]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: x86: replace vm_has_apicv hook with cpu_uses_apicv
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
e495606d 22
edf88417 23#include <linux/kvm_host.h>
6aa8b732 24#include <linux/module.h>
9d8f549d 25#include <linux/kernel.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e8edc6e0 28#include <linux/sched.h>
c7addb90 29#include <linux/moduleparam.h>
e9bda3b3 30#include <linux/mod_devicetable.h>
af658dca 31#include <linux/trace_events.h>
5a0e3ad6 32#include <linux/slab.h>
cafd6659 33#include <linux/tboot.h>
f4124500 34#include <linux/hrtimer.h>
5fdbf976 35#include "kvm_cache_regs.h"
35920a35 36#include "x86.h"
e495606d 37
6aa8b732 38#include <asm/io.h>
3b3be0d1 39#include <asm/desc.h>
13673a90 40#include <asm/vmx.h>
6210e37b 41#include <asm/virtext.h>
a0861c02 42#include <asm/mce.h>
952f07ec 43#include <asm/fpu/internal.h>
d7cd9796 44#include <asm/perf_event.h>
81908bf4 45#include <asm/debugreg.h>
8f536b76 46#include <asm/kexec.h>
dab2087d 47#include <asm/apic.h>
6aa8b732 48
229456fc 49#include "trace.h"
25462f7f 50#include "pmu.h"
229456fc 51
4ecac3fd 52#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
53#define __ex_clear(x, reg) \
54 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 55
6aa8b732
AK
56MODULE_AUTHOR("Qumranet");
57MODULE_LICENSE("GPL");
58
e9bda3b3
JT
59static const struct x86_cpu_id vmx_cpu_id[] = {
60 X86_FEATURE_MATCH(X86_FEATURE_VMX),
61 {}
62};
63MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
64
476bc001 65static bool __read_mostly enable_vpid = 1;
736caefe 66module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 67
476bc001 68static bool __read_mostly flexpriority_enabled = 1;
736caefe 69module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 70
476bc001 71static bool __read_mostly enable_ept = 1;
736caefe 72module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 73
476bc001 74static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
75module_param_named(unrestricted_guest,
76 enable_unrestricted_guest, bool, S_IRUGO);
77
83c3a331
XH
78static bool __read_mostly enable_ept_ad_bits = 1;
79module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
80
a27685c3 81static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 82module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 83
476bc001 84static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
85module_param(vmm_exclusive, bool, S_IRUGO);
86
476bc001 87static bool __read_mostly fasteoi = 1;
58fbbf26
KT
88module_param(fasteoi, bool, S_IRUGO);
89
5a71785d 90static bool __read_mostly enable_apicv = 1;
01e439be 91module_param(enable_apicv, bool, S_IRUGO);
83d4c286 92
abc4fc58
AG
93static bool __read_mostly enable_shadow_vmcs = 1;
94module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
95/*
96 * If nested=1, nested virtualization is supported, i.e., guests may use
97 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
98 * use VMX instructions.
99 */
476bc001 100static bool __read_mostly nested = 0;
801d3424
NHE
101module_param(nested, bool, S_IRUGO);
102
20300099
WL
103static u64 __read_mostly host_xss;
104
843e4330
KH
105static bool __read_mostly enable_pml = 1;
106module_param_named(pml, enable_pml, bool, S_IRUGO);
107
5037878e
GN
108#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
109#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
110#define KVM_VM_CR0_ALWAYS_ON \
111 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
112#define KVM_CR4_GUEST_OWNED_BITS \
113 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 114 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 115
cdc0e244
AK
116#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
117#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
118
78ac8b47
AK
119#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
120
f4124500
JK
121#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
122
4b8d54f9
ZE
123/*
124 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
125 * ple_gap: upper bound on the amount of time between two successive
126 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 127 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
128 * ple_window: upper bound on the amount of time a guest is allowed to execute
129 * in a PAUSE loop. Tests indicate that most spinlocks are held for
130 * less than 2^12 cycles
131 * Time is measured based on a counter that runs at the same rate as the TSC,
132 * refer SDM volume 3b section 21.6.13 & 22.1.3.
133 */
b4a2d31d
RK
134#define KVM_VMX_DEFAULT_PLE_GAP 128
135#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
136#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
137#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
138#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
139 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
140
4b8d54f9
ZE
141static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
142module_param(ple_gap, int, S_IRUGO);
143
144static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
145module_param(ple_window, int, S_IRUGO);
146
b4a2d31d
RK
147/* Default doubles per-vcpu window every exit. */
148static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
149module_param(ple_window_grow, int, S_IRUGO);
150
151/* Default resets per-vcpu window every exit to ple_window. */
152static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
153module_param(ple_window_shrink, int, S_IRUGO);
154
155/* Default is to compute the maximum so we can never overflow. */
156static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
157static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
158module_param(ple_window_max, int, S_IRUGO);
159
83287ea4
AK
160extern const ulong vmx_return;
161
8bf00a52 162#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 163#define VMCS02_POOL_SIZE 1
61d2ef2c 164
a2fa3e9f
GH
165struct vmcs {
166 u32 revision_id;
167 u32 abort;
168 char data[0];
169};
170
d462b819
NHE
171/*
172 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
173 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
174 * loaded on this CPU (so we can clear them if the CPU goes down).
175 */
176struct loaded_vmcs {
177 struct vmcs *vmcs;
178 int cpu;
179 int launched;
180 struct list_head loaded_vmcss_on_cpu_link;
181};
182
26bb0981
AK
183struct shared_msr_entry {
184 unsigned index;
185 u64 data;
d5696725 186 u64 mask;
26bb0981
AK
187};
188
a9d30f33
NHE
189/*
190 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
191 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
192 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
193 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
194 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
195 * More than one of these structures may exist, if L1 runs multiple L2 guests.
196 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
197 * underlying hardware which will be used to run L2.
198 * This structure is packed to ensure that its layout is identical across
199 * machines (necessary for live migration).
200 * If there are changes in this struct, VMCS12_REVISION must be changed.
201 */
22bd0358 202typedef u64 natural_width;
a9d30f33
NHE
203struct __packed vmcs12 {
204 /* According to the Intel spec, a VMCS region must start with the
205 * following two fields. Then follow implementation-specific data.
206 */
207 u32 revision_id;
208 u32 abort;
22bd0358 209
27d6c865
NHE
210 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
211 u32 padding[7]; /* room for future expansion */
212
22bd0358
NHE
213 u64 io_bitmap_a;
214 u64 io_bitmap_b;
215 u64 msr_bitmap;
216 u64 vm_exit_msr_store_addr;
217 u64 vm_exit_msr_load_addr;
218 u64 vm_entry_msr_load_addr;
219 u64 tsc_offset;
220 u64 virtual_apic_page_addr;
221 u64 apic_access_addr;
705699a1 222 u64 posted_intr_desc_addr;
22bd0358 223 u64 ept_pointer;
608406e2
WV
224 u64 eoi_exit_bitmap0;
225 u64 eoi_exit_bitmap1;
226 u64 eoi_exit_bitmap2;
227 u64 eoi_exit_bitmap3;
81dc01f7 228 u64 xss_exit_bitmap;
22bd0358
NHE
229 u64 guest_physical_address;
230 u64 vmcs_link_pointer;
231 u64 guest_ia32_debugctl;
232 u64 guest_ia32_pat;
233 u64 guest_ia32_efer;
234 u64 guest_ia32_perf_global_ctrl;
235 u64 guest_pdptr0;
236 u64 guest_pdptr1;
237 u64 guest_pdptr2;
238 u64 guest_pdptr3;
36be0b9d 239 u64 guest_bndcfgs;
22bd0358
NHE
240 u64 host_ia32_pat;
241 u64 host_ia32_efer;
242 u64 host_ia32_perf_global_ctrl;
243 u64 padding64[8]; /* room for future expansion */
244 /*
245 * To allow migration of L1 (complete with its L2 guests) between
246 * machines of different natural widths (32 or 64 bit), we cannot have
247 * unsigned long fields with no explict size. We use u64 (aliased
248 * natural_width) instead. Luckily, x86 is little-endian.
249 */
250 natural_width cr0_guest_host_mask;
251 natural_width cr4_guest_host_mask;
252 natural_width cr0_read_shadow;
253 natural_width cr4_read_shadow;
254 natural_width cr3_target_value0;
255 natural_width cr3_target_value1;
256 natural_width cr3_target_value2;
257 natural_width cr3_target_value3;
258 natural_width exit_qualification;
259 natural_width guest_linear_address;
260 natural_width guest_cr0;
261 natural_width guest_cr3;
262 natural_width guest_cr4;
263 natural_width guest_es_base;
264 natural_width guest_cs_base;
265 natural_width guest_ss_base;
266 natural_width guest_ds_base;
267 natural_width guest_fs_base;
268 natural_width guest_gs_base;
269 natural_width guest_ldtr_base;
270 natural_width guest_tr_base;
271 natural_width guest_gdtr_base;
272 natural_width guest_idtr_base;
273 natural_width guest_dr7;
274 natural_width guest_rsp;
275 natural_width guest_rip;
276 natural_width guest_rflags;
277 natural_width guest_pending_dbg_exceptions;
278 natural_width guest_sysenter_esp;
279 natural_width guest_sysenter_eip;
280 natural_width host_cr0;
281 natural_width host_cr3;
282 natural_width host_cr4;
283 natural_width host_fs_base;
284 natural_width host_gs_base;
285 natural_width host_tr_base;
286 natural_width host_gdtr_base;
287 natural_width host_idtr_base;
288 natural_width host_ia32_sysenter_esp;
289 natural_width host_ia32_sysenter_eip;
290 natural_width host_rsp;
291 natural_width host_rip;
292 natural_width paddingl[8]; /* room for future expansion */
293 u32 pin_based_vm_exec_control;
294 u32 cpu_based_vm_exec_control;
295 u32 exception_bitmap;
296 u32 page_fault_error_code_mask;
297 u32 page_fault_error_code_match;
298 u32 cr3_target_count;
299 u32 vm_exit_controls;
300 u32 vm_exit_msr_store_count;
301 u32 vm_exit_msr_load_count;
302 u32 vm_entry_controls;
303 u32 vm_entry_msr_load_count;
304 u32 vm_entry_intr_info_field;
305 u32 vm_entry_exception_error_code;
306 u32 vm_entry_instruction_len;
307 u32 tpr_threshold;
308 u32 secondary_vm_exec_control;
309 u32 vm_instruction_error;
310 u32 vm_exit_reason;
311 u32 vm_exit_intr_info;
312 u32 vm_exit_intr_error_code;
313 u32 idt_vectoring_info_field;
314 u32 idt_vectoring_error_code;
315 u32 vm_exit_instruction_len;
316 u32 vmx_instruction_info;
317 u32 guest_es_limit;
318 u32 guest_cs_limit;
319 u32 guest_ss_limit;
320 u32 guest_ds_limit;
321 u32 guest_fs_limit;
322 u32 guest_gs_limit;
323 u32 guest_ldtr_limit;
324 u32 guest_tr_limit;
325 u32 guest_gdtr_limit;
326 u32 guest_idtr_limit;
327 u32 guest_es_ar_bytes;
328 u32 guest_cs_ar_bytes;
329 u32 guest_ss_ar_bytes;
330 u32 guest_ds_ar_bytes;
331 u32 guest_fs_ar_bytes;
332 u32 guest_gs_ar_bytes;
333 u32 guest_ldtr_ar_bytes;
334 u32 guest_tr_ar_bytes;
335 u32 guest_interruptibility_info;
336 u32 guest_activity_state;
337 u32 guest_sysenter_cs;
338 u32 host_ia32_sysenter_cs;
0238ea91
JK
339 u32 vmx_preemption_timer_value;
340 u32 padding32[7]; /* room for future expansion */
22bd0358 341 u16 virtual_processor_id;
705699a1 342 u16 posted_intr_nv;
22bd0358
NHE
343 u16 guest_es_selector;
344 u16 guest_cs_selector;
345 u16 guest_ss_selector;
346 u16 guest_ds_selector;
347 u16 guest_fs_selector;
348 u16 guest_gs_selector;
349 u16 guest_ldtr_selector;
350 u16 guest_tr_selector;
608406e2 351 u16 guest_intr_status;
22bd0358
NHE
352 u16 host_es_selector;
353 u16 host_cs_selector;
354 u16 host_ss_selector;
355 u16 host_ds_selector;
356 u16 host_fs_selector;
357 u16 host_gs_selector;
358 u16 host_tr_selector;
a9d30f33
NHE
359};
360
361/*
362 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
363 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
364 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
365 */
366#define VMCS12_REVISION 0x11e57ed0
367
368/*
369 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
370 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
371 * current implementation, 4K are reserved to avoid future complications.
372 */
373#define VMCS12_SIZE 0x1000
374
ff2f6fe9
NHE
375/* Used to remember the last vmcs02 used for some recently used vmcs12s */
376struct vmcs02_list {
377 struct list_head list;
378 gpa_t vmptr;
379 struct loaded_vmcs vmcs02;
380};
381
ec378aee
NHE
382/*
383 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
384 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
385 */
386struct nested_vmx {
387 /* Has the level1 guest done vmxon? */
388 bool vmxon;
3573e22c 389 gpa_t vmxon_ptr;
a9d30f33
NHE
390
391 /* The guest-physical address of the current VMCS L1 keeps for L2 */
392 gpa_t current_vmptr;
393 /* The host-usable pointer to the above */
394 struct page *current_vmcs12_page;
395 struct vmcs12 *current_vmcs12;
8de48833 396 struct vmcs *current_shadow_vmcs;
012f83cb
AG
397 /*
398 * Indicates if the shadow vmcs must be updated with the
399 * data hold by vmcs12
400 */
401 bool sync_shadow_vmcs;
ff2f6fe9
NHE
402
403 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
404 struct list_head vmcs02_pool;
405 int vmcs02_num;
fe3ef05c 406 u64 vmcs01_tsc_offset;
644d711a
NHE
407 /* L2 must run next, and mustn't decide to exit to L1. */
408 bool nested_run_pending;
fe3ef05c
NHE
409 /*
410 * Guest pages referred to in vmcs02 with host-physical pointers, so
411 * we must keep them pinned while L2 runs.
412 */
413 struct page *apic_access_page;
a7c0b07d 414 struct page *virtual_apic_page;
705699a1
WV
415 struct page *pi_desc_page;
416 struct pi_desc *pi_desc;
417 bool pi_pending;
418 u16 posted_intr_nv;
b3897a49 419 u64 msr_ia32_feature_control;
f4124500
JK
420
421 struct hrtimer preemption_timer;
422 bool preemption_timer_expired;
2996fca0
JK
423
424 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
425 u64 vmcs01_debugctl;
b9c237bb
WV
426
427 u32 nested_vmx_procbased_ctls_low;
428 u32 nested_vmx_procbased_ctls_high;
429 u32 nested_vmx_true_procbased_ctls_low;
430 u32 nested_vmx_secondary_ctls_low;
431 u32 nested_vmx_secondary_ctls_high;
432 u32 nested_vmx_pinbased_ctls_low;
433 u32 nested_vmx_pinbased_ctls_high;
434 u32 nested_vmx_exit_ctls_low;
435 u32 nested_vmx_exit_ctls_high;
436 u32 nested_vmx_true_exit_ctls_low;
437 u32 nested_vmx_entry_ctls_low;
438 u32 nested_vmx_entry_ctls_high;
439 u32 nested_vmx_true_entry_ctls_low;
440 u32 nested_vmx_misc_low;
441 u32 nested_vmx_misc_high;
442 u32 nested_vmx_ept_caps;
ec378aee
NHE
443};
444
01e439be
YZ
445#define POSTED_INTR_ON 0
446/* Posted-Interrupt Descriptor */
447struct pi_desc {
448 u32 pir[8]; /* Posted interrupt requested */
449 u32 control; /* bit 0 of control is outstanding notification bit */
450 u32 rsvd[7];
451} __aligned(64);
452
a20ed54d
YZ
453static bool pi_test_and_set_on(struct pi_desc *pi_desc)
454{
455 return test_and_set_bit(POSTED_INTR_ON,
456 (unsigned long *)&pi_desc->control);
457}
458
459static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
460{
461 return test_and_clear_bit(POSTED_INTR_ON,
462 (unsigned long *)&pi_desc->control);
463}
464
465static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
466{
467 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
468}
469
a2fa3e9f 470struct vcpu_vmx {
fb3f0f51 471 struct kvm_vcpu vcpu;
313dbd49 472 unsigned long host_rsp;
29bd8a78 473 u8 fail;
9d58b931 474 bool nmi_known_unmasked;
51aa01d1 475 u32 exit_intr_info;
1155f76a 476 u32 idt_vectoring_info;
6de12732 477 ulong rflags;
26bb0981 478 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
479 int nmsrs;
480 int save_nmsrs;
a547c6db 481 unsigned long host_idt_base;
a2fa3e9f 482#ifdef CONFIG_X86_64
44ea2b17
AK
483 u64 msr_host_kernel_gs_base;
484 u64 msr_guest_kernel_gs_base;
a2fa3e9f 485#endif
2961e876
GN
486 u32 vm_entry_controls_shadow;
487 u32 vm_exit_controls_shadow;
d462b819
NHE
488 /*
489 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
490 * non-nested (L1) guest, it always points to vmcs01. For a nested
491 * guest (L2), it points to a different VMCS.
492 */
493 struct loaded_vmcs vmcs01;
494 struct loaded_vmcs *loaded_vmcs;
495 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
496 struct msr_autoload {
497 unsigned nr;
498 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
499 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
500 } msr_autoload;
a2fa3e9f
GH
501 struct {
502 int loaded;
503 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
504#ifdef CONFIG_X86_64
505 u16 ds_sel, es_sel;
506#endif
152d3f2f
LV
507 int gs_ldt_reload_needed;
508 int fs_reload_needed;
da8999d3 509 u64 msr_host_bndcfgs;
d974baa3 510 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 511 } host_state;
9c8cba37 512 struct {
7ffd92c5 513 int vm86_active;
78ac8b47 514 ulong save_rflags;
f5f7b2fe
AK
515 struct kvm_segment segs[8];
516 } rmode;
517 struct {
518 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
519 struct kvm_save_segment {
520 u16 selector;
521 unsigned long base;
522 u32 limit;
523 u32 ar;
f5f7b2fe 524 } seg[8];
2fb92db1 525 } segment_cache;
2384d2b3 526 int vpid;
04fa4d32 527 bool emulation_required;
3b86cd99
JK
528
529 /* Support for vnmi-less CPUs */
530 int soft_vnmi_blocked;
531 ktime_t entry_time;
532 s64 vnmi_blocked_time;
a0861c02 533 u32 exit_reason;
4e47c7a6
SY
534
535 bool rdtscp_enabled;
ec378aee 536
01e439be
YZ
537 /* Posted interrupt descriptor */
538 struct pi_desc pi_desc;
539
ec378aee
NHE
540 /* Support for a guest hypervisor (nested VMX) */
541 struct nested_vmx nested;
a7653ecd
RK
542
543 /* Dynamic PLE window. */
544 int ple_window;
545 bool ple_window_dirty;
843e4330
KH
546
547 /* Support for PML */
548#define PML_ENTITY_NUM 512
549 struct page *pml_pg;
a2fa3e9f
GH
550};
551
2fb92db1
AK
552enum segment_cache_field {
553 SEG_FIELD_SEL = 0,
554 SEG_FIELD_BASE = 1,
555 SEG_FIELD_LIMIT = 2,
556 SEG_FIELD_AR = 3,
557
558 SEG_FIELD_NR = 4
559};
560
a2fa3e9f
GH
561static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
562{
fb3f0f51 563 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
564}
565
22bd0358
NHE
566#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
567#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
568#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
569 [number##_HIGH] = VMCS12_OFFSET(name)+4
570
4607c2d7 571
fe2b201b 572static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
573 /*
574 * We do NOT shadow fields that are modified when L0
575 * traps and emulates any vmx instruction (e.g. VMPTRLD,
576 * VMXON...) executed by L1.
577 * For example, VM_INSTRUCTION_ERROR is read
578 * by L1 if a vmx instruction fails (part of the error path).
579 * Note the code assumes this logic. If for some reason
580 * we start shadowing these fields then we need to
581 * force a shadow sync when L0 emulates vmx instructions
582 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
583 * by nested_vmx_failValid)
584 */
585 VM_EXIT_REASON,
586 VM_EXIT_INTR_INFO,
587 VM_EXIT_INSTRUCTION_LEN,
588 IDT_VECTORING_INFO_FIELD,
589 IDT_VECTORING_ERROR_CODE,
590 VM_EXIT_INTR_ERROR_CODE,
591 EXIT_QUALIFICATION,
592 GUEST_LINEAR_ADDRESS,
593 GUEST_PHYSICAL_ADDRESS
594};
fe2b201b 595static int max_shadow_read_only_fields =
4607c2d7
AG
596 ARRAY_SIZE(shadow_read_only_fields);
597
fe2b201b 598static unsigned long shadow_read_write_fields[] = {
a7c0b07d 599 TPR_THRESHOLD,
4607c2d7
AG
600 GUEST_RIP,
601 GUEST_RSP,
602 GUEST_CR0,
603 GUEST_CR3,
604 GUEST_CR4,
605 GUEST_INTERRUPTIBILITY_INFO,
606 GUEST_RFLAGS,
607 GUEST_CS_SELECTOR,
608 GUEST_CS_AR_BYTES,
609 GUEST_CS_LIMIT,
610 GUEST_CS_BASE,
611 GUEST_ES_BASE,
36be0b9d 612 GUEST_BNDCFGS,
4607c2d7
AG
613 CR0_GUEST_HOST_MASK,
614 CR0_READ_SHADOW,
615 CR4_READ_SHADOW,
616 TSC_OFFSET,
617 EXCEPTION_BITMAP,
618 CPU_BASED_VM_EXEC_CONTROL,
619 VM_ENTRY_EXCEPTION_ERROR_CODE,
620 VM_ENTRY_INTR_INFO_FIELD,
621 VM_ENTRY_INSTRUCTION_LEN,
622 VM_ENTRY_EXCEPTION_ERROR_CODE,
623 HOST_FS_BASE,
624 HOST_GS_BASE,
625 HOST_FS_SELECTOR,
626 HOST_GS_SELECTOR
627};
fe2b201b 628static int max_shadow_read_write_fields =
4607c2d7
AG
629 ARRAY_SIZE(shadow_read_write_fields);
630
772e0318 631static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 632 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 633 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
634 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
635 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
636 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
637 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
638 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
639 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
640 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
641 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 642 FIELD(GUEST_INTR_STATUS, guest_intr_status),
22bd0358
NHE
643 FIELD(HOST_ES_SELECTOR, host_es_selector),
644 FIELD(HOST_CS_SELECTOR, host_cs_selector),
645 FIELD(HOST_SS_SELECTOR, host_ss_selector),
646 FIELD(HOST_DS_SELECTOR, host_ds_selector),
647 FIELD(HOST_FS_SELECTOR, host_fs_selector),
648 FIELD(HOST_GS_SELECTOR, host_gs_selector),
649 FIELD(HOST_TR_SELECTOR, host_tr_selector),
650 FIELD64(IO_BITMAP_A, io_bitmap_a),
651 FIELD64(IO_BITMAP_B, io_bitmap_b),
652 FIELD64(MSR_BITMAP, msr_bitmap),
653 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
654 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
655 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
656 FIELD64(TSC_OFFSET, tsc_offset),
657 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
658 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 659 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
22bd0358 660 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
661 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
662 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
663 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
664 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
81dc01f7 665 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
666 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
667 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
668 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
669 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
670 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
671 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
672 FIELD64(GUEST_PDPTR0, guest_pdptr0),
673 FIELD64(GUEST_PDPTR1, guest_pdptr1),
674 FIELD64(GUEST_PDPTR2, guest_pdptr2),
675 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 676 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
677 FIELD64(HOST_IA32_PAT, host_ia32_pat),
678 FIELD64(HOST_IA32_EFER, host_ia32_efer),
679 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
680 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
681 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
682 FIELD(EXCEPTION_BITMAP, exception_bitmap),
683 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
684 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
685 FIELD(CR3_TARGET_COUNT, cr3_target_count),
686 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
687 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
688 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
689 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
690 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
691 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
692 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
693 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
694 FIELD(TPR_THRESHOLD, tpr_threshold),
695 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
696 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
697 FIELD(VM_EXIT_REASON, vm_exit_reason),
698 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
699 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
700 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
701 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
702 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
703 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
704 FIELD(GUEST_ES_LIMIT, guest_es_limit),
705 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
706 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
707 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
708 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
709 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
710 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
711 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
712 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
713 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
714 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
715 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
716 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
717 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
718 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
719 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
720 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
721 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
722 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
723 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
724 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
725 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 726 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
727 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
728 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
729 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
730 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
731 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
732 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
733 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
734 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
735 FIELD(EXIT_QUALIFICATION, exit_qualification),
736 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
737 FIELD(GUEST_CR0, guest_cr0),
738 FIELD(GUEST_CR3, guest_cr3),
739 FIELD(GUEST_CR4, guest_cr4),
740 FIELD(GUEST_ES_BASE, guest_es_base),
741 FIELD(GUEST_CS_BASE, guest_cs_base),
742 FIELD(GUEST_SS_BASE, guest_ss_base),
743 FIELD(GUEST_DS_BASE, guest_ds_base),
744 FIELD(GUEST_FS_BASE, guest_fs_base),
745 FIELD(GUEST_GS_BASE, guest_gs_base),
746 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
747 FIELD(GUEST_TR_BASE, guest_tr_base),
748 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
749 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
750 FIELD(GUEST_DR7, guest_dr7),
751 FIELD(GUEST_RSP, guest_rsp),
752 FIELD(GUEST_RIP, guest_rip),
753 FIELD(GUEST_RFLAGS, guest_rflags),
754 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
755 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
756 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
757 FIELD(HOST_CR0, host_cr0),
758 FIELD(HOST_CR3, host_cr3),
759 FIELD(HOST_CR4, host_cr4),
760 FIELD(HOST_FS_BASE, host_fs_base),
761 FIELD(HOST_GS_BASE, host_gs_base),
762 FIELD(HOST_TR_BASE, host_tr_base),
763 FIELD(HOST_GDTR_BASE, host_gdtr_base),
764 FIELD(HOST_IDTR_BASE, host_idtr_base),
765 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
766 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
767 FIELD(HOST_RSP, host_rsp),
768 FIELD(HOST_RIP, host_rip),
769};
22bd0358
NHE
770
771static inline short vmcs_field_to_offset(unsigned long field)
772{
a2ae9df7
PB
773 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
774
775 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
776 vmcs_field_to_offset_table[field] == 0)
777 return -ENOENT;
778
22bd0358
NHE
779 return vmcs_field_to_offset_table[field];
780}
781
a9d30f33
NHE
782static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
783{
784 return to_vmx(vcpu)->nested.current_vmcs12;
785}
786
787static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
788{
54bf36aa 789 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
32cad84f 790 if (is_error_page(page))
a9d30f33 791 return NULL;
32cad84f 792
a9d30f33
NHE
793 return page;
794}
795
796static void nested_release_page(struct page *page)
797{
798 kvm_release_page_dirty(page);
799}
800
801static void nested_release_page_clean(struct page *page)
802{
803 kvm_release_page_clean(page);
804}
805
bfd0a56b 806static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
4e1096d2 807static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
808static void kvm_cpu_vmxon(u64 addr);
809static void kvm_cpu_vmxoff(void);
93c4adc7 810static bool vmx_mpx_supported(void);
f53cd63c 811static bool vmx_xsaves_supported(void);
705699a1 812static int vmx_vm_has_apicv(struct kvm *kvm);
d50ab6c1 813static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu);
776e58ea 814static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
815static void vmx_set_segment(struct kvm_vcpu *vcpu,
816 struct kvm_segment *var, int seg);
817static void vmx_get_segment(struct kvm_vcpu *vcpu,
818 struct kvm_segment *var, int seg);
d99e4152
GN
819static bool guest_state_valid(struct kvm_vcpu *vcpu);
820static u32 vmx_segment_access_rights(struct kvm_segment *var);
a20ed54d 821static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
c3114420 822static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 823static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 824static int alloc_identity_pagetable(struct kvm *kvm);
75880a01 825
6aa8b732
AK
826static DEFINE_PER_CPU(struct vmcs *, vmxarea);
827static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
828/*
829 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
830 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
831 */
832static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 833static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 834
3e7c73e9
AK
835static unsigned long *vmx_io_bitmap_a;
836static unsigned long *vmx_io_bitmap_b;
5897297b
AK
837static unsigned long *vmx_msr_bitmap_legacy;
838static unsigned long *vmx_msr_bitmap_longmode;
8d14695f
YZ
839static unsigned long *vmx_msr_bitmap_legacy_x2apic;
840static unsigned long *vmx_msr_bitmap_longmode_x2apic;
3af18d9c 841static unsigned long *vmx_msr_bitmap_nested;
4607c2d7
AG
842static unsigned long *vmx_vmread_bitmap;
843static unsigned long *vmx_vmwrite_bitmap;
fdef3ad1 844
110312c8 845static bool cpu_has_load_ia32_efer;
8bf00a52 846static bool cpu_has_load_perf_global_ctrl;
110312c8 847
2384d2b3
SY
848static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
849static DEFINE_SPINLOCK(vmx_vpid_lock);
850
1c3d14fe 851static struct vmcs_config {
6aa8b732
AK
852 int size;
853 int order;
854 u32 revision_id;
1c3d14fe
YS
855 u32 pin_based_exec_ctrl;
856 u32 cpu_based_exec_ctrl;
f78e0e2e 857 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
858 u32 vmexit_ctrl;
859 u32 vmentry_ctrl;
860} vmcs_config;
6aa8b732 861
efff9e53 862static struct vmx_capability {
d56f546d
SY
863 u32 ept;
864 u32 vpid;
865} vmx_capability;
866
6aa8b732
AK
867#define VMX_SEGMENT_FIELD(seg) \
868 [VCPU_SREG_##seg] = { \
869 .selector = GUEST_##seg##_SELECTOR, \
870 .base = GUEST_##seg##_BASE, \
871 .limit = GUEST_##seg##_LIMIT, \
872 .ar_bytes = GUEST_##seg##_AR_BYTES, \
873 }
874
772e0318 875static const struct kvm_vmx_segment_field {
6aa8b732
AK
876 unsigned selector;
877 unsigned base;
878 unsigned limit;
879 unsigned ar_bytes;
880} kvm_vmx_segment_fields[] = {
881 VMX_SEGMENT_FIELD(CS),
882 VMX_SEGMENT_FIELD(DS),
883 VMX_SEGMENT_FIELD(ES),
884 VMX_SEGMENT_FIELD(FS),
885 VMX_SEGMENT_FIELD(GS),
886 VMX_SEGMENT_FIELD(SS),
887 VMX_SEGMENT_FIELD(TR),
888 VMX_SEGMENT_FIELD(LDTR),
889};
890
26bb0981
AK
891static u64 host_efer;
892
6de4f3ad
AK
893static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
894
4d56c8a7 895/*
8c06585d 896 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
897 * away by decrementing the array size.
898 */
6aa8b732 899static const u32 vmx_msr_index[] = {
05b3e0c2 900#ifdef CONFIG_X86_64
44ea2b17 901 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 902#endif
8c06585d 903 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 904};
6aa8b732 905
31299944 906static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
907{
908 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
909 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 910 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
911}
912
31299944 913static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
914{
915 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
916 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 917 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
918}
919
31299944 920static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
921{
922 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
923 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 924 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
925}
926
31299944 927static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
928{
929 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
930 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
931}
932
31299944 933static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
934{
935 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
936 INTR_INFO_VALID_MASK)) ==
937 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
938}
939
31299944 940static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 941{
04547156 942 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
943}
944
31299944 945static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 946{
04547156 947 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
948}
949
31299944 950static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 951{
04547156 952 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
953}
954
31299944 955static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 956{
04547156
SY
957 return vmcs_config.cpu_based_exec_ctrl &
958 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
959}
960
774ead3a 961static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 962{
04547156
SY
963 return vmcs_config.cpu_based_2nd_exec_ctrl &
964 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
965}
966
8d14695f
YZ
967static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
968{
969 return vmcs_config.cpu_based_2nd_exec_ctrl &
970 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
971}
972
83d4c286
YZ
973static inline bool cpu_has_vmx_apic_register_virt(void)
974{
975 return vmcs_config.cpu_based_2nd_exec_ctrl &
976 SECONDARY_EXEC_APIC_REGISTER_VIRT;
977}
978
c7c9c56c
YZ
979static inline bool cpu_has_vmx_virtual_intr_delivery(void)
980{
981 return vmcs_config.cpu_based_2nd_exec_ctrl &
982 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
983}
984
01e439be
YZ
985static inline bool cpu_has_vmx_posted_intr(void)
986{
987 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
988}
989
990static inline bool cpu_has_vmx_apicv(void)
991{
992 return cpu_has_vmx_apic_register_virt() &&
993 cpu_has_vmx_virtual_intr_delivery() &&
994 cpu_has_vmx_posted_intr();
995}
996
04547156
SY
997static inline bool cpu_has_vmx_flexpriority(void)
998{
999 return cpu_has_vmx_tpr_shadow() &&
1000 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1001}
1002
e799794e
MT
1003static inline bool cpu_has_vmx_ept_execute_only(void)
1004{
31299944 1005 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1006}
1007
e799794e
MT
1008static inline bool cpu_has_vmx_ept_2m_page(void)
1009{
31299944 1010 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1011}
1012
878403b7
SY
1013static inline bool cpu_has_vmx_ept_1g_page(void)
1014{
31299944 1015 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1016}
1017
4bc9b982
SY
1018static inline bool cpu_has_vmx_ept_4levels(void)
1019{
1020 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1021}
1022
83c3a331
XH
1023static inline bool cpu_has_vmx_ept_ad_bits(void)
1024{
1025 return vmx_capability.ept & VMX_EPT_AD_BIT;
1026}
1027
31299944 1028static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1029{
31299944 1030 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1031}
1032
31299944 1033static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1034{
31299944 1035 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1036}
1037
518c8aee
GJ
1038static inline bool cpu_has_vmx_invvpid_single(void)
1039{
1040 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1041}
1042
b9d762fa
GJ
1043static inline bool cpu_has_vmx_invvpid_global(void)
1044{
1045 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1046}
1047
31299944 1048static inline bool cpu_has_vmx_ept(void)
d56f546d 1049{
04547156
SY
1050 return vmcs_config.cpu_based_2nd_exec_ctrl &
1051 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1052}
1053
31299944 1054static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1055{
1056 return vmcs_config.cpu_based_2nd_exec_ctrl &
1057 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1058}
1059
31299944 1060static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1061{
1062 return vmcs_config.cpu_based_2nd_exec_ctrl &
1063 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1064}
1065
31299944 1066static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 1067{
6d3e435e 1068 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
1069}
1070
31299944 1071static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1072{
04547156
SY
1073 return vmcs_config.cpu_based_2nd_exec_ctrl &
1074 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1075}
1076
31299944 1077static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1078{
1079 return vmcs_config.cpu_based_2nd_exec_ctrl &
1080 SECONDARY_EXEC_RDTSCP;
1081}
1082
ad756a16
MJ
1083static inline bool cpu_has_vmx_invpcid(void)
1084{
1085 return vmcs_config.cpu_based_2nd_exec_ctrl &
1086 SECONDARY_EXEC_ENABLE_INVPCID;
1087}
1088
31299944 1089static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
1090{
1091 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1092}
1093
f5f48ee1
SY
1094static inline bool cpu_has_vmx_wbinvd_exit(void)
1095{
1096 return vmcs_config.cpu_based_2nd_exec_ctrl &
1097 SECONDARY_EXEC_WBINVD_EXITING;
1098}
1099
abc4fc58
AG
1100static inline bool cpu_has_vmx_shadow_vmcs(void)
1101{
1102 u64 vmx_msr;
1103 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1104 /* check if the cpu supports writing r/o exit information fields */
1105 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1106 return false;
1107
1108 return vmcs_config.cpu_based_2nd_exec_ctrl &
1109 SECONDARY_EXEC_SHADOW_VMCS;
1110}
1111
843e4330
KH
1112static inline bool cpu_has_vmx_pml(void)
1113{
1114 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1115}
1116
04547156
SY
1117static inline bool report_flexpriority(void)
1118{
1119 return flexpriority_enabled;
1120}
1121
fe3ef05c
NHE
1122static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1123{
1124 return vmcs12->cpu_based_vm_exec_control & bit;
1125}
1126
1127static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1128{
1129 return (vmcs12->cpu_based_vm_exec_control &
1130 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1131 (vmcs12->secondary_vm_exec_control & bit);
1132}
1133
f5c4368f 1134static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1135{
1136 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1137}
1138
f4124500
JK
1139static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1140{
1141 return vmcs12->pin_based_vm_exec_control &
1142 PIN_BASED_VMX_PREEMPTION_TIMER;
1143}
1144
155a97a3
NHE
1145static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1146{
1147 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1148}
1149
81dc01f7
WL
1150static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1151{
1152 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1153 vmx_xsaves_supported();
1154}
1155
f2b93280
WV
1156static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1157{
1158 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1159}
1160
82f0dd4b
WV
1161static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1162{
1163 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1164}
1165
608406e2
WV
1166static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1167{
1168 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1169}
1170
705699a1
WV
1171static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1172{
1173 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1174}
1175
644d711a
NHE
1176static inline bool is_exception(u32 intr_info)
1177{
1178 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1179 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1180}
1181
533558bc
JK
1182static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1183 u32 exit_intr_info,
1184 unsigned long exit_qualification);
7c177938
NHE
1185static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1186 struct vmcs12 *vmcs12,
1187 u32 reason, unsigned long qualification);
1188
8b9cf98c 1189static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1190{
1191 int i;
1192
a2fa3e9f 1193 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1194 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1195 return i;
1196 return -1;
1197}
1198
2384d2b3
SY
1199static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1200{
1201 struct {
1202 u64 vpid : 16;
1203 u64 rsvd : 48;
1204 u64 gva;
1205 } operand = { vpid, 0, gva };
1206
4ecac3fd 1207 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1208 /* CF==1 or ZF==1 --> rc = -1 */
1209 "; ja 1f ; ud2 ; 1:"
1210 : : "a"(&operand), "c"(ext) : "cc", "memory");
1211}
1212
1439442c
SY
1213static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1214{
1215 struct {
1216 u64 eptp, gpa;
1217 } operand = {eptp, gpa};
1218
4ecac3fd 1219 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1220 /* CF==1 or ZF==1 --> rc = -1 */
1221 "; ja 1f ; ud2 ; 1:\n"
1222 : : "a" (&operand), "c" (ext) : "cc", "memory");
1223}
1224
26bb0981 1225static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1226{
1227 int i;
1228
8b9cf98c 1229 i = __find_msr_index(vmx, msr);
a75beee6 1230 if (i >= 0)
a2fa3e9f 1231 return &vmx->guest_msrs[i];
8b6d44c7 1232 return NULL;
7725f0ba
AK
1233}
1234
6aa8b732
AK
1235static void vmcs_clear(struct vmcs *vmcs)
1236{
1237 u64 phys_addr = __pa(vmcs);
1238 u8 error;
1239
4ecac3fd 1240 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1241 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1242 : "cc", "memory");
1243 if (error)
1244 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1245 vmcs, phys_addr);
1246}
1247
d462b819
NHE
1248static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1249{
1250 vmcs_clear(loaded_vmcs->vmcs);
1251 loaded_vmcs->cpu = -1;
1252 loaded_vmcs->launched = 0;
1253}
1254
7725b894
DX
1255static void vmcs_load(struct vmcs *vmcs)
1256{
1257 u64 phys_addr = __pa(vmcs);
1258 u8 error;
1259
1260 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1261 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1262 : "cc", "memory");
1263 if (error)
2844d849 1264 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1265 vmcs, phys_addr);
1266}
1267
2965faa5 1268#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1269/*
1270 * This bitmap is used to indicate whether the vmclear
1271 * operation is enabled on all cpus. All disabled by
1272 * default.
1273 */
1274static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1275
1276static inline void crash_enable_local_vmclear(int cpu)
1277{
1278 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1279}
1280
1281static inline void crash_disable_local_vmclear(int cpu)
1282{
1283 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1284}
1285
1286static inline int crash_local_vmclear_enabled(int cpu)
1287{
1288 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1289}
1290
1291static void crash_vmclear_local_loaded_vmcss(void)
1292{
1293 int cpu = raw_smp_processor_id();
1294 struct loaded_vmcs *v;
1295
1296 if (!crash_local_vmclear_enabled(cpu))
1297 return;
1298
1299 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1300 loaded_vmcss_on_cpu_link)
1301 vmcs_clear(v->vmcs);
1302}
1303#else
1304static inline void crash_enable_local_vmclear(int cpu) { }
1305static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1306#endif /* CONFIG_KEXEC_CORE */
8f536b76 1307
d462b819 1308static void __loaded_vmcs_clear(void *arg)
6aa8b732 1309{
d462b819 1310 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1311 int cpu = raw_smp_processor_id();
6aa8b732 1312
d462b819
NHE
1313 if (loaded_vmcs->cpu != cpu)
1314 return; /* vcpu migration can race with cpu offline */
1315 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1316 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1317 crash_disable_local_vmclear(cpu);
d462b819 1318 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1319
1320 /*
1321 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1322 * is before setting loaded_vmcs->vcpu to -1 which is done in
1323 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1324 * then adds the vmcs into percpu list before it is deleted.
1325 */
1326 smp_wmb();
1327
d462b819 1328 loaded_vmcs_init(loaded_vmcs);
8f536b76 1329 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1330}
1331
d462b819 1332static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1333{
e6c7d321
XG
1334 int cpu = loaded_vmcs->cpu;
1335
1336 if (cpu != -1)
1337 smp_call_function_single(cpu,
1338 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1339}
1340
1760dd49 1341static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
1342{
1343 if (vmx->vpid == 0)
1344 return;
1345
518c8aee
GJ
1346 if (cpu_has_vmx_invvpid_single())
1347 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
1348}
1349
b9d762fa
GJ
1350static inline void vpid_sync_vcpu_global(void)
1351{
1352 if (cpu_has_vmx_invvpid_global())
1353 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1354}
1355
1356static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1357{
1358 if (cpu_has_vmx_invvpid_single())
1760dd49 1359 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1360 else
1361 vpid_sync_vcpu_global();
1362}
1363
1439442c
SY
1364static inline void ept_sync_global(void)
1365{
1366 if (cpu_has_vmx_invept_global())
1367 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1368}
1369
1370static inline void ept_sync_context(u64 eptp)
1371{
089d034e 1372 if (enable_ept) {
1439442c
SY
1373 if (cpu_has_vmx_invept_context())
1374 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1375 else
1376 ept_sync_global();
1377 }
1378}
1379
96304217 1380static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1381{
5e520e62 1382 unsigned long value;
6aa8b732 1383
5e520e62
AK
1384 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1385 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1386 return value;
1387}
1388
96304217 1389static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1390{
1391 return vmcs_readl(field);
1392}
1393
96304217 1394static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1395{
1396 return vmcs_readl(field);
1397}
1398
96304217 1399static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1400{
05b3e0c2 1401#ifdef CONFIG_X86_64
6aa8b732
AK
1402 return vmcs_readl(field);
1403#else
1404 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1405#endif
1406}
1407
e52de1b8
AK
1408static noinline void vmwrite_error(unsigned long field, unsigned long value)
1409{
1410 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1411 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1412 dump_stack();
1413}
1414
6aa8b732
AK
1415static void vmcs_writel(unsigned long field, unsigned long value)
1416{
1417 u8 error;
1418
4ecac3fd 1419 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1420 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1421 if (unlikely(error))
1422 vmwrite_error(field, value);
6aa8b732
AK
1423}
1424
1425static void vmcs_write16(unsigned long field, u16 value)
1426{
1427 vmcs_writel(field, value);
1428}
1429
1430static void vmcs_write32(unsigned long field, u32 value)
1431{
1432 vmcs_writel(field, value);
1433}
1434
1435static void vmcs_write64(unsigned long field, u64 value)
1436{
6aa8b732 1437 vmcs_writel(field, value);
7682f2d0 1438#ifndef CONFIG_X86_64
6aa8b732
AK
1439 asm volatile ("");
1440 vmcs_writel(field+1, value >> 32);
1441#endif
1442}
1443
2ab455cc
AL
1444static void vmcs_clear_bits(unsigned long field, u32 mask)
1445{
1446 vmcs_writel(field, vmcs_readl(field) & ~mask);
1447}
1448
1449static void vmcs_set_bits(unsigned long field, u32 mask)
1450{
1451 vmcs_writel(field, vmcs_readl(field) | mask);
1452}
1453
2961e876
GN
1454static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1455{
1456 vmcs_write32(VM_ENTRY_CONTROLS, val);
1457 vmx->vm_entry_controls_shadow = val;
1458}
1459
1460static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1461{
1462 if (vmx->vm_entry_controls_shadow != val)
1463 vm_entry_controls_init(vmx, val);
1464}
1465
1466static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1467{
1468 return vmx->vm_entry_controls_shadow;
1469}
1470
1471
1472static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1473{
1474 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1475}
1476
1477static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1478{
1479 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1480}
1481
1482static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1483{
1484 vmcs_write32(VM_EXIT_CONTROLS, val);
1485 vmx->vm_exit_controls_shadow = val;
1486}
1487
1488static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1489{
1490 if (vmx->vm_exit_controls_shadow != val)
1491 vm_exit_controls_init(vmx, val);
1492}
1493
1494static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1495{
1496 return vmx->vm_exit_controls_shadow;
1497}
1498
1499
1500static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1501{
1502 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1503}
1504
1505static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1506{
1507 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1508}
1509
2fb92db1
AK
1510static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1511{
1512 vmx->segment_cache.bitmask = 0;
1513}
1514
1515static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1516 unsigned field)
1517{
1518 bool ret;
1519 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1520
1521 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1522 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1523 vmx->segment_cache.bitmask = 0;
1524 }
1525 ret = vmx->segment_cache.bitmask & mask;
1526 vmx->segment_cache.bitmask |= mask;
1527 return ret;
1528}
1529
1530static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1531{
1532 u16 *p = &vmx->segment_cache.seg[seg].selector;
1533
1534 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1535 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1536 return *p;
1537}
1538
1539static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1540{
1541 ulong *p = &vmx->segment_cache.seg[seg].base;
1542
1543 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1544 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1545 return *p;
1546}
1547
1548static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1549{
1550 u32 *p = &vmx->segment_cache.seg[seg].limit;
1551
1552 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1553 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1554 return *p;
1555}
1556
1557static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1558{
1559 u32 *p = &vmx->segment_cache.seg[seg].ar;
1560
1561 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1562 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1563 return *p;
1564}
1565
abd3f2d6
AK
1566static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1567{
1568 u32 eb;
1569
fd7373cc
JK
1570 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1571 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1572 if ((vcpu->guest_debug &
1573 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1574 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1575 eb |= 1u << BP_VECTOR;
7ffd92c5 1576 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1577 eb = ~0;
089d034e 1578 if (enable_ept)
1439442c 1579 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1580 if (vcpu->fpu_active)
1581 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1582
1583 /* When we are running a nested L2 guest and L1 specified for it a
1584 * certain exception bitmap, we must trap the same exceptions and pass
1585 * them to L1. When running L2, we will only handle the exceptions
1586 * specified above if L1 did not want them.
1587 */
1588 if (is_guest_mode(vcpu))
1589 eb |= get_vmcs12(vcpu)->exception_bitmap;
1590
abd3f2d6
AK
1591 vmcs_write32(EXCEPTION_BITMAP, eb);
1592}
1593
2961e876
GN
1594static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1595 unsigned long entry, unsigned long exit)
8bf00a52 1596{
2961e876
GN
1597 vm_entry_controls_clearbit(vmx, entry);
1598 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1599}
1600
61d2ef2c
AK
1601static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1602{
1603 unsigned i;
1604 struct msr_autoload *m = &vmx->msr_autoload;
1605
8bf00a52
GN
1606 switch (msr) {
1607 case MSR_EFER:
1608 if (cpu_has_load_ia32_efer) {
2961e876
GN
1609 clear_atomic_switch_msr_special(vmx,
1610 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1611 VM_EXIT_LOAD_IA32_EFER);
1612 return;
1613 }
1614 break;
1615 case MSR_CORE_PERF_GLOBAL_CTRL:
1616 if (cpu_has_load_perf_global_ctrl) {
2961e876 1617 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1618 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1619 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1620 return;
1621 }
1622 break;
110312c8
AK
1623 }
1624
61d2ef2c
AK
1625 for (i = 0; i < m->nr; ++i)
1626 if (m->guest[i].index == msr)
1627 break;
1628
1629 if (i == m->nr)
1630 return;
1631 --m->nr;
1632 m->guest[i] = m->guest[m->nr];
1633 m->host[i] = m->host[m->nr];
1634 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1635 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1636}
1637
2961e876
GN
1638static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1639 unsigned long entry, unsigned long exit,
1640 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1641 u64 guest_val, u64 host_val)
8bf00a52
GN
1642{
1643 vmcs_write64(guest_val_vmcs, guest_val);
1644 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1645 vm_entry_controls_setbit(vmx, entry);
1646 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1647}
1648
61d2ef2c
AK
1649static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1650 u64 guest_val, u64 host_val)
1651{
1652 unsigned i;
1653 struct msr_autoload *m = &vmx->msr_autoload;
1654
8bf00a52
GN
1655 switch (msr) {
1656 case MSR_EFER:
1657 if (cpu_has_load_ia32_efer) {
2961e876
GN
1658 add_atomic_switch_msr_special(vmx,
1659 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1660 VM_EXIT_LOAD_IA32_EFER,
1661 GUEST_IA32_EFER,
1662 HOST_IA32_EFER,
1663 guest_val, host_val);
1664 return;
1665 }
1666 break;
1667 case MSR_CORE_PERF_GLOBAL_CTRL:
1668 if (cpu_has_load_perf_global_ctrl) {
2961e876 1669 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1670 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1671 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1672 GUEST_IA32_PERF_GLOBAL_CTRL,
1673 HOST_IA32_PERF_GLOBAL_CTRL,
1674 guest_val, host_val);
1675 return;
1676 }
1677 break;
110312c8
AK
1678 }
1679
61d2ef2c
AK
1680 for (i = 0; i < m->nr; ++i)
1681 if (m->guest[i].index == msr)
1682 break;
1683
e7fc6f93 1684 if (i == NR_AUTOLOAD_MSRS) {
60266204 1685 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1686 "Can't add msr %x\n", msr);
1687 return;
1688 } else if (i == m->nr) {
61d2ef2c
AK
1689 ++m->nr;
1690 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1691 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1692 }
1693
1694 m->guest[i].index = msr;
1695 m->guest[i].value = guest_val;
1696 m->host[i].index = msr;
1697 m->host[i].value = host_val;
1698}
1699
33ed6329
AK
1700static void reload_tss(void)
1701{
33ed6329
AK
1702 /*
1703 * VT restores TR but not its size. Useless.
1704 */
89cbc767 1705 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
a5f61300 1706 struct desc_struct *descs;
33ed6329 1707
d359192f 1708 descs = (void *)gdt->address;
33ed6329
AK
1709 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1710 load_TR_desc();
33ed6329
AK
1711}
1712
92c0d900 1713static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1714{
3a34a881 1715 u64 guest_efer;
51c6cf66
AK
1716 u64 ignore_bits;
1717
f6801dff 1718 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1719
51c6cf66 1720 /*
0fa06071 1721 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
51c6cf66
AK
1722 * outside long mode
1723 */
1724 ignore_bits = EFER_NX | EFER_SCE;
1725#ifdef CONFIG_X86_64
1726 ignore_bits |= EFER_LMA | EFER_LME;
1727 /* SCE is meaningful only in long mode on Intel */
1728 if (guest_efer & EFER_LMA)
1729 ignore_bits &= ~(u64)EFER_SCE;
1730#endif
51c6cf66
AK
1731 guest_efer &= ~ignore_bits;
1732 guest_efer |= host_efer & ignore_bits;
26bb0981 1733 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1734 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1735
1736 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
1737
1738 /*
1739 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1740 * On CPUs that support "load IA32_EFER", always switch EFER
1741 * atomically, since it's faster than switching it manually.
1742 */
1743 if (cpu_has_load_ia32_efer ||
1744 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
1745 guest_efer = vmx->vcpu.arch.efer;
1746 if (!(guest_efer & EFER_LMA))
1747 guest_efer &= ~EFER_LME;
54b98bff
AL
1748 if (guest_efer != host_efer)
1749 add_atomic_switch_msr(vmx, MSR_EFER,
1750 guest_efer, host_efer);
84ad33ef
AK
1751 return false;
1752 }
1753
26bb0981 1754 return true;
51c6cf66
AK
1755}
1756
2d49ec72
GN
1757static unsigned long segment_base(u16 selector)
1758{
89cbc767 1759 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2d49ec72
GN
1760 struct desc_struct *d;
1761 unsigned long table_base;
1762 unsigned long v;
1763
1764 if (!(selector & ~3))
1765 return 0;
1766
d359192f 1767 table_base = gdt->address;
2d49ec72
GN
1768
1769 if (selector & 4) { /* from ldt */
1770 u16 ldt_selector = kvm_read_ldt();
1771
1772 if (!(ldt_selector & ~3))
1773 return 0;
1774
1775 table_base = segment_base(ldt_selector);
1776 }
1777 d = (struct desc_struct *)(table_base + (selector & ~7));
1778 v = get_desc_base(d);
1779#ifdef CONFIG_X86_64
1780 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1781 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1782#endif
1783 return v;
1784}
1785
1786static inline unsigned long kvm_read_tr_base(void)
1787{
1788 u16 tr;
1789 asm("str %0" : "=g"(tr));
1790 return segment_base(tr);
1791}
1792
04d2cc77 1793static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1794{
04d2cc77 1795 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1796 int i;
04d2cc77 1797
a2fa3e9f 1798 if (vmx->host_state.loaded)
33ed6329
AK
1799 return;
1800
a2fa3e9f 1801 vmx->host_state.loaded = 1;
33ed6329
AK
1802 /*
1803 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1804 * allow segment selectors with cpl > 0 or ti == 1.
1805 */
d6e88aec 1806 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1807 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1808 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1809 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1810 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1811 vmx->host_state.fs_reload_needed = 0;
1812 } else {
33ed6329 1813 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1814 vmx->host_state.fs_reload_needed = 1;
33ed6329 1815 }
9581d442 1816 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1817 if (!(vmx->host_state.gs_sel & 7))
1818 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1819 else {
1820 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1821 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1822 }
1823
b2da15ac
AK
1824#ifdef CONFIG_X86_64
1825 savesegment(ds, vmx->host_state.ds_sel);
1826 savesegment(es, vmx->host_state.es_sel);
1827#endif
1828
33ed6329
AK
1829#ifdef CONFIG_X86_64
1830 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1831 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1832#else
a2fa3e9f
GH
1833 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1834 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1835#endif
707c0874
AK
1836
1837#ifdef CONFIG_X86_64
c8770e7b
AK
1838 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1839 if (is_long_mode(&vmx->vcpu))
44ea2b17 1840 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1841#endif
da8999d3
LJ
1842 if (boot_cpu_has(X86_FEATURE_MPX))
1843 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
1844 for (i = 0; i < vmx->save_nmsrs; ++i)
1845 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1846 vmx->guest_msrs[i].data,
1847 vmx->guest_msrs[i].mask);
33ed6329
AK
1848}
1849
a9b21b62 1850static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1851{
a2fa3e9f 1852 if (!vmx->host_state.loaded)
33ed6329
AK
1853 return;
1854
e1beb1d3 1855 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1856 vmx->host_state.loaded = 0;
c8770e7b
AK
1857#ifdef CONFIG_X86_64
1858 if (is_long_mode(&vmx->vcpu))
1859 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1860#endif
152d3f2f 1861 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1862 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1863#ifdef CONFIG_X86_64
9581d442 1864 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1865#else
1866 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1867#endif
33ed6329 1868 }
0a77fe4c
AK
1869 if (vmx->host_state.fs_reload_needed)
1870 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
1871#ifdef CONFIG_X86_64
1872 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1873 loadsegment(ds, vmx->host_state.ds_sel);
1874 loadsegment(es, vmx->host_state.es_sel);
1875 }
b2da15ac 1876#endif
152d3f2f 1877 reload_tss();
44ea2b17 1878#ifdef CONFIG_X86_64
c8770e7b 1879 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1880#endif
da8999d3
LJ
1881 if (vmx->host_state.msr_host_bndcfgs)
1882 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
b1a74bf8
SS
1883 /*
1884 * If the FPU is not active (through the host task or
1885 * the guest vcpu), then restore the cr0.TS bit.
1886 */
3c6dffa9 1887 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
b1a74bf8 1888 stts();
89cbc767 1889 load_gdt(this_cpu_ptr(&host_gdt));
33ed6329
AK
1890}
1891
a9b21b62
AK
1892static void vmx_load_host_state(struct vcpu_vmx *vmx)
1893{
1894 preempt_disable();
1895 __vmx_load_host_state(vmx);
1896 preempt_enable();
1897}
1898
6aa8b732
AK
1899/*
1900 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1901 * vcpu mutex is already taken.
1902 */
15ad7146 1903static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1904{
a2fa3e9f 1905 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1906 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1907
4610c9cc
DX
1908 if (!vmm_exclusive)
1909 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1910 else if (vmx->loaded_vmcs->cpu != cpu)
1911 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1912
d462b819
NHE
1913 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1914 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1915 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1916 }
1917
d462b819 1918 if (vmx->loaded_vmcs->cpu != cpu) {
89cbc767 1919 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
6aa8b732
AK
1920 unsigned long sysenter_esp;
1921
a8eeb04a 1922 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1923 local_irq_disable();
8f536b76 1924 crash_disable_local_vmclear(cpu);
5a560f8b
XG
1925
1926 /*
1927 * Read loaded_vmcs->cpu should be before fetching
1928 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1929 * See the comments in __loaded_vmcs_clear().
1930 */
1931 smp_rmb();
1932
d462b819
NHE
1933 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1934 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 1935 crash_enable_local_vmclear(cpu);
92fe13be
DX
1936 local_irq_enable();
1937
6aa8b732
AK
1938 /*
1939 * Linux uses per-cpu TSS and GDT, so set these when switching
1940 * processors.
1941 */
d6e88aec 1942 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1943 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1944
1945 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1946 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1947 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1948 }
6aa8b732
AK
1949}
1950
1951static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1952{
a9b21b62 1953 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1954 if (!vmm_exclusive) {
d462b819
NHE
1955 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1956 vcpu->cpu = -1;
4610c9cc
DX
1957 kvm_cpu_vmxoff();
1958 }
6aa8b732
AK
1959}
1960
5fd86fcf
AK
1961static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1962{
81231c69
AK
1963 ulong cr0;
1964
5fd86fcf
AK
1965 if (vcpu->fpu_active)
1966 return;
1967 vcpu->fpu_active = 1;
81231c69
AK
1968 cr0 = vmcs_readl(GUEST_CR0);
1969 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1970 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1971 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1972 update_exception_bitmap(vcpu);
edcafe3c 1973 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1974 if (is_guest_mode(vcpu))
1975 vcpu->arch.cr0_guest_owned_bits &=
1976 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1977 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1978}
1979
edcafe3c
AK
1980static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1981
fe3ef05c
NHE
1982/*
1983 * Return the cr0 value that a nested guest would read. This is a combination
1984 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1985 * its hypervisor (cr0_read_shadow).
1986 */
1987static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1988{
1989 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1990 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1991}
1992static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1993{
1994 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1995 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1996}
1997
5fd86fcf
AK
1998static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1999{
36cf24e0
NHE
2000 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2001 * set this *before* calling this function.
2002 */
edcafe3c 2003 vmx_decache_cr0_guest_bits(vcpu);
81231c69 2004 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 2005 update_exception_bitmap(vcpu);
edcafe3c
AK
2006 vcpu->arch.cr0_guest_owned_bits = 0;
2007 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
2008 if (is_guest_mode(vcpu)) {
2009 /*
2010 * L1's specified read shadow might not contain the TS bit,
2011 * so now that we turned on shadowing of this bit, we need to
2012 * set this bit of the shadow. Like in nested_vmx_run we need
2013 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2014 * up-to-date here because we just decached cr0.TS (and we'll
2015 * only update vmcs12->guest_cr0 on nested exit).
2016 */
2017 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2018 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2019 (vcpu->arch.cr0 & X86_CR0_TS);
2020 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2021 } else
2022 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
2023}
2024
6aa8b732
AK
2025static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2026{
78ac8b47 2027 unsigned long rflags, save_rflags;
345dcaa8 2028
6de12732
AK
2029 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2030 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2031 rflags = vmcs_readl(GUEST_RFLAGS);
2032 if (to_vmx(vcpu)->rmode.vm86_active) {
2033 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2034 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2035 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2036 }
2037 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2038 }
6de12732 2039 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2040}
2041
2042static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2043{
6de12732
AK
2044 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2045 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2046 if (to_vmx(vcpu)->rmode.vm86_active) {
2047 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2048 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2049 }
6aa8b732
AK
2050 vmcs_writel(GUEST_RFLAGS, rflags);
2051}
2052
37ccdcbe 2053static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2054{
2055 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2056 int ret = 0;
2057
2058 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2059 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2060 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2061 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2062
37ccdcbe 2063 return ret;
2809f5d2
GC
2064}
2065
2066static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2067{
2068 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2069 u32 interruptibility = interruptibility_old;
2070
2071 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2072
48005f64 2073 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2074 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2075 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2076 interruptibility |= GUEST_INTR_STATE_STI;
2077
2078 if ((interruptibility != interruptibility_old))
2079 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2080}
2081
6aa8b732
AK
2082static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2083{
2084 unsigned long rip;
6aa8b732 2085
5fdbf976 2086 rip = kvm_rip_read(vcpu);
6aa8b732 2087 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2088 kvm_rip_write(vcpu, rip);
6aa8b732 2089
2809f5d2
GC
2090 /* skipping an emulated instruction also counts */
2091 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2092}
2093
0b6ac343
NHE
2094/*
2095 * KVM wants to inject page-faults which it got to the guest. This function
2096 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2097 */
e011c663 2098static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
0b6ac343
NHE
2099{
2100 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2101
e011c663 2102 if (!(vmcs12->exception_bitmap & (1u << nr)))
0b6ac343
NHE
2103 return 0;
2104
533558bc
JK
2105 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2106 vmcs_read32(VM_EXIT_INTR_INFO),
2107 vmcs_readl(EXIT_QUALIFICATION));
0b6ac343
NHE
2108 return 1;
2109}
2110
298101da 2111static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
2112 bool has_error_code, u32 error_code,
2113 bool reinject)
298101da 2114{
77ab6db0 2115 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 2116 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2117
e011c663
GN
2118 if (!reinject && is_guest_mode(vcpu) &&
2119 nested_vmx_check_exception(vcpu, nr))
0b6ac343
NHE
2120 return;
2121
8ab2d2e2 2122 if (has_error_code) {
77ab6db0 2123 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2124 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2125 }
77ab6db0 2126
7ffd92c5 2127 if (vmx->rmode.vm86_active) {
71f9833b
SH
2128 int inc_eip = 0;
2129 if (kvm_exception_is_soft(nr))
2130 inc_eip = vcpu->arch.event_exit_inst_len;
2131 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2132 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2133 return;
2134 }
2135
66fd3f7f
GN
2136 if (kvm_exception_is_soft(nr)) {
2137 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2138 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2139 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2140 } else
2141 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2142
2143 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2144}
2145
4e47c7a6
SY
2146static bool vmx_rdtscp_supported(void)
2147{
2148 return cpu_has_vmx_rdtscp();
2149}
2150
ad756a16
MJ
2151static bool vmx_invpcid_supported(void)
2152{
2153 return cpu_has_vmx_invpcid() && enable_ept;
2154}
2155
a75beee6
ED
2156/*
2157 * Swap MSR entry in host/guest MSR entry array.
2158 */
8b9cf98c 2159static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2160{
26bb0981 2161 struct shared_msr_entry tmp;
a2fa3e9f
GH
2162
2163 tmp = vmx->guest_msrs[to];
2164 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2165 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2166}
2167
8d14695f
YZ
2168static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2169{
2170 unsigned long *msr_bitmap;
2171
670125bd
WV
2172 if (is_guest_mode(vcpu))
2173 msr_bitmap = vmx_msr_bitmap_nested;
8a9781f7 2174 else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
8d14695f
YZ
2175 if (is_long_mode(vcpu))
2176 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2177 else
2178 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2179 } else {
2180 if (is_long_mode(vcpu))
2181 msr_bitmap = vmx_msr_bitmap_longmode;
2182 else
2183 msr_bitmap = vmx_msr_bitmap_legacy;
2184 }
2185
2186 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2187}
2188
e38aea3e
AK
2189/*
2190 * Set up the vmcs to automatically save and restore system
2191 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2192 * mode, as fiddling with msrs is very expensive.
2193 */
8b9cf98c 2194static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2195{
26bb0981 2196 int save_nmsrs, index;
e38aea3e 2197
a75beee6
ED
2198 save_nmsrs = 0;
2199#ifdef CONFIG_X86_64
8b9cf98c 2200 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2201 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2202 if (index >= 0)
8b9cf98c
RR
2203 move_msr_up(vmx, index, save_nmsrs++);
2204 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2205 if (index >= 0)
8b9cf98c
RR
2206 move_msr_up(vmx, index, save_nmsrs++);
2207 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2208 if (index >= 0)
8b9cf98c 2209 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
2210 index = __find_msr_index(vmx, MSR_TSC_AUX);
2211 if (index >= 0 && vmx->rdtscp_enabled)
2212 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2213 /*
8c06585d 2214 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2215 * if efer.sce is enabled.
2216 */
8c06585d 2217 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2218 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2219 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2220 }
2221#endif
92c0d900
AK
2222 index = __find_msr_index(vmx, MSR_EFER);
2223 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2224 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2225
26bb0981 2226 vmx->save_nmsrs = save_nmsrs;
5897297b 2227
8d14695f
YZ
2228 if (cpu_has_vmx_msr_bitmap())
2229 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2230}
2231
6aa8b732
AK
2232/*
2233 * reads and returns guest's timestamp counter "register"
2234 * guest_tsc = host_tsc + tsc_offset -- 21.3
2235 */
2236static u64 guest_read_tsc(void)
2237{
2238 u64 host_tsc, tsc_offset;
2239
4ea1636b 2240 host_tsc = rdtsc();
6aa8b732
AK
2241 tsc_offset = vmcs_read64(TSC_OFFSET);
2242 return host_tsc + tsc_offset;
2243}
2244
d5c1785d
NHE
2245/*
2246 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2247 * counter, even if a nested guest (L2) is currently running.
2248 */
48d89b92 2249static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
d5c1785d 2250{
886b470c 2251 u64 tsc_offset;
d5c1785d 2252
d5c1785d
NHE
2253 tsc_offset = is_guest_mode(vcpu) ?
2254 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2255 vmcs_read64(TSC_OFFSET);
2256 return host_tsc + tsc_offset;
2257}
2258
4051b188 2259/*
cc578287
ZA
2260 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2261 * software catchup for faster rates on slower CPUs.
4051b188 2262 */
cc578287 2263static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
4051b188 2264{
cc578287
ZA
2265 if (!scale)
2266 return;
2267
2268 if (user_tsc_khz > tsc_khz) {
2269 vcpu->arch.tsc_catchup = 1;
2270 vcpu->arch.tsc_always_catchup = 1;
2271 } else
2272 WARN(1, "user requested TSC rate below hardware speed\n");
4051b188
JR
2273}
2274
ba904635
WA
2275static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2276{
2277 return vmcs_read64(TSC_OFFSET);
2278}
2279
6aa8b732 2280/*
99e3e30a 2281 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2282 */
99e3e30a 2283static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2284{
27fc51b2 2285 if (is_guest_mode(vcpu)) {
7991825b 2286 /*
27fc51b2
NHE
2287 * We're here if L1 chose not to trap WRMSR to TSC. According
2288 * to the spec, this should set L1's TSC; The offset that L1
2289 * set for L2 remains unchanged, and still needs to be added
2290 * to the newly set TSC to get L2's TSC.
7991825b 2291 */
27fc51b2
NHE
2292 struct vmcs12 *vmcs12;
2293 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2294 /* recalculate vmcs02.TSC_OFFSET: */
2295 vmcs12 = get_vmcs12(vcpu);
2296 vmcs_write64(TSC_OFFSET, offset +
2297 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2298 vmcs12->tsc_offset : 0));
2299 } else {
489223ed
YY
2300 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2301 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2302 vmcs_write64(TSC_OFFSET, offset);
2303 }
6aa8b732
AK
2304}
2305
f1e2b260 2306static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
e48672fa
ZA
2307{
2308 u64 offset = vmcs_read64(TSC_OFFSET);
489223ed 2309
e48672fa 2310 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
2311 if (is_guest_mode(vcpu)) {
2312 /* Even when running L2, the adjustment needs to apply to L1 */
2313 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
489223ed
YY
2314 } else
2315 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2316 offset + adjustment);
e48672fa
ZA
2317}
2318
857e4099
JR
2319static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2320{
4ea1636b 2321 return target_tsc - rdtsc();
857e4099
JR
2322}
2323
801d3424
NHE
2324static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2325{
2326 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2327 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2328}
2329
2330/*
2331 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2332 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2333 * all guests if the "nested" module option is off, and can also be disabled
2334 * for a single guest by disabling its VMX cpuid bit.
2335 */
2336static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2337{
2338 return nested && guest_cpuid_has_vmx(vcpu);
2339}
2340
b87a51ae
NHE
2341/*
2342 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2343 * returned for the various VMX controls MSRs when nested VMX is enabled.
2344 * The same values should also be used to verify that vmcs12 control fields are
2345 * valid during nested entry from L1 to L2.
2346 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2347 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2348 * bit in the high half is on if the corresponding bit in the control field
2349 * may be on. See also vmx_control_verify().
b87a51ae 2350 */
b9c237bb 2351static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2352{
2353 /*
2354 * Note that as a general rule, the high half of the MSRs (bits in
2355 * the control fields which may be 1) should be initialized by the
2356 * intersection of the underlying hardware's MSR (i.e., features which
2357 * can be supported) and the list of features we want to expose -
2358 * because they are known to be properly supported in our code.
2359 * Also, usually, the low half of the MSRs (bits which must be 1) can
2360 * be set to 0, meaning that L1 may turn off any of these bits. The
2361 * reason is that if one of these bits is necessary, it will appear
2362 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2363 * fields of vmcs01 and vmcs02, will turn these bits off - and
2364 * nested_vmx_exit_handled() will not pass related exits to L1.
2365 * These rules have exceptions below.
2366 */
2367
2368 /* pin-based controls */
eabeaacc 2369 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2370 vmx->nested.nested_vmx_pinbased_ctls_low,
2371 vmx->nested.nested_vmx_pinbased_ctls_high);
2372 vmx->nested.nested_vmx_pinbased_ctls_low |=
2373 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2374 vmx->nested.nested_vmx_pinbased_ctls_high &=
2375 PIN_BASED_EXT_INTR_MASK |
2376 PIN_BASED_NMI_EXITING |
2377 PIN_BASED_VIRTUAL_NMIS;
2378 vmx->nested.nested_vmx_pinbased_ctls_high |=
2379 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2380 PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1
WV
2381 if (vmx_vm_has_apicv(vmx->vcpu.kvm))
2382 vmx->nested.nested_vmx_pinbased_ctls_high |=
2383 PIN_BASED_POSTED_INTR;
b87a51ae 2384
3dbcd8da 2385 /* exit controls */
c0dfee58 2386 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2387 vmx->nested.nested_vmx_exit_ctls_low,
2388 vmx->nested.nested_vmx_exit_ctls_high);
2389 vmx->nested.nested_vmx_exit_ctls_low =
2390 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2391
b9c237bb 2392 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2393#ifdef CONFIG_X86_64
c0dfee58 2394 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2395#endif
f4124500 2396 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2397 vmx->nested.nested_vmx_exit_ctls_high |=
2398 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2399 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2400 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2401
36be0b9d 2402 if (vmx_mpx_supported())
b9c237bb 2403 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2404
2996fca0 2405 /* We support free control of debug control saving. */
b9c237bb
WV
2406 vmx->nested.nested_vmx_true_exit_ctls_low =
2407 vmx->nested.nested_vmx_exit_ctls_low &
2996fca0
JK
2408 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2409
b87a51ae
NHE
2410 /* entry controls */
2411 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2412 vmx->nested.nested_vmx_entry_ctls_low,
2413 vmx->nested.nested_vmx_entry_ctls_high);
2414 vmx->nested.nested_vmx_entry_ctls_low =
2415 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2416 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2417#ifdef CONFIG_X86_64
2418 VM_ENTRY_IA32E_MODE |
2419#endif
2420 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2421 vmx->nested.nested_vmx_entry_ctls_high |=
2422 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
36be0b9d 2423 if (vmx_mpx_supported())
b9c237bb 2424 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2425
2996fca0 2426 /* We support free control of debug control loading. */
b9c237bb
WV
2427 vmx->nested.nested_vmx_true_entry_ctls_low =
2428 vmx->nested.nested_vmx_entry_ctls_low &
2996fca0
JK
2429 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2430
b87a51ae
NHE
2431 /* cpu-based controls */
2432 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2433 vmx->nested.nested_vmx_procbased_ctls_low,
2434 vmx->nested.nested_vmx_procbased_ctls_high);
2435 vmx->nested.nested_vmx_procbased_ctls_low =
2436 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2437 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2438 CPU_BASED_VIRTUAL_INTR_PENDING |
2439 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2440 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2441 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2442 CPU_BASED_CR3_STORE_EXITING |
2443#ifdef CONFIG_X86_64
2444 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2445#endif
2446 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2447 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2448 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2449 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2450 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2451 /*
2452 * We can allow some features even when not supported by the
2453 * hardware. For example, L1 can specify an MSR bitmap - and we
2454 * can use it to avoid exits to L1 - even when L0 runs L2
2455 * without MSR bitmaps.
2456 */
b9c237bb
WV
2457 vmx->nested.nested_vmx_procbased_ctls_high |=
2458 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2459 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2460
3dcdf3ec 2461 /* We support free control of CR3 access interception. */
b9c237bb
WV
2462 vmx->nested.nested_vmx_true_procbased_ctls_low =
2463 vmx->nested.nested_vmx_procbased_ctls_low &
3dcdf3ec
JK
2464 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2465
b87a51ae
NHE
2466 /* secondary cpu-based controls */
2467 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2468 vmx->nested.nested_vmx_secondary_ctls_low,
2469 vmx->nested.nested_vmx_secondary_ctls_high);
2470 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2471 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2472 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 2473 SECONDARY_EXEC_RDTSCP |
f2b93280 2474 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
82f0dd4b 2475 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2476 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
81dc01f7
WL
2477 SECONDARY_EXEC_WBINVD_EXITING |
2478 SECONDARY_EXEC_XSAVES;
c18911a2 2479
afa61f75
NHE
2480 if (enable_ept) {
2481 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2482 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2483 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2484 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
d3134dbf
JK
2485 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2486 VMX_EPT_INVEPT_BIT;
b9c237bb 2487 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
afa61f75 2488 /*
4b855078
BD
2489 * For nested guests, we don't do anything specific
2490 * for single context invalidation. Hence, only advertise
2491 * support for global context invalidation.
afa61f75 2492 */
b9c237bb 2493 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
afa61f75 2494 } else
b9c237bb 2495 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2496
0790ec17
RK
2497 if (enable_unrestricted_guest)
2498 vmx->nested.nested_vmx_secondary_ctls_high |=
2499 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2500
c18911a2 2501 /* miscellaneous data */
b9c237bb
WV
2502 rdmsr(MSR_IA32_VMX_MISC,
2503 vmx->nested.nested_vmx_misc_low,
2504 vmx->nested.nested_vmx_misc_high);
2505 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2506 vmx->nested.nested_vmx_misc_low |=
2507 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2508 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2509 vmx->nested.nested_vmx_misc_high = 0;
b87a51ae
NHE
2510}
2511
2512static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2513{
2514 /*
2515 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2516 */
2517 return ((control & high) | low) == control;
2518}
2519
2520static inline u64 vmx_control_msr(u32 low, u32 high)
2521{
2522 return low | ((u64)high << 32);
2523}
2524
cae50139 2525/* Returns 0 on success, non-0 otherwise. */
b87a51ae
NHE
2526static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2527{
b9c237bb
WV
2528 struct vcpu_vmx *vmx = to_vmx(vcpu);
2529
b87a51ae 2530 switch (msr_index) {
b87a51ae
NHE
2531 case MSR_IA32_VMX_BASIC:
2532 /*
2533 * This MSR reports some information about VMX support. We
2534 * should return information about the VMX we emulate for the
2535 * guest, and the VMCS structure we give it - not about the
2536 * VMX support of the underlying hardware.
2537 */
3dbcd8da 2538 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
b87a51ae
NHE
2539 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2540 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2541 break;
2542 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2543 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
2544 *pdata = vmx_control_msr(
2545 vmx->nested.nested_vmx_pinbased_ctls_low,
2546 vmx->nested.nested_vmx_pinbased_ctls_high);
b87a51ae
NHE
2547 break;
2548 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
b9c237bb
WV
2549 *pdata = vmx_control_msr(
2550 vmx->nested.nested_vmx_true_procbased_ctls_low,
2551 vmx->nested.nested_vmx_procbased_ctls_high);
3dcdf3ec 2552 break;
b87a51ae 2553 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
2554 *pdata = vmx_control_msr(
2555 vmx->nested.nested_vmx_procbased_ctls_low,
2556 vmx->nested.nested_vmx_procbased_ctls_high);
b87a51ae
NHE
2557 break;
2558 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
b9c237bb
WV
2559 *pdata = vmx_control_msr(
2560 vmx->nested.nested_vmx_true_exit_ctls_low,
2561 vmx->nested.nested_vmx_exit_ctls_high);
2996fca0 2562 break;
b87a51ae 2563 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
2564 *pdata = vmx_control_msr(
2565 vmx->nested.nested_vmx_exit_ctls_low,
2566 vmx->nested.nested_vmx_exit_ctls_high);
b87a51ae
NHE
2567 break;
2568 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
b9c237bb
WV
2569 *pdata = vmx_control_msr(
2570 vmx->nested.nested_vmx_true_entry_ctls_low,
2571 vmx->nested.nested_vmx_entry_ctls_high);
2996fca0 2572 break;
b87a51ae 2573 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
2574 *pdata = vmx_control_msr(
2575 vmx->nested.nested_vmx_entry_ctls_low,
2576 vmx->nested.nested_vmx_entry_ctls_high);
b87a51ae
NHE
2577 break;
2578 case MSR_IA32_VMX_MISC:
b9c237bb
WV
2579 *pdata = vmx_control_msr(
2580 vmx->nested.nested_vmx_misc_low,
2581 vmx->nested.nested_vmx_misc_high);
b87a51ae
NHE
2582 break;
2583 /*
2584 * These MSRs specify bits which the guest must keep fixed (on or off)
2585 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2586 * We picked the standard core2 setting.
2587 */
2588#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2589#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2590 case MSR_IA32_VMX_CR0_FIXED0:
2591 *pdata = VMXON_CR0_ALWAYSON;
2592 break;
2593 case MSR_IA32_VMX_CR0_FIXED1:
2594 *pdata = -1ULL;
2595 break;
2596 case MSR_IA32_VMX_CR4_FIXED0:
2597 *pdata = VMXON_CR4_ALWAYSON;
2598 break;
2599 case MSR_IA32_VMX_CR4_FIXED1:
2600 *pdata = -1ULL;
2601 break;
2602 case MSR_IA32_VMX_VMCS_ENUM:
5381417f 2603 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
b87a51ae
NHE
2604 break;
2605 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
2606 *pdata = vmx_control_msr(
2607 vmx->nested.nested_vmx_secondary_ctls_low,
2608 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
2609 break;
2610 case MSR_IA32_VMX_EPT_VPID_CAP:
afa61f75 2611 /* Currently, no nested vpid support */
b9c237bb 2612 *pdata = vmx->nested.nested_vmx_ept_caps;
b87a51ae
NHE
2613 break;
2614 default:
b87a51ae 2615 return 1;
b3897a49
NHE
2616 }
2617
b87a51ae
NHE
2618 return 0;
2619}
2620
6aa8b732
AK
2621/*
2622 * Reads an msr value (of 'msr_index') into 'pdata'.
2623 * Returns 0 on success, non-0 otherwise.
2624 * Assumes vcpu_load() was already called.
2625 */
609e36d3 2626static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2627{
26bb0981 2628 struct shared_msr_entry *msr;
6aa8b732 2629
609e36d3 2630 switch (msr_info->index) {
05b3e0c2 2631#ifdef CONFIG_X86_64
6aa8b732 2632 case MSR_FS_BASE:
609e36d3 2633 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
2634 break;
2635 case MSR_GS_BASE:
609e36d3 2636 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 2637 break;
44ea2b17
AK
2638 case MSR_KERNEL_GS_BASE:
2639 vmx_load_host_state(to_vmx(vcpu));
609e36d3 2640 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 2641 break;
26bb0981 2642#endif
6aa8b732 2643 case MSR_EFER:
609e36d3 2644 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 2645 case MSR_IA32_TSC:
609e36d3 2646 msr_info->data = guest_read_tsc();
6aa8b732
AK
2647 break;
2648 case MSR_IA32_SYSENTER_CS:
609e36d3 2649 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
2650 break;
2651 case MSR_IA32_SYSENTER_EIP:
609e36d3 2652 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2653 break;
2654 case MSR_IA32_SYSENTER_ESP:
609e36d3 2655 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2656 break;
0dd376e7 2657 case MSR_IA32_BNDCFGS:
93c4adc7
PB
2658 if (!vmx_mpx_supported())
2659 return 1;
609e36d3 2660 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 2661 break;
cae50139
JK
2662 case MSR_IA32_FEATURE_CONTROL:
2663 if (!nested_vmx_allowed(vcpu))
2664 return 1;
609e36d3 2665 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
cae50139
JK
2666 break;
2667 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2668 if (!nested_vmx_allowed(vcpu))
2669 return 1;
609e36d3 2670 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
2671 case MSR_IA32_XSS:
2672 if (!vmx_xsaves_supported())
2673 return 1;
609e36d3 2674 msr_info->data = vcpu->arch.ia32_xss;
20300099 2675 break;
4e47c7a6
SY
2676 case MSR_TSC_AUX:
2677 if (!to_vmx(vcpu)->rdtscp_enabled)
2678 return 1;
2679 /* Otherwise falls through */
6aa8b732 2680 default:
609e36d3 2681 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 2682 if (msr) {
609e36d3 2683 msr_info->data = msr->data;
3bab1f5d 2684 break;
6aa8b732 2685 }
609e36d3 2686 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
2687 }
2688
6aa8b732
AK
2689 return 0;
2690}
2691
cae50139
JK
2692static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2693
6aa8b732
AK
2694/*
2695 * Writes msr value into into the appropriate "register".
2696 * Returns 0 on success, non-0 otherwise.
2697 * Assumes vcpu_load() was already called.
2698 */
8fe8ab46 2699static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2700{
a2fa3e9f 2701 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2702 struct shared_msr_entry *msr;
2cc51560 2703 int ret = 0;
8fe8ab46
WA
2704 u32 msr_index = msr_info->index;
2705 u64 data = msr_info->data;
2cc51560 2706
6aa8b732 2707 switch (msr_index) {
3bab1f5d 2708 case MSR_EFER:
8fe8ab46 2709 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 2710 break;
16175a79 2711#ifdef CONFIG_X86_64
6aa8b732 2712 case MSR_FS_BASE:
2fb92db1 2713 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2714 vmcs_writel(GUEST_FS_BASE, data);
2715 break;
2716 case MSR_GS_BASE:
2fb92db1 2717 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2718 vmcs_writel(GUEST_GS_BASE, data);
2719 break;
44ea2b17
AK
2720 case MSR_KERNEL_GS_BASE:
2721 vmx_load_host_state(vmx);
2722 vmx->msr_guest_kernel_gs_base = data;
2723 break;
6aa8b732
AK
2724#endif
2725 case MSR_IA32_SYSENTER_CS:
2726 vmcs_write32(GUEST_SYSENTER_CS, data);
2727 break;
2728 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2729 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2730 break;
2731 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2732 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2733 break;
0dd376e7 2734 case MSR_IA32_BNDCFGS:
93c4adc7
PB
2735 if (!vmx_mpx_supported())
2736 return 1;
0dd376e7
LJ
2737 vmcs_write64(GUEST_BNDCFGS, data);
2738 break;
af24a4e4 2739 case MSR_IA32_TSC:
8fe8ab46 2740 kvm_write_tsc(vcpu, msr_info);
6aa8b732 2741 break;
468d472f
SY
2742 case MSR_IA32_CR_PAT:
2743 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
2744 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2745 return 1;
468d472f
SY
2746 vmcs_write64(GUEST_IA32_PAT, data);
2747 vcpu->arch.pat = data;
2748 break;
2749 }
8fe8ab46 2750 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2751 break;
ba904635
WA
2752 case MSR_IA32_TSC_ADJUST:
2753 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2754 break;
cae50139
JK
2755 case MSR_IA32_FEATURE_CONTROL:
2756 if (!nested_vmx_allowed(vcpu) ||
2757 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2758 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2759 return 1;
2760 vmx->nested.msr_ia32_feature_control = data;
2761 if (msr_info->host_initiated && data == 0)
2762 vmx_leave_nested(vcpu);
2763 break;
2764 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2765 return 1; /* they are read-only */
20300099
WL
2766 case MSR_IA32_XSS:
2767 if (!vmx_xsaves_supported())
2768 return 1;
2769 /*
2770 * The only supported bit as of Skylake is bit 8, but
2771 * it is not supported on KVM.
2772 */
2773 if (data != 0)
2774 return 1;
2775 vcpu->arch.ia32_xss = data;
2776 if (vcpu->arch.ia32_xss != host_xss)
2777 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2778 vcpu->arch.ia32_xss, host_xss);
2779 else
2780 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2781 break;
4e47c7a6
SY
2782 case MSR_TSC_AUX:
2783 if (!vmx->rdtscp_enabled)
2784 return 1;
2785 /* Check reserved bit, higher 32 bits should be zero */
2786 if ((data >> 32) != 0)
2787 return 1;
2788 /* Otherwise falls through */
6aa8b732 2789 default:
8b9cf98c 2790 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 2791 if (msr) {
8b3c3104 2792 u64 old_msr_data = msr->data;
3bab1f5d 2793 msr->data = data;
2225fd56
AK
2794 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2795 preempt_disable();
8b3c3104
AH
2796 ret = kvm_set_shared_msr(msr->index, msr->data,
2797 msr->mask);
2225fd56 2798 preempt_enable();
8b3c3104
AH
2799 if (ret)
2800 msr->data = old_msr_data;
2225fd56 2801 }
3bab1f5d 2802 break;
6aa8b732 2803 }
8fe8ab46 2804 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
2805 }
2806
2cc51560 2807 return ret;
6aa8b732
AK
2808}
2809
5fdbf976 2810static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2811{
5fdbf976
MT
2812 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2813 switch (reg) {
2814 case VCPU_REGS_RSP:
2815 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2816 break;
2817 case VCPU_REGS_RIP:
2818 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2819 break;
6de4f3ad
AK
2820 case VCPU_EXREG_PDPTR:
2821 if (enable_ept)
2822 ept_save_pdptrs(vcpu);
2823 break;
5fdbf976
MT
2824 default:
2825 break;
2826 }
6aa8b732
AK
2827}
2828
6aa8b732
AK
2829static __init int cpu_has_kvm_support(void)
2830{
6210e37b 2831 return cpu_has_vmx();
6aa8b732
AK
2832}
2833
2834static __init int vmx_disabled_by_bios(void)
2835{
2836 u64 msr;
2837
2838 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2839 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2840 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2841 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2842 && tboot_enabled())
2843 return 1;
23f3e991 2844 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2845 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2846 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2847 && !tboot_enabled()) {
2848 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2849 "activate TXT before enabling KVM\n");
cafd6659 2850 return 1;
f9335afe 2851 }
23f3e991
JC
2852 /* launched w/o TXT and VMX disabled */
2853 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2854 && !tboot_enabled())
2855 return 1;
cafd6659
SW
2856 }
2857
2858 return 0;
6aa8b732
AK
2859}
2860
7725b894
DX
2861static void kvm_cpu_vmxon(u64 addr)
2862{
2863 asm volatile (ASM_VMX_VMXON_RAX
2864 : : "a"(&addr), "m"(addr)
2865 : "memory", "cc");
2866}
2867
13a34e06 2868static int hardware_enable(void)
6aa8b732
AK
2869{
2870 int cpu = raw_smp_processor_id();
2871 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2872 u64 old, test_bits;
6aa8b732 2873
1e02ce4c 2874 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
2875 return -EBUSY;
2876
d462b819 2877 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76
ZY
2878
2879 /*
2880 * Now we can enable the vmclear operation in kdump
2881 * since the loaded_vmcss_on_cpu list on this cpu
2882 * has been initialized.
2883 *
2884 * Though the cpu is not in VMX operation now, there
2885 * is no problem to enable the vmclear operation
2886 * for the loaded_vmcss_on_cpu list is empty!
2887 */
2888 crash_enable_local_vmclear(cpu);
2889
6aa8b732 2890 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2891
2892 test_bits = FEATURE_CONTROL_LOCKED;
2893 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2894 if (tboot_enabled())
2895 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2896
2897 if ((old & test_bits) != test_bits) {
6aa8b732 2898 /* enable and lock */
cafd6659
SW
2899 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2900 }
375074cc 2901 cr4_set_bits(X86_CR4_VMXE);
10474ae8 2902
4610c9cc
DX
2903 if (vmm_exclusive) {
2904 kvm_cpu_vmxon(phys_addr);
2905 ept_sync_global();
2906 }
10474ae8 2907
89cbc767 2908 native_store_gdt(this_cpu_ptr(&host_gdt));
3444d7da 2909
10474ae8 2910 return 0;
6aa8b732
AK
2911}
2912
d462b819 2913static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2914{
2915 int cpu = raw_smp_processor_id();
d462b819 2916 struct loaded_vmcs *v, *n;
543e4243 2917
d462b819
NHE
2918 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2919 loaded_vmcss_on_cpu_link)
2920 __loaded_vmcs_clear(v);
543e4243
AK
2921}
2922
710ff4a8
EH
2923
2924/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2925 * tricks.
2926 */
2927static void kvm_cpu_vmxoff(void)
6aa8b732 2928{
4ecac3fd 2929 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2930}
2931
13a34e06 2932static void hardware_disable(void)
710ff4a8 2933{
4610c9cc 2934 if (vmm_exclusive) {
d462b819 2935 vmclear_local_loaded_vmcss();
4610c9cc
DX
2936 kvm_cpu_vmxoff();
2937 }
375074cc 2938 cr4_clear_bits(X86_CR4_VMXE);
710ff4a8
EH
2939}
2940
1c3d14fe 2941static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2942 u32 msr, u32 *result)
1c3d14fe
YS
2943{
2944 u32 vmx_msr_low, vmx_msr_high;
2945 u32 ctl = ctl_min | ctl_opt;
2946
2947 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2948
2949 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2950 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2951
2952 /* Ensure minimum (required) set of control bits are supported. */
2953 if (ctl_min & ~ctl)
002c7f7c 2954 return -EIO;
1c3d14fe
YS
2955
2956 *result = ctl;
2957 return 0;
2958}
2959
110312c8
AK
2960static __init bool allow_1_setting(u32 msr, u32 ctl)
2961{
2962 u32 vmx_msr_low, vmx_msr_high;
2963
2964 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2965 return vmx_msr_high & ctl;
2966}
2967
002c7f7c 2968static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2969{
2970 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2971 u32 min, opt, min2, opt2;
1c3d14fe
YS
2972 u32 _pin_based_exec_control = 0;
2973 u32 _cpu_based_exec_control = 0;
f78e0e2e 2974 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2975 u32 _vmexit_control = 0;
2976 u32 _vmentry_control = 0;
2977
10166744 2978 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
2979#ifdef CONFIG_X86_64
2980 CPU_BASED_CR8_LOAD_EXITING |
2981 CPU_BASED_CR8_STORE_EXITING |
2982#endif
d56f546d
SY
2983 CPU_BASED_CR3_LOAD_EXITING |
2984 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2985 CPU_BASED_USE_IO_BITMAPS |
2986 CPU_BASED_MOV_DR_EXITING |
a7052897 2987 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2988 CPU_BASED_MWAIT_EXITING |
2989 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
2990 CPU_BASED_INVLPG_EXITING |
2991 CPU_BASED_RDPMC_EXITING;
443381a8 2992
f78e0e2e 2993 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2994 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2995 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2996 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2997 &_cpu_based_exec_control) < 0)
002c7f7c 2998 return -EIO;
6e5d865c
YS
2999#ifdef CONFIG_X86_64
3000 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3001 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3002 ~CPU_BASED_CR8_STORE_EXITING;
3003#endif
f78e0e2e 3004 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3005 min2 = 0;
3006 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3007 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3008 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3009 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3010 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3011 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3012 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3013 SECONDARY_EXEC_RDTSCP |
83d4c286 3014 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3015 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3016 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3017 SECONDARY_EXEC_SHADOW_VMCS |
843e4330
KH
3018 SECONDARY_EXEC_XSAVES |
3019 SECONDARY_EXEC_ENABLE_PML;
d56f546d
SY
3020 if (adjust_vmx_controls(min2, opt2,
3021 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3022 &_cpu_based_2nd_exec_control) < 0)
3023 return -EIO;
3024 }
3025#ifndef CONFIG_X86_64
3026 if (!(_cpu_based_2nd_exec_control &
3027 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3028 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3029#endif
83d4c286
YZ
3030
3031 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3032 _cpu_based_2nd_exec_control &= ~(
8d14695f 3033 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3034 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3035 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3036
d56f546d 3037 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3038 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3039 enabled */
5fff7d27
GN
3040 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3041 CPU_BASED_CR3_STORE_EXITING |
3042 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3043 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3044 vmx_capability.ept, vmx_capability.vpid);
3045 }
1c3d14fe 3046
81908bf4 3047 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
1c3d14fe
YS
3048#ifdef CONFIG_X86_64
3049 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3050#endif
a547c6db 3051 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
da8999d3 3052 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3053 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3054 &_vmexit_control) < 0)
002c7f7c 3055 return -EIO;
1c3d14fe 3056
01e439be
YZ
3057 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3058 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3059 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3060 &_pin_based_exec_control) < 0)
3061 return -EIO;
3062
3063 if (!(_cpu_based_2nd_exec_control &
3064 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3065 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3066 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3067
c845f9c6 3068 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3069 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3070 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3071 &_vmentry_control) < 0)
002c7f7c 3072 return -EIO;
6aa8b732 3073
c68876fd 3074 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3075
3076 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3077 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3078 return -EIO;
1c3d14fe
YS
3079
3080#ifdef CONFIG_X86_64
3081 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3082 if (vmx_msr_high & (1u<<16))
002c7f7c 3083 return -EIO;
1c3d14fe
YS
3084#endif
3085
3086 /* Require Write-Back (WB) memory type for VMCS accesses. */
3087 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3088 return -EIO;
1c3d14fe 3089
002c7f7c
YS
3090 vmcs_conf->size = vmx_msr_high & 0x1fff;
3091 vmcs_conf->order = get_order(vmcs_config.size);
3092 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3093
002c7f7c
YS
3094 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3095 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3096 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3097 vmcs_conf->vmexit_ctrl = _vmexit_control;
3098 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3099
110312c8
AK
3100 cpu_has_load_ia32_efer =
3101 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3102 VM_ENTRY_LOAD_IA32_EFER)
3103 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3104 VM_EXIT_LOAD_IA32_EFER);
3105
8bf00a52
GN
3106 cpu_has_load_perf_global_ctrl =
3107 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3108 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3109 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3110 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3111
3112 /*
3113 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3114 * but due to arrata below it can't be used. Workaround is to use
3115 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3116 *
3117 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3118 *
3119 * AAK155 (model 26)
3120 * AAP115 (model 30)
3121 * AAT100 (model 37)
3122 * BC86,AAY89,BD102 (model 44)
3123 * BA97 (model 46)
3124 *
3125 */
3126 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3127 switch (boot_cpu_data.x86_model) {
3128 case 26:
3129 case 30:
3130 case 37:
3131 case 44:
3132 case 46:
3133 cpu_has_load_perf_global_ctrl = false;
3134 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3135 "does not work properly. Using workaround\n");
3136 break;
3137 default:
3138 break;
3139 }
3140 }
3141
20300099
WL
3142 if (cpu_has_xsaves)
3143 rdmsrl(MSR_IA32_XSS, host_xss);
3144
1c3d14fe 3145 return 0;
c68876fd 3146}
6aa8b732
AK
3147
3148static struct vmcs *alloc_vmcs_cpu(int cpu)
3149{
3150 int node = cpu_to_node(cpu);
3151 struct page *pages;
3152 struct vmcs *vmcs;
3153
96db800f 3154 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3155 if (!pages)
3156 return NULL;
3157 vmcs = page_address(pages);
1c3d14fe
YS
3158 memset(vmcs, 0, vmcs_config.size);
3159 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3160 return vmcs;
3161}
3162
3163static struct vmcs *alloc_vmcs(void)
3164{
d3b2c338 3165 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3166}
3167
3168static void free_vmcs(struct vmcs *vmcs)
3169{
1c3d14fe 3170 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3171}
3172
d462b819
NHE
3173/*
3174 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3175 */
3176static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3177{
3178 if (!loaded_vmcs->vmcs)
3179 return;
3180 loaded_vmcs_clear(loaded_vmcs);
3181 free_vmcs(loaded_vmcs->vmcs);
3182 loaded_vmcs->vmcs = NULL;
3183}
3184
39959588 3185static void free_kvm_area(void)
6aa8b732
AK
3186{
3187 int cpu;
3188
3230bb47 3189 for_each_possible_cpu(cpu) {
6aa8b732 3190 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3191 per_cpu(vmxarea, cpu) = NULL;
3192 }
6aa8b732
AK
3193}
3194
fe2b201b
BD
3195static void init_vmcs_shadow_fields(void)
3196{
3197 int i, j;
3198
3199 /* No checks for read only fields yet */
3200
3201 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3202 switch (shadow_read_write_fields[i]) {
3203 case GUEST_BNDCFGS:
3204 if (!vmx_mpx_supported())
3205 continue;
3206 break;
3207 default:
3208 break;
3209 }
3210
3211 if (j < i)
3212 shadow_read_write_fields[j] =
3213 shadow_read_write_fields[i];
3214 j++;
3215 }
3216 max_shadow_read_write_fields = j;
3217
3218 /* shadowed fields guest access without vmexit */
3219 for (i = 0; i < max_shadow_read_write_fields; i++) {
3220 clear_bit(shadow_read_write_fields[i],
3221 vmx_vmwrite_bitmap);
3222 clear_bit(shadow_read_write_fields[i],
3223 vmx_vmread_bitmap);
3224 }
3225 for (i = 0; i < max_shadow_read_only_fields; i++)
3226 clear_bit(shadow_read_only_fields[i],
3227 vmx_vmread_bitmap);
3228}
3229
6aa8b732
AK
3230static __init int alloc_kvm_area(void)
3231{
3232 int cpu;
3233
3230bb47 3234 for_each_possible_cpu(cpu) {
6aa8b732
AK
3235 struct vmcs *vmcs;
3236
3237 vmcs = alloc_vmcs_cpu(cpu);
3238 if (!vmcs) {
3239 free_kvm_area();
3240 return -ENOMEM;
3241 }
3242
3243 per_cpu(vmxarea, cpu) = vmcs;
3244 }
3245 return 0;
3246}
3247
14168786
GN
3248static bool emulation_required(struct kvm_vcpu *vcpu)
3249{
3250 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3251}
3252
91b0aa2c 3253static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3254 struct kvm_segment *save)
6aa8b732 3255{
d99e4152
GN
3256 if (!emulate_invalid_guest_state) {
3257 /*
3258 * CS and SS RPL should be equal during guest entry according
3259 * to VMX spec, but in reality it is not always so. Since vcpu
3260 * is in the middle of the transition from real mode to
3261 * protected mode it is safe to assume that RPL 0 is a good
3262 * default value.
3263 */
3264 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3265 save->selector &= ~SEGMENT_RPL_MASK;
3266 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3267 save->s = 1;
6aa8b732 3268 }
d99e4152 3269 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3270}
3271
3272static void enter_pmode(struct kvm_vcpu *vcpu)
3273{
3274 unsigned long flags;
a89a8fb9 3275 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3276
d99e4152
GN
3277 /*
3278 * Update real mode segment cache. It may be not up-to-date if sement
3279 * register was written while vcpu was in a guest mode.
3280 */
3281 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3282 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3283 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3284 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3285 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3286 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3287
7ffd92c5 3288 vmx->rmode.vm86_active = 0;
6aa8b732 3289
2fb92db1
AK
3290 vmx_segment_cache_clear(vmx);
3291
f5f7b2fe 3292 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3293
3294 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3295 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3296 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3297 vmcs_writel(GUEST_RFLAGS, flags);
3298
66aee91a
RR
3299 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3300 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3301
3302 update_exception_bitmap(vcpu);
3303
91b0aa2c
GN
3304 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3305 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3306 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3307 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3308 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3309 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3310}
3311
f5f7b2fe 3312static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3313{
772e0318 3314 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3315 struct kvm_segment var = *save;
3316
3317 var.dpl = 0x3;
3318 if (seg == VCPU_SREG_CS)
3319 var.type = 0x3;
3320
3321 if (!emulate_invalid_guest_state) {
3322 var.selector = var.base >> 4;
3323 var.base = var.base & 0xffff0;
3324 var.limit = 0xffff;
3325 var.g = 0;
3326 var.db = 0;
3327 var.present = 1;
3328 var.s = 1;
3329 var.l = 0;
3330 var.unusable = 0;
3331 var.type = 0x3;
3332 var.avl = 0;
3333 if (save->base & 0xf)
3334 printk_once(KERN_WARNING "kvm: segment base is not "
3335 "paragraph aligned when entering "
3336 "protected mode (seg=%d)", seg);
3337 }
6aa8b732 3338
d99e4152
GN
3339 vmcs_write16(sf->selector, var.selector);
3340 vmcs_write32(sf->base, var.base);
3341 vmcs_write32(sf->limit, var.limit);
3342 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3343}
3344
3345static void enter_rmode(struct kvm_vcpu *vcpu)
3346{
3347 unsigned long flags;
a89a8fb9 3348 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3349
f5f7b2fe
AK
3350 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3351 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3352 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3353 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3354 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3355 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3356 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3357
7ffd92c5 3358 vmx->rmode.vm86_active = 1;
6aa8b732 3359
776e58ea
GN
3360 /*
3361 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3362 * vcpu. Warn the user that an update is overdue.
776e58ea 3363 */
4918c6ca 3364 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3365 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3366 "called before entering vcpu\n");
776e58ea 3367
2fb92db1
AK
3368 vmx_segment_cache_clear(vmx);
3369
4918c6ca 3370 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3371 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3372 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3373
3374 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3375 vmx->rmode.save_rflags = flags;
6aa8b732 3376
053de044 3377 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3378
3379 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3380 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3381 update_exception_bitmap(vcpu);
3382
d99e4152
GN
3383 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3384 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3385 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3386 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3387 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3388 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3389
8668a3c4 3390 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3391}
3392
401d10de
AS
3393static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3394{
3395 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3396 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3397
3398 if (!msr)
3399 return;
401d10de 3400
44ea2b17
AK
3401 /*
3402 * Force kernel_gs_base reloading before EFER changes, as control
3403 * of this msr depends on is_long_mode().
3404 */
3405 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3406 vcpu->arch.efer = efer;
401d10de 3407 if (efer & EFER_LMA) {
2961e876 3408 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3409 msr->data = efer;
3410 } else {
2961e876 3411 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3412
3413 msr->data = efer & ~EFER_LME;
3414 }
3415 setup_msrs(vmx);
3416}
3417
05b3e0c2 3418#ifdef CONFIG_X86_64
6aa8b732
AK
3419
3420static void enter_lmode(struct kvm_vcpu *vcpu)
3421{
3422 u32 guest_tr_ar;
3423
2fb92db1
AK
3424 vmx_segment_cache_clear(to_vmx(vcpu));
3425
6aa8b732 3426 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 3427 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3428 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3429 __func__);
6aa8b732 3430 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
3431 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3432 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 3433 }
da38f438 3434 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
3435}
3436
3437static void exit_lmode(struct kvm_vcpu *vcpu)
3438{
2961e876 3439 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 3440 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
3441}
3442
3443#endif
3444
2384d2b3
SY
3445static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3446{
b9d762fa 3447 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
3448 if (enable_ept) {
3449 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3450 return;
4e1096d2 3451 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 3452 }
2384d2b3
SY
3453}
3454
e8467fda
AK
3455static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3456{
3457 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3458
3459 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3460 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3461}
3462
aff48baa
AK
3463static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3464{
3465 if (enable_ept && is_paging(vcpu))
3466 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3467 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3468}
3469
25c4c276 3470static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 3471{
fc78f519
AK
3472 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3473
3474 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3475 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
3476}
3477
1439442c
SY
3478static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3479{
d0d538b9
GN
3480 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3481
6de4f3ad
AK
3482 if (!test_bit(VCPU_EXREG_PDPTR,
3483 (unsigned long *)&vcpu->arch.regs_dirty))
3484 return;
3485
1439442c 3486 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3487 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3488 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3489 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3490 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
3491 }
3492}
3493
8f5d549f
AK
3494static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3495{
d0d538b9
GN
3496 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3497
8f5d549f 3498 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3499 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3500 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3501 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3502 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 3503 }
6de4f3ad
AK
3504
3505 __set_bit(VCPU_EXREG_PDPTR,
3506 (unsigned long *)&vcpu->arch.regs_avail);
3507 __set_bit(VCPU_EXREG_PDPTR,
3508 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
3509}
3510
5e1746d6 3511static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
3512
3513static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3514 unsigned long cr0,
3515 struct kvm_vcpu *vcpu)
3516{
5233dd51
MT
3517 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3518 vmx_decache_cr3(vcpu);
1439442c
SY
3519 if (!(cr0 & X86_CR0_PG)) {
3520 /* From paging/starting to nonpaging */
3521 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3522 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
3523 (CPU_BASED_CR3_LOAD_EXITING |
3524 CPU_BASED_CR3_STORE_EXITING));
3525 vcpu->arch.cr0 = cr0;
fc78f519 3526 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
3527 } else if (!is_paging(vcpu)) {
3528 /* From nonpaging to paging */
3529 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3530 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3531 ~(CPU_BASED_CR3_LOAD_EXITING |
3532 CPU_BASED_CR3_STORE_EXITING));
3533 vcpu->arch.cr0 = cr0;
fc78f519 3534 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3535 }
95eb84a7
SY
3536
3537 if (!(cr0 & X86_CR0_WP))
3538 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3539}
3540
6aa8b732
AK
3541static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3542{
7ffd92c5 3543 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3544 unsigned long hw_cr0;
3545
5037878e 3546 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 3547 if (enable_unrestricted_guest)
5037878e 3548 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 3549 else {
5037878e 3550 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 3551
218e763f
GN
3552 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3553 enter_pmode(vcpu);
6aa8b732 3554
218e763f
GN
3555 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3556 enter_rmode(vcpu);
3557 }
6aa8b732 3558
05b3e0c2 3559#ifdef CONFIG_X86_64
f6801dff 3560 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3561 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3562 enter_lmode(vcpu);
707d92fa 3563 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3564 exit_lmode(vcpu);
3565 }
3566#endif
3567
089d034e 3568 if (enable_ept)
1439442c
SY
3569 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3570
02daab21 3571 if (!vcpu->fpu_active)
81231c69 3572 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3573
6aa8b732 3574 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3575 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3576 vcpu->arch.cr0 = cr0;
14168786
GN
3577
3578 /* depends on vcpu->arch.cr0 to be set to a new value */
3579 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3580}
3581
1439442c
SY
3582static u64 construct_eptp(unsigned long root_hpa)
3583{
3584 u64 eptp;
3585
3586 /* TODO write the value reading from MSR */
3587 eptp = VMX_EPT_DEFAULT_MT |
3588 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3589 if (enable_ept_ad_bits)
3590 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3591 eptp |= (root_hpa & PAGE_MASK);
3592
3593 return eptp;
3594}
3595
6aa8b732
AK
3596static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3597{
1439442c
SY
3598 unsigned long guest_cr3;
3599 u64 eptp;
3600
3601 guest_cr3 = cr3;
089d034e 3602 if (enable_ept) {
1439442c
SY
3603 eptp = construct_eptp(cr3);
3604 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
3605 if (is_paging(vcpu) || is_guest_mode(vcpu))
3606 guest_cr3 = kvm_read_cr3(vcpu);
3607 else
3608 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3609 ept_load_pdptrs(vcpu);
1439442c
SY
3610 }
3611
2384d2b3 3612 vmx_flush_tlb(vcpu);
1439442c 3613 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3614}
3615
5e1746d6 3616static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3617{
085e68ee
BS
3618 /*
3619 * Pass through host's Machine Check Enable value to hw_cr4, which
3620 * is in force while we are in guest mode. Do not let guests control
3621 * this bit, even if host CR4.MCE == 0.
3622 */
3623 unsigned long hw_cr4 =
3624 (cr4_read_shadow() & X86_CR4_MCE) |
3625 (cr4 & ~X86_CR4_MCE) |
3626 (to_vmx(vcpu)->rmode.vm86_active ?
3627 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 3628
5e1746d6
NHE
3629 if (cr4 & X86_CR4_VMXE) {
3630 /*
3631 * To use VMXON (and later other VMX instructions), a guest
3632 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3633 * So basically the check on whether to allow nested VMX
3634 * is here.
3635 */
3636 if (!nested_vmx_allowed(vcpu))
3637 return 1;
1a0d74e6
JK
3638 }
3639 if (to_vmx(vcpu)->nested.vmxon &&
3640 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
5e1746d6
NHE
3641 return 1;
3642
ad312c7c 3643 vcpu->arch.cr4 = cr4;
bc23008b
AK
3644 if (enable_ept) {
3645 if (!is_paging(vcpu)) {
3646 hw_cr4 &= ~X86_CR4_PAE;
3647 hw_cr4 |= X86_CR4_PSE;
c08800a5 3648 /*
e1e746b3
FW
3649 * SMEP/SMAP is disabled if CPU is in non-paging mode
3650 * in hardware. However KVM always uses paging mode to
c08800a5 3651 * emulate guest non-paging mode with TDP.
e1e746b3
FW
3652 * To emulate this behavior, SMEP/SMAP needs to be
3653 * manually disabled when guest switches to non-paging
3654 * mode.
c08800a5 3655 */
e1e746b3 3656 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
bc23008b
AK
3657 } else if (!(cr4 & X86_CR4_PAE)) {
3658 hw_cr4 &= ~X86_CR4_PAE;
3659 }
3660 }
1439442c
SY
3661
3662 vmcs_writel(CR4_READ_SHADOW, cr4);
3663 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3664 return 0;
6aa8b732
AK
3665}
3666
6aa8b732
AK
3667static void vmx_get_segment(struct kvm_vcpu *vcpu,
3668 struct kvm_segment *var, int seg)
3669{
a9179499 3670 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
3671 u32 ar;
3672
c6ad1153 3673 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 3674 *var = vmx->rmode.segs[seg];
a9179499 3675 if (seg == VCPU_SREG_TR
2fb92db1 3676 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 3677 return;
1390a28b
AK
3678 var->base = vmx_read_guest_seg_base(vmx, seg);
3679 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3680 return;
a9179499 3681 }
2fb92db1
AK
3682 var->base = vmx_read_guest_seg_base(vmx, seg);
3683 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3684 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3685 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 3686 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
3687 var->type = ar & 15;
3688 var->s = (ar >> 4) & 1;
3689 var->dpl = (ar >> 5) & 3;
03617c18
GN
3690 /*
3691 * Some userspaces do not preserve unusable property. Since usable
3692 * segment has to be present according to VMX spec we can use present
3693 * property to amend userspace bug by making unusable segment always
3694 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3695 * segment as unusable.
3696 */
3697 var->present = !var->unusable;
6aa8b732
AK
3698 var->avl = (ar >> 12) & 1;
3699 var->l = (ar >> 13) & 1;
3700 var->db = (ar >> 14) & 1;
3701 var->g = (ar >> 15) & 1;
6aa8b732
AK
3702}
3703
a9179499
AK
3704static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3705{
a9179499
AK
3706 struct kvm_segment s;
3707
3708 if (to_vmx(vcpu)->rmode.vm86_active) {
3709 vmx_get_segment(vcpu, &s, seg);
3710 return s.base;
3711 }
2fb92db1 3712 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3713}
3714
b09408d0 3715static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3716{
b09408d0
MT
3717 struct vcpu_vmx *vmx = to_vmx(vcpu);
3718
ae9fedc7 3719 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 3720 return 0;
ae9fedc7
PB
3721 else {
3722 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 3723 return VMX_AR_DPL(ar);
69c73028 3724 }
69c73028
AK
3725}
3726
653e3108 3727static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3728{
6aa8b732
AK
3729 u32 ar;
3730
f0495f9b 3731 if (var->unusable || !var->present)
6aa8b732
AK
3732 ar = 1 << 16;
3733 else {
3734 ar = var->type & 15;
3735 ar |= (var->s & 1) << 4;
3736 ar |= (var->dpl & 3) << 5;
3737 ar |= (var->present & 1) << 7;
3738 ar |= (var->avl & 1) << 12;
3739 ar |= (var->l & 1) << 13;
3740 ar |= (var->db & 1) << 14;
3741 ar |= (var->g & 1) << 15;
3742 }
653e3108
AK
3743
3744 return ar;
3745}
3746
3747static void vmx_set_segment(struct kvm_vcpu *vcpu,
3748 struct kvm_segment *var, int seg)
3749{
7ffd92c5 3750 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 3751 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 3752
2fb92db1
AK
3753 vmx_segment_cache_clear(vmx);
3754
1ecd50a9
GN
3755 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3756 vmx->rmode.segs[seg] = *var;
3757 if (seg == VCPU_SREG_TR)
3758 vmcs_write16(sf->selector, var->selector);
3759 else if (var->s)
3760 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 3761 goto out;
653e3108 3762 }
1ecd50a9 3763
653e3108
AK
3764 vmcs_writel(sf->base, var->base);
3765 vmcs_write32(sf->limit, var->limit);
3766 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
3767
3768 /*
3769 * Fix the "Accessed" bit in AR field of segment registers for older
3770 * qemu binaries.
3771 * IA32 arch specifies that at the time of processor reset the
3772 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 3773 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
3774 * state vmexit when "unrestricted guest" mode is turned on.
3775 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3776 * tree. Newer qemu binaries with that qemu fix would not need this
3777 * kvm hack.
3778 */
3779 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 3780 var->type |= 0x1; /* Accessed */
3a624e29 3781
f924d66d 3782 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
3783
3784out:
98eb2f8b 3785 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3786}
3787
6aa8b732
AK
3788static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3789{
2fb92db1 3790 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3791
3792 *db = (ar >> 14) & 1;
3793 *l = (ar >> 13) & 1;
3794}
3795
89a27f4d 3796static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3797{
89a27f4d
GN
3798 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3799 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3800}
3801
89a27f4d 3802static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3803{
89a27f4d
GN
3804 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3805 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3806}
3807
89a27f4d 3808static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3809{
89a27f4d
GN
3810 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3811 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3812}
3813
89a27f4d 3814static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3815{
89a27f4d
GN
3816 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3817 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3818}
3819
648dfaa7
MG
3820static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3821{
3822 struct kvm_segment var;
3823 u32 ar;
3824
3825 vmx_get_segment(vcpu, &var, seg);
07f42f5f 3826 var.dpl = 0x3;
0647f4aa
GN
3827 if (seg == VCPU_SREG_CS)
3828 var.type = 0x3;
648dfaa7
MG
3829 ar = vmx_segment_access_rights(&var);
3830
3831 if (var.base != (var.selector << 4))
3832 return false;
89efbed0 3833 if (var.limit != 0xffff)
648dfaa7 3834 return false;
07f42f5f 3835 if (ar != 0xf3)
648dfaa7
MG
3836 return false;
3837
3838 return true;
3839}
3840
3841static bool code_segment_valid(struct kvm_vcpu *vcpu)
3842{
3843 struct kvm_segment cs;
3844 unsigned int cs_rpl;
3845
3846 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 3847 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 3848
1872a3f4
AK
3849 if (cs.unusable)
3850 return false;
4d283ec9 3851 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
3852 return false;
3853 if (!cs.s)
3854 return false;
4d283ec9 3855 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3856 if (cs.dpl > cs_rpl)
3857 return false;
1872a3f4 3858 } else {
648dfaa7
MG
3859 if (cs.dpl != cs_rpl)
3860 return false;
3861 }
3862 if (!cs.present)
3863 return false;
3864
3865 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3866 return true;
3867}
3868
3869static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3870{
3871 struct kvm_segment ss;
3872 unsigned int ss_rpl;
3873
3874 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 3875 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 3876
1872a3f4
AK
3877 if (ss.unusable)
3878 return true;
3879 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3880 return false;
3881 if (!ss.s)
3882 return false;
3883 if (ss.dpl != ss_rpl) /* DPL != RPL */
3884 return false;
3885 if (!ss.present)
3886 return false;
3887
3888 return true;
3889}
3890
3891static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3892{
3893 struct kvm_segment var;
3894 unsigned int rpl;
3895
3896 vmx_get_segment(vcpu, &var, seg);
b32a9918 3897 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 3898
1872a3f4
AK
3899 if (var.unusable)
3900 return true;
648dfaa7
MG
3901 if (!var.s)
3902 return false;
3903 if (!var.present)
3904 return false;
4d283ec9 3905 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
3906 if (var.dpl < rpl) /* DPL < RPL */
3907 return false;
3908 }
3909
3910 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3911 * rights flags
3912 */
3913 return true;
3914}
3915
3916static bool tr_valid(struct kvm_vcpu *vcpu)
3917{
3918 struct kvm_segment tr;
3919
3920 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3921
1872a3f4
AK
3922 if (tr.unusable)
3923 return false;
b32a9918 3924 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 3925 return false;
1872a3f4 3926 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3927 return false;
3928 if (!tr.present)
3929 return false;
3930
3931 return true;
3932}
3933
3934static bool ldtr_valid(struct kvm_vcpu *vcpu)
3935{
3936 struct kvm_segment ldtr;
3937
3938 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3939
1872a3f4
AK
3940 if (ldtr.unusable)
3941 return true;
b32a9918 3942 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
3943 return false;
3944 if (ldtr.type != 2)
3945 return false;
3946 if (!ldtr.present)
3947 return false;
3948
3949 return true;
3950}
3951
3952static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3953{
3954 struct kvm_segment cs, ss;
3955
3956 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3957 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3958
b32a9918
NA
3959 return ((cs.selector & SEGMENT_RPL_MASK) ==
3960 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
3961}
3962
3963/*
3964 * Check if guest state is valid. Returns true if valid, false if
3965 * not.
3966 * We assume that registers are always usable
3967 */
3968static bool guest_state_valid(struct kvm_vcpu *vcpu)
3969{
c5e97c80
GN
3970 if (enable_unrestricted_guest)
3971 return true;
3972
648dfaa7 3973 /* real mode guest state checks */
f13882d8 3974 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
3975 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3976 return false;
3977 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3978 return false;
3979 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3980 return false;
3981 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3982 return false;
3983 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3984 return false;
3985 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3986 return false;
3987 } else {
3988 /* protected mode guest state checks */
3989 if (!cs_ss_rpl_check(vcpu))
3990 return false;
3991 if (!code_segment_valid(vcpu))
3992 return false;
3993 if (!stack_segment_valid(vcpu))
3994 return false;
3995 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3996 return false;
3997 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3998 return false;
3999 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4000 return false;
4001 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4002 return false;
4003 if (!tr_valid(vcpu))
4004 return false;
4005 if (!ldtr_valid(vcpu))
4006 return false;
4007 }
4008 /* TODO:
4009 * - Add checks on RIP
4010 * - Add checks on RFLAGS
4011 */
4012
4013 return true;
4014}
4015
d77c26fc 4016static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4017{
40dcaa9f 4018 gfn_t fn;
195aefde 4019 u16 data = 0;
1f755a82 4020 int idx, r;
6aa8b732 4021
40dcaa9f 4022 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4023 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4024 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4025 if (r < 0)
10589a46 4026 goto out;
195aefde 4027 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4028 r = kvm_write_guest_page(kvm, fn++, &data,
4029 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4030 if (r < 0)
10589a46 4031 goto out;
195aefde
IE
4032 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4033 if (r < 0)
10589a46 4034 goto out;
195aefde
IE
4035 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4036 if (r < 0)
10589a46 4037 goto out;
195aefde 4038 data = ~0;
10589a46
MT
4039 r = kvm_write_guest_page(kvm, fn, &data,
4040 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4041 sizeof(u8));
10589a46 4042out:
40dcaa9f 4043 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4044 return r;
6aa8b732
AK
4045}
4046
b7ebfb05
SY
4047static int init_rmode_identity_map(struct kvm *kvm)
4048{
f51770ed 4049 int i, idx, r = 0;
b7ebfb05
SY
4050 pfn_t identity_map_pfn;
4051 u32 tmp;
4052
089d034e 4053 if (!enable_ept)
f51770ed 4054 return 0;
a255d479
TC
4055
4056 /* Protect kvm->arch.ept_identity_pagetable_done. */
4057 mutex_lock(&kvm->slots_lock);
4058
f51770ed 4059 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4060 goto out2;
a255d479 4061
b927a3ce 4062 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4063
4064 r = alloc_identity_pagetable(kvm);
f51770ed 4065 if (r < 0)
a255d479
TC
4066 goto out2;
4067
40dcaa9f 4068 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4069 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4070 if (r < 0)
4071 goto out;
4072 /* Set up identity-mapping pagetable for EPT in real mode */
4073 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4074 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4075 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4076 r = kvm_write_guest_page(kvm, identity_map_pfn,
4077 &tmp, i * sizeof(tmp), sizeof(tmp));
4078 if (r < 0)
4079 goto out;
4080 }
4081 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4082
b7ebfb05 4083out:
40dcaa9f 4084 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4085
4086out2:
4087 mutex_unlock(&kvm->slots_lock);
f51770ed 4088 return r;
b7ebfb05
SY
4089}
4090
6aa8b732
AK
4091static void seg_setup(int seg)
4092{
772e0318 4093 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4094 unsigned int ar;
6aa8b732
AK
4095
4096 vmcs_write16(sf->selector, 0);
4097 vmcs_writel(sf->base, 0);
4098 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4099 ar = 0x93;
4100 if (seg == VCPU_SREG_CS)
4101 ar |= 0x08; /* code segment */
3a624e29
NK
4102
4103 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4104}
4105
f78e0e2e
SY
4106static int alloc_apic_access_page(struct kvm *kvm)
4107{
4484141a 4108 struct page *page;
f78e0e2e
SY
4109 struct kvm_userspace_memory_region kvm_userspace_mem;
4110 int r = 0;
4111
79fac95e 4112 mutex_lock(&kvm->slots_lock);
c24ae0dc 4113 if (kvm->arch.apic_access_page_done)
f78e0e2e
SY
4114 goto out;
4115 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4116 kvm_userspace_mem.flags = 0;
73a6d941 4117 kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
f78e0e2e 4118 kvm_userspace_mem.memory_size = PAGE_SIZE;
9da0e4d5 4119 r = __x86_set_memory_region(kvm, &kvm_userspace_mem);
f78e0e2e
SY
4120 if (r)
4121 goto out;
72dc67a6 4122
73a6d941 4123 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4124 if (is_error_page(page)) {
4125 r = -EFAULT;
4126 goto out;
4127 }
4128
c24ae0dc
TC
4129 /*
4130 * Do not pin the page in memory, so that memory hot-unplug
4131 * is able to migrate it.
4132 */
4133 put_page(page);
4134 kvm->arch.apic_access_page_done = true;
f78e0e2e 4135out:
79fac95e 4136 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4137 return r;
4138}
4139
b7ebfb05
SY
4140static int alloc_identity_pagetable(struct kvm *kvm)
4141{
a255d479
TC
4142 /* Called with kvm->slots_lock held. */
4143
b7ebfb05
SY
4144 struct kvm_userspace_memory_region kvm_userspace_mem;
4145 int r = 0;
4146
a255d479
TC
4147 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4148
b7ebfb05
SY
4149 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4150 kvm_userspace_mem.flags = 0;
b927a3ce
SY
4151 kvm_userspace_mem.guest_phys_addr =
4152 kvm->arch.ept_identity_map_addr;
b7ebfb05 4153 kvm_userspace_mem.memory_size = PAGE_SIZE;
9da0e4d5 4154 r = __x86_set_memory_region(kvm, &kvm_userspace_mem);
b7ebfb05 4155
b7ebfb05
SY
4156 return r;
4157}
4158
2384d2b3
SY
4159static void allocate_vpid(struct vcpu_vmx *vmx)
4160{
4161 int vpid;
4162
4163 vmx->vpid = 0;
919818ab 4164 if (!enable_vpid)
2384d2b3
SY
4165 return;
4166 spin_lock(&vmx_vpid_lock);
4167 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4168 if (vpid < VMX_NR_VPIDS) {
4169 vmx->vpid = vpid;
4170 __set_bit(vpid, vmx_vpid_bitmap);
4171 }
4172 spin_unlock(&vmx_vpid_lock);
4173}
4174
cdbecfc3
LJ
4175static void free_vpid(struct vcpu_vmx *vmx)
4176{
4177 if (!enable_vpid)
4178 return;
4179 spin_lock(&vmx_vpid_lock);
4180 if (vmx->vpid != 0)
4181 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4182 spin_unlock(&vmx_vpid_lock);
4183}
4184
8d14695f
YZ
4185#define MSR_TYPE_R 1
4186#define MSR_TYPE_W 2
4187static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4188 u32 msr, int type)
25c5f225 4189{
3e7c73e9 4190 int f = sizeof(unsigned long);
25c5f225
SY
4191
4192 if (!cpu_has_vmx_msr_bitmap())
4193 return;
4194
4195 /*
4196 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4197 * have the write-low and read-high bitmap offsets the wrong way round.
4198 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4199 */
25c5f225 4200 if (msr <= 0x1fff) {
8d14695f
YZ
4201 if (type & MSR_TYPE_R)
4202 /* read-low */
4203 __clear_bit(msr, msr_bitmap + 0x000 / f);
4204
4205 if (type & MSR_TYPE_W)
4206 /* write-low */
4207 __clear_bit(msr, msr_bitmap + 0x800 / f);
4208
25c5f225
SY
4209 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4210 msr &= 0x1fff;
8d14695f
YZ
4211 if (type & MSR_TYPE_R)
4212 /* read-high */
4213 __clear_bit(msr, msr_bitmap + 0x400 / f);
4214
4215 if (type & MSR_TYPE_W)
4216 /* write-high */
4217 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4218
4219 }
4220}
4221
4222static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4223 u32 msr, int type)
4224{
4225 int f = sizeof(unsigned long);
4226
4227 if (!cpu_has_vmx_msr_bitmap())
4228 return;
4229
4230 /*
4231 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4232 * have the write-low and read-high bitmap offsets the wrong way round.
4233 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4234 */
4235 if (msr <= 0x1fff) {
4236 if (type & MSR_TYPE_R)
4237 /* read-low */
4238 __set_bit(msr, msr_bitmap + 0x000 / f);
4239
4240 if (type & MSR_TYPE_W)
4241 /* write-low */
4242 __set_bit(msr, msr_bitmap + 0x800 / f);
4243
4244 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4245 msr &= 0x1fff;
4246 if (type & MSR_TYPE_R)
4247 /* read-high */
4248 __set_bit(msr, msr_bitmap + 0x400 / f);
4249
4250 if (type & MSR_TYPE_W)
4251 /* write-high */
4252 __set_bit(msr, msr_bitmap + 0xc00 / f);
4253
25c5f225 4254 }
25c5f225
SY
4255}
4256
f2b93280
WV
4257/*
4258 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4259 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4260 */
4261static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4262 unsigned long *msr_bitmap_nested,
4263 u32 msr, int type)
4264{
4265 int f = sizeof(unsigned long);
4266
4267 if (!cpu_has_vmx_msr_bitmap()) {
4268 WARN_ON(1);
4269 return;
4270 }
4271
4272 /*
4273 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4274 * have the write-low and read-high bitmap offsets the wrong way round.
4275 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4276 */
4277 if (msr <= 0x1fff) {
4278 if (type & MSR_TYPE_R &&
4279 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4280 /* read-low */
4281 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4282
4283 if (type & MSR_TYPE_W &&
4284 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4285 /* write-low */
4286 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4287
4288 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4289 msr &= 0x1fff;
4290 if (type & MSR_TYPE_R &&
4291 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4292 /* read-high */
4293 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4294
4295 if (type & MSR_TYPE_W &&
4296 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4297 /* write-high */
4298 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4299
4300 }
4301}
4302
5897297b
AK
4303static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4304{
4305 if (!longmode_only)
8d14695f
YZ
4306 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4307 msr, MSR_TYPE_R | MSR_TYPE_W);
4308 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4309 msr, MSR_TYPE_R | MSR_TYPE_W);
4310}
4311
4312static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4313{
4314 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4315 msr, MSR_TYPE_R);
4316 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4317 msr, MSR_TYPE_R);
4318}
4319
4320static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4321{
4322 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4323 msr, MSR_TYPE_R);
4324 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4325 msr, MSR_TYPE_R);
4326}
4327
4328static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4329{
4330 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4331 msr, MSR_TYPE_W);
4332 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4333 msr, MSR_TYPE_W);
5897297b
AK
4334}
4335
01e439be
YZ
4336static int vmx_vm_has_apicv(struct kvm *kvm)
4337{
4338 return enable_apicv && irqchip_in_kernel(kvm);
4339}
4340
d50ab6c1
PB
4341static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu)
4342{
4343 return vmx_vm_has_apicv(vcpu->kvm);
4344}
4345
705699a1
WV
4346static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4347{
4348 struct vcpu_vmx *vmx = to_vmx(vcpu);
4349 int max_irr;
4350 void *vapic_page;
4351 u16 status;
4352
4353 if (vmx->nested.pi_desc &&
4354 vmx->nested.pi_pending) {
4355 vmx->nested.pi_pending = false;
4356 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4357 return 0;
4358
4359 max_irr = find_last_bit(
4360 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4361
4362 if (max_irr == 256)
4363 return 0;
4364
4365 vapic_page = kmap(vmx->nested.virtual_apic_page);
4366 if (!vapic_page) {
4367 WARN_ON(1);
4368 return -ENOMEM;
4369 }
4370 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4371 kunmap(vmx->nested.virtual_apic_page);
4372
4373 status = vmcs_read16(GUEST_INTR_STATUS);
4374 if ((u8)max_irr > ((u8)status & 0xff)) {
4375 status &= ~0xff;
4376 status |= (u8)max_irr;
4377 vmcs_write16(GUEST_INTR_STATUS, status);
4378 }
4379 }
4380 return 0;
4381}
4382
21bc8dc5
RK
4383static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4384{
4385#ifdef CONFIG_SMP
4386 if (vcpu->mode == IN_GUEST_MODE) {
4387 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4388 POSTED_INTR_VECTOR);
4389 return true;
4390 }
4391#endif
4392 return false;
4393}
4394
705699a1
WV
4395static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4396 int vector)
4397{
4398 struct vcpu_vmx *vmx = to_vmx(vcpu);
4399
4400 if (is_guest_mode(vcpu) &&
4401 vector == vmx->nested.posted_intr_nv) {
4402 /* the PIR and ON have been set by L1. */
21bc8dc5 4403 kvm_vcpu_trigger_posted_interrupt(vcpu);
705699a1
WV
4404 /*
4405 * If a posted intr is not recognized by hardware,
4406 * we will accomplish it in the next vmentry.
4407 */
4408 vmx->nested.pi_pending = true;
4409 kvm_make_request(KVM_REQ_EVENT, vcpu);
4410 return 0;
4411 }
4412 return -1;
4413}
a20ed54d
YZ
4414/*
4415 * Send interrupt to vcpu via posted interrupt way.
4416 * 1. If target vcpu is running(non-root mode), send posted interrupt
4417 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4418 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4419 * interrupt from PIR in next vmentry.
4420 */
4421static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4422{
4423 struct vcpu_vmx *vmx = to_vmx(vcpu);
4424 int r;
4425
705699a1
WV
4426 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4427 if (!r)
4428 return;
4429
a20ed54d
YZ
4430 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4431 return;
4432
4433 r = pi_test_and_set_on(&vmx->pi_desc);
4434 kvm_make_request(KVM_REQ_EVENT, vcpu);
21bc8dc5 4435 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
a20ed54d
YZ
4436 kvm_vcpu_kick(vcpu);
4437}
4438
4439static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4440{
4441 struct vcpu_vmx *vmx = to_vmx(vcpu);
4442
4443 if (!pi_test_and_clear_on(&vmx->pi_desc))
4444 return;
4445
4446 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4447}
4448
4449static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4450{
4451 return;
4452}
4453
a3a8ff8e
NHE
4454/*
4455 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4456 * will not change in the lifetime of the guest.
4457 * Note that host-state that does change is set elsewhere. E.g., host-state
4458 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4459 */
a547c6db 4460static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
4461{
4462 u32 low32, high32;
4463 unsigned long tmpl;
4464 struct desc_ptr dt;
d974baa3 4465 unsigned long cr4;
a3a8ff8e 4466
b1a74bf8 4467 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
a3a8ff8e
NHE
4468 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4469
d974baa3 4470 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 4471 cr4 = cr4_read_shadow();
d974baa3
AL
4472 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4473 vmx->host_state.vmcs_host_cr4 = cr4;
4474
a3a8ff8e 4475 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
4476#ifdef CONFIG_X86_64
4477 /*
4478 * Load null selectors, so we can avoid reloading them in
4479 * __vmx_load_host_state(), in case userspace uses the null selectors
4480 * too (the expected case).
4481 */
4482 vmcs_write16(HOST_DS_SELECTOR, 0);
4483 vmcs_write16(HOST_ES_SELECTOR, 0);
4484#else
a3a8ff8e
NHE
4485 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4486 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 4487#endif
a3a8ff8e
NHE
4488 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4489 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4490
4491 native_store_idt(&dt);
4492 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 4493 vmx->host_idt_base = dt.address;
a3a8ff8e 4494
83287ea4 4495 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
4496
4497 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4498 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4499 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4500 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4501
4502 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4503 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4504 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4505 }
4506}
4507
bf8179a0
NHE
4508static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4509{
4510 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4511 if (enable_ept)
4512 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
4513 if (is_guest_mode(&vmx->vcpu))
4514 vmx->vcpu.arch.cr4_guest_owned_bits &=
4515 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
4516 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4517}
4518
01e439be
YZ
4519static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4520{
4521 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4522
4523 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4524 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4525 return pin_based_exec_ctrl;
4526}
4527
bf8179a0
NHE
4528static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4529{
4530 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
4531
4532 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4533 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4534
bf8179a0
NHE
4535 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4536 exec_control &= ~CPU_BASED_TPR_SHADOW;
4537#ifdef CONFIG_X86_64
4538 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4539 CPU_BASED_CR8_LOAD_EXITING;
4540#endif
4541 }
4542 if (!enable_ept)
4543 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4544 CPU_BASED_CR3_LOAD_EXITING |
4545 CPU_BASED_INVLPG_EXITING;
4546 return exec_control;
4547}
4548
4549static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4550{
4551 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4552 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4553 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4554 if (vmx->vpid == 0)
4555 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4556 if (!enable_ept) {
4557 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4558 enable_unrestricted_guest = 0;
ad756a16
MJ
4559 /* Enable INVPCID for non-ept guests may cause performance regression. */
4560 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
4561 }
4562 if (!enable_unrestricted_guest)
4563 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4564 if (!ple_gap)
4565 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
c7c9c56c
YZ
4566 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4567 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4568 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 4569 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
4570 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4571 (handle_vmptrld).
4572 We can NOT enable shadow_vmcs here because we don't have yet
4573 a current VMCS12
4574 */
4575 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
843e4330
KH
4576 /* PML is enabled/disabled in creating/destorying vcpu */
4577 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4578
bf8179a0
NHE
4579 return exec_control;
4580}
4581
ce88decf
XG
4582static void ept_set_mmio_spte_mask(void)
4583{
4584 /*
4585 * EPT Misconfigurations can be generated if the value of bits 2:0
4586 * of an EPT paging-structure entry is 110b (write/execute).
885032b9 4587 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
ce88decf
XG
4588 * spte.
4589 */
885032b9 4590 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
ce88decf
XG
4591}
4592
f53cd63c 4593#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
4594/*
4595 * Sets up the vmcs for emulated real mode.
4596 */
8b9cf98c 4597static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 4598{
2e4ce7f5 4599#ifdef CONFIG_X86_64
6aa8b732 4600 unsigned long a;
2e4ce7f5 4601#endif
6aa8b732 4602 int i;
6aa8b732 4603
6aa8b732 4604 /* I/O */
3e7c73e9
AK
4605 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4606 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 4607
4607c2d7
AG
4608 if (enable_shadow_vmcs) {
4609 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4610 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4611 }
25c5f225 4612 if (cpu_has_vmx_msr_bitmap())
5897297b 4613 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 4614
6aa8b732
AK
4615 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4616
6aa8b732 4617 /* Control */
01e439be 4618 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6e5d865c 4619
bf8179a0 4620 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 4621
83ff3b9d 4622 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
4623 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4624 vmx_secondary_exec_control(vmx));
83ff3b9d 4625 }
f78e0e2e 4626
01e439be 4627 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
c7c9c56c
YZ
4628 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4629 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4630 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4631 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4632
4633 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be
YZ
4634
4635 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4636 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
4637 }
4638
4b8d54f9
ZE
4639 if (ple_gap) {
4640 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
4641 vmx->ple_window = ple_window;
4642 vmx->ple_window_dirty = true;
4b8d54f9
ZE
4643 }
4644
c3707958
XG
4645 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4646 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
4647 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4648
9581d442
AK
4649 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4650 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 4651 vmx_set_constant_host_state(vmx);
05b3e0c2 4652#ifdef CONFIG_X86_64
6aa8b732
AK
4653 rdmsrl(MSR_FS_BASE, a);
4654 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4655 rdmsrl(MSR_GS_BASE, a);
4656 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4657#else
4658 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4659 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4660#endif
4661
2cc51560
ED
4662 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4663 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 4664 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 4665 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 4666 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 4667
74545705
RK
4668 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4669 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 4670
03916db9 4671 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
4672 u32 index = vmx_msr_index[i];
4673 u32 data_low, data_high;
a2fa3e9f 4674 int j = vmx->nmsrs;
6aa8b732
AK
4675
4676 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4677 continue;
432bd6cb
AK
4678 if (wrmsr_safe(index, data_low, data_high) < 0)
4679 continue;
26bb0981
AK
4680 vmx->guest_msrs[j].index = i;
4681 vmx->guest_msrs[j].data = 0;
d5696725 4682 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 4683 ++vmx->nmsrs;
6aa8b732 4684 }
6aa8b732 4685
2961e876
GN
4686
4687 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
4688
4689 /* 22.2.1, 20.8.1 */
2961e876 4690 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 4691
e00c8cf2 4692 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 4693 set_cr4_guest_host_mask(vmx);
e00c8cf2 4694
f53cd63c
WL
4695 if (vmx_xsaves_supported())
4696 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4697
e00c8cf2
AK
4698 return 0;
4699}
4700
d28bc9dd 4701static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
4702{
4703 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 4704 struct msr_data apic_base_msr;
d28bc9dd 4705 u64 cr0;
e00c8cf2 4706
7ffd92c5 4707 vmx->rmode.vm86_active = 0;
e00c8cf2 4708
3b86cd99
JK
4709 vmx->soft_vnmi_blocked = 0;
4710
ad312c7c 4711 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
4712 kvm_set_cr8(vcpu, 0);
4713
4714 if (!init_event) {
4715 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4716 MSR_IA32_APICBASE_ENABLE;
4717 if (kvm_vcpu_is_reset_bsp(vcpu))
4718 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4719 apic_base_msr.host_initiated = true;
4720 kvm_set_apic_base(vcpu, &apic_base_msr);
4721 }
e00c8cf2 4722
2fb92db1
AK
4723 vmx_segment_cache_clear(vmx);
4724
5706be0d 4725 seg_setup(VCPU_SREG_CS);
66450a21 4726 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
04b66839 4727 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
e00c8cf2
AK
4728
4729 seg_setup(VCPU_SREG_DS);
4730 seg_setup(VCPU_SREG_ES);
4731 seg_setup(VCPU_SREG_FS);
4732 seg_setup(VCPU_SREG_GS);
4733 seg_setup(VCPU_SREG_SS);
4734
4735 vmcs_write16(GUEST_TR_SELECTOR, 0);
4736 vmcs_writel(GUEST_TR_BASE, 0);
4737 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4738 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4739
4740 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4741 vmcs_writel(GUEST_LDTR_BASE, 0);
4742 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4743 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4744
d28bc9dd
NA
4745 if (!init_event) {
4746 vmcs_write32(GUEST_SYSENTER_CS, 0);
4747 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4748 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4749 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4750 }
e00c8cf2
AK
4751
4752 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 4753 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 4754
e00c8cf2
AK
4755 vmcs_writel(GUEST_GDTR_BASE, 0);
4756 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4757
4758 vmcs_writel(GUEST_IDTR_BASE, 0);
4759 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4760
443381a8 4761 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
4762 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4763 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4764
e00c8cf2
AK
4765 setup_msrs(vmx);
4766
6aa8b732
AK
4767 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4768
d28bc9dd 4769 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 4770 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
d28bc9dd 4771 if (vm_need_tpr_shadow(vcpu->kvm))
f78e0e2e 4772 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 4773 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
4774 vmcs_write32(TPR_THRESHOLD, 0);
4775 }
4776
a73896cb 4777 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 4778
01e439be
YZ
4779 if (vmx_vm_has_apicv(vcpu->kvm))
4780 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4781
2384d2b3
SY
4782 if (vmx->vpid != 0)
4783 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4784
d28bc9dd
NA
4785 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4786 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4787 vmx->vcpu.arch.cr0 = cr0;
4788 vmx_set_cr4(vcpu, 0);
4789 if (!init_event)
4790 vmx_set_efer(vcpu, 0);
4791 vmx_fpu_activate(vcpu);
4792 update_exception_bitmap(vcpu);
6aa8b732 4793
b9d762fa 4794 vpid_sync_context(vmx);
6aa8b732
AK
4795}
4796
b6f1250e
NHE
4797/*
4798 * In nested virtualization, check if L1 asked to exit on external interrupts.
4799 * For most existing hypervisors, this will always return true.
4800 */
4801static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4802{
4803 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4804 PIN_BASED_EXT_INTR_MASK;
4805}
4806
77b0f5d6
BD
4807/*
4808 * In nested virtualization, check if L1 has set
4809 * VM_EXIT_ACK_INTR_ON_EXIT
4810 */
4811static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4812{
4813 return get_vmcs12(vcpu)->vm_exit_controls &
4814 VM_EXIT_ACK_INTR_ON_EXIT;
4815}
4816
ea8ceb83
JK
4817static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4818{
4819 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4820 PIN_BASED_NMI_EXITING;
4821}
4822
c9a7953f 4823static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
4824{
4825 u32 cpu_based_vm_exec_control;
730dca42 4826
3b86cd99
JK
4827 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4828 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4829 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4830}
4831
c9a7953f 4832static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
4833{
4834 u32 cpu_based_vm_exec_control;
4835
c9a7953f
JK
4836 if (!cpu_has_virtual_nmis() ||
4837 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4838 enable_irq_window(vcpu);
4839 return;
4840 }
3b86cd99
JK
4841
4842 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4843 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4844 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4845}
4846
66fd3f7f 4847static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 4848{
9c8cba37 4849 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
4850 uint32_t intr;
4851 int irq = vcpu->arch.interrupt.nr;
9c8cba37 4852
229456fc 4853 trace_kvm_inj_virq(irq);
2714d1d3 4854
fa89a817 4855 ++vcpu->stat.irq_injections;
7ffd92c5 4856 if (vmx->rmode.vm86_active) {
71f9833b
SH
4857 int inc_eip = 0;
4858 if (vcpu->arch.interrupt.soft)
4859 inc_eip = vcpu->arch.event_exit_inst_len;
4860 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 4861 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
4862 return;
4863 }
66fd3f7f
GN
4864 intr = irq | INTR_INFO_VALID_MASK;
4865 if (vcpu->arch.interrupt.soft) {
4866 intr |= INTR_TYPE_SOFT_INTR;
4867 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4868 vmx->vcpu.arch.event_exit_inst_len);
4869 } else
4870 intr |= INTR_TYPE_EXT_INTR;
4871 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
4872}
4873
f08864b4
SY
4874static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4875{
66a5a347
JK
4876 struct vcpu_vmx *vmx = to_vmx(vcpu);
4877
0b6ac343
NHE
4878 if (is_guest_mode(vcpu))
4879 return;
4880
3b86cd99
JK
4881 if (!cpu_has_virtual_nmis()) {
4882 /*
4883 * Tracking the NMI-blocked state in software is built upon
4884 * finding the next open IRQ window. This, in turn, depends on
4885 * well-behaving guests: They have to keep IRQs disabled at
4886 * least as long as the NMI handler runs. Otherwise we may
4887 * cause NMI nesting, maybe breaking the guest. But as this is
4888 * highly unlikely, we can live with the residual risk.
4889 */
4890 vmx->soft_vnmi_blocked = 1;
4891 vmx->vnmi_blocked_time = 0;
4892 }
4893
487b391d 4894 ++vcpu->stat.nmi_injections;
9d58b931 4895 vmx->nmi_known_unmasked = false;
7ffd92c5 4896 if (vmx->rmode.vm86_active) {
71f9833b 4897 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 4898 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
4899 return;
4900 }
f08864b4
SY
4901 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4902 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
4903}
4904
3cfc3092
JK
4905static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4906{
4907 if (!cpu_has_virtual_nmis())
4908 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
4909 if (to_vmx(vcpu)->nmi_known_unmasked)
4910 return false;
c332c83a 4911 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
4912}
4913
4914static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4915{
4916 struct vcpu_vmx *vmx = to_vmx(vcpu);
4917
4918 if (!cpu_has_virtual_nmis()) {
4919 if (vmx->soft_vnmi_blocked != masked) {
4920 vmx->soft_vnmi_blocked = masked;
4921 vmx->vnmi_blocked_time = 0;
4922 }
4923 } else {
9d58b931 4924 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
4925 if (masked)
4926 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4927 GUEST_INTR_STATE_NMI);
4928 else
4929 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4930 GUEST_INTR_STATE_NMI);
4931 }
4932}
4933
2505dc9f
JK
4934static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4935{
b6b8a145
JK
4936 if (to_vmx(vcpu)->nested.nested_run_pending)
4937 return 0;
ea8ceb83 4938
2505dc9f
JK
4939 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4940 return 0;
4941
4942 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4943 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4944 | GUEST_INTR_STATE_NMI));
4945}
4946
78646121
GN
4947static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4948{
b6b8a145
JK
4949 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4950 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
4951 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4952 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4953}
4954
cbc94022
IE
4955static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4956{
4957 int ret;
4958 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4959 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4960 .guest_phys_addr = addr,
4961 .memory_size = PAGE_SIZE * 3,
4962 .flags = 0,
4963 };
4964
9da0e4d5 4965 ret = x86_set_memory_region(kvm, &tss_mem);
cbc94022
IE
4966 if (ret)
4967 return ret;
bfc6d222 4968 kvm->arch.tss_addr = addr;
1f755a82 4969 return init_rmode_tss(kvm);
cbc94022
IE
4970}
4971
0ca1b4f4 4972static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 4973{
77ab6db0 4974 switch (vec) {
77ab6db0 4975 case BP_VECTOR:
c573cd22
JK
4976 /*
4977 * Update instruction length as we may reinject the exception
4978 * from user space while in guest debugging mode.
4979 */
4980 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4981 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 4982 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
4983 return false;
4984 /* fall through */
4985 case DB_VECTOR:
4986 if (vcpu->guest_debug &
4987 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4988 return false;
d0bfb940
JK
4989 /* fall through */
4990 case DE_VECTOR:
77ab6db0
JK
4991 case OF_VECTOR:
4992 case BR_VECTOR:
4993 case UD_VECTOR:
4994 case DF_VECTOR:
4995 case SS_VECTOR:
4996 case GP_VECTOR:
4997 case MF_VECTOR:
0ca1b4f4
GN
4998 return true;
4999 break;
77ab6db0 5000 }
0ca1b4f4
GN
5001 return false;
5002}
5003
5004static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5005 int vec, u32 err_code)
5006{
5007 /*
5008 * Instruction with address size override prefix opcode 0x67
5009 * Cause the #SS fault with 0 error code in VM86 mode.
5010 */
5011 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5012 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5013 if (vcpu->arch.halt_request) {
5014 vcpu->arch.halt_request = 0;
5cb56059 5015 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5016 }
5017 return 1;
5018 }
5019 return 0;
5020 }
5021
5022 /*
5023 * Forward all other exceptions that are valid in real mode.
5024 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5025 * the required debugging infrastructure rework.
5026 */
5027 kvm_queue_exception(vcpu, vec);
5028 return 1;
6aa8b732
AK
5029}
5030
a0861c02
AK
5031/*
5032 * Trigger machine check on the host. We assume all the MSRs are already set up
5033 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5034 * We pass a fake environment to the machine check handler because we want
5035 * the guest to be always treated like user space, no matter what context
5036 * it used internally.
5037 */
5038static void kvm_machine_check(void)
5039{
5040#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5041 struct pt_regs regs = {
5042 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5043 .flags = X86_EFLAGS_IF,
5044 };
5045
5046 do_machine_check(&regs, 0);
5047#endif
5048}
5049
851ba692 5050static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5051{
5052 /* already handled by vcpu_run */
5053 return 1;
5054}
5055
851ba692 5056static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5057{
1155f76a 5058 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5059 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5060 u32 intr_info, ex_no, error_code;
42dbaa5a 5061 unsigned long cr2, rip, dr6;
6aa8b732
AK
5062 u32 vect_info;
5063 enum emulation_result er;
5064
1155f76a 5065 vect_info = vmx->idt_vectoring_info;
88786475 5066 intr_info = vmx->exit_intr_info;
6aa8b732 5067
a0861c02 5068 if (is_machine_check(intr_info))
851ba692 5069 return handle_machine_check(vcpu);
a0861c02 5070
e4a41889 5071 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 5072 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
5073
5074 if (is_no_device(intr_info)) {
5fd86fcf 5075 vmx_fpu_activate(vcpu);
2ab455cc
AL
5076 return 1;
5077 }
5078
7aa81cc0 5079 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5080 if (is_guest_mode(vcpu)) {
5081 kvm_queue_exception(vcpu, UD_VECTOR);
5082 return 1;
5083 }
51d8b661 5084 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5085 if (er != EMULATE_DONE)
7ee5d940 5086 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5087 return 1;
5088 }
5089
6aa8b732 5090 error_code = 0;
2e11384c 5091 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5092 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5093
5094 /*
5095 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5096 * MMIO, it is better to report an internal error.
5097 * See the comments in vmx_handle_exit.
5098 */
5099 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5100 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5101 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5102 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5103 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5104 vcpu->run->internal.data[0] = vect_info;
5105 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5106 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5107 return 0;
5108 }
5109
6aa8b732 5110 if (is_page_fault(intr_info)) {
1439442c 5111 /* EPT won't cause page fault directly */
cf3ace79 5112 BUG_ON(enable_ept);
6aa8b732 5113 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
5114 trace_kvm_page_fault(cr2, error_code);
5115
3298b75c 5116 if (kvm_event_needs_reinjection(vcpu))
577bdc49 5117 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 5118 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
5119 }
5120
d0bfb940 5121 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5122
5123 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5124 return handle_rmode_exception(vcpu, ex_no, error_code);
5125
42dbaa5a
JK
5126 switch (ex_no) {
5127 case DB_VECTOR:
5128 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5129 if (!(vcpu->guest_debug &
5130 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5131 vcpu->arch.dr6 &= ~15;
6f43ed01 5132 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5133 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5134 skip_emulated_instruction(vcpu);
5135
42dbaa5a
JK
5136 kvm_queue_exception(vcpu, DB_VECTOR);
5137 return 1;
5138 }
5139 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5140 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5141 /* fall through */
5142 case BP_VECTOR:
c573cd22
JK
5143 /*
5144 * Update instruction length as we may reinject #BP from
5145 * user space while in guest debugging mode. Reading it for
5146 * #DB as well causes no harm, it is not used in that case.
5147 */
5148 vmx->vcpu.arch.event_exit_inst_len =
5149 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5150 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5151 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5152 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5153 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5154 break;
5155 default:
d0bfb940
JK
5156 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5157 kvm_run->ex.exception = ex_no;
5158 kvm_run->ex.error_code = error_code;
42dbaa5a 5159 break;
6aa8b732 5160 }
6aa8b732
AK
5161 return 0;
5162}
5163
851ba692 5164static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5165{
1165f5fe 5166 ++vcpu->stat.irq_exits;
6aa8b732
AK
5167 return 1;
5168}
5169
851ba692 5170static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5171{
851ba692 5172 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
5173 return 0;
5174}
6aa8b732 5175
851ba692 5176static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5177{
bfdaab09 5178 unsigned long exit_qualification;
34c33d16 5179 int size, in, string;
039576c0 5180 unsigned port;
6aa8b732 5181
bfdaab09 5182 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5183 string = (exit_qualification & 16) != 0;
cf8f70bf 5184 in = (exit_qualification & 8) != 0;
e70669ab 5185
cf8f70bf 5186 ++vcpu->stat.io_exits;
e70669ab 5187
cf8f70bf 5188 if (string || in)
51d8b661 5189 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5190
cf8f70bf
GN
5191 port = exit_qualification >> 16;
5192 size = (exit_qualification & 7) + 1;
e93f36bc 5193 skip_emulated_instruction(vcpu);
cf8f70bf
GN
5194
5195 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
5196}
5197
102d8325
IM
5198static void
5199vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5200{
5201 /*
5202 * Patch in the VMCALL instruction:
5203 */
5204 hypercall[0] = 0x0f;
5205 hypercall[1] = 0x01;
5206 hypercall[2] = 0xc1;
102d8325
IM
5207}
5208
b9c237bb 5209static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
92fbc7b1
JK
5210{
5211 unsigned long always_on = VMXON_CR0_ALWAYSON;
b9c237bb 5212 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
92fbc7b1 5213
b9c237bb 5214 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
92fbc7b1
JK
5215 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5216 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5217 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5218 return (val & always_on) == always_on;
5219}
5220
0fa06071 5221/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5222static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5223{
eeadf9e7 5224 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5225 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5226 unsigned long orig_val = val;
5227
eeadf9e7
NHE
5228 /*
5229 * We get here when L2 changed cr0 in a way that did not change
5230 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
5231 * but did change L0 shadowed bits. So we first calculate the
5232 * effective cr0 value that L1 would like to write into the
5233 * hardware. It consists of the L2-owned bits from the new
5234 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 5235 */
1a0d74e6
JK
5236 val = (val & ~vmcs12->cr0_guest_host_mask) |
5237 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5238
b9c237bb 5239 if (!nested_cr0_valid(vcpu, val))
eeadf9e7 5240 return 1;
1a0d74e6
JK
5241
5242 if (kvm_set_cr0(vcpu, val))
5243 return 1;
5244 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 5245 return 0;
1a0d74e6
JK
5246 } else {
5247 if (to_vmx(vcpu)->nested.vmxon &&
5248 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5249 return 1;
eeadf9e7 5250 return kvm_set_cr0(vcpu, val);
1a0d74e6 5251 }
eeadf9e7
NHE
5252}
5253
5254static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5255{
5256 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5257 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5258 unsigned long orig_val = val;
5259
5260 /* analogously to handle_set_cr0 */
5261 val = (val & ~vmcs12->cr4_guest_host_mask) |
5262 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5263 if (kvm_set_cr4(vcpu, val))
eeadf9e7 5264 return 1;
1a0d74e6 5265 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
5266 return 0;
5267 } else
5268 return kvm_set_cr4(vcpu, val);
5269}
5270
5271/* called to set cr0 as approriate for clts instruction exit. */
5272static void handle_clts(struct kvm_vcpu *vcpu)
5273{
5274 if (is_guest_mode(vcpu)) {
5275 /*
5276 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5277 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5278 * just pretend it's off (also in arch.cr0 for fpu_activate).
5279 */
5280 vmcs_writel(CR0_READ_SHADOW,
5281 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5282 vcpu->arch.cr0 &= ~X86_CR0_TS;
5283 } else
5284 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5285}
5286
851ba692 5287static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 5288{
229456fc 5289 unsigned long exit_qualification, val;
6aa8b732
AK
5290 int cr;
5291 int reg;
49a9b07e 5292 int err;
6aa8b732 5293
bfdaab09 5294 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5295 cr = exit_qualification & 15;
5296 reg = (exit_qualification >> 8) & 15;
5297 switch ((exit_qualification >> 4) & 3) {
5298 case 0: /* mov to cr */
1e32c079 5299 val = kvm_register_readl(vcpu, reg);
229456fc 5300 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5301 switch (cr) {
5302 case 0:
eeadf9e7 5303 err = handle_set_cr0(vcpu, val);
db8fcefa 5304 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5305 return 1;
5306 case 3:
2390218b 5307 err = kvm_set_cr3(vcpu, val);
db8fcefa 5308 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5309 return 1;
5310 case 4:
eeadf9e7 5311 err = handle_set_cr4(vcpu, val);
db8fcefa 5312 kvm_complete_insn_gp(vcpu, err);
6aa8b732 5313 return 1;
0a5fff19
GN
5314 case 8: {
5315 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 5316 u8 cr8 = (u8)val;
eea1cff9 5317 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 5318 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
5319 if (irqchip_in_kernel(vcpu->kvm))
5320 return 1;
5321 if (cr8_prev <= cr8)
5322 return 1;
851ba692 5323 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5324 return 0;
5325 }
4b8073e4 5326 }
6aa8b732 5327 break;
25c4c276 5328 case 2: /* clts */
eeadf9e7 5329 handle_clts(vcpu);
4d4ec087 5330 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 5331 skip_emulated_instruction(vcpu);
6b52d186 5332 vmx_fpu_activate(vcpu);
25c4c276 5333 return 1;
6aa8b732
AK
5334 case 1: /*mov from cr*/
5335 switch (cr) {
5336 case 3:
9f8fe504
AK
5337 val = kvm_read_cr3(vcpu);
5338 kvm_register_write(vcpu, reg, val);
5339 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5340 skip_emulated_instruction(vcpu);
5341 return 1;
5342 case 8:
229456fc
MT
5343 val = kvm_get_cr8(vcpu);
5344 kvm_register_write(vcpu, reg, val);
5345 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5346 skip_emulated_instruction(vcpu);
5347 return 1;
5348 }
5349 break;
5350 case 3: /* lmsw */
a1f83a74 5351 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 5352 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 5353 kvm_lmsw(vcpu, val);
6aa8b732
AK
5354
5355 skip_emulated_instruction(vcpu);
5356 return 1;
5357 default:
5358 break;
5359 }
851ba692 5360 vcpu->run->exit_reason = 0;
a737f256 5361 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
5362 (int)(exit_qualification >> 4) & 3, cr);
5363 return 0;
5364}
5365
851ba692 5366static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 5367{
bfdaab09 5368 unsigned long exit_qualification;
16f8a6f9
NA
5369 int dr, dr7, reg;
5370
5371 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5372 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5373
5374 /* First, if DR does not exist, trigger UD */
5375 if (!kvm_require_dr(vcpu, dr))
5376 return 1;
6aa8b732 5377
f2483415 5378 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
5379 if (!kvm_require_cpl(vcpu, 0))
5380 return 1;
16f8a6f9
NA
5381 dr7 = vmcs_readl(GUEST_DR7);
5382 if (dr7 & DR7_GD) {
42dbaa5a
JK
5383 /*
5384 * As the vm-exit takes precedence over the debug trap, we
5385 * need to emulate the latter, either for the host or the
5386 * guest debugging itself.
5387 */
5388 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 5389 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 5390 vcpu->run->debug.arch.dr7 = dr7;
82b32774 5391 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
5392 vcpu->run->debug.arch.exception = DB_VECTOR;
5393 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
5394 return 0;
5395 } else {
7305eb5d 5396 vcpu->arch.dr6 &= ~15;
6f43ed01 5397 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
5398 kvm_queue_exception(vcpu, DB_VECTOR);
5399 return 1;
5400 }
5401 }
5402
81908bf4
PB
5403 if (vcpu->guest_debug == 0) {
5404 u32 cpu_based_vm_exec_control;
5405
5406 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5407 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5408 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5409
5410 /*
5411 * No more DR vmexits; force a reload of the debug registers
5412 * and reenter on this instruction. The next vmexit will
5413 * retrieve the full state of the debug registers.
5414 */
5415 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5416 return 1;
5417 }
5418
42dbaa5a
JK
5419 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5420 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 5421 unsigned long val;
4c4d563b
JK
5422
5423 if (kvm_get_dr(vcpu, dr, &val))
5424 return 1;
5425 kvm_register_write(vcpu, reg, val);
020df079 5426 } else
5777392e 5427 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
5428 return 1;
5429
6aa8b732
AK
5430 skip_emulated_instruction(vcpu);
5431 return 1;
5432}
5433
73aaf249
JK
5434static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5435{
5436 return vcpu->arch.dr6;
5437}
5438
5439static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5440{
5441}
5442
81908bf4
PB
5443static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5444{
5445 u32 cpu_based_vm_exec_control;
5446
5447 get_debugreg(vcpu->arch.db[0], 0);
5448 get_debugreg(vcpu->arch.db[1], 1);
5449 get_debugreg(vcpu->arch.db[2], 2);
5450 get_debugreg(vcpu->arch.db[3], 3);
5451 get_debugreg(vcpu->arch.dr6, 6);
5452 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5453
5454 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5455
5456 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5457 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5458 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5459}
5460
020df079
GN
5461static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5462{
5463 vmcs_writel(GUEST_DR7, val);
5464}
5465
851ba692 5466static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 5467{
06465c5a
AK
5468 kvm_emulate_cpuid(vcpu);
5469 return 1;
6aa8b732
AK
5470}
5471
851ba692 5472static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 5473{
ad312c7c 5474 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 5475 struct msr_data msr_info;
6aa8b732 5476
609e36d3
PB
5477 msr_info.index = ecx;
5478 msr_info.host_initiated = false;
5479 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 5480 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 5481 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5482 return 1;
5483 }
5484
609e36d3 5485 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 5486
6aa8b732 5487 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
5488 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5489 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6aa8b732
AK
5490 skip_emulated_instruction(vcpu);
5491 return 1;
5492}
5493
851ba692 5494static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 5495{
8fe8ab46 5496 struct msr_data msr;
ad312c7c
ZX
5497 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5498 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5499 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 5500
8fe8ab46
WA
5501 msr.data = data;
5502 msr.index = ecx;
5503 msr.host_initiated = false;
854e8bb1 5504 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 5505 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 5506 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5507 return 1;
5508 }
5509
59200273 5510 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
5511 skip_emulated_instruction(vcpu);
5512 return 1;
5513}
5514
851ba692 5515static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 5516{
3842d135 5517 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
5518 return 1;
5519}
5520
851ba692 5521static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 5522{
85f455f7
ED
5523 u32 cpu_based_vm_exec_control;
5524
5525 /* clear pending irq */
5526 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5527 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5528 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 5529
3842d135
AK
5530 kvm_make_request(KVM_REQ_EVENT, vcpu);
5531
a26bf12a 5532 ++vcpu->stat.irq_window_exits;
2714d1d3 5533
c1150d8c
DL
5534 /*
5535 * If the user space waits to inject interrupts, exit as soon as
5536 * possible
5537 */
8061823a 5538 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 5539 vcpu->run->request_interrupt_window &&
8061823a 5540 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 5541 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
5542 return 0;
5543 }
6aa8b732
AK
5544 return 1;
5545}
5546
851ba692 5547static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 5548{
d3bef15f 5549 return kvm_emulate_halt(vcpu);
6aa8b732
AK
5550}
5551
851ba692 5552static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 5553{
7aa81cc0
AL
5554 kvm_emulate_hypercall(vcpu);
5555 return 1;
c21415e8
IM
5556}
5557
ec25d5e6
GN
5558static int handle_invd(struct kvm_vcpu *vcpu)
5559{
51d8b661 5560 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
5561}
5562
851ba692 5563static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 5564{
f9c617f6 5565 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
5566
5567 kvm_mmu_invlpg(vcpu, exit_qualification);
5568 skip_emulated_instruction(vcpu);
5569 return 1;
5570}
5571
fee84b07
AK
5572static int handle_rdpmc(struct kvm_vcpu *vcpu)
5573{
5574 int err;
5575
5576 err = kvm_rdpmc(vcpu);
5577 kvm_complete_insn_gp(vcpu, err);
5578
5579 return 1;
5580}
5581
851ba692 5582static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 5583{
f5f48ee1 5584 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
5585 return 1;
5586}
5587
2acf923e
DC
5588static int handle_xsetbv(struct kvm_vcpu *vcpu)
5589{
5590 u64 new_bv = kvm_read_edx_eax(vcpu);
5591 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5592
5593 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5594 skip_emulated_instruction(vcpu);
5595 return 1;
5596}
5597
f53cd63c
WL
5598static int handle_xsaves(struct kvm_vcpu *vcpu)
5599{
5600 skip_emulated_instruction(vcpu);
5601 WARN(1, "this should never happen\n");
5602 return 1;
5603}
5604
5605static int handle_xrstors(struct kvm_vcpu *vcpu)
5606{
5607 skip_emulated_instruction(vcpu);
5608 WARN(1, "this should never happen\n");
5609 return 1;
5610}
5611
851ba692 5612static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 5613{
58fbbf26
KT
5614 if (likely(fasteoi)) {
5615 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5616 int access_type, offset;
5617
5618 access_type = exit_qualification & APIC_ACCESS_TYPE;
5619 offset = exit_qualification & APIC_ACCESS_OFFSET;
5620 /*
5621 * Sane guest uses MOV to write EOI, with written value
5622 * not cared. So make a short-circuit here by avoiding
5623 * heavy instruction emulation.
5624 */
5625 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5626 (offset == APIC_EOI)) {
5627 kvm_lapic_set_eoi(vcpu);
5628 skip_emulated_instruction(vcpu);
5629 return 1;
5630 }
5631 }
51d8b661 5632 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
5633}
5634
c7c9c56c
YZ
5635static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5636{
5637 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5638 int vector = exit_qualification & 0xff;
5639
5640 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5641 kvm_apic_set_eoi_accelerated(vcpu, vector);
5642 return 1;
5643}
5644
83d4c286
YZ
5645static int handle_apic_write(struct kvm_vcpu *vcpu)
5646{
5647 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5648 u32 offset = exit_qualification & 0xfff;
5649
5650 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5651 kvm_apic_write_nodecode(vcpu, offset);
5652 return 1;
5653}
5654
851ba692 5655static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 5656{
60637aac 5657 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 5658 unsigned long exit_qualification;
e269fb21
JK
5659 bool has_error_code = false;
5660 u32 error_code = 0;
37817f29 5661 u16 tss_selector;
7f3d35fd 5662 int reason, type, idt_v, idt_index;
64a7ec06
GN
5663
5664 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 5665 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 5666 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
5667
5668 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5669
5670 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
5671 if (reason == TASK_SWITCH_GATE && idt_v) {
5672 switch (type) {
5673 case INTR_TYPE_NMI_INTR:
5674 vcpu->arch.nmi_injected = false;
654f06fc 5675 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
5676 break;
5677 case INTR_TYPE_EXT_INTR:
66fd3f7f 5678 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
5679 kvm_clear_interrupt_queue(vcpu);
5680 break;
5681 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
5682 if (vmx->idt_vectoring_info &
5683 VECTORING_INFO_DELIVER_CODE_MASK) {
5684 has_error_code = true;
5685 error_code =
5686 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5687 }
5688 /* fall through */
64a7ec06
GN
5689 case INTR_TYPE_SOFT_EXCEPTION:
5690 kvm_clear_exception_queue(vcpu);
5691 break;
5692 default:
5693 break;
5694 }
60637aac 5695 }
37817f29
IE
5696 tss_selector = exit_qualification;
5697
64a7ec06
GN
5698 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5699 type != INTR_TYPE_EXT_INTR &&
5700 type != INTR_TYPE_NMI_INTR))
5701 skip_emulated_instruction(vcpu);
5702
7f3d35fd
KW
5703 if (kvm_task_switch(vcpu, tss_selector,
5704 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5705 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
5706 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5707 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5708 vcpu->run->internal.ndata = 0;
42dbaa5a 5709 return 0;
acb54517 5710 }
42dbaa5a 5711
42dbaa5a
JK
5712 /*
5713 * TODO: What about debug traps on tss switch?
5714 * Are we supposed to inject them and update dr6?
5715 */
5716
5717 return 1;
37817f29
IE
5718}
5719
851ba692 5720static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 5721{
f9c617f6 5722 unsigned long exit_qualification;
1439442c 5723 gpa_t gpa;
4f5982a5 5724 u32 error_code;
1439442c 5725 int gla_validity;
1439442c 5726
f9c617f6 5727 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 5728
1439442c
SY
5729 gla_validity = (exit_qualification >> 7) & 0x3;
5730 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5731 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5732 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5733 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 5734 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
5735 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5736 (long unsigned int)exit_qualification);
851ba692
AK
5737 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5738 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 5739 return 0;
1439442c
SY
5740 }
5741
0be9c7a8
GN
5742 /*
5743 * EPT violation happened while executing iret from NMI,
5744 * "blocked by NMI" bit has to be set before next VM entry.
5745 * There are errata that may cause this bit to not be set:
5746 * AAK134, BY25.
5747 */
bcd1c294
GN
5748 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5749 cpu_has_virtual_nmis() &&
5750 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
5751 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5752
1439442c 5753 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 5754 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5
XG
5755
5756 /* It is a write fault? */
81ed33e4 5757 error_code = exit_qualification & PFERR_WRITE_MASK;
25d92081 5758 /* It is a fetch fault? */
81ed33e4 5759 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
4f5982a5 5760 /* ept page table is present? */
81ed33e4 5761 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
4f5982a5 5762
25d92081
YZ
5763 vcpu->arch.exit_qualification = exit_qualification;
5764
4f5982a5 5765 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
5766}
5767
851ba692 5768static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 5769{
f735d4af 5770 int ret;
68f89400
MT
5771 gpa_t gpa;
5772
5773 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
e32edf4f 5774 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
68c3b4d1
MT
5775 skip_emulated_instruction(vcpu);
5776 return 1;
5777 }
68f89400 5778
ce88decf 5779 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
b37fbea6 5780 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
5781 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5782 EMULATE_DONE;
f8f55942
XG
5783
5784 if (unlikely(ret == RET_MMIO_PF_INVALID))
5785 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5786
b37fbea6 5787 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
5788 return 1;
5789
5790 /* It is the real ept misconfig */
f735d4af 5791 WARN_ON(1);
68f89400 5792
851ba692
AK
5793 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5794 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
5795
5796 return 0;
5797}
5798
851ba692 5799static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
5800{
5801 u32 cpu_based_vm_exec_control;
5802
5803 /* clear pending NMI */
5804 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5805 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5806 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5807 ++vcpu->stat.nmi_window_exits;
3842d135 5808 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
5809
5810 return 1;
5811}
5812
80ced186 5813static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 5814{
8b3079a5
AK
5815 struct vcpu_vmx *vmx = to_vmx(vcpu);
5816 enum emulation_result err = EMULATE_DONE;
80ced186 5817 int ret = 1;
49e9d557
AK
5818 u32 cpu_exec_ctrl;
5819 bool intr_window_requested;
b8405c18 5820 unsigned count = 130;
49e9d557
AK
5821
5822 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5823 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 5824
98eb2f8b 5825 while (vmx->emulation_required && count-- != 0) {
bdea48e3 5826 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
5827 return handle_interrupt_window(&vmx->vcpu);
5828
de87dcdd
AK
5829 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5830 return 1;
5831
991eebf9 5832 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 5833
ac0a48c3 5834 if (err == EMULATE_USER_EXIT) {
94452b9e 5835 ++vcpu->stat.mmio_exits;
80ced186
MG
5836 ret = 0;
5837 goto out;
5838 }
1d5a4d9b 5839
de5f70e0
AK
5840 if (err != EMULATE_DONE) {
5841 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5842 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5843 vcpu->run->internal.ndata = 0;
6d77dbfc 5844 return 0;
de5f70e0 5845 }
ea953ef0 5846
8d76c49e
GN
5847 if (vcpu->arch.halt_request) {
5848 vcpu->arch.halt_request = 0;
5cb56059 5849 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
5850 goto out;
5851 }
5852
ea953ef0 5853 if (signal_pending(current))
80ced186 5854 goto out;
ea953ef0
MG
5855 if (need_resched())
5856 schedule();
5857 }
5858
80ced186
MG
5859out:
5860 return ret;
ea953ef0
MG
5861}
5862
b4a2d31d
RK
5863static int __grow_ple_window(int val)
5864{
5865 if (ple_window_grow < 1)
5866 return ple_window;
5867
5868 val = min(val, ple_window_actual_max);
5869
5870 if (ple_window_grow < ple_window)
5871 val *= ple_window_grow;
5872 else
5873 val += ple_window_grow;
5874
5875 return val;
5876}
5877
5878static int __shrink_ple_window(int val, int modifier, int minimum)
5879{
5880 if (modifier < 1)
5881 return ple_window;
5882
5883 if (modifier < ple_window)
5884 val /= modifier;
5885 else
5886 val -= modifier;
5887
5888 return max(val, minimum);
5889}
5890
5891static void grow_ple_window(struct kvm_vcpu *vcpu)
5892{
5893 struct vcpu_vmx *vmx = to_vmx(vcpu);
5894 int old = vmx->ple_window;
5895
5896 vmx->ple_window = __grow_ple_window(old);
5897
5898 if (vmx->ple_window != old)
5899 vmx->ple_window_dirty = true;
7b46268d
RK
5900
5901 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
5902}
5903
5904static void shrink_ple_window(struct kvm_vcpu *vcpu)
5905{
5906 struct vcpu_vmx *vmx = to_vmx(vcpu);
5907 int old = vmx->ple_window;
5908
5909 vmx->ple_window = __shrink_ple_window(old,
5910 ple_window_shrink, ple_window);
5911
5912 if (vmx->ple_window != old)
5913 vmx->ple_window_dirty = true;
7b46268d
RK
5914
5915 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
5916}
5917
5918/*
5919 * ple_window_actual_max is computed to be one grow_ple_window() below
5920 * ple_window_max. (See __grow_ple_window for the reason.)
5921 * This prevents overflows, because ple_window_max is int.
5922 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5923 * this process.
5924 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5925 */
5926static void update_ple_window_actual_max(void)
5927{
5928 ple_window_actual_max =
5929 __shrink_ple_window(max(ple_window_max, ple_window),
5930 ple_window_grow, INT_MIN);
5931}
5932
f2c7648d
TC
5933static __init int hardware_setup(void)
5934{
34a1cd60
TC
5935 int r = -ENOMEM, i, msr;
5936
5937 rdmsrl_safe(MSR_EFER, &host_efer);
5938
5939 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
5940 kvm_define_shared_msr(i, vmx_msr_index[i]);
5941
5942 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
5943 if (!vmx_io_bitmap_a)
5944 return r;
5945
5946 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
5947 if (!vmx_io_bitmap_b)
5948 goto out;
5949
5950 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
5951 if (!vmx_msr_bitmap_legacy)
5952 goto out1;
5953
5954 vmx_msr_bitmap_legacy_x2apic =
5955 (unsigned long *)__get_free_page(GFP_KERNEL);
5956 if (!vmx_msr_bitmap_legacy_x2apic)
5957 goto out2;
5958
5959 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
5960 if (!vmx_msr_bitmap_longmode)
5961 goto out3;
5962
5963 vmx_msr_bitmap_longmode_x2apic =
5964 (unsigned long *)__get_free_page(GFP_KERNEL);
5965 if (!vmx_msr_bitmap_longmode_x2apic)
5966 goto out4;
3af18d9c
WV
5967
5968 if (nested) {
5969 vmx_msr_bitmap_nested =
5970 (unsigned long *)__get_free_page(GFP_KERNEL);
5971 if (!vmx_msr_bitmap_nested)
5972 goto out5;
5973 }
5974
34a1cd60
TC
5975 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5976 if (!vmx_vmread_bitmap)
3af18d9c 5977 goto out6;
34a1cd60
TC
5978
5979 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5980 if (!vmx_vmwrite_bitmap)
3af18d9c 5981 goto out7;
34a1cd60
TC
5982
5983 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
5984 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
5985
5986 /*
5987 * Allow direct access to the PC debug port (it is often used for I/O
5988 * delays, but the vmexits simply slow things down).
5989 */
5990 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
5991 clear_bit(0x80, vmx_io_bitmap_a);
5992
5993 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
5994
5995 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
5996 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3af18d9c
WV
5997 if (nested)
5998 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
34a1cd60 5999
34a1cd60
TC
6000 if (setup_vmcs_config(&vmcs_config) < 0) {
6001 r = -EIO;
3af18d9c 6002 goto out8;
baa03522 6003 }
f2c7648d
TC
6004
6005 if (boot_cpu_has(X86_FEATURE_NX))
6006 kvm_enable_efer_bits(EFER_NX);
6007
6008 if (!cpu_has_vmx_vpid())
6009 enable_vpid = 0;
6010 if (!cpu_has_vmx_shadow_vmcs())
6011 enable_shadow_vmcs = 0;
6012 if (enable_shadow_vmcs)
6013 init_vmcs_shadow_fields();
6014
6015 if (!cpu_has_vmx_ept() ||
6016 !cpu_has_vmx_ept_4levels()) {
6017 enable_ept = 0;
6018 enable_unrestricted_guest = 0;
6019 enable_ept_ad_bits = 0;
6020 }
6021
6022 if (!cpu_has_vmx_ept_ad_bits())
6023 enable_ept_ad_bits = 0;
6024
6025 if (!cpu_has_vmx_unrestricted_guest())
6026 enable_unrestricted_guest = 0;
6027
ad15a296 6028 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6029 flexpriority_enabled = 0;
6030
ad15a296
PB
6031 /*
6032 * set_apic_access_page_addr() is used to reload apic access
6033 * page upon invalidation. No need to do anything if not
6034 * using the APIC_ACCESS_ADDR VMCS field.
6035 */
6036 if (!flexpriority_enabled)
f2c7648d 6037 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6038
6039 if (!cpu_has_vmx_tpr_shadow())
6040 kvm_x86_ops->update_cr8_intercept = NULL;
6041
6042 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6043 kvm_disable_largepages();
6044
6045 if (!cpu_has_vmx_ple())
6046 ple_gap = 0;
6047
6048 if (!cpu_has_vmx_apicv())
6049 enable_apicv = 0;
6050
6051 if (enable_apicv)
6052 kvm_x86_ops->update_cr8_intercept = NULL;
6053 else {
6054 kvm_x86_ops->hwapic_irr_update = NULL;
b4eef9b3 6055 kvm_x86_ops->hwapic_isr_update = NULL;
f2c7648d
TC
6056 kvm_x86_ops->deliver_posted_interrupt = NULL;
6057 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6058 }
6059
baa03522
TC
6060 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6061 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6062 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6063 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6064 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6065 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6066 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6067
6068 memcpy(vmx_msr_bitmap_legacy_x2apic,
6069 vmx_msr_bitmap_legacy, PAGE_SIZE);
6070 memcpy(vmx_msr_bitmap_longmode_x2apic,
6071 vmx_msr_bitmap_longmode, PAGE_SIZE);
6072
04bb92e4
WL
6073 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6074
baa03522
TC
6075 if (enable_apicv) {
6076 for (msr = 0x800; msr <= 0x8ff; msr++)
6077 vmx_disable_intercept_msr_read_x2apic(msr);
6078
6079 /* According SDM, in x2apic mode, the whole id reg is used.
6080 * But in KVM, it only use the highest eight bits. Need to
6081 * intercept it */
6082 vmx_enable_intercept_msr_read_x2apic(0x802);
6083 /* TMCCT */
6084 vmx_enable_intercept_msr_read_x2apic(0x839);
6085 /* TPR */
6086 vmx_disable_intercept_msr_write_x2apic(0x808);
6087 /* EOI */
6088 vmx_disable_intercept_msr_write_x2apic(0x80b);
6089 /* SELF-IPI */
6090 vmx_disable_intercept_msr_write_x2apic(0x83f);
6091 }
6092
6093 if (enable_ept) {
6094 kvm_mmu_set_mask_ptes(0ull,
6095 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6096 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6097 0ull, VMX_EPT_EXECUTABLE_MASK);
6098 ept_set_mmio_spte_mask();
6099 kvm_enable_tdp();
6100 } else
6101 kvm_disable_tdp();
6102
6103 update_ple_window_actual_max();
6104
843e4330
KH
6105 /*
6106 * Only enable PML when hardware supports PML feature, and both EPT
6107 * and EPT A/D bit features are enabled -- PML depends on them to work.
6108 */
6109 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6110 enable_pml = 0;
6111
6112 if (!enable_pml) {
6113 kvm_x86_ops->slot_enable_log_dirty = NULL;
6114 kvm_x86_ops->slot_disable_log_dirty = NULL;
6115 kvm_x86_ops->flush_log_dirty = NULL;
6116 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6117 }
6118
f2c7648d 6119 return alloc_kvm_area();
34a1cd60 6120
3af18d9c 6121out8:
34a1cd60 6122 free_page((unsigned long)vmx_vmwrite_bitmap);
3af18d9c 6123out7:
34a1cd60 6124 free_page((unsigned long)vmx_vmread_bitmap);
3af18d9c
WV
6125out6:
6126 if (nested)
6127 free_page((unsigned long)vmx_msr_bitmap_nested);
34a1cd60
TC
6128out5:
6129 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6130out4:
6131 free_page((unsigned long)vmx_msr_bitmap_longmode);
6132out3:
6133 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6134out2:
6135 free_page((unsigned long)vmx_msr_bitmap_legacy);
6136out1:
6137 free_page((unsigned long)vmx_io_bitmap_b);
6138out:
6139 free_page((unsigned long)vmx_io_bitmap_a);
6140
6141 return r;
f2c7648d
TC
6142}
6143
6144static __exit void hardware_unsetup(void)
6145{
34a1cd60
TC
6146 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6147 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6148 free_page((unsigned long)vmx_msr_bitmap_legacy);
6149 free_page((unsigned long)vmx_msr_bitmap_longmode);
6150 free_page((unsigned long)vmx_io_bitmap_b);
6151 free_page((unsigned long)vmx_io_bitmap_a);
6152 free_page((unsigned long)vmx_vmwrite_bitmap);
6153 free_page((unsigned long)vmx_vmread_bitmap);
3af18d9c
WV
6154 if (nested)
6155 free_page((unsigned long)vmx_msr_bitmap_nested);
34a1cd60 6156
f2c7648d
TC
6157 free_kvm_area();
6158}
6159
4b8d54f9
ZE
6160/*
6161 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6162 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6163 */
9fb41ba8 6164static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6165{
b4a2d31d
RK
6166 if (ple_gap)
6167 grow_ple_window(vcpu);
6168
4b8d54f9
ZE
6169 skip_emulated_instruction(vcpu);
6170 kvm_vcpu_on_spin(vcpu);
6171
6172 return 1;
6173}
6174
87c00572 6175static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6176{
87c00572 6177 skip_emulated_instruction(vcpu);
59708670
SY
6178 return 1;
6179}
6180
87c00572
GS
6181static int handle_mwait(struct kvm_vcpu *vcpu)
6182{
6183 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6184 return handle_nop(vcpu);
6185}
6186
5f3d45e7
MD
6187static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6188{
6189 return 1;
6190}
6191
87c00572
GS
6192static int handle_monitor(struct kvm_vcpu *vcpu)
6193{
6194 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6195 return handle_nop(vcpu);
6196}
6197
ff2f6fe9
NHE
6198/*
6199 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6200 * We could reuse a single VMCS for all the L2 guests, but we also want the
6201 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6202 * allows keeping them loaded on the processor, and in the future will allow
6203 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6204 * every entry if they never change.
6205 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6206 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6207 *
6208 * The following functions allocate and free a vmcs02 in this pool.
6209 */
6210
6211/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6212static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6213{
6214 struct vmcs02_list *item;
6215 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6216 if (item->vmptr == vmx->nested.current_vmptr) {
6217 list_move(&item->list, &vmx->nested.vmcs02_pool);
6218 return &item->vmcs02;
6219 }
6220
6221 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6222 /* Recycle the least recently used VMCS. */
6223 item = list_entry(vmx->nested.vmcs02_pool.prev,
6224 struct vmcs02_list, list);
6225 item->vmptr = vmx->nested.current_vmptr;
6226 list_move(&item->list, &vmx->nested.vmcs02_pool);
6227 return &item->vmcs02;
6228 }
6229
6230 /* Create a new VMCS */
0fa24ce3 6231 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6232 if (!item)
6233 return NULL;
6234 item->vmcs02.vmcs = alloc_vmcs();
6235 if (!item->vmcs02.vmcs) {
6236 kfree(item);
6237 return NULL;
6238 }
6239 loaded_vmcs_init(&item->vmcs02);
6240 item->vmptr = vmx->nested.current_vmptr;
6241 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6242 vmx->nested.vmcs02_num++;
6243 return &item->vmcs02;
6244}
6245
6246/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6247static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6248{
6249 struct vmcs02_list *item;
6250 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6251 if (item->vmptr == vmptr) {
6252 free_loaded_vmcs(&item->vmcs02);
6253 list_del(&item->list);
6254 kfree(item);
6255 vmx->nested.vmcs02_num--;
6256 return;
6257 }
6258}
6259
6260/*
6261 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6262 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6263 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6264 */
6265static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6266{
6267 struct vmcs02_list *item, *n;
4fa7734c
PB
6268
6269 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 6270 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
6271 /*
6272 * Something will leak if the above WARN triggers. Better than
6273 * a use-after-free.
6274 */
6275 if (vmx->loaded_vmcs == &item->vmcs02)
6276 continue;
6277
6278 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
6279 list_del(&item->list);
6280 kfree(item);
4fa7734c 6281 vmx->nested.vmcs02_num--;
ff2f6fe9 6282 }
ff2f6fe9
NHE
6283}
6284
0658fbaa
ACL
6285/*
6286 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6287 * set the success or error code of an emulated VMX instruction, as specified
6288 * by Vol 2B, VMX Instruction Reference, "Conventions".
6289 */
6290static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6291{
6292 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6293 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6294 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6295}
6296
6297static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6298{
6299 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6300 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6301 X86_EFLAGS_SF | X86_EFLAGS_OF))
6302 | X86_EFLAGS_CF);
6303}
6304
145c28dd 6305static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
6306 u32 vm_instruction_error)
6307{
6308 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6309 /*
6310 * failValid writes the error number to the current VMCS, which
6311 * can't be done there isn't a current VMCS.
6312 */
6313 nested_vmx_failInvalid(vcpu);
6314 return;
6315 }
6316 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6317 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6318 X86_EFLAGS_SF | X86_EFLAGS_OF))
6319 | X86_EFLAGS_ZF);
6320 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6321 /*
6322 * We don't need to force a shadow sync because
6323 * VM_INSTRUCTION_ERROR is not shadowed
6324 */
6325}
145c28dd 6326
ff651cb6
WV
6327static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6328{
6329 /* TODO: not to reset guest simply here. */
6330 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6331 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6332}
6333
f4124500
JK
6334static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6335{
6336 struct vcpu_vmx *vmx =
6337 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6338
6339 vmx->nested.preemption_timer_expired = true;
6340 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6341 kvm_vcpu_kick(&vmx->vcpu);
6342
6343 return HRTIMER_NORESTART;
6344}
6345
19677e32
BD
6346/*
6347 * Decode the memory-address operand of a vmx instruction, as recorded on an
6348 * exit caused by such an instruction (run by a guest hypervisor).
6349 * On success, returns 0. When the operand is invalid, returns 1 and throws
6350 * #UD or #GP.
6351 */
6352static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6353 unsigned long exit_qualification,
f9eb4af6 6354 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 6355{
f9eb4af6
EK
6356 gva_t off;
6357 bool exn;
6358 struct kvm_segment s;
6359
19677e32
BD
6360 /*
6361 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6362 * Execution", on an exit, vmx_instruction_info holds most of the
6363 * addressing components of the operand. Only the displacement part
6364 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6365 * For how an actual address is calculated from all these components,
6366 * refer to Vol. 1, "Operand Addressing".
6367 */
6368 int scaling = vmx_instruction_info & 3;
6369 int addr_size = (vmx_instruction_info >> 7) & 7;
6370 bool is_reg = vmx_instruction_info & (1u << 10);
6371 int seg_reg = (vmx_instruction_info >> 15) & 7;
6372 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6373 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6374 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6375 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6376
6377 if (is_reg) {
6378 kvm_queue_exception(vcpu, UD_VECTOR);
6379 return 1;
6380 }
6381
6382 /* Addr = segment_base + offset */
6383 /* offset = base + [index * scale] + displacement */
f9eb4af6 6384 off = exit_qualification; /* holds the displacement */
19677e32 6385 if (base_is_valid)
f9eb4af6 6386 off += kvm_register_read(vcpu, base_reg);
19677e32 6387 if (index_is_valid)
f9eb4af6
EK
6388 off += kvm_register_read(vcpu, index_reg)<<scaling;
6389 vmx_get_segment(vcpu, &s, seg_reg);
6390 *ret = s.base + off;
19677e32
BD
6391
6392 if (addr_size == 1) /* 32 bit */
6393 *ret &= 0xffffffff;
6394
f9eb4af6
EK
6395 /* Checks for #GP/#SS exceptions. */
6396 exn = false;
6397 if (is_protmode(vcpu)) {
6398 /* Protected mode: apply checks for segment validity in the
6399 * following order:
6400 * - segment type check (#GP(0) may be thrown)
6401 * - usability check (#GP(0)/#SS(0))
6402 * - limit check (#GP(0)/#SS(0))
6403 */
6404 if (wr)
6405 /* #GP(0) if the destination operand is located in a
6406 * read-only data segment or any code segment.
6407 */
6408 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6409 else
6410 /* #GP(0) if the source operand is located in an
6411 * execute-only code segment
6412 */
6413 exn = ((s.type & 0xa) == 8);
6414 }
6415 if (exn) {
6416 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6417 return 1;
6418 }
6419 if (is_long_mode(vcpu)) {
6420 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6421 * non-canonical form. This is an only check for long mode.
6422 */
6423 exn = is_noncanonical_address(*ret);
6424 } else if (is_protmode(vcpu)) {
6425 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6426 */
6427 exn = (s.unusable != 0);
6428 /* Protected mode: #GP(0)/#SS(0) if the memory
6429 * operand is outside the segment limit.
6430 */
6431 exn = exn || (off + sizeof(u64) > s.limit);
6432 }
6433 if (exn) {
6434 kvm_queue_exception_e(vcpu,
6435 seg_reg == VCPU_SREG_SS ?
6436 SS_VECTOR : GP_VECTOR,
6437 0);
6438 return 1;
6439 }
6440
19677e32
BD
6441 return 0;
6442}
6443
3573e22c
BD
6444/*
6445 * This function performs the various checks including
6446 * - if it's 4KB aligned
6447 * - No bits beyond the physical address width are set
6448 * - Returns 0 on success or else 1
4291b588 6449 * (Intel SDM Section 30.3)
3573e22c 6450 */
4291b588
BD
6451static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6452 gpa_t *vmpointer)
3573e22c
BD
6453{
6454 gva_t gva;
6455 gpa_t vmptr;
6456 struct x86_exception e;
6457 struct page *page;
6458 struct vcpu_vmx *vmx = to_vmx(vcpu);
6459 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6460
6461 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 6462 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
6463 return 1;
6464
6465 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6466 sizeof(vmptr), &e)) {
6467 kvm_inject_page_fault(vcpu, &e);
6468 return 1;
6469 }
6470
6471 switch (exit_reason) {
6472 case EXIT_REASON_VMON:
6473 /*
6474 * SDM 3: 24.11.5
6475 * The first 4 bytes of VMXON region contain the supported
6476 * VMCS revision identifier
6477 *
6478 * Note - IA32_VMX_BASIC[48] will never be 1
6479 * for the nested case;
6480 * which replaces physical address width with 32
6481 *
6482 */
bc39c4db 6483 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
3573e22c
BD
6484 nested_vmx_failInvalid(vcpu);
6485 skip_emulated_instruction(vcpu);
6486 return 1;
6487 }
6488
6489 page = nested_get_page(vcpu, vmptr);
6490 if (page == NULL ||
6491 *(u32 *)kmap(page) != VMCS12_REVISION) {
6492 nested_vmx_failInvalid(vcpu);
6493 kunmap(page);
6494 skip_emulated_instruction(vcpu);
6495 return 1;
6496 }
6497 kunmap(page);
6498 vmx->nested.vmxon_ptr = vmptr;
6499 break;
4291b588 6500 case EXIT_REASON_VMCLEAR:
bc39c4db 6501 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6502 nested_vmx_failValid(vcpu,
6503 VMXERR_VMCLEAR_INVALID_ADDRESS);
6504 skip_emulated_instruction(vcpu);
6505 return 1;
6506 }
6507
6508 if (vmptr == vmx->nested.vmxon_ptr) {
6509 nested_vmx_failValid(vcpu,
6510 VMXERR_VMCLEAR_VMXON_POINTER);
6511 skip_emulated_instruction(vcpu);
6512 return 1;
6513 }
6514 break;
6515 case EXIT_REASON_VMPTRLD:
bc39c4db 6516 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6517 nested_vmx_failValid(vcpu,
6518 VMXERR_VMPTRLD_INVALID_ADDRESS);
6519 skip_emulated_instruction(vcpu);
6520 return 1;
6521 }
3573e22c 6522
4291b588
BD
6523 if (vmptr == vmx->nested.vmxon_ptr) {
6524 nested_vmx_failValid(vcpu,
6525 VMXERR_VMCLEAR_VMXON_POINTER);
6526 skip_emulated_instruction(vcpu);
6527 return 1;
6528 }
6529 break;
3573e22c
BD
6530 default:
6531 return 1; /* shouldn't happen */
6532 }
6533
4291b588
BD
6534 if (vmpointer)
6535 *vmpointer = vmptr;
3573e22c
BD
6536 return 0;
6537}
6538
ec378aee
NHE
6539/*
6540 * Emulate the VMXON instruction.
6541 * Currently, we just remember that VMX is active, and do not save or even
6542 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6543 * do not currently need to store anything in that guest-allocated memory
6544 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6545 * argument is different from the VMXON pointer (which the spec says they do).
6546 */
6547static int handle_vmon(struct kvm_vcpu *vcpu)
6548{
6549 struct kvm_segment cs;
6550 struct vcpu_vmx *vmx = to_vmx(vcpu);
8de48833 6551 struct vmcs *shadow_vmcs;
b3897a49
NHE
6552 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6553 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee
NHE
6554
6555 /* The Intel VMX Instruction Reference lists a bunch of bits that
6556 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6557 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6558 * Otherwise, we should fail with #UD. We test these now:
6559 */
6560 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6561 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6562 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6563 kvm_queue_exception(vcpu, UD_VECTOR);
6564 return 1;
6565 }
6566
6567 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6568 if (is_long_mode(vcpu) && !cs.l) {
6569 kvm_queue_exception(vcpu, UD_VECTOR);
6570 return 1;
6571 }
6572
6573 if (vmx_get_cpl(vcpu)) {
6574 kvm_inject_gp(vcpu, 0);
6575 return 1;
6576 }
3573e22c 6577
4291b588 6578 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
3573e22c
BD
6579 return 1;
6580
145c28dd
AG
6581 if (vmx->nested.vmxon) {
6582 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6583 skip_emulated_instruction(vcpu);
6584 return 1;
6585 }
b3897a49
NHE
6586
6587 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6588 != VMXON_NEEDED_FEATURES) {
6589 kvm_inject_gp(vcpu, 0);
6590 return 1;
6591 }
6592
8de48833
AG
6593 if (enable_shadow_vmcs) {
6594 shadow_vmcs = alloc_vmcs();
6595 if (!shadow_vmcs)
6596 return -ENOMEM;
6597 /* mark vmcs as shadow */
6598 shadow_vmcs->revision_id |= (1u << 31);
6599 /* init shadow vmcs */
6600 vmcs_clear(shadow_vmcs);
6601 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6602 }
ec378aee 6603
ff2f6fe9
NHE
6604 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6605 vmx->nested.vmcs02_num = 0;
6606
f4124500
JK
6607 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6608 HRTIMER_MODE_REL);
6609 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6610
ec378aee
NHE
6611 vmx->nested.vmxon = true;
6612
6613 skip_emulated_instruction(vcpu);
a25eb114 6614 nested_vmx_succeed(vcpu);
ec378aee
NHE
6615 return 1;
6616}
6617
6618/*
6619 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6620 * for running VMX instructions (except VMXON, whose prerequisites are
6621 * slightly different). It also specifies what exception to inject otherwise.
6622 */
6623static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6624{
6625 struct kvm_segment cs;
6626 struct vcpu_vmx *vmx = to_vmx(vcpu);
6627
6628 if (!vmx->nested.vmxon) {
6629 kvm_queue_exception(vcpu, UD_VECTOR);
6630 return 0;
6631 }
6632
6633 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6634 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6635 (is_long_mode(vcpu) && !cs.l)) {
6636 kvm_queue_exception(vcpu, UD_VECTOR);
6637 return 0;
6638 }
6639
6640 if (vmx_get_cpl(vcpu)) {
6641 kvm_inject_gp(vcpu, 0);
6642 return 0;
6643 }
6644
6645 return 1;
6646}
6647
e7953d7f
AG
6648static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6649{
8a1b9dd0 6650 u32 exec_control;
9a2a05b9
PB
6651 if (vmx->nested.current_vmptr == -1ull)
6652 return;
6653
6654 /* current_vmptr and current_vmcs12 are always set/reset together */
6655 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6656 return;
6657
012f83cb 6658 if (enable_shadow_vmcs) {
9a2a05b9
PB
6659 /* copy to memory all shadowed fields in case
6660 they were modified */
6661 copy_shadow_to_vmcs12(vmx);
6662 vmx->nested.sync_shadow_vmcs = false;
6663 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6664 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6665 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6666 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb 6667 }
705699a1 6668 vmx->nested.posted_intr_nv = -1;
e7953d7f
AG
6669 kunmap(vmx->nested.current_vmcs12_page);
6670 nested_release_page(vmx->nested.current_vmcs12_page);
9a2a05b9
PB
6671 vmx->nested.current_vmptr = -1ull;
6672 vmx->nested.current_vmcs12 = NULL;
e7953d7f
AG
6673}
6674
ec378aee
NHE
6675/*
6676 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6677 * just stops using VMX.
6678 */
6679static void free_nested(struct vcpu_vmx *vmx)
6680{
6681 if (!vmx->nested.vmxon)
6682 return;
9a2a05b9 6683
ec378aee 6684 vmx->nested.vmxon = false;
9a2a05b9 6685 nested_release_vmcs12(vmx);
e7953d7f
AG
6686 if (enable_shadow_vmcs)
6687 free_vmcs(vmx->nested.current_shadow_vmcs);
fe3ef05c
NHE
6688 /* Unpin physical memory we referred to in current vmcs02 */
6689 if (vmx->nested.apic_access_page) {
6690 nested_release_page(vmx->nested.apic_access_page);
48d89b92 6691 vmx->nested.apic_access_page = NULL;
fe3ef05c 6692 }
a7c0b07d
WL
6693 if (vmx->nested.virtual_apic_page) {
6694 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 6695 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 6696 }
705699a1
WV
6697 if (vmx->nested.pi_desc_page) {
6698 kunmap(vmx->nested.pi_desc_page);
6699 nested_release_page(vmx->nested.pi_desc_page);
6700 vmx->nested.pi_desc_page = NULL;
6701 vmx->nested.pi_desc = NULL;
6702 }
ff2f6fe9
NHE
6703
6704 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
6705}
6706
6707/* Emulate the VMXOFF instruction */
6708static int handle_vmoff(struct kvm_vcpu *vcpu)
6709{
6710 if (!nested_vmx_check_permission(vcpu))
6711 return 1;
6712 free_nested(to_vmx(vcpu));
6713 skip_emulated_instruction(vcpu);
a25eb114 6714 nested_vmx_succeed(vcpu);
ec378aee
NHE
6715 return 1;
6716}
6717
27d6c865
NHE
6718/* Emulate the VMCLEAR instruction */
6719static int handle_vmclear(struct kvm_vcpu *vcpu)
6720{
6721 struct vcpu_vmx *vmx = to_vmx(vcpu);
27d6c865
NHE
6722 gpa_t vmptr;
6723 struct vmcs12 *vmcs12;
6724 struct page *page;
27d6c865
NHE
6725
6726 if (!nested_vmx_check_permission(vcpu))
6727 return 1;
6728
4291b588 6729 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
27d6c865 6730 return 1;
27d6c865 6731
9a2a05b9 6732 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 6733 nested_release_vmcs12(vmx);
27d6c865
NHE
6734
6735 page = nested_get_page(vcpu, vmptr);
6736 if (page == NULL) {
6737 /*
6738 * For accurate processor emulation, VMCLEAR beyond available
6739 * physical memory should do nothing at all. However, it is
6740 * possible that a nested vmx bug, not a guest hypervisor bug,
6741 * resulted in this case, so let's shut down before doing any
6742 * more damage:
6743 */
6744 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6745 return 1;
6746 }
6747 vmcs12 = kmap(page);
6748 vmcs12->launch_state = 0;
6749 kunmap(page);
6750 nested_release_page(page);
6751
6752 nested_free_vmcs02(vmx, vmptr);
6753
6754 skip_emulated_instruction(vcpu);
6755 nested_vmx_succeed(vcpu);
6756 return 1;
6757}
6758
cd232ad0
NHE
6759static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6760
6761/* Emulate the VMLAUNCH instruction */
6762static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6763{
6764 return nested_vmx_run(vcpu, true);
6765}
6766
6767/* Emulate the VMRESUME instruction */
6768static int handle_vmresume(struct kvm_vcpu *vcpu)
6769{
6770
6771 return nested_vmx_run(vcpu, false);
6772}
6773
49f705c5
NHE
6774enum vmcs_field_type {
6775 VMCS_FIELD_TYPE_U16 = 0,
6776 VMCS_FIELD_TYPE_U64 = 1,
6777 VMCS_FIELD_TYPE_U32 = 2,
6778 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6779};
6780
6781static inline int vmcs_field_type(unsigned long field)
6782{
6783 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6784 return VMCS_FIELD_TYPE_U32;
6785 return (field >> 13) & 0x3 ;
6786}
6787
6788static inline int vmcs_field_readonly(unsigned long field)
6789{
6790 return (((field >> 10) & 0x3) == 1);
6791}
6792
6793/*
6794 * Read a vmcs12 field. Since these can have varying lengths and we return
6795 * one type, we chose the biggest type (u64) and zero-extend the return value
6796 * to that size. Note that the caller, handle_vmread, might need to use only
6797 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6798 * 64-bit fields are to be returned).
6799 */
a2ae9df7
PB
6800static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6801 unsigned long field, u64 *ret)
49f705c5
NHE
6802{
6803 short offset = vmcs_field_to_offset(field);
6804 char *p;
6805
6806 if (offset < 0)
a2ae9df7 6807 return offset;
49f705c5
NHE
6808
6809 p = ((char *)(get_vmcs12(vcpu))) + offset;
6810
6811 switch (vmcs_field_type(field)) {
6812 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6813 *ret = *((natural_width *)p);
a2ae9df7 6814 return 0;
49f705c5
NHE
6815 case VMCS_FIELD_TYPE_U16:
6816 *ret = *((u16 *)p);
a2ae9df7 6817 return 0;
49f705c5
NHE
6818 case VMCS_FIELD_TYPE_U32:
6819 *ret = *((u32 *)p);
a2ae9df7 6820 return 0;
49f705c5
NHE
6821 case VMCS_FIELD_TYPE_U64:
6822 *ret = *((u64 *)p);
a2ae9df7 6823 return 0;
49f705c5 6824 default:
a2ae9df7
PB
6825 WARN_ON(1);
6826 return -ENOENT;
49f705c5
NHE
6827 }
6828}
6829
20b97fea 6830
a2ae9df7
PB
6831static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6832 unsigned long field, u64 field_value){
20b97fea
AG
6833 short offset = vmcs_field_to_offset(field);
6834 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6835 if (offset < 0)
a2ae9df7 6836 return offset;
20b97fea
AG
6837
6838 switch (vmcs_field_type(field)) {
6839 case VMCS_FIELD_TYPE_U16:
6840 *(u16 *)p = field_value;
a2ae9df7 6841 return 0;
20b97fea
AG
6842 case VMCS_FIELD_TYPE_U32:
6843 *(u32 *)p = field_value;
a2ae9df7 6844 return 0;
20b97fea
AG
6845 case VMCS_FIELD_TYPE_U64:
6846 *(u64 *)p = field_value;
a2ae9df7 6847 return 0;
20b97fea
AG
6848 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6849 *(natural_width *)p = field_value;
a2ae9df7 6850 return 0;
20b97fea 6851 default:
a2ae9df7
PB
6852 WARN_ON(1);
6853 return -ENOENT;
20b97fea
AG
6854 }
6855
6856}
6857
16f5b903
AG
6858static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6859{
6860 int i;
6861 unsigned long field;
6862 u64 field_value;
6863 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
c2bae893
MK
6864 const unsigned long *fields = shadow_read_write_fields;
6865 const int num_fields = max_shadow_read_write_fields;
16f5b903 6866
282da870
JK
6867 preempt_disable();
6868
16f5b903
AG
6869 vmcs_load(shadow_vmcs);
6870
6871 for (i = 0; i < num_fields; i++) {
6872 field = fields[i];
6873 switch (vmcs_field_type(field)) {
6874 case VMCS_FIELD_TYPE_U16:
6875 field_value = vmcs_read16(field);
6876 break;
6877 case VMCS_FIELD_TYPE_U32:
6878 field_value = vmcs_read32(field);
6879 break;
6880 case VMCS_FIELD_TYPE_U64:
6881 field_value = vmcs_read64(field);
6882 break;
6883 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6884 field_value = vmcs_readl(field);
6885 break;
a2ae9df7
PB
6886 default:
6887 WARN_ON(1);
6888 continue;
16f5b903
AG
6889 }
6890 vmcs12_write_any(&vmx->vcpu, field, field_value);
6891 }
6892
6893 vmcs_clear(shadow_vmcs);
6894 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
6895
6896 preempt_enable();
16f5b903
AG
6897}
6898
c3114420
AG
6899static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6900{
c2bae893
MK
6901 const unsigned long *fields[] = {
6902 shadow_read_write_fields,
6903 shadow_read_only_fields
c3114420 6904 };
c2bae893 6905 const int max_fields[] = {
c3114420
AG
6906 max_shadow_read_write_fields,
6907 max_shadow_read_only_fields
6908 };
6909 int i, q;
6910 unsigned long field;
6911 u64 field_value = 0;
6912 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6913
6914 vmcs_load(shadow_vmcs);
6915
c2bae893 6916 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
6917 for (i = 0; i < max_fields[q]; i++) {
6918 field = fields[q][i];
6919 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6920
6921 switch (vmcs_field_type(field)) {
6922 case VMCS_FIELD_TYPE_U16:
6923 vmcs_write16(field, (u16)field_value);
6924 break;
6925 case VMCS_FIELD_TYPE_U32:
6926 vmcs_write32(field, (u32)field_value);
6927 break;
6928 case VMCS_FIELD_TYPE_U64:
6929 vmcs_write64(field, (u64)field_value);
6930 break;
6931 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6932 vmcs_writel(field, (long)field_value);
6933 break;
a2ae9df7
PB
6934 default:
6935 WARN_ON(1);
6936 break;
c3114420
AG
6937 }
6938 }
6939 }
6940
6941 vmcs_clear(shadow_vmcs);
6942 vmcs_load(vmx->loaded_vmcs->vmcs);
6943}
6944
49f705c5
NHE
6945/*
6946 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6947 * used before) all generate the same failure when it is missing.
6948 */
6949static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6950{
6951 struct vcpu_vmx *vmx = to_vmx(vcpu);
6952 if (vmx->nested.current_vmptr == -1ull) {
6953 nested_vmx_failInvalid(vcpu);
6954 skip_emulated_instruction(vcpu);
6955 return 0;
6956 }
6957 return 1;
6958}
6959
6960static int handle_vmread(struct kvm_vcpu *vcpu)
6961{
6962 unsigned long field;
6963 u64 field_value;
6964 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6965 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6966 gva_t gva = 0;
6967
6968 if (!nested_vmx_check_permission(vcpu) ||
6969 !nested_vmx_check_vmcs12(vcpu))
6970 return 1;
6971
6972 /* Decode instruction info and find the field to read */
27e6fb5d 6973 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 6974 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 6975 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5
NHE
6976 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6977 skip_emulated_instruction(vcpu);
6978 return 1;
6979 }
6980 /*
6981 * Now copy part of this value to register or memory, as requested.
6982 * Note that the number of bits actually copied is 32 or 64 depending
6983 * on the guest's mode (32 or 64 bit), not on the given field's length.
6984 */
6985 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 6986 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
6987 field_value);
6988 } else {
6989 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 6990 vmx_instruction_info, true, &gva))
49f705c5
NHE
6991 return 1;
6992 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6993 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6994 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6995 }
6996
6997 nested_vmx_succeed(vcpu);
6998 skip_emulated_instruction(vcpu);
6999 return 1;
7000}
7001
7002
7003static int handle_vmwrite(struct kvm_vcpu *vcpu)
7004{
7005 unsigned long field;
7006 gva_t gva;
7007 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7008 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7009 /* The value to write might be 32 or 64 bits, depending on L1's long
7010 * mode, and eventually we need to write that into a field of several
7011 * possible lengths. The code below first zero-extends the value to 64
7012 * bit (field_value), and then copies only the approriate number of
7013 * bits into the vmcs12 field.
7014 */
7015 u64 field_value = 0;
7016 struct x86_exception e;
7017
7018 if (!nested_vmx_check_permission(vcpu) ||
7019 !nested_vmx_check_vmcs12(vcpu))
7020 return 1;
7021
7022 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7023 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7024 (((vmx_instruction_info) >> 3) & 0xf));
7025 else {
7026 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7027 vmx_instruction_info, false, &gva))
49f705c5
NHE
7028 return 1;
7029 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7030 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7031 kvm_inject_page_fault(vcpu, &e);
7032 return 1;
7033 }
7034 }
7035
7036
27e6fb5d 7037 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7038 if (vmcs_field_readonly(field)) {
7039 nested_vmx_failValid(vcpu,
7040 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7041 skip_emulated_instruction(vcpu);
7042 return 1;
7043 }
7044
a2ae9df7 7045 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5
NHE
7046 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7047 skip_emulated_instruction(vcpu);
7048 return 1;
7049 }
7050
7051 nested_vmx_succeed(vcpu);
7052 skip_emulated_instruction(vcpu);
7053 return 1;
7054}
7055
63846663
NHE
7056/* Emulate the VMPTRLD instruction */
7057static int handle_vmptrld(struct kvm_vcpu *vcpu)
7058{
7059 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7060 gpa_t vmptr;
8a1b9dd0 7061 u32 exec_control;
63846663
NHE
7062
7063 if (!nested_vmx_check_permission(vcpu))
7064 return 1;
7065
4291b588 7066 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
63846663 7067 return 1;
63846663
NHE
7068
7069 if (vmx->nested.current_vmptr != vmptr) {
7070 struct vmcs12 *new_vmcs12;
7071 struct page *page;
7072 page = nested_get_page(vcpu, vmptr);
7073 if (page == NULL) {
7074 nested_vmx_failInvalid(vcpu);
7075 skip_emulated_instruction(vcpu);
7076 return 1;
7077 }
7078 new_vmcs12 = kmap(page);
7079 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7080 kunmap(page);
7081 nested_release_page_clean(page);
7082 nested_vmx_failValid(vcpu,
7083 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7084 skip_emulated_instruction(vcpu);
7085 return 1;
7086 }
63846663 7087
9a2a05b9 7088 nested_release_vmcs12(vmx);
63846663
NHE
7089 vmx->nested.current_vmptr = vmptr;
7090 vmx->nested.current_vmcs12 = new_vmcs12;
7091 vmx->nested.current_vmcs12_page = page;
012f83cb 7092 if (enable_shadow_vmcs) {
8a1b9dd0
AG
7093 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7094 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
7095 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7096 vmcs_write64(VMCS_LINK_POINTER,
7097 __pa(vmx->nested.current_shadow_vmcs));
012f83cb
AG
7098 vmx->nested.sync_shadow_vmcs = true;
7099 }
63846663
NHE
7100 }
7101
7102 nested_vmx_succeed(vcpu);
7103 skip_emulated_instruction(vcpu);
7104 return 1;
7105}
7106
6a4d7550
NHE
7107/* Emulate the VMPTRST instruction */
7108static int handle_vmptrst(struct kvm_vcpu *vcpu)
7109{
7110 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7111 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7112 gva_t vmcs_gva;
7113 struct x86_exception e;
7114
7115 if (!nested_vmx_check_permission(vcpu))
7116 return 1;
7117
7118 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7119 vmx_instruction_info, true, &vmcs_gva))
6a4d7550
NHE
7120 return 1;
7121 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7122 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7123 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7124 sizeof(u64), &e)) {
7125 kvm_inject_page_fault(vcpu, &e);
7126 return 1;
7127 }
7128 nested_vmx_succeed(vcpu);
7129 skip_emulated_instruction(vcpu);
7130 return 1;
7131}
7132
bfd0a56b
NHE
7133/* Emulate the INVEPT instruction */
7134static int handle_invept(struct kvm_vcpu *vcpu)
7135{
b9c237bb 7136 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7137 u32 vmx_instruction_info, types;
7138 unsigned long type;
7139 gva_t gva;
7140 struct x86_exception e;
7141 struct {
7142 u64 eptp, gpa;
7143 } operand;
bfd0a56b 7144
b9c237bb
WV
7145 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7146 SECONDARY_EXEC_ENABLE_EPT) ||
7147 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7148 kvm_queue_exception(vcpu, UD_VECTOR);
7149 return 1;
7150 }
7151
7152 if (!nested_vmx_check_permission(vcpu))
7153 return 1;
7154
7155 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7156 kvm_queue_exception(vcpu, UD_VECTOR);
7157 return 1;
7158 }
7159
7160 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7161 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7162
b9c237bb 7163 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b
NHE
7164
7165 if (!(types & (1UL << type))) {
7166 nested_vmx_failValid(vcpu,
7167 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7168 return 1;
7169 }
7170
7171 /* According to the Intel VMX instruction reference, the memory
7172 * operand is read even if it isn't needed (e.g., for type==global)
7173 */
7174 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7175 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7176 return 1;
7177 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7178 sizeof(operand), &e)) {
7179 kvm_inject_page_fault(vcpu, &e);
7180 return 1;
7181 }
7182
7183 switch (type) {
bfd0a56b
NHE
7184 case VMX_EPT_EXTENT_GLOBAL:
7185 kvm_mmu_sync_roots(vcpu);
77c3913b 7186 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7187 nested_vmx_succeed(vcpu);
7188 break;
7189 default:
4b855078 7190 /* Trap single context invalidation invept calls */
bfd0a56b
NHE
7191 BUG_ON(1);
7192 break;
7193 }
7194
7195 skip_emulated_instruction(vcpu);
7196 return 1;
7197}
7198
a642fc30
PM
7199static int handle_invvpid(struct kvm_vcpu *vcpu)
7200{
7201 kvm_queue_exception(vcpu, UD_VECTOR);
7202 return 1;
7203}
7204
843e4330
KH
7205static int handle_pml_full(struct kvm_vcpu *vcpu)
7206{
7207 unsigned long exit_qualification;
7208
7209 trace_kvm_pml_full(vcpu->vcpu_id);
7210
7211 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7212
7213 /*
7214 * PML buffer FULL happened while executing iret from NMI,
7215 * "blocked by NMI" bit has to be set before next VM entry.
7216 */
7217 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7218 cpu_has_virtual_nmis() &&
7219 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7220 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7221 GUEST_INTR_STATE_NMI);
7222
7223 /*
7224 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7225 * here.., and there's no userspace involvement needed for PML.
7226 */
7227 return 1;
7228}
7229
6aa8b732
AK
7230/*
7231 * The exit handlers return 1 if the exit was handled fully and guest execution
7232 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7233 * to be done to userspace and return 0.
7234 */
772e0318 7235static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
7236 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7237 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 7238 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 7239 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 7240 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
7241 [EXIT_REASON_CR_ACCESS] = handle_cr,
7242 [EXIT_REASON_DR_ACCESS] = handle_dr,
7243 [EXIT_REASON_CPUID] = handle_cpuid,
7244 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7245 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7246 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7247 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 7248 [EXIT_REASON_INVD] = handle_invd,
a7052897 7249 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 7250 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 7251 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 7252 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 7253 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 7254 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 7255 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 7256 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 7257 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 7258 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
7259 [EXIT_REASON_VMOFF] = handle_vmoff,
7260 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
7261 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7262 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 7263 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 7264 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 7265 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 7266 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 7267 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 7268 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
7269 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7270 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 7271 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 7272 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 7273 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 7274 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 7275 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 7276 [EXIT_REASON_INVVPID] = handle_invvpid,
f53cd63c
WL
7277 [EXIT_REASON_XSAVES] = handle_xsaves,
7278 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 7279 [EXIT_REASON_PML_FULL] = handle_pml_full,
6aa8b732
AK
7280};
7281
7282static const int kvm_vmx_max_exit_handlers =
50a3485c 7283 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 7284
908a7bdd
JK
7285static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7286 struct vmcs12 *vmcs12)
7287{
7288 unsigned long exit_qualification;
7289 gpa_t bitmap, last_bitmap;
7290 unsigned int port;
7291 int size;
7292 u8 b;
7293
908a7bdd 7294 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 7295 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
7296
7297 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7298
7299 port = exit_qualification >> 16;
7300 size = (exit_qualification & 7) + 1;
7301
7302 last_bitmap = (gpa_t)-1;
7303 b = -1;
7304
7305 while (size > 0) {
7306 if (port < 0x8000)
7307 bitmap = vmcs12->io_bitmap_a;
7308 else if (port < 0x10000)
7309 bitmap = vmcs12->io_bitmap_b;
7310 else
1d804d07 7311 return true;
908a7bdd
JK
7312 bitmap += (port & 0x7fff) / 8;
7313
7314 if (last_bitmap != bitmap)
54bf36aa 7315 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 7316 return true;
908a7bdd 7317 if (b & (1 << (port & 7)))
1d804d07 7318 return true;
908a7bdd
JK
7319
7320 port++;
7321 size--;
7322 last_bitmap = bitmap;
7323 }
7324
1d804d07 7325 return false;
908a7bdd
JK
7326}
7327
644d711a
NHE
7328/*
7329 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7330 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7331 * disinterest in the current event (read or write a specific MSR) by using an
7332 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7333 */
7334static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7335 struct vmcs12 *vmcs12, u32 exit_reason)
7336{
7337 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7338 gpa_t bitmap;
7339
cbd29cb6 7340 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 7341 return true;
644d711a
NHE
7342
7343 /*
7344 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7345 * for the four combinations of read/write and low/high MSR numbers.
7346 * First we need to figure out which of the four to use:
7347 */
7348 bitmap = vmcs12->msr_bitmap;
7349 if (exit_reason == EXIT_REASON_MSR_WRITE)
7350 bitmap += 2048;
7351 if (msr_index >= 0xc0000000) {
7352 msr_index -= 0xc0000000;
7353 bitmap += 1024;
7354 }
7355
7356 /* Then read the msr_index'th bit from this bitmap: */
7357 if (msr_index < 1024*8) {
7358 unsigned char b;
54bf36aa 7359 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 7360 return true;
644d711a
NHE
7361 return 1 & (b >> (msr_index & 7));
7362 } else
1d804d07 7363 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
7364}
7365
7366/*
7367 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7368 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7369 * intercept (via guest_host_mask etc.) the current event.
7370 */
7371static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7372 struct vmcs12 *vmcs12)
7373{
7374 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7375 int cr = exit_qualification & 15;
7376 int reg = (exit_qualification >> 8) & 15;
1e32c079 7377 unsigned long val = kvm_register_readl(vcpu, reg);
644d711a
NHE
7378
7379 switch ((exit_qualification >> 4) & 3) {
7380 case 0: /* mov to cr */
7381 switch (cr) {
7382 case 0:
7383 if (vmcs12->cr0_guest_host_mask &
7384 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7385 return true;
644d711a
NHE
7386 break;
7387 case 3:
7388 if ((vmcs12->cr3_target_count >= 1 &&
7389 vmcs12->cr3_target_value0 == val) ||
7390 (vmcs12->cr3_target_count >= 2 &&
7391 vmcs12->cr3_target_value1 == val) ||
7392 (vmcs12->cr3_target_count >= 3 &&
7393 vmcs12->cr3_target_value2 == val) ||
7394 (vmcs12->cr3_target_count >= 4 &&
7395 vmcs12->cr3_target_value3 == val))
1d804d07 7396 return false;
644d711a 7397 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 7398 return true;
644d711a
NHE
7399 break;
7400 case 4:
7401 if (vmcs12->cr4_guest_host_mask &
7402 (vmcs12->cr4_read_shadow ^ val))
1d804d07 7403 return true;
644d711a
NHE
7404 break;
7405 case 8:
7406 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 7407 return true;
644d711a
NHE
7408 break;
7409 }
7410 break;
7411 case 2: /* clts */
7412 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7413 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 7414 return true;
644d711a
NHE
7415 break;
7416 case 1: /* mov from cr */
7417 switch (cr) {
7418 case 3:
7419 if (vmcs12->cpu_based_vm_exec_control &
7420 CPU_BASED_CR3_STORE_EXITING)
1d804d07 7421 return true;
644d711a
NHE
7422 break;
7423 case 8:
7424 if (vmcs12->cpu_based_vm_exec_control &
7425 CPU_BASED_CR8_STORE_EXITING)
1d804d07 7426 return true;
644d711a
NHE
7427 break;
7428 }
7429 break;
7430 case 3: /* lmsw */
7431 /*
7432 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7433 * cr0. Other attempted changes are ignored, with no exit.
7434 */
7435 if (vmcs12->cr0_guest_host_mask & 0xe &
7436 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7437 return true;
644d711a
NHE
7438 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7439 !(vmcs12->cr0_read_shadow & 0x1) &&
7440 (val & 0x1))
1d804d07 7441 return true;
644d711a
NHE
7442 break;
7443 }
1d804d07 7444 return false;
644d711a
NHE
7445}
7446
7447/*
7448 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7449 * should handle it ourselves in L0 (and then continue L2). Only call this
7450 * when in is_guest_mode (L2).
7451 */
7452static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7453{
644d711a
NHE
7454 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7455 struct vcpu_vmx *vmx = to_vmx(vcpu);
7456 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 7457 u32 exit_reason = vmx->exit_reason;
644d711a 7458
542060ea
JK
7459 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7460 vmcs_readl(EXIT_QUALIFICATION),
7461 vmx->idt_vectoring_info,
7462 intr_info,
7463 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7464 KVM_ISA_VMX);
7465
644d711a 7466 if (vmx->nested.nested_run_pending)
1d804d07 7467 return false;
644d711a
NHE
7468
7469 if (unlikely(vmx->fail)) {
bd80158a
JK
7470 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7471 vmcs_read32(VM_INSTRUCTION_ERROR));
1d804d07 7472 return true;
644d711a
NHE
7473 }
7474
7475 switch (exit_reason) {
7476 case EXIT_REASON_EXCEPTION_NMI:
7477 if (!is_exception(intr_info))
1d804d07 7478 return false;
644d711a
NHE
7479 else if (is_page_fault(intr_info))
7480 return enable_ept;
e504c909 7481 else if (is_no_device(intr_info) &&
ccf9844e 7482 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 7483 return false;
644d711a
NHE
7484 return vmcs12->exception_bitmap &
7485 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7486 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 7487 return false;
644d711a 7488 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 7489 return true;
644d711a 7490 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 7491 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 7492 case EXIT_REASON_NMI_WINDOW:
3b656cf7 7493 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 7494 case EXIT_REASON_TASK_SWITCH:
1d804d07 7495 return true;
644d711a 7496 case EXIT_REASON_CPUID:
bc613494 7497 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
1d804d07
JP
7498 return false;
7499 return true;
644d711a
NHE
7500 case EXIT_REASON_HLT:
7501 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7502 case EXIT_REASON_INVD:
1d804d07 7503 return true;
644d711a
NHE
7504 case EXIT_REASON_INVLPG:
7505 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7506 case EXIT_REASON_RDPMC:
7507 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
b3a2a907 7508 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
7509 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7510 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7511 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7512 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7513 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7514 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 7515 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
7516 /*
7517 * VMX instructions trap unconditionally. This allows L1 to
7518 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7519 */
1d804d07 7520 return true;
644d711a
NHE
7521 case EXIT_REASON_CR_ACCESS:
7522 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7523 case EXIT_REASON_DR_ACCESS:
7524 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7525 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 7526 return nested_vmx_exit_handled_io(vcpu, vmcs12);
644d711a
NHE
7527 case EXIT_REASON_MSR_READ:
7528 case EXIT_REASON_MSR_WRITE:
7529 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7530 case EXIT_REASON_INVALID_STATE:
1d804d07 7531 return true;
644d711a
NHE
7532 case EXIT_REASON_MWAIT_INSTRUCTION:
7533 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
7534 case EXIT_REASON_MONITOR_TRAP_FLAG:
7535 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
7536 case EXIT_REASON_MONITOR_INSTRUCTION:
7537 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7538 case EXIT_REASON_PAUSE_INSTRUCTION:
7539 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7540 nested_cpu_has2(vmcs12,
7541 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7542 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 7543 return false;
644d711a 7544 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 7545 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
7546 case EXIT_REASON_APIC_ACCESS:
7547 return nested_cpu_has2(vmcs12,
7548 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 7549 case EXIT_REASON_APIC_WRITE:
608406e2
WV
7550 case EXIT_REASON_EOI_INDUCED:
7551 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 7552 return true;
644d711a 7553 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
7554 /*
7555 * L0 always deals with the EPT violation. If nested EPT is
7556 * used, and the nested mmu code discovers that the address is
7557 * missing in the guest EPT table (EPT12), the EPT violation
7558 * will be injected with nested_ept_inject_page_fault()
7559 */
1d804d07 7560 return false;
644d711a 7561 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
7562 /*
7563 * L2 never uses directly L1's EPT, but rather L0's own EPT
7564 * table (shadow on EPT) or a merged EPT table that L0 built
7565 * (EPT on EPT). So any problems with the structure of the
7566 * table is L0's fault.
7567 */
1d804d07 7568 return false;
644d711a
NHE
7569 case EXIT_REASON_WBINVD:
7570 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7571 case EXIT_REASON_XSETBV:
1d804d07 7572 return true;
81dc01f7
WL
7573 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7574 /*
7575 * This should never happen, since it is not possible to
7576 * set XSS to a non-zero value---neither in L1 nor in L2.
7577 * If if it were, XSS would have to be checked against
7578 * the XSS exit bitmap in vmcs12.
7579 */
7580 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
644d711a 7581 default:
1d804d07 7582 return true;
644d711a
NHE
7583 }
7584}
7585
586f9607
AK
7586static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7587{
7588 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7589 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7590}
7591
843e4330
KH
7592static int vmx_enable_pml(struct vcpu_vmx *vmx)
7593{
7594 struct page *pml_pg;
7595 u32 exec_control;
7596
7597 pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7598 if (!pml_pg)
7599 return -ENOMEM;
7600
7601 vmx->pml_pg = pml_pg;
7602
7603 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7604 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7605
7606 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7607 exec_control |= SECONDARY_EXEC_ENABLE_PML;
7608 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7609
7610 return 0;
7611}
7612
7613static void vmx_disable_pml(struct vcpu_vmx *vmx)
7614{
7615 u32 exec_control;
7616
7617 ASSERT(vmx->pml_pg);
7618 __free_page(vmx->pml_pg);
7619 vmx->pml_pg = NULL;
7620
7621 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7622 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
7623 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7624}
7625
54bf36aa 7626static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 7627{
54bf36aa 7628 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
7629 u64 *pml_buf;
7630 u16 pml_idx;
7631
7632 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7633
7634 /* Do nothing if PML buffer is empty */
7635 if (pml_idx == (PML_ENTITY_NUM - 1))
7636 return;
7637
7638 /* PML index always points to next available PML buffer entity */
7639 if (pml_idx >= PML_ENTITY_NUM)
7640 pml_idx = 0;
7641 else
7642 pml_idx++;
7643
7644 pml_buf = page_address(vmx->pml_pg);
7645 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7646 u64 gpa;
7647
7648 gpa = pml_buf[pml_idx];
7649 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 7650 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
7651 }
7652
7653 /* reset PML index */
7654 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7655}
7656
7657/*
7658 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7659 * Called before reporting dirty_bitmap to userspace.
7660 */
7661static void kvm_flush_pml_buffers(struct kvm *kvm)
7662{
7663 int i;
7664 struct kvm_vcpu *vcpu;
7665 /*
7666 * We only need to kick vcpu out of guest mode here, as PML buffer
7667 * is flushed at beginning of all VMEXITs, and it's obvious that only
7668 * vcpus running in guest are possible to have unflushed GPAs in PML
7669 * buffer.
7670 */
7671 kvm_for_each_vcpu(i, vcpu, kvm)
7672 kvm_vcpu_kick(vcpu);
7673}
7674
4eb64dce
PB
7675static void vmx_dump_sel(char *name, uint32_t sel)
7676{
7677 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7678 name, vmcs_read32(sel),
7679 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
7680 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
7681 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
7682}
7683
7684static void vmx_dump_dtsel(char *name, uint32_t limit)
7685{
7686 pr_err("%s limit=0x%08x, base=0x%016lx\n",
7687 name, vmcs_read32(limit),
7688 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
7689}
7690
7691static void dump_vmcs(void)
7692{
7693 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
7694 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
7695 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7696 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
7697 u32 secondary_exec_control = 0;
7698 unsigned long cr4 = vmcs_readl(GUEST_CR4);
7699 u64 efer = vmcs_readl(GUEST_IA32_EFER);
7700 int i, n;
7701
7702 if (cpu_has_secondary_exec_ctrls())
7703 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7704
7705 pr_err("*** Guest State ***\n");
7706 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7707 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
7708 vmcs_readl(CR0_GUEST_HOST_MASK));
7709 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7710 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
7711 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
7712 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
7713 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
7714 {
7715 pr_err("PDPTR0 = 0x%016lx PDPTR1 = 0x%016lx\n",
7716 vmcs_readl(GUEST_PDPTR0), vmcs_readl(GUEST_PDPTR1));
7717 pr_err("PDPTR2 = 0x%016lx PDPTR3 = 0x%016lx\n",
7718 vmcs_readl(GUEST_PDPTR2), vmcs_readl(GUEST_PDPTR3));
7719 }
7720 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
7721 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
7722 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
7723 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
7724 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7725 vmcs_readl(GUEST_SYSENTER_ESP),
7726 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
7727 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
7728 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
7729 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
7730 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
7731 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
7732 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
7733 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
7734 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
7735 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
7736 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
7737 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
7738 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
7739 pr_err("EFER = 0x%016llx PAT = 0x%016lx\n",
7740 efer, vmcs_readl(GUEST_IA32_PAT));
7741 pr_err("DebugCtl = 0x%016lx DebugExceptions = 0x%016lx\n",
7742 vmcs_readl(GUEST_IA32_DEBUGCTL),
7743 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
7744 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
7745 pr_err("PerfGlobCtl = 0x%016lx\n",
7746 vmcs_readl(GUEST_IA32_PERF_GLOBAL_CTRL));
7747 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
7748 pr_err("BndCfgS = 0x%016lx\n", vmcs_readl(GUEST_BNDCFGS));
7749 pr_err("Interruptibility = %08x ActivityState = %08x\n",
7750 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
7751 vmcs_read32(GUEST_ACTIVITY_STATE));
7752 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
7753 pr_err("InterruptStatus = %04x\n",
7754 vmcs_read16(GUEST_INTR_STATUS));
7755
7756 pr_err("*** Host State ***\n");
7757 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
7758 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
7759 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
7760 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
7761 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
7762 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
7763 vmcs_read16(HOST_TR_SELECTOR));
7764 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
7765 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
7766 vmcs_readl(HOST_TR_BASE));
7767 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
7768 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
7769 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
7770 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
7771 vmcs_readl(HOST_CR4));
7772 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7773 vmcs_readl(HOST_IA32_SYSENTER_ESP),
7774 vmcs_read32(HOST_IA32_SYSENTER_CS),
7775 vmcs_readl(HOST_IA32_SYSENTER_EIP));
7776 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
7777 pr_err("EFER = 0x%016lx PAT = 0x%016lx\n",
7778 vmcs_readl(HOST_IA32_EFER), vmcs_readl(HOST_IA32_PAT));
7779 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7780 pr_err("PerfGlobCtl = 0x%016lx\n",
7781 vmcs_readl(HOST_IA32_PERF_GLOBAL_CTRL));
7782
7783 pr_err("*** Control State ***\n");
7784 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
7785 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
7786 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
7787 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
7788 vmcs_read32(EXCEPTION_BITMAP),
7789 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
7790 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
7791 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
7792 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7793 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
7794 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
7795 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
7796 vmcs_read32(VM_EXIT_INTR_INFO),
7797 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7798 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
7799 pr_err(" reason=%08x qualification=%016lx\n",
7800 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
7801 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
7802 vmcs_read32(IDT_VECTORING_INFO_FIELD),
7803 vmcs_read32(IDT_VECTORING_ERROR_CODE));
7804 pr_err("TSC Offset = 0x%016lx\n", vmcs_readl(TSC_OFFSET));
7805 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
7806 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
7807 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
7808 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
7809 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
7810 pr_err("EPT pointer = 0x%016lx\n", vmcs_readl(EPT_POINTER));
7811 n = vmcs_read32(CR3_TARGET_COUNT);
7812 for (i = 0; i + 1 < n; i += 4)
7813 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
7814 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
7815 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
7816 if (i < n)
7817 pr_err("CR3 target%u=%016lx\n",
7818 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
7819 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
7820 pr_err("PLE Gap=%08x Window=%08x\n",
7821 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
7822 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
7823 pr_err("Virtual processor ID = 0x%04x\n",
7824 vmcs_read16(VIRTUAL_PROCESSOR_ID));
7825}
7826
6aa8b732
AK
7827/*
7828 * The guest has exited. See if we can fix it or if we need userspace
7829 * assistance.
7830 */
851ba692 7831static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 7832{
29bd8a78 7833 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 7834 u32 exit_reason = vmx->exit_reason;
1155f76a 7835 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 7836
843e4330
KH
7837 /*
7838 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
7839 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
7840 * querying dirty_bitmap, we only need to kick all vcpus out of guest
7841 * mode as if vcpus is in root mode, the PML buffer must has been
7842 * flushed already.
7843 */
7844 if (enable_pml)
54bf36aa 7845 vmx_flush_pml_buffer(vcpu);
843e4330 7846
80ced186 7847 /* If guest state is invalid, start emulating */
14168786 7848 if (vmx->emulation_required)
80ced186 7849 return handle_invalid_guest_state(vcpu);
1d5a4d9b 7850
644d711a 7851 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
533558bc
JK
7852 nested_vmx_vmexit(vcpu, exit_reason,
7853 vmcs_read32(VM_EXIT_INTR_INFO),
7854 vmcs_readl(EXIT_QUALIFICATION));
644d711a
NHE
7855 return 1;
7856 }
7857
5120702e 7858 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 7859 dump_vmcs();
5120702e
MG
7860 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7861 vcpu->run->fail_entry.hardware_entry_failure_reason
7862 = exit_reason;
7863 return 0;
7864 }
7865
29bd8a78 7866 if (unlikely(vmx->fail)) {
851ba692
AK
7867 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7868 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
7869 = vmcs_read32(VM_INSTRUCTION_ERROR);
7870 return 0;
7871 }
6aa8b732 7872
b9bf6882
XG
7873 /*
7874 * Note:
7875 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7876 * delivery event since it indicates guest is accessing MMIO.
7877 * The vm-exit can be triggered again after return to guest that
7878 * will cause infinite loop.
7879 */
d77c26fc 7880 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 7881 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 7882 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b9bf6882
XG
7883 exit_reason != EXIT_REASON_TASK_SWITCH)) {
7884 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7885 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7886 vcpu->run->internal.ndata = 2;
7887 vcpu->run->internal.data[0] = vectoring_info;
7888 vcpu->run->internal.data[1] = exit_reason;
7889 return 0;
7890 }
3b86cd99 7891
644d711a
NHE
7892 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7893 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
f5c4368f 7894 get_vmcs12(vcpu))))) {
c4282df9 7895 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 7896 vmx->soft_vnmi_blocked = 0;
3b86cd99 7897 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 7898 vcpu->arch.nmi_pending) {
3b86cd99
JK
7899 /*
7900 * This CPU don't support us in finding the end of an
7901 * NMI-blocked window if the guest runs with IRQs
7902 * disabled. So we pull the trigger after 1 s of
7903 * futile waiting, but inform the user about this.
7904 */
7905 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7906 "state on VCPU %d after 1 s timeout\n",
7907 __func__, vcpu->vcpu_id);
7908 vmx->soft_vnmi_blocked = 0;
3b86cd99 7909 }
3b86cd99
JK
7910 }
7911
6aa8b732
AK
7912 if (exit_reason < kvm_vmx_max_exit_handlers
7913 && kvm_vmx_exit_handlers[exit_reason])
851ba692 7914 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 7915 else {
2bc19dc3
MT
7916 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7917 kvm_queue_exception(vcpu, UD_VECTOR);
7918 return 1;
6aa8b732 7919 }
6aa8b732
AK
7920}
7921
95ba8273 7922static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 7923{
a7c0b07d
WL
7924 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7925
7926 if (is_guest_mode(vcpu) &&
7927 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7928 return;
7929
95ba8273 7930 if (irr == -1 || tpr < irr) {
6e5d865c
YS
7931 vmcs_write32(TPR_THRESHOLD, 0);
7932 return;
7933 }
7934
95ba8273 7935 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
7936}
7937
8d14695f
YZ
7938static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7939{
7940 u32 sec_exec_control;
7941
7942 /*
7943 * There is not point to enable virtualize x2apic without enable
7944 * apicv
7945 */
c7c9c56c
YZ
7946 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7947 !vmx_vm_has_apicv(vcpu->kvm))
8d14695f
YZ
7948 return;
7949
7950 if (!vm_need_tpr_shadow(vcpu->kvm))
7951 return;
7952
7953 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7954
7955 if (set) {
7956 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7957 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7958 } else {
7959 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7960 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7961 }
7962 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7963
7964 vmx_set_msr_bitmap(vcpu);
7965}
7966
38b99173
TC
7967static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7968{
7969 struct vcpu_vmx *vmx = to_vmx(vcpu);
7970
7971 /*
7972 * Currently we do not handle the nested case where L2 has an
7973 * APIC access page of its own; that page is still pinned.
7974 * Hence, we skip the case where the VCPU is in guest mode _and_
7975 * L1 prepared an APIC access page for L2.
7976 *
7977 * For the case where L1 and L2 share the same APIC access page
7978 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7979 * in the vmcs12), this function will only update either the vmcs01
7980 * or the vmcs02. If the former, the vmcs02 will be updated by
7981 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
7982 * the next L2->L1 exit.
7983 */
7984 if (!is_guest_mode(vcpu) ||
7985 !nested_cpu_has2(vmx->nested.current_vmcs12,
7986 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7987 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7988}
7989
c7c9c56c
YZ
7990static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7991{
7992 u16 status;
7993 u8 old;
7994
c7c9c56c
YZ
7995 if (isr == -1)
7996 isr = 0;
7997
7998 status = vmcs_read16(GUEST_INTR_STATUS);
7999 old = status >> 8;
8000 if (isr != old) {
8001 status &= 0xff;
8002 status |= isr << 8;
8003 vmcs_write16(GUEST_INTR_STATUS, status);
8004 }
8005}
8006
8007static void vmx_set_rvi(int vector)
8008{
8009 u16 status;
8010 u8 old;
8011
4114c27d
WW
8012 if (vector == -1)
8013 vector = 0;
8014
c7c9c56c
YZ
8015 status = vmcs_read16(GUEST_INTR_STATUS);
8016 old = (u8)status & 0xff;
8017 if ((u8)vector != old) {
8018 status &= ~0xff;
8019 status |= (u8)vector;
8020 vmcs_write16(GUEST_INTR_STATUS, status);
8021 }
8022}
8023
8024static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8025{
4114c27d
WW
8026 if (!is_guest_mode(vcpu)) {
8027 vmx_set_rvi(max_irr);
8028 return;
8029 }
8030
c7c9c56c
YZ
8031 if (max_irr == -1)
8032 return;
8033
963fee16 8034 /*
4114c27d
WW
8035 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8036 * handles it.
963fee16 8037 */
4114c27d 8038 if (nested_exit_on_intr(vcpu))
963fee16
WL
8039 return;
8040
963fee16 8041 /*
4114c27d 8042 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8043 * is run without virtual interrupt delivery.
8044 */
8045 if (!kvm_event_needs_reinjection(vcpu) &&
8046 vmx_interrupt_allowed(vcpu)) {
8047 kvm_queue_interrupt(vcpu, max_irr, false);
8048 vmx_inject_irq(vcpu);
8049 }
c7c9c56c
YZ
8050}
8051
3bb345f3 8052static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu)
c7c9c56c 8053{
3bb345f3 8054 u64 *eoi_exit_bitmap = vcpu->arch.eoi_exit_bitmap;
3d81bc7e
YZ
8055 if (!vmx_vm_has_apicv(vcpu->kvm))
8056 return;
8057
c7c9c56c
YZ
8058 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8059 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8060 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8061 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8062}
8063
51aa01d1 8064static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 8065{
00eba012
AK
8066 u32 exit_intr_info;
8067
8068 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8069 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8070 return;
8071
c5ca8e57 8072 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 8073 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
8074
8075 /* Handle machine checks before interrupts are enabled */
00eba012 8076 if (is_machine_check(exit_intr_info))
a0861c02
AK
8077 kvm_machine_check();
8078
20f65983 8079 /* We need to handle NMIs before interrupts are enabled */
00eba012 8080 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
8081 (exit_intr_info & INTR_INFO_VALID_MASK)) {
8082 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 8083 asm("int $2");
ff9d07a0
ZY
8084 kvm_after_handle_nmi(&vmx->vcpu);
8085 }
51aa01d1 8086}
20f65983 8087
a547c6db
YZ
8088static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8089{
8090 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8091
8092 /*
8093 * If external interrupt exists, IF bit is set in rflags/eflags on the
8094 * interrupt stack frame, and interrupt will be enabled on a return
8095 * from interrupt handler.
8096 */
8097 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8098 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8099 unsigned int vector;
8100 unsigned long entry;
8101 gate_desc *desc;
8102 struct vcpu_vmx *vmx = to_vmx(vcpu);
8103#ifdef CONFIG_X86_64
8104 unsigned long tmp;
8105#endif
8106
8107 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8108 desc = (gate_desc *)vmx->host_idt_base + vector;
8109 entry = gate_offset(*desc);
8110 asm volatile(
8111#ifdef CONFIG_X86_64
8112 "mov %%" _ASM_SP ", %[sp]\n\t"
8113 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8114 "push $%c[ss]\n\t"
8115 "push %[sp]\n\t"
8116#endif
8117 "pushf\n\t"
8118 "orl $0x200, (%%" _ASM_SP ")\n\t"
8119 __ASM_SIZE(push) " $%c[cs]\n\t"
8120 "call *%[entry]\n\t"
8121 :
8122#ifdef CONFIG_X86_64
8123 [sp]"=&r"(tmp)
8124#endif
8125 :
8126 [entry]"r"(entry),
8127 [ss]"i"(__KERNEL_DS),
8128 [cs]"i"(__KERNEL_CS)
8129 );
8130 } else
8131 local_irq_enable();
8132}
8133
6d396b55
PB
8134static bool vmx_has_high_real_mode_segbase(void)
8135{
8136 return enable_unrestricted_guest || emulate_invalid_guest_state;
8137}
8138
da8999d3
LJ
8139static bool vmx_mpx_supported(void)
8140{
8141 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8142 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8143}
8144
55412b2e
WL
8145static bool vmx_xsaves_supported(void)
8146{
8147 return vmcs_config.cpu_based_2nd_exec_ctrl &
8148 SECONDARY_EXEC_XSAVES;
8149}
8150
51aa01d1
AK
8151static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8152{
c5ca8e57 8153 u32 exit_intr_info;
51aa01d1
AK
8154 bool unblock_nmi;
8155 u8 vector;
8156 bool idtv_info_valid;
8157
8158 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 8159
cf393f75 8160 if (cpu_has_virtual_nmis()) {
9d58b931
AK
8161 if (vmx->nmi_known_unmasked)
8162 return;
c5ca8e57
AK
8163 /*
8164 * Can't use vmx->exit_intr_info since we're not sure what
8165 * the exit reason is.
8166 */
8167 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
8168 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8169 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8170 /*
7b4a25cb 8171 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
8172 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8173 * a guest IRET fault.
7b4a25cb
GN
8174 * SDM 3: 23.2.2 (September 2008)
8175 * Bit 12 is undefined in any of the following cases:
8176 * If the VM exit sets the valid bit in the IDT-vectoring
8177 * information field.
8178 * If the VM exit is due to a double fault.
cf393f75 8179 */
7b4a25cb
GN
8180 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8181 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
8182 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8183 GUEST_INTR_STATE_NMI);
9d58b931
AK
8184 else
8185 vmx->nmi_known_unmasked =
8186 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8187 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
8188 } else if (unlikely(vmx->soft_vnmi_blocked))
8189 vmx->vnmi_blocked_time +=
8190 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
8191}
8192
3ab66e8a 8193static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
8194 u32 idt_vectoring_info,
8195 int instr_len_field,
8196 int error_code_field)
51aa01d1 8197{
51aa01d1
AK
8198 u8 vector;
8199 int type;
8200 bool idtv_info_valid;
8201
8202 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 8203
3ab66e8a
JK
8204 vcpu->arch.nmi_injected = false;
8205 kvm_clear_exception_queue(vcpu);
8206 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
8207
8208 if (!idtv_info_valid)
8209 return;
8210
3ab66e8a 8211 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 8212
668f612f
AK
8213 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8214 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 8215
64a7ec06 8216 switch (type) {
37b96e98 8217 case INTR_TYPE_NMI_INTR:
3ab66e8a 8218 vcpu->arch.nmi_injected = true;
668f612f 8219 /*
7b4a25cb 8220 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
8221 * Clear bit "block by NMI" before VM entry if a NMI
8222 * delivery faulted.
668f612f 8223 */
3ab66e8a 8224 vmx_set_nmi_mask(vcpu, false);
37b96e98 8225 break;
37b96e98 8226 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 8227 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
8228 /* fall through */
8229 case INTR_TYPE_HARD_EXCEPTION:
35920a35 8230 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 8231 u32 err = vmcs_read32(error_code_field);
851eb667 8232 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 8233 } else
851eb667 8234 kvm_requeue_exception(vcpu, vector);
37b96e98 8235 break;
66fd3f7f 8236 case INTR_TYPE_SOFT_INTR:
3ab66e8a 8237 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 8238 /* fall through */
37b96e98 8239 case INTR_TYPE_EXT_INTR:
3ab66e8a 8240 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
8241 break;
8242 default:
8243 break;
f7d9238f 8244 }
cf393f75
AK
8245}
8246
83422e17
AK
8247static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8248{
3ab66e8a 8249 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
8250 VM_EXIT_INSTRUCTION_LEN,
8251 IDT_VECTORING_ERROR_CODE);
8252}
8253
b463a6f7
AK
8254static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8255{
3ab66e8a 8256 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
8257 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8258 VM_ENTRY_INSTRUCTION_LEN,
8259 VM_ENTRY_EXCEPTION_ERROR_CODE);
8260
8261 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8262}
8263
d7cd9796
GN
8264static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8265{
8266 int i, nr_msrs;
8267 struct perf_guest_switch_msr *msrs;
8268
8269 msrs = perf_guest_get_msrs(&nr_msrs);
8270
8271 if (!msrs)
8272 return;
8273
8274 for (i = 0; i < nr_msrs; i++)
8275 if (msrs[i].host == msrs[i].guest)
8276 clear_atomic_switch_msr(vmx, msrs[i].msr);
8277 else
8278 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8279 msrs[i].host);
8280}
8281
a3b5ba49 8282static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 8283{
a2fa3e9f 8284 struct vcpu_vmx *vmx = to_vmx(vcpu);
d974baa3 8285 unsigned long debugctlmsr, cr4;
104f226b
AK
8286
8287 /* Record the guest's net vcpu time for enforced NMI injections. */
8288 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8289 vmx->entry_time = ktime_get();
8290
8291 /* Don't enter VMX if guest state is invalid, let the exit handler
8292 start emulation until we arrive back to a valid state */
14168786 8293 if (vmx->emulation_required)
104f226b
AK
8294 return;
8295
a7653ecd
RK
8296 if (vmx->ple_window_dirty) {
8297 vmx->ple_window_dirty = false;
8298 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8299 }
8300
012f83cb
AG
8301 if (vmx->nested.sync_shadow_vmcs) {
8302 copy_vmcs12_to_shadow(vmx);
8303 vmx->nested.sync_shadow_vmcs = false;
8304 }
8305
104f226b
AK
8306 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8307 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8308 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8309 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8310
1e02ce4c 8311 cr4 = cr4_read_shadow();
d974baa3
AL
8312 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8313 vmcs_writel(HOST_CR4, cr4);
8314 vmx->host_state.vmcs_host_cr4 = cr4;
8315 }
8316
104f226b
AK
8317 /* When single-stepping over STI and MOV SS, we must clear the
8318 * corresponding interruptibility bits in the guest state. Otherwise
8319 * vmentry fails as it then expects bit 14 (BS) in pending debug
8320 * exceptions being set, but that's not correct for the guest debugging
8321 * case. */
8322 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8323 vmx_set_interrupt_shadow(vcpu, 0);
8324
d7cd9796 8325 atomic_switch_perf_msrs(vmx);
2a7921b7 8326 debugctlmsr = get_debugctlmsr();
d7cd9796 8327
d462b819 8328 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 8329 asm(
6aa8b732 8330 /* Store host registers */
b188c81f
AK
8331 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8332 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8333 "push %%" _ASM_CX " \n\t"
8334 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 8335 "je 1f \n\t"
b188c81f 8336 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 8337 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 8338 "1: \n\t"
d3edefc0 8339 /* Reload cr2 if changed */
b188c81f
AK
8340 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8341 "mov %%cr2, %%" _ASM_DX " \n\t"
8342 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 8343 "je 2f \n\t"
b188c81f 8344 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 8345 "2: \n\t"
6aa8b732 8346 /* Check if vmlaunch of vmresume is needed */
e08aa78a 8347 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 8348 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
8349 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8350 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8351 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8352 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8353 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8354 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 8355#ifdef CONFIG_X86_64
e08aa78a
AK
8356 "mov %c[r8](%0), %%r8 \n\t"
8357 "mov %c[r9](%0), %%r9 \n\t"
8358 "mov %c[r10](%0), %%r10 \n\t"
8359 "mov %c[r11](%0), %%r11 \n\t"
8360 "mov %c[r12](%0), %%r12 \n\t"
8361 "mov %c[r13](%0), %%r13 \n\t"
8362 "mov %c[r14](%0), %%r14 \n\t"
8363 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 8364#endif
b188c81f 8365 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 8366
6aa8b732 8367 /* Enter guest mode */
83287ea4 8368 "jne 1f \n\t"
4ecac3fd 8369 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
8370 "jmp 2f \n\t"
8371 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8372 "2: "
6aa8b732 8373 /* Save guest registers, load host registers, keep flags */
b188c81f 8374 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 8375 "pop %0 \n\t"
b188c81f
AK
8376 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8377 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8378 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8379 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8380 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8381 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8382 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 8383#ifdef CONFIG_X86_64
e08aa78a
AK
8384 "mov %%r8, %c[r8](%0) \n\t"
8385 "mov %%r9, %c[r9](%0) \n\t"
8386 "mov %%r10, %c[r10](%0) \n\t"
8387 "mov %%r11, %c[r11](%0) \n\t"
8388 "mov %%r12, %c[r12](%0) \n\t"
8389 "mov %%r13, %c[r13](%0) \n\t"
8390 "mov %%r14, %c[r14](%0) \n\t"
8391 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 8392#endif
b188c81f
AK
8393 "mov %%cr2, %%" _ASM_AX " \n\t"
8394 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 8395
b188c81f 8396 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 8397 "setbe %c[fail](%0) \n\t"
83287ea4
AK
8398 ".pushsection .rodata \n\t"
8399 ".global vmx_return \n\t"
8400 "vmx_return: " _ASM_PTR " 2b \n\t"
8401 ".popsection"
e08aa78a 8402 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 8403 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 8404 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 8405 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
8406 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8407 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8408 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8409 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8410 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8411 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8412 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 8413#ifdef CONFIG_X86_64
ad312c7c
ZX
8414 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8415 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8416 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8417 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8418 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8419 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8420 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8421 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 8422#endif
40712fae
AK
8423 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8424 [wordsize]"i"(sizeof(ulong))
c2036300
LV
8425 : "cc", "memory"
8426#ifdef CONFIG_X86_64
b188c81f 8427 , "rax", "rbx", "rdi", "rsi"
c2036300 8428 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
8429#else
8430 , "eax", "ebx", "edi", "esi"
c2036300
LV
8431#endif
8432 );
6aa8b732 8433
2a7921b7
GN
8434 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8435 if (debugctlmsr)
8436 update_debugctlmsr(debugctlmsr);
8437
aa67f609
AK
8438#ifndef CONFIG_X86_64
8439 /*
8440 * The sysexit path does not restore ds/es, so we must set them to
8441 * a reasonable value ourselves.
8442 *
8443 * We can't defer this to vmx_load_host_state() since that function
8444 * may be executed in interrupt context, which saves and restore segments
8445 * around it, nullifying its effect.
8446 */
8447 loadsegment(ds, __USER_DS);
8448 loadsegment(es, __USER_DS);
8449#endif
8450
6de4f3ad 8451 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 8452 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 8453 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 8454 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 8455 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
8456 vcpu->arch.regs_dirty = 0;
8457
1155f76a
AK
8458 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8459
d462b819 8460 vmx->loaded_vmcs->launched = 1;
1b6269db 8461
51aa01d1 8462 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 8463 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1 8464
e0b890d3
GN
8465 /*
8466 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8467 * we did not inject a still-pending event to L1 now because of
8468 * nested_run_pending, we need to re-enable this bit.
8469 */
8470 if (vmx->nested.nested_run_pending)
8471 kvm_make_request(KVM_REQ_EVENT, vcpu);
8472
8473 vmx->nested.nested_run_pending = 0;
8474
51aa01d1
AK
8475 vmx_complete_atomic_exit(vmx);
8476 vmx_recover_nmi_blocking(vmx);
cf393f75 8477 vmx_complete_interrupts(vmx);
6aa8b732
AK
8478}
8479
4fa7734c
PB
8480static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8481{
8482 struct vcpu_vmx *vmx = to_vmx(vcpu);
8483 int cpu;
8484
8485 if (vmx->loaded_vmcs == &vmx->vmcs01)
8486 return;
8487
8488 cpu = get_cpu();
8489 vmx->loaded_vmcs = &vmx->vmcs01;
8490 vmx_vcpu_put(vcpu);
8491 vmx_vcpu_load(vcpu, cpu);
8492 vcpu->cpu = cpu;
8493 put_cpu();
8494}
8495
6aa8b732
AK
8496static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8497{
fb3f0f51
RR
8498 struct vcpu_vmx *vmx = to_vmx(vcpu);
8499
843e4330
KH
8500 if (enable_pml)
8501 vmx_disable_pml(vmx);
cdbecfc3 8502 free_vpid(vmx);
4fa7734c
PB
8503 leave_guest_mode(vcpu);
8504 vmx_load_vmcs01(vcpu);
26a865f4 8505 free_nested(vmx);
4fa7734c 8506 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
8507 kfree(vmx->guest_msrs);
8508 kvm_vcpu_uninit(vcpu);
a4770347 8509 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
8510}
8511
fb3f0f51 8512static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 8513{
fb3f0f51 8514 int err;
c16f862d 8515 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 8516 int cpu;
6aa8b732 8517
a2fa3e9f 8518 if (!vmx)
fb3f0f51
RR
8519 return ERR_PTR(-ENOMEM);
8520
2384d2b3
SY
8521 allocate_vpid(vmx);
8522
fb3f0f51
RR
8523 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8524 if (err)
8525 goto free_vcpu;
965b58a5 8526
a2fa3e9f 8527 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
8528 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8529 > PAGE_SIZE);
0123be42 8530
be6d05cf 8531 err = -ENOMEM;
fb3f0f51 8532 if (!vmx->guest_msrs) {
fb3f0f51
RR
8533 goto uninit_vcpu;
8534 }
965b58a5 8535
d462b819
NHE
8536 vmx->loaded_vmcs = &vmx->vmcs01;
8537 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8538 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 8539 goto free_msrs;
d462b819
NHE
8540 if (!vmm_exclusive)
8541 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8542 loaded_vmcs_init(vmx->loaded_vmcs);
8543 if (!vmm_exclusive)
8544 kvm_cpu_vmxoff();
a2fa3e9f 8545
15ad7146
AK
8546 cpu = get_cpu();
8547 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 8548 vmx->vcpu.cpu = cpu;
8b9cf98c 8549 err = vmx_vcpu_setup(vmx);
fb3f0f51 8550 vmx_vcpu_put(&vmx->vcpu);
15ad7146 8551 put_cpu();
fb3f0f51
RR
8552 if (err)
8553 goto free_vmcs;
a63cb560 8554 if (vm_need_virtualize_apic_accesses(kvm)) {
be6d05cf
JK
8555 err = alloc_apic_access_page(kvm);
8556 if (err)
5e4a0b3c 8557 goto free_vmcs;
a63cb560 8558 }
fb3f0f51 8559
b927a3ce
SY
8560 if (enable_ept) {
8561 if (!kvm->arch.ept_identity_map_addr)
8562 kvm->arch.ept_identity_map_addr =
8563 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
8564 err = init_rmode_identity_map(kvm);
8565 if (err)
93ea5388 8566 goto free_vmcs;
b927a3ce 8567 }
b7ebfb05 8568
b9c237bb
WV
8569 if (nested)
8570 nested_vmx_setup_ctls_msrs(vmx);
8571
705699a1 8572 vmx->nested.posted_intr_nv = -1;
a9d30f33
NHE
8573 vmx->nested.current_vmptr = -1ull;
8574 vmx->nested.current_vmcs12 = NULL;
8575
843e4330
KH
8576 /*
8577 * If PML is turned on, failure on enabling PML just results in failure
8578 * of creating the vcpu, therefore we can simplify PML logic (by
8579 * avoiding dealing with cases, such as enabling PML partially on vcpus
8580 * for the guest, etc.
8581 */
8582 if (enable_pml) {
8583 err = vmx_enable_pml(vmx);
8584 if (err)
8585 goto free_vmcs;
8586 }
8587
fb3f0f51
RR
8588 return &vmx->vcpu;
8589
8590free_vmcs:
5f3fbc34 8591 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 8592free_msrs:
fb3f0f51
RR
8593 kfree(vmx->guest_msrs);
8594uninit_vcpu:
8595 kvm_vcpu_uninit(&vmx->vcpu);
8596free_vcpu:
cdbecfc3 8597 free_vpid(vmx);
a4770347 8598 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 8599 return ERR_PTR(err);
6aa8b732
AK
8600}
8601
002c7f7c
YS
8602static void __init vmx_check_processor_compat(void *rtn)
8603{
8604 struct vmcs_config vmcs_conf;
8605
8606 *(int *)rtn = 0;
8607 if (setup_vmcs_config(&vmcs_conf) < 0)
8608 *(int *)rtn = -EIO;
8609 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8610 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8611 smp_processor_id());
8612 *(int *)rtn = -EIO;
8613 }
8614}
8615
67253af5
SY
8616static int get_ept_level(void)
8617{
8618 return VMX_EPT_DEFAULT_GAW + 1;
8619}
8620
4b12f0de 8621static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 8622{
b18d5431
XG
8623 u8 cache;
8624 u64 ipat = 0;
4b12f0de 8625
522c68c4 8626 /* For VT-d and EPT combination
606decd6 8627 * 1. MMIO: always map as UC
522c68c4
SY
8628 * 2. EPT with VT-d:
8629 * a. VT-d without snooping control feature: can't guarantee the
606decd6 8630 * result, try to trust guest.
522c68c4
SY
8631 * b. VT-d with snooping control feature: snooping control feature of
8632 * VT-d engine can guarantee the cache correctness. Just set it
8633 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 8634 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
8635 * consistent with host MTRR
8636 */
606decd6
PB
8637 if (is_mmio) {
8638 cache = MTRR_TYPE_UNCACHABLE;
8639 goto exit;
8640 }
8641
8642 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
8643 ipat = VMX_EPT_IPAT_BIT;
8644 cache = MTRR_TYPE_WRBACK;
8645 goto exit;
8646 }
8647
8648 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
8649 ipat = VMX_EPT_IPAT_BIT;
0da029ed 8650 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
8651 cache = MTRR_TYPE_WRBACK;
8652 else
8653 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
8654 goto exit;
8655 }
8656
ff53604b 8657 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
8658
8659exit:
8660 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
8661}
8662
17cc3935 8663static int vmx_get_lpage_level(void)
344f414f 8664{
878403b7
SY
8665 if (enable_ept && !cpu_has_vmx_ept_1g_page())
8666 return PT_DIRECTORY_LEVEL;
8667 else
8668 /* For shadow and EPT supported 1GB page */
8669 return PT_PDPE_LEVEL;
344f414f
JR
8670}
8671
0e851880
SY
8672static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8673{
4e47c7a6
SY
8674 struct kvm_cpuid_entry2 *best;
8675 struct vcpu_vmx *vmx = to_vmx(vcpu);
8676 u32 exec_control;
8677
8678 vmx->rdtscp_enabled = false;
8679 if (vmx_rdtscp_supported()) {
8680 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8681 if (exec_control & SECONDARY_EXEC_RDTSCP) {
8682 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
8683 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
8684 vmx->rdtscp_enabled = true;
8685 else {
8686 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8687 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8688 exec_control);
8689 }
8690 }
b3a2a907
JK
8691 if (nested && !vmx->rdtscp_enabled)
8692 vmx->nested.nested_vmx_secondary_ctls_high &=
8693 ~SECONDARY_EXEC_RDTSCP;
4e47c7a6 8694 }
ad756a16 8695
ad756a16
MJ
8696 /* Exposing INVPCID only when PCID is exposed */
8697 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8698 if (vmx_invpcid_supported() &&
4f977045 8699 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
ad756a16 8700 guest_cpuid_has_pcid(vcpu)) {
29282fde 8701 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
ad756a16
MJ
8702 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
8703 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8704 exec_control);
8705 } else {
29282fde
TI
8706 if (cpu_has_secondary_exec_ctrls()) {
8707 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8708 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8709 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8710 exec_control);
8711 }
ad756a16 8712 if (best)
4f977045 8713 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 8714 }
0e851880
SY
8715}
8716
d4330ef2
JR
8717static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8718{
7b8050f5
NHE
8719 if (func == 1 && nested)
8720 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
8721}
8722
25d92081
YZ
8723static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8724 struct x86_exception *fault)
8725{
533558bc
JK
8726 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8727 u32 exit_reason;
25d92081
YZ
8728
8729 if (fault->error_code & PFERR_RSVD_MASK)
533558bc 8730 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 8731 else
533558bc
JK
8732 exit_reason = EXIT_REASON_EPT_VIOLATION;
8733 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
25d92081
YZ
8734 vmcs12->guest_physical_address = fault->address;
8735}
8736
155a97a3
NHE
8737/* Callbacks for nested_ept_init_mmu_context: */
8738
8739static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8740{
8741 /* return the page table to be shadowed - in our case, EPT12 */
8742 return get_vmcs12(vcpu)->ept_pointer;
8743}
8744
8a3c1a33 8745static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 8746{
ad896af0
PB
8747 WARN_ON(mmu_is_nested(vcpu));
8748 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb
WV
8749 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
8750 VMX_EPT_EXECUTE_ONLY_BIT);
155a97a3
NHE
8751 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
8752 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
8753 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8754
8755 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
155a97a3
NHE
8756}
8757
8758static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8759{
8760 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8761}
8762
19d5f10b
EK
8763static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
8764 u16 error_code)
8765{
8766 bool inequality, bit;
8767
8768 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
8769 inequality =
8770 (error_code & vmcs12->page_fault_error_code_mask) !=
8771 vmcs12->page_fault_error_code_match;
8772 return inequality ^ bit;
8773}
8774
feaf0c7d
GN
8775static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8776 struct x86_exception *fault)
8777{
8778 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8779
8780 WARN_ON(!is_guest_mode(vcpu));
8781
19d5f10b 8782 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
533558bc
JK
8783 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
8784 vmcs_read32(VM_EXIT_INTR_INFO),
8785 vmcs_readl(EXIT_QUALIFICATION));
feaf0c7d
GN
8786 else
8787 kvm_inject_page_fault(vcpu, fault);
8788}
8789
a2bcba50
WL
8790static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
8791 struct vmcs12 *vmcs12)
8792{
8793 struct vcpu_vmx *vmx = to_vmx(vcpu);
9090422f 8794 int maxphyaddr = cpuid_maxphyaddr(vcpu);
a2bcba50
WL
8795
8796 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9090422f
EK
8797 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
8798 vmcs12->apic_access_addr >> maxphyaddr)
a2bcba50
WL
8799 return false;
8800
8801 /*
8802 * Translate L1 physical address to host physical
8803 * address for vmcs02. Keep the page pinned, so this
8804 * physical address remains valid. We keep a reference
8805 * to it so we can release it later.
8806 */
8807 if (vmx->nested.apic_access_page) /* shouldn't happen */
8808 nested_release_page(vmx->nested.apic_access_page);
8809 vmx->nested.apic_access_page =
8810 nested_get_page(vcpu, vmcs12->apic_access_addr);
8811 }
a7c0b07d
WL
8812
8813 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9090422f
EK
8814 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
8815 vmcs12->virtual_apic_page_addr >> maxphyaddr)
a7c0b07d
WL
8816 return false;
8817
8818 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8819 nested_release_page(vmx->nested.virtual_apic_page);
8820 vmx->nested.virtual_apic_page =
8821 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8822
8823 /*
8824 * Failing the vm entry is _not_ what the processor does
8825 * but it's basically the only possibility we have.
8826 * We could still enter the guest if CR8 load exits are
8827 * enabled, CR8 store exits are enabled, and virtualize APIC
8828 * access is disabled; in this case the processor would never
8829 * use the TPR shadow and we could simply clear the bit from
8830 * the execution control. But such a configuration is useless,
8831 * so let's keep the code simple.
8832 */
8833 if (!vmx->nested.virtual_apic_page)
8834 return false;
8835 }
8836
705699a1 8837 if (nested_cpu_has_posted_intr(vmcs12)) {
9090422f
EK
8838 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
8839 vmcs12->posted_intr_desc_addr >> maxphyaddr)
705699a1
WV
8840 return false;
8841
8842 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
8843 kunmap(vmx->nested.pi_desc_page);
8844 nested_release_page(vmx->nested.pi_desc_page);
8845 }
8846 vmx->nested.pi_desc_page =
8847 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
8848 if (!vmx->nested.pi_desc_page)
8849 return false;
8850
8851 vmx->nested.pi_desc =
8852 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
8853 if (!vmx->nested.pi_desc) {
8854 nested_release_page_clean(vmx->nested.pi_desc_page);
8855 return false;
8856 }
8857 vmx->nested.pi_desc =
8858 (struct pi_desc *)((void *)vmx->nested.pi_desc +
8859 (unsigned long)(vmcs12->posted_intr_desc_addr &
8860 (PAGE_SIZE - 1)));
8861 }
8862
a2bcba50
WL
8863 return true;
8864}
8865
f4124500
JK
8866static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8867{
8868 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8869 struct vcpu_vmx *vmx = to_vmx(vcpu);
8870
8871 if (vcpu->arch.virtual_tsc_khz == 0)
8872 return;
8873
8874 /* Make sure short timeouts reliably trigger an immediate vmexit.
8875 * hrtimer_start does not guarantee this. */
8876 if (preemption_timeout <= 1) {
8877 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8878 return;
8879 }
8880
8881 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8882 preemption_timeout *= 1000000;
8883 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8884 hrtimer_start(&vmx->nested.preemption_timer,
8885 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8886}
8887
3af18d9c
WV
8888static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
8889 struct vmcs12 *vmcs12)
8890{
8891 int maxphyaddr;
8892 u64 addr;
8893
8894 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8895 return 0;
8896
8897 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
8898 WARN_ON(1);
8899 return -EINVAL;
8900 }
8901 maxphyaddr = cpuid_maxphyaddr(vcpu);
8902
8903 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
8904 ((addr + PAGE_SIZE) >> maxphyaddr))
8905 return -EINVAL;
8906
8907 return 0;
8908}
8909
8910/*
8911 * Merge L0's and L1's MSR bitmap, return false to indicate that
8912 * we do not use the hardware.
8913 */
8914static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
8915 struct vmcs12 *vmcs12)
8916{
82f0dd4b 8917 int msr;
f2b93280
WV
8918 struct page *page;
8919 unsigned long *msr_bitmap;
8920
8921 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
8922 return false;
8923
8924 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
8925 if (!page) {
8926 WARN_ON(1);
8927 return false;
8928 }
8929 msr_bitmap = (unsigned long *)kmap(page);
8930 if (!msr_bitmap) {
8931 nested_release_page_clean(page);
8932 WARN_ON(1);
8933 return false;
8934 }
8935
8936 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
8937 if (nested_cpu_has_apic_reg_virt(vmcs12))
8938 for (msr = 0x800; msr <= 0x8ff; msr++)
8939 nested_vmx_disable_intercept_for_msr(
8940 msr_bitmap,
8941 vmx_msr_bitmap_nested,
8942 msr, MSR_TYPE_R);
f2b93280
WV
8943 /* TPR is allowed */
8944 nested_vmx_disable_intercept_for_msr(msr_bitmap,
8945 vmx_msr_bitmap_nested,
8946 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8947 MSR_TYPE_R | MSR_TYPE_W);
608406e2
WV
8948 if (nested_cpu_has_vid(vmcs12)) {
8949 /* EOI and self-IPI are allowed */
8950 nested_vmx_disable_intercept_for_msr(
8951 msr_bitmap,
8952 vmx_msr_bitmap_nested,
8953 APIC_BASE_MSR + (APIC_EOI >> 4),
8954 MSR_TYPE_W);
8955 nested_vmx_disable_intercept_for_msr(
8956 msr_bitmap,
8957 vmx_msr_bitmap_nested,
8958 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8959 MSR_TYPE_W);
8960 }
82f0dd4b
WV
8961 } else {
8962 /*
8963 * Enable reading intercept of all the x2apic
8964 * MSRs. We should not rely on vmcs12 to do any
8965 * optimizations here, it may have been modified
8966 * by L1.
8967 */
8968 for (msr = 0x800; msr <= 0x8ff; msr++)
8969 __vmx_enable_intercept_for_msr(
8970 vmx_msr_bitmap_nested,
8971 msr,
8972 MSR_TYPE_R);
8973
f2b93280
WV
8974 __vmx_enable_intercept_for_msr(
8975 vmx_msr_bitmap_nested,
8976 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
82f0dd4b 8977 MSR_TYPE_W);
608406e2
WV
8978 __vmx_enable_intercept_for_msr(
8979 vmx_msr_bitmap_nested,
8980 APIC_BASE_MSR + (APIC_EOI >> 4),
8981 MSR_TYPE_W);
8982 __vmx_enable_intercept_for_msr(
8983 vmx_msr_bitmap_nested,
8984 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8985 MSR_TYPE_W);
82f0dd4b 8986 }
f2b93280
WV
8987 kunmap(page);
8988 nested_release_page_clean(page);
8989
8990 return true;
8991}
8992
8993static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
8994 struct vmcs12 *vmcs12)
8995{
82f0dd4b 8996 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 8997 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
8998 !nested_cpu_has_vid(vmcs12) &&
8999 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
9000 return 0;
9001
9002 /*
9003 * If virtualize x2apic mode is enabled,
9004 * virtualize apic access must be disabled.
9005 */
82f0dd4b
WV
9006 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9007 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
9008 return -EINVAL;
9009
608406e2
WV
9010 /*
9011 * If virtual interrupt delivery is enabled,
9012 * we must exit on external interrupts.
9013 */
9014 if (nested_cpu_has_vid(vmcs12) &&
9015 !nested_exit_on_intr(vcpu))
9016 return -EINVAL;
9017
705699a1
WV
9018 /*
9019 * bits 15:8 should be zero in posted_intr_nv,
9020 * the descriptor address has been already checked
9021 * in nested_get_vmcs12_pages.
9022 */
9023 if (nested_cpu_has_posted_intr(vmcs12) &&
9024 (!nested_cpu_has_vid(vmcs12) ||
9025 !nested_exit_intr_ack_set(vcpu) ||
9026 vmcs12->posted_intr_nv & 0xff00))
9027 return -EINVAL;
9028
f2b93280
WV
9029 /* tpr shadow is needed by all apicv features. */
9030 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9031 return -EINVAL;
9032
9033 return 0;
3af18d9c
WV
9034}
9035
e9ac033e
EK
9036static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9037 unsigned long count_field,
92d71bc6 9038 unsigned long addr_field)
ff651cb6 9039{
92d71bc6 9040 int maxphyaddr;
e9ac033e
EK
9041 u64 count, addr;
9042
9043 if (vmcs12_read_any(vcpu, count_field, &count) ||
9044 vmcs12_read_any(vcpu, addr_field, &addr)) {
9045 WARN_ON(1);
9046 return -EINVAL;
9047 }
9048 if (count == 0)
9049 return 0;
92d71bc6 9050 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
9051 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9052 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9053 pr_warn_ratelimited(
9054 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9055 addr_field, maxphyaddr, count, addr);
9056 return -EINVAL;
9057 }
9058 return 0;
9059}
9060
9061static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9062 struct vmcs12 *vmcs12)
9063{
e9ac033e
EK
9064 if (vmcs12->vm_exit_msr_load_count == 0 &&
9065 vmcs12->vm_exit_msr_store_count == 0 &&
9066 vmcs12->vm_entry_msr_load_count == 0)
9067 return 0; /* Fast path */
e9ac033e 9068 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 9069 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 9070 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 9071 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 9072 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 9073 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
9074 return -EINVAL;
9075 return 0;
9076}
9077
9078static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9079 struct vmx_msr_entry *e)
9080{
9081 /* x2APIC MSR accesses are not allowed */
8a9781f7 9082 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
9083 return -EINVAL;
9084 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9085 e->index == MSR_IA32_UCODE_REV)
9086 return -EINVAL;
9087 if (e->reserved != 0)
ff651cb6
WV
9088 return -EINVAL;
9089 return 0;
9090}
9091
e9ac033e
EK
9092static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9093 struct vmx_msr_entry *e)
ff651cb6
WV
9094{
9095 if (e->index == MSR_FS_BASE ||
9096 e->index == MSR_GS_BASE ||
e9ac033e
EK
9097 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9098 nested_vmx_msr_check_common(vcpu, e))
9099 return -EINVAL;
9100 return 0;
9101}
9102
9103static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9104 struct vmx_msr_entry *e)
9105{
9106 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9107 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
9108 return -EINVAL;
9109 return 0;
9110}
9111
9112/*
9113 * Load guest's/host's msr at nested entry/exit.
9114 * return 0 for success, entry index for failure.
9115 */
9116static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9117{
9118 u32 i;
9119 struct vmx_msr_entry e;
9120 struct msr_data msr;
9121
9122 msr.host_initiated = false;
9123 for (i = 0; i < count; i++) {
54bf36aa
PB
9124 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9125 &e, sizeof(e))) {
e9ac033e
EK
9126 pr_warn_ratelimited(
9127 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9128 __func__, i, gpa + i * sizeof(e));
ff651cb6 9129 goto fail;
e9ac033e
EK
9130 }
9131 if (nested_vmx_load_msr_check(vcpu, &e)) {
9132 pr_warn_ratelimited(
9133 "%s check failed (%u, 0x%x, 0x%x)\n",
9134 __func__, i, e.index, e.reserved);
9135 goto fail;
9136 }
ff651cb6
WV
9137 msr.index = e.index;
9138 msr.data = e.value;
e9ac033e
EK
9139 if (kvm_set_msr(vcpu, &msr)) {
9140 pr_warn_ratelimited(
9141 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9142 __func__, i, e.index, e.value);
ff651cb6 9143 goto fail;
e9ac033e 9144 }
ff651cb6
WV
9145 }
9146 return 0;
9147fail:
9148 return i + 1;
9149}
9150
9151static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9152{
9153 u32 i;
9154 struct vmx_msr_entry e;
9155
9156 for (i = 0; i < count; i++) {
609e36d3 9157 struct msr_data msr_info;
54bf36aa
PB
9158 if (kvm_vcpu_read_guest(vcpu,
9159 gpa + i * sizeof(e),
9160 &e, 2 * sizeof(u32))) {
e9ac033e
EK
9161 pr_warn_ratelimited(
9162 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9163 __func__, i, gpa + i * sizeof(e));
ff651cb6 9164 return -EINVAL;
e9ac033e
EK
9165 }
9166 if (nested_vmx_store_msr_check(vcpu, &e)) {
9167 pr_warn_ratelimited(
9168 "%s check failed (%u, 0x%x, 0x%x)\n",
9169 __func__, i, e.index, e.reserved);
ff651cb6 9170 return -EINVAL;
e9ac033e 9171 }
609e36d3
PB
9172 msr_info.host_initiated = false;
9173 msr_info.index = e.index;
9174 if (kvm_get_msr(vcpu, &msr_info)) {
e9ac033e
EK
9175 pr_warn_ratelimited(
9176 "%s cannot read MSR (%u, 0x%x)\n",
9177 __func__, i, e.index);
9178 return -EINVAL;
9179 }
54bf36aa
PB
9180 if (kvm_vcpu_write_guest(vcpu,
9181 gpa + i * sizeof(e) +
9182 offsetof(struct vmx_msr_entry, value),
9183 &msr_info.data, sizeof(msr_info.data))) {
e9ac033e
EK
9184 pr_warn_ratelimited(
9185 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 9186 __func__, i, e.index, msr_info.data);
e9ac033e
EK
9187 return -EINVAL;
9188 }
ff651cb6
WV
9189 }
9190 return 0;
9191}
9192
fe3ef05c
NHE
9193/*
9194 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9195 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 9196 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
9197 * guest in a way that will both be appropriate to L1's requests, and our
9198 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9199 * function also has additional necessary side-effects, like setting various
9200 * vcpu->arch fields.
9201 */
9202static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9203{
9204 struct vcpu_vmx *vmx = to_vmx(vcpu);
9205 u32 exec_control;
9206
9207 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9208 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9209 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9210 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9211 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9212 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9213 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9214 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9215 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9216 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9217 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9218 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9219 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9220 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9221 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9222 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9223 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9224 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9225 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9226 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9227 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9228 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9229 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9230 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9231 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9232 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9233 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9234 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9235 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9236 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9237 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9238 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9239 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9240 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9241 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9242 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9243
2996fca0
JK
9244 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9245 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9246 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9247 } else {
9248 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9249 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9250 }
fe3ef05c
NHE
9251 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9252 vmcs12->vm_entry_intr_info_field);
9253 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9254 vmcs12->vm_entry_exception_error_code);
9255 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9256 vmcs12->vm_entry_instruction_len);
9257 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9258 vmcs12->guest_interruptibility_info);
fe3ef05c 9259 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 9260 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
9261 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9262 vmcs12->guest_pending_dbg_exceptions);
9263 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9264 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9265
81dc01f7
WL
9266 if (nested_cpu_has_xsaves(vmcs12))
9267 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
9268 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9269
f4124500
JK
9270 exec_control = vmcs12->pin_based_vm_exec_control;
9271 exec_control |= vmcs_config.pin_based_exec_ctrl;
705699a1
WV
9272 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9273
9274 if (nested_cpu_has_posted_intr(vmcs12)) {
9275 /*
9276 * Note that we use L0's vector here and in
9277 * vmx_deliver_nested_posted_interrupt.
9278 */
9279 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9280 vmx->nested.pi_pending = false;
9281 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9282 vmcs_write64(POSTED_INTR_DESC_ADDR,
9283 page_to_phys(vmx->nested.pi_desc_page) +
9284 (unsigned long)(vmcs12->posted_intr_desc_addr &
9285 (PAGE_SIZE - 1)));
9286 } else
9287 exec_control &= ~PIN_BASED_POSTED_INTR;
9288
f4124500 9289 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 9290
f4124500
JK
9291 vmx->nested.preemption_timer_expired = false;
9292 if (nested_cpu_has_preemption_timer(vmcs12))
9293 vmx_start_preemption_timer(vcpu);
0238ea91 9294
fe3ef05c
NHE
9295 /*
9296 * Whether page-faults are trapped is determined by a combination of
9297 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9298 * If enable_ept, L0 doesn't care about page faults and we should
9299 * set all of these to L1's desires. However, if !enable_ept, L0 does
9300 * care about (at least some) page faults, and because it is not easy
9301 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9302 * to exit on each and every L2 page fault. This is done by setting
9303 * MASK=MATCH=0 and (see below) EB.PF=1.
9304 * Note that below we don't need special code to set EB.PF beyond the
9305 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9306 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9307 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9308 *
9309 * A problem with this approach (when !enable_ept) is that L1 may be
9310 * injected with more page faults than it asked for. This could have
9311 * caused problems, but in practice existing hypervisors don't care.
9312 * To fix this, we will need to emulate the PFEC checking (on the L1
9313 * page tables), using walk_addr(), when injecting PFs to L1.
9314 */
9315 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9316 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9317 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9318 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9319
9320 if (cpu_has_secondary_exec_ctrls()) {
f4124500 9321 exec_control = vmx_secondary_exec_control(vmx);
fe3ef05c
NHE
9322 if (!vmx->rdtscp_enabled)
9323 exec_control &= ~SECONDARY_EXEC_RDTSCP;
9324 /* Take the following fields only from vmcs12 */
696dfd95 9325 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 9326 SECONDARY_EXEC_RDTSCP |
696dfd95 9327 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
b3a2a907 9328 SECONDARY_EXEC_APIC_REGISTER_VIRT);
fe3ef05c
NHE
9329 if (nested_cpu_has(vmcs12,
9330 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9331 exec_control |= vmcs12->secondary_vm_exec_control;
9332
9333 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
fe3ef05c
NHE
9334 /*
9335 * If translation failed, no matter: This feature asks
9336 * to exit when accessing the given address, and if it
9337 * can never be accessed, this feature won't do
9338 * anything anyway.
9339 */
9340 if (!vmx->nested.apic_access_page)
9341 exec_control &=
9342 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9343 else
9344 vmcs_write64(APIC_ACCESS_ADDR,
9345 page_to_phys(vmx->nested.apic_access_page));
f2b93280
WV
9346 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9347 (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))) {
ca3f257a
JK
9348 exec_control |=
9349 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
38b99173 9350 kvm_vcpu_reload_apic_access_page(vcpu);
fe3ef05c
NHE
9351 }
9352
608406e2
WV
9353 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9354 vmcs_write64(EOI_EXIT_BITMAP0,
9355 vmcs12->eoi_exit_bitmap0);
9356 vmcs_write64(EOI_EXIT_BITMAP1,
9357 vmcs12->eoi_exit_bitmap1);
9358 vmcs_write64(EOI_EXIT_BITMAP2,
9359 vmcs12->eoi_exit_bitmap2);
9360 vmcs_write64(EOI_EXIT_BITMAP3,
9361 vmcs12->eoi_exit_bitmap3);
9362 vmcs_write16(GUEST_INTR_STATUS,
9363 vmcs12->guest_intr_status);
9364 }
9365
fe3ef05c
NHE
9366 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9367 }
9368
9369
9370 /*
9371 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9372 * Some constant fields are set here by vmx_set_constant_host_state().
9373 * Other fields are different per CPU, and will be set later when
9374 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9375 */
a547c6db 9376 vmx_set_constant_host_state(vmx);
fe3ef05c
NHE
9377
9378 /*
9379 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9380 * entry, but only if the current (host) sp changed from the value
9381 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9382 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9383 * here we just force the write to happen on entry.
9384 */
9385 vmx->host_rsp = 0;
9386
9387 exec_control = vmx_exec_control(vmx); /* L0's desires */
9388 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9389 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9390 exec_control &= ~CPU_BASED_TPR_SHADOW;
9391 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d
WL
9392
9393 if (exec_control & CPU_BASED_TPR_SHADOW) {
9394 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9395 page_to_phys(vmx->nested.virtual_apic_page));
9396 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9397 }
9398
3af18d9c 9399 if (cpu_has_vmx_msr_bitmap() &&
670125bd
WV
9400 exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9401 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9402 /* MSR_BITMAP will be set by following vmx_set_efer. */
3af18d9c
WV
9403 } else
9404 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9405
fe3ef05c 9406 /*
3af18d9c 9407 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
9408 * Rather, exit every time.
9409 */
fe3ef05c
NHE
9410 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9411 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9412
9413 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9414
9415 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9416 * bitwise-or of what L1 wants to trap for L2, and what we want to
9417 * trap. Note that CR0.TS also needs updating - we do this later.
9418 */
9419 update_exception_bitmap(vcpu);
9420 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9421 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9422
8049d651
NHE
9423 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9424 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9425 * bits are further modified by vmx_set_efer() below.
9426 */
f4124500 9427 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
9428
9429 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9430 * emulated by vmx_set_efer(), below.
9431 */
2961e876 9432 vm_entry_controls_init(vmx,
8049d651
NHE
9433 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9434 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
9435 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9436
44811c02 9437 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 9438 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02
JK
9439 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9440 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
fe3ef05c
NHE
9441 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9442
9443
9444 set_cr4_guest_host_mask(vmx);
9445
36be0b9d
PB
9446 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9447 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9448
27fc51b2
NHE
9449 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9450 vmcs_write64(TSC_OFFSET,
9451 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9452 else
9453 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
9454
9455 if (enable_vpid) {
9456 /*
9457 * Trivially support vpid by letting L2s share their parent
9458 * L1's vpid. TODO: move to a more elaborate solution, giving
9459 * each L2 its own vpid and exposing the vpid feature to L1.
9460 */
9461 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9462 vmx_flush_tlb(vcpu);
9463 }
9464
155a97a3
NHE
9465 if (nested_cpu_has_ept(vmcs12)) {
9466 kvm_mmu_unload(vcpu);
9467 nested_ept_init_mmu_context(vcpu);
9468 }
9469
fe3ef05c
NHE
9470 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9471 vcpu->arch.efer = vmcs12->guest_ia32_efer;
d1fa0352 9472 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
fe3ef05c
NHE
9473 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9474 else
9475 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9476 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9477 vmx_set_efer(vcpu, vcpu->arch.efer);
9478
9479 /*
9480 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9481 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9482 * The CR0_READ_SHADOW is what L2 should have expected to read given
9483 * the specifications by L1; It's not enough to take
9484 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9485 * have more bits than L1 expected.
9486 */
9487 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9488 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9489
9490 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9491 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9492
9493 /* shadow page tables on either EPT or shadow page tables */
9494 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9495 kvm_mmu_reset_context(vcpu);
9496
feaf0c7d
GN
9497 if (!enable_ept)
9498 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9499
3633cfc3
NHE
9500 /*
9501 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9502 */
9503 if (enable_ept) {
9504 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9505 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9506 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9507 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9508 }
9509
fe3ef05c
NHE
9510 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9511 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9512}
9513
cd232ad0
NHE
9514/*
9515 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9516 * for running an L2 nested guest.
9517 */
9518static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9519{
9520 struct vmcs12 *vmcs12;
9521 struct vcpu_vmx *vmx = to_vmx(vcpu);
9522 int cpu;
9523 struct loaded_vmcs *vmcs02;
384bb783 9524 bool ia32e;
ff651cb6 9525 u32 msr_entry_idx;
cd232ad0
NHE
9526
9527 if (!nested_vmx_check_permission(vcpu) ||
9528 !nested_vmx_check_vmcs12(vcpu))
9529 return 1;
9530
9531 skip_emulated_instruction(vcpu);
9532 vmcs12 = get_vmcs12(vcpu);
9533
012f83cb
AG
9534 if (enable_shadow_vmcs)
9535 copy_shadow_to_vmcs12(vmx);
9536
7c177938
NHE
9537 /*
9538 * The nested entry process starts with enforcing various prerequisites
9539 * on vmcs12 as required by the Intel SDM, and act appropriately when
9540 * they fail: As the SDM explains, some conditions should cause the
9541 * instruction to fail, while others will cause the instruction to seem
9542 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9543 * To speed up the normal (success) code path, we should avoid checking
9544 * for misconfigurations which will anyway be caught by the processor
9545 * when using the merged vmcs02.
9546 */
9547 if (vmcs12->launch_state == launch) {
9548 nested_vmx_failValid(vcpu,
9549 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9550 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9551 return 1;
9552 }
9553
6dfacadd
JK
9554 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9555 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
26539bd0
PB
9556 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9557 return 1;
9558 }
9559
3af18d9c 9560 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
7c177938
NHE
9561 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9562 return 1;
9563 }
9564
3af18d9c 9565 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
7c177938
NHE
9566 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9567 return 1;
9568 }
9569
f2b93280
WV
9570 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9571 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9572 return 1;
9573 }
9574
e9ac033e
EK
9575 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9576 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9577 return 1;
9578 }
9579
7c177938 9580 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
b9c237bb
WV
9581 vmx->nested.nested_vmx_true_procbased_ctls_low,
9582 vmx->nested.nested_vmx_procbased_ctls_high) ||
7c177938 9583 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
b9c237bb
WV
9584 vmx->nested.nested_vmx_secondary_ctls_low,
9585 vmx->nested.nested_vmx_secondary_ctls_high) ||
7c177938 9586 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
9587 vmx->nested.nested_vmx_pinbased_ctls_low,
9588 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 9589 !vmx_control_verify(vmcs12->vm_exit_controls,
b9c237bb
WV
9590 vmx->nested.nested_vmx_true_exit_ctls_low,
9591 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 9592 !vmx_control_verify(vmcs12->vm_entry_controls,
b9c237bb
WV
9593 vmx->nested.nested_vmx_true_entry_ctls_low,
9594 vmx->nested.nested_vmx_entry_ctls_high))
7c177938
NHE
9595 {
9596 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9597 return 1;
9598 }
9599
9600 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9601 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9602 nested_vmx_failValid(vcpu,
9603 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9604 return 1;
9605 }
9606
b9c237bb 9607 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
7c177938
NHE
9608 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9609 nested_vmx_entry_failure(vcpu, vmcs12,
9610 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9611 return 1;
9612 }
9613 if (vmcs12->vmcs_link_pointer != -1ull) {
9614 nested_vmx_entry_failure(vcpu, vmcs12,
9615 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9616 return 1;
9617 }
9618
384bb783 9619 /*
cb0c8cda 9620 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
9621 * are performed on the field for the IA32_EFER MSR:
9622 * - Bits reserved in the IA32_EFER MSR must be 0.
9623 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9624 * the IA-32e mode guest VM-exit control. It must also be identical
9625 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9626 * CR0.PG) is 1.
9627 */
9628 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9629 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9630 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9631 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9632 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9633 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9634 nested_vmx_entry_failure(vcpu, vmcs12,
9635 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9636 return 1;
9637 }
9638 }
9639
9640 /*
9641 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9642 * IA32_EFER MSR must be 0 in the field for that register. In addition,
9643 * the values of the LMA and LME bits in the field must each be that of
9644 * the host address-space size VM-exit control.
9645 */
9646 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9647 ia32e = (vmcs12->vm_exit_controls &
9648 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9649 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9650 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9651 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9652 nested_vmx_entry_failure(vcpu, vmcs12,
9653 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9654 return 1;
9655 }
9656 }
9657
7c177938
NHE
9658 /*
9659 * We're finally done with prerequisite checking, and can start with
9660 * the nested entry.
9661 */
9662
cd232ad0
NHE
9663 vmcs02 = nested_get_current_vmcs02(vmx);
9664 if (!vmcs02)
9665 return -ENOMEM;
9666
9667 enter_guest_mode(vcpu);
9668
9669 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9670
2996fca0
JK
9671 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9672 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9673
cd232ad0
NHE
9674 cpu = get_cpu();
9675 vmx->loaded_vmcs = vmcs02;
9676 vmx_vcpu_put(vcpu);
9677 vmx_vcpu_load(vcpu, cpu);
9678 vcpu->cpu = cpu;
9679 put_cpu();
9680
36c3cc42
JK
9681 vmx_segment_cache_clear(vmx);
9682
cd232ad0
NHE
9683 prepare_vmcs02(vcpu, vmcs12);
9684
ff651cb6
WV
9685 msr_entry_idx = nested_vmx_load_msr(vcpu,
9686 vmcs12->vm_entry_msr_load_addr,
9687 vmcs12->vm_entry_msr_load_count);
9688 if (msr_entry_idx) {
9689 leave_guest_mode(vcpu);
9690 vmx_load_vmcs01(vcpu);
9691 nested_vmx_entry_failure(vcpu, vmcs12,
9692 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
9693 return 1;
9694 }
9695
9696 vmcs12->launch_state = 1;
9697
6dfacadd 9698 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 9699 return kvm_vcpu_halt(vcpu);
6dfacadd 9700
7af40ad3
JK
9701 vmx->nested.nested_run_pending = 1;
9702
cd232ad0
NHE
9703 /*
9704 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9705 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9706 * returned as far as L1 is concerned. It will only return (and set
9707 * the success flag) when L2 exits (see nested_vmx_vmexit()).
9708 */
9709 return 1;
9710}
9711
4704d0be
NHE
9712/*
9713 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9714 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9715 * This function returns the new value we should put in vmcs12.guest_cr0.
9716 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9717 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9718 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9719 * didn't trap the bit, because if L1 did, so would L0).
9720 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9721 * been modified by L2, and L1 knows it. So just leave the old value of
9722 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
9723 * isn't relevant, because if L0 traps this bit it can set it to anything.
9724 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
9725 * changed these bits, and therefore they need to be updated, but L0
9726 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
9727 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
9728 */
9729static inline unsigned long
9730vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9731{
9732 return
9733 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
9734 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
9735 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
9736 vcpu->arch.cr0_guest_owned_bits));
9737}
9738
9739static inline unsigned long
9740vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9741{
9742 return
9743 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
9744 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
9745 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
9746 vcpu->arch.cr4_guest_owned_bits));
9747}
9748
5f3d5799
JK
9749static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
9750 struct vmcs12 *vmcs12)
9751{
9752 u32 idt_vectoring;
9753 unsigned int nr;
9754
851eb667 9755 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
9756 nr = vcpu->arch.exception.nr;
9757 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9758
9759 if (kvm_exception_is_soft(nr)) {
9760 vmcs12->vm_exit_instruction_len =
9761 vcpu->arch.event_exit_inst_len;
9762 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
9763 } else
9764 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
9765
9766 if (vcpu->arch.exception.has_error_code) {
9767 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
9768 vmcs12->idt_vectoring_error_code =
9769 vcpu->arch.exception.error_code;
9770 }
9771
9772 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 9773 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
9774 vmcs12->idt_vectoring_info_field =
9775 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
9776 } else if (vcpu->arch.interrupt.pending) {
9777 nr = vcpu->arch.interrupt.nr;
9778 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9779
9780 if (vcpu->arch.interrupt.soft) {
9781 idt_vectoring |= INTR_TYPE_SOFT_INTR;
9782 vmcs12->vm_entry_instruction_len =
9783 vcpu->arch.event_exit_inst_len;
9784 } else
9785 idt_vectoring |= INTR_TYPE_EXT_INTR;
9786
9787 vmcs12->idt_vectoring_info_field = idt_vectoring;
9788 }
9789}
9790
b6b8a145
JK
9791static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
9792{
9793 struct vcpu_vmx *vmx = to_vmx(vcpu);
9794
f4124500
JK
9795 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
9796 vmx->nested.preemption_timer_expired) {
9797 if (vmx->nested.nested_run_pending)
9798 return -EBUSY;
9799 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
9800 return 0;
9801 }
9802
b6b8a145 9803 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
220c5672
JK
9804 if (vmx->nested.nested_run_pending ||
9805 vcpu->arch.interrupt.pending)
b6b8a145
JK
9806 return -EBUSY;
9807 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9808 NMI_VECTOR | INTR_TYPE_NMI_INTR |
9809 INTR_INFO_VALID_MASK, 0);
9810 /*
9811 * The NMI-triggered VM exit counts as injection:
9812 * clear this one and block further NMIs.
9813 */
9814 vcpu->arch.nmi_pending = 0;
9815 vmx_set_nmi_mask(vcpu, true);
9816 return 0;
9817 }
9818
9819 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
9820 nested_exit_on_intr(vcpu)) {
9821 if (vmx->nested.nested_run_pending)
9822 return -EBUSY;
9823 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 9824 return 0;
b6b8a145
JK
9825 }
9826
705699a1 9827 return vmx_complete_nested_posted_interrupt(vcpu);
b6b8a145
JK
9828}
9829
f4124500
JK
9830static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
9831{
9832 ktime_t remaining =
9833 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
9834 u64 value;
9835
9836 if (ktime_to_ns(remaining) <= 0)
9837 return 0;
9838
9839 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
9840 do_div(value, 1000000);
9841 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9842}
9843
4704d0be
NHE
9844/*
9845 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
9846 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
9847 * and this function updates it to reflect the changes to the guest state while
9848 * L2 was running (and perhaps made some exits which were handled directly by L0
9849 * without going back to L1), and to reflect the exit reason.
9850 * Note that we do not have to copy here all VMCS fields, just those that
9851 * could have changed by the L2 guest or the exit - i.e., the guest-state and
9852 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
9853 * which already writes to vmcs12 directly.
9854 */
533558bc
JK
9855static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9856 u32 exit_reason, u32 exit_intr_info,
9857 unsigned long exit_qualification)
4704d0be
NHE
9858{
9859 /* update guest state fields: */
9860 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
9861 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
9862
4704d0be
NHE
9863 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
9864 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
9865 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
9866
9867 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
9868 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
9869 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
9870 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
9871 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
9872 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
9873 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
9874 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
9875 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
9876 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
9877 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
9878 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
9879 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
9880 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
9881 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
9882 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
9883 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
9884 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
9885 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
9886 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
9887 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
9888 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
9889 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
9890 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
9891 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
9892 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
9893 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
9894 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
9895 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
9896 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
9897 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
9898 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
9899 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
9900 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
9901 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
9902 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
9903
4704d0be
NHE
9904 vmcs12->guest_interruptibility_info =
9905 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
9906 vmcs12->guest_pending_dbg_exceptions =
9907 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
9908 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
9909 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
9910 else
9911 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 9912
f4124500
JK
9913 if (nested_cpu_has_preemption_timer(vmcs12)) {
9914 if (vmcs12->vm_exit_controls &
9915 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
9916 vmcs12->vmx_preemption_timer_value =
9917 vmx_get_preemption_timer_value(vcpu);
9918 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
9919 }
7854cbca 9920
3633cfc3
NHE
9921 /*
9922 * In some cases (usually, nested EPT), L2 is allowed to change its
9923 * own CR3 without exiting. If it has changed it, we must keep it.
9924 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
9925 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
9926 *
9927 * Additionally, restore L2's PDPTR to vmcs12.
9928 */
9929 if (enable_ept) {
9930 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
9931 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
9932 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
9933 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
9934 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
9935 }
9936
608406e2
WV
9937 if (nested_cpu_has_vid(vmcs12))
9938 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
9939
c18911a2
JK
9940 vmcs12->vm_entry_controls =
9941 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 9942 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 9943
2996fca0
JK
9944 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
9945 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
9946 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9947 }
9948
4704d0be
NHE
9949 /* TODO: These cannot have changed unless we have MSR bitmaps and
9950 * the relevant bit asks not to trap the change */
b8c07d55 9951 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 9952 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
9953 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
9954 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
9955 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
9956 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
9957 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
36be0b9d
PB
9958 if (vmx_mpx_supported())
9959 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
81dc01f7
WL
9960 if (nested_cpu_has_xsaves(vmcs12))
9961 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
4704d0be
NHE
9962
9963 /* update exit information fields: */
9964
533558bc
JK
9965 vmcs12->vm_exit_reason = exit_reason;
9966 vmcs12->exit_qualification = exit_qualification;
4704d0be 9967
533558bc 9968 vmcs12->vm_exit_intr_info = exit_intr_info;
c0d1c770
JK
9969 if ((vmcs12->vm_exit_intr_info &
9970 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
9971 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
9972 vmcs12->vm_exit_intr_error_code =
9973 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 9974 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
9975 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
9976 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9977
5f3d5799
JK
9978 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
9979 /* vm_entry_intr_info_field is cleared on exit. Emulate this
9980 * instead of reading the real value. */
4704d0be 9981 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
9982
9983 /*
9984 * Transfer the event that L0 or L1 may wanted to inject into
9985 * L2 to IDT_VECTORING_INFO_FIELD.
9986 */
9987 vmcs12_save_pending_event(vcpu, vmcs12);
9988 }
9989
9990 /*
9991 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
9992 * preserved above and would only end up incorrectly in L1.
9993 */
9994 vcpu->arch.nmi_injected = false;
9995 kvm_clear_exception_queue(vcpu);
9996 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
9997}
9998
9999/*
10000 * A part of what we need to when the nested L2 guest exits and we want to
10001 * run its L1 parent, is to reset L1's guest state to the host state specified
10002 * in vmcs12.
10003 * This function is to be called not only on normal nested exit, but also on
10004 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10005 * Failures During or After Loading Guest State").
10006 * This function should be called when the active VMCS is L1's (vmcs01).
10007 */
733568f9
JK
10008static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10009 struct vmcs12 *vmcs12)
4704d0be 10010{
21feb4eb
ACL
10011 struct kvm_segment seg;
10012
4704d0be
NHE
10013 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10014 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 10015 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
10016 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10017 else
10018 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10019 vmx_set_efer(vcpu, vcpu->arch.efer);
10020
10021 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10022 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 10023 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
10024 /*
10025 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10026 * actually changed, because it depends on the current state of
10027 * fpu_active (which may have changed).
10028 * Note that vmx_set_cr0 refers to efer set above.
10029 */
9e3e4dbf 10030 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be
NHE
10031 /*
10032 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10033 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10034 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10035 */
10036 update_exception_bitmap(vcpu);
10037 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10038 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10039
10040 /*
10041 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10042 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10043 */
10044 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10045 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10046
29bf08f1 10047 nested_ept_uninit_mmu_context(vcpu);
155a97a3 10048
4704d0be
NHE
10049 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10050 kvm_mmu_reset_context(vcpu);
10051
feaf0c7d
GN
10052 if (!enable_ept)
10053 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10054
4704d0be
NHE
10055 if (enable_vpid) {
10056 /*
10057 * Trivially support vpid by letting L2s share their parent
10058 * L1's vpid. TODO: move to a more elaborate solution, giving
10059 * each L2 its own vpid and exposing the vpid feature to L1.
10060 */
10061 vmx_flush_tlb(vcpu);
10062 }
10063
10064
10065 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10066 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10067 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10068 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10069 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 10070
36be0b9d
PB
10071 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10072 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10073 vmcs_write64(GUEST_BNDCFGS, 0);
10074
44811c02 10075 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 10076 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
10077 vcpu->arch.pat = vmcs12->host_ia32_pat;
10078 }
4704d0be
NHE
10079 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10080 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10081 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 10082
21feb4eb
ACL
10083 /* Set L1 segment info according to Intel SDM
10084 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10085 seg = (struct kvm_segment) {
10086 .base = 0,
10087 .limit = 0xFFFFFFFF,
10088 .selector = vmcs12->host_cs_selector,
10089 .type = 11,
10090 .present = 1,
10091 .s = 1,
10092 .g = 1
10093 };
10094 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10095 seg.l = 1;
10096 else
10097 seg.db = 1;
10098 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10099 seg = (struct kvm_segment) {
10100 .base = 0,
10101 .limit = 0xFFFFFFFF,
10102 .type = 3,
10103 .present = 1,
10104 .s = 1,
10105 .db = 1,
10106 .g = 1
10107 };
10108 seg.selector = vmcs12->host_ds_selector;
10109 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10110 seg.selector = vmcs12->host_es_selector;
10111 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10112 seg.selector = vmcs12->host_ss_selector;
10113 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10114 seg.selector = vmcs12->host_fs_selector;
10115 seg.base = vmcs12->host_fs_base;
10116 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10117 seg.selector = vmcs12->host_gs_selector;
10118 seg.base = vmcs12->host_gs_base;
10119 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10120 seg = (struct kvm_segment) {
205befd9 10121 .base = vmcs12->host_tr_base,
21feb4eb
ACL
10122 .limit = 0x67,
10123 .selector = vmcs12->host_tr_selector,
10124 .type = 11,
10125 .present = 1
10126 };
10127 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10128
503cd0c5
JK
10129 kvm_set_dr(vcpu, 7, 0x400);
10130 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 10131
3af18d9c
WV
10132 if (cpu_has_vmx_msr_bitmap())
10133 vmx_set_msr_bitmap(vcpu);
10134
ff651cb6
WV
10135 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10136 vmcs12->vm_exit_msr_load_count))
10137 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
10138}
10139
10140/*
10141 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10142 * and modify vmcs12 to make it see what it would expect to see there if
10143 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10144 */
533558bc
JK
10145static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10146 u32 exit_intr_info,
10147 unsigned long exit_qualification)
4704d0be
NHE
10148{
10149 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
10150 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10151
5f3d5799
JK
10152 /* trying to cancel vmlaunch/vmresume is a bug */
10153 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10154
4704d0be 10155 leave_guest_mode(vcpu);
533558bc
JK
10156 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10157 exit_qualification);
4704d0be 10158
ff651cb6
WV
10159 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10160 vmcs12->vm_exit_msr_store_count))
10161 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10162
f3380ca5
WL
10163 vmx_load_vmcs01(vcpu);
10164
77b0f5d6
BD
10165 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10166 && nested_exit_intr_ack_set(vcpu)) {
10167 int irq = kvm_cpu_get_interrupt(vcpu);
10168 WARN_ON(irq < 0);
10169 vmcs12->vm_exit_intr_info = irq |
10170 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10171 }
10172
542060ea
JK
10173 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10174 vmcs12->exit_qualification,
10175 vmcs12->idt_vectoring_info_field,
10176 vmcs12->vm_exit_intr_info,
10177 vmcs12->vm_exit_intr_error_code,
10178 KVM_ISA_VMX);
4704d0be 10179
2961e876
GN
10180 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10181 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
36c3cc42
JK
10182 vmx_segment_cache_clear(vmx);
10183
4704d0be
NHE
10184 /* if no vmcs02 cache requested, remove the one we used */
10185 if (VMCS02_POOL_SIZE == 0)
10186 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10187
10188 load_vmcs12_host_state(vcpu, vmcs12);
10189
27fc51b2 10190 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
10191 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10192
10193 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10194 vmx->host_rsp = 0;
10195
10196 /* Unpin physical memory we referred to in vmcs02 */
10197 if (vmx->nested.apic_access_page) {
10198 nested_release_page(vmx->nested.apic_access_page);
48d89b92 10199 vmx->nested.apic_access_page = NULL;
4704d0be 10200 }
a7c0b07d
WL
10201 if (vmx->nested.virtual_apic_page) {
10202 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 10203 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 10204 }
705699a1
WV
10205 if (vmx->nested.pi_desc_page) {
10206 kunmap(vmx->nested.pi_desc_page);
10207 nested_release_page(vmx->nested.pi_desc_page);
10208 vmx->nested.pi_desc_page = NULL;
10209 vmx->nested.pi_desc = NULL;
10210 }
4704d0be 10211
38b99173
TC
10212 /*
10213 * We are now running in L2, mmu_notifier will force to reload the
10214 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10215 */
10216 kvm_vcpu_reload_apic_access_page(vcpu);
10217
4704d0be
NHE
10218 /*
10219 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10220 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10221 * success or failure flag accordingly.
10222 */
10223 if (unlikely(vmx->fail)) {
10224 vmx->fail = 0;
10225 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10226 } else
10227 nested_vmx_succeed(vcpu);
012f83cb
AG
10228 if (enable_shadow_vmcs)
10229 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
10230
10231 /* in case we halted in L2 */
10232 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
10233}
10234
42124925
JK
10235/*
10236 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10237 */
10238static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10239{
10240 if (is_guest_mode(vcpu))
533558bc 10241 nested_vmx_vmexit(vcpu, -1, 0, 0);
42124925
JK
10242 free_nested(to_vmx(vcpu));
10243}
10244
7c177938
NHE
10245/*
10246 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10247 * 23.7 "VM-entry failures during or after loading guest state" (this also
10248 * lists the acceptable exit-reason and exit-qualification parameters).
10249 * It should only be called before L2 actually succeeded to run, and when
10250 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10251 */
10252static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10253 struct vmcs12 *vmcs12,
10254 u32 reason, unsigned long qualification)
10255{
10256 load_vmcs12_host_state(vcpu, vmcs12);
10257 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10258 vmcs12->exit_qualification = qualification;
10259 nested_vmx_succeed(vcpu);
012f83cb
AG
10260 if (enable_shadow_vmcs)
10261 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
10262}
10263
8a76d7f2
JR
10264static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10265 struct x86_instruction_info *info,
10266 enum x86_intercept_stage stage)
10267{
10268 return X86EMUL_CONTINUE;
10269}
10270
48d89b92 10271static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 10272{
b4a2d31d
RK
10273 if (ple_gap)
10274 shrink_ple_window(vcpu);
ae97a3b8
RK
10275}
10276
843e4330
KH
10277static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10278 struct kvm_memory_slot *slot)
10279{
10280 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10281 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10282}
10283
10284static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10285 struct kvm_memory_slot *slot)
10286{
10287 kvm_mmu_slot_set_dirty(kvm, slot);
10288}
10289
10290static void vmx_flush_log_dirty(struct kvm *kvm)
10291{
10292 kvm_flush_pml_buffers(kvm);
10293}
10294
10295static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10296 struct kvm_memory_slot *memslot,
10297 gfn_t offset, unsigned long mask)
10298{
10299 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10300}
10301
cbdd1bea 10302static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
10303 .cpu_has_kvm_support = cpu_has_kvm_support,
10304 .disabled_by_bios = vmx_disabled_by_bios,
10305 .hardware_setup = hardware_setup,
10306 .hardware_unsetup = hardware_unsetup,
002c7f7c 10307 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
10308 .hardware_enable = hardware_enable,
10309 .hardware_disable = hardware_disable,
04547156 10310 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 10311 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
10312
10313 .vcpu_create = vmx_create_vcpu,
10314 .vcpu_free = vmx_free_vcpu,
04d2cc77 10315 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 10316
04d2cc77 10317 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
10318 .vcpu_load = vmx_vcpu_load,
10319 .vcpu_put = vmx_vcpu_put,
10320
c8639010 10321 .update_db_bp_intercept = update_exception_bitmap,
6aa8b732
AK
10322 .get_msr = vmx_get_msr,
10323 .set_msr = vmx_set_msr,
10324 .get_segment_base = vmx_get_segment_base,
10325 .get_segment = vmx_get_segment,
10326 .set_segment = vmx_set_segment,
2e4d2653 10327 .get_cpl = vmx_get_cpl,
6aa8b732 10328 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 10329 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 10330 .decache_cr3 = vmx_decache_cr3,
25c4c276 10331 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 10332 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
10333 .set_cr3 = vmx_set_cr3,
10334 .set_cr4 = vmx_set_cr4,
6aa8b732 10335 .set_efer = vmx_set_efer,
6aa8b732
AK
10336 .get_idt = vmx_get_idt,
10337 .set_idt = vmx_set_idt,
10338 .get_gdt = vmx_get_gdt,
10339 .set_gdt = vmx_set_gdt,
73aaf249
JK
10340 .get_dr6 = vmx_get_dr6,
10341 .set_dr6 = vmx_set_dr6,
020df079 10342 .set_dr7 = vmx_set_dr7,
81908bf4 10343 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 10344 .cache_reg = vmx_cache_reg,
6aa8b732
AK
10345 .get_rflags = vmx_get_rflags,
10346 .set_rflags = vmx_set_rflags,
0fdd74f7 10347 .fpu_activate = vmx_fpu_activate,
02daab21 10348 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
10349
10350 .tlb_flush = vmx_flush_tlb,
6aa8b732 10351
6aa8b732 10352 .run = vmx_vcpu_run,
6062d012 10353 .handle_exit = vmx_handle_exit,
6aa8b732 10354 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
10355 .set_interrupt_shadow = vmx_set_interrupt_shadow,
10356 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 10357 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 10358 .set_irq = vmx_inject_irq,
95ba8273 10359 .set_nmi = vmx_inject_nmi,
298101da 10360 .queue_exception = vmx_queue_exception,
b463a6f7 10361 .cancel_injection = vmx_cancel_injection,
78646121 10362 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 10363 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
10364 .get_nmi_mask = vmx_get_nmi_mask,
10365 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
10366 .enable_nmi_window = enable_nmi_window,
10367 .enable_irq_window = enable_irq_window,
10368 .update_cr8_intercept = update_cr8_intercept,
8d14695f 10369 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 10370 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d50ab6c1 10371 .cpu_uses_apicv = vmx_cpu_uses_apicv,
c7c9c56c
YZ
10372 .load_eoi_exitmap = vmx_load_eoi_exitmap,
10373 .hwapic_irr_update = vmx_hwapic_irr_update,
10374 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
10375 .sync_pir_to_irr = vmx_sync_pir_to_irr,
10376 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 10377
cbc94022 10378 .set_tss_addr = vmx_set_tss_addr,
67253af5 10379 .get_tdp_level = get_ept_level,
4b12f0de 10380 .get_mt_mask = vmx_get_mt_mask,
229456fc 10381
586f9607 10382 .get_exit_info = vmx_get_exit_info,
586f9607 10383
17cc3935 10384 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
10385
10386 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
10387
10388 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 10389 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
10390
10391 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
10392
10393 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 10394
4051b188 10395 .set_tsc_khz = vmx_set_tsc_khz,
ba904635 10396 .read_tsc_offset = vmx_read_tsc_offset,
99e3e30a 10397 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 10398 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 10399 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 10400 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
10401
10402 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
10403
10404 .check_intercept = vmx_check_intercept,
a547c6db 10405 .handle_external_intr = vmx_handle_external_intr,
da8999d3 10406 .mpx_supported = vmx_mpx_supported,
55412b2e 10407 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
10408
10409 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
10410
10411 .sched_in = vmx_sched_in,
843e4330
KH
10412
10413 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10414 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10415 .flush_log_dirty = vmx_flush_log_dirty,
10416 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
25462f7f
WH
10417
10418 .pmu_ops = &intel_pmu_ops,
6aa8b732
AK
10419};
10420
10421static int __init vmx_init(void)
10422{
34a1cd60
TC
10423 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10424 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 10425 if (r)
34a1cd60 10426 return r;
25c5f225 10427
2965faa5 10428#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
10429 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10430 crash_vmclear_local_loaded_vmcss);
10431#endif
10432
fdef3ad1 10433 return 0;
6aa8b732
AK
10434}
10435
10436static void __exit vmx_exit(void)
10437{
2965faa5 10438#ifdef CONFIG_KEXEC_CORE
3b63a43f 10439 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
10440 synchronize_rcu();
10441#endif
10442
cb498ea2 10443 kvm_exit();
6aa8b732
AK
10444}
10445
10446module_init(vmx_init)
10447module_exit(vmx_exit)