctls_low =
2415 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2416 vmx->nested.nested_vmx_entry_ctls_high &=
2417 #ifdef CONFIG_X86_64
2418 VM_ENTRY_IA32E_MODE |
2419 #endif
2420 VM_ENTRY_LOAD_IA32_PAT;
2421 vmx->nested.nested_vmx_entry_ctls_high |=
2422 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2423 if (vmx_mpx_supported())
2424 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2425
2426 /* We support free control of debug control loading. */
2427 vmx->nested.nested_vmx_true_entry_ctls_low =
2428 vmx->nested.nested_vmx_entry_ctls_low &
2429 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2430
2431 /* cpu-based controls */
2432 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2433 vmx->nested.nested_vmx_procbased_ctls_low,
2434 vmx->nested.nested_vmx_procbased_ctls_high);
2435 vmx->nested.nested_vmx_procbased_ctls_low =
2436 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2437 vmx->nested.nested_vmx_procbased_ctls_high &=
2438 CPU_BASED_VIRTUAL_INTR_PENDING |
2439 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2440 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2441 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2442 CPU_BASED_CR3_STORE_EXITING |
2443 #ifdef CONFIG_X86_64
2444 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2445 #endif
2446 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2447 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2448 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2449 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2450 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2451 /*
2452 * We can allow some features even when not supported by the
2453 * hardware. For example, L1 can specify an MSR bitmap - and we
2454 * can use it to avoid exits to L1 - even when L0 runs L2
2455 * without MSR bitmaps.
2456 */
2457 vmx->nested.nested_vmx_procbased_ctls_high |=
2458 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2459 CPU_BASED_USE_MSR_BITMAPS;
2460
2461 /* We support free control of CR3 access interception. */
2462 vmx->nested.nested_vmx_true_procbased_ctls_low =
2463 vmx->nested.nested_vmx_procbased_ctls_low &
2464 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2465
2466 /* secondary cpu-based controls */
2467 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2468 vmx->nested.nested_vmx_secondary_ctls_low,
2469 vmx->nested.nested_vmx_secondary_ctls_high);
2470 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2471 vmx->nested.nested_vmx_secondary_ctls_high &=
2472 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2473 SECONDARY_EXEC_RDTSCP |
2474 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2475 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2476 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2477 SECONDARY_EXEC_WBINVD_EXITING |
2478 SECONDARY_EXEC_XSAVES;
2479
2480 if (enable_ept) {
2481 /* nested EPT: emulate EPT also to L1 */
2482 vmx->nested.nested_vmx_secondary_ctls_high |=
2483 SECONDARY_EXEC_ENABLE_EPT;
2484 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2485 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2486 VMX_EPT_INVEPT_BIT;
2487 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2488 /*
2489 * For nested guests, we don't do anything specific
2490 * for single context invalidation. Hence, only advertise
2491 * support for global context invalidation.
2492 */
2493 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2494 } else
2495 vmx->nested.nested_vmx_ept_caps = 0;
2496
2497 if (enable_unrestricted_guest)
2498 vmx->nested.nested_vmx_secondary_ctls_high |=
2499 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2500
2501 /* miscellaneous data */
2502 rdmsr(MSR_IA32_VMX_MISC,
2503 vmx->nested.nested_vmx_misc_low,
2504 vmx->nested.nested_vmx_misc_high);
2505 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2506 vmx->nested.nested_vmx_misc_low |=
2507 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2508 VMX_MISC_ACTIVITY_HLT;
2509 vmx->nested.nested_vmx_misc_high = 0;
2510 }
2511
2512 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2513 {
2514 /*
2515 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2516 */
2517 return ((control & high) | low) == control;
2518 }
2519
2520 static inline u64 vmx_control_msr(u32 low, u32 high)
2521 {
2522 return low | ((u64)high << 32);
2523 }
2524
2525 /* Returns 0 on success, non-0 otherwise. */
2526 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2527 {
2528 struct vcpu_vmx *vmx = to_vmx(vcpu);
2529
2530 switch (msr_index) {
2531 case MSR_IA32_VMX_BASIC:
2532 /*
2533 * This MSR reports some information about VMX support. We
2534 * should return information about the VMX we emulate for the
2535 * guest, and the VMCS structure we give it - not about the
2536 * VMX support of the underlying hardware.
2537 */
2538 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2539 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2540 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2541 break;
2542 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2543 case MSR_IA32_VMX_PINBASED_CTLS:
2544 *pdata = vmx_control_msr(
2545 vmx->nested.nested_vmx_pinbased_ctls_low,
2546 vmx->nested.nested_vmx_pinbased_ctls_high);
2547 break;
2548 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2549 *pdata = vmx_control_msr(
2550 vmx->nested.nested_vmx_true_procbased_ctls_low,
2551 vmx->nested.nested_vmx_procbased_ctls_high);
2552 break;
2553 case MSR_IA32_VMX_PROCBASED_CTLS:
2554 *pdata = vmx_control_msr(
2555 vmx->nested.nested_vmx_procbased_ctls_low,
2556 vmx->nested.nested_vmx_procbased_ctls_high);
2557 break;
2558 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2559 *pdata = vmx_control_msr(
2560 vmx->nested.nested_vmx_true_exit_ctls_low,
2561 vmx->nested.nested_vmx_exit_ctls_high);
2562 break;
2563 case MSR_IA32_VMX_EXIT_CTLS:
2564 *pdata = vmx_control_msr(
2565 vmx->nested.nested_vmx_exit_ctls_low,
2566 vmx->nested.nested_vmx_exit_ctls_high);
2567 break;
2568 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2569 *pdata = vmx_control_msr(
2570 vmx->nested.nested_vmx_true_entry_ctls_low,
2571 vmx->nested.nested_vmx_entry_ctls_high);
2572 break;
2573 case MSR_IA32_VMX_ENTRY_CTLS:
2574 *pdata = vmx_control_msr(
2575 vmx->nested.nested_vmx_entry_ctls_low,
2576 vmx->nested.nested_vmx_entry_ctls_high);
2577 break;
2578 case MSR_IA32_VMX_MISC:
2579 *pdata = vmx_control_msr(
2580 vmx->nested.nested_vmx_misc_low,
2581 vmx->nested.nested_vmx_misc_high);
2582 break;
2583 /*
2584 * These MSRs specify bits which the guest must keep fixed (on or off)
2585 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2586 * We picked the standard core2 setting.
2587 */
2588 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2589 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2590 case MSR_IA32_VMX_CR0_FIXED0:
2591 *pdata = VMXON_CR0_ALWAYSON;
2592 break;
2593 case MSR_IA32_VMX_CR0_FIXED1:
2594 *pdata = -1ULL;
2595 break;
2596 case MSR_IA32_VMX_CR4_FIXED0:
2597 *pdata = VMXON_CR4_ALWAYSON;
2598 break;
2599 case MSR_IA32_VMX_CR4_FIXED1:
2600 *pdata = -1ULL;
2601 break;
2602 case MSR_IA32_VMX_VMCS_ENUM:
2603 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2604 break;
2605 case MSR_IA32_VMX_PROCBASED_CTLS2:
2606 *pdata = vmx_control_msr(
2607 vmx->nested.nested_vmx_secondary_ctls_low,
2608 vmx->nested.nested_vmx_secondary_ctls_high);
2609 break;
2610 case MSR_IA32_VMX_EPT_VPID_CAP:
2611 /* Currently, no nested vpid support */
2612 *pdata = vmx->nested.nested_vmx_ept_caps;
2613 break;
2614 default:
2615 return 1;
2616 }
2617
2618 return 0;
2619 }
2620
2621 /*
2622 * Reads an msr value (of 'msr_index') into 'pdata'.
2623 * Returns 0 on success, non-0 otherwise.
2624 * Assumes vcpu_load() was already called.
2625 */
2626 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2627 {
2628 struct shared_msr_entry *msr;
2629
2630 switch (msr_info->index) {
2631 #ifdef CONFIG_X86_64
2632 case MSR_FS_BASE:
2633 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2634 break;
2635 case MSR_GS_BASE:
2636 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2637 break;
2638 case MSR_KERNEL_GS_BASE:
2639 vmx_load_host_state(to_vmx(vcpu));
2640 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2641 break;
2642 #endif
2643 case MSR_EFER:
2644 return kvm_get_msr_common(vcpu, msr_info);
2645 case MSR_IA32_TSC:
2646 msr_info->data = guest_read_tsc();
2647 break;
2648 case MSR_IA32_SYSENTER_CS:
2649 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2650 break;
2651 case MSR_IA32_SYSENTER_EIP:
2652 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2653 break;
2654 case MSR_IA32_SYSENTER_ESP:
2655 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2656 break;
2657 case MSR_IA32_BNDCFGS:
2658 if (!vmx_mpx_supported())
2659 return 1;
2660 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2661 break;
2662 case MSR_IA32_FEATURE_CONTROL:
2663 if (!nested_vmx_allowed(vcpu))
2664 return 1;
2665 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2666 break;
2667 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2668 if (!nested_vmx_allowed(vcpu))
2669 return 1;
2670 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2671 case MSR_IA32_XSS:
2672 if (!vmx_xsaves_supported())
2673 return 1;
2674 msr_info->data = vcpu->arch.ia32_xss;
2675 break;
2676 case MSR_TSC_AUX:
2677 if (!to_vmx(vcpu)->rdtscp_enabled)
2678 return 1;
2679 /* Otherwise falls through */
2680 default:
2681 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2682 if (msr) {
2683 msr_info->data = msr->data;
2684 break;
2685 }
2686 return kvm_get_msr_common(vcpu, msr_info);
2687 }
2688
2689 return 0;
2690 }
2691
2692 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2693
2694 /*
2695 * Writes msr value into into the appropriate "register".
2696 * Returns 0 on success, non-0 otherwise.
2697 * Assumes vcpu_load() was already called.
2698 */
2699 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2700 {
2701 struct vcpu_vmx *vmx = to_vmx(vcpu);
2702 struct shared_msr_entry *msr;
2703 int ret = 0;
2704 u32 msr_index = msr_info->index;
2705 u64 data = msr_info->data;
2706
2707 switch (msr_index) {
2708 case MSR_EFER:
2709 ret = kvm_set_msr_common(vcpu, msr_info);
2710 break;
2711 #ifdef CONFIG_X86_64
2712 case MSR_FS_BASE:
2713 vmx_segment_cache_clear(vmx);
2714 vmcs_writel(GUEST_FS_BASE, data);
2715 break;
2716 case MSR_GS_BASE:
2717 vmx_segment_cache_clear(vmx);
2718 vmcs_writel(GUEST_GS_BASE, data);
2719 break;
2720 case MSR_KERNEL_GS_BASE:
2721 vmx_load_host_state(vmx);
2722 vmx->msr_guest_kernel_gs_base = data;
2723 break;
2724 #endif
2725 case MSR_IA32_SYSENTER_CS:
2726 vmcs_write32(GUEST_SYSENTER_CS, data);
2727 break;
2728 case MSR_IA32_SYSENTER_EIP:
2729 vmcs_writel(GUEST_SYSENTER_EIP, data);
2730 break;
2731 case MSR_IA32_SYSENTER_ESP:
2732 vmcs_writel(GUEST_SYSENTER_ESP, data);
2733 break;
2734 case MSR_IA32_BNDCFGS:
2735 if (!vmx_mpx_supported())
2736 return 1;
2737 vmcs_write64(GUEST_BNDCFGS, data);
2738 break;
2739 case MSR_IA32_TSC:
2740 kvm_write_tsc(vcpu, msr_info);
2741 break;
2742 case MSR_IA32_CR_PAT:
2743 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2744 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2745 return 1;
2746 vmcs_write64(GUEST_IA32_PAT, data);
2747 vcpu->arch.pat = data;
2748 break;
2749 }
2750 ret = kvm_set_msr_common(vcpu, msr_info);
2751 break;
2752 case MSR_IA32_TSC_ADJUST:
2753 ret = kvm_set_msr_common(vcpu, msr_info);
2754 break;
2755 case MSR_IA32_FEATURE_CONTROL:
2756 if (!nested_vmx_allowed(vcpu) ||
2757 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2758 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2759 return 1;
2760 vmx->nested.msr_ia32_feature_control = data;
2761 if (msr_info->host_initiated && data == 0)
2762 vmx_leave_nested(vcpu);
2763 break;
2764 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2765 return 1; /* they are read-only */
2766 case MSR_IA32_XSS:
2767 if (!vmx_xsaves_supported())
2768 return 1;
2769 /*
2770 * The only supported bit as of Skylake is bit 8, but
2771 * it is not supported on KVM.
2772 */
2773 if (data != 0)
2774 return 1;
2775 vcpu->arch.ia32_xss = data;
2776 if (vcpu->arch.ia32_xss != host_xss)
2777 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2778 vcpu->arch.ia32_xss, host_xss);
2779 else
2780 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2781 break;
2782 case MSR_TSC_AUX:
2783 if (!vmx->rdtscp_enabled)
2784 return 1;
2785 /* Check reserved bit, higher 32 bits should be zero */
2786 if ((data >> 32) != 0)
2787 return 1;
2788 /* Otherwise falls through */
2789 default:
2790 msr = find_msr_entry(vmx, msr_index);
2791 if (msr) {
2792 u64 old_msr_data = msr->data;
2793 msr->data = data;
2794 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2795 preempt_disable();
2796 ret = kvm_set_shared_msr(msr->index, msr->data,
2797 msr->mask);
2798 preempt_enable();
2799 if (ret)
2800 msr->data = old_msr_data;
2801 }
2802 break;
2803 }
2804 ret = kvm_set_msr_common(vcpu, msr_info);
2805 }
2806
2807 return ret;
2808 }
2809
2810 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2811 {
2812 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2813 switch (reg) {
2814 case VCPU_REGS_RSP:
2815 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2816 break;
2817 case VCPU_REGS_RIP:
2818 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2819 break;
2820 case VCPU_EXREG_PDPTR:
2821 if (enable_ept)
2822 ept_save_pdptrs(vcpu);
2823 break;
2824 default:
2825 break;
2826 }
2827 }
2828
2829 static __init int cpu_has_kvm_support(void)
2830 {
2831 return cpu_has_vmx();
2832 }
2833
2834 static __init int vmx_disabled_by_bios(void)
2835 {
2836 u64 msr;
2837
2838 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2839 if (msr & FEATURE_CONTROL_LOCKED) {
2840 /* launched w/ TXT and VMX disabled */
2841 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2842 && tboot_enabled())
2843 return 1;
2844 /* launched w/o TXT and VMX only enabled w/ TXT */
2845 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2846 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2847 && !tboot_enabled()) {
2848 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2849 "activate TXT before enabling KVM\n");
2850 return 1;
2851 }
2852 /* launched w/o TXT and VMX disabled */
2853 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2854 && !tboot_enabled())
2855 return 1;
2856 }
2857
2858 return 0;
2859 }
2860
2861 static void kvm_cpu_vmxon(u64 addr)
2862 {
2863 asm volatile (ASM_VMX_VMXON_RAX
2864 : : "a"(&addr), "m"(addr)
2865 : "memory", "cc");
2866 }
2867
2868 static int hardware_enable(void)
2869 {
2870 int cpu = raw_smp_processor_id();
2871 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2872 u64 old, test_bits;
2873
2874 if (cr4_read_shadow() & X86_CR4_VMXE)
2875 return -EBUSY;
2876
2877 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2878
2879 /*
2880 * Now we can enable the vmclear operation in kdump
2881 * since the loaded_vmcss_on_cpu list on this cpu
2882 * has been initialized.
2883 *
2884 * Though the cpu is not in VMX operation now, there
2885 * is no problem to enable the vmclear operation
2886 * for the loaded_vmcss_on_cpu list is empty!
2887 */
2888 crash_enable_local_vmclear(cpu);
2889
2890 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2891
2892 test_bits = FEATURE_CONTROL_LOCKED;
2893 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2894 if (tboot_enabled())
2895 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2896
2897 if ((old & test_bits) != test_bits) {
2898 /* enable and lock */
2899 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2900 }
2901 cr4_set_bits(X86_CR4_VMXE);
2902
2903 if (vmm_exclusive) {
2904 kvm_cpu_vmxon(phys_addr);
2905 ept_sync_global();
2906 }
2907
2908 native_store_gdt(this_cpu_ptr(&host_gdt));
2909
2910 return 0;
2911 }
2912
2913 static void vmclear_local_loaded_vmcss(void)
2914 {
2915 int cpu = raw_smp_processor_id();
2916 struct loaded_vmcs *v, *n;
2917
2918 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2919 loaded_vmcss_on_cpu_link)
2920 __loaded_vmcs_clear(v);
2921 }
2922
2923
2924 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2925 * tricks.
2926 */
2927 static void kvm_cpu_vmxoff(void)
2928 {
2929 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2930 }
2931
2932 static void hardware_disable(void)
2933 {
2934 if (vmm_exclusive) {
2935 vmclear_local_loaded_vmcss();
2936 kvm_cpu_vmxoff();
2937 }
2938 cr4_clear_bits(X86_CR4_VMXE);
2939 }
2940
2941 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2942 u32 msr, u32 *result)
2943 {
2944 u32 vmx_msr_low, vmx_msr_high;
2945 u32 ctl = ctl_min | ctl_opt;
2946
2947 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2948
2949 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2950 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2951
2952 /* Ensure minimum (required) set of control bits are supported. */
2953 if (ctl_min & ~ctl)
2954 return -EIO;
2955
2956 *result = ctl;
2957 return 0;
2958 }
2959
2960 static __init bool allow_1_setting(u32 msr, u32 ctl)
2961 {
2962 u32 vmx_msr_low, vmx_msr_high;
2963
2964 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2965 return vmx_msr_high & ctl;
2966 }
2967
2968 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2969 {
2970 u32 vmx_msr_low, vmx_msr_high;
2971 u32 min, opt, min2, opt2;
2972 u32 _pin_based_exec_control = 0;
2973 u32 _cpu_based_exec_control = 0;
2974 u32 _cpu_based_2nd_exec_control = 0;
2975 u32 _vmexit_control = 0;
2976 u32 _vmentry_control = 0;
2977
2978 min = CPU_BASED_HLT_EXITING |
2979 #ifdef CONFIG_X86_64
2980 CPU_BASED_CR8_LOAD_EXITING |
2981 CPU_BASED_CR8_STORE_EXITING |
2982 #endif
2983 CPU_BASED_CR3_LOAD_EXITING |
2984 CPU_BASED_CR3_STORE_EXITING |
2985 CPU_BASED_USE_IO_BITMAPS |
2986 CPU_BASED_MOV_DR_EXITING |
2987 CPU_BASED_USE_TSC_OFFSETING |
2988 CPU_BASED_MWAIT_EXITING |
2989 CPU_BASED_MONITOR_EXITING |
2990 CPU_BASED_INVLPG_EXITING |
2991 CPU_BASED_RDPMC_EXITING;
2992
2993 opt = CPU_BASED_TPR_SHADOW |
2994 CPU_BASED_USE_MSR_BITMAPS |
2995 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2996 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2997 &_cpu_based_exec_control) < 0)
2998 return -EIO;
2999 #ifdef CONFIG_X86_64
3000 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3001 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3002 ~CPU_BASED_CR8_STORE_EXITING;
3003 #endif
3004 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3005 min2 = 0;
3006 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3007 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3008 SECONDARY_EXEC_WBINVD_EXITING |
3009 SECONDARY_EXEC_ENABLE_VPID |
3010 SECONDARY_EXEC_ENABLE_EPT |
3011 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3012 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3013 SECONDARY_EXEC_RDTSCP |
3014 SECONDARY_EXEC_ENABLE_INVPCID |
3015 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3016 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3017 SECONDARY_EXEC_SHADOW_VMCS |
3018 SECONDARY_EXEC_XSAVES |
3019 SECONDARY_EXEC_ENABLE_PML;
3020 if (adjust_vmx_controls(min2, opt2,
3021 MSR_IA32_VMX_PROCBASED_CTLS2,
3022 &_cpu_based_2nd_exec_control) < 0)
3023 return -EIO;
3024 }
3025 #ifndef CONFIG_X86_64
3026 if (!(_cpu_based_2nd_exec_control &
3027 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3028 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3029 #endif
3030
3031 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3032 _cpu_based_2nd_exec_control &= ~(
3033 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3034 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3035 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3036
3037 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3038 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3039 enabled */
3040 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3041 CPU_BASED_CR3_STORE_EXITING |
3042 CPU_BASED_INVLPG_EXITING);
3043 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3044 vmx_capability.ept, vmx_capability.vpid);
3045 }
3046
3047 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3048 #ifdef CONFIG_X86_64
3049 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3050 #endif
3051 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3052 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3053 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3054 &_vmexit_control) < 0)
3055 return -EIO;
3056
3057 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3058 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3059 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3060 &_pin_based_exec_control) < 0)
3061 return -EIO;
3062
3063 if (!(_cpu_based_2nd_exec_control &
3064 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3065 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3066 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3067
3068 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3069 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3070 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3071 &_vmentry_control) < 0)
3072 return -EIO;
3073
3074 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3075
3076 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3077 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3078 return -EIO;
3079
3080 #ifdef CONFIG_X86_64
3081 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3082 if (vmx_msr_high & (1u<<16))
3083 return -EIO;
3084 #endif
3085
3086 /* Require Write-Back (WB) memory type for VMCS accesses. */
3087 if (((vmx_msr_high >> 18) & 15) != 6)
3088 return -EIO;
3089
3090 vmcs_conf->size = vmx_msr_high & 0x1fff;
3091 vmcs_conf->order = get_order(vmcs_config.size);
3092 vmcs_conf->revision_id = vmx_msr_low;
3093
3094 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3095 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3096 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3097 vmcs_conf->vmexit_ctrl = _vmexit_control;
3098 vmcs_conf->vmentry_ctrl = _vmentry_control;
3099
3100 cpu_has_load_ia32_efer =
3101 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3102 VM_ENTRY_LOAD_IA32_EFER)
3103 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3104 VM_EXIT_LOAD_IA32_EFER);
3105
3106 cpu_has_load_perf_global_ctrl =
3107 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3108 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3109 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3110 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3111
3112 /*
3113 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3114 * but due to arrata below it can't be used. Workaround is to use
3115 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3116 *
3117 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3118 *
3119 * AAK155 (model 26)
3120 * AAP115 (model 30)
3121 * AAT100 (model 37)
3122 * BC86,AAY89,BD102 (model 44)
3123 * BA97 (model 46)
3124 *
3125 */
3126 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3127 switch (boot_cpu_data.x86_model) {
3128 case 26:
3129 case 30:
3130 case 37:
3131 case 44:
3132 case 46:
3133 cpu_has_load_perf_global_ctrl = false;
3134 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3135 "does not work properly. Using workaround\n");
3136 break;
3137 default:
3138 break;
3139 }
3140 }
3141
3142 if (cpu_has_xsaves)
3143 rdmsrl(MSR_IA32_XSS, host_xss);
3144
3145 return 0;
3146 }
3147
3148 static struct vmcs *alloc_vmcs_cpu(int cpu)
3149 {
3150 int node = cpu_to_node(cpu);
3151 struct page *pages;
3152 struct vmcs *vmcs;
3153
3154 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3155 if (!pages)
3156 return NULL;
3157 vmcs = page_address(pages);
3158 memset(vmcs, 0, vmcs_config.size);
3159 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3160 return vmcs;
3161 }
3162
3163 static struct vmcs *alloc_vmcs(void)
3164 {
3165 return alloc_vmcs_cpu(raw_smp_processor_id());
3166 }
3167
3168 static void free_vmcs(struct vmcs *vmcs)
3169 {
3170 free_pages((unsigned long)vmcs, vmcs_config.order);
3171 }
3172
3173 /*
3174 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3175 */
3176 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3177 {
3178 if (!loaded_vmcs->vmcs)
3179 return;
3180 loaded_vmcs_clear(loaded_vmcs);
3181 free_vmcs(loaded_vmcs->vmcs);
3182 loaded_vmcs->vmcs = NULL;
3183 }
3184
3185 static void free_kvm_area(void)
3186 {
3187 int cpu;
3188
3189 for_each_possible_cpu(cpu) {
3190 free_vmcs(per_cpu(vmxarea, cpu));
3191 per_cpu(vmxarea, cpu) = NULL;
3192 }
3193 }
3194
3195 static void init_vmcs_shadow_fields(void)
3196 {
3197 int i, j;
3198
3199 /* No checks for read only fields yet */
3200
3201 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3202 switch (shadow_read_write_fields[i]) {
3203 case GUEST_BNDCFGS:
3204 if (!vmx_mpx_supported())
3205 continue;
3206 break;
3207 default:
3208 break;
3209 }
3210
3211 if (j < i)
3212 shadow_read_write_fields[j] =
3213 shadow_read_write_fields[i];
3214 j++;
3215 }
3216 max_shadow_read_write_fields = j;
3217
3218 /* shadowed fields guest access without vmexit */
3219 for (i = 0; i < max_shadow_read_write_fields; i++) {
3220 clear_bit(shadow_read_write_fields[i],
3221 vmx_vmwrite_bitmap);
3222 clear_bit(shadow_read_write_fields[i],
3223 vmx_vmread_bitmap);
3224 }
3225 for (i = 0; i < max_shadow_read_only_fields; i++)
3226 clear_bit(shadow_read_only_fields[i],
3227 vmx_vmread_bitmap);
3228 }
3229
3230 static __init int alloc_kvm_area(void)
3231 {
3232 int cpu;
3233
3234 for_each_possible_cpu(cpu) {
3235 struct vmcs *vmcs;
3236
3237 vmcs = alloc_vmcs_cpu(cpu);
3238 if (!vmcs) {
3239 free_kvm_area();
3240 return -ENOMEM;
3241 }
3242
3243 per_cpu(vmxarea, cpu) = vmcs;
3244 }
3245 return 0;
3246 }
3247
3248 static bool emulation_required(struct kvm_vcpu *vcpu)
3249 {
3250 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3251 }
3252
3253 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3254 struct kvm_segment *save)
3255 {
3256 if (!emulate_invalid_guest_state) {
3257 /*
3258 * CS and SS RPL should be equal during guest entry according
3259 * to VMX spec, but in reality it is not always so. Since vcpu
3260 * is in the middle of the transition from real mode to
3261 * protected mode it is safe to assume that RPL 0 is a good
3262 * default value.
3263 */
3264 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3265 save->selector &= ~SEGMENT_RPL_MASK;
3266 save->dpl = save->selector & SEGMENT_RPL_MASK;
3267 save->s = 1;
3268 }
3269 vmx_set_segment(vcpu, save, seg);
3270 }
3271
3272 static void enter_pmode(struct kvm_vcpu *vcpu)
3273 {
3274 unsigned long flags;
3275 struct vcpu_vmx *vmx = to_vmx(vcpu);
3276
3277 /*
3278 * Update real mode segment cache. It may be not up-to-date if sement
3279 * register was written while vcpu was in a guest mode.
3280 */
3281 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3282 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3283 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3284 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3285 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3286 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3287
3288 vmx->rmode.vm86_active = 0;
3289
3290 vmx_segment_cache_clear(vmx);
3291
3292 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3293
3294 flags = vmcs_readl(GUEST_RFLAGS);
3295 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3296 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3297 vmcs_writel(GUEST_RFLAGS, flags);
3298
3299 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3300 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3301
3302 update_exception_bitmap(vcpu);
3303
3304 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3305 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3306 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3307 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3308 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3309 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3310 }
3311
3312 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3313 {
3314 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3315 struct kvm_segment var = *save;
3316
3317 var.dpl = 0x3;
3318 if (seg == VCPU_SREG_CS)
3319 var.type = 0x3;
3320
3321 if (!emulate_invalid_guest_state) {
3322 var.selector = var.base >> 4;
3323 var.base = var.base & 0xffff0;
3324 var.limit = 0xffff;
3325 var.g = 0;
3326 var.db = 0;
3327 var.present = 1;
3328 var.s = 1;
3329 var.l = 0;
3330 var.unusable = 0;
3331 var.type = 0x3;
3332 var.avl = 0;
3333 if (save->base & 0xf)
3334 printk_once(KERN_WARNING "kvm: segment base is not "
3335 "paragraph aligned when entering "
3336 "protected mode (seg=%d)", seg);
3337 }
3338
3339 vmcs_write16(sf->selector, var.selector);
3340 vmcs_write32(sf->base, var.base);
3341 vmcs_write32(sf->limit, var.limit);
3342 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3343 }
3344
3345 static void enter_rmode(struct kvm_vcpu *vcpu)
3346 {
3347 unsigned long flags;
3348 struct vcpu_vmx *vmx = to_vmx(vcpu);
3349
3350 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3351 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3352 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3353 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3354 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3355 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3356 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3357
3358 vmx->rmode.vm86_active = 1;
3359
3360 /*
3361 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3362 * vcpu. Warn the user that an update is overdue.
3363 */
3364 if (!vcpu->kvm->arch.tss_addr)
3365 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3366 "called before entering vcpu\n");
3367
3368 vmx_segment_cache_clear(vmx);
3369
3370 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3371 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3372 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3373
3374 flags = vmcs_readl(GUEST_RFLAGS);
3375 vmx->rmode.save_rflags = flags;
3376
3377 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3378
3379 vmcs_writel(GUEST_RFLAGS, flags);
3380 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3381 update_exception_bitmap(vcpu);
3382
3383 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3384 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3385 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3386 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3387 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3388 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3389
3390 kvm_mmu_reset_context(vcpu);
3391 }
3392
3393 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3394 {
3395 struct vcpu_vmx *vmx = to_vmx(vcpu);
3396 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3397
3398 if (!msr)
3399 return;
3400
3401 /*
3402 * Force kernel_gs_base reloading before EFER changes, as control
3403 * of this msr depends on is_long_mode().
3404 */
3405 vmx_load_host_state(to_vmx(vcpu));
3406 vcpu->arch.efer = efer;
3407 if (efer & EFER_LMA) {
3408 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3409 msr->data = efer;
3410 } else {
3411 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3412
3413 msr->data = efer & ~EFER_LME;
3414 }
3415 setup_msrs(vmx);
3416 }
3417
3418 #ifdef CONFIG_X86_64
3419
3420 static void enter_lmode(struct kvm_vcpu *vcpu)
3421 {
3422 u32 guest_tr_ar;
3423
3424 vmx_segment_cache_clear(to_vmx(vcpu));
3425
3426 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3427 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3428 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3429 __func__);
3430 vmcs_write32(GUEST_TR_AR_BYTES,
3431 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3432 | VMX_AR_TYPE_BUSY_64_TSS);
3433 }
3434 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3435 }
3436
3437 static void exit_lmode(struct kvm_vcpu *vcpu)
3438 {
3439 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3440 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3441 }
3442
3443 #endif
3444
3445 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3446 {
3447 vpid_sync_context(to_vmx(vcpu));
3448 if (enable_ept) {
3449 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3450 return;
3451 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3452 }
3453 }
3454
3455 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3456 {
3457 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3458
3459 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3460 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3461 }
3462
3463 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3464 {
3465 if (enable_ept && is_paging(vcpu))
3466 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3467 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3468 }
3469
3470 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3471 {
3472 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3473
3474 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3475 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3476 }
3477
3478 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3479 {
3480 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3481
3482 if (!test_bit(VCPU_EXREG_PDPTR,
3483 (unsigned long *)&vcpu->arch.regs_dirty))
3484 return;
3485
3486 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3487 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3488 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3489 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3490 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3491 }
3492 }
3493
3494 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3495 {
3496 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3497
3498 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3499 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3500 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3501 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3502 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3503 }
3504
3505 __set_bit(VCPU_EXREG_PDPTR,
3506 (unsigned long *)&vcpu->arch.regs_avail);
3507 __set_bit(VCPU_EXREG_PDPTR,
3508 (unsigned long *)&vcpu->arch.regs_dirty);
3509 }
3510
3511 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3512
3513 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3514 unsigned long cr0,
3515 struct kvm_vcpu *vcpu)
3516 {
3517 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3518 vmx_decache_cr3(vcpu);
3519 if (!(cr0 & X86_CR0_PG)) {
3520 /* From paging/starting to nonpaging */
3521 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3522 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3523 (CPU_BASED_CR3_LOAD_EXITING |
3524 CPU_BASED_CR3_STORE_EXITING));
3525 vcpu->arch.cr0 = cr0;
3526 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3527 } else if (!is_paging(vcpu)) {
3528 /* From nonpaging to paging */
3529 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3530 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3531 ~(CPU_BASED_CR3_LOAD_EXITING |
3532 CPU_BASED_CR3_STORE_EXITING));
3533 vcpu->arch.cr0 = cr0;
3534 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3535 }
3536
3537 if (!(cr0 & X86_CR0_WP))
3538 *hw_cr0 &= ~X86_CR0_WP;
3539 }
3540
3541 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3542 {
3543 struct vcpu_vmx *vmx = to_vmx(vcpu);
3544 unsigned long hw_cr0;
3545
3546 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3547 if (enable_unrestricted_guest)
3548 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3549 else {
3550 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3551
3552 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3553 enter_pmode(vcpu);
3554
3555 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3556 enter_rmode(vcpu);
3557 }
3558
3559 #ifdef CONFIG_X86_64
3560 if (vcpu->arch.efer & EFER_LME) {
3561 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3562 enter_lmode(vcpu);
3563 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3564 exit_lmode(vcpu);
3565 }
3566 #endif
3567
3568 if (enable_ept)
3569 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3570
3571 if (!vcpu->fpu_active)
3572 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3573
3574 vmcs_writel(CR0_READ_SHADOW, cr0);
3575 vmcs_writel(GUEST_CR0, hw_cr0);
3576 vcpu->arch.cr0 = cr0;
3577
3578 /* depends on vcpu->arch.cr0 to be set to a new value */
3579 vmx->emulation_required = emulation_required(vcpu);
3580 }
3581
3582 static u64 construct_eptp(unsigned long root_hpa)
3583 {
3584 u64 eptp;
3585
3586 /* TODO write the value reading from MSR */
3587 eptp = VMX_EPT_DEFAULT_MT |
3588 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3589 if (enable_ept_ad_bits)
3590 eptp |= VMX_EPT_AD_ENABLE_BIT;
3591 eptp |= (root_hpa & PAGE_MASK);
3592
3593 return eptp;
3594 }
3595
3596 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3597 {
3598 unsigned long guest_cr3;
3599 u64 eptp;
3600
3601 guest_cr3 = cr3;
3602 if (enable_ept) {
3603 eptp = construct_eptp(cr3);
3604 vmcs_write64(EPT_POINTER, eptp);
3605 if (is_paging(vcpu) || is_guest_mode(vcpu))
3606 guest_cr3 = kvm_read_cr3(vcpu);
3607 else
3608 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3609 ept_load_pdptrs(vcpu);
3610 }
3611
3612 vmx_flush_tlb(vcpu);
3613 vmcs_writel(GUEST_CR3, guest_cr3);
3614 }
3615
3616 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3617 {
3618 /*
3619 * Pass through host's Machine Check Enable value to hw_cr4, which
3620 * is in force while we are in guest mode. Do not let guests control
3621 * this bit, even if host CR4.MCE == 0.
3622 */
3623 unsigned long hw_cr4 =
3624 (cr4_read_shadow() & X86_CR4_MCE) |
3625 (cr4 & ~X86_CR4_MCE) |
3626 (to_vmx(vcpu)->rmode.vm86_active ?
3627 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3628
3629 if (cr4 & X86_CR4_VMXE) {
3630 /*
3631 * To use VMXON (and later other VMX instructions), a guest
3632 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3633 * So basically the check on whether to allow nested VMX
3634 * is here.
3635 */
3636 if (!nested_vmx_allowed(vcpu))
3637 return 1;
3638 }
3639 if (to_vmx(vcpu)->nested.vmxon &&
3640 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3641 return 1;
3642
3643 vcpu->arch.cr4 = cr4;
3644 if (enable_ept) {
3645 if (!is_paging(vcpu)) {
3646 hw_cr4 &= ~X86_CR4_PAE;
3647 hw_cr4 |= X86_CR4_PSE;
3648 /*
3649 * SMEP/SMAP is disabled if CPU is in non-paging mode
3650 * in hardware. However KVM always uses paging mode to
3651 * emulate guest non-paging mode with TDP.
3652 * To emulate this behavior, SMEP/SMAP needs to be
3653 * manually disabled when guest switches to non-paging
3654 * mode.
3655 */
3656 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3657 } else if (!(cr4 & X86_CR4_PAE)) {
3658 hw_cr4 &= ~X86_CR4_PAE;
3659 }
3660 }
3661
3662 vmcs_writel(CR4_READ_SHADOW, cr4);
3663 vmcs_writel(GUEST_CR4, hw_cr4);
3664 return 0;
3665 }
3666
3667 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3668 struct kvm_segment *var, int seg)
3669 {
3670 struct vcpu_vmx *vmx = to_vmx(vcpu);
3671 u32 ar;
3672
3673 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3674 *var = vmx->rmode.segs[seg];
3675 if (seg == VCPU_SREG_TR
3676 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3677 return;
3678 var->base = vmx_read_guest_seg_base(vmx, seg);
3679 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3680 return;
3681 }
3682 var->base = vmx_read_guest_seg_base(vmx, seg);
3683 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3684 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3685 ar = vmx_read_guest_seg_ar(vmx, seg);
3686 var->unusable = (ar >> 16) & 1;
3687 var->type = ar & 15;
3688 var->s = (ar >> 4) & 1;
3689 var->dpl = (ar >> 5) & 3;
3690 /*
3691 * Some userspaces do not preserve unusable property. Since usable
3692 * segment has to be present according to VMX spec we can use present
3693 * property to amend userspace bug by making unusable segment always
3694 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3695 * segment as unusable.
3696 */
3697 var->present = !var->unusable;
3698 var->avl = (ar >> 12) & 1;
3699 var->l = (ar >> 13) & 1;
3700 var->db = (ar >> 14) & 1;
3701 var->g = (ar >> 15) & 1;
3702 }
3703
3704 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3705 {
3706 struct kvm_segment s;
3707
3708 if (to_vmx(vcpu)->rmode.vm86_active) {
3709 vmx_get_segment(vcpu, &s, seg);
3710 return s.base;
3711 }
3712 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3713 }
3714
3715 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3716 {
3717 struct vcpu_vmx *vmx = to_vmx(vcpu);
3718
3719 if (unlikely(vmx->rmode.vm86_active))
3720 return 0;
3721 else {
3722 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3723 return VMX_AR_DPL(ar);
3724 }
3725 }
3726
3727 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3728 {
3729 u32 ar;
3730
3731 if (var->unusable || !var->present)
3732 ar = 1 << 16;
3733 else {
3734 ar = var->type & 15;
3735 ar |= (var->s & 1) << 4;
3736 ar |= (var->dpl & 3) << 5;
3737 ar |= (var->present & 1) << 7;
3738 ar |= (var->avl & 1) << 12;
3739 ar |= (var->l & 1) << 13;
3740 ar |= (var->db & 1) << 14;
3741 ar |= (var->g & 1) << 15;
3742 }
3743
3744 return ar;
3745 }
3746
3747 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3748 struct kvm_segment *var, int seg)
3749 {
3750 struct vcpu_vmx *vmx = to_vmx(vcpu);
3751 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3752
3753 vmx_segment_cache_clear(vmx);
3754
3755 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3756 vmx->rmode.segs[seg] = *var;
3757 if (seg == VCPU_SREG_TR)
3758 vmcs_write16(sf->selector, var->selector);
3759 else if (var->s)
3760 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3761 goto out;
3762 }
3763
3764 vmcs_writel(sf->base, var->base);
3765 vmcs_write32(sf->limit, var->limit);
3766 vmcs_write16(sf->selector, var->selector);
3767
3768 /*
3769 * Fix the "Accessed" bit in AR field of segment registers for older
3770 * qemu binaries.
3771 * IA32 arch specifies that at the time of processor reset the
3772 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3773 * is setting it to 0 in the userland code. This causes invalid guest
3774 * state vmexit when "unrestricted guest" mode is turned on.
3775 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3776 * tree. Newer qemu binaries with that qemu fix would not need this
3777 * kvm hack.
3778 */
3779 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3780 var->type |= 0x1; /* Accessed */
3781
3782 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3783
3784 out:
3785 vmx->emulation_required = emulation_required(vcpu);
3786 }
3787
3788 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3789 {
3790 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3791
3792 *db = (ar >> 14) & 1;
3793 *l = (ar >> 13) & 1;
3794 }
3795
3796 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3797 {
3798 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3799 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3800 }
3801
3802 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3803 {
3804 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3805 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3806 }
3807
3808 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3809 {
3810 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3811 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3812 }
3813
3814 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3815 {
3816 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3817 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3818 }
3819
3820 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3821 {
3822 struct kvm_segment var;
3823 u32 ar;
3824
3825 vmx_get_segment(vcpu, &var, seg);
3826 var.dpl = 0x3;
3827 if (seg == VCPU_SREG_CS)
3828 var.type = 0x3;
3829 ar = vmx_segment_access_rights(&var);
3830
3831 if (var.base != (var.selector << 4))
3832 return false;
3833 if (var.limit != 0xffff)
3834 return false;
3835 if (ar != 0xf3)
3836 return false;
3837
3838 return true;
3839 }
3840
3841 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3842 {
3843 struct kvm_segment cs;
3844 unsigned int cs_rpl;
3845
3846 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3847 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3848
3849 if (cs.unusable)
3850 return false;
3851 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3852 return false;
3853 if (!cs.s)
3854 return false;
3855 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3856 if (cs.dpl > cs_rpl)
3857 return false;
3858 } else {
3859 if (cs.dpl != cs_rpl)
3860 return false;
3861 }
3862 if (!cs.present)
3863 return false;
3864
3865 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3866 return true;
3867 }
3868
3869 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3870 {
3871 struct kvm_segment ss;
3872 unsigned int ss_rpl;
3873
3874 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3875 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3876
3877 if (ss.unusable)
3878 return true;
3879 if (ss.type != 3 && ss.type != 7)
3880 return false;
3881 if (!ss.s)
3882 return false;
3883 if (ss.dpl != ss_rpl) /* DPL != RPL */
3884 return false;
3885 if (!ss.present)
3886 return false;
3887
3888 return true;
3889 }
3890
3891 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3892 {
3893 struct kvm_segment var;
3894 unsigned int rpl;
3895
3896 vmx_get_segment(vcpu, &var, seg);
3897 rpl = var.selector & SEGMENT_RPL_MASK;
3898
3899 if (var.unusable)
3900 return true;
3901 if (!var.s)
3902 return false;
3903 if (!var.present)
3904 return false;
3905 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3906 if (var.dpl < rpl) /* DPL < RPL */
3907 return false;
3908 }
3909
3910 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3911 * rights flags
3912 */
3913 return true;
3914 }
3915
3916 static bool tr_valid(struct kvm_vcpu *vcpu)
3917 {
3918 struct kvm_segment tr;
3919
3920 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3921
3922 if (tr.unusable)
3923 return false;
3924 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3925 return false;
3926 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3927 return false;
3928 if (!tr.present)
3929 return false;
3930
3931 return true;
3932 }
3933
3934 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3935 {
3936 struct kvm_segment ldtr;
3937
3938 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3939
3940 if (ldtr.unusable)
3941 return true;
3942 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3943 return false;
3944 if (ldtr.type != 2)
3945 return false;
3946 if (!ldtr.present)
3947 return false;
3948
3949 return true;
3950 }
3951
3952 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3953 {
3954 struct kvm_segment cs, ss;
3955
3956 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3957 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3958
3959 return ((cs.selector & SEGMENT_RPL_MASK) ==
3960 (ss.selector & SEGMENT_RPL_MASK));
3961 }
3962
3963 /*
3964 * Check if guest state is valid. Returns true if valid, false if
3965 * not.
3966 * We assume that registers are always usable
3967 */
3968 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3969 {
3970 if (enable_unrestricted_guest)
3971 return true;
3972
3973 /* real mode guest state checks */
3974 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3975 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3976 return false;
3977 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3978 return false;
3979 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3980 return false;
3981 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3982 return false;
3983 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3984 return false;
3985 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3986 return false;
3987 } else {
3988 /* protected mode guest state checks */
3989 if (!cs_ss_rpl_check(vcpu))
3990 return false;
3991 if (!code_segment_valid(vcpu))
3992 return false;
3993 if (!stack_segment_valid(vcpu))
3994 return false;
3995 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3996 return false;
3997 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3998 return false;
3999 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4000 return false;
4001 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4002 return false;
4003 if (!tr_valid(vcpu))
4004 return false;
4005 if (!ldtr_valid(vcpu))
4006 return false;
4007 }
4008 /* TODO:
4009 * - Add checks on RIP
4010 * - Add checks on RFLAGS
4011 */
4012
4013 return true;
4014 }
4015
4016 static int init_rmode_tss(struct kvm *kvm)
4017 {
4018 gfn_t fn;
4019 u16 data = 0;
4020 int idx, r;
4021
4022 idx = srcu_read_lock(&kvm->srcu);
4023 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4024 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4025 if (r < 0)
4026 goto out;
4027 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4028 r = kvm_write_guest_page(kvm, fn++, &data,
4029 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4030 if (r < 0)
4031 goto out;
4032 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4033 if (r < 0)
4034 goto out;
4035 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4036 if (r < 0)
4037 goto out;
4038 data = ~0;
4039 r = kvm_write_guest_page(kvm, fn, &data,
4040 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4041 sizeof(u8));
4042 out:
4043 srcu_read_unlock(&kvm->srcu, idx);
4044 return r;
4045 }
4046
4047 static int init_rmode_identity_map(struct kvm *kvm)
4048 {
4049 int i, idx, r = 0;
4050 pfn_t identity_map_pfn;
4051 u32 tmp;
4052
4053 if (!enable_ept)
4054 return 0;
4055
4056 /* Protect kvm->arch.ept_identity_pagetable_done. */
4057 mutex_lock(&kvm->slots_lock);
4058
4059 if (likely(kvm->arch.ept_identity_pagetable_done))
4060 goto out2;
4061
4062 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4063
4064 r = alloc_identity_pagetable(kvm);
4065 if (r < 0)
4066 goto out2;
4067
4068 idx = srcu_read_lock(&kvm->srcu);
4069 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4070 if (r < 0)
4071 goto out;
4072 /* Set up identity-mapping pagetable for EPT in real mode */
4073 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4074 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4075 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4076 r = kvm_write_guest_page(kvm, identity_map_pfn,
4077 &tmp, i * sizeof(tmp), sizeof(tmp));
4078 if (r < 0)
4079 goto out;
4080 }
4081 kvm->arch.ept_identity_pagetable_done = true;
4082
4083 out:
4084 srcu_read_unlock(&kvm->srcu, idx);
4085
4086 out2:
4087 mutex_unlock(&kvm->slots_lock);
4088 return r;
4089 }
4090
4091 static void seg_setup(int seg)
4092 {
4093 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4094 unsigned int ar;
4095
4096 vmcs_write16(sf->selector, 0);
4097 vmcs_writel(sf->base, 0);
4098 vmcs_write32(sf->limit, 0xffff);
4099 ar = 0x93;
4100 if (seg == VCPU_SREG_CS)
4101 ar |= 0x08; /* code segment */
4102
4103 vmcs_write32(sf->ar_bytes, ar);
4104 }
4105
4106 static int alloc_apic_access_page(struct kvm *kvm)
4107 {
4108 struct page *page;
4109 struct kvm_userspace_memory_region kvm_userspace_mem;
4110 int r = 0;
4111
4112 mutex_lock(&kvm->slots_lock);
4113 if (kvm->arch.apic_access_page_done)
4114 goto out;
4115 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4116 kvm_userspace_mem.flags = 0;
4117 kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
4118 kvm_userspace_mem.memory_size = PAGE_SIZE;
4119 r = __x86_set_memory_region(kvm, &kvm_userspace_mem);
4120 if (r)
4121 goto out;
4122
4123 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4124 if (is_error_page(page)) {
4125 r = -EFAULT;
4126 goto out;
4127 }
4128
4129 /*
4130 * Do not pin the page in memory, so that memory hot-unplug
4131 * is able to migrate it.
4132 */
4133 put_page(page);
4134 kvm->arch.apic_access_page_done = true;
4135 out:
4136 mutex_unlock(&kvm->slots_lock);
4137 return r;
4138 }
4139
4140 static int alloc_identity_pagetable(struct kvm *kvm)
4141 {
4142 /* Called with kvm->slots_lock held. */
4143
4144 struct kvm_userspace_memory_region kvm_userspace_mem;
4145 int r = 0;
4146
4147 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4148
4149 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4150 kvm_userspace_mem.flags = 0;
4151 kvm_userspace_mem.guest_phys_addr =
4152 kvm->arch.ept_identity_map_addr;
4153 kvm_userspace_mem.memory_size = PAGE_SIZE;
4154 r = __x86_set_memory_region(kvm, &kvm_userspace_mem);
4155
4156 return r;
4157 }
4158
4159 static void allocate_vpid(struct vcpu_vmx *vmx)
4160 {
4161 int vpid;
4162
4163 vmx->vpid = 0;
4164 if (!enable_vpid)
4165 return;
4166 spin_lock(&vmx_vpid_lock);
4167 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4168 if (vpid < VMX_NR_VPIDS) {
4169 vmx->vpid = vpid;
4170 __set_bit(vpid, vmx_vpid_bitmap);
4171 }
4172 spin_unlock(&vmx_vpid_lock);
4173 }
4174
4175 static void free_vpid(struct vcpu_vmx *vmx)
4176 {
4177 if (!enable_vpid)
4178 return;
4179 spin_lock(&vmx_vpid_lock);
4180 if (vmx->vpid != 0)
4181 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4182 spin_unlock(&vmx_vpid_lock);
4183 }
4184
4185 #define MSR_TYPE_R 1
4186 #define MSR_TYPE_W 2
4187 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4188 u32 msr, int type)
4189 {
4190 int f = sizeof(unsigned long);
4191
4192 if (!cpu_has_vmx_msr_bitmap())
4193 return;
4194
4195 /*
4196 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4197 * have the write-low and read-high bitmap offsets the wrong way round.
4198 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4199 */
4200 if (msr <= 0x1fff) {
4201 if (type & MSR_TYPE_R)
4202 /* read-low */
4203 __clear_bit(msr, msr_bitmap + 0x000 / f);
4204
4205 if (type & MSR_TYPE_W)
4206 /* write-low */
4207 __clear_bit(msr, msr_bitmap + 0x800 / f);
4208
4209 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4210 msr &= 0x1fff;
4211 if (type & MSR_TYPE_R)
4212 /* read-high */
4213 __clear_bit(msr, msr_bitmap + 0x400 / f);
4214
4215 if (type & MSR_TYPE_W)
4216 /* write-high */
4217 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4218
4219 }
4220 }
4221
4222 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4223 u32 msr, int type)
4224 {
4225 int f = sizeof(unsigned long);
4226
4227 if (!cpu_has_vmx_msr_bitmap())
4228 return;
4229
4230 /*
4231 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4232 * have the write-low and read-high bitmap offsets the wrong way round.
4233 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4234 */
4235 if (msr <= 0x1fff) {
4236 if (type & MSR_TYPE_R)
4237 /* read-low */
4238 __set_bit(msr, msr_bitmap + 0x000 / f);
4239
4240 if (type & MSR_TYPE_W)
4241 /* write-low */
4242 __set_bit(msr, msr_bitmap + 0x800 / f);
4243
4244 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4245 msr &= 0x1fff;
4246 if (type & MSR_TYPE_R)
4247 /* read-high */
4248 __set_bit(msr, msr_bitmap + 0x400 / f);
4249
4250 if (type & MSR_TYPE_W)
4251 /* write-high */
4252 __set_bit(msr, msr_bitmap + 0xc00 / f);
4253
4254 }
4255 }
4256
4257 /*
4258 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4259 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4260 */
4261 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4262 unsigned long *msr_bitmap_nested,
4263 u32 msr, int type)
4264 {
4265 int f = sizeof(unsigned long);
4266
4267 if (!cpu_has_vmx_msr_bitmap()) {
4268 WARN_ON(1);
4269 return;
4270 }
4271
4272 /*
4273 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4274 * have the write-low and read-high bitmap offsets the wrong way round.
4275 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4276 */
4277 if (msr <= 0x1fff) {
4278 if (type & MSR_TYPE_R &&
4279 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4280 /* read-low */
4281 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4282
4283 if (type & MSR_TYPE_W &&
4284 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4285 /* write-low */
4286 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4287
4288 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4289 msr &= 0x1fff;
4290 if (type & MSR_TYPE_R &&
4291 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4292 /* read-high */
4293 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4294
4295 if (type & MSR_TYPE_W &&
4296 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4297 /* write-high */
4298 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4299
4300 }
4301 }
4302
4303 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4304 {
4305 if (!longmode_only)
4306 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4307 msr, MSR_TYPE_R | MSR_TYPE_W);
4308 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4309 msr, MSR_TYPE_R | MSR_TYPE_W);
4310 }
4311
4312 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4313 {
4314 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4315 msr, MSR_TYPE_R);
4316 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4317 msr, MSR_TYPE_R);
4318 }
4319
4320 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4321 {
4322 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4323 msr, MSR_TYPE_R);
4324 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4325 msr, MSR_TYPE_R);
4326 }
4327
4328 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4329 {
4330 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4331 msr, MSR_TYPE_W);
4332 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4333 msr, MSR_TYPE_W);
4334 }
4335
4336 static int vmx_vm_has_apicv(struct kvm *kvm)
4337 {
4338 return enable_apicv && irqchip_in_kernel(kvm);
4339 }
4340
4341 static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu)
4342 {
4343 return vmx_vm_has_apicv(vcpu->kvm);
4344 }
4345
4346 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4347 {
4348 struct vcpu_vmx *vmx = to_vmx(vcpu);
4349 int max_irr;
4350 void *vapic_page;
4351 u16 status;
4352
4353 if (vmx->nested.pi_desc &&
4354 vmx->nested.pi_pending) {
4355 vmx->nested.pi_pending = false;
4356 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4357 return 0;
4358
4359 max_irr = find_last_bit(
4360 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4361
4362 if (max_irr == 256)
4363 return 0;
4364
4365 vapic_page = kmap(vmx->nested.virtual_apic_page);
4366 if (!vapic_page) {
4367 WARN_ON(1);
4368 return -ENOMEM;
4369 }
4370 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4371 kunmap(vmx->nested.virtual_apic_page);
4372
4373 status = vmcs_read16(GUEST_INTR_STATUS);
4374 if ((u8)max_irr > ((u8)status & 0xff)) {
4375 status &= ~0xff;
4376 status |= (u8)max_irr;
4377 vmcs_write16(GUEST_INTR_STATUS, status);
4378 }
4379 }
4380 return 0;
4381 }
4382
4383 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4384 {
4385 #ifdef CONFIG_SMP
4386 if (vcpu->mode == IN_GUEST_MODE) {
4387 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4388 POSTED_INTR_VECTOR);
4389 return true;
4390 }
4391 #endif
4392 return false;
4393 }
4394
4395 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4396 int vector)
4397 {
4398 struct vcpu_vmx *vmx = to_vmx(vcpu);
4399
4400 if (is_guest_mode(vcpu) &&
4401 vector == vmx->nested.posted_intr_nv) {
4402 /* the PIR and ON have been set by L1. */
4403 kvm_vcpu_trigger_posted_interrupt(vcpu);
4404 /*
4405 * If a posted intr is not recognized by hardware,
4406 * we will accomplish it in the next vmentry.
4407 */
4408 vmx->nested.pi_pending = true;
4409 kvm_make_request(KVM_REQ_EVENT, vcpu);
4410 return 0;
4411 }
4412 return -1;
4413 }
4414 /*
4415 * Send interrupt to vcpu via posted interrupt way.
4416 * 1. If target vcpu is running(non-root mode), send posted interrupt
4417 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4418 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4419 * interrupt from PIR in next vmentry.
4420 */
4421 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4422 {
4423 struct vcpu_vmx *vmx = to_vmx(vcpu);
4424 int r;
4425
4426 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4427 if (!r)
4428 return;
4429
4430 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4431 return;
4432
4433 r = pi_test_and_set_on(&vmx->pi_desc);
4434 kvm_make_request(KVM_REQ_EVENT, vcpu);
4435 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4436 kvm_vcpu_kick(vcpu);
4437 }
4438
4439 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4440 {
4441 struct vcpu_vmx *vmx = to_vmx(vcpu);
4442
4443 if (!pi_test_and_clear_on(&vmx->pi_desc))
4444 return;
4445
4446 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4447 }
4448
4449 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4450 {
4451 return;
4452 }
4453
4454 /*
4455 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4456 * will not change in the lifetime of the guest.
4457 * Note that host-state that does change is set elsewhere. E.g., host-state
4458 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4459 */
4460 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4461 {
4462 u32 low32, high32;
4463 unsigned long tmpl;
4464 struct desc_ptr dt;
4465 unsigned long cr4;
4466
4467 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4468 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4469
4470 /* Save the most likely value for this task's CR4 in the VMCS. */
4471 cr4 = cr4_read_shadow();
4472 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4473 vmx->host_state.vmcs_host_cr4 = cr4;
4474
4475 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4476 #ifdef CONFIG_X86_64
4477 /*
4478 * Load null selectors, so we can avoid reloading them in
4479 * __vmx_load_host_state(), in case userspace uses the null selectors
4480 * too (the expected case).
4481 */
4482 vmcs_write16(HOST_DS_SELECTOR, 0);
4483 vmcs_write16(HOST_ES_SELECTOR, 0);
4484 #else
4485 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4486 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4487 #endif
4488 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4489 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4490
4491 native_store_idt(&dt);
4492 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4493 vmx->host_idt_base = dt.address;
4494
4495 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4496
4497 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4498 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4499 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4500 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4501
4502 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4503 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4504 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4505 }
4506 }
4507
4508 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4509 {
4510 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4511 if (enable_ept)
4512 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4513 if (is_guest_mode(&vmx->vcpu))
4514 vmx->vcpu.arch.cr4_guest_owned_bits &=
4515 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4516 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4517 }
4518
4519 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4520 {
4521 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4522
4523 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4524 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4525 return pin_based_exec_ctrl;
4526 }
4527
4528 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4529 {
4530 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4531
4532 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4533 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4534
4535 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4536 exec_control &= ~CPU_BASED_TPR_SHADOW;
4537 #ifdef CONFIG_X86_64
4538 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4539 CPU_BASED_CR8_LOAD_EXITING;
4540 #endif
4541 }
4542 if (!enable_ept)
4543 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4544 CPU_BASED_CR3_LOAD_EXITING |
4545 CPU_BASED_INVLPG_EXITING;
4546 return exec_control;
4547 }
4548
4549 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4550 {
4551 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4552 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4553 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4554 if (vmx->vpid == 0)
4555 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4556 if (!enable_ept) {
4557 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4558 enable_unrestricted_guest = 0;
4559 /* Enable INVPCID for non-ept guests may cause performance regression. */
4560 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4561 }
4562 if (!enable_unrestricted_guest)
4563 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4564 if (!ple_gap)
4565 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4566 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4567 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4568 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4569 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4570 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4571 (handle_vmptrld).
4572 We can NOT enable shadow_vmcs here because we don't have yet
4573 a current VMCS12
4574 */
4575 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4576 /* PML is enabled/disabled in creating/destorying vcpu */
4577 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4578
4579 return exec_control;
4580 }
4581
4582 static void ept_set_mmio_spte_mask(void)
4583 {
4584 /*
4585 * EPT Misconfigurations can be generated if the value of bits 2:0
4586 * of an EPT paging-structure entry is 110b (write/execute).
4587 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4588 * spte.
4589 */
4590 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4591 }
4592
4593 #define VMX_XSS_EXIT_BITMAP 0
4594 /*
4595 * Sets up the vmcs for emulated real mode.
4596 */
4597 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4598 {
4599 #ifdef CONFIG_X86_64
4600 unsigned long a;
4601 #endif
4602 int i;
4603
4604 /* I/O */
4605 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4606 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4607
4608 if (enable_shadow_vmcs) {
4609 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4610 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4611 }
4612 if (cpu_has_vmx_msr_bitmap())
4613 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4614
4615 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4616
4617 /* Control */
4618 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4619
4620 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4621
4622 if (cpu_has_secondary_exec_ctrls()) {
4623 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4624 vmx_secondary_exec_control(vmx));
4625 }
4626
4627 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4628 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4629 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4630 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4631 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4632
4633 vmcs_write16(GUEST_INTR_STATUS, 0);
4634
4635 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4636 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4637 }
4638
4639 if (ple_gap) {
4640 vmcs_write32(PLE_GAP, ple_gap);
4641 vmx->ple_window = ple_window;
4642 vmx->ple_window_dirty = true;
4643 }
4644
4645 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4646 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4647 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4648
4649 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4650 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4651 vmx_set_constant_host_state(vmx);
4652 #ifdef CONFIG_X86_64
4653 rdmsrl(MSR_FS_BASE, a);
4654 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4655 rdmsrl(MSR_GS_BASE, a);
4656 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4657 #else
4658 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4659 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4660 #endif
4661
4662 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4663 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4664 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4665 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4666 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4667
4668 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4669 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4670
4671 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4672 u32 index = vmx_msr_index[i];
4673 u32 data_low, data_high;
4674 int j = vmx->nmsrs;
4675
4676 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4677 continue;
4678 if (wrmsr_safe(index, data_low, data_high) < 0)
4679 continue;
4680 vmx->guest_msrs[j].index = i;
4681 vmx->guest_msrs[j].data = 0;
4682 vmx->guest_msrs[j].mask = -1ull;
4683 ++vmx->nmsrs;
4684 }
4685
4686
4687 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4688
4689 /* 22.2.1, 20.8.1 */
4690 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4691
4692 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4693 set_cr4_guest_host_mask(vmx);
4694
4695 if (vmx_xsaves_supported())
4696 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4697
4698 return 0;
4699 }
4700
4701 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4702 {
4703 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704 struct msr_data apic_base_msr;
4705 u64 cr0;
4706
4707 vmx->rmode.vm86_active = 0;
4708
4709 vmx->soft_vnmi_blocked = 0;
4710
4711 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4712 kvm_set_cr8(vcpu, 0);
4713
4714 if (!init_event) {
4715 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4716 MSR_IA32_APICBASE_ENABLE;
4717 if (kvm_vcpu_is_reset_bsp(vcpu))
4718 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4719 apic_base_msr.host_initiated = true;
4720 kvm_set_apic_base(vcpu, &apic_base_msr);
4721 }
4722
4723 vmx_segment_cache_clear(vmx);
4724
4725 seg_setup(VCPU_SREG_CS);
4726 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4727 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4728
4729 seg_setup(VCPU_SREG_DS);
4730 seg_setup(VCPU_SREG_ES);
4731 seg_setup(VCPU_SREG_FS);
4732 seg_setup(VCPU_SREG_GS);
4733 seg_setup(VCPU_SREG_SS);
4734
4735 vmcs_write16(GUEST_TR_SELECTOR, 0);
4736 vmcs_writel(GUEST_TR_BASE, 0);
4737 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4738 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4739
4740 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4741 vmcs_writel(GUEST_LDTR_BASE, 0);
4742 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4743 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4744
4745 if (!init_event) {
4746 vmcs_write32(GUEST_SYSENTER_CS, 0);
4747 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4748 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4749 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4750 }
4751
4752 vmcs_writel(GUEST_RFLAGS, 0x02);
4753 kvm_rip_write(vcpu, 0xfff0);
4754
4755 vmcs_writel(GUEST_GDTR_BASE, 0);
4756 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4757
4758 vmcs_writel(GUEST_IDTR_BASE, 0);
4759 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4760
4761 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4762 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4763 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4764
4765 setup_msrs(vmx);
4766
4767 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4768
4769 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4770 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4771 if (vm_need_tpr_shadow(vcpu->kvm))
4772 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4773 __pa(vcpu->arch.apic->regs));
4774 vmcs_write32(TPR_THRESHOLD, 0);
4775 }
4776
4777 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4778
4779 if (vmx_vm_has_apicv(vcpu->kvm))
4780 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4781
4782 if (vmx->vpid != 0)
4783 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4784
4785 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4786 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4787 vmx->vcpu.arch.cr0 = cr0;
4788 vmx_set_cr4(vcpu, 0);
4789 if (!init_event)
4790 vmx_set_efer(vcpu, 0);
4791 vmx_fpu_activate(vcpu);
4792 update_exception_bitmap(vcpu);
4793
4794 vpid_sync_context(vmx);
4795 }
4796
4797 /*
4798 * In nested virtualization, check if L1 asked to exit on external interrupts.
4799 * For most existing hypervisors, this will always return true.
4800 */
4801 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4802 {
4803 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4804 PIN_BASED_EXT_INTR_MASK;
4805 }
4806
4807 /*
4808 * In nested virtualization, check if L1 has set
4809 * VM_EXIT_ACK_INTR_ON_EXIT
4810 */
4811 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4812 {
4813 return get_vmcs12(vcpu)->vm_exit_controls &
4814 VM_EXIT_ACK_INTR_ON_EXIT;
4815 }
4816
4817 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4818 {
4819 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4820 PIN_BASED_NMI_EXITING;
4821 }
4822
4823 static void enable_irq_window(struct kvm_vcpu *vcpu)
4824 {
4825 u32 cpu_based_vm_exec_control;
4826
4827 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4828 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4829 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4830 }
4831
4832 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4833 {
4834 u32 cpu_based_vm_exec_control;
4835
4836 if (!cpu_has_virtual_nmis() ||
4837 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4838 enable_irq_window(vcpu);
4839 return;
4840 }
4841
4842 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4843 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4844 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4845 }
4846
4847 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4848 {
4849 struct vcpu_vmx *vmx = to_vmx(vcpu);
4850 uint32_t intr;
4851 int irq = vcpu->arch.interrupt.nr;
4852
4853 trace_kvm_inj_virq(irq);
4854
4855 ++vcpu->stat.irq_injections;
4856 if (vmx->rmode.vm86_active) {
4857 int inc_eip = 0;
4858 if (vcpu->arch.interrupt.soft)
4859 inc_eip = vcpu->arch.event_exit_inst_len;
4860 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4861 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4862 return;
4863 }
4864 intr = irq | INTR_INFO_VALID_MASK;
4865 if (vcpu->arch.interrupt.soft) {
4866 intr |= INTR_TYPE_SOFT_INTR;
4867 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4868 vmx->vcpu.arch.event_exit_inst_len);
4869 } else
4870 intr |= INTR_TYPE_EXT_INTR;
4871 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4872 }
4873
4874 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4875 {
4876 struct vcpu_vmx *vmx = to_vmx(vcpu);
4877
4878 if (is_guest_mode(vcpu))
4879 return;
4880
4881 if (!cpu_has_virtual_nmis()) {
4882 /*
4883 * Tracking the NMI-blocked state in software is built upon
4884 * finding the next open IRQ window. This, in turn, depends on
4885 * well-behaving guests: They have to keep IRQs disabled at
4886 * least as long as the NMI handler runs. Otherwise we may
4887 * cause NMI nesting, maybe breaking the guest. But as this is
4888 * highly unlikely, we can live with the residual risk.
4889 */
4890 vmx->soft_vnmi_blocked = 1;
4891 vmx->vnmi_blocked_time = 0;
4892 }
4893
4894 ++vcpu->stat.nmi_injections;
4895 vmx->nmi_known_unmasked = false;
4896 if (vmx->rmode.vm86_active) {
4897 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4898 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4899 return;
4900 }
4901 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4902 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4903 }
4904
4905 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4906 {
4907 if (!cpu_has_virtual_nmis())
4908 return to_vmx(vcpu)->soft_vnmi_blocked;
4909 if (to_vmx(vcpu)->nmi_known_unmasked)
4910 return false;
4911 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4912 }
4913
4914 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4915 {
4916 struct vcpu_vmx *vmx = to_vmx(vcpu);
4917
4918 if (!cpu_has_virtual_nmis()) {
4919 if (vmx->soft_vnmi_blocked != masked) {
4920 vmx->soft_vnmi_blocked = masked;
4921 vmx->vnmi_blocked_time = 0;
4922 }
4923 } else {
4924 vmx->nmi_known_unmasked = !masked;
4925 if (masked)
4926 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4927 GUEST_INTR_STATE_NMI);
4928 else
4929 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4930 GUEST_INTR_STATE_NMI);
4931 }
4932 }
4933
4934 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4935 {
4936 if (to_vmx(vcpu)->nested.nested_run_pending)
4937 return 0;
4938
4939 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4940 return 0;
4941
4942 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4943 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4944 | GUEST_INTR_STATE_NMI));
4945 }
4946
4947 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4948 {
4949 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4950 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4951 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4952 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4953 }
4954
4955 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4956 {
4957 int ret;
4958 struct kvm_userspace_memory_region tss_mem = {
4959 .slot = TSS_PRIVATE_MEMSLOT,
4960 .guest_phys_addr = addr,
4961 .memory_size = PAGE_SIZE * 3,
4962 .flags = 0,
4963 };
4964
4965 ret = x86_set_memory_region(kvm, &tss_mem);
4966 if (ret)
4967 return ret;
4968 kvm->arch.tss_addr = addr;
4969 return init_rmode_tss(kvm);
4970 }
4971
4972 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4973 {
4974 switch (vec) {
4975 case BP_VECTOR:
4976 /*
4977 * Update instruction length as we may reinject the exception
4978 * from user space while in guest debugging mode.
4979 */
4980 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4981 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4982 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4983 return false;
4984 /* fall through */
4985 case DB_VECTOR:
4986 if (vcpu->guest_debug &
4987 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4988 return false;
4989 /* fall through */
4990 case DE_VECTOR:
4991 case OF_VECTOR:
4992 case BR_VECTOR:
4993 case UD_VECTOR:
4994 case DF_VECTOR:
4995 case SS_VECTOR:
4996 case GP_VECTOR:
4997 case MF_VECTOR:
4998 return true;
4999 break;
5000 }
5001 return false;
5002 }
5003
5004 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5005 int vec, u32 err_code)
5006 {
5007 /*
5008 * Instruction with address size override prefix opcode 0x67
5009 * Cause the #SS fault with 0 error code in VM86 mode.
5010 */
5011 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5012 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5013 if (vcpu->arch.halt_request) {
5014 vcpu->arch.halt_request = 0;
5015 return kvm_vcpu_halt(vcpu);
5016 }
5017 return 1;
5018 }
5019 return 0;
5020 }
5021
5022 /*
5023 * Forward all other exceptions that are valid in real mode.
5024 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5025 * the required debugging infrastructure rework.
5026 */
5027 kvm_queue_exception(vcpu, vec);
5028 return 1;
5029 }
5030
5031 /*
5032 * Trigger machine check on the host. We assume all the MSRs are already set up
5033 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5034 * We pass a fake environment to the machine check handler because we want
5035 * the guest to be always treated like user space, no matter what context
5036 * it used internally.
5037 */
5038 static void kvm_machine_check(void)
5039 {
5040 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5041 struct pt_regs regs = {
5042 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5043 .flags = X86_EFLAGS_IF,
5044 };
5045
5046 do_machine_check(&regs, 0);
5047 #endif
5048 }
5049
5050 static int handle_machine_check(struct kvm_vcpu *vcpu)
5051 {
5052 /* already handled by vcpu_run */
5053 return 1;
5054 }
5055
5056 static int handle_exception(struct kvm_vcpu *vcpu)
5057 {
5058 struct vcpu_vmx *vmx = to_vmx(vcpu);
5059 struct kvm_run *kvm_run = vcpu->run;
5060 u32 intr_info, ex_no, error_code;
5061 unsigned long cr2, rip, dr6;
5062 u32 vect_info;
5063 enum emulation_result er;
5064
5065 vect_info = vmx->idt_vectoring_info;
5066 intr_info = vmx->exit_intr_info;
5067
5068 if (is_machine_check(intr_info))
5069 return handle_machine_check(vcpu);
5070
5071 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5072 return 1; /* already handled by vmx_vcpu_run() */
5073
5074 if (is_no_device(intr_info)) {
5075 vmx_fpu_activate(vcpu);
5076 return 1;
5077 }
5078
5079 if (is_invalid_opcode(intr_info)) {
5080 if (is_guest_mode(vcpu)) {
5081 kvm_queue_exception(vcpu, UD_VECTOR);
5082 return 1;
5083 }
5084 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5085 if (er != EMULATE_DONE)
5086 kvm_queue_exception(vcpu, UD_VECTOR);
5087 return 1;
5088 }
5089
5090 error_code = 0;
5091 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5092 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5093
5094 /*
5095 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5096 * MMIO, it is better to report an internal error.
5097 * See the comments in vmx_handle_exit.
5098 */
5099 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5100 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5101 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5102 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5103 vcpu->run->internal.ndata = 3;
5104 vcpu->run->internal.data[0] = vect_info;
5105 vcpu->run->internal.data[1] = intr_info;
5106 vcpu->run->internal.data[2] = error_code;
5107 return 0;
5108 }
5109
5110 if (is_page_fault(intr_info)) {
5111 /* EPT won't cause page fault directly */
5112 BUG_ON(enable_ept);
5113 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5114 trace_kvm_page_fault(cr2, error_code);
5115
5116 if (kvm_event_needs_reinjection(vcpu))
5117 kvm_mmu_unprotect_page_virt(vcpu, cr2);
5118 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5119 }
5120
5121 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5122
5123 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5124 return handle_rmode_exception(vcpu, ex_no, error_code);
5125
5126 switch (ex_no) {
5127 case DB_VECTOR:
5128 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5129 if (!(vcpu->guest_debug &
5130 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5131 vcpu->arch.dr6 &= ~15;
5132 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5133 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5134 skip_emulated_instruction(vcpu);
5135
5136 kvm_queue_exception(vcpu, DB_VECTOR);
5137 return 1;
5138 }
5139 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5140 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5141 /* fall through */
5142 case BP_VECTOR:
5143 /*
5144 * Update instruction length as we may reinject #BP from
5145 * user space while in guest debugging mode. Reading it for
5146 * #DB as well causes no harm, it is not used in that case.
5147 */
5148 vmx->vcpu.arch.event_exit_inst_len =
5149 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5150 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5151 rip = kvm_rip_read(vcpu);
5152 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5153 kvm_run->debug.arch.exception = ex_no;
5154 break;
5155 default:
5156 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5157 kvm_run->ex.exception = ex_no;
5158 kvm_run->ex.error_code = error_code;
5159 break;
5160 }
5161 return 0;
5162 }
5163
5164 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5165 {
5166 ++vcpu->stat.irq_exits;
5167 return 1;
5168 }
5169
5170 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5171 {
5172 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5173 return 0;
5174 }
5175
5176 static int handle_io(struct kvm_vcpu *vcpu)
5177 {
5178 unsigned long exit_qualification;
5179 int size, in, string;
5180 unsigned port;
5181
5182 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5183 string = (exit_qualification & 16) != 0;
5184 in = (exit_qualification & 8) != 0;
5185
5186 ++vcpu->stat.io_exits;
5187
5188 if (string || in)
5189 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5190
5191 port = exit_qualification >> 16;
5192 size = (exit_qualification & 7) + 1;
5193 skip_emulated_instruction(vcpu);
5194
5195 return kvm_fast_pio_out(vcpu, size, port);
5196 }
5197
5198 static void
5199 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5200 {
5201 /*
5202 * Patch in the VMCALL instruction:
5203 */
5204 hypercall[0] = 0x0f;
5205 hypercall[1] = 0x01;
5206 hypercall[2] = 0xc1;
5207 }
5208
5209 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5210 {
5211 unsigned long always_on = VMXON_CR0_ALWAYSON;
5212 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5213
5214 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5215 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5216 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5217 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5218 return (val & always_on) == always_on;
5219 }
5220
5221 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5222 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5223 {
5224 if (is_guest_mode(vcpu)) {
5225 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5226 unsigned long orig_val = val;
5227
5228 /*
5229 * We get here when L2 changed cr0 in a way that did not change
5230 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5231 * but did change L0 shadowed bits. So we first calculate the
5232 * effective cr0 value that L1 would like to write into the
5233 * hardware. It consists of the L2-owned bits from the new
5234 * value combined with the L1-owned bits from L1's guest_cr0.
5235 */
5236 val = (val & ~vmcs12->cr0_guest_host_mask) |
5237 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5238
5239 if (!nested_cr0_valid(vcpu, val))
5240 return 1;
5241
5242 if (kvm_set_cr0(vcpu, val))
5243 return 1;
5244 vmcs_writel(CR0_READ_SHADOW, orig_val);
5245 return 0;
5246 } else {
5247 if (to_vmx(vcpu)->nested.vmxon &&
5248 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5249 return 1;
5250 return kvm_set_cr0(vcpu, val);
5251 }
5252 }
5253
5254 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5255 {
5256 if (is_guest_mode(vcpu)) {
5257 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5258 unsigned long orig_val = val;
5259
5260 /* analogously to handle_set_cr0 */
5261 val = (val & ~vmcs12->cr4_guest_host_mask) |
5262 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5263 if (kvm_set_cr4(vcpu, val))
5264 return 1;
5265 vmcs_writel(CR4_READ_SHADOW, orig_val);
5266 return 0;
5267 } else
5268 return kvm_set_cr4(vcpu, val);
5269 }
5270
5271 /* called to set cr0 as approriate for clts instruction exit. */
5272 static void handle_clts(struct kvm_vcpu *vcpu)
5273 {
5274 if (is_guest_mode(vcpu)) {
5275 /*
5276 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5277 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5278 * just pretend it's off (also in arch.cr0 for fpu_activate).
5279 */
5280 vmcs_writel(CR0_READ_SHADOW,
5281 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5282 vcpu->arch.cr0 &= ~X86_CR0_TS;
5283 } else
5284 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5285 }
5286
5287 static int handle_cr(struct kvm_vcpu *vcpu)
5288 {
5289 unsigned long exit_qualification, val;
5290 int cr;
5291 int reg;
5292 int err;
5293
5294 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5295 cr = exit_qualification & 15;
5296 reg = (exit_qualification >> 8) & 15;
5297 switch ((exit_qualification >> 4) & 3) {
5298 case 0: /* mov to cr */
5299 val = kvm_register_readl(vcpu, reg);
5300 trace_kvm_cr_write(cr, val);
5301 switch (cr) {
5302 case 0:
5303 err = handle_set_cr0(vcpu, val);
5304 kvm_complete_insn_gp(vcpu, err);
5305 return 1;
5306 case 3:
5307 err = kvm_set_cr3(vcpu, val);
5308 kvm_complete_insn_gp(vcpu, err);
5309 return 1;
5310 case 4:
5311 err = handle_set_cr4(vcpu, val);
5312 kvm_complete_insn_gp(vcpu, err);
5313 return 1;
5314 case 8: {
5315 u8 cr8_prev = kvm_get_cr8(vcpu);
5316 u8 cr8 = (u8)val;
5317 err = kvm_set_cr8(vcpu, cr8);
5318 kvm_complete_insn_gp(vcpu, err);
5319 if (irqchip_in_kernel(vcpu->kvm))
5320 return 1;
5321 if (cr8_prev <= cr8)
5322 return 1;
5323 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5324 return 0;
5325 }
5326 }
5327 break;
5328 case 2: /* clts */
5329 handle_clts(vcpu);
5330 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5331 skip_emulated_instruction(vcpu);
5332 vmx_fpu_activate(vcpu);
5333 return 1;
5334 case 1: /*mov from cr*/
5335 switch (cr) {
5336 case 3:
5337 val = kvm_read_cr3(vcpu);
5338 kvm_register_write(vcpu, reg, val);
5339 trace_kvm_cr_read(cr, val);
5340 skip_emulated_instruction(vcpu);
5341 return 1;
5342 case 8:
5343 val = kvm_get_cr8(vcpu);
5344 kvm_register_write(vcpu, reg, val);
5345 trace_kvm_cr_read(cr, val);
5346 skip_emulated_instruction(vcpu);
5347 return 1;
5348 }
5349 break;
5350 case 3: /* lmsw */
5351 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5352 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5353 kvm_lmsw(vcpu, val);
5354
5355 skip_emulated_instruction(vcpu);
5356 return 1;
5357 default:
5358 break;
5359 }
5360 vcpu->run->exit_reason = 0;
5361 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5362 (int)(exit_qualification >> 4) & 3, cr);
5363 return 0;
5364 }
5365
5366 static int handle_dr(struct kvm_vcpu *vcpu)
5367 {
5368 unsigned long exit_qualification;
5369 int dr, dr7, reg;
5370
5371 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5372 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5373
5374 /* First, if DR does not exist, trigger UD */
5375 if (!kvm_require_dr(vcpu, dr))
5376 return 1;
5377
5378 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5379 if (!kvm_require_cpl(vcpu, 0))
5380 return 1;
5381 dr7 = vmcs_readl(GUEST_DR7);
5382 if (dr7 & DR7_GD) {
5383 /*
5384 * As the vm-exit takes precedence over the debug trap, we
5385 * need to emulate the latter, either for the host or the
5386 * guest debugging itself.
5387 */
5388 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5389 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5390 vcpu->run->debug.arch.dr7 = dr7;
5391 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5392 vcpu->run->debug.arch.exception = DB_VECTOR;
5393 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5394 return 0;
5395 } else {
5396 vcpu->arch.dr6 &= ~15;
5397 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5398 kvm_queue_exception(vcpu, DB_VECTOR);
5399 return 1;
5400 }
5401 }
5402
5403 if (vcpu->guest_debug == 0) {
5404 u32 cpu_based_vm_exec_control;
5405
5406 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5407 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5408 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5409
5410 /*
5411 * No more DR vmexits; force a reload of the debug registers
5412 * and reenter on this instruction. The next vmexit will
5413 * retrieve the full state of the debug registers.
5414 */
5415 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5416 return 1;
5417 }
5418
5419 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5420 if (exit_qualification & TYPE_MOV_FROM_DR) {
5421 unsigned long val;
5422
5423 if (kvm_get_dr(vcpu, dr, &val))
5424 return 1;
5425 kvm_register_write(vcpu, reg, val);
5426 } else
5427 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5428 return 1;
5429
5430 skip_emulated_instruction(vcpu);
5431 return 1;
5432 }
5433
5434 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5435 {
5436 return vcpu->arch.dr6;
5437 }
5438
5439 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5440 {
5441 }
5442
5443 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5444 {
5445 u32 cpu_based_vm_exec_control;
5446
5447 get_debugreg(vcpu->arch.db[0], 0);
5448 get_debugreg(vcpu->arch.db[1], 1);
5449 get_debugreg(vcpu->arch.db[2], 2);
5450 get_debugreg(vcpu->arch.db[3], 3);
5451 get_debugreg(vcpu->arch.dr6, 6);
5452 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5453
5454 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5455
5456 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5457 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5458 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5459 }
5460
5461 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5462 {
5463 vmcs_writel(GUEST_DR7, val);
5464 }
5465
5466 static int handle_cpuid(struct kvm_vcpu *vcpu)
5467 {
5468 kvm_emulate_cpuid(vcpu);
5469 return 1;
5470 }
5471
5472 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5473 {
5474 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5475 struct msr_data msr_info;
5476
5477 msr_info.index = ecx;
5478 msr_info.host_initiated = false;
5479 if (vmx_get_msr(vcpu, &msr_info)) {
5480 trace_kvm_msr_read_ex(ecx);
5481 kvm_inject_gp(vcpu, 0);
5482 return 1;
5483 }
5484
5485 trace_kvm_msr_read(ecx, msr_info.data);
5486
5487 /* FIXME: handling of bits 32:63 of rax, rdx */
5488 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5489 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5490 skip_emulated_instruction(vcpu);
5491 return 1;
5492 }
5493
5494 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5495 {
5496 struct msr_data msr;
5497 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5498 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5499 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5500
5501 msr.data = data;
5502 msr.index = ecx;
5503 msr.host_initiated = false;
5504 if (kvm_set_msr(vcpu, &msr) != 0) {
5505 trace_kvm_msr_write_ex(ecx, data);
5506 kvm_inject_gp(vcpu, 0);
5507 return 1;
5508 }
5509
5510 trace_kvm_msr_write(ecx, data);
5511 skip_emulated_instruction(vcpu);
5512 return 1;
5513 }
5514
5515 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5516 {
5517 kvm_make_request(KVM_REQ_EVENT, vcpu);
5518 return 1;
5519 }
5520
5521 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5522 {
5523 u32 cpu_based_vm_exec_control;
5524
5525 /* clear pending irq */
5526 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5527 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5528 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5529
5530 kvm_make_request(KVM_REQ_EVENT, vcpu);
5531
5532 ++vcpu->stat.irq_window_exits;
5533
5534 /*
5535 * If the user space waits to inject interrupts, exit as soon as
5536 * possible
5537 */
5538 if (!irqchip_in_kernel(vcpu->kvm) &&
5539 vcpu->run->request_interrupt_window &&
5540 !kvm_cpu_has_interrupt(vcpu)) {
5541 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5542 return 0;
5543 }
5544 return 1;
5545 }
5546
5547 static int handle_halt(struct kvm_vcpu *vcpu)
5548 {
5549 return kvm_emulate_halt(vcpu);
5550 }
5551
5552 static int handle_vmcall(struct kvm_vcpu *vcpu)
5553 {
5554 kvm_emulate_hypercall(vcpu);
5555 return 1;
5556 }
5557
5558 static int handle_invd(struct kvm_vcpu *vcpu)
5559 {
5560 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5561 }
5562
5563 static int handle_invlpg(struct kvm_vcpu *vcpu)
5564 {
5565 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5566
5567 kvm_mmu_invlpg(vcpu, exit_qualification);
5568 skip_emulated_instruction(vcpu);
5569 return 1;
5570 }
5571
5572 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5573 {
5574 int err;
5575
5576 err = kvm_rdpmc(vcpu);
5577 kvm_complete_insn_gp(vcpu, err);
5578
5579 return 1;
5580 }
5581
5582 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5583 {
5584 kvm_emulate_wbinvd(vcpu);
5585 return 1;
5586 }
5587
5588 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5589 {
5590 u64 new_bv = kvm_read_edx_eax(vcpu);
5591 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5592
5593 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5594 skip_emulated_instruction(vcpu);
5595 return 1;
5596 }
5597
5598 static int handle_xsaves(struct kvm_vcpu *vcpu)
5599 {
5600 skip_emulated_instruction(vcpu);
5601 WARN(1, "this should never happen\n");
5602 return 1;
5603 }
5604
5605 static int handle_xrstors(struct kvm_vcpu *vcpu)
5606 {
5607 skip_emulated_instruction(vcpu);
5608 WARN(1, "this should never happen\n");
5609 return 1;
5610 }
5611
5612 static int handle_apic_access(struct kvm_vcpu *vcpu)
5613 {
5614 if (likely(fasteoi)) {
5615 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5616 int access_type, offset;
5617
5618 access_type = exit_qualification & APIC_ACCESS_TYPE;
5619 offset = exit_qualification & APIC_ACCESS_OFFSET;
5620 /*
5621 * Sane guest uses MOV to write EOI, with written value
5622 * not cared. So make a short-circuit here by avoiding
5623 * heavy instruction emulation.
5624 */
5625 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5626 (offset == APIC_EOI)) {
5627 kvm_lapic_set_eoi(vcpu);
5628 skip_emulated_instruction(vcpu);
5629 return 1;
5630 }
5631 }
5632 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5633 }
5634
5635 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5636 {
5637 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5638 int vector = exit_qualification & 0xff;
5639
5640 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5641 kvm_apic_set_eoi_accelerated(vcpu, vector);
5642 return 1;
5643 }
5644
5645 static int handle_apic_write(struct kvm_vcpu *vcpu)
5646 {
5647 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5648 u32 offset = exit_qualification & 0xfff;
5649
5650 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5651 kvm_apic_write_nodecode(vcpu, offset);
5652 return 1;
5653 }
5654
5655 static int handle_task_switch(struct kvm_vcpu *vcpu)
5656 {
5657 struct vcpu_vmx *vmx = to_vmx(vcpu);
5658 unsigned long exit_qualification;
5659 bool has_error_code = false;
5660 u32 error_code = 0;
5661 u16 tss_selector;
5662 int reason, type, idt_v, idt_index;
5663
5664 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5665 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5666 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5667
5668 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5669
5670 reason = (u32)exit_qualification >> 30;
5671 if (reason == TASK_SWITCH_GATE && idt_v) {
5672 switch (type) {
5673 case INTR_TYPE_NMI_INTR:
5674 vcpu->arch.nmi_injected = false;
5675 vmx_set_nmi_mask(vcpu, true);
5676 break;
5677 case INTR_TYPE_EXT_INTR:
5678 case INTR_TYPE_SOFT_INTR:
5679 kvm_clear_interrupt_queue(vcpu);
5680 break;
5681 case INTR_TYPE_HARD_EXCEPTION:
5682 if (vmx->idt_vectoring_info &
5683 VECTORING_INFO_DELIVER_CODE_MASK) {
5684 has_error_code = true;
5685 error_code =
5686 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5687 }
5688 /* fall through */
5689 case INTR_TYPE_SOFT_EXCEPTION:
5690 kvm_clear_exception_queue(vcpu);
5691 break;
5692 default:
5693 break;
5694 }
5695 }
5696 tss_selector = exit_qualification;
5697
5698 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5699 type != INTR_TYPE_EXT_INTR &&
5700 type != INTR_TYPE_NMI_INTR))
5701 skip_emulated_instruction(vcpu);
5702
5703 if (kvm_task_switch(vcpu, tss_selector,
5704 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5705 has_error_code, error_code) == EMULATE_FAIL) {
5706 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5707 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5708 vcpu->run->internal.ndata = 0;
5709 return 0;
5710 }
5711
5712 /*
5713 * TODO: What about debug traps on tss switch?
5714 * Are we supposed to inject them and update dr6?
5715 */
5716
5717 return 1;
5718 }
5719
5720 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5721 {
5722 unsigned long exit_qualification;
5723 gpa_t gpa;
5724 u32 error_code;
5725 int gla_validity;
5726
5727 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5728
5729 gla_validity = (exit_qualification >> 7) & 0x3;
5730 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5731 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5732 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5733 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5734 vmcs_readl(GUEST_LINEAR_ADDRESS));
5735 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5736 (long unsigned int)exit_qualification);
5737 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5738 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5739 return 0;
5740 }
5741
5742 /*
5743 * EPT violation happened while executing iret from NMI,
5744 * "blocked by NMI" bit has to be set before next VM entry.
5745 * There are errata that may cause this bit to not be set:
5746 * AAK134, BY25.
5747 */
5748 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5749 cpu_has_virtual_nmis() &&
5750 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5751 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5752
5753 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5754 trace_kvm_page_fault(gpa, exit_qualification);
5755
5756 /* It is a write fault? */
5757 error_code = exit_qualification & PFERR_WRITE_MASK;
5758 /* It is a fetch fault? */
5759 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
5760 /* ept page table is present? */
5761 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
5762
5763 vcpu->arch.exit_qualification = exit_qualification;
5764
5765 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5766 }
5767
5768 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5769 {
5770 int ret;
5771 gpa_t gpa;
5772
5773 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5774 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5775 skip_emulated_instruction(vcpu);
5776 return 1;
5777 }
5778
5779 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5780 if (likely(ret == RET_MMIO_PF_EMULATE))
5781 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5782 EMULATE_DONE;
5783
5784 if (unlikely(ret == RET_MMIO_PF_INVALID))
5785 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5786
5787 if (unlikely(ret == RET_MMIO_PF_RETRY))
5788 return 1;
5789
5790 /* It is the real ept misconfig */
5791 WARN_ON(1);
5792
5793 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5794 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5795
5796 return 0;
5797 }
5798
5799 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5800 {
5801 u32 cpu_based_vm_exec_control;
5802
5803 /* clear pending NMI */
5804 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5805 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5806 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5807 ++vcpu->stat.nmi_window_exits;
5808 kvm_make_request(KVM_REQ_EVENT, vcpu);
5809
5810 return 1;
5811 }
5812
5813 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5814 {
5815 struct vcpu_vmx *vmx = to_vmx(vcpu);
5816 enum emulation_result err = EMULATE_DONE;
5817 int ret = 1;
5818 u32 cpu_exec_ctrl;
5819 bool intr_window_requested;
5820 unsigned count = 130;
5821
5822 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5823 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5824
5825 while (vmx->emulation_required && count-- != 0) {
5826 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5827 return handle_interrupt_window(&vmx->vcpu);
5828
5829 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5830 return 1;
5831
5832 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5833
5834 if (err == EMULATE_USER_EXIT) {
5835 ++vcpu->stat.mmio_exits;
5836 ret = 0;
5837 goto out;
5838 }
5839
5840 if (err != EMULATE_DONE) {
5841 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5842 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5843 vcpu->run->internal.ndata = 0;
5844 return 0;
5845 }
5846
5847 if (vcpu->arch.halt_request) {
5848 vcpu->arch.halt_request = 0;
5849 ret = kvm_vcpu_halt(vcpu);
5850 goto out;
5851 }
5852
5853 if (signal_pending(current))
5854 goto out;
5855 if (need_resched())
5856 schedule();
5857 }
5858
5859 out:
5860 return ret;
5861 }
5862
5863 static int __grow_ple_window(int val)
5864 {
5865 if (ple_window_grow < 1)
5866 return ple_window;
5867
5868 val = min(val, ple_window_actual_max);
5869
5870 if (ple_window_grow < ple_window)
5871 val *= ple_window_grow;
5872 else
5873 val += ple_window_grow;
5874
5875 return val;
5876 }
5877
5878 static int __shrink_ple_window(int val, int modifier, int minimum)
5879 {
5880 if (modifier < 1)
5881 return ple_window;
5882
5883 if (modifier < ple_window)
5884 val /= modifier;
5885 else
5886 val -= modifier;
5887
5888 return max(val, minimum);
5889 }
5890
5891 static void grow_ple_window(struct kvm_vcpu *vcpu)
5892 {
5893 struct vcpu_vmx *vmx = to_vmx(vcpu);
5894 int old = vmx->ple_window;
5895
5896 vmx->ple_window = __grow_ple_window(old);
5897
5898 if (vmx->ple_window != old)
5899 vmx->ple_window_dirty = true;
5900
5901 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5902 }
5903
5904 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5905 {
5906 struct vcpu_vmx *vmx = to_vmx(vcpu);
5907 int old = vmx->ple_window;
5908
5909 vmx->ple_window = __shrink_ple_window(old,
5910 ple_window_shrink, ple_window);
5911
5912 if (vmx->ple_window != old)
5913 vmx->ple_window_dirty = true;
5914
5915 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5916 }
5917
5918 /*
5919 * ple_window_actual_max is computed to be one grow_ple_window() below
5920 * ple_window_max. (See __grow_ple_window for the reason.)
5921 * This prevents overflows, because ple_window_max is int.
5922 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5923 * this process.
5924 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5925 */
5926 static void update_ple_window_actual_max(void)
5927 {
5928 ple_window_actual_max =
5929 __shrink_ple_window(max(ple_window_max, ple_window),
5930 ple_window_grow, INT_MIN);
5931 }
5932
5933 static __init int hardware_setup(void)
5934 {
5935 int r = -ENOMEM, i, msr;
5936
5937 rdmsrl_safe(MSR_EFER, &host_efer);
5938
5939 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
5940 kvm_define_shared_msr(i, vmx_msr_index[i]);
5941
5942 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
5943 if (!vmx_io_bitmap_a)
5944 return r;
5945
5946 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
5947 if (!vmx_io_bitmap_b)
5948 goto out;
5949
5950 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
5951 if (!vmx_msr_bitmap_legacy)
5952 goto out1;
5953
5954 vmx_msr_bitmap_legacy_x2apic =
5955 (unsigned long *)__get_free_page(GFP_KERNEL);
5956 if (!vmx_msr_bitmap_legacy_x2apic)
5957 goto out2;
5958
5959 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
5960 if (!vmx_msr_bitmap_longmode)
5961 goto out3;
5962
5963 vmx_msr_bitmap_longmode_x2apic =
5964 (unsigned long *)__get_free_page(GFP_KERNEL);
5965 if (!vmx_msr_bitmap_longmode_x2apic)
5966 goto out4;
5967
5968 if (nested) {
5969 vmx_msr_bitmap_nested =
5970 (unsigned long *)__get_free_page(GFP_KERNEL);
5971 if (!vmx_msr_bitmap_nested)
5972 goto out5;
5973 }
5974
5975 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5976 if (!vmx_vmread_bitmap)
5977 goto out6;
5978
5979 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5980 if (!vmx_vmwrite_bitmap)
5981 goto out7;
5982
5983 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
5984 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
5985
5986 /*
5987 * Allow direct access to the PC debug port (it is often used for I/O
5988 * delays, but the vmexits simply slow things down).
5989 */
5990 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
5991 clear_bit(0x80, vmx_io_bitmap_a);
5992
5993 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
5994
5995 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
5996 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
5997 if (nested)
5998 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
5999
6000 if (setup_vmcs_config(&vmcs_config) < 0) {
6001 r = -EIO;
6002 goto out8;
6003 }
6004
6005 if (boot_cpu_has(X86_FEATURE_NX))
6006 kvm_enable_efer_bits(EFER_NX);
6007
6008 if (!cpu_has_vmx_vpid())
6009 enable_vpid = 0;
6010 if (!cpu_has_vmx_shadow_vmcs())
6011 enable_shadow_vmcs = 0;
6012 if (enable_shadow_vmcs)
6013 init_vmcs_shadow_fields();
6014
6015 if (!cpu_has_vmx_ept() ||
6016 !cpu_has_vmx_ept_4levels()) {
6017 enable_ept = 0;
6018 enable_unrestricted_guest = 0;
6019 enable_ept_ad_bits = 0;
6020 }
6021
6022 if (!cpu_has_vmx_ept_ad_bits())
6023 enable_ept_ad_bits = 0;
6024
6025 if (!cpu_has_vmx_unrestricted_guest())
6026 enable_unrestricted_guest = 0;
6027
6028 if (!cpu_has_vmx_flexpriority())
6029 flexpriority_enabled = 0;
6030
6031 /*
6032 * set_apic_access_page_addr() is used to reload apic access
6033 * page upon invalidation. No need to do anything if not
6034 * using the APIC_ACCESS_ADDR VMCS field.
6035 */
6036 if (!flexpriority_enabled)
6037 kvm_x86_ops->set_apic_access_page_addr = NULL;
6038
6039 if (!cpu_has_vmx_tpr_shadow())
6040 kvm_x86_ops->update_cr8_intercept = NULL;
6041
6042 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6043 kvm_disable_largepages();
6044
6045 if (!cpu_has_vmx_ple())
6046 ple_gap = 0;
6047
6048 if (!cpu_has_vmx_apicv())
6049 enable_apicv = 0;
6050
6051 if (enable_apicv)
6052 kvm_x86_ops->update_cr8_intercept = NULL;
6053 else {
6054 kvm_x86_ops->hwapic_irr_update = NULL;
6055 kvm_x86_ops->hwapic_isr_update = NULL;
6056 kvm_x86_ops->deliver_posted_interrupt = NULL;
6057 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6058 }
6059
6060 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6061 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6062 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6063 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6064 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6065 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6066 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6067
6068 memcpy(vmx_msr_bitmap_legacy_x2apic,
6069 vmx_msr_bitmap_legacy, PAGE_SIZE);
6070 memcpy(vmx_msr_bitmap_longmode_x2apic,
6071 vmx_msr_bitmap_longmode, PAGE_SIZE);
6072
6073 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6074
6075 if (enable_apicv) {
6076 for (msr = 0x800; msr <= 0x8ff; msr++)
6077 vmx_disable_intercept_msr_read_x2apic(msr);
6078
6079 /* According SDM, in x2apic mode, the whole id reg is used.
6080 * But in KVM, it only use the highest eight bits. Need to
6081 * intercept it */
6082 vmx_enable_intercept_msr_read_x2apic(0x802);
6083 /* TMCCT */
6084 vmx_enable_intercept_msr_read_x2apic(0x839);
6085 /* TPR */
6086 vmx_disable_intercept_msr_write_x2apic(0x808);
6087 /* EOI */
6088 vmx_disable_intercept_msr_write_x2apic(0x80b);
6089 /* SELF-IPI */
6090 vmx_disable_intercept_msr_write_x2apic(0x83f);
6091 }
6092
6093 if (enable_ept) {
6094 kvm_mmu_set_mask_ptes(0ull,
6095 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6096 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6097 0ull, VMX_EPT_EXECUTABLE_MASK);
6098 ept_set_mmio_spte_mask();
6099 kvm_enable_tdp();
6100 } else
6101 kvm_disable_tdp();
6102
6103 update_ple_window_actual_max();
6104
6105 /*
6106 * Only enable PML when hardware supports PML feature, and both EPT
6107 * and EPT A/D bit features are enabled -- PML depends on them to work.
6108 */
6109 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6110 enable_pml = 0;
6111
6112 if (!enable_pml) {
6113 kvm_x86_ops->slot_enable_log_dirty = NULL;
6114 kvm_x86_ops->slot_disable_log_dirty = NULL;
6115 kvm_x86_ops->flush_log_dirty = NULL;
6116 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6117 }
6118
6119 return alloc_kvm_area();
6120
6121 out8:
6122 free_page((unsigned long)vmx_vmwrite_bitmap);
6123 out7:
6124 free_page((unsigned long)vmx_vmread_bitmap);
6125 out6:
6126 if (nested)
6127 free_page((unsigned long)vmx_msr_bitmap_nested);
6128 out5:
6129 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6130 out4:
6131 free_page((unsigned long)vmx_msr_bitmap_longmode);
6132 out3:
6133 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6134 out2:
6135 free_page((unsigned long)vmx_msr_bitmap_legacy);
6136 out1:
6137 free_page((unsigned long)vmx_io_bitmap_b);
6138 out:
6139 free_page((unsigned long)vmx_io_bitmap_a);
6140
6141 return r;
6142 }
6143
6144 static __exit void hardware_unsetup(void)
6145 {
6146 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6147 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6148 free_page((unsigned long)vmx_msr_bitmap_legacy);
6149 free_page((unsigned long)vmx_msr_bitmap_longmode);
6150 free_page((unsigned long)vmx_io_bitmap_b);
6151 free_page((unsigned long)vmx_io_bitmap_a);
6152 free_page((unsigned long)vmx_vmwrite_bitmap);
6153 free_page((unsigned long)vmx_vmread_bitmap);
6154 if (nested)
6155 free_page((unsigned long)vmx_msr_bitmap_nested);
6156
6157 free_kvm_area();
6158 }
6159
6160 /*
6161 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6162 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6163 */
6164 static int handle_pause(struct kvm_vcpu *vcpu)
6165 {
6166 if (ple_gap)
6167 grow_ple_window(vcpu);
6168
6169 skip_emulated_instruction(vcpu);
6170 kvm_vcpu_on_spin(vcpu);
6171
6172 return 1;
6173 }
6174
6175 static int handle_nop(struct kvm_vcpu *vcpu)
6176 {
6177 skip_emulated_instruction(vcpu);
6178 return 1;
6179 }
6180
6181 static int handle_mwait(struct kvm_vcpu *vcpu)
6182 {
6183 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6184 return handle_nop(vcpu);
6185 }
6186
6187 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6188 {
6189 return 1;
6190 }
6191
6192 static int handle_monitor(struct kvm_vcpu *vcpu)
6193 {
6194 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6195 return handle_nop(vcpu);
6196 }
6197
6198 /*
6199 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6200 * We could reuse a single VMCS for all the L2 guests, but we also want the
6201 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6202 * allows keeping them loaded on the processor, and in the future will allow
6203 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6204 * every entry if they never change.
6205 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6206 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6207 *
6208 * The following functions allocate and free a vmcs02 in this pool.
6209 */
6210
6211 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6212 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6213 {
6214 struct vmcs02_list *item;
6215 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6216 if (item->vmptr == vmx->nested.current_vmptr) {
6217 list_move(&item->list, &vmx->nested.vmcs02_pool);
6218 return &item->vmcs02;
6219 }
6220
6221 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6222 /* Recycle the least recently used VMCS. */
6223 item = list_entry(vmx->nested.vmcs02_pool.prev,
6224 struct vmcs02_list, list);
6225 item->vmptr = vmx->nested.current_vmptr;
6226 list_move(&item->list, &vmx->nested.vmcs02_pool);
6227 return &item->vmcs02;
6228 }
6229
6230 /* Create a new VMCS */
6231 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6232 if (!item)
6233 return NULL;
6234 item->vmcs02.vmcs = alloc_vmcs();
6235 if (!item->vmcs02.vmcs) {
6236 kfree(item);
6237 return NULL;
6238 }
6239 loaded_vmcs_init(&item->vmcs02);
6240 item->vmptr = vmx->nested.current_vmptr;
6241 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6242 vmx->nested.vmcs02_num++;
6243 return &item->vmcs02;
6244 }
6245
6246 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6247 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6248 {
6249 struct vmcs02_list *item;
6250 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6251 if (item->vmptr == vmptr) {
6252 free_loaded_vmcs(&item->vmcs02);
6253 list_del(&item->list);
6254 kfree(item);
6255 vmx->nested.vmcs02_num--;
6256 return;
6257 }
6258 }
6259
6260 /*
6261 * Free all VMCSs saved for this vcpu, except the one pointed by
6262 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6263 * must be &vmx->vmcs01.
6264 */
6265 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6266 {
6267 struct vmcs02_list *item, *n;
6268
6269 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6270 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6271 /*
6272 * Something will leak if the above WARN triggers. Better than
6273 * a use-after-free.
6274 */
6275 if (vmx->loaded_vmcs == &item->vmcs02)
6276 continue;
6277
6278 free_loaded_vmcs(&item->vmcs02);
6279 list_del(&item->list);
6280 kfree(item);
6281 vmx->nested.vmcs02_num--;
6282 }
6283 }
6284
6285 /*
6286 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6287 * set the success or error code of an emulated VMX instruction, as specified
6288 * by Vol 2B, VMX Instruction Reference, "Conventions".
6289 */
6290 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6291 {
6292 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6293 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6294 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6295 }
6296
6297 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6298 {
6299 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6300 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6301 X86_EFLAGS_SF | X86_EFLAGS_OF))
6302 | X86_EFLAGS_CF);
6303 }
6304
6305 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6306 u32 vm_instruction_error)
6307 {
6308 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6309 /*
6310 * failValid writes the error number to the current VMCS, which
6311 * can't be done there isn't a current VMCS.
6312 */
6313 nested_vmx_failInvalid(vcpu);
6314 return;
6315 }
6316 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6317 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6318 X86_EFLAGS_SF | X86_EFLAGS_OF))
6319 | X86_EFLAGS_ZF);
6320 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6321 /*
6322 * We don't need to force a shadow sync because
6323 * VM_INSTRUCTION_ERROR is not shadowed
6324 */
6325 }
6326
6327 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6328 {
6329 /* TODO: not to reset guest simply here. */
6330 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6331 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6332 }
6333
6334 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6335 {
6336 struct vcpu_vmx *vmx =
6337 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6338
6339 vmx->nested.preemption_timer_expired = true;
6340 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6341 kvm_vcpu_kick(&vmx->vcpu);
6342
6343 return HRTIMER_NORESTART;
6344 }
6345
6346 /*
6347 * Decode the memory-address operand of a vmx instruction, as recorded on an
6348 * exit caused by such an instruction (run by a guest hypervisor).
6349 * On success, returns 0. When the operand is invalid, returns 1 and throws
6350 * #UD or #GP.
6351 */
6352 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6353 unsigned long exit_qualification,
6354 u32 vmx_instruction_info, bool wr, gva_t *ret)
6355 {
6356 gva_t off;
6357 bool exn;
6358 struct kvm_segment s;
6359
6360 /*
6361 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6362 * Execution", on an exit, vmx_instruction_info holds most of the
6363 * addressing components of the operand. Only the displacement part
6364 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6365 * For how an actual address is calculated from all these components,
6366 * refer to Vol. 1, "Operand Addressing".
6367 */
6368 int scaling = vmx_instruction_info & 3;
6369 int addr_size = (vmx_instruction_info >> 7) & 7;
6370 bool is_reg = vmx_instruction_info & (1u << 10);
6371 int seg_reg = (vmx_instruction_info >> 15) & 7;
6372 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6373 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6374 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6375 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6376
6377 if (is_reg) {
6378 kvm_queue_exception(vcpu, UD_VECTOR);
6379 return 1;
6380 }
6381
6382 /* Addr = segment_base + offset */
6383 /* offset = base + [index * scale] + displacement */
6384 off = exit_qualification; /* holds the displacement */
6385 if (base_is_valid)
6386 off += kvm_register_read(vcpu, base_reg);
6387 if (index_is_valid)
6388 off += kvm_register_read(vcpu, index_reg)<<scaling;
6389 vmx_get_segment(vcpu, &s, seg_reg);
6390 *ret = s.base + off;
6391
6392 if (addr_size == 1) /* 32 bit */
6393 *ret &= 0xffffffff;
6394
6395 /* Checks for #GP/#SS exceptions. */
6396 exn = false;
6397 if (is_protmode(vcpu)) {
6398 /* Protected mode: apply checks for segment validity in the
6399 * following order:
6400 * - segment type check (#GP(0) may be thrown)
6401 * - usability check (#GP(0)/#SS(0))
6402 * - limit check (#GP(0)/#SS(0))
6403 */
6404 if (wr)
6405 /* #GP(0) if the destination operand is located in a
6406 * read-only data segment or any code segment.
6407 */
6408 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6409 else
6410 /* #GP(0) if the source operand is located in an
6411 * execute-only code segment
6412 */
6413 exn = ((s.type & 0xa) == 8);
6414 }
6415 if (exn) {
6416 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6417 return 1;
6418 }
6419 if (is_long_mode(vcpu)) {
6420 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6421 * non-canonical form. This is an only check for long mode.
6422 */
6423 exn = is_noncanonical_address(*ret);
6424 } else if (is_protmode(vcpu)) {
6425 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6426 */
6427 exn = (s.unusable != 0);
6428 /* Protected mode: #GP(0)/#SS(0) if the memory
6429 * operand is outside the segment limit.
6430 */
6431 exn = exn || (off + sizeof(u64) > s.limit);
6432 }
6433 if (exn) {
6434 kvm_queue_exception_e(vcpu,
6435 seg_reg == VCPU_SREG_SS ?
6436 SS_VECTOR : GP_VECTOR,
6437 0);
6438 return 1;
6439 }
6440
6441 return 0;
6442 }
6443
6444 /*
6445 * This function performs the various checks including
6446 * - if it's 4KB aligned
6447 * - No bits beyond the physical address width are set
6448 * - Returns 0 on success or else 1
6449 * (Intel SDM Section 30.3)
6450 */
6451 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6452 gpa_t *vmpointer)
6453 {
6454 gva_t gva;
6455 gpa_t vmptr;
6456 struct x86_exception e;
6457 struct page *page;
6458 struct vcpu_vmx *vmx = to_vmx(vcpu);
6459 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6460
6461 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6462 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6463 return 1;
6464
6465 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6466 sizeof(vmptr), &e)) {
6467 kvm_inject_page_fault(vcpu, &e);
6468 return 1;
6469 }
6470
6471 switch (exit_reason) {
6472 case EXIT_REASON_VMON:
6473 /*
6474 * SDM 3: 24.11.5
6475 * The first 4 bytes of VMXON region contain the supported
6476 * VMCS revision identifier
6477 *
6478 * Note - IA32_VMX_BASIC[48] will never be 1
6479 * for the nested case;
6480 * which replaces physical address width with 32
6481 *
6482 */
6483 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6484 nested_vmx_failInvalid(vcpu);
6485 skip_emulated_instruction(vcpu);
6486 return 1;
6487 }
6488
6489 page = nested_get_page(vcpu, vmptr);
6490 if (page == NULL ||
6491 *(u32 *)kmap(page) != VMCS12_REVISION) {
6492 nested_vmx_failInvalid(vcpu);
6493 kunmap(page);
6494 skip_emulated_instruction(vcpu);
6495 return 1;
6496 }
6497 kunmap(page);
6498 vmx->nested.vmxon_ptr = vmptr;
6499 break;
6500 case EXIT_REASON_VMCLEAR:
6501 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6502 nested_vmx_failValid(vcpu,
6503 VMXERR_VMCLEAR_INVALID_ADDRESS);
6504 skip_emulated_instruction(vcpu);
6505 return 1;
6506 }
6507
6508 if (vmptr == vmx->nested.vmxon_ptr) {
6509 nested_vmx_failValid(vcpu,
6510 VMXERR_VMCLEAR_VMXON_POINTER);
6511 skip_emulated_instruction(vcpu);
6512 return 1;
6513 }
6514 break;
6515 case EXIT_REASON_VMPTRLD:
6516 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6517 nested_vmx_failValid(vcpu,
6518 VMXERR_VMPTRLD_INVALID_ADDRESS);
6519 skip_emulated_instruction(vcpu);
6520 return 1;
6521 }
6522
6523 if (vmptr == vmx->nested.vmxon_ptr) {
6524 nested_vmx_failValid(vcpu,
6525 VMXERR_VMCLEAR_VMXON_POINTER);
6526 skip_emulated_instruction(vcpu);
6527 return 1;
6528 }
6529 break;
6530 default:
6531 return 1; /* shouldn't happen */
6532 }
6533
6534 if (vmpointer)
6535 *vmpointer = vmptr;
6536 return 0;
6537 }
6538
6539 /*
6540 * Emulate the VMXON instruction.
6541 * Currently, we just remember that VMX is active, and do not save or even
6542 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6543 * do not currently need to store anything in that guest-allocated memory
6544 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6545 * argument is different from the VMXON pointer (which the spec says they do).
6546 */
6547 static int handle_vmon(struct kvm_vcpu *vcpu)
6548 {
6549 struct kvm_segment cs;
6550 struct vcpu_vmx *vmx = to_vmx(vcpu);
6551 struct vmcs *shadow_vmcs;
6552 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6553 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6554
6555 /* The Intel VMX Instruction Reference lists a bunch of bits that
6556 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6557 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6558 * Otherwise, we should fail with #UD. We test these now:
6559 */
6560 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6561 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6562 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6563 kvm_queue_exception(vcpu, UD_VECTOR);
6564 return 1;
6565 }
6566
6567 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6568 if (is_long_mode(vcpu) && !cs.l) {
6569 kvm_queue_exception(vcpu, UD_VECTOR);
6570 return 1;
6571 }
6572
6573 if (vmx_get_cpl(vcpu)) {
6574 kvm_inject_gp(vcpu, 0);
6575 return 1;
6576 }
6577
6578 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6579 return 1;
6580
6581 if (vmx->nested.vmxon) {
6582 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6583 skip_emulated_instruction(vcpu);
6584 return 1;
6585 }
6586
6587 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6588 != VMXON_NEEDED_FEATURES) {
6589 kvm_inject_gp(vcpu, 0);
6590 return 1;
6591 }
6592
6593 if (enable_shadow_vmcs) {
6594 shadow_vmcs = alloc_vmcs();
6595 if (!shadow_vmcs)
6596 return -ENOMEM;
6597 /* mark vmcs as shadow */
6598 shadow_vmcs->revision_id |= (1u << 31);
6599 /* init shadow vmcs */
6600 vmcs_clear(shadow_vmcs);
6601 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6602 }
6603
6604 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6605 vmx->nested.vmcs02_num = 0;
6606
6607 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6608 HRTIMER_MODE_REL);
6609 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6610
6611 vmx->nested.vmxon = true;
6612
6613 skip_emulated_instruction(vcpu);
6614 nested_vmx_succeed(vcpu);
6615 return 1;
6616 }
6617
6618 /*
6619 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6620 * for running VMX instructions (except VMXON, whose prerequisites are
6621 * slightly different). It also specifies what exception to inject otherwise.
6622 */
6623 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6624 {
6625 struct kvm_segment cs;
6626 struct vcpu_vmx *vmx = to_vmx(vcpu);
6627
6628 if (!vmx->nested.vmxon) {
6629 kvm_queue_exception(vcpu, UD_VECTOR);
6630 return 0;
6631 }
6632
6633 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6634 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6635 (is_long_mode(vcpu) && !cs.l)) {
6636 kvm_queue_exception(vcpu, UD_VECTOR);
6637 return 0;
6638 }
6639
6640 if (vmx_get_cpl(vcpu)) {
6641 kvm_inject_gp(vcpu, 0);
6642 return 0;
6643 }
6644
6645 return 1;
6646 }
6647
6648 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6649 {
6650 u32 exec_control;
6651 if (vmx->nested.current_vmptr == -1ull)
6652 return;
6653
6654 /* current_vmptr and current_vmcs12 are always set/reset together */
6655 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6656 return;
6657
6658 if (enable_shadow_vmcs) {
6659 /* copy to memory all shadowed fields in case
6660 they were modified */
6661 copy_shadow_to_vmcs12(vmx);
6662 vmx->nested.sync_shadow_vmcs = false;
6663 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6664 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6665 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6666 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6667 }
6668 vmx->nested.posted_intr_nv = -1;
6669 kunmap(vmx->nested.current_vmcs12_page);
6670 nested_release_page(vmx->nested.current_vmcs12_page);
6671 vmx->nested.current_vmptr = -1ull;
6672 vmx->nested.current_vmcs12 = NULL;
6673 }
6674
6675 /*
6676 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6677 * just stops using VMX.
6678 */
6679 static void free_nested(struct vcpu_vmx *vmx)
6680 {
6681 if (!vmx->nested.vmxon)
6682 return;
6683
6684 vmx->nested.vmxon = false;
6685 nested_release_vmcs12(vmx);
6686 if (enable_shadow_vmcs)
6687 free_vmcs(vmx->nested.current_shadow_vmcs);
6688 /* Unpin physical memory we referred to in current vmcs02 */
6689 if (vmx->nested.apic_access_page) {
6690 nested_release_page(vmx->nested.apic_access_page);
6691 vmx->nested.apic_access_page = NULL;
6692 }
6693 if (vmx->nested.virtual_apic_page) {
6694 nested_release_page(vmx->nested.virtual_apic_page);
6695 vmx->nested.virtual_apic_page = NULL;
6696 }
6697 if (vmx->nested.pi_desc_page) {
6698 kunmap(vmx->nested.pi_desc_page);
6699 nested_release_page(vmx->nested.pi_desc_page);
6700 vmx->nested.pi_desc_page = NULL;
6701 vmx->nested.pi_desc = NULL;
6702 }
6703
6704 nested_free_all_saved_vmcss(vmx);
6705 }
6706
6707 /* Emulate the VMXOFF instruction */
6708 static int handle_vmoff(struct kvm_vcpu *vcpu)
6709 {
6710 if (!nested_vmx_check_permission(vcpu))
6711 return 1;
6712 free_nested(to_vmx(vcpu));
6713 skip_emulated_instruction(vcpu);
6714 nested_vmx_succeed(vcpu);
6715 return 1;
6716 }
6717
6718 /* Emulate the VMCLEAR instruction */
6719 static int handle_vmclear(struct kvm_vcpu *vcpu)
6720 {
6721 struct vcpu_vmx *vmx = to_vmx(vcpu);
6722 gpa_t vmptr;
6723 struct vmcs12 *vmcs12;
6724 struct page *page;
6725
6726 if (!nested_vmx_check_permission(vcpu))
6727 return 1;
6728
6729 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6730 return 1;
6731
6732 if (vmptr == vmx->nested.current_vmptr)
6733 nested_release_vmcs12(vmx);
6734
6735 page = nested_get_page(vcpu, vmptr);
6736 if (page == NULL) {
6737 /*
6738 * For accurate processor emulation, VMCLEAR beyond available
6739 * physical memory should do nothing at all. However, it is
6740 * possible that a nested vmx bug, not a guest hypervisor bug,
6741 * resulted in this case, so let's shut down before doing any
6742 * more damage:
6743 */
6744 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6745 return 1;
6746 }
6747 vmcs12 = kmap(page);
6748 vmcs12->launch_state = 0;
6749 kunmap(page);
6750 nested_release_page(page);
6751
6752 nested_free_vmcs02(vmx, vmptr);
6753
6754 skip_emulated_instruction(vcpu);
6755 nested_vmx_succeed(vcpu);
6756 return 1;
6757 }
6758
6759 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6760
6761 /* Emulate the VMLAUNCH instruction */
6762 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6763 {
6764 return nested_vmx_run(vcpu, true);
6765 }
6766
6767 /* Emulate the VMRESUME instruction */
6768 static int handle_vmresume(struct kvm_vcpu *vcpu)
6769 {
6770
6771 return nested_vmx_run(vcpu, false);
6772 }
6773
6774 enum vmcs_field_type {
6775 VMCS_FIELD_TYPE_U16 = 0,
6776 VMCS_FIELD_TYPE_U64 = 1,
6777 VMCS_FIELD_TYPE_U32 = 2,
6778 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6779 };
6780
6781 static inline int vmcs_field_type(unsigned long field)
6782 {
6783 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6784 return VMCS_FIELD_TYPE_U32;
6785 return (field >> 13) & 0x3 ;
6786 }
6787
6788 static inline int vmcs_field_readonly(unsigned long field)
6789 {
6790 return (((field >> 10) & 0x3) == 1);
6791 }
6792
6793 /*
6794 * Read a vmcs12 field. Since these can have varying lengths and we return
6795 * one type, we chose the biggest type (u64) and zero-extend the return value
6796 * to that size. Note that the caller, handle_vmread, might need to use only
6797 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6798 * 64-bit fields are to be returned).
6799 */
6800 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6801 unsigned long field, u64 *ret)
6802 {
6803 short offset = vmcs_field_to_offset(field);
6804 char *p;
6805
6806 if (offset < 0)
6807 return offset;
6808
6809 p = ((char *)(get_vmcs12(vcpu))) + offset;
6810
6811 switch (vmcs_field_type(field)) {
6812 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6813 *ret = *((natural_width *)p);
6814 return 0;
6815 case VMCS_FIELD_TYPE_U16:
6816 *ret = *((u16 *)p);
6817 return 0;
6818 case VMCS_FIELD_TYPE_U32:
6819 *ret = *((u32 *)p);
6820 return 0;
6821 case VMCS_FIELD_TYPE_U64:
6822 *ret = *((u64 *)p);
6823 return 0;
6824 default:
6825 WARN_ON(1);
6826 return -ENOENT;
6827 }
6828 }
6829
6830
6831 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6832 unsigned long field, u64 field_value){
6833 short offset = vmcs_field_to_offset(field);
6834 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6835 if (offset < 0)
6836 return offset;
6837
6838 switch (vmcs_field_type(field)) {
6839 case VMCS_FIELD_TYPE_U16:
6840 *(u16 *)p = field_value;
6841 return 0;
6842 case VMCS_FIELD_TYPE_U32:
6843 *(u32 *)p = field_value;
6844 return 0;
6845 case VMCS_FIELD_TYPE_U64:
6846 *(u64 *)p = field_value;
6847 return 0;
6848 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6849 *(natural_width *)p = field_value;
6850 return 0;
6851 default:
6852 WARN_ON(1);
6853 return -ENOENT;
6854 }
6855
6856 }
6857
6858 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6859 {
6860 int i;
6861 unsigned long field;
6862 u64 field_value;
6863 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6864 const unsigned long *fields = shadow_read_write_fields;
6865 const int num_fields = max_shadow_read_write_fields;
6866
6867 preempt_disable();
6868
6869 vmcs_load(shadow_vmcs);
6870
6871 for (i = 0; i < num_fields; i++) {
6872 field = fields[i];
6873 switch (vmcs_field_type(field)) {
6874 case VMCS_FIELD_TYPE_U16:
6875 field_value = vmcs_read16(field);
6876 break;
6877 case VMCS_FIELD_TYPE_U32:
6878 field_value = vmcs_read32(field);
6879 break;
6880 case VMCS_FIELD_TYPE_U64:
6881 field_value = vmcs_read64(field);
6882 break;
6883 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6884 field_value = vmcs_readl(field);
6885 break;
6886 default:
6887 WARN_ON(1);
6888 continue;
6889 }
6890 vmcs12_write_any(&vmx->vcpu, field, field_value);
6891 }
6892
6893 vmcs_clear(shadow_vmcs);
6894 vmcs_load(vmx->loaded_vmcs->vmcs);
6895
6896 preempt_enable();
6897 }
6898
6899 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6900 {
6901 const unsigned long *fields[] = {
6902 shadow_read_write_fields,
6903 shadow_read_only_fields
6904 };
6905 const int max_fields[] = {
6906 max_shadow_read_write_fields,
6907 max_shadow_read_only_fields
6908 };
6909 int i, q;
6910 unsigned long field;
6911 u64 field_value = 0;
6912 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6913
6914 vmcs_load(shadow_vmcs);
6915
6916 for (q = 0; q < ARRAY_SIZE(fields); q++) {
6917 for (i = 0; i < max_fields[q]; i++) {
6918 field = fields[q][i];
6919 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6920
6921 switch (vmcs_field_type(field)) {
6922 case VMCS_FIELD_TYPE_U16:
6923 vmcs_write16(field, (u16)field_value);
6924 break;
6925 case VMCS_FIELD_TYPE_U32:
6926 vmcs_write32(field, (u32)field_value);
6927 break;
6928 case VMCS_FIELD_TYPE_U64:
6929 vmcs_write64(field, (u64)field_value);
6930 break;
6931 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6932 vmcs_writel(field, (long)field_value);
6933 break;
6934 default:
6935 WARN_ON(1);
6936 break;
6937 }
6938 }
6939 }
6940
6941 vmcs_clear(shadow_vmcs);
6942 vmcs_load(vmx->loaded_vmcs->vmcs);
6943 }
6944
6945 /*
6946 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6947 * used before) all generate the same failure when it is missing.
6948 */
6949 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6950 {
6951 struct vcpu_vmx *vmx = to_vmx(vcpu);
6952 if (vmx->nested.current_vmptr == -1ull) {
6953 nested_vmx_failInvalid(vcpu);
6954 skip_emulated_instruction(vcpu);
6955 return 0;
6956 }
6957 return 1;
6958 }
6959
6960 static int handle_vmread(struct kvm_vcpu *vcpu)
6961 {
6962 unsigned long field;
6963 u64 field_value;
6964 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6965 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6966 gva_t gva = 0;
6967
6968 if (!nested_vmx_check_permission(vcpu) ||
6969 !nested_vmx_check_vmcs12(vcpu))
6970 return 1;
6971
6972 /* Decode instruction info and find the field to read */
6973 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6974 /* Read the field, zero-extended to a u64 field_value */
6975 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
6976 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6977 skip_emulated_instruction(vcpu);
6978 return 1;
6979 }
6980 /*
6981 * Now copy part of this value to register or memory, as requested.
6982 * Note that the number of bits actually copied is 32 or 64 depending
6983 * on the guest's mode (32 or 64 bit), not on the given field's length.
6984 */
6985 if (vmx_instruction_info & (1u << 10)) {
6986 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6987 field_value);
6988 } else {
6989 if (get_vmx_mem_address(vcpu, exit_qualification,
6990 vmx_instruction_info, true, &gva))
6991 return 1;
6992 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6993 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6994 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6995 }
6996
6997 nested_vmx_succeed(vcpu);
6998 skip_emulated_instruction(vcpu);
6999 return 1;
7000 }
7001
7002
7003 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7004 {
7005 unsigned long field;
7006 gva_t gva;
7007 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7008 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7009 /* The value to write might be 32 or 64 bits, depending on L1's long
7010 * mode, and eventually we need to write that into a field of several
7011 * possible lengths. The code below first zero-extends the value to 64
7012 * bit (field_value), and then copies only the approriate number of
7013 * bits into the vmcs12 field.
7014 */
7015 u64 field_value = 0;
7016 struct x86_exception e;
7017
7018 if (!nested_vmx_check_permission(vcpu) ||
7019 !nested_vmx_check_vmcs12(vcpu))
7020 return 1;
7021
7022 if (vmx_instruction_info & (1u << 10))
7023 field_value = kvm_register_readl(vcpu,
7024 (((vmx_instruction_info) >> 3) & 0xf));
7025 else {
7026 if (get_vmx_mem_address(vcpu, exit_qualification,
7027 vmx_instruction_info, false, &gva))
7028 return 1;
7029 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7030 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7031 kvm_inject_page_fault(vcpu, &e);
7032 return 1;
7033 }
7034 }
7035
7036
7037 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7038 if (vmcs_field_readonly(field)) {
7039 nested_vmx_failValid(vcpu,
7040 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7041 skip_emulated_instruction(vcpu);
7042 return 1;
7043 }
7044
7045 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7046 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7047 skip_emulated_instruction(vcpu);
7048 return 1;
7049 }
7050
7051 nested_vmx_succeed(vcpu);
7052 skip_emulated_instruction(vcpu);
7053 return 1;
7054 }
7055
7056 /* Emulate the VMPTRLD instruction */
7057 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7058 {
7059 struct vcpu_vmx *vmx = to_vmx(vcpu);
7060 gpa_t vmptr;
7061 u32 exec_control;
7062
7063 if (!nested_vmx_check_permission(vcpu))
7064 return 1;
7065
7066 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7067 return 1;
7068
7069 if (vmx->nested.current_vmptr != vmptr) {
7070 struct vmcs12 *new_vmcs12;
7071 struct page *page;
7072 page = nested_get_page(vcpu, vmptr);
7073 if (page == NULL) {
7074 nested_vmx_failInvalid(vcpu);
7075 skip_emulated_instruction(vcpu);
7076 return 1;
7077 }
7078 new_vmcs12 = kmap(page);
7079 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7080 kunmap(page);
7081 nested_release_page_clean(page);
7082 nested_vmx_failValid(vcpu,
7083 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7084 skip_emulated_instruction(vcpu);
7085 return 1;
7086 }
7087
7088 nested_release_vmcs12(vmx);
7089 vmx->nested.current_vmptr = vmptr;
7090 vmx->nested.current_vmcs12 = new_vmcs12;
7091 vmx->nested.current_vmcs12_page = page;
7092 if (enable_shadow_vmcs) {
7093 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7094 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
7095 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7096 vmcs_write64(VMCS_LINK_POINTER,
7097 __pa(vmx->nested.current_shadow_vmcs));
7098 vmx->nested.sync_shadow_vmcs = true;
7099 }
7100 }
7101
7102 nested_vmx_succeed(vcpu);
7103 skip_emulated_instruction(vcpu);
7104 return 1;
7105 }
7106
7107 /* Emulate the VMPTRST instruction */
7108 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7109 {
7110 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7111 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7112 gva_t vmcs_gva;
7113 struct x86_exception e;
7114
7115 if (!nested_vmx_check_permission(vcpu))
7116 return 1;
7117
7118 if (get_vmx_mem_address(vcpu, exit_qualification,
7119 vmx_instruction_info, true, &vmcs_gva))
7120 return 1;
7121 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7122 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7123 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7124 sizeof(u64), &e)) {
7125 kvm_inject_page_fault(vcpu, &e);
7126 return 1;
7127 }
7128 nested_vmx_succeed(vcpu);
7129 skip_emulated_instruction(vcpu);
7130 return 1;
7131 }
7132
7133 /* Emulate the INVEPT instruction */
7134 static int handle_invept(struct kvm_vcpu *vcpu)
7135 {
7136 struct vcpu_vmx *vmx = to_vmx(vcpu);
7137 u32 vmx_instruction_info, types;
7138 unsigned long type;
7139 gva_t gva;
7140 struct x86_exception e;
7141 struct {
7142 u64 eptp, gpa;
7143 } operand;
7144
7145 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7146 SECONDARY_EXEC_ENABLE_EPT) ||
7147 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7148 kvm_queue_exception(vcpu, UD_VECTOR);
7149 return 1;
7150 }
7151
7152 if (!nested_vmx_check_permission(vcpu))
7153 return 1;
7154
7155 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7156 kvm_queue_exception(vcpu, UD_VECTOR);
7157 return 1;
7158 }
7159
7160 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7161 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7162
7163 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7164
7165 if (!(types & (1UL << type))) {
7166 nested_vmx_failValid(vcpu,
7167 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7168 return 1;
7169 }
7170
7171 /* According to the Intel VMX instruction reference, the memory
7172 * operand is read even if it isn't needed (e.g., for type==global)
7173 */
7174 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7175 vmx_instruction_info, false, &gva))
7176 return 1;
7177 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7178 sizeof(operand), &e)) {
7179 kvm_inject_page_fault(vcpu, &e);
7180 return 1;
7181 }
7182
7183 switch (type) {
7184 case VMX_EPT_EXTENT_GLOBAL:
7185 kvm_mmu_sync_roots(vcpu);
7186 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7187 nested_vmx_succeed(vcpu);
7188 break;
7189 default:
7190 /* Trap single context invalidation invept calls */
7191 BUG_ON(1);
7192 break;
7193 }
7194
7195 skip_emulated_instruction(vcpu);
7196 return 1;
7197 }
7198
7199 static int handle_invvpid(struct kvm_vcpu *vcpu)
7200 {
7201 kvm_queue_exception(vcpu, UD_VECTOR);
7202 return 1;
7203 }
7204
7205 static int handle_pml_full(struct kvm_vcpu *vcpu)
7206 {
7207 unsigned long exit_qualification;
7208
7209 trace_kvm_pml_full(vcpu->vcpu_id);
7210
7211 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7212
7213 /*
7214 * PML buffer FULL happened while executing iret from NMI,
7215 * "blocked by NMI" bit has to be set before next VM entry.
7216 */
7217 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7218 cpu_has_virtual_nmis() &&
7219 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7220 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7221 GUEST_INTR_STATE_NMI);
7222
7223 /*
7224 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7225 * here.., and there's no userspace involvement needed for PML.
7226 */
7227 return 1;
7228 }
7229
7230 /*
7231 * The exit handlers return 1 if the exit was handled fully and guest execution
7232 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7233 * to be done to userspace and return 0.
7234 */
7235 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7236 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7237 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7238 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7239 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7240 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7241 [EXIT_REASON_CR_ACCESS] = handle_cr,
7242 [EXIT_REASON_DR_ACCESS] = handle_dr,
7243 [EXIT_REASON_CPUID] = handle_cpuid,
7244 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7245 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7246 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7247 [EXIT_REASON_HLT] = handle_halt,
7248 [EXIT_REASON_INVD] = handle_invd,
7249 [EXIT_REASON_INVLPG] = handle_invlpg,
7250 [EXIT_REASON_RDPMC] = handle_rdpmc,
7251 [EXIT_REASON_VMCALL] = handle_vmcall,
7252 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7253 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7254 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7255 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7256 [EXIT_REASON_VMREAD] = handle_vmread,
7257 [EXIT_REASON_VMRESUME] = handle_vmresume,
7258 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7259 [EXIT_REASON_VMOFF] = handle_vmoff,
7260 [EXIT_REASON_VMON] = handle_vmon,
7261 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7262 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7263 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7264 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7265 [EXIT_REASON_WBINVD] = handle_wbinvd,
7266 [EXIT_REASON_XSETBV] = handle_xsetbv,
7267 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7268 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7269 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7270 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7271 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7272 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7273 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
7274 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7275 [EXIT_REASON_INVEPT] = handle_invept,
7276 [EXIT_REASON_INVVPID] = handle_invvpid,
7277 [EXIT_REASON_XSAVES] = handle_xsaves,
7278 [EXIT_REASON_XRSTORS] = handle_xrstors,
7279 [EXIT_REASON_PML_FULL] = handle_pml_full,
7280 };
7281
7282 static const int kvm_vmx_max_exit_handlers =
7283 ARRAY_SIZE(kvm_vmx_exit_handlers);
7284
7285 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7286 struct vmcs12 *vmcs12)
7287 {
7288 unsigned long exit_qualification;
7289 gpa_t bitmap, last_bitmap;
7290 unsigned int port;
7291 int size;
7292 u8 b;
7293
7294 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7295 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7296
7297 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7298
7299 port = exit_qualification >> 16;
7300 size = (exit_qualification & 7) + 1;
7301
7302 last_bitmap = (gpa_t)-1;
7303 b = -1;
7304
7305 while (size > 0) {
7306 if (port < 0x8000)
7307 bitmap = vmcs12->io_bitmap_a;
7308 else if (port < 0x10000)
7309 bitmap = vmcs12->io_bitmap_b;
7310 else
7311 return true;
7312 bitmap += (port & 0x7fff) / 8;
7313
7314 if (last_bitmap != bitmap)
7315 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7316 return true;
7317 if (b & (1 << (port & 7)))
7318 return true;
7319
7320 port++;
7321 size--;
7322 last_bitmap = bitmap;
7323 }
7324
7325 return false;
7326 }
7327
7328 /*
7329 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7330 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7331 * disinterest in the current event (read or write a specific MSR) by using an
7332 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7333 */
7334 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7335 struct vmcs12 *vmcs12, u32 exit_reason)
7336 {
7337 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7338 gpa_t bitmap;
7339
7340 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7341 return true;
7342
7343 /*
7344 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7345 * for the four combinations of read/write and low/high MSR numbers.
7346 * First we need to figure out which of the four to use:
7347 */
7348 bitmap = vmcs12->msr_bitmap;
7349 if (exit_reason == EXIT_REASON_MSR_WRITE)
7350 bitmap += 2048;
7351 if (msr_index >= 0xc0000000) {
7352 msr_index -= 0xc0000000;
7353 bitmap += 1024;
7354 }
7355
7356 /* Then read the msr_index'th bit from this bitmap: */
7357 if (msr_index < 1024*8) {
7358 unsigned char b;
7359 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7360 return true;
7361 return 1 & (b >> (msr_index & 7));
7362 } else
7363 return true; /* let L1 handle the wrong parameter */
7364 }
7365
7366 /*
7367 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7368 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7369 * intercept (via guest_host_mask etc.) the current event.
7370 */
7371 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7372 struct vmcs12 *vmcs12)
7373 {
7374 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7375 int cr = exit_qualification & 15;
7376 int reg = (exit_qualification >> 8) & 15;
7377 unsigned long val = kvm_register_readl(vcpu, reg);
7378
7379 switch ((exit_qualification >> 4) & 3) {
7380 case 0: /* mov to cr */
7381 switch (cr) {
7382 case 0:
7383 if (vmcs12->cr0_guest_host_mask &
7384 (val ^ vmcs12->cr0_read_shadow))
7385 return true;
7386 break;
7387 case 3:
7388 if ((vmcs12->cr3_target_count >= 1 &&
7389 vmcs12->cr3_target_value0 == val) ||
7390 (vmcs12->cr3_target_count >= 2 &&
7391 vmcs12->cr3_target_value1 == val) ||
7392 (vmcs12->cr3_target_count >= 3 &&
7393 vmcs12->cr3_target_value2 == val) ||
7394 (vmcs12->cr3_target_count >= 4 &&
7395 vmcs12->cr3_target_value3 == val))
7396 return false;
7397 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7398 return true;
7399 break;
7400 case 4:
7401 if (vmcs12->cr4_guest_host_mask &
7402 (vmcs12->cr4_read_shadow ^ val))
7403 return true;
7404 break;
7405 case 8:
7406 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7407 return true;
7408 break;
7409 }
7410 break;
7411 case 2: /* clts */
7412 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7413 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7414 return true;
7415 break;
7416 case 1: /* mov from cr */
7417 switch (cr) {
7418 case 3:
7419 if (vmcs12->cpu_based_vm_exec_control &
7420 CPU_BASED_CR3_STORE_EXITING)
7421 return true;
7422 break;
7423 case 8:
7424 if (vmcs12->cpu_based_vm_exec_control &
7425 CPU_BASED_CR8_STORE_EXITING)
7426 return true;
7427 break;
7428 }
7429 break;
7430 case 3: /* lmsw */
7431 /*
7432 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7433 * cr0. Other attempted changes are ignored, with no exit.
7434 */
7435 if (vmcs12->cr0_guest_host_mask & 0xe &
7436 (val ^ vmcs12->cr0_read_shadow))
7437 return true;
7438 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7439 !(vmcs12->cr0_read_shadow & 0x1) &&
7440 (val & 0x1))
7441 return true;
7442 break;
7443 }
7444 return false;
7445 }
7446
7447 /*
7448 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7449 * should handle it ourselves in L0 (and then continue L2). Only call this
7450 * when in is_guest_mode (L2).
7451 */
7452 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7453 {
7454 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7455 struct vcpu_vmx *vmx = to_vmx(vcpu);
7456 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7457 u32 exit_reason = vmx->exit_reason;
7458
7459 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7460 vmcs_readl(EXIT_QUALIFICATION),
7461 vmx->idt_vectoring_info,
7462 intr_info,
7463 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7464 KVM_ISA_VMX);
7465
7466 if (vmx->nested.nested_run_pending)
7467 return false;
7468
7469 if (unlikely(vmx->fail)) {
7470 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7471 vmcs_read32(VM_INSTRUCTION_ERROR));
7472 return true;
7473 }
7474
7475 switch (exit_reason) {
7476 case EXIT_REASON_EXCEPTION_NMI:
7477 if (!is_exception(intr_info))
7478 return false;
7479 else if (is_page_fault(intr_info))
7480 return enable_ept;
7481 else if (is_no_device(intr_info) &&
7482 !(vmcs12->guest_cr0 & X86_CR0_TS))
7483 return false;
7484 return vmcs12->exception_bitmap &
7485 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7486 case EXIT_REASON_EXTERNAL_INTERRUPT:
7487 return false;
7488 case EXIT_REASON_TRIPLE_FAULT:
7489 return true;
7490 case EXIT_REASON_PENDING_INTERRUPT:
7491 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7492 case EXIT_REASON_NMI_WINDOW:
7493 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7494 case EXIT_REASON_TASK_SWITCH:
7495 return true;
7496 case EXIT_REASON_CPUID:
7497 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7498 return false;
7499 return true;
7500 case EXIT_REASON_HLT:
7501 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7502 case EXIT_REASON_INVD:
7503 return true;
7504 case EXIT_REASON_INVLPG:
7505 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7506 case EXIT_REASON_RDPMC:
7507 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7508 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7509 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7510 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7511 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7512 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7513 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7514 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7515 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7516 /*
7517 * VMX instructions trap unconditionally. This allows L1 to
7518 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7519 */
7520 return true;
7521 case EXIT_REASON_CR_ACCESS:
7522 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7523 case EXIT_REASON_DR_ACCESS:
7524 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7525 case EXIT_REASON_IO_INSTRUCTION:
7526 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7527 case EXIT_REASON_MSR_READ:
7528 case EXIT_REASON_MSR_WRITE:
7529 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7530 case EXIT_REASON_INVALID_STATE:
7531 return true;
7532 case EXIT_REASON_MWAIT_INSTRUCTION:
7533 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7534 case EXIT_REASON_MONITOR_TRAP_FLAG:
7535 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
7536 case EXIT_REASON_MONITOR_INSTRUCTION:
7537 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7538 case EXIT_REASON_PAUSE_INSTRUCTION:
7539 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7540 nested_cpu_has2(vmcs12,
7541 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7542 case EXIT_REASON_MCE_DURING_VMENTRY:
7543 return false;
7544 case EXIT_REASON_TPR_BELOW_THRESHOLD:
7545 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7546 case EXIT_REASON_APIC_ACCESS:
7547 return nested_cpu_has2(vmcs12,
7548 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7549 case EXIT_REASON_APIC_WRITE:
7550 case EXIT_REASON_EOI_INDUCED:
7551 /* apic_write and eoi_induced should exit unconditionally. */
7552 return true;
7553 case EXIT_REASON_EPT_VIOLATION:
7554 /*
7555 * L0 always deals with the EPT violation. If nested EPT is
7556 * used, and the nested mmu code discovers that the address is
7557 * missing in the guest EPT table (EPT12), the EPT violation
7558 * will be injected with nested_ept_inject_page_fault()
7559 */
7560 return false;
7561 case EXIT_REASON_EPT_MISCONFIG:
7562 /*
7563 * L2 never uses directly L1's EPT, but rather L0's own EPT
7564 * table (shadow on EPT) or a merged EPT table that L0 built
7565 * (EPT on EPT). So any problems with the structure of the
7566 * table is L0's fault.
7567 */
7568 return false;
7569 case EXIT_REASON_WBINVD:
7570 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7571 case EXIT_REASON_XSETBV:
7572 return true;
7573 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7574 /*
7575 * This should never happen, since it is not possible to
7576 * set XSS to a non-zero value---neither in L1 nor in L2.
7577 * If if it were, XSS would have to be checked against
7578 * the XSS exit bitmap in vmcs12.
7579 */
7580 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7581 default:
7582 return true;
7583 }
7584 }
7585
7586 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7587 {
7588 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7589 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7590 }
7591
7592 static int vmx_enable_pml(struct vcpu_vmx *vmx)
7593 {
7594 struct page *pml_pg;
7595 u32 exec_control;
7596
7597 pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7598 if (!pml_pg)
7599 return -ENOMEM;
7600
7601 vmx->pml_pg = pml_pg;
7602
7603 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7604 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7605
7606 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7607 exec_control |= SECONDARY_EXEC_ENABLE_PML;
7608 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7609
7610 return 0;
7611 }
7612
7613 static void vmx_disable_pml(struct vcpu_vmx *vmx)
7614 {
7615 u32 exec_control;
7616
7617 ASSERT(vmx->pml_pg);
7618 __free_page(vmx->pml_pg);
7619 vmx->pml_pg = NULL;
7620
7621 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7622 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
7623 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7624 }
7625
7626 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
7627 {
7628 struct vcpu_vmx *vmx = to_vmx(vcpu);
7629 u64 *pml_buf;
7630 u16 pml_idx;
7631
7632 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7633
7634 /* Do nothing if PML buffer is empty */
7635 if (pml_idx == (PML_ENTITY_NUM - 1))
7636 return;
7637
7638 /* PML index always points to next available PML buffer entity */
7639 if (pml_idx >= PML_ENTITY_NUM)
7640 pml_idx = 0;
7641 else
7642 pml_idx++;
7643
7644 pml_buf = page_address(vmx->pml_pg);
7645 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7646 u64 gpa;
7647
7648 gpa = pml_buf[pml_idx];
7649 WARN_ON(gpa & (PAGE_SIZE - 1));
7650 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
7651 }
7652
7653 /* reset PML index */
7654 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7655 }
7656
7657 /*
7658 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7659 * Called before reporting dirty_bitmap to userspace.
7660 */
7661 static void kvm_flush_pml_buffers(struct kvm *kvm)
7662 {
7663 int i;
7664 struct kvm_vcpu *vcpu;
7665 /*
7666 * We only need to kick vcpu out of guest mode here, as PML buffer
7667 * is flushed at beginning of all VMEXITs, and it's obvious that only
7668 * vcpus running in guest are possible to have unflushed GPAs in PML
7669 * buffer.
7670 */
7671 kvm_for_each_vcpu(i, vcpu, kvm)
7672 kvm_vcpu_kick(vcpu);
7673 }
7674
7675 static void vmx_dump_sel(char *name, uint32_t sel)
7676 {
7677 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7678 name, vmcs_read32(sel),
7679 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
7680 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
7681 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
7682 }
7683
7684 static void vmx_dump_dtsel(char *name, uint32_t limit)
7685 {
7686 pr_err("%s limit=0x%08x, base=0x%016lx\n",
7687 name, vmcs_read32(limit),
7688 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
7689 }
7690
7691 static void dump_vmcs(void)
7692 {
7693 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
7694 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
7695 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7696 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
7697 u32 secondary_exec_control = 0;
7698 unsigned long cr4 = vmcs_readl(GUEST_CR4);
7699 u64 efer = vmcs_readl(GUEST_IA32_EFER);
7700 int i, n;
7701
7702 if (cpu_has_secondary_exec_ctrls())
7703 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7704
7705 pr_err("*** Guest State ***\n");
7706 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7707 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
7708 vmcs_readl(CR0_GUEST_HOST_MASK));
7709 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7710 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
7711 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
7712 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
7713 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
7714 {
7715 pr_err("PDPTR0 = 0x%016lx PDPTR1 = 0x%016lx\n",
7716 vmcs_readl(GUEST_PDPTR0), vmcs_readl(GUEST_PDPTR1));
7717 pr_err("PDPTR2 = 0x%016lx PDPTR3 = 0x%016lx\n",
7718 vmcs_readl(GUEST_PDPTR2), vmcs_readl(GUEST_PDPTR3));
7719 }
7720 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
7721 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
7722 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
7723 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
7724 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7725 vmcs_readl(GUEST_SYSENTER_ESP),
7726 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
7727 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
7728 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
7729 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
7730 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
7731 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
7732 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
7733 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
7734 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
7735 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
7736 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
7737 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
7738 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
7739 pr_err("EFER = 0x%016llx PAT = 0x%016lx\n",
7740 efer, vmcs_readl(GUEST_IA32_PAT));
7741 pr_err("DebugCtl = 0x%016lx DebugExceptions = 0x%016lx\n",
7742 vmcs_readl(GUEST_IA32_DEBUGCTL),
7743 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
7744 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
7745 pr_err("PerfGlobCtl = 0x%016lx\n",
7746 vmcs_readl(GUEST_IA32_PERF_GLOBAL_CTRL));
7747 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
7748 pr_err("BndCfgS = 0x%016lx\n", vmcs_readl(GUEST_BNDCFGS));
7749 pr_err("Interruptibility = %08x ActivityState = %08x\n",
7750 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
7751 vmcs_read32(GUEST_ACTIVITY_STATE));
7752 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
7753 pr_err("InterruptStatus = %04x\n",
7754 vmcs_read16(GUEST_INTR_STATUS));
7755
7756 pr_err("*** Host State ***\n");
7757 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
7758 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
7759 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
7760 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
7761 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
7762 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
7763 vmcs_read16(HOST_TR_SELECTOR));
7764 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
7765 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
7766 vmcs_readl(HOST_TR_BASE));
7767 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
7768 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
7769 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
7770 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
7771 vmcs_readl(HOST_CR4));
7772 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7773 vmcs_readl(HOST_IA32_SYSENTER_ESP),
7774 vmcs_read32(HOST_IA32_SYSENTER_CS),
7775 vmcs_readl(HOST_IA32_SYSENTER_EIP));
7776 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
7777 pr_err("EFER = 0x%016lx PAT = 0x%016lx\n",
7778 vmcs_readl(HOST_IA32_EFER), vmcs_readl(HOST_IA32_PAT));
7779 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7780 pr_err("PerfGlobCtl = 0x%016lx\n",
7781 vmcs_readl(HOST_IA32_PERF_GLOBAL_CTRL));
7782
7783 pr_err("*** Control State ***\n");
7784 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
7785 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
7786 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
7787 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
7788 vmcs_read32(EXCEPTION_BITMAP),
7789 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
7790 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
7791 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
7792 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7793 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
7794 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
7795 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
7796 vmcs_read32(VM_EXIT_INTR_INFO),
7797 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7798 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
7799 pr_err(" reason=%08x qualification=%016lx\n",
7800 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
7801 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
7802 vmcs_read32(IDT_VECTORING_INFO_FIELD),
7803 vmcs_read32(IDT_VECTORING_ERROR_CODE));
7804 pr_err("TSC Offset = 0x%016lx\n", vmcs_readl(TSC_OFFSET));
7805 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
7806 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
7807 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
7808 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
7809 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
7810 pr_err("EPT pointer = 0x%016lx\n", vmcs_readl(EPT_POINTER));
7811 n = vmcs_read32(CR3_TARGET_COUNT);
7812 for (i = 0; i + 1 < n; i += 4)
7813 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
7814 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
7815 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
7816 if (i < n)
7817 pr_err("CR3 target%u=%016lx\n",
7818 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
7819 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
7820 pr_err("PLE Gap=%08x Window=%08x\n",
7821 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
7822 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
7823 pr_err("Virtual processor ID = 0x%04x\n",
7824 vmcs_read16(VIRTUAL_PROCESSOR_ID));
7825 }
7826
7827 /*
7828 * The guest has exited. See if we can fix it or if we need userspace
7829 * assistance.
7830 */
7831 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7832 {
7833 struct vcpu_vmx *vmx = to_vmx(vcpu);
7834 u32 exit_reason = vmx->exit_reason;
7835 u32 vectoring_info = vmx->idt_vectoring_info;
7836
7837 /*
7838 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
7839 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
7840 * querying dirty_bitmap, we only need to kick all vcpus out of guest
7841 * mode as if vcpus is in root mode, the PML buffer must has been
7842 * flushed already.
7843 */
7844 if (enable_pml)
7845 vmx_flush_pml_buffer(vcpu);
7846
7847 /* If guest state is invalid, start emulating */
7848 if (vmx->emulation_required)
7849 return handle_invalid_guest_state(vcpu);
7850
7851 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7852 nested_vmx_vmexit(vcpu, exit_reason,
7853 vmcs_read32(VM_EXIT_INTR_INFO),
7854 vmcs_readl(EXIT_QUALIFICATION));
7855 return 1;
7856 }
7857
7858 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7859 dump_vmcs();
7860 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7861 vcpu->run->fail_entry.hardware_entry_failure_reason
7862 = exit_reason;
7863 return 0;
7864 }
7865
7866 if (unlikely(vmx->fail)) {
7867 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7868 vcpu->run->fail_entry.hardware_entry_failure_reason
7869 = vmcs_read32(VM_INSTRUCTION_ERROR);
7870 return 0;
7871 }
7872
7873 /*
7874 * Note:
7875 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7876 * delivery event since it indicates guest is accessing MMIO.
7877 * The vm-exit can be triggered again after return to guest that
7878 * will cause infinite loop.
7879 */
7880 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7881 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7882 exit_reason != EXIT_REASON_EPT_VIOLATION &&
7883 exit_reason != EXIT_REASON_TASK_SWITCH)) {
7884 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7885 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7886 vcpu->run->internal.ndata = 2;
7887 vcpu->run->internal.data[0] = vectoring_info;
7888 vcpu->run->internal.data[1] = exit_reason;
7889 return 0;
7890 }
7891
7892 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7893 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7894 get_vmcs12(vcpu))))) {
7895 if (vmx_interrupt_allowed(vcpu)) {
7896 vmx->soft_vnmi_blocked = 0;
7897 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7898 vcpu->arch.nmi_pending) {
7899 /*
7900 * This CPU don't support us in finding the end of an
7901 * NMI-blocked window if the guest runs with IRQs
7902 * disabled. So we pull the trigger after 1 s of
7903 * futile waiting, but inform the user about this.
7904 */
7905 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7906 "state on VCPU %d after 1 s timeout\n",
7907 __func__, vcpu->vcpu_id);
7908 vmx->soft_vnmi_blocked = 0;
7909 }
7910 }
7911
7912 if (exit_reason < kvm_vmx_max_exit_handlers
7913 && kvm_vmx_exit_handlers[exit_reason])
7914 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7915 else {
7916 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7917 kvm_queue_exception(vcpu, UD_VECTOR);
7918 return 1;
7919 }
7920 }
7921
7922 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7923 {
7924 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7925
7926 if (is_guest_mode(vcpu) &&
7927 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7928 return;
7929
7930 if (irr == -1 || tpr < irr) {
7931 vmcs_write32(TPR_THRESHOLD, 0);
7932 return;
7933 }
7934
7935 vmcs_write32(TPR_THRESHOLD, irr);
7936 }
7937
7938 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7939 {
7940 u32 sec_exec_control;
7941
7942 /*
7943 * There is not point to enable virtualize x2apic without enable
7944 * apicv
7945 */
7946 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7947 !vmx_vm_has_apicv(vcpu->kvm))
7948 return;
7949
7950 if (!vm_need_tpr_shadow(vcpu->kvm))
7951 return;
7952
7953 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7954
7955 if (set) {
7956 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7957 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7958 } else {
7959 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7960 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7961 }
7962 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7963
7964 vmx_set_msr_bitmap(vcpu);
7965 }
7966
7967 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7968 {
7969 struct vcpu_vmx *vmx = to_vmx(vcpu);
7970
7971 /*
7972 * Currently we do not handle the nested case where L2 has an
7973 * APIC access page of its own; that page is still pinned.
7974 * Hence, we skip the case where the VCPU is in guest mode _and_
7975 * L1 prepared an APIC access page for L2.
7976 *
7977 * For the case where L1 and L2 share the same APIC access page
7978 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7979 * in the vmcs12), this function will only update either the vmcs01
7980 * or the vmcs02. If the former, the vmcs02 will be updated by
7981 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
7982 * the next L2->L1 exit.
7983 */
7984 if (!is_guest_mode(vcpu) ||
7985 !nested_cpu_has2(vmx->nested.current_vmcs12,
7986 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7987 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7988 }
7989
7990 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7991 {
7992 u16 status;
7993 u8 old;
7994
7995 if (isr == -1)
7996 isr = 0;
7997
7998 status = vmcs_read16(GUEST_INTR_STATUS);
7999 old = status >> 8;
8000 if (isr != old) {
8001 status &= 0xff;
8002 status |= isr << 8;
8003 vmcs_write16(GUEST_INTR_STATUS, status);
8004 }
8005 }
8006
8007 static void vmx_set_rvi(int vector)
8008 {
8009 u16 status;
8010 u8 old;
8011
8012 if (vector == -1)
8013 vector = 0;
8014
8015 status = vmcs_read16(GUEST_INTR_STATUS);
8016 old = (u8)status & 0xff;
8017 if ((u8)vector != old) {
8018 status &= ~0xff;
8019 status |= (u8)vector;
8020 vmcs_write16(GUEST_INTR_STATUS, status);
8021 }
8022 }
8023
8024 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8025 {
8026 if (!is_guest_mode(vcpu)) {
8027 vmx_set_rvi(max_irr);
8028 return;
8029 }
8030
8031 if (max_irr == -1)
8032 return;
8033
8034 /*
8035 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8036 * handles it.
8037 */
8038 if (nested_exit_on_intr(vcpu))
8039 return;
8040
8041 /*
8042 * Else, fall back to pre-APICv interrupt injection since L2
8043 * is run without virtual interrupt delivery.
8044 */
8045 if (!kvm_event_needs_reinjection(vcpu) &&
8046 vmx_interrupt_allowed(vcpu)) {
8047 kvm_queue_interrupt(vcpu, max_irr, false);
8048 vmx_inject_irq(vcpu);
8049 }
8050 }
8051
8052 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8053 {
8054 u64 *eoi_exit_bitmap = vcpu->arch.eoi_exit_bitmap;
8055 if (!vmx_vm_has_apicv(vcpu->kvm))
8056 return;
8057
8058 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8059 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8060 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8061 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8062 }
8063
8064 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8065 {
8066 u32 exit_intr_info;
8067
8068 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8069 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8070 return;
8071
8072 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8073 exit_intr_info = vmx->exit_intr_info;
8074
8075 /* Handle machine checks before interrupts are enabled */
8076 if (is_machine_check(exit_intr_info))
8077 kvm_machine_check();
8078
8079 /* We need to handle NMIs before interrupts are enabled */
8080 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8081 (exit_intr_info & INTR_INFO_VALID_MASK)) {
8082 kvm_before_handle_nmi(&vmx->vcpu);
8083 asm("int $2");
8084 kvm_after_handle_nmi(&vmx->vcpu);
8085 }
8086 }
8087
8088 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8089 {
8090 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8091
8092 /*
8093 * If external interrupt exists, IF bit is set in rflags/eflags on the
8094 * interrupt stack frame, and interrupt will be enabled on a return
8095 * from interrupt handler.
8096 */
8097 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8098 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8099 unsigned int vector;
8100 unsigned long entry;
8101 gate_desc *desc;
8102 struct vcpu_vmx *vmx = to_vmx(vcpu);
8103 #ifdef CONFIG_X86_64
8104 unsigned long tmp;
8105 #endif
8106
8107 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8108 desc = (gate_desc *)vmx->host_idt_base + vector;
8109 entry = gate_offset(*desc);
8110 asm volatile(
8111 #ifdef CONFIG_X86_64
8112 "mov %%" _ASM_SP ", %[sp]\n\t"
8113 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8114 "push $%c[ss]\n\t"
8115 "push %[sp]\n\t"
8116 #endif
8117 "pushf\n\t"
8118 "orl $0x200, (%%" _ASM_SP ")\n\t"
8119 __ASM_SIZE(push) " $%c[cs]\n\t"
8120 "call *%[entry]\n\t"
8121 :
8122 #ifdef CONFIG_X86_64
8123 [sp]"=&r"(tmp)
8124 #endif
8125 :
8126 [entry]"r"(entry),
8127 [ss]"i"(__KERNEL_DS),
8128 [cs]"i"(__KERNEL_CS)
8129 );
8130 } else
8131 local_irq_enable();
8132 }
8133
8134 static bool vmx_has_high_real_mode_segbase(void)
8135 {
8136 return enable_unrestricted_guest || emulate_invalid_guest_state;
8137 }
8138
8139 static bool vmx_mpx_supported(void)
8140 {
8141 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8142 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8143 }
8144
8145 static bool vmx_xsaves_supported(void)
8146 {
8147 return vmcs_config.cpu_based_2nd_exec_ctrl &
8148 SECONDARY_EXEC_XSAVES;
8149 }
8150
8151 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8152 {
8153 u32 exit_intr_info;
8154 bool unblock_nmi;
8155 u8 vector;
8156 bool idtv_info_valid;
8157
8158 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8159
8160 if (cpu_has_virtual_nmis()) {
8161 if (vmx->nmi_known_unmasked)
8162 return;
8163 /*
8164 * Can't use vmx->exit_intr_info since we're not sure what
8165 * the exit reason is.
8166 */
8167 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8168 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8169 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8170 /*
8171 * SDM 3: 27.7.1.2 (September 2008)
8172 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8173 * a guest IRET fault.
8174 * SDM 3: 23.2.2 (September 2008)
8175 * Bit 12 is undefined in any of the following cases:
8176 * If the VM exit sets the valid bit in the IDT-vectoring
8177 * information field.
8178 * If the VM exit is due to a double fault.
8179 */
8180 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8181 vector != DF_VECTOR && !idtv_info_valid)
8182 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8183 GUEST_INTR_STATE_NMI);
8184 else
8185 vmx->nmi_known_unmasked =
8186 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8187 & GUEST_INTR_STATE_NMI);
8188 } else if (unlikely(vmx->soft_vnmi_blocked))
8189 vmx->vnmi_blocked_time +=
8190 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8191 }
8192
8193 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8194 u32 idt_vectoring_info,
8195 int instr_len_field,
8196 int error_code_field)
8197 {
8198 u8 vector;
8199 int type;
8200 bool idtv_info_valid;
8201
8202 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8203
8204 vcpu->arch.nmi_injected = false;
8205 kvm_clear_exception_queue(vcpu);
8206 kvm_clear_interrupt_queue(vcpu);
8207
8208 if (!idtv_info_valid)
8209 return;
8210
8211 kvm_make_request(KVM_REQ_EVENT, vcpu);
8212
8213 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8214 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8215
8216 switch (type) {
8217 case INTR_TYPE_NMI_INTR:
8218 vcpu->arch.nmi_injected = true;
8219 /*
8220 * SDM 3: 27.7.1.2 (September 2008)
8221 * Clear bit "block by NMI" before VM entry if a NMI
8222 * delivery faulted.
8223 */
8224 vmx_set_nmi_mask(vcpu, false);
8225 break;
8226 case INTR_TYPE_SOFT_EXCEPTION:
8227 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8228 /* fall through */
8229 case INTR_TYPE_HARD_EXCEPTION:
8230 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8231 u32 err = vmcs_read32(error_code_field);
8232 kvm_requeue_exception_e(vcpu, vector, err);
8233 } else
8234 kvm_requeue_exception(vcpu, vector);
8235 break;
8236 case INTR_TYPE_SOFT_INTR:
8237 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8238 /* fall through */
8239 case INTR_TYPE_EXT_INTR:
8240 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8241 break;
8242 default:
8243 break;
8244 }
8245 }
8246
8247 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8248 {
8249 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8250 VM_EXIT_INSTRUCTION_LEN,
8251 IDT_VECTORING_ERROR_CODE);
8252 }
8253
8254 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8255 {
8256 __vmx_complete_interrupts(vcpu,
8257 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8258 VM_ENTRY_INSTRUCTION_LEN,
8259 VM_ENTRY_EXCEPTION_ERROR_CODE);
8260
8261 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8262 }
8263
8264 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8265 {
8266 int i, nr_msrs;
8267 struct perf_guest_switch_msr *msrs;
8268
8269 msrs = perf_guest_get_msrs(&nr_msrs);
8270
8271 if (!msrs)
8272 return;
8273
8274 for (i = 0; i < nr_msrs; i++)
8275 if (msrs[i].host == msrs[i].guest)
8276 clear_atomic_switch_msr(vmx, msrs[i].msr);
8277 else
8278 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8279 msrs[i].host);
8280 }
8281
8282 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8283 {
8284 struct vcpu_vmx *vmx = to_vmx(vcpu);
8285 unsigned long debugctlmsr, cr4;
8286
8287 /* Record the guest's net vcpu time for enforced NMI injections. */
8288 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8289 vmx->entry_time = ktime_get();
8290
8291 /* Don't enter VMX if guest state is invalid, let the exit handler
8292 start emulation until we arrive back to a valid state */
8293 if (vmx->emulation_required)
8294 return;
8295
8296 if (vmx->ple_window_dirty) {
8297 vmx->ple_window_dirty = false;
8298 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8299 }
8300
8301 if (vmx->nested.sync_shadow_vmcs) {
8302 copy_vmcs12_to_shadow(vmx);
8303 vmx->nested.sync_shadow_vmcs = false;
8304 }
8305
8306 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8307 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8308 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8309 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8310
8311 cr4 = cr4_read_shadow();
8312 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8313 vmcs_writel(HOST_CR4, cr4);
8314 vmx->host_state.vmcs_host_cr4 = cr4;
8315 }
8316
8317 /* When single-stepping over STI and MOV SS, we must clear the
8318 * corresponding interruptibility bits in the guest state. Otherwise
8319 * vmentry fails as it then expects bit 14 (BS) in pending debug
8320 * exceptions being set, but that's not correct for the guest debugging
8321 * case. */
8322 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8323 vmx_set_interrupt_shadow(vcpu, 0);
8324
8325 atomic_switch_perf_msrs(vmx);
8326 debugctlmsr = get_debugctlmsr();
8327
8328 vmx->__launched = vmx->loaded_vmcs->launched;
8329 asm(
8330 /* Store host registers */
8331 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8332 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8333 "push %%" _ASM_CX " \n\t"
8334 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8335 "je 1f \n\t"
8336 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8337 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8338 "1: \n\t"
8339 /* Reload cr2 if changed */
8340 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8341 "mov %%cr2, %%" _ASM_DX " \n\t"
8342 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8343 "je 2f \n\t"
8344 "mov %%" _ASM_AX", %%cr2 \n\t"
8345 "2: \n\t"
8346 /* Check if vmlaunch of vmresume is needed */
8347 "cmpl $0, %c[launched](%0) \n\t"
8348 /* Load guest registers. Don't clobber flags. */
8349 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8350 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8351 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8352 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8353 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8354 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8355 #ifdef CONFIG_X86_64
8356 "mov %c[r8](%0), %%r8 \n\t"
8357 "mov %c[r9](%0), %%r9 \n\t"
8358 "mov %c[r10](%0), %%r10 \n\t"
8359 "mov %c[r11](%0), %%r11 \n\t"
8360 "mov %c[r12](%0), %%r12 \n\t"
8361 "mov %c[r13](%0), %%r13 \n\t"
8362 "mov %c[r14](%0), %%r14 \n\t"
8363 "mov %c[r15](%0), %%r15 \n\t"
8364 #endif
8365 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8366
8367 /* Enter guest mode */
8368 "jne 1f \n\t"
8369 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8370 "jmp 2f \n\t"
8371 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8372 "2: "
8373 /* Save guest registers, load host registers, keep flags */
8374 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8375 "pop %0 \n\t"
8376 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8377 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8378 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8379 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8380 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8381 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8382 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8383 #ifdef CONFIG_X86_64
8384 "mov %%r8, %c[r8](%0) \n\t"
8385 "mov %%r9, %c[r9](%0) \n\t"
8386 "mov %%r10, %c[r10](%0) \n\t"
8387 "mov %%r11, %c[r11](%0) \n\t"
8388 "mov %%r12, %c[r12](%0) \n\t"
8389 "mov %%r13, %c[r13](%0) \n\t"
8390 "mov %%r14, %c[r14](%0) \n\t"
8391 "mov %%r15, %c[r15](%0) \n\t"
8392 #endif
8393 "mov %%cr2, %%" _ASM_AX " \n\t"
8394 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8395
8396 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
8397 "setbe %c[fail](%0) \n\t"
8398 ".pushsection .rodata \n\t"
8399 ".global vmx_return \n\t"
8400 "vmx_return: " _ASM_PTR " 2b \n\t"
8401 ".popsection"
8402 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8403 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8404 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8405 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8406 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8407 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8408 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8409 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8410 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8411 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8412 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8413 #ifdef CONFIG_X86_64
8414 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8415 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8416 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8417 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8418 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8419 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8420 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8421 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8422 #endif
8423 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8424 [wordsize]"i"(sizeof(ulong))
8425 : "cc", "memory"
8426 #ifdef CONFIG_X86_64
8427 , "rax", "rbx", "rdi", "rsi"
8428 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8429 #else
8430 , "eax", "ebx", "edi", "esi"
8431 #endif
8432 );
8433
8434 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8435 if (debugctlmsr)
8436 update_debugctlmsr(debugctlmsr);
8437
8438 #ifndef CONFIG_X86_64
8439 /*
8440 * The sysexit path does not restore ds/es, so we must set them to
8441 * a reasonable value ourselves.
8442 *
8443 * We can't defer this to vmx_load_host_state() since that function
8444 * may be executed in interrupt context, which saves and restore segments
8445 * around it, nullifying its effect.
8446 */
8447 loadsegment(ds, __USER_DS);
8448 loadsegment(es, __USER_DS);
8449 #endif
8450
8451 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8452 | (1 << VCPU_EXREG_RFLAGS)
8453 | (1 << VCPU_EXREG_PDPTR)
8454 | (1 << VCPU_EXREG_SEGMENTS)
8455 | (1 << VCPU_EXREG_CR3));
8456 vcpu->arch.regs_dirty = 0;
8457
8458 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8459
8460 vmx->loaded_vmcs->launched = 1;
8461
8462 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8463 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
8464
8465 /*
8466 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8467 * we did not inject a still-pending event to L1 now because of
8468 * nested_run_pending, we need to re-enable this bit.
8469 */
8470 if (vmx->nested.nested_run_pending)
8471 kvm_make_request(KVM_REQ_EVENT, vcpu);
8472
8473 vmx->nested.nested_run_pending = 0;
8474
8475 vmx_complete_atomic_exit(vmx);
8476 vmx_recover_nmi_blocking(vmx);
8477 vmx_complete_interrupts(vmx);
8478 }
8479
8480 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8481 {
8482 struct vcpu_vmx *vmx = to_vmx(vcpu);
8483 int cpu;
8484
8485 if (vmx->loaded_vmcs == &vmx->vmcs01)
8486 return;
8487
8488 cpu = get_cpu();
8489 vmx->loaded_vmcs = &vmx->vmcs01;
8490 vmx_vcpu_put(vcpu);
8491 vmx_vcpu_load(vcpu, cpu);
8492 vcpu->cpu = cpu;
8493 put_cpu();
8494 }
8495
8496 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8497 {
8498 struct vcpu_vmx *vmx = to_vmx(vcpu);
8499
8500 if (enable_pml)
8501 vmx_disable_pml(vmx);
8502 free_vpid(vmx);
8503 leave_guest_mode(vcpu);
8504 vmx_load_vmcs01(vcpu);
8505 free_nested(vmx);
8506 free_loaded_vmcs(vmx->loaded_vmcs);
8507 kfree(vmx->guest_msrs);
8508 kvm_vcpu_uninit(vcpu);
8509 kmem_cache_free(kvm_vcpu_cache, vmx);
8510 }
8511
8512 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8513 {
8514 int err;
8515 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8516 int cpu;
8517
8518 if (!vmx)
8519 return ERR_PTR(-ENOMEM);
8520
8521 allocate_vpid(vmx);
8522
8523 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8524 if (err)
8525 goto free_vcpu;
8526
8527 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8528 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8529 > PAGE_SIZE);
8530
8531 err = -ENOMEM;
8532 if (!vmx->guest_msrs) {
8533 goto uninit_vcpu;
8534 }
8535
8536 vmx->loaded_vmcs = &vmx->vmcs01;
8537 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8538 if (!vmx->loaded_vmcs->vmcs)
8539 goto free_msrs;
8540 if (!vmm_exclusive)
8541 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8542 loaded_vmcs_init(vmx->loaded_vmcs);
8543 if (!vmm_exclusive)
8544 kvm_cpu_vmxoff();
8545
8546 cpu = get_cpu();
8547 vmx_vcpu_load(&vmx->vcpu, cpu);
8548 vmx->vcpu.cpu = cpu;
8549 err = vmx_vcpu_setup(vmx);
8550 vmx_vcpu_put(&vmx->vcpu);
8551 put_cpu();
8552 if (err)
8553 goto free_vmcs;
8554 if (vm_need_virtualize_apic_accesses(kvm)) {
8555 err = alloc_apic_access_page(kvm);
8556 if (err)
8557 goto free_vmcs;
8558 }
8559
8560 if (enable_ept) {
8561 if (!kvm->arch.ept_identity_map_addr)
8562 kvm->arch.ept_identity_map_addr =
8563 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8564 err = init_rmode_identity_map(kvm);
8565 if (err)
8566 goto free_vmcs;
8567 }
8568
8569 if (nested)
8570 nested_vmx_setup_ctls_msrs(vmx);
8571
8572 vmx->nested.posted_intr_nv = -1;
8573 vmx->nested.current_vmptr = -1ull;
8574 vmx->nested.current_vmcs12 = NULL;
8575
8576 /*
8577 * If PML is turned on, failure on enabling PML just results in failure
8578 * of creating the vcpu, therefore we can simplify PML logic (by
8579 * avoiding dealing with cases, such as enabling PML partially on vcpus
8580 * for the guest, etc.
8581 */
8582 if (enable_pml) {
8583 err = vmx_enable_pml(vmx);
8584 if (err)
8585 goto free_vmcs;
8586 }
8587
8588 return &vmx->vcpu;
8589
8590 free_vmcs:
8591 free_loaded_vmcs(vmx->loaded_vmcs);
8592 free_msrs:
8593 kfree(vmx->guest_msrs);
8594 uninit_vcpu:
8595 kvm_vcpu_uninit(&vmx->vcpu);
8596 free_vcpu:
8597 free_vpid(vmx);
8598 kmem_cache_free(kvm_vcpu_cache, vmx);
8599 return ERR_PTR(err);
8600 }
8601
8602 static void __init vmx_check_processor_compat(void *rtn)
8603 {
8604 struct vmcs_config vmcs_conf;
8605
8606 *(int *)rtn = 0;
8607 if (setup_vmcs_config(&vmcs_conf) < 0)
8608 *(int *)rtn = -EIO;
8609 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8610 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8611 smp_processor_id());
8612 *(int *)rtn = -EIO;
8613 }
8614 }
8615
8616 static int get_ept_level(void)
8617 {
8618 return VMX_EPT_DEFAULT_GAW + 1;
8619 }
8620
8621 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8622 {
8623 u8 cache;
8624 u64 ipat = 0;
8625
8626 /* For VT-d and EPT combination
8627 * 1. MMIO: always map as UC
8628 * 2. EPT with VT-d:
8629 * a. VT-d without snooping control feature: can't guarantee the
8630 * result, try to trust guest.
8631 * b. VT-d with snooping control feature: snooping control feature of
8632 * VT-d engine can guarantee the cache correctness. Just set it
8633 * to WB to keep consistent with host. So the same as item 3.
8634 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8635 * consistent with host MTRR
8636 */
8637 if (is_mmio) {
8638 cache = MTRR_TYPE_UNCACHABLE;
8639 goto exit;
8640 }
8641
8642 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
8643 ipat = VMX_EPT_IPAT_BIT;
8644 cache = MTRR_TYPE_WRBACK;
8645 goto exit;
8646 }
8647
8648 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
8649 ipat = VMX_EPT_IPAT_BIT;
8650 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
8651 cache = MTRR_TYPE_WRBACK;
8652 else
8653 cache = MTRR_TYPE_UNCACHABLE;
8654 goto exit;
8655 }
8656
8657 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
8658
8659 exit:
8660 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
8661 }
8662
8663 static int vmx_get_lpage_level(void)
8664 {
8665 if (enable_ept && !cpu_has_vmx_ept_1g_page())
8666 return PT_DIRECTORY_LEVEL;
8667 else
8668 /* For shadow and EPT supported 1GB page */
8669 return PT_PDPE_LEVEL;
8670 }
8671
8672 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8673 {
8674 struct kvm_cpuid_entry2 *best;
8675 struct vcpu_vmx *vmx = to_vmx(vcpu);
8676 u32 exec_control;
8677
8678 vmx->rdtscp_enabled = false;
8679 if (vmx_rdtscp_supported()) {
8680 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8681 if (exec_control & SECONDARY_EXEC_RDTSCP) {
8682 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
8683 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
8684 vmx->rdtscp_enabled = true;
8685 else {
8686 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8687 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8688 exec_control);
8689 }
8690 }
8691 if (nested && !vmx->rdtscp_enabled)
8692 vmx->nested.nested_vmx_secondary_ctls_high &=
8693 ~SECONDARY_EXEC_RDTSCP;
8694 }
8695
8696 /* Exposing INVPCID only when PCID is exposed */
8697 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8698 if (vmx_invpcid_supported() &&
8699 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
8700 guest_cpuid_has_pcid(vcpu)) {
8701 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8702 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
8703 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8704 exec_control);
8705 } else {
8706 if (cpu_has_secondary_exec_ctrls()) {
8707 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8708 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8709 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8710 exec_control);
8711 }
8712 if (best)
8713 best->ebx &= ~bit(X86_FEATURE_INVPCID);
8714 }
8715 }
8716
8717 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8718 {
8719 if (func == 1 && nested)
8720 entry->ecx |= bit(X86_FEATURE_VMX);
8721 }
8722
8723 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8724 struct x86_exception *fault)
8725 {
8726 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8727 u32 exit_reason;
8728
8729 if (fault->error_code & PFERR_RSVD_MASK)
8730 exit_reason = EXIT_REASON_EPT_MISCONFIG;
8731 else
8732 exit_reason = EXIT_REASON_EPT_VIOLATION;
8733 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
8734 vmcs12->guest_physical_address = fault->address;
8735 }
8736
8737 /* Callbacks for nested_ept_init_mmu_context: */
8738
8739 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8740 {
8741 /* return the page table to be shadowed - in our case, EPT12 */
8742 return get_vmcs12(vcpu)->ept_pointer;
8743 }
8744
8745 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
8746 {
8747 WARN_ON(mmu_is_nested(vcpu));
8748 kvm_init_shadow_ept_mmu(vcpu,
8749 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
8750 VMX_EPT_EXECUTE_ONLY_BIT);
8751 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
8752 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
8753 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8754
8755 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
8756 }
8757
8758 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8759 {
8760 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8761 }
8762
8763 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
8764 u16 error_code)
8765 {
8766 bool inequality, bit;
8767
8768 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
8769 inequality =
8770 (error_code & vmcs12->page_fault_error_code_mask) !=
8771 vmcs12->page_fault_error_code_match;
8772 return inequality ^ bit;
8773 }
8774
8775 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8776 struct x86_exception *fault)
8777 {
8778 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8779
8780 WARN_ON(!is_guest_mode(vcpu));
8781
8782 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
8783 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
8784 vmcs_read32(VM_EXIT_INTR_INFO),
8785 vmcs_readl(EXIT_QUALIFICATION));
8786 else
8787 kvm_inject_page_fault(vcpu, fault);
8788 }
8789
8790 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
8791 struct vmcs12 *vmcs12)
8792 {
8793 struct vcpu_vmx *vmx = to_vmx(vcpu);
8794 int maxphyaddr = cpuid_maxphyaddr(vcpu);
8795
8796 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8797 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
8798 vmcs12->apic_access_addr >> maxphyaddr)
8799 return false;
8800
8801 /*
8802 * Translate L1 physical address to host physical
8803 * address for vmcs02. Keep the page pinned, so this
8804 * physical address remains valid. We keep a reference
8805 * to it so we can release it later.
8806 */
8807 if (vmx->nested.apic_access_page) /* shouldn't happen */
8808 nested_release_page(vmx->nested.apic_access_page);
8809 vmx->nested.apic_access_page =
8810 nested_get_page(vcpu, vmcs12->apic_access_addr);
8811 }
8812
8813 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8814 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
8815 vmcs12->virtual_apic_page_addr >> maxphyaddr)
8816 return false;
8817
8818 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8819 nested_release_page(vmx->nested.virtual_apic_page);
8820 vmx->nested.virtual_apic_page =
8821 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8822
8823 /*
8824 * Failing the vm entry is _not_ what the processor does
8825 * but it's basically the only possibility we have.
8826 * We could still enter the guest if CR8 load exits are
8827 * enabled, CR8 store exits are enabled, and virtualize APIC
8828 * access is disabled; in this case the processor would never
8829 * use the TPR shadow and we could simply clear the bit from
8830 * the execution control. But such a configuration is useless,
8831 * so let's keep the code simple.
8832 */
8833 if (!vmx->nested.virtual_apic_page)
8834 return false;
8835 }
8836
8837 if (nested_cpu_has_posted_intr(vmcs12)) {
8838 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
8839 vmcs12->posted_intr_desc_addr >> maxphyaddr)
8840 return false;
8841
8842 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
8843 kunmap(vmx->nested.pi_desc_page);
8844 nested_release_page(vmx->nested.pi_desc_page);
8845 }
8846 vmx->nested.pi_desc_page =
8847 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
8848 if (!vmx->nested.pi_desc_page)
8849 return false;
8850
8851 vmx->nested.pi_desc =
8852 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
8853 if (!vmx->nested.pi_desc) {
8854 nested_release_page_clean(vmx->nested.pi_desc_page);
8855 return false;
8856 }
8857 vmx->nested.pi_desc =
8858 (struct pi_desc *)((void *)vmx->nested.pi_desc +
8859 (unsigned long)(vmcs12->posted_intr_desc_addr &
8860 (PAGE_SIZE - 1)));
8861 }
8862
8863 return true;
8864 }
8865
8866 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8867 {
8868 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8869 struct vcpu_vmx *vmx = to_vmx(vcpu);
8870
8871 if (vcpu->arch.virtual_tsc_khz == 0)
8872 return;
8873
8874 /* Make sure short timeouts reliably trigger an immediate vmexit.
8875 * hrtimer_start does not guarantee this. */
8876 if (preemption_timeout <= 1) {
8877 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8878 return;
8879 }
8880
8881 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8882 preemption_timeout *= 1000000;
8883 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8884 hrtimer_start(&vmx->nested.preemption_timer,
8885 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8886 }
8887
8888 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
8889 struct vmcs12 *vmcs12)
8890 {
8891 int maxphyaddr;
8892 u64 addr;
8893
8894 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8895 return 0;
8896
8897 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
8898 WARN_ON(1);
8899 return -EINVAL;
8900 }
8901 maxphyaddr = cpuid_maxphyaddr(vcpu);
8902
8903 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
8904 ((addr + PAGE_SIZE) >> maxphyaddr))
8905 return -EINVAL;
8906
8907 return 0;
8908 }
8909
8910 /*
8911 * Merge L0's and L1's MSR bitmap, return false to indicate that
8912 * we do not use the hardware.
8913 */
8914 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
8915 struct vmcs12 *vmcs12)
8916 {
8917 int msr;
8918 struct page *page;
8919 unsigned long *msr_bitmap;
8920
8921 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
8922 return false;
8923
8924 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
8925 if (!page) {
8926 WARN_ON(1);
8927 return false;
8928 }
8929 msr_bitmap = (unsigned long *)kmap(page);
8930 if (!msr_bitmap) {
8931 nested_release_page_clean(page);
8932 WARN_ON(1);
8933 return false;
8934 }
8935
8936 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
8937 if (nested_cpu_has_apic_reg_virt(vmcs12))
8938 for (msr = 0x800; msr <= 0x8ff; msr++)
8939 nested_vmx_disable_intercept_for_msr(
8940 msr_bitmap,
8941 vmx_msr_bitmap_nested,
8942 msr, MSR_TYPE_R);
8943 /* TPR is allowed */
8944 nested_vmx_disable_intercept_for_msr(msr_bitmap,
8945 vmx_msr_bitmap_nested,
8946 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8947 MSR_TYPE_R | MSR_TYPE_W);
8948 if (nested_cpu_has_vid(vmcs12)) {
8949 /* EOI and self-IPI are allowed */
8950 nested_vmx_disable_intercept_for_msr(
8951 msr_bitmap,
8952 vmx_msr_bitmap_nested,
8953 APIC_BASE_MSR + (APIC_EOI >> 4),
8954 MSR_TYPE_W);
8955 nested_vmx_disable_intercept_for_msr(
8956 msr_bitmap,
8957 vmx_msr_bitmap_nested,
8958 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8959 MSR_TYPE_W);
8960 }
8961 } else {
8962 /*
8963 * Enable reading intercept of all the x2apic
8964 * MSRs. We should not rely on vmcs12 to do any
8965 * optimizations here, it may have been modified
8966 * by L1.
8967 */
8968 for (msr = 0x800; msr <= 0x8ff; msr++)
8969 __vmx_enable_intercept_for_msr(
8970 vmx_msr_bitmap_nested,
8971 msr,
8972 MSR_TYPE_R);
8973
8974 __vmx_enable_intercept_for_msr(
8975 vmx_msr_bitmap_nested,
8976 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8977 MSR_TYPE_W);
8978 __vmx_enable_intercept_for_msr(
8979 vmx_msr_bitmap_nested,
8980 APIC_BASE_MSR + (APIC_EOI >> 4),
8981 MSR_TYPE_W);
8982 __vmx_enable_intercept_for_msr(
8983 vmx_msr_bitmap_nested,
8984 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8985 MSR_TYPE_W);
8986 }
8987 kunmap(page);
8988 nested_release_page_clean(page);
8989
8990 return true;
8991 }
8992
8993 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
8994 struct vmcs12 *vmcs12)
8995 {
8996 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
8997 !nested_cpu_has_apic_reg_virt(vmcs12) &&
8998 !nested_cpu_has_vid(vmcs12) &&
8999 !nested_cpu_has_posted_intr(vmcs12))
9000 return 0;
9001
9002 /*
9003 * If virtualize x2apic mode is enabled,
9004 * virtualize apic access must be disabled.
9005 */
9006 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9007 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9008 return -EINVAL;
9009
9010 /*
9011 * If virtual interrupt delivery is enabled,
9012 * we must exit on external interrupts.
9013 */
9014 if (nested_cpu_has_vid(vmcs12) &&
9015 !nested_exit_on_intr(vcpu))
9016 return -EINVAL;
9017
9018 /*
9019 * bits 15:8 should be zero in posted_intr_nv,
9020 * the descriptor address has been already checked
9021 * in nested_get_vmcs12_pages.
9022 */
9023 if (nested_cpu_has_posted_intr(vmcs12) &&
9024 (!nested_cpu_has_vid(vmcs12) ||
9025 !nested_exit_intr_ack_set(vcpu) ||
9026 vmcs12->posted_intr_nv & 0xff00))
9027 return -EINVAL;
9028
9029 /* tpr shadow is needed by all apicv features. */
9030 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9031 return -EINVAL;
9032
9033 return 0;
9034 }
9035
9036 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9037 unsigned long count_field,
9038 unsigned long addr_field)
9039 {
9040 int maxphyaddr;
9041 u64 count, addr;
9042
9043 if (vmcs12_read_any(vcpu, count_field, &count) ||
9044 vmcs12_read_any(vcpu, addr_field, &addr)) {
9045 WARN_ON(1);
9046 return -EINVAL;
9047 }
9048 if (count == 0)
9049 return 0;
9050 maxphyaddr = cpuid_maxphyaddr(vcpu);
9051 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9052 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9053 pr_warn_ratelimited(
9054 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9055 addr_field, maxphyaddr, count, addr);
9056 return -EINVAL;
9057 }
9058 return 0;
9059 }
9060
9061 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9062 struct vmcs12 *vmcs12)
9063 {
9064 if (vmcs12->vm_exit_msr_load_count == 0 &&
9065 vmcs12->vm_exit_msr_store_count == 0 &&
9066 vmcs12->vm_entry_msr_load_count == 0)
9067 return 0; /* Fast path */
9068 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9069 VM_EXIT_MSR_LOAD_ADDR) ||
9070 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9071 VM_EXIT_MSR_STORE_ADDR) ||
9072 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9073 VM_ENTRY_MSR_LOAD_ADDR))
9074 return -EINVAL;
9075 return 0;
9076 }
9077
9078 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9079 struct vmx_msr_entry *e)
9080 {
9081 /* x2APIC MSR accesses are not allowed */
9082 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9083 return -EINVAL;
9084 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9085 e->index == MSR_IA32_UCODE_REV)
9086 return -EINVAL;
9087 if (e->reserved != 0)
9088 return -EINVAL;
9089 return 0;
9090 }
9091
9092 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9093 struct vmx_msr_entry *e)
9094 {
9095 if (e->index == MSR_FS_BASE ||
9096 e->index == MSR_GS_BASE ||
9097 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9098 nested_vmx_msr_check_common(vcpu, e))
9099 return -EINVAL;
9100 return 0;
9101 }
9102
9103 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9104 struct vmx_msr_entry *e)
9105 {
9106 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9107 nested_vmx_msr_check_common(vcpu, e))
9108 return -EINVAL;
9109 return 0;
9110 }
9111
9112 /*
9113 * Load guest's/host's msr at nested entry/exit.
9114 * return 0 for success, entry index for failure.
9115 */
9116 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9117 {
9118 u32 i;
9119 struct vmx_msr_entry e;
9120 struct msr_data msr;
9121
9122 msr.host_initiated = false;
9123 for (i = 0; i < count; i++) {
9124 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9125 &e, sizeof(e))) {
9126 pr_warn_ratelimited(
9127 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9128 __func__, i, gpa + i * sizeof(e));
9129 goto fail;
9130 }
9131 if (nested_vmx_load_msr_check(vcpu, &e)) {
9132 pr_warn_ratelimited(
9133 "%s check failed (%u, 0x%x, 0x%x)\n",
9134 __func__, i, e.index, e.reserved);
9135 goto fail;
9136 }
9137 msr.index = e.index;
9138 msr.data = e.value;
9139 if (kvm_set_msr(vcpu, &msr)) {
9140 pr_warn_ratelimited(
9141 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9142 __func__, i, e.index, e.value);
9143 goto fail;
9144 }
9145 }
9146 return 0;
9147 fail:
9148 return i + 1;
9149 }
9150
9151 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9152 {
9153 u32 i;
9154 struct vmx_msr_entry e;
9155
9156 for (i = 0; i < count; i++) {
9157 struct msr_data msr_info;
9158 if (kvm_vcpu_read_guest(vcpu,
9159 gpa + i * sizeof(e),
9160 &e, 2 * sizeof(u32))) {
9161 pr_warn_ratelimited(
9162 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9163 __func__, i, gpa + i * sizeof(e));
9164 return -EINVAL;
9165 }
9166 if (nested_vmx_store_msr_check(vcpu, &e)) {
9167 pr_warn_ratelimited(
9168 "%s check failed (%u, 0x%x, 0x%x)\n",
9169 __func__, i, e.index, e.reserved);
9170 return -EINVAL;
9171 }
9172 msr_info.host_initiated = false;
9173 msr_info.index = e.index;
9174 if (kvm_get_msr(vcpu, &msr_info)) {
9175 pr_warn_ratelimited(
9176 "%s cannot read MSR (%u, 0x%x)\n",
9177 __func__, i, e.index);
9178 return -EINVAL;
9179 }
9180 if (kvm_vcpu_write_guest(vcpu,
9181 gpa + i * sizeof(e) +
9182 offsetof(struct vmx_msr_entry, value),
9183 &msr_info.data, sizeof(msr_info.data))) {
9184 pr_warn_ratelimited(
9185 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9186 __func__, i, e.index, msr_info.data);
9187 return -EINVAL;
9188 }
9189 }
9190 return 0;
9191 }
9192
9193 /*
9194 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9195 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9196 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9197 * guest in a way that will both be appropriate to L1's requests, and our
9198 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9199 * function also has additional necessary side-effects, like setting various
9200 * vcpu->arch fields.
9201 */
9202 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9203 {
9204 struct vcpu_vmx *vmx = to_vmx(vcpu);
9205 u32 exec_control;
9206
9207 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9208 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9209 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9210 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9211 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9212 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9213 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9214 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9215 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9216 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9217 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9218 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9219 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9220 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9221 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9222 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9223 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9224 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9225 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9226 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9227 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9228 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9229 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9230 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9231 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9232 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9233 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9234 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9235 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9236 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9237 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9238 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9239 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9240 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9241 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9242 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9243
9244 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9245 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9246 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9247 } else {
9248 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9249 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9250 }
9251 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9252 vmcs12->vm_entry_intr_info_field);
9253 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9254 vmcs12->vm_entry_exception_error_code);
9255 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9256 vmcs12->vm_entry_instruction_len);
9257 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9258 vmcs12->guest_interruptibility_info);
9259 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9260 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9261 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9262 vmcs12->guest_pending_dbg_exceptions);
9263 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9264 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9265
9266 if (nested_cpu_has_xsaves(vmcs12))
9267 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9268 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9269
9270 exec_control = vmcs12->pin_based_vm_exec_control;
9271 exec_control |= vmcs_config.pin_based_exec_ctrl;
9272 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9273
9274 if (nested_cpu_has_posted_intr(vmcs12)) {
9275 /*
9276 * Note that we use L0's vector here and in
9277 * vmx_deliver_nested_posted_interrupt.
9278 */
9279 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9280 vmx->nested.pi_pending = false;
9281 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9282 vmcs_write64(POSTED_INTR_DESC_ADDR,
9283 page_to_phys(vmx->nested.pi_desc_page) +
9284 (unsigned long)(vmcs12->posted_intr_desc_addr &
9285 (PAGE_SIZE - 1)));
9286 } else
9287 exec_control &= ~PIN_BASED_POSTED_INTR;
9288
9289 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9290
9291 vmx->nested.preemption_timer_expired = false;
9292 if (nested_cpu_has_preemption_timer(vmcs12))
9293 vmx_start_preemption_timer(vcpu);
9294
9295 /*
9296 * Whether page-faults are trapped is determined by a combination of
9297 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9298 * If enable_ept, L0 doesn't care about page faults and we should
9299 * set all of these to L1's desires. However, if !enable_ept, L0 does
9300 * care about (at least some) page faults, and because it is not easy
9301 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9302 * to exit on each and every L2 page fault. This is done by setting
9303 * MASK=MATCH=0 and (see below) EB.PF=1.
9304 * Note that below we don't need special code to set EB.PF beyond the
9305 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9306 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9307 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9308 *
9309 * A problem with this approach (when !enable_ept) is that L1 may be
9310 * injected with more page faults than it asked for. This could have
9311 * caused problems, but in practice existing hypervisors don't care.
9312 * To fix this, we will need to emulate the PFEC checking (on the L1
9313 * page tables), using walk_addr(), when injecting PFs to L1.
9314 */
9315 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9316 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9317 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9318 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9319
9320 if (cpu_has_secondary_exec_ctrls()) {
9321 exec_control = vmx_secondary_exec_control(vmx);
9322 if (!vmx->rdtscp_enabled)
9323 exec_control &= ~SECONDARY_EXEC_RDTSCP;
9324 /* Take the following fields only from vmcs12 */
9325 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9326 SECONDARY_EXEC_RDTSCP |
9327 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9328 SECONDARY_EXEC_APIC_REGISTER_VIRT);
9329 if (nested_cpu_has(vmcs12,
9330 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9331 exec_control |= vmcs12->secondary_vm_exec_control;
9332
9333 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9334 /*
9335 * If translation failed, no matter: This feature asks
9336 * to exit when accessing the given address, and if it
9337 * can never be accessed, this feature won't do
9338 * anything anyway.
9339 */
9340 if (!vmx->nested.apic_access_page)
9341 exec_control &=
9342 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9343 else
9344 vmcs_write64(APIC_ACCESS_ADDR,
9345 page_to_phys(vmx->nested.apic_access_page));
9346 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9347 (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))) {
9348 exec_control |=
9349 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9350 kvm_vcpu_reload_apic_access_page(vcpu);
9351 }
9352
9353 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9354 vmcs_write64(EOI_EXIT_BITMAP0,
9355 vmcs12->eoi_exit_bitmap0);
9356 vmcs_write64(EOI_EXIT_BITMAP1,
9357 vmcs12->eoi_exit_bitmap1);
9358 vmcs_write64(EOI_EXIT_BITMAP2,
9359 vmcs12->eoi_exit_bitmap2);
9360 vmcs_write64(EOI_EXIT_BITMAP3,
9361 vmcs12->eoi_exit_bitmap3);
9362 vmcs_write16(GUEST_INTR_STATUS,
9363 vmcs12->guest_intr_status);
9364 }
9365
9366 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9367 }
9368
9369
9370 /*
9371 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9372 * Some constant fields are set here by vmx_set_constant_host_state().
9373 * Other fields are different per CPU, and will be set later when
9374 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9375 */
9376 vmx_set_constant_host_state(vmx);
9377
9378 /*
9379 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9380 * entry, but only if the current (host) sp changed from the value
9381 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9382 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9383 * here we just force the write to happen on entry.
9384 */
9385 vmx->host_rsp = 0;
9386
9387 exec_control = vmx_exec_control(vmx); /* L0's desires */
9388 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9389 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9390 exec_control &= ~CPU_BASED_TPR_SHADOW;
9391 exec_control |= vmcs12->cpu_based_vm_exec_control;
9392
9393 if (exec_control & CPU_BASED_TPR_SHADOW) {
9394 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9395 page_to_phys(vmx->nested.virtual_apic_page));
9396 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9397 }
9398
9399 if (cpu_has_vmx_msr_bitmap() &&
9400 exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9401 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9402 /* MSR_BITMAP will be set by following vmx_set_efer. */
9403 } else
9404 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9405
9406 /*
9407 * Merging of IO bitmap not currently supported.
9408 * Rather, exit every time.
9409 */
9410 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9411 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9412
9413 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9414
9415 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9416 * bitwise-or of what L1 wants to trap for L2, and what we want to
9417 * trap. Note that CR0.TS also needs updating - we do this later.
9418 */
9419 update_exception_bitmap(vcpu);
9420 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9421 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9422
9423 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9424 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9425 * bits are further modified by vmx_set_efer() below.
9426 */
9427 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9428
9429 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9430 * emulated by vmx_set_efer(), below.
9431 */
9432 vm_entry_controls_init(vmx,
9433 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9434 ~VM_ENTRY_IA32E_MODE) |
9435 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9436
9437 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9438 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9439 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9440 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9441 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9442
9443
9444 set_cr4_guest_host_mask(vmx);
9445
9446 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9447 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9448
9449 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9450 vmcs_write64(TSC_OFFSET,
9451 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9452 else
9453 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9454
9455 if (enable_vpid) {
9456 /*
9457 * Trivially support vpid by letting L2s share their parent
9458 * L1's vpid. TODO: move to a more elaborate solution, giving
9459 * each L2 its own vpid and exposing the vpid feature to L1.
9460 */
9461 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9462 vmx_flush_tlb(vcpu);
9463 }
9464
9465 if (nested_cpu_has_ept(vmcs12)) {
9466 kvm_mmu_unload(vcpu);
9467 nested_ept_init_mmu_context(vcpu);
9468 }
9469
9470 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9471 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9472 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9473 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9474 else
9475 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9476 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9477 vmx_set_efer(vcpu, vcpu->arch.efer);
9478
9479 /*
9480 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9481 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9482 * The CR0_READ_SHADOW is what L2 should have expected to read given
9483 * the specifications by L1; It's not enough to take
9484 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9485 * have more bits than L1 expected.
9486 */
9487 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9488 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9489
9490 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9491 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9492
9493 /* shadow page tables on either EPT or shadow page tables */
9494 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9495 kvm_mmu_reset_context(vcpu);
9496
9497 if (!enable_ept)
9498 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9499
9500 /*
9501 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9502 */
9503 if (enable_ept) {
9504 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9505 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9506 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9507 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9508 }
9509
9510 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9511 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9512 }
9513
9514 /*
9515 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9516 * for running an L2 nested guest.
9517 */
9518 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9519 {
9520 struct vmcs12 *vmcs12;
9521 struct vcpu_vmx *vmx = to_vmx(vcpu);
9522 int cpu;
9523 struct loaded_vmcs *vmcs02;
9524 bool ia32e;
9525 u32 msr_entry_idx;
9526
9527 if (!nested_vmx_check_permission(vcpu) ||
9528 !nested_vmx_check_vmcs12(vcpu))
9529 return 1;
9530
9531 skip_emulated_instruction(vcpu);
9532 vmcs12 = get_vmcs12(vcpu);
9533
9534 if (enable_shadow_vmcs)
9535 copy_shadow_to_vmcs12(vmx);
9536
9537 /*
9538 * The nested entry process starts with enforcing various prerequisites
9539 * on vmcs12 as required by the Intel SDM, and act appropriately when
9540 * they fail: As the SDM explains, some conditions should cause the
9541 * instruction to fail, while others will cause the instruction to seem
9542 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9543 * To speed up the normal (success) code path, we should avoid checking
9544 * for misconfigurations which will anyway be caught by the processor
9545 * when using the merged vmcs02.
9546 */
9547 if (vmcs12->launch_state == launch) {
9548 nested_vmx_failValid(vcpu,
9549 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9550 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9551 return 1;
9552 }
9553
9554 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9555 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9556 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9557 return 1;
9558 }
9559
9560 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9561 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9562 return 1;
9563 }
9564
9565 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9566 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9567 return 1;
9568 }
9569
9570 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9571 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9572 return 1;
9573 }
9574
9575 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9576 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9577 return 1;
9578 }
9579
9580 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9581 vmx->nested.nested_vmx_true_procbased_ctls_low,
9582 vmx->nested.nested_vmx_procbased_ctls_high) ||
9583 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9584 vmx->nested.nested_vmx_secondary_ctls_low,
9585 vmx->nested.nested_vmx_secondary_ctls_high) ||
9586 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9587 vmx->nested.nested_vmx_pinbased_ctls_low,
9588 vmx->nested.nested_vmx_pinbased_ctls_high) ||
9589 !vmx_control_verify(vmcs12->vm_exit_controls,
9590 vmx->nested.nested_vmx_true_exit_ctls_low,
9591 vmx->nested.nested_vmx_exit_ctls_high) ||
9592 !vmx_control_verify(vmcs12->vm_entry_controls,
9593 vmx->nested.nested_vmx_true_entry_ctls_low,
9594 vmx->nested.nested_vmx_entry_ctls_high))
9595 {
9596 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9597 return 1;
9598 }
9599
9600 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9601 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9602 nested_vmx_failValid(vcpu,
9603 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9604 return 1;
9605 }
9606
9607 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
9608 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9609 nested_vmx_entry_failure(vcpu, vmcs12,
9610 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9611 return 1;
9612 }
9613 if (vmcs12->vmcs_link_pointer != -1ull) {
9614 nested_vmx_entry_failure(vcpu, vmcs12,
9615 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9616 return 1;
9617 }
9618
9619 /*
9620 * If the load IA32_EFER VM-entry control is 1, the following checks
9621 * are performed on the field for the IA32_EFER MSR:
9622 * - Bits reserved in the IA32_EFER MSR must be 0.
9623 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9624 * the IA-32e mode guest VM-exit control. It must also be identical
9625 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9626 * CR0.PG) is 1.
9627 */
9628 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9629 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9630 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9631 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9632 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9633 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9634 nested_vmx_entry_failure(vcpu, vmcs12,
9635 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9636 return 1;
9637 }
9638 }
9639
9640 /*
9641 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9642 * IA32_EFER MSR must be 0 in the field for that register. In addition,
9643 * the values of the LMA and LME bits in the field must each be that of
9644 * the host address-space size VM-exit control.
9645 */
9646 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9647 ia32e = (vmcs12->vm_exit_controls &
9648 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9649 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9650 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9651 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9652 nested_vmx_entry_failure(vcpu, vmcs12,
9653 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9654 return 1;
9655 }
9656 }
9657
9658 /*
9659 * We're finally done with prerequisite checking, and can start with
9660 * the nested entry.
9661 */
9662
9663 vmcs02 = nested_get_current_vmcs02(vmx);
9664 if (!vmcs02)
9665 return -ENOMEM;
9666
9667 enter_guest_mode(vcpu);
9668
9669 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9670
9671 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9672 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9673
9674 cpu = get_cpu();
9675 vmx->loaded_vmcs = vmcs02;
9676 vmx_vcpu_put(vcpu);
9677 vmx_vcpu_load(vcpu, cpu);
9678 vcpu->cpu = cpu;
9679 put_cpu();
9680
9681 vmx_segment_cache_clear(vmx);
9682
9683 prepare_vmcs02(vcpu, vmcs12);
9684
9685 msr_entry_idx = nested_vmx_load_msr(vcpu,
9686 vmcs12->vm_entry_msr_load_addr,
9687 vmcs12->vm_entry_msr_load_count);
9688 if (msr_entry_idx) {
9689 leave_guest_mode(vcpu);
9690 vmx_load_vmcs01(vcpu);
9691 nested_vmx_entry_failure(vcpu, vmcs12,
9692 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
9693 return 1;
9694 }
9695
9696 vmcs12->launch_state = 1;
9697
9698 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
9699 return kvm_vcpu_halt(vcpu);
9700
9701 vmx->nested.nested_run_pending = 1;
9702
9703 /*
9704 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9705 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9706 * returned as far as L1 is concerned. It will only return (and set
9707 * the success flag) when L2 exits (see nested_vmx_vmexit()).
9708 */
9709 return 1;
9710 }
9711
9712 /*
9713 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9714 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9715 * This function returns the new value we should put in vmcs12.guest_cr0.
9716 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9717 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9718 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9719 * didn't trap the bit, because if L1 did, so would L0).
9720 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9721 * been modified by L2, and L1 knows it. So just leave the old value of
9722 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
9723 * isn't relevant, because if L0 traps this bit it can set it to anything.
9724 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
9725 * changed these bits, and therefore they need to be updated, but L0
9726 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
9727 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
9728 */
9729 static inline unsigned long
9730 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9731 {
9732 return
9733 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
9734 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
9735 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
9736 vcpu->arch.cr0_guest_owned_bits));
9737 }
9738
9739 static inline unsigned long
9740 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9741 {
9742 return
9743 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
9744 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
9745 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
9746 vcpu->arch.cr4_guest_owned_bits));
9747 }
9748
9749 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
9750 struct vmcs12 *vmcs12)
9751 {
9752 u32 idt_vectoring;
9753 unsigned int nr;
9754
9755 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
9756 nr = vcpu->arch.exception.nr;
9757 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9758
9759 if (kvm_exception_is_soft(nr)) {
9760 vmcs12->vm_exit_instruction_len =
9761 vcpu->arch.event_exit_inst_len;
9762 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
9763 } else
9764 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
9765
9766 if (vcpu->arch.exception.has_error_code) {
9767 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
9768 vmcs12->idt_vectoring_error_code =
9769 vcpu->arch.exception.error_code;
9770 }
9771
9772 vmcs12->idt_vectoring_info_field = idt_vectoring;
9773 } else if (vcpu->arch.nmi_injected) {
9774 vmcs12->idt_vectoring_info_field =
9775 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
9776 } else if (vcpu->arch.interrupt.pending) {
9777 nr = vcpu->arch.interrupt.nr;
9778 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9779
9780 if (vcpu->arch.interrupt.soft) {
9781 idt_vectoring |= INTR_TYPE_SOFT_INTR;
9782 vmcs12->vm_entry_instruction_len =
9783 vcpu->arch.event_exit_inst_len;
9784 } else
9785 idt_vectoring |= INTR_TYPE_EXT_INTR;
9786
9787 vmcs12->idt_vectoring_info_field = idt_vectoring;
9788 }
9789 }
9790
9791 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
9792 {
9793 struct vcpu_vmx *vmx = to_vmx(vcpu);
9794
9795 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
9796 vmx->nested.preemption_timer_expired) {
9797 if (vmx->nested.nested_run_pending)
9798 return -EBUSY;
9799 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
9800 return 0;
9801 }
9802
9803 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
9804 if (vmx->nested.nested_run_pending ||
9805 vcpu->arch.interrupt.pending)
9806 return -EBUSY;
9807 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9808 NMI_VECTOR | INTR_TYPE_NMI_INTR |
9809 INTR_INFO_VALID_MASK, 0);
9810 /*
9811 * The NMI-triggered VM exit counts as injection:
9812 * clear this one and block further NMIs.
9813 */
9814 vcpu->arch.nmi_pending = 0;
9815 vmx_set_nmi_mask(vcpu, true);
9816 return 0;
9817 }
9818
9819 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
9820 nested_exit_on_intr(vcpu)) {
9821 if (vmx->nested.nested_run_pending)
9822 return -EBUSY;
9823 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
9824 return 0;
9825 }
9826
9827 return vmx_complete_nested_posted_interrupt(vcpu);
9828 }
9829
9830 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
9831 {
9832 ktime_t remaining =
9833 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
9834 u64 value;
9835
9836 if (ktime_to_ns(remaining) <= 0)
9837 return 0;
9838
9839 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
9840 do_div(value, 1000000);
9841 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9842 }
9843
9844 /*
9845 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
9846 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
9847 * and this function updates it to reflect the changes to the guest state while
9848 * L2 was running (and perhaps made some exits which were handled directly by L0
9849 * without going back to L1), and to reflect the exit reason.
9850 * Note that we do not have to copy here all VMCS fields, just those that
9851 * could have changed by the L2 guest or the exit - i.e., the guest-state and
9852 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
9853 * which already writes to vmcs12 directly.
9854 */
9855 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9856 u32 exit_reason, u32 exit_intr_info,
9857 unsigned long exit_qualification)
9858 {
9859 /* update guest state fields: */
9860 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
9861 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
9862
9863 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
9864 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
9865 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
9866
9867 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
9868 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
9869 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
9870 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
9871 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
9872 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
9873 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
9874 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
9875 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
9876 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
9877 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
9878 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
9879 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
9880 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
9881 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
9882 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
9883 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
9884 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
9885 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
9886 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
9887 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
9888 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
9889 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
9890 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
9891 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
9892 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
9893 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
9894 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
9895 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
9896 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
9897 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
9898 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
9899 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
9900 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
9901 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
9902 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
9903
9904 vmcs12->guest_interruptibility_info =
9905 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
9906 vmcs12->guest_pending_dbg_exceptions =
9907 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
9908 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
9909 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
9910 else
9911 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
9912
9913 if (nested_cpu_has_preemption_timer(vmcs12)) {
9914 if (vmcs12->vm_exit_controls &
9915 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
9916 vmcs12->vmx_preemption_timer_value =
9917 vmx_get_preemption_timer_value(vcpu);
9918 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
9919 }
9920
9921 /*
9922 * In some cases (usually, nested EPT), L2 is allowed to change its
9923 * own CR3 without exiting. If it has changed it, we must keep it.
9924 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
9925 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
9926 *
9927 * Additionally, restore L2's PDPTR to vmcs12.
9928 */
9929 if (enable_ept) {
9930 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
9931 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
9932 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
9933 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
9934 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
9935 }
9936
9937 if (nested_cpu_has_vid(vmcs12))
9938 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
9939
9940 vmcs12->vm_entry_controls =
9941 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
9942 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
9943
9944 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
9945 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
9946 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9947 }
9948
9949 /* TODO: These cannot have changed unless we have MSR bitmaps and
9950 * the relevant bit asks not to trap the change */
9951 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
9952 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
9953 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
9954 vmcs12->guest_ia32_efer = vcpu->arch.efer;
9955 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
9956 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
9957 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
9958 if (vmx_mpx_supported())
9959 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
9960 if (nested_cpu_has_xsaves(vmcs12))
9961 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
9962
9963 /* update exit information fields: */
9964
9965 vmcs12->vm_exit_reason = exit_reason;
9966 vmcs12->exit_qualification = exit_qualification;
9967
9968 vmcs12->vm_exit_intr_info = exit_intr_info;
9969 if ((vmcs12->vm_exit_intr_info &
9970 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
9971 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
9972 vmcs12->vm_exit_intr_error_code =
9973 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
9974 vmcs12->idt_vectoring_info_field = 0;
9975 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
9976 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9977
9978 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
9979 /* vm_entry_intr_info_field is cleared on exit. Emulate this
9980 * instead of reading the real value. */
9981 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
9982
9983 /*
9984 * Transfer the event that L0 or L1 may wanted to inject into
9985 * L2 to IDT_VECTORING_INFO_FIELD.
9986 */
9987 vmcs12_save_pending_event(vcpu, vmcs12);
9988 }
9989
9990 /*
9991 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
9992 * preserved above and would only end up incorrectly in L1.
9993 */
9994 vcpu->arch.nmi_injected = false;
9995 kvm_clear_exception_queue(vcpu);
9996 kvm_clear_interrupt_queue(vcpu);
9997 }
9998
9999 /*
10000 * A part of what we need to when the nested L2 guest exits and we want to
10001 * run its L1 parent, is to reset L1's guest state to the host state specified
10002 * in vmcs12.
10003 * This function is to be called not only on normal nested exit, but also on
10004 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10005 * Failures During or After Loading Guest State").
10006 * This function should be called when the active VMCS is L1's (vmcs01).
10007 */
10008 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10009 struct vmcs12 *vmcs12)
10010 {
10011 struct kvm_segment seg;
10012
10013 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10014 vcpu->arch.efer = vmcs12->host_ia32_efer;
10015 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10016 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10017 else
10018 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10019 vmx_set_efer(vcpu, vcpu->arch.efer);
10020
10021 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10022 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10023 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10024 /*
10025 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10026 * actually changed, because it depends on the current state of
10027 * fpu_active (which may have changed).
10028 * Note that vmx_set_cr0 refers to efer set above.
10029 */
10030 vmx_set_cr0(vcpu, vmcs12->host_cr0);
10031 /*
10032 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10033 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10034 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10035 */
10036 update_exception_bitmap(vcpu);
10037 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10038 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10039
10040 /*
10041 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10042 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10043 */
10044 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10045 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10046
10047 nested_ept_uninit_mmu_context(vcpu);
10048
10049 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10050 kvm_mmu_reset_context(vcpu);
10051
10052 if (!enable_ept)
10053 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10054
10055 if (enable_vpid) {
10056 /*
10057 * Trivially support vpid by letting L2s share their parent
10058 * L1's vpid. TODO: move to a more elaborate solution, giving
10059 * each L2 its own vpid and exposing the vpid feature to L1.
10060 */
10061 vmx_flush_tlb(vcpu);
10062 }
10063
10064
10065 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10066 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10067 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10068 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10069 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10070
10071 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10072 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10073 vmcs_write64(GUEST_BNDCFGS, 0);
10074
10075 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10076 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10077 vcpu->arch.pat = vmcs12->host_ia32_pat;
10078 }
10079 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10080 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10081 vmcs12->host_ia32_perf_global_ctrl);
10082
10083 /* Set L1 segment info according to Intel SDM
10084 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10085 seg = (struct kvm_segment) {
10086 .base = 0,
10087 .limit = 0xFFFFFFFF,
10088 .selector = vmcs12->host_cs_selector,
10089 .type = 11,
10090 .present = 1,
10091 .s = 1,
10092 .g = 1
10093 };
10094 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10095 seg.l = 1;
10096 else
10097 seg.db = 1;
10098 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10099 seg = (struct kvm_segment) {
10100 .base = 0,
10101 .limit = 0xFFFFFFFF,
10102 .type = 3,
10103 .present = 1,
10104 .s = 1,
10105 .db = 1,
10106 .g = 1
10107 };
10108 seg.selector = vmcs12->host_ds_selector;
10109 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10110 seg.selector = vmcs12->host_es_selector;
10111 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10112 seg.selector = vmcs12->host_ss_selector;
10113 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10114 seg.selector = vmcs12->host_fs_selector;
10115 seg.base = vmcs12->host_fs_base;
10116 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10117 seg.selector = vmcs12->host_gs_selector;
10118 seg.base = vmcs12->host_gs_base;
10119 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10120 seg = (struct kvm_segment) {
10121 .base = vmcs12->host_tr_base,
10122 .limit = 0x67,
10123 .selector = vmcs12->host_tr_selector,
10124 .type = 11,
10125 .present = 1
10126 };
10127 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10128
10129 kvm_set_dr(vcpu, 7, 0x400);
10130 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10131
10132 if (cpu_has_vmx_msr_bitmap())
10133 vmx_set_msr_bitmap(vcpu);
10134
10135 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10136 vmcs12->vm_exit_msr_load_count))
10137 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10138 }
10139
10140 /*
10141 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10142 * and modify vmcs12 to make it see what it would expect to see there if
10143 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10144 */
10145 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10146 u32 exit_intr_info,
10147 unsigned long exit_qualification)
10148 {
10149 struct vcpu_vmx *vmx = to_vmx(vcpu);
10150 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10151
10152 /* trying to cancel vmlaunch/vmresume is a bug */
10153 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10154
10155 leave_guest_mode(vcpu);
10156 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10157 exit_qualification);
10158
10159 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10160 vmcs12->vm_exit_msr_store_count))
10161 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10162
10163 vmx_load_vmcs01(vcpu);
10164
10165 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10166 && nested_exit_intr_ack_set(vcpu)) {
10167 int irq = kvm_cpu_get_interrupt(vcpu);
10168 WARN_ON(irq < 0);
10169 vmcs12->vm_exit_intr_info = irq |
10170 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10171 }
10172
10173 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10174 vmcs12->exit_qualification,
10175 vmcs12->idt_vectoring_info_field,
10176 vmcs12->vm_exit_intr_info,
10177 vmcs12->vm_exit_intr_error_code,
10178 KVM_ISA_VMX);
10179
10180 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10181 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10182 vmx_segment_cache_clear(vmx);
10183
10184 /* if no vmcs02 cache requested, remove the one we used */
10185 if (VMCS02_POOL_SIZE == 0)
10186 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10187
10188 load_vmcs12_host_state(vcpu, vmcs12);
10189
10190 /* Update TSC_OFFSET if TSC was changed while L2 ran */
10191 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10192
10193 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10194 vmx->host_rsp = 0;
10195
10196 /* Unpin physical memory we referred to in vmcs02 */
10197 if (vmx->nested.apic_access_page) {
10198 nested_release_page(vmx->nested.apic_access_page);
10199 vmx->nested.apic_access_page = NULL;
10200 }
10201 if (vmx->nested.virtual_apic_page) {
10202 nested_release_page(vmx->nested.virtual_apic_page);
10203 vmx->nested.virtual_apic_page = NULL;
10204 }
10205 if (vmx->nested.pi_desc_page) {
10206 kunmap(vmx->nested.pi_desc_page);
10207 nested_release_page(vmx->nested.pi_desc_page);
10208 vmx->nested.pi_desc_page = NULL;
10209 vmx->nested.pi_desc = NULL;
10210 }
10211
10212 /*
10213 * We are now running in L2, mmu_notifier will force to reload the
10214 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10215 */
10216 kvm_vcpu_reload_apic_access_page(vcpu);
10217
10218 /*
10219 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10220 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10221 * success or failure flag accordingly.
10222 */
10223 if (unlikely(vmx->fail)) {
10224 vmx->fail = 0;
10225 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10226 } else
10227 nested_vmx_succeed(vcpu);
10228 if (enable_shadow_vmcs)
10229 vmx->nested.sync_shadow_vmcs = true;
10230
10231 /* in case we halted in L2 */
10232 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10233 }
10234
10235 /*
10236 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10237 */
10238 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10239 {
10240 if (is_guest_mode(vcpu))
10241 nested_vmx_vmexit(vcpu, -1, 0, 0);
10242 free_nested(to_vmx(vcpu));
10243 }
10244
10245 /*
10246 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10247 * 23.7 "VM-entry failures during or after loading guest state" (this also
10248 * lists the acceptable exit-reason and exit-qualification parameters).
10249 * It should only be called before L2 actually succeeded to run, and when
10250 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10251 */
10252 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10253 struct vmcs12 *vmcs12,
10254 u32 reason, unsigned long qualification)
10255 {
10256 load_vmcs12_host_state(vcpu, vmcs12);
10257 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10258 vmcs12->exit_qualification = qualification;
10259 nested_vmx_succeed(vcpu);
10260 if (enable_shadow_vmcs)
10261 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10262 }
10263
10264 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10265 struct x86_instruction_info *info,
10266 enum x86_intercept_stage stage)
10267 {
10268 return X86EMUL_CONTINUE;
10269 }
10270
10271 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10272 {
10273 if (ple_gap)
10274 shrink_ple_window(vcpu);
10275 }
10276
10277 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10278 struct kvm_memory_slot *slot)
10279 {
10280 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10281 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10282 }
10283
10284 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10285 struct kvm_memory_slot *slot)
10286 {
10287 kvm_mmu_slot_set_dirty(kvm, slot);
10288 }
10289
10290 static void vmx_flush_log_dirty(struct kvm *kvm)
10291 {
10292 kvm_flush_pml_buffers(kvm);
10293 }
10294
10295 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10296 struct kvm_memory_slot *memslot,
10297 gfn_t offset, unsigned long mask)
10298 {
10299 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10300 }
10301
10302 static struct kvm_x86_ops vmx_x86_ops = {
10303 .cpu_has_kvm_support = cpu_has_kvm_support,
10304 .disabled_by_bios = vmx_disabled_by_bios,
10305 .hardware_setup = hardware_setup,
10306 .hardware_unsetup = hardware_unsetup,
10307 .check_processor_compatibility = vmx_check_processor_compat,
10308 .hardware_enable = hardware_enable,
10309 .hardware_disable = hardware_disable,
10310 .cpu_has_accelerated_tpr = report_flexpriority,
10311 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
10312
10313 .vcpu_create = vmx_create_vcpu,
10314 .vcpu_free = vmx_free_vcpu,
10315 .vcpu_reset = vmx_vcpu_reset,
10316
10317 .prepare_guest_switch = vmx_save_host_state,
10318 .vcpu_load = vmx_vcpu_load,
10319 .vcpu_put = vmx_vcpu_put,
10320
10321 .update_db_bp_intercept = update_exception_bitmap,
10322 .get_msr = vmx_get_msr,
10323 .set_msr = vmx_set_msr,
10324 .get_segment_base = vmx_get_segment_base,
10325 .get_segment = vmx_get_segment,
10326 .set_segment = vmx_set_segment,
10327 .get_cpl = vmx_get_cpl,
10328 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10329 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10330 .decache_cr3 = vmx_decache_cr3,
10331 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10332 .set_cr0 = vmx_set_cr0,
10333 .set_cr3 = vmx_set_cr3,
10334 .set_cr4 = vmx_set_cr4,
10335 .set_efer = vmx_set_efer,
10336 .get_idt = vmx_get_idt,
10337 .set_idt = vmx_set_idt,
10338 .get_gdt = vmx_get_gdt,
10339 .set_gdt = vmx_set_gdt,
10340 .get_dr6 = vmx_get_dr6,
10341 .set_dr6 = vmx_set_dr6,
10342 .set_dr7 = vmx_set_dr7,
10343 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10344 .cache_reg = vmx_cache_reg,
10345 .get_rflags = vmx_get_rflags,
10346 .set_rflags = vmx_set_rflags,
10347 .fpu_activate = vmx_fpu_activate,
10348 .fpu_deactivate = vmx_fpu_deactivate,
10349
10350 .tlb_flush = vmx_flush_tlb,
10351
10352 .run = vmx_vcpu_run,
10353 .handle_exit = vmx_handle_exit,
10354 .skip_emulated_instruction = skip_emulated_instruction,
10355 .set_interrupt_shadow = vmx_set_interrupt_shadow,
10356 .get_interrupt_shadow = vmx_get_interrupt_shadow,
10357 .patch_hypercall = vmx_patch_hypercall,
10358 .set_irq = vmx_inject_irq,
10359 .set_nmi = vmx_inject_nmi,
10360 .queue_exception = vmx_queue_exception,
10361 .cancel_injection = vmx_cancel_injection,
10362 .interrupt_allowed = vmx_interrupt_allowed,
10363 .nmi_allowed = vmx_nmi_allowed,
10364 .get_nmi_mask = vmx_get_nmi_mask,
10365 .set_nmi_mask = vmx_set_nmi_mask,
10366 .enable_nmi_window = enable_nmi_window,
10367 .enable_irq_window = enable_irq_window,
10368 .update_cr8_intercept = update_cr8_intercept,
10369 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10370 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10371 .cpu_uses_apicv = vmx_cpu_uses_apicv,
10372 .load_eoi_exitmap = vmx_load_eoi_exitmap,
10373 .hwapic_irr_update = vmx_hwapic_irr_update,
10374 .hwapic_isr_update = vmx_hwapic_isr_update,
10375 .sync_pir_to_irr = vmx_sync_pir_to_irr,
10376 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10377
10378 .set_tss_addr = vmx_set_tss_addr,
10379 .get_tdp_level = get_ept_level,
10380 .get_mt_mask = vmx_get_mt_mask,
10381
10382 .get_exit_info = vmx_get_exit_info,
10383
10384 .get_lpage_level = vmx_get_lpage_level,
10385
10386 .cpuid_update = vmx_cpuid_update,
10387
10388 .rdtscp_supported = vmx_rdtscp_supported,
10389 .invpcid_supported = vmx_invpcid_supported,
10390
10391 .set_supported_cpuid = vmx_set_supported_cpuid,
10392
10393 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
10394
10395 .set_tsc_khz = vmx_set_tsc_khz,
10396 .read_tsc_offset = vmx_read_tsc_offset,
10397 .write_tsc_offset = vmx_write_tsc_offset,
10398 .adjust_tsc_offset = vmx_adjust_tsc_offset,
10399 .compute_tsc_offset = vmx_compute_tsc_offset,
10400 .read_l1_tsc = vmx_read_l1_tsc,
10401
10402 .set_tdp_cr3 = vmx_set_cr3,
10403
10404 .check_intercept = vmx_check_intercept,
10405 .handle_external_intr = vmx_handle_external_intr,
10406 .mpx_supported = vmx_mpx_supported,
10407 .xsaves_supported = vmx_xsaves_supported,
10408
10409 .check_nested_events = vmx_check_nested_events,
10410
10411 .sched_in = vmx_sched_in,
10412
10413 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10414 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10415 .flush_log_dirty = vmx_flush_log_dirty,
10416 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
10417
10418 .pmu_ops = &intel_pmu_ops,
10419 };
10420
10421 static int __init vmx_init(void)
10422 {
10423 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10424 __alignof__(struct vcpu_vmx), THIS_MODULE);
10425 if (r)
10426 return r;
10427
10428 #ifdef CONFIG_KEXEC_CORE
10429 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10430 crash_vmclear_local_loaded_vmcss);
10431 #endif
10432
10433 return 0;
10434 }
10435
10436 static void __exit vmx_exit(void)
10437 {
10438 #ifdef CONFIG_KEXEC_CORE
10439 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
10440 synchronize_rcu();
10441 #endif
10442
10443 kvm_exit();
10444 }
10445
10446 module_init(vmx_init)
10447 module_exit(vmx_exit)