]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
Merge branch 'for-upstream' of git://github.com/agraf/linux-2.6 into next
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
e495606d 22
edf88417 23#include <linux/kvm_host.h>
6aa8b732 24#include <linux/module.h>
9d8f549d 25#include <linux/kernel.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e8edc6e0 28#include <linux/sched.h>
c7addb90 29#include <linux/moduleparam.h>
e9bda3b3 30#include <linux/mod_devicetable.h>
229456fc 31#include <linux/ftrace_event.h>
5a0e3ad6 32#include <linux/slab.h>
cafd6659 33#include <linux/tboot.h>
5fdbf976 34#include "kvm_cache_regs.h"
35920a35 35#include "x86.h"
e495606d 36
6aa8b732 37#include <asm/io.h>
3b3be0d1 38#include <asm/desc.h>
13673a90 39#include <asm/vmx.h>
6210e37b 40#include <asm/virtext.h>
a0861c02 41#include <asm/mce.h>
2acf923e
DC
42#include <asm/i387.h>
43#include <asm/xcr.h>
d7cd9796 44#include <asm/perf_event.h>
6aa8b732 45
229456fc
MT
46#include "trace.h"
47
4ecac3fd 48#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
49#define __ex_clear(x, reg) \
50 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 51
6aa8b732
AK
52MODULE_AUTHOR("Qumranet");
53MODULE_LICENSE("GPL");
54
e9bda3b3
JT
55static const struct x86_cpu_id vmx_cpu_id[] = {
56 X86_FEATURE_MATCH(X86_FEATURE_VMX),
57 {}
58};
59MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
60
476bc001 61static bool __read_mostly enable_vpid = 1;
736caefe 62module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 63
476bc001 64static bool __read_mostly flexpriority_enabled = 1;
736caefe 65module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 66
476bc001 67static bool __read_mostly enable_ept = 1;
736caefe 68module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 69
476bc001 70static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
71module_param_named(unrestricted_guest,
72 enable_unrestricted_guest, bool, S_IRUGO);
73
476bc001 74static bool __read_mostly emulate_invalid_guest_state = 0;
c1f8bc04 75module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 76
476bc001 77static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
78module_param(vmm_exclusive, bool, S_IRUGO);
79
476bc001 80static bool __read_mostly fasteoi = 1;
58fbbf26
KT
81module_param(fasteoi, bool, S_IRUGO);
82
801d3424
NHE
83/*
84 * If nested=1, nested virtualization is supported, i.e., guests may use
85 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
86 * use VMX instructions.
87 */
476bc001 88static bool __read_mostly nested = 0;
801d3424
NHE
89module_param(nested, bool, S_IRUGO);
90
cdc0e244
AK
91#define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
92 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
93#define KVM_GUEST_CR0_MASK \
94 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
95#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
81231c69 96 (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
97#define KVM_VM_CR0_ALWAYS_ON \
98 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
99#define KVM_CR4_GUEST_OWNED_BITS \
100 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
101 | X86_CR4_OSXMMEXCPT)
102
cdc0e244
AK
103#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
104#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
105
78ac8b47
AK
106#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
107
4b8d54f9
ZE
108/*
109 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
110 * ple_gap: upper bound on the amount of time between two successive
111 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 112 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
113 * ple_window: upper bound on the amount of time a guest is allowed to execute
114 * in a PAUSE loop. Tests indicate that most spinlocks are held for
115 * less than 2^12 cycles
116 * Time is measured based on a counter that runs at the same rate as the TSC,
117 * refer SDM volume 3b section 21.6.13 & 22.1.3.
118 */
00c25bce 119#define KVM_VMX_DEFAULT_PLE_GAP 128
4b8d54f9
ZE
120#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
121static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
122module_param(ple_gap, int, S_IRUGO);
123
124static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
125module_param(ple_window, int, S_IRUGO);
126
8bf00a52 127#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 128#define VMCS02_POOL_SIZE 1
61d2ef2c 129
a2fa3e9f
GH
130struct vmcs {
131 u32 revision_id;
132 u32 abort;
133 char data[0];
134};
135
d462b819
NHE
136/*
137 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
138 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
139 * loaded on this CPU (so we can clear them if the CPU goes down).
140 */
141struct loaded_vmcs {
142 struct vmcs *vmcs;
143 int cpu;
144 int launched;
145 struct list_head loaded_vmcss_on_cpu_link;
146};
147
26bb0981
AK
148struct shared_msr_entry {
149 unsigned index;
150 u64 data;
d5696725 151 u64 mask;
26bb0981
AK
152};
153
a9d30f33
NHE
154/*
155 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
156 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
157 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
158 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
159 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
160 * More than one of these structures may exist, if L1 runs multiple L2 guests.
161 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
162 * underlying hardware which will be used to run L2.
163 * This structure is packed to ensure that its layout is identical across
164 * machines (necessary for live migration).
165 * If there are changes in this struct, VMCS12_REVISION must be changed.
166 */
22bd0358 167typedef u64 natural_width;
a9d30f33
NHE
168struct __packed vmcs12 {
169 /* According to the Intel spec, a VMCS region must start with the
170 * following two fields. Then follow implementation-specific data.
171 */
172 u32 revision_id;
173 u32 abort;
22bd0358 174
27d6c865
NHE
175 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
176 u32 padding[7]; /* room for future expansion */
177
22bd0358
NHE
178 u64 io_bitmap_a;
179 u64 io_bitmap_b;
180 u64 msr_bitmap;
181 u64 vm_exit_msr_store_addr;
182 u64 vm_exit_msr_load_addr;
183 u64 vm_entry_msr_load_addr;
184 u64 tsc_offset;
185 u64 virtual_apic_page_addr;
186 u64 apic_access_addr;
187 u64 ept_pointer;
188 u64 guest_physical_address;
189 u64 vmcs_link_pointer;
190 u64 guest_ia32_debugctl;
191 u64 guest_ia32_pat;
192 u64 guest_ia32_efer;
193 u64 guest_ia32_perf_global_ctrl;
194 u64 guest_pdptr0;
195 u64 guest_pdptr1;
196 u64 guest_pdptr2;
197 u64 guest_pdptr3;
198 u64 host_ia32_pat;
199 u64 host_ia32_efer;
200 u64 host_ia32_perf_global_ctrl;
201 u64 padding64[8]; /* room for future expansion */
202 /*
203 * To allow migration of L1 (complete with its L2 guests) between
204 * machines of different natural widths (32 or 64 bit), we cannot have
205 * unsigned long fields with no explict size. We use u64 (aliased
206 * natural_width) instead. Luckily, x86 is little-endian.
207 */
208 natural_width cr0_guest_host_mask;
209 natural_width cr4_guest_host_mask;
210 natural_width cr0_read_shadow;
211 natural_width cr4_read_shadow;
212 natural_width cr3_target_value0;
213 natural_width cr3_target_value1;
214 natural_width cr3_target_value2;
215 natural_width cr3_target_value3;
216 natural_width exit_qualification;
217 natural_width guest_linear_address;
218 natural_width guest_cr0;
219 natural_width guest_cr3;
220 natural_width guest_cr4;
221 natural_width guest_es_base;
222 natural_width guest_cs_base;
223 natural_width guest_ss_base;
224 natural_width guest_ds_base;
225 natural_width guest_fs_base;
226 natural_width guest_gs_base;
227 natural_width guest_ldtr_base;
228 natural_width guest_tr_base;
229 natural_width guest_gdtr_base;
230 natural_width guest_idtr_base;
231 natural_width guest_dr7;
232 natural_width guest_rsp;
233 natural_width guest_rip;
234 natural_width guest_rflags;
235 natural_width guest_pending_dbg_exceptions;
236 natural_width guest_sysenter_esp;
237 natural_width guest_sysenter_eip;
238 natural_width host_cr0;
239 natural_width host_cr3;
240 natural_width host_cr4;
241 natural_width host_fs_base;
242 natural_width host_gs_base;
243 natural_width host_tr_base;
244 natural_width host_gdtr_base;
245 natural_width host_idtr_base;
246 natural_width host_ia32_sysenter_esp;
247 natural_width host_ia32_sysenter_eip;
248 natural_width host_rsp;
249 natural_width host_rip;
250 natural_width paddingl[8]; /* room for future expansion */
251 u32 pin_based_vm_exec_control;
252 u32 cpu_based_vm_exec_control;
253 u32 exception_bitmap;
254 u32 page_fault_error_code_mask;
255 u32 page_fault_error_code_match;
256 u32 cr3_target_count;
257 u32 vm_exit_controls;
258 u32 vm_exit_msr_store_count;
259 u32 vm_exit_msr_load_count;
260 u32 vm_entry_controls;
261 u32 vm_entry_msr_load_count;
262 u32 vm_entry_intr_info_field;
263 u32 vm_entry_exception_error_code;
264 u32 vm_entry_instruction_len;
265 u32 tpr_threshold;
266 u32 secondary_vm_exec_control;
267 u32 vm_instruction_error;
268 u32 vm_exit_reason;
269 u32 vm_exit_intr_info;
270 u32 vm_exit_intr_error_code;
271 u32 idt_vectoring_info_field;
272 u32 idt_vectoring_error_code;
273 u32 vm_exit_instruction_len;
274 u32 vmx_instruction_info;
275 u32 guest_es_limit;
276 u32 guest_cs_limit;
277 u32 guest_ss_limit;
278 u32 guest_ds_limit;
279 u32 guest_fs_limit;
280 u32 guest_gs_limit;
281 u32 guest_ldtr_limit;
282 u32 guest_tr_limit;
283 u32 guest_gdtr_limit;
284 u32 guest_idtr_limit;
285 u32 guest_es_ar_bytes;
286 u32 guest_cs_ar_bytes;
287 u32 guest_ss_ar_bytes;
288 u32 guest_ds_ar_bytes;
289 u32 guest_fs_ar_bytes;
290 u32 guest_gs_ar_bytes;
291 u32 guest_ldtr_ar_bytes;
292 u32 guest_tr_ar_bytes;
293 u32 guest_interruptibility_info;
294 u32 guest_activity_state;
295 u32 guest_sysenter_cs;
296 u32 host_ia32_sysenter_cs;
297 u32 padding32[8]; /* room for future expansion */
298 u16 virtual_processor_id;
299 u16 guest_es_selector;
300 u16 guest_cs_selector;
301 u16 guest_ss_selector;
302 u16 guest_ds_selector;
303 u16 guest_fs_selector;
304 u16 guest_gs_selector;
305 u16 guest_ldtr_selector;
306 u16 guest_tr_selector;
307 u16 host_es_selector;
308 u16 host_cs_selector;
309 u16 host_ss_selector;
310 u16 host_ds_selector;
311 u16 host_fs_selector;
312 u16 host_gs_selector;
313 u16 host_tr_selector;
a9d30f33
NHE
314};
315
316/*
317 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
318 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
319 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
320 */
321#define VMCS12_REVISION 0x11e57ed0
322
323/*
324 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
325 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
326 * current implementation, 4K are reserved to avoid future complications.
327 */
328#define VMCS12_SIZE 0x1000
329
ff2f6fe9
NHE
330/* Used to remember the last vmcs02 used for some recently used vmcs12s */
331struct vmcs02_list {
332 struct list_head list;
333 gpa_t vmptr;
334 struct loaded_vmcs vmcs02;
335};
336
ec378aee
NHE
337/*
338 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
339 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
340 */
341struct nested_vmx {
342 /* Has the level1 guest done vmxon? */
343 bool vmxon;
a9d30f33
NHE
344
345 /* The guest-physical address of the current VMCS L1 keeps for L2 */
346 gpa_t current_vmptr;
347 /* The host-usable pointer to the above */
348 struct page *current_vmcs12_page;
349 struct vmcs12 *current_vmcs12;
ff2f6fe9
NHE
350
351 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
352 struct list_head vmcs02_pool;
353 int vmcs02_num;
fe3ef05c 354 u64 vmcs01_tsc_offset;
644d711a
NHE
355 /* L2 must run next, and mustn't decide to exit to L1. */
356 bool nested_run_pending;
fe3ef05c
NHE
357 /*
358 * Guest pages referred to in vmcs02 with host-physical pointers, so
359 * we must keep them pinned while L2 runs.
360 */
361 struct page *apic_access_page;
ec378aee
NHE
362};
363
a2fa3e9f 364struct vcpu_vmx {
fb3f0f51 365 struct kvm_vcpu vcpu;
313dbd49 366 unsigned long host_rsp;
29bd8a78 367 u8 fail;
69c73028 368 u8 cpl;
9d58b931 369 bool nmi_known_unmasked;
51aa01d1 370 u32 exit_intr_info;
1155f76a 371 u32 idt_vectoring_info;
6de12732 372 ulong rflags;
26bb0981 373 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
374 int nmsrs;
375 int save_nmsrs;
a2fa3e9f 376#ifdef CONFIG_X86_64
44ea2b17
AK
377 u64 msr_host_kernel_gs_base;
378 u64 msr_guest_kernel_gs_base;
a2fa3e9f 379#endif
d462b819
NHE
380 /*
381 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
382 * non-nested (L1) guest, it always points to vmcs01. For a nested
383 * guest (L2), it points to a different VMCS.
384 */
385 struct loaded_vmcs vmcs01;
386 struct loaded_vmcs *loaded_vmcs;
387 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
388 struct msr_autoload {
389 unsigned nr;
390 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
391 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
392 } msr_autoload;
a2fa3e9f
GH
393 struct {
394 int loaded;
395 u16 fs_sel, gs_sel, ldt_sel;
152d3f2f
LV
396 int gs_ldt_reload_needed;
397 int fs_reload_needed;
d77c26fc 398 } host_state;
9c8cba37 399 struct {
7ffd92c5 400 int vm86_active;
78ac8b47 401 ulong save_rflags;
7ffd92c5
AK
402 struct kvm_save_segment {
403 u16 selector;
404 unsigned long base;
405 u32 limit;
406 u32 ar;
407 } tr, es, ds, fs, gs;
9c8cba37 408 } rmode;
2fb92db1
AK
409 struct {
410 u32 bitmask; /* 4 bits per segment (1 bit per field) */
411 struct kvm_save_segment seg[8];
412 } segment_cache;
2384d2b3 413 int vpid;
04fa4d32 414 bool emulation_required;
3b86cd99
JK
415
416 /* Support for vnmi-less CPUs */
417 int soft_vnmi_blocked;
418 ktime_t entry_time;
419 s64 vnmi_blocked_time;
a0861c02 420 u32 exit_reason;
4e47c7a6
SY
421
422 bool rdtscp_enabled;
ec378aee
NHE
423
424 /* Support for a guest hypervisor (nested VMX) */
425 struct nested_vmx nested;
a2fa3e9f
GH
426};
427
2fb92db1
AK
428enum segment_cache_field {
429 SEG_FIELD_SEL = 0,
430 SEG_FIELD_BASE = 1,
431 SEG_FIELD_LIMIT = 2,
432 SEG_FIELD_AR = 3,
433
434 SEG_FIELD_NR = 4
435};
436
a2fa3e9f
GH
437static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
438{
fb3f0f51 439 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
440}
441
22bd0358
NHE
442#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
443#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
444#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
445 [number##_HIGH] = VMCS12_OFFSET(name)+4
446
447static unsigned short vmcs_field_to_offset_table[] = {
448 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
449 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
450 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
451 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
452 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
453 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
454 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
455 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
456 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
457 FIELD(HOST_ES_SELECTOR, host_es_selector),
458 FIELD(HOST_CS_SELECTOR, host_cs_selector),
459 FIELD(HOST_SS_SELECTOR, host_ss_selector),
460 FIELD(HOST_DS_SELECTOR, host_ds_selector),
461 FIELD(HOST_FS_SELECTOR, host_fs_selector),
462 FIELD(HOST_GS_SELECTOR, host_gs_selector),
463 FIELD(HOST_TR_SELECTOR, host_tr_selector),
464 FIELD64(IO_BITMAP_A, io_bitmap_a),
465 FIELD64(IO_BITMAP_B, io_bitmap_b),
466 FIELD64(MSR_BITMAP, msr_bitmap),
467 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
468 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
469 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
470 FIELD64(TSC_OFFSET, tsc_offset),
471 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
472 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
473 FIELD64(EPT_POINTER, ept_pointer),
474 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
475 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
476 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
477 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
478 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
479 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
480 FIELD64(GUEST_PDPTR0, guest_pdptr0),
481 FIELD64(GUEST_PDPTR1, guest_pdptr1),
482 FIELD64(GUEST_PDPTR2, guest_pdptr2),
483 FIELD64(GUEST_PDPTR3, guest_pdptr3),
484 FIELD64(HOST_IA32_PAT, host_ia32_pat),
485 FIELD64(HOST_IA32_EFER, host_ia32_efer),
486 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
487 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
488 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
489 FIELD(EXCEPTION_BITMAP, exception_bitmap),
490 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
491 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
492 FIELD(CR3_TARGET_COUNT, cr3_target_count),
493 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
494 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
495 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
496 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
497 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
498 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
499 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
500 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
501 FIELD(TPR_THRESHOLD, tpr_threshold),
502 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
503 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
504 FIELD(VM_EXIT_REASON, vm_exit_reason),
505 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
506 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
507 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
508 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
509 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
510 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
511 FIELD(GUEST_ES_LIMIT, guest_es_limit),
512 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
513 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
514 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
515 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
516 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
517 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
518 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
519 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
520 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
521 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
522 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
523 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
524 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
525 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
526 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
527 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
528 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
529 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
530 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
531 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
532 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
533 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
534 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
535 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
536 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
537 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
538 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
539 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
540 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
541 FIELD(EXIT_QUALIFICATION, exit_qualification),
542 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
543 FIELD(GUEST_CR0, guest_cr0),
544 FIELD(GUEST_CR3, guest_cr3),
545 FIELD(GUEST_CR4, guest_cr4),
546 FIELD(GUEST_ES_BASE, guest_es_base),
547 FIELD(GUEST_CS_BASE, guest_cs_base),
548 FIELD(GUEST_SS_BASE, guest_ss_base),
549 FIELD(GUEST_DS_BASE, guest_ds_base),
550 FIELD(GUEST_FS_BASE, guest_fs_base),
551 FIELD(GUEST_GS_BASE, guest_gs_base),
552 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
553 FIELD(GUEST_TR_BASE, guest_tr_base),
554 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
555 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
556 FIELD(GUEST_DR7, guest_dr7),
557 FIELD(GUEST_RSP, guest_rsp),
558 FIELD(GUEST_RIP, guest_rip),
559 FIELD(GUEST_RFLAGS, guest_rflags),
560 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
561 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
562 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
563 FIELD(HOST_CR0, host_cr0),
564 FIELD(HOST_CR3, host_cr3),
565 FIELD(HOST_CR4, host_cr4),
566 FIELD(HOST_FS_BASE, host_fs_base),
567 FIELD(HOST_GS_BASE, host_gs_base),
568 FIELD(HOST_TR_BASE, host_tr_base),
569 FIELD(HOST_GDTR_BASE, host_gdtr_base),
570 FIELD(HOST_IDTR_BASE, host_idtr_base),
571 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
572 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
573 FIELD(HOST_RSP, host_rsp),
574 FIELD(HOST_RIP, host_rip),
575};
576static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
577
578static inline short vmcs_field_to_offset(unsigned long field)
579{
580 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
581 return -1;
582 return vmcs_field_to_offset_table[field];
583}
584
a9d30f33
NHE
585static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
586{
587 return to_vmx(vcpu)->nested.current_vmcs12;
588}
589
590static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
591{
592 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
593 if (is_error_page(page)) {
594 kvm_release_page_clean(page);
595 return NULL;
596 }
597 return page;
598}
599
600static void nested_release_page(struct page *page)
601{
602 kvm_release_page_dirty(page);
603}
604
605static void nested_release_page_clean(struct page *page)
606{
607 kvm_release_page_clean(page);
608}
609
4e1096d2 610static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
611static void kvm_cpu_vmxon(u64 addr);
612static void kvm_cpu_vmxoff(void);
aff48baa 613static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
776e58ea 614static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
75880a01 615
6aa8b732
AK
616static DEFINE_PER_CPU(struct vmcs *, vmxarea);
617static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
618/*
619 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
620 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
621 */
622static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 623static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 624
3e7c73e9
AK
625static unsigned long *vmx_io_bitmap_a;
626static unsigned long *vmx_io_bitmap_b;
5897297b
AK
627static unsigned long *vmx_msr_bitmap_legacy;
628static unsigned long *vmx_msr_bitmap_longmode;
fdef3ad1 629
110312c8 630static bool cpu_has_load_ia32_efer;
8bf00a52 631static bool cpu_has_load_perf_global_ctrl;
110312c8 632
2384d2b3
SY
633static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
634static DEFINE_SPINLOCK(vmx_vpid_lock);
635
1c3d14fe 636static struct vmcs_config {
6aa8b732
AK
637 int size;
638 int order;
639 u32 revision_id;
1c3d14fe
YS
640 u32 pin_based_exec_ctrl;
641 u32 cpu_based_exec_ctrl;
f78e0e2e 642 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
643 u32 vmexit_ctrl;
644 u32 vmentry_ctrl;
645} vmcs_config;
6aa8b732 646
efff9e53 647static struct vmx_capability {
d56f546d
SY
648 u32 ept;
649 u32 vpid;
650} vmx_capability;
651
6aa8b732
AK
652#define VMX_SEGMENT_FIELD(seg) \
653 [VCPU_SREG_##seg] = { \
654 .selector = GUEST_##seg##_SELECTOR, \
655 .base = GUEST_##seg##_BASE, \
656 .limit = GUEST_##seg##_LIMIT, \
657 .ar_bytes = GUEST_##seg##_AR_BYTES, \
658 }
659
660static struct kvm_vmx_segment_field {
661 unsigned selector;
662 unsigned base;
663 unsigned limit;
664 unsigned ar_bytes;
665} kvm_vmx_segment_fields[] = {
666 VMX_SEGMENT_FIELD(CS),
667 VMX_SEGMENT_FIELD(DS),
668 VMX_SEGMENT_FIELD(ES),
669 VMX_SEGMENT_FIELD(FS),
670 VMX_SEGMENT_FIELD(GS),
671 VMX_SEGMENT_FIELD(SS),
672 VMX_SEGMENT_FIELD(TR),
673 VMX_SEGMENT_FIELD(LDTR),
674};
675
26bb0981
AK
676static u64 host_efer;
677
6de4f3ad
AK
678static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
679
4d56c8a7 680/*
8c06585d 681 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
682 * away by decrementing the array size.
683 */
6aa8b732 684static const u32 vmx_msr_index[] = {
05b3e0c2 685#ifdef CONFIG_X86_64
44ea2b17 686 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 687#endif
8c06585d 688 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 689};
9d8f549d 690#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
6aa8b732 691
31299944 692static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
693{
694 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
695 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 696 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
697}
698
31299944 699static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
700{
701 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
702 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 703 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
704}
705
31299944 706static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
707{
708 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
709 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 710 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
711}
712
31299944 713static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
714{
715 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
716 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
717}
718
31299944 719static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
720{
721 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
722 INTR_INFO_VALID_MASK)) ==
723 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
724}
725
31299944 726static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 727{
04547156 728 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
729}
730
31299944 731static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 732{
04547156 733 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
734}
735
31299944 736static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 737{
04547156 738 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
739}
740
31299944 741static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 742{
04547156
SY
743 return vmcs_config.cpu_based_exec_ctrl &
744 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
745}
746
774ead3a 747static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 748{
04547156
SY
749 return vmcs_config.cpu_based_2nd_exec_ctrl &
750 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
751}
752
753static inline bool cpu_has_vmx_flexpriority(void)
754{
755 return cpu_has_vmx_tpr_shadow() &&
756 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
757}
758
e799794e
MT
759static inline bool cpu_has_vmx_ept_execute_only(void)
760{
31299944 761 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
762}
763
764static inline bool cpu_has_vmx_eptp_uncacheable(void)
765{
31299944 766 return vmx_capability.ept & VMX_EPTP_UC_BIT;
e799794e
MT
767}
768
769static inline bool cpu_has_vmx_eptp_writeback(void)
770{
31299944 771 return vmx_capability.ept & VMX_EPTP_WB_BIT;
e799794e
MT
772}
773
774static inline bool cpu_has_vmx_ept_2m_page(void)
775{
31299944 776 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
777}
778
878403b7
SY
779static inline bool cpu_has_vmx_ept_1g_page(void)
780{
31299944 781 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
782}
783
4bc9b982
SY
784static inline bool cpu_has_vmx_ept_4levels(void)
785{
786 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
787}
788
31299944 789static inline bool cpu_has_vmx_invept_individual_addr(void)
d56f546d 790{
31299944 791 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
d56f546d
SY
792}
793
31299944 794static inline bool cpu_has_vmx_invept_context(void)
d56f546d 795{
31299944 796 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
797}
798
31299944 799static inline bool cpu_has_vmx_invept_global(void)
d56f546d 800{
31299944 801 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
802}
803
518c8aee
GJ
804static inline bool cpu_has_vmx_invvpid_single(void)
805{
806 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
807}
808
b9d762fa
GJ
809static inline bool cpu_has_vmx_invvpid_global(void)
810{
811 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
812}
813
31299944 814static inline bool cpu_has_vmx_ept(void)
d56f546d 815{
04547156
SY
816 return vmcs_config.cpu_based_2nd_exec_ctrl &
817 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
818}
819
31299944 820static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
821{
822 return vmcs_config.cpu_based_2nd_exec_ctrl &
823 SECONDARY_EXEC_UNRESTRICTED_GUEST;
824}
825
31299944 826static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
827{
828 return vmcs_config.cpu_based_2nd_exec_ctrl &
829 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
830}
831
31299944 832static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 833{
6d3e435e 834 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
835}
836
31299944 837static inline bool cpu_has_vmx_vpid(void)
2384d2b3 838{
04547156
SY
839 return vmcs_config.cpu_based_2nd_exec_ctrl &
840 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
841}
842
31299944 843static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
844{
845 return vmcs_config.cpu_based_2nd_exec_ctrl &
846 SECONDARY_EXEC_RDTSCP;
847}
848
31299944 849static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
850{
851 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
852}
853
f5f48ee1
SY
854static inline bool cpu_has_vmx_wbinvd_exit(void)
855{
856 return vmcs_config.cpu_based_2nd_exec_ctrl &
857 SECONDARY_EXEC_WBINVD_EXITING;
858}
859
04547156
SY
860static inline bool report_flexpriority(void)
861{
862 return flexpriority_enabled;
863}
864
fe3ef05c
NHE
865static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
866{
867 return vmcs12->cpu_based_vm_exec_control & bit;
868}
869
870static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
871{
872 return (vmcs12->cpu_based_vm_exec_control &
873 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
874 (vmcs12->secondary_vm_exec_control & bit);
875}
876
644d711a
NHE
877static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
878 struct kvm_vcpu *vcpu)
879{
880 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
881}
882
883static inline bool is_exception(u32 intr_info)
884{
885 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
886 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
887}
888
889static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
7c177938
NHE
890static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
891 struct vmcs12 *vmcs12,
892 u32 reason, unsigned long qualification);
893
8b9cf98c 894static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
895{
896 int i;
897
a2fa3e9f 898 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 899 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
900 return i;
901 return -1;
902}
903
2384d2b3
SY
904static inline void __invvpid(int ext, u16 vpid, gva_t gva)
905{
906 struct {
907 u64 vpid : 16;
908 u64 rsvd : 48;
909 u64 gva;
910 } operand = { vpid, 0, gva };
911
4ecac3fd 912 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
913 /* CF==1 or ZF==1 --> rc = -1 */
914 "; ja 1f ; ud2 ; 1:"
915 : : "a"(&operand), "c"(ext) : "cc", "memory");
916}
917
1439442c
SY
918static inline void __invept(int ext, u64 eptp, gpa_t gpa)
919{
920 struct {
921 u64 eptp, gpa;
922 } operand = {eptp, gpa};
923
4ecac3fd 924 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
925 /* CF==1 or ZF==1 --> rc = -1 */
926 "; ja 1f ; ud2 ; 1:\n"
927 : : "a" (&operand), "c" (ext) : "cc", "memory");
928}
929
26bb0981 930static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
931{
932 int i;
933
8b9cf98c 934 i = __find_msr_index(vmx, msr);
a75beee6 935 if (i >= 0)
a2fa3e9f 936 return &vmx->guest_msrs[i];
8b6d44c7 937 return NULL;
7725f0ba
AK
938}
939
6aa8b732
AK
940static void vmcs_clear(struct vmcs *vmcs)
941{
942 u64 phys_addr = __pa(vmcs);
943 u8 error;
944
4ecac3fd 945 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 946 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
947 : "cc", "memory");
948 if (error)
949 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
950 vmcs, phys_addr);
951}
952
d462b819
NHE
953static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
954{
955 vmcs_clear(loaded_vmcs->vmcs);
956 loaded_vmcs->cpu = -1;
957 loaded_vmcs->launched = 0;
958}
959
7725b894
DX
960static void vmcs_load(struct vmcs *vmcs)
961{
962 u64 phys_addr = __pa(vmcs);
963 u8 error;
964
965 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 966 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
967 : "cc", "memory");
968 if (error)
2844d849 969 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
970 vmcs, phys_addr);
971}
972
d462b819 973static void __loaded_vmcs_clear(void *arg)
6aa8b732 974{
d462b819 975 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 976 int cpu = raw_smp_processor_id();
6aa8b732 977
d462b819
NHE
978 if (loaded_vmcs->cpu != cpu)
979 return; /* vcpu migration can race with cpu offline */
980 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 981 per_cpu(current_vmcs, cpu) = NULL;
d462b819
NHE
982 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
983 loaded_vmcs_init(loaded_vmcs);
6aa8b732
AK
984}
985
d462b819 986static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 987{
d462b819
NHE
988 if (loaded_vmcs->cpu != -1)
989 smp_call_function_single(
990 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
991}
992
1760dd49 993static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
994{
995 if (vmx->vpid == 0)
996 return;
997
518c8aee
GJ
998 if (cpu_has_vmx_invvpid_single())
999 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
1000}
1001
b9d762fa
GJ
1002static inline void vpid_sync_vcpu_global(void)
1003{
1004 if (cpu_has_vmx_invvpid_global())
1005 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1006}
1007
1008static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1009{
1010 if (cpu_has_vmx_invvpid_single())
1760dd49 1011 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1012 else
1013 vpid_sync_vcpu_global();
1014}
1015
1439442c
SY
1016static inline void ept_sync_global(void)
1017{
1018 if (cpu_has_vmx_invept_global())
1019 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1020}
1021
1022static inline void ept_sync_context(u64 eptp)
1023{
089d034e 1024 if (enable_ept) {
1439442c
SY
1025 if (cpu_has_vmx_invept_context())
1026 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1027 else
1028 ept_sync_global();
1029 }
1030}
1031
1032static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1033{
089d034e 1034 if (enable_ept) {
1439442c
SY
1035 if (cpu_has_vmx_invept_individual_addr())
1036 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1037 eptp, gpa);
1038 else
1039 ept_sync_context(eptp);
1040 }
1041}
1042
96304217 1043static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1044{
5e520e62 1045 unsigned long value;
6aa8b732 1046
5e520e62
AK
1047 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1048 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1049 return value;
1050}
1051
96304217 1052static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1053{
1054 return vmcs_readl(field);
1055}
1056
96304217 1057static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1058{
1059 return vmcs_readl(field);
1060}
1061
96304217 1062static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1063{
05b3e0c2 1064#ifdef CONFIG_X86_64
6aa8b732
AK
1065 return vmcs_readl(field);
1066#else
1067 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1068#endif
1069}
1070
e52de1b8
AK
1071static noinline void vmwrite_error(unsigned long field, unsigned long value)
1072{
1073 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1074 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1075 dump_stack();
1076}
1077
6aa8b732
AK
1078static void vmcs_writel(unsigned long field, unsigned long value)
1079{
1080 u8 error;
1081
4ecac3fd 1082 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1083 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1084 if (unlikely(error))
1085 vmwrite_error(field, value);
6aa8b732
AK
1086}
1087
1088static void vmcs_write16(unsigned long field, u16 value)
1089{
1090 vmcs_writel(field, value);
1091}
1092
1093static void vmcs_write32(unsigned long field, u32 value)
1094{
1095 vmcs_writel(field, value);
1096}
1097
1098static void vmcs_write64(unsigned long field, u64 value)
1099{
6aa8b732 1100 vmcs_writel(field, value);
7682f2d0 1101#ifndef CONFIG_X86_64
6aa8b732
AK
1102 asm volatile ("");
1103 vmcs_writel(field+1, value >> 32);
1104#endif
1105}
1106
2ab455cc
AL
1107static void vmcs_clear_bits(unsigned long field, u32 mask)
1108{
1109 vmcs_writel(field, vmcs_readl(field) & ~mask);
1110}
1111
1112static void vmcs_set_bits(unsigned long field, u32 mask)
1113{
1114 vmcs_writel(field, vmcs_readl(field) | mask);
1115}
1116
2fb92db1
AK
1117static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1118{
1119 vmx->segment_cache.bitmask = 0;
1120}
1121
1122static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1123 unsigned field)
1124{
1125 bool ret;
1126 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1127
1128 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1129 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1130 vmx->segment_cache.bitmask = 0;
1131 }
1132 ret = vmx->segment_cache.bitmask & mask;
1133 vmx->segment_cache.bitmask |= mask;
1134 return ret;
1135}
1136
1137static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1138{
1139 u16 *p = &vmx->segment_cache.seg[seg].selector;
1140
1141 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1142 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1143 return *p;
1144}
1145
1146static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1147{
1148 ulong *p = &vmx->segment_cache.seg[seg].base;
1149
1150 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1151 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1152 return *p;
1153}
1154
1155static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1156{
1157 u32 *p = &vmx->segment_cache.seg[seg].limit;
1158
1159 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1160 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1161 return *p;
1162}
1163
1164static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1165{
1166 u32 *p = &vmx->segment_cache.seg[seg].ar;
1167
1168 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1169 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1170 return *p;
1171}
1172
abd3f2d6
AK
1173static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1174{
1175 u32 eb;
1176
fd7373cc
JK
1177 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1178 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1179 if ((vcpu->guest_debug &
1180 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1181 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1182 eb |= 1u << BP_VECTOR;
7ffd92c5 1183 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1184 eb = ~0;
089d034e 1185 if (enable_ept)
1439442c 1186 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1187 if (vcpu->fpu_active)
1188 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1189
1190 /* When we are running a nested L2 guest and L1 specified for it a
1191 * certain exception bitmap, we must trap the same exceptions and pass
1192 * them to L1. When running L2, we will only handle the exceptions
1193 * specified above if L1 did not want them.
1194 */
1195 if (is_guest_mode(vcpu))
1196 eb |= get_vmcs12(vcpu)->exception_bitmap;
1197
abd3f2d6
AK
1198 vmcs_write32(EXCEPTION_BITMAP, eb);
1199}
1200
8bf00a52
GN
1201static void clear_atomic_switch_msr_special(unsigned long entry,
1202 unsigned long exit)
1203{
1204 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1205 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1206}
1207
61d2ef2c
AK
1208static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1209{
1210 unsigned i;
1211 struct msr_autoload *m = &vmx->msr_autoload;
1212
8bf00a52
GN
1213 switch (msr) {
1214 case MSR_EFER:
1215 if (cpu_has_load_ia32_efer) {
1216 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1217 VM_EXIT_LOAD_IA32_EFER);
1218 return;
1219 }
1220 break;
1221 case MSR_CORE_PERF_GLOBAL_CTRL:
1222 if (cpu_has_load_perf_global_ctrl) {
1223 clear_atomic_switch_msr_special(
1224 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1225 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1226 return;
1227 }
1228 break;
110312c8
AK
1229 }
1230
61d2ef2c
AK
1231 for (i = 0; i < m->nr; ++i)
1232 if (m->guest[i].index == msr)
1233 break;
1234
1235 if (i == m->nr)
1236 return;
1237 --m->nr;
1238 m->guest[i] = m->guest[m->nr];
1239 m->host[i] = m->host[m->nr];
1240 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1241 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1242}
1243
8bf00a52
GN
1244static void add_atomic_switch_msr_special(unsigned long entry,
1245 unsigned long exit, unsigned long guest_val_vmcs,
1246 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1247{
1248 vmcs_write64(guest_val_vmcs, guest_val);
1249 vmcs_write64(host_val_vmcs, host_val);
1250 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1251 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1252}
1253
61d2ef2c
AK
1254static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1255 u64 guest_val, u64 host_val)
1256{
1257 unsigned i;
1258 struct msr_autoload *m = &vmx->msr_autoload;
1259
8bf00a52
GN
1260 switch (msr) {
1261 case MSR_EFER:
1262 if (cpu_has_load_ia32_efer) {
1263 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1264 VM_EXIT_LOAD_IA32_EFER,
1265 GUEST_IA32_EFER,
1266 HOST_IA32_EFER,
1267 guest_val, host_val);
1268 return;
1269 }
1270 break;
1271 case MSR_CORE_PERF_GLOBAL_CTRL:
1272 if (cpu_has_load_perf_global_ctrl) {
1273 add_atomic_switch_msr_special(
1274 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1275 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1276 GUEST_IA32_PERF_GLOBAL_CTRL,
1277 HOST_IA32_PERF_GLOBAL_CTRL,
1278 guest_val, host_val);
1279 return;
1280 }
1281 break;
110312c8
AK
1282 }
1283
61d2ef2c
AK
1284 for (i = 0; i < m->nr; ++i)
1285 if (m->guest[i].index == msr)
1286 break;
1287
e7fc6f93
GN
1288 if (i == NR_AUTOLOAD_MSRS) {
1289 printk_once(KERN_WARNING"Not enough mst switch entries. "
1290 "Can't add msr %x\n", msr);
1291 return;
1292 } else if (i == m->nr) {
61d2ef2c
AK
1293 ++m->nr;
1294 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1295 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1296 }
1297
1298 m->guest[i].index = msr;
1299 m->guest[i].value = guest_val;
1300 m->host[i].index = msr;
1301 m->host[i].value = host_val;
1302}
1303
33ed6329
AK
1304static void reload_tss(void)
1305{
33ed6329
AK
1306 /*
1307 * VT restores TR but not its size. Useless.
1308 */
d359192f 1309 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
a5f61300 1310 struct desc_struct *descs;
33ed6329 1311
d359192f 1312 descs = (void *)gdt->address;
33ed6329
AK
1313 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1314 load_TR_desc();
33ed6329
AK
1315}
1316
92c0d900 1317static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1318{
3a34a881 1319 u64 guest_efer;
51c6cf66
AK
1320 u64 ignore_bits;
1321
f6801dff 1322 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1323
51c6cf66
AK
1324 /*
1325 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1326 * outside long mode
1327 */
1328 ignore_bits = EFER_NX | EFER_SCE;
1329#ifdef CONFIG_X86_64
1330 ignore_bits |= EFER_LMA | EFER_LME;
1331 /* SCE is meaningful only in long mode on Intel */
1332 if (guest_efer & EFER_LMA)
1333 ignore_bits &= ~(u64)EFER_SCE;
1334#endif
51c6cf66
AK
1335 guest_efer &= ~ignore_bits;
1336 guest_efer |= host_efer & ignore_bits;
26bb0981 1337 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1338 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1339
1340 clear_atomic_switch_msr(vmx, MSR_EFER);
1341 /* On ept, can't emulate nx, and must switch nx atomically */
1342 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1343 guest_efer = vmx->vcpu.arch.efer;
1344 if (!(guest_efer & EFER_LMA))
1345 guest_efer &= ~EFER_LME;
1346 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1347 return false;
1348 }
1349
26bb0981 1350 return true;
51c6cf66
AK
1351}
1352
2d49ec72
GN
1353static unsigned long segment_base(u16 selector)
1354{
d359192f 1355 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
2d49ec72
GN
1356 struct desc_struct *d;
1357 unsigned long table_base;
1358 unsigned long v;
1359
1360 if (!(selector & ~3))
1361 return 0;
1362
d359192f 1363 table_base = gdt->address;
2d49ec72
GN
1364
1365 if (selector & 4) { /* from ldt */
1366 u16 ldt_selector = kvm_read_ldt();
1367
1368 if (!(ldt_selector & ~3))
1369 return 0;
1370
1371 table_base = segment_base(ldt_selector);
1372 }
1373 d = (struct desc_struct *)(table_base + (selector & ~7));
1374 v = get_desc_base(d);
1375#ifdef CONFIG_X86_64
1376 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1377 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1378#endif
1379 return v;
1380}
1381
1382static inline unsigned long kvm_read_tr_base(void)
1383{
1384 u16 tr;
1385 asm("str %0" : "=g"(tr));
1386 return segment_base(tr);
1387}
1388
04d2cc77 1389static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1390{
04d2cc77 1391 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1392 int i;
04d2cc77 1393
a2fa3e9f 1394 if (vmx->host_state.loaded)
33ed6329
AK
1395 return;
1396
a2fa3e9f 1397 vmx->host_state.loaded = 1;
33ed6329
AK
1398 /*
1399 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1400 * allow segment selectors with cpl > 0 or ti == 1.
1401 */
d6e88aec 1402 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1403 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1404 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1405 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1406 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1407 vmx->host_state.fs_reload_needed = 0;
1408 } else {
33ed6329 1409 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1410 vmx->host_state.fs_reload_needed = 1;
33ed6329 1411 }
9581d442 1412 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1413 if (!(vmx->host_state.gs_sel & 7))
1414 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1415 else {
1416 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1417 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1418 }
1419
1420#ifdef CONFIG_X86_64
1421 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1422 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1423#else
a2fa3e9f
GH
1424 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1425 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1426#endif
707c0874
AK
1427
1428#ifdef CONFIG_X86_64
c8770e7b
AK
1429 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1430 if (is_long_mode(&vmx->vcpu))
44ea2b17 1431 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1432#endif
26bb0981
AK
1433 for (i = 0; i < vmx->save_nmsrs; ++i)
1434 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1435 vmx->guest_msrs[i].data,
1436 vmx->guest_msrs[i].mask);
33ed6329
AK
1437}
1438
a9b21b62 1439static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1440{
a2fa3e9f 1441 if (!vmx->host_state.loaded)
33ed6329
AK
1442 return;
1443
e1beb1d3 1444 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1445 vmx->host_state.loaded = 0;
c8770e7b
AK
1446#ifdef CONFIG_X86_64
1447 if (is_long_mode(&vmx->vcpu))
1448 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1449#endif
152d3f2f 1450 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1451 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1452#ifdef CONFIG_X86_64
9581d442 1453 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1454#else
1455 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1456#endif
33ed6329 1457 }
0a77fe4c
AK
1458 if (vmx->host_state.fs_reload_needed)
1459 loadsegment(fs, vmx->host_state.fs_sel);
152d3f2f 1460 reload_tss();
44ea2b17 1461#ifdef CONFIG_X86_64
c8770e7b 1462 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1463#endif
1361b83a 1464 if (user_has_fpu())
1c11e713 1465 clts();
3444d7da 1466 load_gdt(&__get_cpu_var(host_gdt));
33ed6329
AK
1467}
1468
a9b21b62
AK
1469static void vmx_load_host_state(struct vcpu_vmx *vmx)
1470{
1471 preempt_disable();
1472 __vmx_load_host_state(vmx);
1473 preempt_enable();
1474}
1475
6aa8b732
AK
1476/*
1477 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1478 * vcpu mutex is already taken.
1479 */
15ad7146 1480static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1481{
a2fa3e9f 1482 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1483 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1484
4610c9cc
DX
1485 if (!vmm_exclusive)
1486 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1487 else if (vmx->loaded_vmcs->cpu != cpu)
1488 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1489
d462b819
NHE
1490 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1491 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1492 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1493 }
1494
d462b819 1495 if (vmx->loaded_vmcs->cpu != cpu) {
d359192f 1496 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
6aa8b732
AK
1497 unsigned long sysenter_esp;
1498
a8eeb04a 1499 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1500 local_irq_disable();
d462b819
NHE
1501 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1502 &per_cpu(loaded_vmcss_on_cpu, cpu));
92fe13be
DX
1503 local_irq_enable();
1504
6aa8b732
AK
1505 /*
1506 * Linux uses per-cpu TSS and GDT, so set these when switching
1507 * processors.
1508 */
d6e88aec 1509 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1510 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1511
1512 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1513 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1514 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1515 }
6aa8b732
AK
1516}
1517
1518static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1519{
a9b21b62 1520 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1521 if (!vmm_exclusive) {
d462b819
NHE
1522 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1523 vcpu->cpu = -1;
4610c9cc
DX
1524 kvm_cpu_vmxoff();
1525 }
6aa8b732
AK
1526}
1527
5fd86fcf
AK
1528static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1529{
81231c69
AK
1530 ulong cr0;
1531
5fd86fcf
AK
1532 if (vcpu->fpu_active)
1533 return;
1534 vcpu->fpu_active = 1;
81231c69
AK
1535 cr0 = vmcs_readl(GUEST_CR0);
1536 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1537 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1538 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1539 update_exception_bitmap(vcpu);
edcafe3c 1540 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1541 if (is_guest_mode(vcpu))
1542 vcpu->arch.cr0_guest_owned_bits &=
1543 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1544 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1545}
1546
edcafe3c
AK
1547static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1548
fe3ef05c
NHE
1549/*
1550 * Return the cr0 value that a nested guest would read. This is a combination
1551 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1552 * its hypervisor (cr0_read_shadow).
1553 */
1554static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1555{
1556 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1557 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1558}
1559static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1560{
1561 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1562 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1563}
1564
5fd86fcf
AK
1565static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1566{
36cf24e0
NHE
1567 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1568 * set this *before* calling this function.
1569 */
edcafe3c 1570 vmx_decache_cr0_guest_bits(vcpu);
81231c69 1571 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 1572 update_exception_bitmap(vcpu);
edcafe3c
AK
1573 vcpu->arch.cr0_guest_owned_bits = 0;
1574 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
1575 if (is_guest_mode(vcpu)) {
1576 /*
1577 * L1's specified read shadow might not contain the TS bit,
1578 * so now that we turned on shadowing of this bit, we need to
1579 * set this bit of the shadow. Like in nested_vmx_run we need
1580 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1581 * up-to-date here because we just decached cr0.TS (and we'll
1582 * only update vmcs12->guest_cr0 on nested exit).
1583 */
1584 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1585 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1586 (vcpu->arch.cr0 & X86_CR0_TS);
1587 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1588 } else
1589 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
1590}
1591
6aa8b732
AK
1592static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1593{
78ac8b47 1594 unsigned long rflags, save_rflags;
345dcaa8 1595
6de12732
AK
1596 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1597 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1598 rflags = vmcs_readl(GUEST_RFLAGS);
1599 if (to_vmx(vcpu)->rmode.vm86_active) {
1600 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1601 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1602 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1603 }
1604 to_vmx(vcpu)->rflags = rflags;
78ac8b47 1605 }
6de12732 1606 return to_vmx(vcpu)->rflags;
6aa8b732
AK
1607}
1608
1609static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1610{
6de12732 1611 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
69c73028 1612 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6de12732 1613 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
1614 if (to_vmx(vcpu)->rmode.vm86_active) {
1615 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 1616 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 1617 }
6aa8b732
AK
1618 vmcs_writel(GUEST_RFLAGS, rflags);
1619}
1620
2809f5d2
GC
1621static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1622{
1623 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1624 int ret = 0;
1625
1626 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 1627 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 1628 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 1629 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2
GC
1630
1631 return ret & mask;
1632}
1633
1634static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1635{
1636 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1637 u32 interruptibility = interruptibility_old;
1638
1639 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1640
48005f64 1641 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 1642 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 1643 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
1644 interruptibility |= GUEST_INTR_STATE_STI;
1645
1646 if ((interruptibility != interruptibility_old))
1647 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1648}
1649
6aa8b732
AK
1650static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1651{
1652 unsigned long rip;
6aa8b732 1653
5fdbf976 1654 rip = kvm_rip_read(vcpu);
6aa8b732 1655 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 1656 kvm_rip_write(vcpu, rip);
6aa8b732 1657
2809f5d2
GC
1658 /* skipping an emulated instruction also counts */
1659 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
1660}
1661
0b6ac343
NHE
1662/*
1663 * KVM wants to inject page-faults which it got to the guest. This function
1664 * checks whether in a nested guest, we need to inject them to L1 or L2.
1665 * This function assumes it is called with the exit reason in vmcs02 being
1666 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1667 * is running).
1668 */
1669static int nested_pf_handled(struct kvm_vcpu *vcpu)
1670{
1671 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1672
1673 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
95871901 1674 if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
0b6ac343
NHE
1675 return 0;
1676
1677 nested_vmx_vmexit(vcpu);
1678 return 1;
1679}
1680
298101da 1681static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
1682 bool has_error_code, u32 error_code,
1683 bool reinject)
298101da 1684{
77ab6db0 1685 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 1686 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 1687
0b6ac343
NHE
1688 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1689 nested_pf_handled(vcpu))
1690 return;
1691
8ab2d2e2 1692 if (has_error_code) {
77ab6db0 1693 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
1694 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1695 }
77ab6db0 1696
7ffd92c5 1697 if (vmx->rmode.vm86_active) {
71f9833b
SH
1698 int inc_eip = 0;
1699 if (kvm_exception_is_soft(nr))
1700 inc_eip = vcpu->arch.event_exit_inst_len;
1701 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 1702 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
1703 return;
1704 }
1705
66fd3f7f
GN
1706 if (kvm_exception_is_soft(nr)) {
1707 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1708 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
1709 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1710 } else
1711 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1712
1713 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
1714}
1715
4e47c7a6
SY
1716static bool vmx_rdtscp_supported(void)
1717{
1718 return cpu_has_vmx_rdtscp();
1719}
1720
a75beee6
ED
1721/*
1722 * Swap MSR entry in host/guest MSR entry array.
1723 */
8b9cf98c 1724static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 1725{
26bb0981 1726 struct shared_msr_entry tmp;
a2fa3e9f
GH
1727
1728 tmp = vmx->guest_msrs[to];
1729 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1730 vmx->guest_msrs[from] = tmp;
a75beee6
ED
1731}
1732
e38aea3e
AK
1733/*
1734 * Set up the vmcs to automatically save and restore system
1735 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1736 * mode, as fiddling with msrs is very expensive.
1737 */
8b9cf98c 1738static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 1739{
26bb0981 1740 int save_nmsrs, index;
5897297b 1741 unsigned long *msr_bitmap;
e38aea3e 1742
a75beee6
ED
1743 save_nmsrs = 0;
1744#ifdef CONFIG_X86_64
8b9cf98c 1745 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 1746 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 1747 if (index >= 0)
8b9cf98c
RR
1748 move_msr_up(vmx, index, save_nmsrs++);
1749 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 1750 if (index >= 0)
8b9cf98c
RR
1751 move_msr_up(vmx, index, save_nmsrs++);
1752 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 1753 if (index >= 0)
8b9cf98c 1754 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
1755 index = __find_msr_index(vmx, MSR_TSC_AUX);
1756 if (index >= 0 && vmx->rdtscp_enabled)
1757 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 1758 /*
8c06585d 1759 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
1760 * if efer.sce is enabled.
1761 */
8c06585d 1762 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 1763 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 1764 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
1765 }
1766#endif
92c0d900
AK
1767 index = __find_msr_index(vmx, MSR_EFER);
1768 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 1769 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 1770
26bb0981 1771 vmx->save_nmsrs = save_nmsrs;
5897297b
AK
1772
1773 if (cpu_has_vmx_msr_bitmap()) {
1774 if (is_long_mode(&vmx->vcpu))
1775 msr_bitmap = vmx_msr_bitmap_longmode;
1776 else
1777 msr_bitmap = vmx_msr_bitmap_legacy;
1778
1779 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1780 }
e38aea3e
AK
1781}
1782
6aa8b732
AK
1783/*
1784 * reads and returns guest's timestamp counter "register"
1785 * guest_tsc = host_tsc + tsc_offset -- 21.3
1786 */
1787static u64 guest_read_tsc(void)
1788{
1789 u64 host_tsc, tsc_offset;
1790
1791 rdtscll(host_tsc);
1792 tsc_offset = vmcs_read64(TSC_OFFSET);
1793 return host_tsc + tsc_offset;
1794}
1795
d5c1785d
NHE
1796/*
1797 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1798 * counter, even if a nested guest (L2) is currently running.
1799 */
1800u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1801{
1802 u64 host_tsc, tsc_offset;
1803
1804 rdtscll(host_tsc);
1805 tsc_offset = is_guest_mode(vcpu) ?
1806 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1807 vmcs_read64(TSC_OFFSET);
1808 return host_tsc + tsc_offset;
1809}
1810
4051b188 1811/*
cc578287
ZA
1812 * Engage any workarounds for mis-matched TSC rates. Currently limited to
1813 * software catchup for faster rates on slower CPUs.
4051b188 1814 */
cc578287 1815static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
4051b188 1816{
cc578287
ZA
1817 if (!scale)
1818 return;
1819
1820 if (user_tsc_khz > tsc_khz) {
1821 vcpu->arch.tsc_catchup = 1;
1822 vcpu->arch.tsc_always_catchup = 1;
1823 } else
1824 WARN(1, "user requested TSC rate below hardware speed\n");
4051b188
JR
1825}
1826
6aa8b732 1827/*
99e3e30a 1828 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 1829 */
99e3e30a 1830static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 1831{
27fc51b2 1832 if (is_guest_mode(vcpu)) {
7991825b 1833 /*
27fc51b2
NHE
1834 * We're here if L1 chose not to trap WRMSR to TSC. According
1835 * to the spec, this should set L1's TSC; The offset that L1
1836 * set for L2 remains unchanged, and still needs to be added
1837 * to the newly set TSC to get L2's TSC.
7991825b 1838 */
27fc51b2
NHE
1839 struct vmcs12 *vmcs12;
1840 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1841 /* recalculate vmcs02.TSC_OFFSET: */
1842 vmcs12 = get_vmcs12(vcpu);
1843 vmcs_write64(TSC_OFFSET, offset +
1844 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1845 vmcs12->tsc_offset : 0));
1846 } else {
1847 vmcs_write64(TSC_OFFSET, offset);
1848 }
6aa8b732
AK
1849}
1850
f1e2b260 1851static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
e48672fa
ZA
1852{
1853 u64 offset = vmcs_read64(TSC_OFFSET);
1854 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
1855 if (is_guest_mode(vcpu)) {
1856 /* Even when running L2, the adjustment needs to apply to L1 */
1857 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1858 }
e48672fa
ZA
1859}
1860
857e4099
JR
1861static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1862{
1863 return target_tsc - native_read_tsc();
1864}
1865
801d3424
NHE
1866static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1867{
1868 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1869 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1870}
1871
1872/*
1873 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1874 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1875 * all guests if the "nested" module option is off, and can also be disabled
1876 * for a single guest by disabling its VMX cpuid bit.
1877 */
1878static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1879{
1880 return nested && guest_cpuid_has_vmx(vcpu);
1881}
1882
b87a51ae
NHE
1883/*
1884 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1885 * returned for the various VMX controls MSRs when nested VMX is enabled.
1886 * The same values should also be used to verify that vmcs12 control fields are
1887 * valid during nested entry from L1 to L2.
1888 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1889 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1890 * bit in the high half is on if the corresponding bit in the control field
1891 * may be on. See also vmx_control_verify().
1892 * TODO: allow these variables to be modified (downgraded) by module options
1893 * or other means.
1894 */
1895static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1896static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1897static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1898static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1899static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1900static __init void nested_vmx_setup_ctls_msrs(void)
1901{
1902 /*
1903 * Note that as a general rule, the high half of the MSRs (bits in
1904 * the control fields which may be 1) should be initialized by the
1905 * intersection of the underlying hardware's MSR (i.e., features which
1906 * can be supported) and the list of features we want to expose -
1907 * because they are known to be properly supported in our code.
1908 * Also, usually, the low half of the MSRs (bits which must be 1) can
1909 * be set to 0, meaning that L1 may turn off any of these bits. The
1910 * reason is that if one of these bits is necessary, it will appear
1911 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1912 * fields of vmcs01 and vmcs02, will turn these bits off - and
1913 * nested_vmx_exit_handled() will not pass related exits to L1.
1914 * These rules have exceptions below.
1915 */
1916
1917 /* pin-based controls */
1918 /*
1919 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1920 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1921 */
1922 nested_vmx_pinbased_ctls_low = 0x16 ;
1923 nested_vmx_pinbased_ctls_high = 0x16 |
1924 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1925 PIN_BASED_VIRTUAL_NMIS;
1926
1927 /* exit controls */
1928 nested_vmx_exit_ctls_low = 0;
b6f1250e 1929 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
b87a51ae
NHE
1930#ifdef CONFIG_X86_64
1931 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1932#else
1933 nested_vmx_exit_ctls_high = 0;
1934#endif
1935
1936 /* entry controls */
1937 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1938 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1939 nested_vmx_entry_ctls_low = 0;
1940 nested_vmx_entry_ctls_high &=
1941 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1942
1943 /* cpu-based controls */
1944 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1945 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1946 nested_vmx_procbased_ctls_low = 0;
1947 nested_vmx_procbased_ctls_high &=
1948 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1949 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1950 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1951 CPU_BASED_CR3_STORE_EXITING |
1952#ifdef CONFIG_X86_64
1953 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1954#endif
1955 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1956 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
fee84b07 1957 CPU_BASED_RDPMC_EXITING |
b87a51ae
NHE
1958 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1959 /*
1960 * We can allow some features even when not supported by the
1961 * hardware. For example, L1 can specify an MSR bitmap - and we
1962 * can use it to avoid exits to L1 - even when L0 runs L2
1963 * without MSR bitmaps.
1964 */
1965 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1966
1967 /* secondary cpu-based controls */
1968 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1969 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1970 nested_vmx_secondary_ctls_low = 0;
1971 nested_vmx_secondary_ctls_high &=
1972 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1973}
1974
1975static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1976{
1977 /*
1978 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1979 */
1980 return ((control & high) | low) == control;
1981}
1982
1983static inline u64 vmx_control_msr(u32 low, u32 high)
1984{
1985 return low | ((u64)high << 32);
1986}
1987
1988/*
1989 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1990 * also let it use VMX-specific MSRs.
1991 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1992 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1993 * like all other MSRs).
1994 */
1995static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1996{
1997 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
1998 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
1999 /*
2000 * According to the spec, processors which do not support VMX
2001 * should throw a #GP(0) when VMX capability MSRs are read.
2002 */
2003 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2004 return 1;
2005 }
2006
2007 switch (msr_index) {
2008 case MSR_IA32_FEATURE_CONTROL:
2009 *pdata = 0;
2010 break;
2011 case MSR_IA32_VMX_BASIC:
2012 /*
2013 * This MSR reports some information about VMX support. We
2014 * should return information about the VMX we emulate for the
2015 * guest, and the VMCS structure we give it - not about the
2016 * VMX support of the underlying hardware.
2017 */
2018 *pdata = VMCS12_REVISION |
2019 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2020 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2021 break;
2022 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2023 case MSR_IA32_VMX_PINBASED_CTLS:
2024 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2025 nested_vmx_pinbased_ctls_high);
2026 break;
2027 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2028 case MSR_IA32_VMX_PROCBASED_CTLS:
2029 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2030 nested_vmx_procbased_ctls_high);
2031 break;
2032 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2033 case MSR_IA32_VMX_EXIT_CTLS:
2034 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2035 nested_vmx_exit_ctls_high);
2036 break;
2037 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2038 case MSR_IA32_VMX_ENTRY_CTLS:
2039 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2040 nested_vmx_entry_ctls_high);
2041 break;
2042 case MSR_IA32_VMX_MISC:
2043 *pdata = 0;
2044 break;
2045 /*
2046 * These MSRs specify bits which the guest must keep fixed (on or off)
2047 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2048 * We picked the standard core2 setting.
2049 */
2050#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2051#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2052 case MSR_IA32_VMX_CR0_FIXED0:
2053 *pdata = VMXON_CR0_ALWAYSON;
2054 break;
2055 case MSR_IA32_VMX_CR0_FIXED1:
2056 *pdata = -1ULL;
2057 break;
2058 case MSR_IA32_VMX_CR4_FIXED0:
2059 *pdata = VMXON_CR4_ALWAYSON;
2060 break;
2061 case MSR_IA32_VMX_CR4_FIXED1:
2062 *pdata = -1ULL;
2063 break;
2064 case MSR_IA32_VMX_VMCS_ENUM:
2065 *pdata = 0x1f;
2066 break;
2067 case MSR_IA32_VMX_PROCBASED_CTLS2:
2068 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2069 nested_vmx_secondary_ctls_high);
2070 break;
2071 case MSR_IA32_VMX_EPT_VPID_CAP:
2072 /* Currently, no nested ept or nested vpid */
2073 *pdata = 0;
2074 break;
2075 default:
2076 return 0;
2077 }
2078
2079 return 1;
2080}
2081
2082static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2083{
2084 if (!nested_vmx_allowed(vcpu))
2085 return 0;
2086
2087 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2088 /* TODO: the right thing. */
2089 return 1;
2090 /*
2091 * No need to treat VMX capability MSRs specially: If we don't handle
2092 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2093 */
2094 return 0;
2095}
2096
6aa8b732
AK
2097/*
2098 * Reads an msr value (of 'msr_index') into 'pdata'.
2099 * Returns 0 on success, non-0 otherwise.
2100 * Assumes vcpu_load() was already called.
2101 */
2102static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2103{
2104 u64 data;
26bb0981 2105 struct shared_msr_entry *msr;
6aa8b732
AK
2106
2107 if (!pdata) {
2108 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2109 return -EINVAL;
2110 }
2111
2112 switch (msr_index) {
05b3e0c2 2113#ifdef CONFIG_X86_64
6aa8b732
AK
2114 case MSR_FS_BASE:
2115 data = vmcs_readl(GUEST_FS_BASE);
2116 break;
2117 case MSR_GS_BASE:
2118 data = vmcs_readl(GUEST_GS_BASE);
2119 break;
44ea2b17
AK
2120 case MSR_KERNEL_GS_BASE:
2121 vmx_load_host_state(to_vmx(vcpu));
2122 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2123 break;
26bb0981 2124#endif
6aa8b732 2125 case MSR_EFER:
3bab1f5d 2126 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 2127 case MSR_IA32_TSC:
6aa8b732
AK
2128 data = guest_read_tsc();
2129 break;
2130 case MSR_IA32_SYSENTER_CS:
2131 data = vmcs_read32(GUEST_SYSENTER_CS);
2132 break;
2133 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2134 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2135 break;
2136 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2137 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2138 break;
4e47c7a6
SY
2139 case MSR_TSC_AUX:
2140 if (!to_vmx(vcpu)->rdtscp_enabled)
2141 return 1;
2142 /* Otherwise falls through */
6aa8b732 2143 default:
b87a51ae
NHE
2144 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2145 return 0;
8b9cf98c 2146 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d
AK
2147 if (msr) {
2148 data = msr->data;
2149 break;
6aa8b732 2150 }
3bab1f5d 2151 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
2152 }
2153
2154 *pdata = data;
2155 return 0;
2156}
2157
2158/*
2159 * Writes msr value into into the appropriate "register".
2160 * Returns 0 on success, non-0 otherwise.
2161 * Assumes vcpu_load() was already called.
2162 */
2163static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2164{
a2fa3e9f 2165 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2166 struct shared_msr_entry *msr;
2cc51560
ED
2167 int ret = 0;
2168
6aa8b732 2169 switch (msr_index) {
3bab1f5d 2170 case MSR_EFER:
2cc51560 2171 ret = kvm_set_msr_common(vcpu, msr_index, data);
2cc51560 2172 break;
16175a79 2173#ifdef CONFIG_X86_64
6aa8b732 2174 case MSR_FS_BASE:
2fb92db1 2175 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2176 vmcs_writel(GUEST_FS_BASE, data);
2177 break;
2178 case MSR_GS_BASE:
2fb92db1 2179 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2180 vmcs_writel(GUEST_GS_BASE, data);
2181 break;
44ea2b17
AK
2182 case MSR_KERNEL_GS_BASE:
2183 vmx_load_host_state(vmx);
2184 vmx->msr_guest_kernel_gs_base = data;
2185 break;
6aa8b732
AK
2186#endif
2187 case MSR_IA32_SYSENTER_CS:
2188 vmcs_write32(GUEST_SYSENTER_CS, data);
2189 break;
2190 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2191 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2192 break;
2193 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2194 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2195 break;
af24a4e4 2196 case MSR_IA32_TSC:
99e3e30a 2197 kvm_write_tsc(vcpu, data);
6aa8b732 2198 break;
468d472f
SY
2199 case MSR_IA32_CR_PAT:
2200 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2201 vmcs_write64(GUEST_IA32_PAT, data);
2202 vcpu->arch.pat = data;
2203 break;
2204 }
4e47c7a6
SY
2205 ret = kvm_set_msr_common(vcpu, msr_index, data);
2206 break;
2207 case MSR_TSC_AUX:
2208 if (!vmx->rdtscp_enabled)
2209 return 1;
2210 /* Check reserved bit, higher 32 bits should be zero */
2211 if ((data >> 32) != 0)
2212 return 1;
2213 /* Otherwise falls through */
6aa8b732 2214 default:
b87a51ae
NHE
2215 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2216 break;
8b9cf98c 2217 msr = find_msr_entry(vmx, msr_index);
3bab1f5d
AK
2218 if (msr) {
2219 msr->data = data;
2225fd56
AK
2220 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2221 preempt_disable();
9ee73970
AK
2222 kvm_set_shared_msr(msr->index, msr->data,
2223 msr->mask);
2225fd56
AK
2224 preempt_enable();
2225 }
3bab1f5d 2226 break;
6aa8b732 2227 }
2cc51560 2228 ret = kvm_set_msr_common(vcpu, msr_index, data);
6aa8b732
AK
2229 }
2230
2cc51560 2231 return ret;
6aa8b732
AK
2232}
2233
5fdbf976 2234static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2235{
5fdbf976
MT
2236 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2237 switch (reg) {
2238 case VCPU_REGS_RSP:
2239 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2240 break;
2241 case VCPU_REGS_RIP:
2242 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2243 break;
6de4f3ad
AK
2244 case VCPU_EXREG_PDPTR:
2245 if (enable_ept)
2246 ept_save_pdptrs(vcpu);
2247 break;
5fdbf976
MT
2248 default:
2249 break;
2250 }
6aa8b732
AK
2251}
2252
355be0b9 2253static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
6aa8b732 2254{
ae675ef0
JK
2255 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2256 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2257 else
2258 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2259
abd3f2d6 2260 update_exception_bitmap(vcpu);
6aa8b732
AK
2261}
2262
2263static __init int cpu_has_kvm_support(void)
2264{
6210e37b 2265 return cpu_has_vmx();
6aa8b732
AK
2266}
2267
2268static __init int vmx_disabled_by_bios(void)
2269{
2270 u64 msr;
2271
2272 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2273 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2274 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2275 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2276 && tboot_enabled())
2277 return 1;
23f3e991 2278 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2279 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2280 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2281 && !tboot_enabled()) {
2282 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2283 "activate TXT before enabling KVM\n");
cafd6659 2284 return 1;
f9335afe 2285 }
23f3e991
JC
2286 /* launched w/o TXT and VMX disabled */
2287 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2288 && !tboot_enabled())
2289 return 1;
cafd6659
SW
2290 }
2291
2292 return 0;
6aa8b732
AK
2293}
2294
7725b894
DX
2295static void kvm_cpu_vmxon(u64 addr)
2296{
2297 asm volatile (ASM_VMX_VMXON_RAX
2298 : : "a"(&addr), "m"(addr)
2299 : "memory", "cc");
2300}
2301
10474ae8 2302static int hardware_enable(void *garbage)
6aa8b732
AK
2303{
2304 int cpu = raw_smp_processor_id();
2305 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2306 u64 old, test_bits;
6aa8b732 2307
10474ae8
AG
2308 if (read_cr4() & X86_CR4_VMXE)
2309 return -EBUSY;
2310
d462b819 2311 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
6aa8b732 2312 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2313
2314 test_bits = FEATURE_CONTROL_LOCKED;
2315 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2316 if (tboot_enabled())
2317 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2318
2319 if ((old & test_bits) != test_bits) {
6aa8b732 2320 /* enable and lock */
cafd6659
SW
2321 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2322 }
66aee91a 2323 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
10474ae8 2324
4610c9cc
DX
2325 if (vmm_exclusive) {
2326 kvm_cpu_vmxon(phys_addr);
2327 ept_sync_global();
2328 }
10474ae8 2329
3444d7da
AK
2330 store_gdt(&__get_cpu_var(host_gdt));
2331
10474ae8 2332 return 0;
6aa8b732
AK
2333}
2334
d462b819 2335static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2336{
2337 int cpu = raw_smp_processor_id();
d462b819 2338 struct loaded_vmcs *v, *n;
543e4243 2339
d462b819
NHE
2340 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2341 loaded_vmcss_on_cpu_link)
2342 __loaded_vmcs_clear(v);
543e4243
AK
2343}
2344
710ff4a8
EH
2345
2346/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2347 * tricks.
2348 */
2349static void kvm_cpu_vmxoff(void)
6aa8b732 2350{
4ecac3fd 2351 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2352}
2353
710ff4a8
EH
2354static void hardware_disable(void *garbage)
2355{
4610c9cc 2356 if (vmm_exclusive) {
d462b819 2357 vmclear_local_loaded_vmcss();
4610c9cc
DX
2358 kvm_cpu_vmxoff();
2359 }
7725b894 2360 write_cr4(read_cr4() & ~X86_CR4_VMXE);
710ff4a8
EH
2361}
2362
1c3d14fe 2363static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2364 u32 msr, u32 *result)
1c3d14fe
YS
2365{
2366 u32 vmx_msr_low, vmx_msr_high;
2367 u32 ctl = ctl_min | ctl_opt;
2368
2369 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2370
2371 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2372 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2373
2374 /* Ensure minimum (required) set of control bits are supported. */
2375 if (ctl_min & ~ctl)
002c7f7c 2376 return -EIO;
1c3d14fe
YS
2377
2378 *result = ctl;
2379 return 0;
2380}
2381
110312c8
AK
2382static __init bool allow_1_setting(u32 msr, u32 ctl)
2383{
2384 u32 vmx_msr_low, vmx_msr_high;
2385
2386 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2387 return vmx_msr_high & ctl;
2388}
2389
002c7f7c 2390static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2391{
2392 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2393 u32 min, opt, min2, opt2;
1c3d14fe
YS
2394 u32 _pin_based_exec_control = 0;
2395 u32 _cpu_based_exec_control = 0;
f78e0e2e 2396 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2397 u32 _vmexit_control = 0;
2398 u32 _vmentry_control = 0;
2399
2400 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
f08864b4 2401 opt = PIN_BASED_VIRTUAL_NMIS;
1c3d14fe
YS
2402 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2403 &_pin_based_exec_control) < 0)
002c7f7c 2404 return -EIO;
1c3d14fe 2405
10166744 2406 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
2407#ifdef CONFIG_X86_64
2408 CPU_BASED_CR8_LOAD_EXITING |
2409 CPU_BASED_CR8_STORE_EXITING |
2410#endif
d56f546d
SY
2411 CPU_BASED_CR3_LOAD_EXITING |
2412 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2413 CPU_BASED_USE_IO_BITMAPS |
2414 CPU_BASED_MOV_DR_EXITING |
a7052897 2415 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2416 CPU_BASED_MWAIT_EXITING |
2417 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
2418 CPU_BASED_INVLPG_EXITING |
2419 CPU_BASED_RDPMC_EXITING;
443381a8 2420
f78e0e2e 2421 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2422 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2423 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2424 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2425 &_cpu_based_exec_control) < 0)
002c7f7c 2426 return -EIO;
6e5d865c
YS
2427#ifdef CONFIG_X86_64
2428 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2429 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2430 ~CPU_BASED_CR8_STORE_EXITING;
2431#endif
f78e0e2e 2432 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
2433 min2 = 0;
2434 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2384d2b3 2435 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 2436 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 2437 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 2438 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6
SY
2439 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2440 SECONDARY_EXEC_RDTSCP;
d56f546d
SY
2441 if (adjust_vmx_controls(min2, opt2,
2442 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
2443 &_cpu_based_2nd_exec_control) < 0)
2444 return -EIO;
2445 }
2446#ifndef CONFIG_X86_64
2447 if (!(_cpu_based_2nd_exec_control &
2448 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2449 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2450#endif
d56f546d 2451 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
2452 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2453 enabled */
5fff7d27
GN
2454 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2455 CPU_BASED_CR3_STORE_EXITING |
2456 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
2457 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2458 vmx_capability.ept, vmx_capability.vpid);
2459 }
1c3d14fe
YS
2460
2461 min = 0;
2462#ifdef CONFIG_X86_64
2463 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2464#endif
468d472f 2465 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1c3d14fe
YS
2466 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2467 &_vmexit_control) < 0)
002c7f7c 2468 return -EIO;
1c3d14fe 2469
468d472f
SY
2470 min = 0;
2471 opt = VM_ENTRY_LOAD_IA32_PAT;
1c3d14fe
YS
2472 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2473 &_vmentry_control) < 0)
002c7f7c 2474 return -EIO;
6aa8b732 2475
c68876fd 2476 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
2477
2478 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2479 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 2480 return -EIO;
1c3d14fe
YS
2481
2482#ifdef CONFIG_X86_64
2483 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2484 if (vmx_msr_high & (1u<<16))
002c7f7c 2485 return -EIO;
1c3d14fe
YS
2486#endif
2487
2488 /* Require Write-Back (WB) memory type for VMCS accesses. */
2489 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 2490 return -EIO;
1c3d14fe 2491
002c7f7c
YS
2492 vmcs_conf->size = vmx_msr_high & 0x1fff;
2493 vmcs_conf->order = get_order(vmcs_config.size);
2494 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 2495
002c7f7c
YS
2496 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2497 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 2498 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
2499 vmcs_conf->vmexit_ctrl = _vmexit_control;
2500 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 2501
110312c8
AK
2502 cpu_has_load_ia32_efer =
2503 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2504 VM_ENTRY_LOAD_IA32_EFER)
2505 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2506 VM_EXIT_LOAD_IA32_EFER);
2507
8bf00a52
GN
2508 cpu_has_load_perf_global_ctrl =
2509 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2510 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2511 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2512 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2513
2514 /*
2515 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2516 * but due to arrata below it can't be used. Workaround is to use
2517 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2518 *
2519 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2520 *
2521 * AAK155 (model 26)
2522 * AAP115 (model 30)
2523 * AAT100 (model 37)
2524 * BC86,AAY89,BD102 (model 44)
2525 * BA97 (model 46)
2526 *
2527 */
2528 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2529 switch (boot_cpu_data.x86_model) {
2530 case 26:
2531 case 30:
2532 case 37:
2533 case 44:
2534 case 46:
2535 cpu_has_load_perf_global_ctrl = false;
2536 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2537 "does not work properly. Using workaround\n");
2538 break;
2539 default:
2540 break;
2541 }
2542 }
2543
1c3d14fe 2544 return 0;
c68876fd 2545}
6aa8b732
AK
2546
2547static struct vmcs *alloc_vmcs_cpu(int cpu)
2548{
2549 int node = cpu_to_node(cpu);
2550 struct page *pages;
2551 struct vmcs *vmcs;
2552
6484eb3e 2553 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
2554 if (!pages)
2555 return NULL;
2556 vmcs = page_address(pages);
1c3d14fe
YS
2557 memset(vmcs, 0, vmcs_config.size);
2558 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
2559 return vmcs;
2560}
2561
2562static struct vmcs *alloc_vmcs(void)
2563{
d3b2c338 2564 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
2565}
2566
2567static void free_vmcs(struct vmcs *vmcs)
2568{
1c3d14fe 2569 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
2570}
2571
d462b819
NHE
2572/*
2573 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2574 */
2575static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2576{
2577 if (!loaded_vmcs->vmcs)
2578 return;
2579 loaded_vmcs_clear(loaded_vmcs);
2580 free_vmcs(loaded_vmcs->vmcs);
2581 loaded_vmcs->vmcs = NULL;
2582}
2583
39959588 2584static void free_kvm_area(void)
6aa8b732
AK
2585{
2586 int cpu;
2587
3230bb47 2588 for_each_possible_cpu(cpu) {
6aa8b732 2589 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
2590 per_cpu(vmxarea, cpu) = NULL;
2591 }
6aa8b732
AK
2592}
2593
6aa8b732
AK
2594static __init int alloc_kvm_area(void)
2595{
2596 int cpu;
2597
3230bb47 2598 for_each_possible_cpu(cpu) {
6aa8b732
AK
2599 struct vmcs *vmcs;
2600
2601 vmcs = alloc_vmcs_cpu(cpu);
2602 if (!vmcs) {
2603 free_kvm_area();
2604 return -ENOMEM;
2605 }
2606
2607 per_cpu(vmxarea, cpu) = vmcs;
2608 }
2609 return 0;
2610}
2611
2612static __init int hardware_setup(void)
2613{
002c7f7c
YS
2614 if (setup_vmcs_config(&vmcs_config) < 0)
2615 return -EIO;
50a37eb4
JR
2616
2617 if (boot_cpu_has(X86_FEATURE_NX))
2618 kvm_enable_efer_bits(EFER_NX);
2619
93ba03c2
SY
2620 if (!cpu_has_vmx_vpid())
2621 enable_vpid = 0;
2622
4bc9b982
SY
2623 if (!cpu_has_vmx_ept() ||
2624 !cpu_has_vmx_ept_4levels()) {
93ba03c2 2625 enable_ept = 0;
3a624e29
NK
2626 enable_unrestricted_guest = 0;
2627 }
2628
2629 if (!cpu_has_vmx_unrestricted_guest())
2630 enable_unrestricted_guest = 0;
93ba03c2
SY
2631
2632 if (!cpu_has_vmx_flexpriority())
2633 flexpriority_enabled = 0;
2634
95ba8273
GN
2635 if (!cpu_has_vmx_tpr_shadow())
2636 kvm_x86_ops->update_cr8_intercept = NULL;
2637
54dee993
MT
2638 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2639 kvm_disable_largepages();
2640
4b8d54f9
ZE
2641 if (!cpu_has_vmx_ple())
2642 ple_gap = 0;
2643
b87a51ae
NHE
2644 if (nested)
2645 nested_vmx_setup_ctls_msrs();
2646
6aa8b732
AK
2647 return alloc_kvm_area();
2648}
2649
2650static __exit void hardware_unsetup(void)
2651{
2652 free_kvm_area();
2653}
2654
6aa8b732
AK
2655static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2656{
2657 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2658
6af11b9e 2659 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
6aa8b732
AK
2660 vmcs_write16(sf->selector, save->selector);
2661 vmcs_writel(sf->base, save->base);
2662 vmcs_write32(sf->limit, save->limit);
2663 vmcs_write32(sf->ar_bytes, save->ar);
2664 } else {
2665 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2666 << AR_DPL_SHIFT;
2667 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2668 }
2669}
2670
2671static void enter_pmode(struct kvm_vcpu *vcpu)
2672{
2673 unsigned long flags;
a89a8fb9 2674 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2675
a89a8fb9 2676 vmx->emulation_required = 1;
7ffd92c5 2677 vmx->rmode.vm86_active = 0;
6aa8b732 2678
2fb92db1
AK
2679 vmx_segment_cache_clear(vmx);
2680
d0ba64f9 2681 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
7ffd92c5
AK
2682 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2683 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2684 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
6aa8b732
AK
2685
2686 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
2687 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2688 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
2689 vmcs_writel(GUEST_RFLAGS, flags);
2690
66aee91a
RR
2691 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2692 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
2693
2694 update_exception_bitmap(vcpu);
2695
a89a8fb9
MG
2696 if (emulate_invalid_guest_state)
2697 return;
2698
7ffd92c5
AK
2699 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2700 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2701 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2702 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
6aa8b732 2703
2fb92db1
AK
2704 vmx_segment_cache_clear(vmx);
2705
6aa8b732
AK
2706 vmcs_write16(GUEST_SS_SELECTOR, 0);
2707 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2708
2709 vmcs_write16(GUEST_CS_SELECTOR,
2710 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2711 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2712}
2713
d77c26fc 2714static gva_t rmode_tss_base(struct kvm *kvm)
6aa8b732 2715{
bfc6d222 2716 if (!kvm->arch.tss_addr) {
bc6678a3 2717 struct kvm_memslots *slots;
28a37544 2718 struct kvm_memory_slot *slot;
bc6678a3
MT
2719 gfn_t base_gfn;
2720
90d83dc3 2721 slots = kvm_memslots(kvm);
28a37544
XG
2722 slot = id_to_memslot(slots, 0);
2723 base_gfn = slot->base_gfn + slot->npages - 3;
2724
cbc94022
IE
2725 return base_gfn << PAGE_SHIFT;
2726 }
bfc6d222 2727 return kvm->arch.tss_addr;
6aa8b732
AK
2728}
2729
2730static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2731{
2732 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2733
2734 save->selector = vmcs_read16(sf->selector);
2735 save->base = vmcs_readl(sf->base);
2736 save->limit = vmcs_read32(sf->limit);
2737 save->ar = vmcs_read32(sf->ar_bytes);
15b00f32 2738 vmcs_write16(sf->selector, save->base >> 4);
444e863d 2739 vmcs_write32(sf->base, save->base & 0xffff0);
6aa8b732
AK
2740 vmcs_write32(sf->limit, 0xffff);
2741 vmcs_write32(sf->ar_bytes, 0xf3);
444e863d
GN
2742 if (save->base & 0xf)
2743 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2744 " aligned when entering protected mode (seg=%d)",
2745 seg);
6aa8b732
AK
2746}
2747
2748static void enter_rmode(struct kvm_vcpu *vcpu)
2749{
2750 unsigned long flags;
a89a8fb9 2751 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2752
3a624e29
NK
2753 if (enable_unrestricted_guest)
2754 return;
2755
a89a8fb9 2756 vmx->emulation_required = 1;
7ffd92c5 2757 vmx->rmode.vm86_active = 1;
6aa8b732 2758
776e58ea
GN
2759 /*
2760 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2761 * vcpu. Call it here with phys address pointing 16M below 4G.
2762 */
2763 if (!vcpu->kvm->arch.tss_addr) {
2764 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2765 "called before entering vcpu\n");
2766 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2767 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2768 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2769 }
2770
2fb92db1
AK
2771 vmx_segment_cache_clear(vmx);
2772
d0ba64f9 2773 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
7ffd92c5 2774 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
6aa8b732
AK
2775 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2776
7ffd92c5 2777 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
6aa8b732
AK
2778 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2779
7ffd92c5 2780 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
6aa8b732
AK
2781 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2782
2783 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 2784 vmx->rmode.save_rflags = flags;
6aa8b732 2785
053de044 2786 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
2787
2788 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 2789 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
2790 update_exception_bitmap(vcpu);
2791
a89a8fb9
MG
2792 if (emulate_invalid_guest_state)
2793 goto continue_rmode;
2794
6aa8b732
AK
2795 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2796 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2797 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2798
2799 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
abacf8df 2800 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
8cb5b033
AK
2801 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2802 vmcs_writel(GUEST_CS_BASE, 0xf0000);
6aa8b732
AK
2803 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2804
7ffd92c5
AK
2805 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2806 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2807 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2808 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
75880a01 2809
a89a8fb9 2810continue_rmode:
8668a3c4 2811 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
2812}
2813
401d10de
AS
2814static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2815{
2816 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
2817 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2818
2819 if (!msr)
2820 return;
401d10de 2821
44ea2b17
AK
2822 /*
2823 * Force kernel_gs_base reloading before EFER changes, as control
2824 * of this msr depends on is_long_mode().
2825 */
2826 vmx_load_host_state(to_vmx(vcpu));
f6801dff 2827 vcpu->arch.efer = efer;
401d10de
AS
2828 if (efer & EFER_LMA) {
2829 vmcs_write32(VM_ENTRY_CONTROLS,
2830 vmcs_read32(VM_ENTRY_CONTROLS) |
2831 VM_ENTRY_IA32E_MODE);
2832 msr->data = efer;
2833 } else {
2834 vmcs_write32(VM_ENTRY_CONTROLS,
2835 vmcs_read32(VM_ENTRY_CONTROLS) &
2836 ~VM_ENTRY_IA32E_MODE);
2837
2838 msr->data = efer & ~EFER_LME;
2839 }
2840 setup_msrs(vmx);
2841}
2842
05b3e0c2 2843#ifdef CONFIG_X86_64
6aa8b732
AK
2844
2845static void enter_lmode(struct kvm_vcpu *vcpu)
2846{
2847 u32 guest_tr_ar;
2848
2fb92db1
AK
2849 vmx_segment_cache_clear(to_vmx(vcpu));
2850
6aa8b732
AK
2851 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2852 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
2853 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2854 __func__);
6aa8b732
AK
2855 vmcs_write32(GUEST_TR_AR_BYTES,
2856 (guest_tr_ar & ~AR_TYPE_MASK)
2857 | AR_TYPE_BUSY_64_TSS);
2858 }
da38f438 2859 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
2860}
2861
2862static void exit_lmode(struct kvm_vcpu *vcpu)
2863{
6aa8b732
AK
2864 vmcs_write32(VM_ENTRY_CONTROLS,
2865 vmcs_read32(VM_ENTRY_CONTROLS)
1e4e6e00 2866 & ~VM_ENTRY_IA32E_MODE);
da38f438 2867 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
2868}
2869
2870#endif
2871
2384d2b3
SY
2872static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2873{
b9d762fa 2874 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
2875 if (enable_ept) {
2876 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2877 return;
4e1096d2 2878 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 2879 }
2384d2b3
SY
2880}
2881
e8467fda
AK
2882static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2883{
2884 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2885
2886 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2887 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2888}
2889
aff48baa
AK
2890static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2891{
2892 if (enable_ept && is_paging(vcpu))
2893 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2894 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2895}
2896
25c4c276 2897static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 2898{
fc78f519
AK
2899 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2900
2901 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2902 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
2903}
2904
1439442c
SY
2905static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2906{
6de4f3ad
AK
2907 if (!test_bit(VCPU_EXREG_PDPTR,
2908 (unsigned long *)&vcpu->arch.regs_dirty))
2909 return;
2910
1439442c 2911 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
2912 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2913 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2914 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2915 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1439442c
SY
2916 }
2917}
2918
8f5d549f
AK
2919static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2920{
2921 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
2922 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2923 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2924 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2925 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 2926 }
6de4f3ad
AK
2927
2928 __set_bit(VCPU_EXREG_PDPTR,
2929 (unsigned long *)&vcpu->arch.regs_avail);
2930 __set_bit(VCPU_EXREG_PDPTR,
2931 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
2932}
2933
5e1746d6 2934static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
2935
2936static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2937 unsigned long cr0,
2938 struct kvm_vcpu *vcpu)
2939{
5233dd51
MT
2940 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2941 vmx_decache_cr3(vcpu);
1439442c
SY
2942 if (!(cr0 & X86_CR0_PG)) {
2943 /* From paging/starting to nonpaging */
2944 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 2945 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
2946 (CPU_BASED_CR3_LOAD_EXITING |
2947 CPU_BASED_CR3_STORE_EXITING));
2948 vcpu->arch.cr0 = cr0;
fc78f519 2949 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
2950 } else if (!is_paging(vcpu)) {
2951 /* From nonpaging to paging */
2952 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 2953 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
2954 ~(CPU_BASED_CR3_LOAD_EXITING |
2955 CPU_BASED_CR3_STORE_EXITING));
2956 vcpu->arch.cr0 = cr0;
fc78f519 2957 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 2958 }
95eb84a7
SY
2959
2960 if (!(cr0 & X86_CR0_WP))
2961 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
2962}
2963
6aa8b732
AK
2964static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2965{
7ffd92c5 2966 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
2967 unsigned long hw_cr0;
2968
2969 if (enable_unrestricted_guest)
2970 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2971 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2972 else
2973 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1439442c 2974
7ffd92c5 2975 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
6aa8b732
AK
2976 enter_pmode(vcpu);
2977
7ffd92c5 2978 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
6aa8b732
AK
2979 enter_rmode(vcpu);
2980
05b3e0c2 2981#ifdef CONFIG_X86_64
f6801dff 2982 if (vcpu->arch.efer & EFER_LME) {
707d92fa 2983 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 2984 enter_lmode(vcpu);
707d92fa 2985 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
2986 exit_lmode(vcpu);
2987 }
2988#endif
2989
089d034e 2990 if (enable_ept)
1439442c
SY
2991 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2992
02daab21 2993 if (!vcpu->fpu_active)
81231c69 2994 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 2995
6aa8b732 2996 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 2997 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 2998 vcpu->arch.cr0 = cr0;
69c73028 2999 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6aa8b732
AK
3000}
3001
1439442c
SY
3002static u64 construct_eptp(unsigned long root_hpa)
3003{
3004 u64 eptp;
3005
3006 /* TODO write the value reading from MSR */
3007 eptp = VMX_EPT_DEFAULT_MT |
3008 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3009 eptp |= (root_hpa & PAGE_MASK);
3010
3011 return eptp;
3012}
3013
6aa8b732
AK
3014static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3015{
1439442c
SY
3016 unsigned long guest_cr3;
3017 u64 eptp;
3018
3019 guest_cr3 = cr3;
089d034e 3020 if (enable_ept) {
1439442c
SY
3021 eptp = construct_eptp(cr3);
3022 vmcs_write64(EPT_POINTER, eptp);
9f8fe504 3023 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
b927a3ce 3024 vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3025 ept_load_pdptrs(vcpu);
1439442c
SY
3026 }
3027
2384d2b3 3028 vmx_flush_tlb(vcpu);
1439442c 3029 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3030}
3031
5e1746d6 3032static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3033{
7ffd92c5 3034 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
3035 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3036
5e1746d6
NHE
3037 if (cr4 & X86_CR4_VMXE) {
3038 /*
3039 * To use VMXON (and later other VMX instructions), a guest
3040 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3041 * So basically the check on whether to allow nested VMX
3042 * is here.
3043 */
3044 if (!nested_vmx_allowed(vcpu))
3045 return 1;
3046 } else if (to_vmx(vcpu)->nested.vmxon)
3047 return 1;
3048
ad312c7c 3049 vcpu->arch.cr4 = cr4;
bc23008b
AK
3050 if (enable_ept) {
3051 if (!is_paging(vcpu)) {
3052 hw_cr4 &= ~X86_CR4_PAE;
3053 hw_cr4 |= X86_CR4_PSE;
3054 } else if (!(cr4 & X86_CR4_PAE)) {
3055 hw_cr4 &= ~X86_CR4_PAE;
3056 }
3057 }
1439442c
SY
3058
3059 vmcs_writel(CR4_READ_SHADOW, cr4);
3060 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3061 return 0;
6aa8b732
AK
3062}
3063
6aa8b732
AK
3064static void vmx_get_segment(struct kvm_vcpu *vcpu,
3065 struct kvm_segment *var, int seg)
3066{
a9179499 3067 struct vcpu_vmx *vmx = to_vmx(vcpu);
a9179499 3068 struct kvm_save_segment *save;
6aa8b732
AK
3069 u32 ar;
3070
a9179499
AK
3071 if (vmx->rmode.vm86_active
3072 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3073 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3074 || seg == VCPU_SREG_GS)
3075 && !emulate_invalid_guest_state) {
3076 switch (seg) {
3077 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
3078 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
3079 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
3080 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
3081 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
3082 default: BUG();
3083 }
3084 var->selector = save->selector;
3085 var->base = save->base;
3086 var->limit = save->limit;
3087 ar = save->ar;
3088 if (seg == VCPU_SREG_TR
2fb92db1 3089 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
a9179499
AK
3090 goto use_saved_rmode_seg;
3091 }
2fb92db1
AK
3092 var->base = vmx_read_guest_seg_base(vmx, seg);
3093 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3094 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3095 ar = vmx_read_guest_seg_ar(vmx, seg);
a9179499 3096use_saved_rmode_seg:
9fd4a3b7 3097 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
6aa8b732
AK
3098 ar = 0;
3099 var->type = ar & 15;
3100 var->s = (ar >> 4) & 1;
3101 var->dpl = (ar >> 5) & 3;
3102 var->present = (ar >> 7) & 1;
3103 var->avl = (ar >> 12) & 1;
3104 var->l = (ar >> 13) & 1;
3105 var->db = (ar >> 14) & 1;
3106 var->g = (ar >> 15) & 1;
3107 var->unusable = (ar >> 16) & 1;
3108}
3109
a9179499
AK
3110static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3111{
a9179499
AK
3112 struct kvm_segment s;
3113
3114 if (to_vmx(vcpu)->rmode.vm86_active) {
3115 vmx_get_segment(vcpu, &s, seg);
3116 return s.base;
3117 }
2fb92db1 3118 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3119}
3120
69c73028 3121static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3122{
3eeb3288 3123 if (!is_protmode(vcpu))
2e4d2653
IE
3124 return 0;
3125
f4c63e5d
AK
3126 if (!is_long_mode(vcpu)
3127 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2e4d2653
IE
3128 return 3;
3129
2fb92db1 3130 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
2e4d2653
IE
3131}
3132
69c73028
AK
3133static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3134{
3135 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3136 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3137 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3138 }
3139 return to_vmx(vcpu)->cpl;
3140}
3141
3142
653e3108 3143static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3144{
6aa8b732
AK
3145 u32 ar;
3146
653e3108 3147 if (var->unusable)
6aa8b732
AK
3148 ar = 1 << 16;
3149 else {
3150 ar = var->type & 15;
3151 ar |= (var->s & 1) << 4;
3152 ar |= (var->dpl & 3) << 5;
3153 ar |= (var->present & 1) << 7;
3154 ar |= (var->avl & 1) << 12;
3155 ar |= (var->l & 1) << 13;
3156 ar |= (var->db & 1) << 14;
3157 ar |= (var->g & 1) << 15;
3158 }
f7fbf1fd
UL
3159 if (ar == 0) /* a 0 value means unusable */
3160 ar = AR_UNUSABLE_MASK;
653e3108
AK
3161
3162 return ar;
3163}
3164
3165static void vmx_set_segment(struct kvm_vcpu *vcpu,
3166 struct kvm_segment *var, int seg)
3167{
7ffd92c5 3168 struct vcpu_vmx *vmx = to_vmx(vcpu);
653e3108
AK
3169 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3170 u32 ar;
3171
2fb92db1
AK
3172 vmx_segment_cache_clear(vmx);
3173
7ffd92c5 3174 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
a8ba6c26 3175 vmcs_write16(sf->selector, var->selector);
7ffd92c5
AK
3176 vmx->rmode.tr.selector = var->selector;
3177 vmx->rmode.tr.base = var->base;
3178 vmx->rmode.tr.limit = var->limit;
3179 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
653e3108
AK
3180 return;
3181 }
3182 vmcs_writel(sf->base, var->base);
3183 vmcs_write32(sf->limit, var->limit);
3184 vmcs_write16(sf->selector, var->selector);
7ffd92c5 3185 if (vmx->rmode.vm86_active && var->s) {
653e3108
AK
3186 /*
3187 * Hack real-mode segments into vm86 compatibility.
3188 */
3189 if (var->base == 0xffff0000 && var->selector == 0xf000)
3190 vmcs_writel(sf->base, 0xf0000);
3191 ar = 0xf3;
3192 } else
3193 ar = vmx_segment_access_rights(var);
3a624e29
NK
3194
3195 /*
3196 * Fix the "Accessed" bit in AR field of segment registers for older
3197 * qemu binaries.
3198 * IA32 arch specifies that at the time of processor reset the
3199 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3200 * is setting it to 0 in the usedland code. This causes invalid guest
3201 * state vmexit when "unrestricted guest" mode is turned on.
3202 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3203 * tree. Newer qemu binaries with that qemu fix would not need this
3204 * kvm hack.
3205 */
3206 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3207 ar |= 0x1; /* Accessed */
3208
6aa8b732 3209 vmcs_write32(sf->ar_bytes, ar);
69c73028 3210 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6aa8b732
AK
3211}
3212
6aa8b732
AK
3213static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3214{
2fb92db1 3215 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3216
3217 *db = (ar >> 14) & 1;
3218 *l = (ar >> 13) & 1;
3219}
3220
89a27f4d 3221static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3222{
89a27f4d
GN
3223 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3224 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3225}
3226
89a27f4d 3227static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3228{
89a27f4d
GN
3229 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3230 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3231}
3232
89a27f4d 3233static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3234{
89a27f4d
GN
3235 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3236 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3237}
3238
89a27f4d 3239static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3240{
89a27f4d
GN
3241 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3242 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3243}
3244
648dfaa7
MG
3245static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3246{
3247 struct kvm_segment var;
3248 u32 ar;
3249
3250 vmx_get_segment(vcpu, &var, seg);
3251 ar = vmx_segment_access_rights(&var);
3252
3253 if (var.base != (var.selector << 4))
3254 return false;
3255 if (var.limit != 0xffff)
3256 return false;
3257 if (ar != 0xf3)
3258 return false;
3259
3260 return true;
3261}
3262
3263static bool code_segment_valid(struct kvm_vcpu *vcpu)
3264{
3265 struct kvm_segment cs;
3266 unsigned int cs_rpl;
3267
3268 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3269 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3270
1872a3f4
AK
3271 if (cs.unusable)
3272 return false;
648dfaa7
MG
3273 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3274 return false;
3275 if (!cs.s)
3276 return false;
1872a3f4 3277 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3278 if (cs.dpl > cs_rpl)
3279 return false;
1872a3f4 3280 } else {
648dfaa7
MG
3281 if (cs.dpl != cs_rpl)
3282 return false;
3283 }
3284 if (!cs.present)
3285 return false;
3286
3287 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3288 return true;
3289}
3290
3291static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3292{
3293 struct kvm_segment ss;
3294 unsigned int ss_rpl;
3295
3296 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3297 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3298
1872a3f4
AK
3299 if (ss.unusable)
3300 return true;
3301 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3302 return false;
3303 if (!ss.s)
3304 return false;
3305 if (ss.dpl != ss_rpl) /* DPL != RPL */
3306 return false;
3307 if (!ss.present)
3308 return false;
3309
3310 return true;
3311}
3312
3313static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3314{
3315 struct kvm_segment var;
3316 unsigned int rpl;
3317
3318 vmx_get_segment(vcpu, &var, seg);
3319 rpl = var.selector & SELECTOR_RPL_MASK;
3320
1872a3f4
AK
3321 if (var.unusable)
3322 return true;
648dfaa7
MG
3323 if (!var.s)
3324 return false;
3325 if (!var.present)
3326 return false;
3327 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3328 if (var.dpl < rpl) /* DPL < RPL */
3329 return false;
3330 }
3331
3332 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3333 * rights flags
3334 */
3335 return true;
3336}
3337
3338static bool tr_valid(struct kvm_vcpu *vcpu)
3339{
3340 struct kvm_segment tr;
3341
3342 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3343
1872a3f4
AK
3344 if (tr.unusable)
3345 return false;
648dfaa7
MG
3346 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3347 return false;
1872a3f4 3348 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3349 return false;
3350 if (!tr.present)
3351 return false;
3352
3353 return true;
3354}
3355
3356static bool ldtr_valid(struct kvm_vcpu *vcpu)
3357{
3358 struct kvm_segment ldtr;
3359
3360 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3361
1872a3f4
AK
3362 if (ldtr.unusable)
3363 return true;
648dfaa7
MG
3364 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3365 return false;
3366 if (ldtr.type != 2)
3367 return false;
3368 if (!ldtr.present)
3369 return false;
3370
3371 return true;
3372}
3373
3374static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3375{
3376 struct kvm_segment cs, ss;
3377
3378 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3379 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3380
3381 return ((cs.selector & SELECTOR_RPL_MASK) ==
3382 (ss.selector & SELECTOR_RPL_MASK));
3383}
3384
3385/*
3386 * Check if guest state is valid. Returns true if valid, false if
3387 * not.
3388 * We assume that registers are always usable
3389 */
3390static bool guest_state_valid(struct kvm_vcpu *vcpu)
3391{
3392 /* real mode guest state checks */
3eeb3288 3393 if (!is_protmode(vcpu)) {
648dfaa7
MG
3394 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3395 return false;
3396 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3397 return false;
3398 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3399 return false;
3400 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3401 return false;
3402 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3403 return false;
3404 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3405 return false;
3406 } else {
3407 /* protected mode guest state checks */
3408 if (!cs_ss_rpl_check(vcpu))
3409 return false;
3410 if (!code_segment_valid(vcpu))
3411 return false;
3412 if (!stack_segment_valid(vcpu))
3413 return false;
3414 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3415 return false;
3416 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3417 return false;
3418 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3419 return false;
3420 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3421 return false;
3422 if (!tr_valid(vcpu))
3423 return false;
3424 if (!ldtr_valid(vcpu))
3425 return false;
3426 }
3427 /* TODO:
3428 * - Add checks on RIP
3429 * - Add checks on RFLAGS
3430 */
3431
3432 return true;
3433}
3434
d77c26fc 3435static int init_rmode_tss(struct kvm *kvm)
6aa8b732 3436{
40dcaa9f 3437 gfn_t fn;
195aefde 3438 u16 data = 0;
40dcaa9f 3439 int r, idx, ret = 0;
6aa8b732 3440
40dcaa9f
XG
3441 idx = srcu_read_lock(&kvm->srcu);
3442 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
195aefde
IE
3443 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3444 if (r < 0)
10589a46 3445 goto out;
195aefde 3446 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
3447 r = kvm_write_guest_page(kvm, fn++, &data,
3448 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 3449 if (r < 0)
10589a46 3450 goto out;
195aefde
IE
3451 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3452 if (r < 0)
10589a46 3453 goto out;
195aefde
IE
3454 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3455 if (r < 0)
10589a46 3456 goto out;
195aefde 3457 data = ~0;
10589a46
MT
3458 r = kvm_write_guest_page(kvm, fn, &data,
3459 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3460 sizeof(u8));
195aefde 3461 if (r < 0)
10589a46
MT
3462 goto out;
3463
3464 ret = 1;
3465out:
40dcaa9f 3466 srcu_read_unlock(&kvm->srcu, idx);
10589a46 3467 return ret;
6aa8b732
AK
3468}
3469
b7ebfb05
SY
3470static int init_rmode_identity_map(struct kvm *kvm)
3471{
40dcaa9f 3472 int i, idx, r, ret;
b7ebfb05
SY
3473 pfn_t identity_map_pfn;
3474 u32 tmp;
3475
089d034e 3476 if (!enable_ept)
b7ebfb05
SY
3477 return 1;
3478 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3479 printk(KERN_ERR "EPT: identity-mapping pagetable "
3480 "haven't been allocated!\n");
3481 return 0;
3482 }
3483 if (likely(kvm->arch.ept_identity_pagetable_done))
3484 return 1;
3485 ret = 0;
b927a3ce 3486 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
40dcaa9f 3487 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
3488 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3489 if (r < 0)
3490 goto out;
3491 /* Set up identity-mapping pagetable for EPT in real mode */
3492 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3493 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3494 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3495 r = kvm_write_guest_page(kvm, identity_map_pfn,
3496 &tmp, i * sizeof(tmp), sizeof(tmp));
3497 if (r < 0)
3498 goto out;
3499 }
3500 kvm->arch.ept_identity_pagetable_done = true;
3501 ret = 1;
3502out:
40dcaa9f 3503 srcu_read_unlock(&kvm->srcu, idx);
b7ebfb05
SY
3504 return ret;
3505}
3506
6aa8b732
AK
3507static void seg_setup(int seg)
3508{
3509 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 3510 unsigned int ar;
6aa8b732
AK
3511
3512 vmcs_write16(sf->selector, 0);
3513 vmcs_writel(sf->base, 0);
3514 vmcs_write32(sf->limit, 0xffff);
3a624e29
NK
3515 if (enable_unrestricted_guest) {
3516 ar = 0x93;
3517 if (seg == VCPU_SREG_CS)
3518 ar |= 0x08; /* code segment */
3519 } else
3520 ar = 0xf3;
3521
3522 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
3523}
3524
f78e0e2e
SY
3525static int alloc_apic_access_page(struct kvm *kvm)
3526{
3527 struct kvm_userspace_memory_region kvm_userspace_mem;
3528 int r = 0;
3529
79fac95e 3530 mutex_lock(&kvm->slots_lock);
bfc6d222 3531 if (kvm->arch.apic_access_page)
f78e0e2e
SY
3532 goto out;
3533 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3534 kvm_userspace_mem.flags = 0;
3535 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3536 kvm_userspace_mem.memory_size = PAGE_SIZE;
3537 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3538 if (r)
3539 goto out;
72dc67a6 3540
bfc6d222 3541 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
f78e0e2e 3542out:
79fac95e 3543 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
3544 return r;
3545}
3546
b7ebfb05
SY
3547static int alloc_identity_pagetable(struct kvm *kvm)
3548{
3549 struct kvm_userspace_memory_region kvm_userspace_mem;
3550 int r = 0;
3551
79fac95e 3552 mutex_lock(&kvm->slots_lock);
b7ebfb05
SY
3553 if (kvm->arch.ept_identity_pagetable)
3554 goto out;
3555 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3556 kvm_userspace_mem.flags = 0;
b927a3ce
SY
3557 kvm_userspace_mem.guest_phys_addr =
3558 kvm->arch.ept_identity_map_addr;
b7ebfb05
SY
3559 kvm_userspace_mem.memory_size = PAGE_SIZE;
3560 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3561 if (r)
3562 goto out;
3563
b7ebfb05 3564 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
b927a3ce 3565 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
b7ebfb05 3566out:
79fac95e 3567 mutex_unlock(&kvm->slots_lock);
b7ebfb05
SY
3568 return r;
3569}
3570
2384d2b3
SY
3571static void allocate_vpid(struct vcpu_vmx *vmx)
3572{
3573 int vpid;
3574
3575 vmx->vpid = 0;
919818ab 3576 if (!enable_vpid)
2384d2b3
SY
3577 return;
3578 spin_lock(&vmx_vpid_lock);
3579 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3580 if (vpid < VMX_NR_VPIDS) {
3581 vmx->vpid = vpid;
3582 __set_bit(vpid, vmx_vpid_bitmap);
3583 }
3584 spin_unlock(&vmx_vpid_lock);
3585}
3586
cdbecfc3
LJ
3587static void free_vpid(struct vcpu_vmx *vmx)
3588{
3589 if (!enable_vpid)
3590 return;
3591 spin_lock(&vmx_vpid_lock);
3592 if (vmx->vpid != 0)
3593 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3594 spin_unlock(&vmx_vpid_lock);
3595}
3596
5897297b 3597static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
25c5f225 3598{
3e7c73e9 3599 int f = sizeof(unsigned long);
25c5f225
SY
3600
3601 if (!cpu_has_vmx_msr_bitmap())
3602 return;
3603
3604 /*
3605 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3606 * have the write-low and read-high bitmap offsets the wrong way round.
3607 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3608 */
25c5f225 3609 if (msr <= 0x1fff) {
3e7c73e9
AK
3610 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3611 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
25c5f225
SY
3612 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3613 msr &= 0x1fff;
3e7c73e9
AK
3614 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3615 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
25c5f225 3616 }
25c5f225
SY
3617}
3618
5897297b
AK
3619static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3620{
3621 if (!longmode_only)
3622 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3623 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3624}
3625
a3a8ff8e
NHE
3626/*
3627 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3628 * will not change in the lifetime of the guest.
3629 * Note that host-state that does change is set elsewhere. E.g., host-state
3630 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3631 */
3632static void vmx_set_constant_host_state(void)
3633{
3634 u32 low32, high32;
3635 unsigned long tmpl;
3636 struct desc_ptr dt;
3637
3638 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3639 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3640 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3641
3642 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3643 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3644 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3645 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3646 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3647
3648 native_store_idt(&dt);
3649 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3650
3651 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3652 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3653
3654 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3655 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3656 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3657 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3658
3659 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3660 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3661 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3662 }
3663}
3664
bf8179a0
NHE
3665static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3666{
3667 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3668 if (enable_ept)
3669 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
3670 if (is_guest_mode(&vmx->vcpu))
3671 vmx->vcpu.arch.cr4_guest_owned_bits &=
3672 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
3673 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3674}
3675
3676static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3677{
3678 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3679 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3680 exec_control &= ~CPU_BASED_TPR_SHADOW;
3681#ifdef CONFIG_X86_64
3682 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3683 CPU_BASED_CR8_LOAD_EXITING;
3684#endif
3685 }
3686 if (!enable_ept)
3687 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3688 CPU_BASED_CR3_LOAD_EXITING |
3689 CPU_BASED_INVLPG_EXITING;
3690 return exec_control;
3691}
3692
3693static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3694{
3695 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3696 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3697 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3698 if (vmx->vpid == 0)
3699 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3700 if (!enable_ept) {
3701 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3702 enable_unrestricted_guest = 0;
3703 }
3704 if (!enable_unrestricted_guest)
3705 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3706 if (!ple_gap)
3707 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3708 return exec_control;
3709}
3710
ce88decf
XG
3711static void ept_set_mmio_spte_mask(void)
3712{
3713 /*
3714 * EPT Misconfigurations can be generated if the value of bits 2:0
3715 * of an EPT paging-structure entry is 110b (write/execute).
3716 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3717 * spte.
3718 */
3719 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3720}
3721
6aa8b732
AK
3722/*
3723 * Sets up the vmcs for emulated real mode.
3724 */
8b9cf98c 3725static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 3726{
2e4ce7f5 3727#ifdef CONFIG_X86_64
6aa8b732 3728 unsigned long a;
2e4ce7f5 3729#endif
6aa8b732 3730 int i;
6aa8b732 3731
6aa8b732 3732 /* I/O */
3e7c73e9
AK
3733 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3734 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 3735
25c5f225 3736 if (cpu_has_vmx_msr_bitmap())
5897297b 3737 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 3738
6aa8b732
AK
3739 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3740
6aa8b732 3741 /* Control */
1c3d14fe
YS
3742 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3743 vmcs_config.pin_based_exec_ctrl);
6e5d865c 3744
bf8179a0 3745 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 3746
83ff3b9d 3747 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
3748 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3749 vmx_secondary_exec_control(vmx));
83ff3b9d 3750 }
f78e0e2e 3751
4b8d54f9
ZE
3752 if (ple_gap) {
3753 vmcs_write32(PLE_GAP, ple_gap);
3754 vmcs_write32(PLE_WINDOW, ple_window);
3755 }
3756
c3707958
XG
3757 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3758 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
3759 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3760
9581d442
AK
3761 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3762 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a3a8ff8e 3763 vmx_set_constant_host_state();
05b3e0c2 3764#ifdef CONFIG_X86_64
6aa8b732
AK
3765 rdmsrl(MSR_FS_BASE, a);
3766 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3767 rdmsrl(MSR_GS_BASE, a);
3768 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3769#else
3770 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3771 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3772#endif
3773
2cc51560
ED
3774 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3775 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 3776 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 3777 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 3778 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 3779
468d472f 3780 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
3781 u32 msr_low, msr_high;
3782 u64 host_pat;
468d472f
SY
3783 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3784 host_pat = msr_low | ((u64) msr_high << 32);
3785 /* Write the default value follow host pat */
3786 vmcs_write64(GUEST_IA32_PAT, host_pat);
3787 /* Keep arch.pat sync with GUEST_IA32_PAT */
3788 vmx->vcpu.arch.pat = host_pat;
3789 }
3790
6aa8b732
AK
3791 for (i = 0; i < NR_VMX_MSR; ++i) {
3792 u32 index = vmx_msr_index[i];
3793 u32 data_low, data_high;
a2fa3e9f 3794 int j = vmx->nmsrs;
6aa8b732
AK
3795
3796 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3797 continue;
432bd6cb
AK
3798 if (wrmsr_safe(index, data_low, data_high) < 0)
3799 continue;
26bb0981
AK
3800 vmx->guest_msrs[j].index = i;
3801 vmx->guest_msrs[j].data = 0;
d5696725 3802 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 3803 ++vmx->nmsrs;
6aa8b732 3804 }
6aa8b732 3805
1c3d14fe 3806 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
6aa8b732
AK
3807
3808 /* 22.2.1, 20.8.1 */
1c3d14fe
YS
3809 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3810
e00c8cf2 3811 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 3812 set_cr4_guest_host_mask(vmx);
e00c8cf2 3813
99e3e30a 3814 kvm_write_tsc(&vmx->vcpu, 0);
f78e0e2e 3815
e00c8cf2
AK
3816 return 0;
3817}
3818
3819static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3820{
3821 struct vcpu_vmx *vmx = to_vmx(vcpu);
3822 u64 msr;
4b9d3a04 3823 int ret;
e00c8cf2 3824
5fdbf976 3825 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
e00c8cf2 3826
7ffd92c5 3827 vmx->rmode.vm86_active = 0;
e00c8cf2 3828
3b86cd99
JK
3829 vmx->soft_vnmi_blocked = 0;
3830
ad312c7c 3831 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 3832 kvm_set_cr8(&vmx->vcpu, 0);
e00c8cf2 3833 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
c5af89b6 3834 if (kvm_vcpu_is_bsp(&vmx->vcpu))
e00c8cf2
AK
3835 msr |= MSR_IA32_APICBASE_BSP;
3836 kvm_set_apic_base(&vmx->vcpu, msr);
3837
10ab25cd
JK
3838 ret = fx_init(&vmx->vcpu);
3839 if (ret != 0)
3840 goto out;
e00c8cf2 3841
2fb92db1
AK
3842 vmx_segment_cache_clear(vmx);
3843
5706be0d 3844 seg_setup(VCPU_SREG_CS);
e00c8cf2
AK
3845 /*
3846 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3847 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3848 */
c5af89b6 3849 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
e00c8cf2
AK
3850 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3851 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3852 } else {
ad312c7c
ZX
3853 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3854 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
e00c8cf2 3855 }
e00c8cf2
AK
3856
3857 seg_setup(VCPU_SREG_DS);
3858 seg_setup(VCPU_SREG_ES);
3859 seg_setup(VCPU_SREG_FS);
3860 seg_setup(VCPU_SREG_GS);
3861 seg_setup(VCPU_SREG_SS);
3862
3863 vmcs_write16(GUEST_TR_SELECTOR, 0);
3864 vmcs_writel(GUEST_TR_BASE, 0);
3865 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3866 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3867
3868 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3869 vmcs_writel(GUEST_LDTR_BASE, 0);
3870 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3871 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3872
3873 vmcs_write32(GUEST_SYSENTER_CS, 0);
3874 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3875 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3876
3877 vmcs_writel(GUEST_RFLAGS, 0x02);
c5af89b6 3878 if (kvm_vcpu_is_bsp(&vmx->vcpu))
5fdbf976 3879 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 3880 else
5fdbf976
MT
3881 kvm_rip_write(vcpu, 0);
3882 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
e00c8cf2 3883
e00c8cf2
AK
3884 vmcs_writel(GUEST_DR7, 0x400);
3885
3886 vmcs_writel(GUEST_GDTR_BASE, 0);
3887 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3888
3889 vmcs_writel(GUEST_IDTR_BASE, 0);
3890 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3891
443381a8 3892 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
3893 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3894 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3895
e00c8cf2
AK
3896 /* Special registers */
3897 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3898
3899 setup_msrs(vmx);
3900
6aa8b732
AK
3901 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3902
f78e0e2e
SY
3903 if (cpu_has_vmx_tpr_shadow()) {
3904 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3905 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3906 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 3907 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
3908 vmcs_write32(TPR_THRESHOLD, 0);
3909 }
3910
3911 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3912 vmcs_write64(APIC_ACCESS_ADDR,
bfc6d222 3913 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
6aa8b732 3914
2384d2b3
SY
3915 if (vmx->vpid != 0)
3916 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3917
fa40052c 3918 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
7a4f5ad0 3919 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4d4ec087 3920 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
7a4f5ad0 3921 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8b9cf98c 3922 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 3923 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
3924 vmx_fpu_activate(&vmx->vcpu);
3925 update_exception_bitmap(&vmx->vcpu);
6aa8b732 3926
b9d762fa 3927 vpid_sync_context(vmx);
2384d2b3 3928
3200f405 3929 ret = 0;
6aa8b732 3930
a89a8fb9
MG
3931 /* HACK: Don't enable emulation on guest boot/reset */
3932 vmx->emulation_required = 0;
3933
6aa8b732
AK
3934out:
3935 return ret;
3936}
3937
b6f1250e
NHE
3938/*
3939 * In nested virtualization, check if L1 asked to exit on external interrupts.
3940 * For most existing hypervisors, this will always return true.
3941 */
3942static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
3943{
3944 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
3945 PIN_BASED_EXT_INTR_MASK;
3946}
3947
3b86cd99
JK
3948static void enable_irq_window(struct kvm_vcpu *vcpu)
3949{
3950 u32 cpu_based_vm_exec_control;
d6185f20
NHE
3951 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
3952 /*
3953 * We get here if vmx_interrupt_allowed() said we can't
3954 * inject to L1 now because L2 must run. Ask L2 to exit
3955 * right after entry, so we can inject to L1 more promptly.
b6f1250e 3956 */
d6185f20 3957 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
b6f1250e 3958 return;
d6185f20 3959 }
3b86cd99
JK
3960
3961 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3962 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3963 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3964}
3965
3966static void enable_nmi_window(struct kvm_vcpu *vcpu)
3967{
3968 u32 cpu_based_vm_exec_control;
3969
3970 if (!cpu_has_virtual_nmis()) {
3971 enable_irq_window(vcpu);
3972 return;
3973 }
3974
30bd0c4c
AK
3975 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3976 enable_irq_window(vcpu);
3977 return;
3978 }
3b86cd99
JK
3979 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3980 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3981 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3982}
3983
66fd3f7f 3984static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 3985{
9c8cba37 3986 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
3987 uint32_t intr;
3988 int irq = vcpu->arch.interrupt.nr;
9c8cba37 3989
229456fc 3990 trace_kvm_inj_virq(irq);
2714d1d3 3991
fa89a817 3992 ++vcpu->stat.irq_injections;
7ffd92c5 3993 if (vmx->rmode.vm86_active) {
71f9833b
SH
3994 int inc_eip = 0;
3995 if (vcpu->arch.interrupt.soft)
3996 inc_eip = vcpu->arch.event_exit_inst_len;
3997 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 3998 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
3999 return;
4000 }
66fd3f7f
GN
4001 intr = irq | INTR_INFO_VALID_MASK;
4002 if (vcpu->arch.interrupt.soft) {
4003 intr |= INTR_TYPE_SOFT_INTR;
4004 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4005 vmx->vcpu.arch.event_exit_inst_len);
4006 } else
4007 intr |= INTR_TYPE_EXT_INTR;
4008 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
4009}
4010
f08864b4
SY
4011static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4012{
66a5a347
JK
4013 struct vcpu_vmx *vmx = to_vmx(vcpu);
4014
0b6ac343
NHE
4015 if (is_guest_mode(vcpu))
4016 return;
4017
3b86cd99
JK
4018 if (!cpu_has_virtual_nmis()) {
4019 /*
4020 * Tracking the NMI-blocked state in software is built upon
4021 * finding the next open IRQ window. This, in turn, depends on
4022 * well-behaving guests: They have to keep IRQs disabled at
4023 * least as long as the NMI handler runs. Otherwise we may
4024 * cause NMI nesting, maybe breaking the guest. But as this is
4025 * highly unlikely, we can live with the residual risk.
4026 */
4027 vmx->soft_vnmi_blocked = 1;
4028 vmx->vnmi_blocked_time = 0;
4029 }
4030
487b391d 4031 ++vcpu->stat.nmi_injections;
9d58b931 4032 vmx->nmi_known_unmasked = false;
7ffd92c5 4033 if (vmx->rmode.vm86_active) {
71f9833b 4034 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 4035 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
4036 return;
4037 }
f08864b4
SY
4038 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4039 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
4040}
4041
c4282df9 4042static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
33f089ca 4043{
3b86cd99 4044 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
c4282df9 4045 return 0;
33f089ca 4046
c4282df9 4047 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
30bd0c4c
AK
4048 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4049 | GUEST_INTR_STATE_NMI));
33f089ca
JK
4050}
4051
3cfc3092
JK
4052static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4053{
4054 if (!cpu_has_virtual_nmis())
4055 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
4056 if (to_vmx(vcpu)->nmi_known_unmasked)
4057 return false;
c332c83a 4058 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
4059}
4060
4061static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4062{
4063 struct vcpu_vmx *vmx = to_vmx(vcpu);
4064
4065 if (!cpu_has_virtual_nmis()) {
4066 if (vmx->soft_vnmi_blocked != masked) {
4067 vmx->soft_vnmi_blocked = masked;
4068 vmx->vnmi_blocked_time = 0;
4069 }
4070 } else {
9d58b931 4071 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
4072 if (masked)
4073 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4074 GUEST_INTR_STATE_NMI);
4075 else
4076 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4077 GUEST_INTR_STATE_NMI);
4078 }
4079}
4080
78646121
GN
4081static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4082{
b6f1250e 4083 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
51cfe38e
NHE
4084 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4085 if (to_vmx(vcpu)->nested.nested_run_pending ||
4086 (vmcs12->idt_vectoring_info_field &
4087 VECTORING_INFO_VALID_MASK))
b6f1250e
NHE
4088 return 0;
4089 nested_vmx_vmexit(vcpu);
b6f1250e
NHE
4090 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4091 vmcs12->vm_exit_intr_info = 0;
4092 /* fall through to normal code, but now in L1, not L2 */
4093 }
4094
c4282df9
GN
4095 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4096 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4097 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4098}
4099
cbc94022
IE
4100static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4101{
4102 int ret;
4103 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4104 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4105 .guest_phys_addr = addr,
4106 .memory_size = PAGE_SIZE * 3,
4107 .flags = 0,
4108 };
4109
4110 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4111 if (ret)
4112 return ret;
bfc6d222 4113 kvm->arch.tss_addr = addr;
93ea5388
GN
4114 if (!init_rmode_tss(kvm))
4115 return -ENOMEM;
4116
cbc94022
IE
4117 return 0;
4118}
4119
6aa8b732
AK
4120static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4121 int vec, u32 err_code)
4122{
b3f37707
NK
4123 /*
4124 * Instruction with address size override prefix opcode 0x67
4125 * Cause the #SS fault with 0 error code in VM86 mode.
4126 */
4127 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
51d8b661 4128 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
6aa8b732 4129 return 1;
77ab6db0
JK
4130 /*
4131 * Forward all other exceptions that are valid in real mode.
4132 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4133 * the required debugging infrastructure rework.
4134 */
4135 switch (vec) {
77ab6db0 4136 case DB_VECTOR:
d0bfb940
JK
4137 if (vcpu->guest_debug &
4138 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4139 return 0;
4140 kvm_queue_exception(vcpu, vec);
4141 return 1;
77ab6db0 4142 case BP_VECTOR:
c573cd22
JK
4143 /*
4144 * Update instruction length as we may reinject the exception
4145 * from user space while in guest debugging mode.
4146 */
4147 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4148 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940
JK
4149 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4150 return 0;
4151 /* fall through */
4152 case DE_VECTOR:
77ab6db0
JK
4153 case OF_VECTOR:
4154 case BR_VECTOR:
4155 case UD_VECTOR:
4156 case DF_VECTOR:
4157 case SS_VECTOR:
4158 case GP_VECTOR:
4159 case MF_VECTOR:
4160 kvm_queue_exception(vcpu, vec);
4161 return 1;
4162 }
6aa8b732
AK
4163 return 0;
4164}
4165
a0861c02
AK
4166/*
4167 * Trigger machine check on the host. We assume all the MSRs are already set up
4168 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4169 * We pass a fake environment to the machine check handler because we want
4170 * the guest to be always treated like user space, no matter what context
4171 * it used internally.
4172 */
4173static void kvm_machine_check(void)
4174{
4175#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4176 struct pt_regs regs = {
4177 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4178 .flags = X86_EFLAGS_IF,
4179 };
4180
4181 do_machine_check(&regs, 0);
4182#endif
4183}
4184
851ba692 4185static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
4186{
4187 /* already handled by vcpu_run */
4188 return 1;
4189}
4190
851ba692 4191static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 4192{
1155f76a 4193 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 4194 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 4195 u32 intr_info, ex_no, error_code;
42dbaa5a 4196 unsigned long cr2, rip, dr6;
6aa8b732
AK
4197 u32 vect_info;
4198 enum emulation_result er;
4199
1155f76a 4200 vect_info = vmx->idt_vectoring_info;
88786475 4201 intr_info = vmx->exit_intr_info;
6aa8b732 4202
a0861c02 4203 if (is_machine_check(intr_info))
851ba692 4204 return handle_machine_check(vcpu);
a0861c02 4205
6aa8b732 4206 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
65ac7264
AK
4207 !is_page_fault(intr_info)) {
4208 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4209 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4210 vcpu->run->internal.ndata = 2;
4211 vcpu->run->internal.data[0] = vect_info;
4212 vcpu->run->internal.data[1] = intr_info;
4213 return 0;
4214 }
6aa8b732 4215
e4a41889 4216 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 4217 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
4218
4219 if (is_no_device(intr_info)) {
5fd86fcf 4220 vmx_fpu_activate(vcpu);
2ab455cc
AL
4221 return 1;
4222 }
4223
7aa81cc0 4224 if (is_invalid_opcode(intr_info)) {
51d8b661 4225 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 4226 if (er != EMULATE_DONE)
7ee5d940 4227 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
4228 return 1;
4229 }
4230
6aa8b732 4231 error_code = 0;
2e11384c 4232 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732
AK
4233 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4234 if (is_page_fault(intr_info)) {
1439442c 4235 /* EPT won't cause page fault directly */
cf3ace79 4236 BUG_ON(enable_ept);
6aa8b732 4237 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
4238 trace_kvm_page_fault(cr2, error_code);
4239
3298b75c 4240 if (kvm_event_needs_reinjection(vcpu))
577bdc49 4241 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 4242 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
4243 }
4244
7ffd92c5 4245 if (vmx->rmode.vm86_active &&
6aa8b732 4246 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
72d6e5a0 4247 error_code)) {
ad312c7c
ZX
4248 if (vcpu->arch.halt_request) {
4249 vcpu->arch.halt_request = 0;
72d6e5a0
AK
4250 return kvm_emulate_halt(vcpu);
4251 }
6aa8b732 4252 return 1;
72d6e5a0 4253 }
6aa8b732 4254
d0bfb940 4255 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
42dbaa5a
JK
4256 switch (ex_no) {
4257 case DB_VECTOR:
4258 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4259 if (!(vcpu->guest_debug &
4260 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4261 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4262 kvm_queue_exception(vcpu, DB_VECTOR);
4263 return 1;
4264 }
4265 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4266 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4267 /* fall through */
4268 case BP_VECTOR:
c573cd22
JK
4269 /*
4270 * Update instruction length as we may reinject #BP from
4271 * user space while in guest debugging mode. Reading it for
4272 * #DB as well causes no harm, it is not used in that case.
4273 */
4274 vmx->vcpu.arch.event_exit_inst_len =
4275 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 4276 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 4277 rip = kvm_rip_read(vcpu);
d0bfb940
JK
4278 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4279 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
4280 break;
4281 default:
d0bfb940
JK
4282 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4283 kvm_run->ex.exception = ex_no;
4284 kvm_run->ex.error_code = error_code;
42dbaa5a 4285 break;
6aa8b732 4286 }
6aa8b732
AK
4287 return 0;
4288}
4289
851ba692 4290static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 4291{
1165f5fe 4292 ++vcpu->stat.irq_exits;
6aa8b732
AK
4293 return 1;
4294}
4295
851ba692 4296static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 4297{
851ba692 4298 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
4299 return 0;
4300}
6aa8b732 4301
851ba692 4302static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 4303{
bfdaab09 4304 unsigned long exit_qualification;
34c33d16 4305 int size, in, string;
039576c0 4306 unsigned port;
6aa8b732 4307
bfdaab09 4308 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 4309 string = (exit_qualification & 16) != 0;
cf8f70bf 4310 in = (exit_qualification & 8) != 0;
e70669ab 4311
cf8f70bf 4312 ++vcpu->stat.io_exits;
e70669ab 4313
cf8f70bf 4314 if (string || in)
51d8b661 4315 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 4316
cf8f70bf
GN
4317 port = exit_qualification >> 16;
4318 size = (exit_qualification & 7) + 1;
e93f36bc 4319 skip_emulated_instruction(vcpu);
cf8f70bf
GN
4320
4321 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
4322}
4323
102d8325
IM
4324static void
4325vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4326{
4327 /*
4328 * Patch in the VMCALL instruction:
4329 */
4330 hypercall[0] = 0x0f;
4331 hypercall[1] = 0x01;
4332 hypercall[2] = 0xc1;
102d8325
IM
4333}
4334
eeadf9e7
NHE
4335/* called to set cr0 as approriate for a mov-to-cr0 exit. */
4336static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4337{
4338 if (to_vmx(vcpu)->nested.vmxon &&
4339 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4340 return 1;
4341
4342 if (is_guest_mode(vcpu)) {
4343 /*
4344 * We get here when L2 changed cr0 in a way that did not change
4345 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4346 * but did change L0 shadowed bits. This can currently happen
4347 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4348 * loading) while pretending to allow the guest to change it.
4349 */
4350 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4351 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4352 return 1;
4353 vmcs_writel(CR0_READ_SHADOW, val);
4354 return 0;
4355 } else
4356 return kvm_set_cr0(vcpu, val);
4357}
4358
4359static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4360{
4361 if (is_guest_mode(vcpu)) {
4362 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4363 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4364 return 1;
4365 vmcs_writel(CR4_READ_SHADOW, val);
4366 return 0;
4367 } else
4368 return kvm_set_cr4(vcpu, val);
4369}
4370
4371/* called to set cr0 as approriate for clts instruction exit. */
4372static void handle_clts(struct kvm_vcpu *vcpu)
4373{
4374 if (is_guest_mode(vcpu)) {
4375 /*
4376 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4377 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4378 * just pretend it's off (also in arch.cr0 for fpu_activate).
4379 */
4380 vmcs_writel(CR0_READ_SHADOW,
4381 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4382 vcpu->arch.cr0 &= ~X86_CR0_TS;
4383 } else
4384 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4385}
4386
851ba692 4387static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 4388{
229456fc 4389 unsigned long exit_qualification, val;
6aa8b732
AK
4390 int cr;
4391 int reg;
49a9b07e 4392 int err;
6aa8b732 4393
bfdaab09 4394 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
4395 cr = exit_qualification & 15;
4396 reg = (exit_qualification >> 8) & 15;
4397 switch ((exit_qualification >> 4) & 3) {
4398 case 0: /* mov to cr */
229456fc
MT
4399 val = kvm_register_read(vcpu, reg);
4400 trace_kvm_cr_write(cr, val);
6aa8b732
AK
4401 switch (cr) {
4402 case 0:
eeadf9e7 4403 err = handle_set_cr0(vcpu, val);
db8fcefa 4404 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4405 return 1;
4406 case 3:
2390218b 4407 err = kvm_set_cr3(vcpu, val);
db8fcefa 4408 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4409 return 1;
4410 case 4:
eeadf9e7 4411 err = handle_set_cr4(vcpu, val);
db8fcefa 4412 kvm_complete_insn_gp(vcpu, err);
6aa8b732 4413 return 1;
0a5fff19
GN
4414 case 8: {
4415 u8 cr8_prev = kvm_get_cr8(vcpu);
4416 u8 cr8 = kvm_register_read(vcpu, reg);
eea1cff9 4417 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 4418 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
4419 if (irqchip_in_kernel(vcpu->kvm))
4420 return 1;
4421 if (cr8_prev <= cr8)
4422 return 1;
851ba692 4423 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
4424 return 0;
4425 }
6aa8b732
AK
4426 };
4427 break;
25c4c276 4428 case 2: /* clts */
eeadf9e7 4429 handle_clts(vcpu);
4d4ec087 4430 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 4431 skip_emulated_instruction(vcpu);
6b52d186 4432 vmx_fpu_activate(vcpu);
25c4c276 4433 return 1;
6aa8b732
AK
4434 case 1: /*mov from cr*/
4435 switch (cr) {
4436 case 3:
9f8fe504
AK
4437 val = kvm_read_cr3(vcpu);
4438 kvm_register_write(vcpu, reg, val);
4439 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4440 skip_emulated_instruction(vcpu);
4441 return 1;
4442 case 8:
229456fc
MT
4443 val = kvm_get_cr8(vcpu);
4444 kvm_register_write(vcpu, reg, val);
4445 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4446 skip_emulated_instruction(vcpu);
4447 return 1;
4448 }
4449 break;
4450 case 3: /* lmsw */
a1f83a74 4451 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 4452 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 4453 kvm_lmsw(vcpu, val);
6aa8b732
AK
4454
4455 skip_emulated_instruction(vcpu);
4456 return 1;
4457 default:
4458 break;
4459 }
851ba692 4460 vcpu->run->exit_reason = 0;
f0242478 4461 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
4462 (int)(exit_qualification >> 4) & 3, cr);
4463 return 0;
4464}
4465
851ba692 4466static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 4467{
bfdaab09 4468 unsigned long exit_qualification;
6aa8b732
AK
4469 int dr, reg;
4470
f2483415 4471 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
4472 if (!kvm_require_cpl(vcpu, 0))
4473 return 1;
42dbaa5a
JK
4474 dr = vmcs_readl(GUEST_DR7);
4475 if (dr & DR7_GD) {
4476 /*
4477 * As the vm-exit takes precedence over the debug trap, we
4478 * need to emulate the latter, either for the host or the
4479 * guest debugging itself.
4480 */
4481 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692
AK
4482 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4483 vcpu->run->debug.arch.dr7 = dr;
4484 vcpu->run->debug.arch.pc =
42dbaa5a
JK
4485 vmcs_readl(GUEST_CS_BASE) +
4486 vmcs_readl(GUEST_RIP);
851ba692
AK
4487 vcpu->run->debug.arch.exception = DB_VECTOR;
4488 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
4489 return 0;
4490 } else {
4491 vcpu->arch.dr7 &= ~DR7_GD;
4492 vcpu->arch.dr6 |= DR6_BD;
4493 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4494 kvm_queue_exception(vcpu, DB_VECTOR);
4495 return 1;
4496 }
4497 }
4498
bfdaab09 4499 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
42dbaa5a
JK
4500 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4501 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4502 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079
GN
4503 unsigned long val;
4504 if (!kvm_get_dr(vcpu, dr, &val))
4505 kvm_register_write(vcpu, reg, val);
4506 } else
4507 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
6aa8b732
AK
4508 skip_emulated_instruction(vcpu);
4509 return 1;
4510}
4511
020df079
GN
4512static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4513{
4514 vmcs_writel(GUEST_DR7, val);
4515}
4516
851ba692 4517static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 4518{
06465c5a
AK
4519 kvm_emulate_cpuid(vcpu);
4520 return 1;
6aa8b732
AK
4521}
4522
851ba692 4523static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 4524{
ad312c7c 4525 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
4526 u64 data;
4527
4528 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 4529 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 4530 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4531 return 1;
4532 }
4533
229456fc 4534 trace_kvm_msr_read(ecx, data);
2714d1d3 4535
6aa8b732 4536 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
4537 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4538 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
4539 skip_emulated_instruction(vcpu);
4540 return 1;
4541}
4542
851ba692 4543static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 4544{
ad312c7c
ZX
4545 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4546 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4547 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732
AK
4548
4549 if (vmx_set_msr(vcpu, ecx, data) != 0) {
59200273 4550 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 4551 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4552 return 1;
4553 }
4554
59200273 4555 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
4556 skip_emulated_instruction(vcpu);
4557 return 1;
4558}
4559
851ba692 4560static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 4561{
3842d135 4562 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
4563 return 1;
4564}
4565
851ba692 4566static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 4567{
85f455f7
ED
4568 u32 cpu_based_vm_exec_control;
4569
4570 /* clear pending irq */
4571 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4572 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4573 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 4574
3842d135
AK
4575 kvm_make_request(KVM_REQ_EVENT, vcpu);
4576
a26bf12a 4577 ++vcpu->stat.irq_window_exits;
2714d1d3 4578
c1150d8c
DL
4579 /*
4580 * If the user space waits to inject interrupts, exit as soon as
4581 * possible
4582 */
8061823a 4583 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 4584 vcpu->run->request_interrupt_window &&
8061823a 4585 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 4586 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
4587 return 0;
4588 }
6aa8b732
AK
4589 return 1;
4590}
4591
851ba692 4592static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732
AK
4593{
4594 skip_emulated_instruction(vcpu);
d3bef15f 4595 return kvm_emulate_halt(vcpu);
6aa8b732
AK
4596}
4597
851ba692 4598static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 4599{
510043da 4600 skip_emulated_instruction(vcpu);
7aa81cc0
AL
4601 kvm_emulate_hypercall(vcpu);
4602 return 1;
c21415e8
IM
4603}
4604
ec25d5e6
GN
4605static int handle_invd(struct kvm_vcpu *vcpu)
4606{
51d8b661 4607 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
4608}
4609
851ba692 4610static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 4611{
f9c617f6 4612 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
4613
4614 kvm_mmu_invlpg(vcpu, exit_qualification);
4615 skip_emulated_instruction(vcpu);
4616 return 1;
4617}
4618
fee84b07
AK
4619static int handle_rdpmc(struct kvm_vcpu *vcpu)
4620{
4621 int err;
4622
4623 err = kvm_rdpmc(vcpu);
4624 kvm_complete_insn_gp(vcpu, err);
4625
4626 return 1;
4627}
4628
851ba692 4629static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01
ED
4630{
4631 skip_emulated_instruction(vcpu);
f5f48ee1 4632 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
4633 return 1;
4634}
4635
2acf923e
DC
4636static int handle_xsetbv(struct kvm_vcpu *vcpu)
4637{
4638 u64 new_bv = kvm_read_edx_eax(vcpu);
4639 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4640
4641 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4642 skip_emulated_instruction(vcpu);
4643 return 1;
4644}
4645
851ba692 4646static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 4647{
58fbbf26
KT
4648 if (likely(fasteoi)) {
4649 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4650 int access_type, offset;
4651
4652 access_type = exit_qualification & APIC_ACCESS_TYPE;
4653 offset = exit_qualification & APIC_ACCESS_OFFSET;
4654 /*
4655 * Sane guest uses MOV to write EOI, with written value
4656 * not cared. So make a short-circuit here by avoiding
4657 * heavy instruction emulation.
4658 */
4659 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4660 (offset == APIC_EOI)) {
4661 kvm_lapic_set_eoi(vcpu);
4662 skip_emulated_instruction(vcpu);
4663 return 1;
4664 }
4665 }
51d8b661 4666 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
4667}
4668
851ba692 4669static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 4670{
60637aac 4671 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 4672 unsigned long exit_qualification;
e269fb21
JK
4673 bool has_error_code = false;
4674 u32 error_code = 0;
37817f29 4675 u16 tss_selector;
7f3d35fd 4676 int reason, type, idt_v, idt_index;
64a7ec06
GN
4677
4678 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 4679 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 4680 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
4681
4682 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4683
4684 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
4685 if (reason == TASK_SWITCH_GATE && idt_v) {
4686 switch (type) {
4687 case INTR_TYPE_NMI_INTR:
4688 vcpu->arch.nmi_injected = false;
654f06fc 4689 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
4690 break;
4691 case INTR_TYPE_EXT_INTR:
66fd3f7f 4692 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
4693 kvm_clear_interrupt_queue(vcpu);
4694 break;
4695 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
4696 if (vmx->idt_vectoring_info &
4697 VECTORING_INFO_DELIVER_CODE_MASK) {
4698 has_error_code = true;
4699 error_code =
4700 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4701 }
4702 /* fall through */
64a7ec06
GN
4703 case INTR_TYPE_SOFT_EXCEPTION:
4704 kvm_clear_exception_queue(vcpu);
4705 break;
4706 default:
4707 break;
4708 }
60637aac 4709 }
37817f29
IE
4710 tss_selector = exit_qualification;
4711
64a7ec06
GN
4712 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4713 type != INTR_TYPE_EXT_INTR &&
4714 type != INTR_TYPE_NMI_INTR))
4715 skip_emulated_instruction(vcpu);
4716
7f3d35fd
KW
4717 if (kvm_task_switch(vcpu, tss_selector,
4718 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
4719 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
4720 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4721 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4722 vcpu->run->internal.ndata = 0;
42dbaa5a 4723 return 0;
acb54517 4724 }
42dbaa5a
JK
4725
4726 /* clear all local breakpoint enable flags */
4727 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4728
4729 /*
4730 * TODO: What about debug traps on tss switch?
4731 * Are we supposed to inject them and update dr6?
4732 */
4733
4734 return 1;
37817f29
IE
4735}
4736
851ba692 4737static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 4738{
f9c617f6 4739 unsigned long exit_qualification;
1439442c 4740 gpa_t gpa;
1439442c 4741 int gla_validity;
1439442c 4742
f9c617f6 4743 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c
SY
4744
4745 if (exit_qualification & (1 << 6)) {
4746 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
7f582ab6 4747 return -EINVAL;
1439442c
SY
4748 }
4749
4750 gla_validity = (exit_qualification >> 7) & 0x3;
4751 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4752 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4753 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4754 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 4755 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
4756 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4757 (long unsigned int)exit_qualification);
851ba692
AK
4758 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4759 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 4760 return 0;
1439442c
SY
4761 }
4762
4763 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 4764 trace_kvm_page_fault(gpa, exit_qualification);
dc25e89e 4765 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
1439442c
SY
4766}
4767
68f89400
MT
4768static u64 ept_rsvd_mask(u64 spte, int level)
4769{
4770 int i;
4771 u64 mask = 0;
4772
4773 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4774 mask |= (1ULL << i);
4775
4776 if (level > 2)
4777 /* bits 7:3 reserved */
4778 mask |= 0xf8;
4779 else if (level == 2) {
4780 if (spte & (1ULL << 7))
4781 /* 2MB ref, bits 20:12 reserved */
4782 mask |= 0x1ff000;
4783 else
4784 /* bits 6:3 reserved */
4785 mask |= 0x78;
4786 }
4787
4788 return mask;
4789}
4790
4791static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4792 int level)
4793{
4794 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4795
4796 /* 010b (write-only) */
4797 WARN_ON((spte & 0x7) == 0x2);
4798
4799 /* 110b (write/execute) */
4800 WARN_ON((spte & 0x7) == 0x6);
4801
4802 /* 100b (execute-only) and value not supported by logical processor */
4803 if (!cpu_has_vmx_ept_execute_only())
4804 WARN_ON((spte & 0x7) == 0x4);
4805
4806 /* not 000b */
4807 if ((spte & 0x7)) {
4808 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4809
4810 if (rsvd_bits != 0) {
4811 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4812 __func__, rsvd_bits);
4813 WARN_ON(1);
4814 }
4815
4816 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4817 u64 ept_mem_type = (spte & 0x38) >> 3;
4818
4819 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4820 ept_mem_type == 7) {
4821 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4822 __func__, ept_mem_type);
4823 WARN_ON(1);
4824 }
4825 }
4826 }
4827}
4828
851ba692 4829static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
4830{
4831 u64 sptes[4];
ce88decf 4832 int nr_sptes, i, ret;
68f89400
MT
4833 gpa_t gpa;
4834
4835 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4836
ce88decf
XG
4837 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4838 if (likely(ret == 1))
4839 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4840 EMULATE_DONE;
4841 if (unlikely(!ret))
4842 return 1;
4843
4844 /* It is the real ept misconfig */
68f89400
MT
4845 printk(KERN_ERR "EPT: Misconfiguration.\n");
4846 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4847
4848 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4849
4850 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4851 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4852
851ba692
AK
4853 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4854 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
4855
4856 return 0;
4857}
4858
851ba692 4859static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
4860{
4861 u32 cpu_based_vm_exec_control;
4862
4863 /* clear pending NMI */
4864 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4865 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4866 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4867 ++vcpu->stat.nmi_window_exits;
3842d135 4868 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
4869
4870 return 1;
4871}
4872
80ced186 4873static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 4874{
8b3079a5
AK
4875 struct vcpu_vmx *vmx = to_vmx(vcpu);
4876 enum emulation_result err = EMULATE_DONE;
80ced186 4877 int ret = 1;
49e9d557
AK
4878 u32 cpu_exec_ctrl;
4879 bool intr_window_requested;
4880
4881 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4882 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0
MG
4883
4884 while (!guest_state_valid(vcpu)) {
49e9d557
AK
4885 if (intr_window_requested
4886 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4887 return handle_interrupt_window(&vmx->vcpu);
4888
51d8b661 4889 err = emulate_instruction(vcpu, 0);
ea953ef0 4890
80ced186
MG
4891 if (err == EMULATE_DO_MMIO) {
4892 ret = 0;
4893 goto out;
4894 }
1d5a4d9b 4895
6d77dbfc
GN
4896 if (err != EMULATE_DONE)
4897 return 0;
ea953ef0
MG
4898
4899 if (signal_pending(current))
80ced186 4900 goto out;
ea953ef0
MG
4901 if (need_resched())
4902 schedule();
4903 }
4904
80ced186
MG
4905 vmx->emulation_required = 0;
4906out:
4907 return ret;
ea953ef0
MG
4908}
4909
4b8d54f9
ZE
4910/*
4911 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4912 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4913 */
9fb41ba8 4914static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9
ZE
4915{
4916 skip_emulated_instruction(vcpu);
4917 kvm_vcpu_on_spin(vcpu);
4918
4919 return 1;
4920}
4921
59708670
SY
4922static int handle_invalid_op(struct kvm_vcpu *vcpu)
4923{
4924 kvm_queue_exception(vcpu, UD_VECTOR);
4925 return 1;
4926}
4927
ff2f6fe9
NHE
4928/*
4929 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4930 * We could reuse a single VMCS for all the L2 guests, but we also want the
4931 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4932 * allows keeping them loaded on the processor, and in the future will allow
4933 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4934 * every entry if they never change.
4935 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4936 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4937 *
4938 * The following functions allocate and free a vmcs02 in this pool.
4939 */
4940
4941/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
4942static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4943{
4944 struct vmcs02_list *item;
4945 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4946 if (item->vmptr == vmx->nested.current_vmptr) {
4947 list_move(&item->list, &vmx->nested.vmcs02_pool);
4948 return &item->vmcs02;
4949 }
4950
4951 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4952 /* Recycle the least recently used VMCS. */
4953 item = list_entry(vmx->nested.vmcs02_pool.prev,
4954 struct vmcs02_list, list);
4955 item->vmptr = vmx->nested.current_vmptr;
4956 list_move(&item->list, &vmx->nested.vmcs02_pool);
4957 return &item->vmcs02;
4958 }
4959
4960 /* Create a new VMCS */
4961 item = (struct vmcs02_list *)
4962 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4963 if (!item)
4964 return NULL;
4965 item->vmcs02.vmcs = alloc_vmcs();
4966 if (!item->vmcs02.vmcs) {
4967 kfree(item);
4968 return NULL;
4969 }
4970 loaded_vmcs_init(&item->vmcs02);
4971 item->vmptr = vmx->nested.current_vmptr;
4972 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4973 vmx->nested.vmcs02_num++;
4974 return &item->vmcs02;
4975}
4976
4977/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
4978static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4979{
4980 struct vmcs02_list *item;
4981 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4982 if (item->vmptr == vmptr) {
4983 free_loaded_vmcs(&item->vmcs02);
4984 list_del(&item->list);
4985 kfree(item);
4986 vmx->nested.vmcs02_num--;
4987 return;
4988 }
4989}
4990
4991/*
4992 * Free all VMCSs saved for this vcpu, except the one pointed by
4993 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4994 * currently used, if running L2), and vmcs01 when running L2.
4995 */
4996static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
4997{
4998 struct vmcs02_list *item, *n;
4999 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5000 if (vmx->loaded_vmcs != &item->vmcs02)
5001 free_loaded_vmcs(&item->vmcs02);
5002 list_del(&item->list);
5003 kfree(item);
5004 }
5005 vmx->nested.vmcs02_num = 0;
5006
5007 if (vmx->loaded_vmcs != &vmx->vmcs01)
5008 free_loaded_vmcs(&vmx->vmcs01);
5009}
5010
ec378aee
NHE
5011/*
5012 * Emulate the VMXON instruction.
5013 * Currently, we just remember that VMX is active, and do not save or even
5014 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5015 * do not currently need to store anything in that guest-allocated memory
5016 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5017 * argument is different from the VMXON pointer (which the spec says they do).
5018 */
5019static int handle_vmon(struct kvm_vcpu *vcpu)
5020{
5021 struct kvm_segment cs;
5022 struct vcpu_vmx *vmx = to_vmx(vcpu);
5023
5024 /* The Intel VMX Instruction Reference lists a bunch of bits that
5025 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5026 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5027 * Otherwise, we should fail with #UD. We test these now:
5028 */
5029 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5030 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5031 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5032 kvm_queue_exception(vcpu, UD_VECTOR);
5033 return 1;
5034 }
5035
5036 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5037 if (is_long_mode(vcpu) && !cs.l) {
5038 kvm_queue_exception(vcpu, UD_VECTOR);
5039 return 1;
5040 }
5041
5042 if (vmx_get_cpl(vcpu)) {
5043 kvm_inject_gp(vcpu, 0);
5044 return 1;
5045 }
5046
ff2f6fe9
NHE
5047 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5048 vmx->nested.vmcs02_num = 0;
5049
ec378aee
NHE
5050 vmx->nested.vmxon = true;
5051
5052 skip_emulated_instruction(vcpu);
5053 return 1;
5054}
5055
5056/*
5057 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5058 * for running VMX instructions (except VMXON, whose prerequisites are
5059 * slightly different). It also specifies what exception to inject otherwise.
5060 */
5061static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5062{
5063 struct kvm_segment cs;
5064 struct vcpu_vmx *vmx = to_vmx(vcpu);
5065
5066 if (!vmx->nested.vmxon) {
5067 kvm_queue_exception(vcpu, UD_VECTOR);
5068 return 0;
5069 }
5070
5071 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5072 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5073 (is_long_mode(vcpu) && !cs.l)) {
5074 kvm_queue_exception(vcpu, UD_VECTOR);
5075 return 0;
5076 }
5077
5078 if (vmx_get_cpl(vcpu)) {
5079 kvm_inject_gp(vcpu, 0);
5080 return 0;
5081 }
5082
5083 return 1;
5084}
5085
5086/*
5087 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5088 * just stops using VMX.
5089 */
5090static void free_nested(struct vcpu_vmx *vmx)
5091{
5092 if (!vmx->nested.vmxon)
5093 return;
5094 vmx->nested.vmxon = false;
a9d30f33
NHE
5095 if (vmx->nested.current_vmptr != -1ull) {
5096 kunmap(vmx->nested.current_vmcs12_page);
5097 nested_release_page(vmx->nested.current_vmcs12_page);
5098 vmx->nested.current_vmptr = -1ull;
5099 vmx->nested.current_vmcs12 = NULL;
5100 }
fe3ef05c
NHE
5101 /* Unpin physical memory we referred to in current vmcs02 */
5102 if (vmx->nested.apic_access_page) {
5103 nested_release_page(vmx->nested.apic_access_page);
5104 vmx->nested.apic_access_page = 0;
5105 }
ff2f6fe9
NHE
5106
5107 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
5108}
5109
5110/* Emulate the VMXOFF instruction */
5111static int handle_vmoff(struct kvm_vcpu *vcpu)
5112{
5113 if (!nested_vmx_check_permission(vcpu))
5114 return 1;
5115 free_nested(to_vmx(vcpu));
5116 skip_emulated_instruction(vcpu);
5117 return 1;
5118}
5119
064aea77
NHE
5120/*
5121 * Decode the memory-address operand of a vmx instruction, as recorded on an
5122 * exit caused by such an instruction (run by a guest hypervisor).
5123 * On success, returns 0. When the operand is invalid, returns 1 and throws
5124 * #UD or #GP.
5125 */
5126static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5127 unsigned long exit_qualification,
5128 u32 vmx_instruction_info, gva_t *ret)
5129{
5130 /*
5131 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5132 * Execution", on an exit, vmx_instruction_info holds most of the
5133 * addressing components of the operand. Only the displacement part
5134 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5135 * For how an actual address is calculated from all these components,
5136 * refer to Vol. 1, "Operand Addressing".
5137 */
5138 int scaling = vmx_instruction_info & 3;
5139 int addr_size = (vmx_instruction_info >> 7) & 7;
5140 bool is_reg = vmx_instruction_info & (1u << 10);
5141 int seg_reg = (vmx_instruction_info >> 15) & 7;
5142 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5143 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5144 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5145 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5146
5147 if (is_reg) {
5148 kvm_queue_exception(vcpu, UD_VECTOR);
5149 return 1;
5150 }
5151
5152 /* Addr = segment_base + offset */
5153 /* offset = base + [index * scale] + displacement */
5154 *ret = vmx_get_segment_base(vcpu, seg_reg);
5155 if (base_is_valid)
5156 *ret += kvm_register_read(vcpu, base_reg);
5157 if (index_is_valid)
5158 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5159 *ret += exit_qualification; /* holds the displacement */
5160
5161 if (addr_size == 1) /* 32 bit */
5162 *ret &= 0xffffffff;
5163
5164 /*
5165 * TODO: throw #GP (and return 1) in various cases that the VM*
5166 * instructions require it - e.g., offset beyond segment limit,
5167 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5168 * address, and so on. Currently these are not checked.
5169 */
5170 return 0;
5171}
5172
0140caea
NHE
5173/*
5174 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5175 * set the success or error code of an emulated VMX instruction, as specified
5176 * by Vol 2B, VMX Instruction Reference, "Conventions".
5177 */
5178static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5179{
5180 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5181 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5182 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5183}
5184
5185static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5186{
5187 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5188 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5189 X86_EFLAGS_SF | X86_EFLAGS_OF))
5190 | X86_EFLAGS_CF);
5191}
5192
5193static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5194 u32 vm_instruction_error)
5195{
5196 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5197 /*
5198 * failValid writes the error number to the current VMCS, which
5199 * can't be done there isn't a current VMCS.
5200 */
5201 nested_vmx_failInvalid(vcpu);
5202 return;
5203 }
5204 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5205 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5206 X86_EFLAGS_SF | X86_EFLAGS_OF))
5207 | X86_EFLAGS_ZF);
5208 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5209}
5210
27d6c865
NHE
5211/* Emulate the VMCLEAR instruction */
5212static int handle_vmclear(struct kvm_vcpu *vcpu)
5213{
5214 struct vcpu_vmx *vmx = to_vmx(vcpu);
5215 gva_t gva;
5216 gpa_t vmptr;
5217 struct vmcs12 *vmcs12;
5218 struct page *page;
5219 struct x86_exception e;
5220
5221 if (!nested_vmx_check_permission(vcpu))
5222 return 1;
5223
5224 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5225 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5226 return 1;
5227
5228 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5229 sizeof(vmptr), &e)) {
5230 kvm_inject_page_fault(vcpu, &e);
5231 return 1;
5232 }
5233
5234 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5235 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5236 skip_emulated_instruction(vcpu);
5237 return 1;
5238 }
5239
5240 if (vmptr == vmx->nested.current_vmptr) {
5241 kunmap(vmx->nested.current_vmcs12_page);
5242 nested_release_page(vmx->nested.current_vmcs12_page);
5243 vmx->nested.current_vmptr = -1ull;
5244 vmx->nested.current_vmcs12 = NULL;
5245 }
5246
5247 page = nested_get_page(vcpu, vmptr);
5248 if (page == NULL) {
5249 /*
5250 * For accurate processor emulation, VMCLEAR beyond available
5251 * physical memory should do nothing at all. However, it is
5252 * possible that a nested vmx bug, not a guest hypervisor bug,
5253 * resulted in this case, so let's shut down before doing any
5254 * more damage:
5255 */
5256 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5257 return 1;
5258 }
5259 vmcs12 = kmap(page);
5260 vmcs12->launch_state = 0;
5261 kunmap(page);
5262 nested_release_page(page);
5263
5264 nested_free_vmcs02(vmx, vmptr);
5265
5266 skip_emulated_instruction(vcpu);
5267 nested_vmx_succeed(vcpu);
5268 return 1;
5269}
5270
cd232ad0
NHE
5271static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5272
5273/* Emulate the VMLAUNCH instruction */
5274static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5275{
5276 return nested_vmx_run(vcpu, true);
5277}
5278
5279/* Emulate the VMRESUME instruction */
5280static int handle_vmresume(struct kvm_vcpu *vcpu)
5281{
5282
5283 return nested_vmx_run(vcpu, false);
5284}
5285
49f705c5
NHE
5286enum vmcs_field_type {
5287 VMCS_FIELD_TYPE_U16 = 0,
5288 VMCS_FIELD_TYPE_U64 = 1,
5289 VMCS_FIELD_TYPE_U32 = 2,
5290 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5291};
5292
5293static inline int vmcs_field_type(unsigned long field)
5294{
5295 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5296 return VMCS_FIELD_TYPE_U32;
5297 return (field >> 13) & 0x3 ;
5298}
5299
5300static inline int vmcs_field_readonly(unsigned long field)
5301{
5302 return (((field >> 10) & 0x3) == 1);
5303}
5304
5305/*
5306 * Read a vmcs12 field. Since these can have varying lengths and we return
5307 * one type, we chose the biggest type (u64) and zero-extend the return value
5308 * to that size. Note that the caller, handle_vmread, might need to use only
5309 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5310 * 64-bit fields are to be returned).
5311 */
5312static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5313 unsigned long field, u64 *ret)
5314{
5315 short offset = vmcs_field_to_offset(field);
5316 char *p;
5317
5318 if (offset < 0)
5319 return 0;
5320
5321 p = ((char *)(get_vmcs12(vcpu))) + offset;
5322
5323 switch (vmcs_field_type(field)) {
5324 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5325 *ret = *((natural_width *)p);
5326 return 1;
5327 case VMCS_FIELD_TYPE_U16:
5328 *ret = *((u16 *)p);
5329 return 1;
5330 case VMCS_FIELD_TYPE_U32:
5331 *ret = *((u32 *)p);
5332 return 1;
5333 case VMCS_FIELD_TYPE_U64:
5334 *ret = *((u64 *)p);
5335 return 1;
5336 default:
5337 return 0; /* can never happen. */
5338 }
5339}
5340
5341/*
5342 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5343 * used before) all generate the same failure when it is missing.
5344 */
5345static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5346{
5347 struct vcpu_vmx *vmx = to_vmx(vcpu);
5348 if (vmx->nested.current_vmptr == -1ull) {
5349 nested_vmx_failInvalid(vcpu);
5350 skip_emulated_instruction(vcpu);
5351 return 0;
5352 }
5353 return 1;
5354}
5355
5356static int handle_vmread(struct kvm_vcpu *vcpu)
5357{
5358 unsigned long field;
5359 u64 field_value;
5360 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5361 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5362 gva_t gva = 0;
5363
5364 if (!nested_vmx_check_permission(vcpu) ||
5365 !nested_vmx_check_vmcs12(vcpu))
5366 return 1;
5367
5368 /* Decode instruction info and find the field to read */
5369 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5370 /* Read the field, zero-extended to a u64 field_value */
5371 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5372 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5373 skip_emulated_instruction(vcpu);
5374 return 1;
5375 }
5376 /*
5377 * Now copy part of this value to register or memory, as requested.
5378 * Note that the number of bits actually copied is 32 or 64 depending
5379 * on the guest's mode (32 or 64 bit), not on the given field's length.
5380 */
5381 if (vmx_instruction_info & (1u << 10)) {
5382 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5383 field_value);
5384 } else {
5385 if (get_vmx_mem_address(vcpu, exit_qualification,
5386 vmx_instruction_info, &gva))
5387 return 1;
5388 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5389 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5390 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5391 }
5392
5393 nested_vmx_succeed(vcpu);
5394 skip_emulated_instruction(vcpu);
5395 return 1;
5396}
5397
5398
5399static int handle_vmwrite(struct kvm_vcpu *vcpu)
5400{
5401 unsigned long field;
5402 gva_t gva;
5403 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5404 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5405 char *p;
5406 short offset;
5407 /* The value to write might be 32 or 64 bits, depending on L1's long
5408 * mode, and eventually we need to write that into a field of several
5409 * possible lengths. The code below first zero-extends the value to 64
5410 * bit (field_value), and then copies only the approriate number of
5411 * bits into the vmcs12 field.
5412 */
5413 u64 field_value = 0;
5414 struct x86_exception e;
5415
5416 if (!nested_vmx_check_permission(vcpu) ||
5417 !nested_vmx_check_vmcs12(vcpu))
5418 return 1;
5419
5420 if (vmx_instruction_info & (1u << 10))
5421 field_value = kvm_register_read(vcpu,
5422 (((vmx_instruction_info) >> 3) & 0xf));
5423 else {
5424 if (get_vmx_mem_address(vcpu, exit_qualification,
5425 vmx_instruction_info, &gva))
5426 return 1;
5427 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5428 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5429 kvm_inject_page_fault(vcpu, &e);
5430 return 1;
5431 }
5432 }
5433
5434
5435 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5436 if (vmcs_field_readonly(field)) {
5437 nested_vmx_failValid(vcpu,
5438 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5439 skip_emulated_instruction(vcpu);
5440 return 1;
5441 }
5442
5443 offset = vmcs_field_to_offset(field);
5444 if (offset < 0) {
5445 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5446 skip_emulated_instruction(vcpu);
5447 return 1;
5448 }
5449 p = ((char *) get_vmcs12(vcpu)) + offset;
5450
5451 switch (vmcs_field_type(field)) {
5452 case VMCS_FIELD_TYPE_U16:
5453 *(u16 *)p = field_value;
5454 break;
5455 case VMCS_FIELD_TYPE_U32:
5456 *(u32 *)p = field_value;
5457 break;
5458 case VMCS_FIELD_TYPE_U64:
5459 *(u64 *)p = field_value;
5460 break;
5461 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5462 *(natural_width *)p = field_value;
5463 break;
5464 default:
5465 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5466 skip_emulated_instruction(vcpu);
5467 return 1;
5468 }
5469
5470 nested_vmx_succeed(vcpu);
5471 skip_emulated_instruction(vcpu);
5472 return 1;
5473}
5474
63846663
NHE
5475/* Emulate the VMPTRLD instruction */
5476static int handle_vmptrld(struct kvm_vcpu *vcpu)
5477{
5478 struct vcpu_vmx *vmx = to_vmx(vcpu);
5479 gva_t gva;
5480 gpa_t vmptr;
5481 struct x86_exception e;
5482
5483 if (!nested_vmx_check_permission(vcpu))
5484 return 1;
5485
5486 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5487 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5488 return 1;
5489
5490 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5491 sizeof(vmptr), &e)) {
5492 kvm_inject_page_fault(vcpu, &e);
5493 return 1;
5494 }
5495
5496 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5497 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5498 skip_emulated_instruction(vcpu);
5499 return 1;
5500 }
5501
5502 if (vmx->nested.current_vmptr != vmptr) {
5503 struct vmcs12 *new_vmcs12;
5504 struct page *page;
5505 page = nested_get_page(vcpu, vmptr);
5506 if (page == NULL) {
5507 nested_vmx_failInvalid(vcpu);
5508 skip_emulated_instruction(vcpu);
5509 return 1;
5510 }
5511 new_vmcs12 = kmap(page);
5512 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5513 kunmap(page);
5514 nested_release_page_clean(page);
5515 nested_vmx_failValid(vcpu,
5516 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5517 skip_emulated_instruction(vcpu);
5518 return 1;
5519 }
5520 if (vmx->nested.current_vmptr != -1ull) {
5521 kunmap(vmx->nested.current_vmcs12_page);
5522 nested_release_page(vmx->nested.current_vmcs12_page);
5523 }
5524
5525 vmx->nested.current_vmptr = vmptr;
5526 vmx->nested.current_vmcs12 = new_vmcs12;
5527 vmx->nested.current_vmcs12_page = page;
5528 }
5529
5530 nested_vmx_succeed(vcpu);
5531 skip_emulated_instruction(vcpu);
5532 return 1;
5533}
5534
6a4d7550
NHE
5535/* Emulate the VMPTRST instruction */
5536static int handle_vmptrst(struct kvm_vcpu *vcpu)
5537{
5538 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5539 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5540 gva_t vmcs_gva;
5541 struct x86_exception e;
5542
5543 if (!nested_vmx_check_permission(vcpu))
5544 return 1;
5545
5546 if (get_vmx_mem_address(vcpu, exit_qualification,
5547 vmx_instruction_info, &vmcs_gva))
5548 return 1;
5549 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5550 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5551 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5552 sizeof(u64), &e)) {
5553 kvm_inject_page_fault(vcpu, &e);
5554 return 1;
5555 }
5556 nested_vmx_succeed(vcpu);
5557 skip_emulated_instruction(vcpu);
5558 return 1;
5559}
5560
6aa8b732
AK
5561/*
5562 * The exit handlers return 1 if the exit was handled fully and guest execution
5563 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5564 * to be done to userspace and return 0.
5565 */
851ba692 5566static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
5567 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5568 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 5569 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 5570 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 5571 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
5572 [EXIT_REASON_CR_ACCESS] = handle_cr,
5573 [EXIT_REASON_DR_ACCESS] = handle_dr,
5574 [EXIT_REASON_CPUID] = handle_cpuid,
5575 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5576 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5577 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5578 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 5579 [EXIT_REASON_INVD] = handle_invd,
a7052897 5580 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 5581 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 5582 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 5583 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 5584 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 5585 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 5586 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 5587 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 5588 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 5589 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
5590 [EXIT_REASON_VMOFF] = handle_vmoff,
5591 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
5592 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5593 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
e5edaa01 5594 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 5595 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 5596 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 5597 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
5598 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5599 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 5600 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
59708670
SY
5601 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5602 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6aa8b732
AK
5603};
5604
5605static const int kvm_vmx_max_exit_handlers =
50a3485c 5606 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 5607
644d711a
NHE
5608/*
5609 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5610 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5611 * disinterest in the current event (read or write a specific MSR) by using an
5612 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5613 */
5614static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5615 struct vmcs12 *vmcs12, u32 exit_reason)
5616{
5617 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5618 gpa_t bitmap;
5619
5620 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5621 return 1;
5622
5623 /*
5624 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5625 * for the four combinations of read/write and low/high MSR numbers.
5626 * First we need to figure out which of the four to use:
5627 */
5628 bitmap = vmcs12->msr_bitmap;
5629 if (exit_reason == EXIT_REASON_MSR_WRITE)
5630 bitmap += 2048;
5631 if (msr_index >= 0xc0000000) {
5632 msr_index -= 0xc0000000;
5633 bitmap += 1024;
5634 }
5635
5636 /* Then read the msr_index'th bit from this bitmap: */
5637 if (msr_index < 1024*8) {
5638 unsigned char b;
5639 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5640 return 1 & (b >> (msr_index & 7));
5641 } else
5642 return 1; /* let L1 handle the wrong parameter */
5643}
5644
5645/*
5646 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5647 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5648 * intercept (via guest_host_mask etc.) the current event.
5649 */
5650static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5651 struct vmcs12 *vmcs12)
5652{
5653 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5654 int cr = exit_qualification & 15;
5655 int reg = (exit_qualification >> 8) & 15;
5656 unsigned long val = kvm_register_read(vcpu, reg);
5657
5658 switch ((exit_qualification >> 4) & 3) {
5659 case 0: /* mov to cr */
5660 switch (cr) {
5661 case 0:
5662 if (vmcs12->cr0_guest_host_mask &
5663 (val ^ vmcs12->cr0_read_shadow))
5664 return 1;
5665 break;
5666 case 3:
5667 if ((vmcs12->cr3_target_count >= 1 &&
5668 vmcs12->cr3_target_value0 == val) ||
5669 (vmcs12->cr3_target_count >= 2 &&
5670 vmcs12->cr3_target_value1 == val) ||
5671 (vmcs12->cr3_target_count >= 3 &&
5672 vmcs12->cr3_target_value2 == val) ||
5673 (vmcs12->cr3_target_count >= 4 &&
5674 vmcs12->cr3_target_value3 == val))
5675 return 0;
5676 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5677 return 1;
5678 break;
5679 case 4:
5680 if (vmcs12->cr4_guest_host_mask &
5681 (vmcs12->cr4_read_shadow ^ val))
5682 return 1;
5683 break;
5684 case 8:
5685 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5686 return 1;
5687 break;
5688 }
5689 break;
5690 case 2: /* clts */
5691 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5692 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5693 return 1;
5694 break;
5695 case 1: /* mov from cr */
5696 switch (cr) {
5697 case 3:
5698 if (vmcs12->cpu_based_vm_exec_control &
5699 CPU_BASED_CR3_STORE_EXITING)
5700 return 1;
5701 break;
5702 case 8:
5703 if (vmcs12->cpu_based_vm_exec_control &
5704 CPU_BASED_CR8_STORE_EXITING)
5705 return 1;
5706 break;
5707 }
5708 break;
5709 case 3: /* lmsw */
5710 /*
5711 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5712 * cr0. Other attempted changes are ignored, with no exit.
5713 */
5714 if (vmcs12->cr0_guest_host_mask & 0xe &
5715 (val ^ vmcs12->cr0_read_shadow))
5716 return 1;
5717 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5718 !(vmcs12->cr0_read_shadow & 0x1) &&
5719 (val & 0x1))
5720 return 1;
5721 break;
5722 }
5723 return 0;
5724}
5725
5726/*
5727 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5728 * should handle it ourselves in L0 (and then continue L2). Only call this
5729 * when in is_guest_mode (L2).
5730 */
5731static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5732{
5733 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5734 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5735 struct vcpu_vmx *vmx = to_vmx(vcpu);
5736 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5737
5738 if (vmx->nested.nested_run_pending)
5739 return 0;
5740
5741 if (unlikely(vmx->fail)) {
bd80158a
JK
5742 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5743 vmcs_read32(VM_INSTRUCTION_ERROR));
644d711a
NHE
5744 return 1;
5745 }
5746
5747 switch (exit_reason) {
5748 case EXIT_REASON_EXCEPTION_NMI:
5749 if (!is_exception(intr_info))
5750 return 0;
5751 else if (is_page_fault(intr_info))
5752 return enable_ept;
5753 return vmcs12->exception_bitmap &
5754 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5755 case EXIT_REASON_EXTERNAL_INTERRUPT:
5756 return 0;
5757 case EXIT_REASON_TRIPLE_FAULT:
5758 return 1;
5759 case EXIT_REASON_PENDING_INTERRUPT:
5760 case EXIT_REASON_NMI_WINDOW:
5761 /*
5762 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5763 * (aka Interrupt Window Exiting) only when L1 turned it on,
5764 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5765 * Same for NMI Window Exiting.
5766 */
5767 return 1;
5768 case EXIT_REASON_TASK_SWITCH:
5769 return 1;
5770 case EXIT_REASON_CPUID:
5771 return 1;
5772 case EXIT_REASON_HLT:
5773 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5774 case EXIT_REASON_INVD:
5775 return 1;
5776 case EXIT_REASON_INVLPG:
5777 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5778 case EXIT_REASON_RDPMC:
5779 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5780 case EXIT_REASON_RDTSC:
5781 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5782 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5783 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5784 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5785 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5786 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5787 /*
5788 * VMX instructions trap unconditionally. This allows L1 to
5789 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5790 */
5791 return 1;
5792 case EXIT_REASON_CR_ACCESS:
5793 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5794 case EXIT_REASON_DR_ACCESS:
5795 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5796 case EXIT_REASON_IO_INSTRUCTION:
5797 /* TODO: support IO bitmaps */
5798 return 1;
5799 case EXIT_REASON_MSR_READ:
5800 case EXIT_REASON_MSR_WRITE:
5801 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5802 case EXIT_REASON_INVALID_STATE:
5803 return 1;
5804 case EXIT_REASON_MWAIT_INSTRUCTION:
5805 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5806 case EXIT_REASON_MONITOR_INSTRUCTION:
5807 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5808 case EXIT_REASON_PAUSE_INSTRUCTION:
5809 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5810 nested_cpu_has2(vmcs12,
5811 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5812 case EXIT_REASON_MCE_DURING_VMENTRY:
5813 return 0;
5814 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5815 return 1;
5816 case EXIT_REASON_APIC_ACCESS:
5817 return nested_cpu_has2(vmcs12,
5818 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5819 case EXIT_REASON_EPT_VIOLATION:
5820 case EXIT_REASON_EPT_MISCONFIG:
5821 return 0;
5822 case EXIT_REASON_WBINVD:
5823 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5824 case EXIT_REASON_XSETBV:
5825 return 1;
5826 default:
5827 return 1;
5828 }
5829}
5830
586f9607
AK
5831static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5832{
5833 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5834 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5835}
5836
6aa8b732
AK
5837/*
5838 * The guest has exited. See if we can fix it or if we need userspace
5839 * assistance.
5840 */
851ba692 5841static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 5842{
29bd8a78 5843 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 5844 u32 exit_reason = vmx->exit_reason;
1155f76a 5845 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 5846
80ced186
MG
5847 /* If guest state is invalid, start emulating */
5848 if (vmx->emulation_required && emulate_invalid_guest_state)
5849 return handle_invalid_guest_state(vcpu);
1d5a4d9b 5850
b6f1250e
NHE
5851 /*
5852 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5853 * we did not inject a still-pending event to L1 now because of
5854 * nested_run_pending, we need to re-enable this bit.
5855 */
5856 if (vmx->nested.nested_run_pending)
5857 kvm_make_request(KVM_REQ_EVENT, vcpu);
5858
509c75ea
NHE
5859 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5860 exit_reason == EXIT_REASON_VMRESUME))
644d711a
NHE
5861 vmx->nested.nested_run_pending = 1;
5862 else
5863 vmx->nested.nested_run_pending = 0;
5864
5865 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5866 nested_vmx_vmexit(vcpu);
5867 return 1;
5868 }
5869
5120702e
MG
5870 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5871 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5872 vcpu->run->fail_entry.hardware_entry_failure_reason
5873 = exit_reason;
5874 return 0;
5875 }
5876
29bd8a78 5877 if (unlikely(vmx->fail)) {
851ba692
AK
5878 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5879 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
5880 = vmcs_read32(VM_INSTRUCTION_ERROR);
5881 return 0;
5882 }
6aa8b732 5883
d77c26fc 5884 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 5885 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac
JK
5886 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5887 exit_reason != EXIT_REASON_TASK_SWITCH))
5888 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5889 "(0x%x) and exit reason is 0x%x\n",
5890 __func__, vectoring_info, exit_reason);
3b86cd99 5891
644d711a
NHE
5892 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5893 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5894 get_vmcs12(vcpu), vcpu)))) {
c4282df9 5895 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 5896 vmx->soft_vnmi_blocked = 0;
3b86cd99 5897 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 5898 vcpu->arch.nmi_pending) {
3b86cd99
JK
5899 /*
5900 * This CPU don't support us in finding the end of an
5901 * NMI-blocked window if the guest runs with IRQs
5902 * disabled. So we pull the trigger after 1 s of
5903 * futile waiting, but inform the user about this.
5904 */
5905 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5906 "state on VCPU %d after 1 s timeout\n",
5907 __func__, vcpu->vcpu_id);
5908 vmx->soft_vnmi_blocked = 0;
3b86cd99 5909 }
3b86cd99
JK
5910 }
5911
6aa8b732
AK
5912 if (exit_reason < kvm_vmx_max_exit_handlers
5913 && kvm_vmx_exit_handlers[exit_reason])
851ba692 5914 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 5915 else {
851ba692
AK
5916 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5917 vcpu->run->hw.hardware_exit_reason = exit_reason;
6aa8b732
AK
5918 }
5919 return 0;
5920}
5921
95ba8273 5922static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 5923{
95ba8273 5924 if (irr == -1 || tpr < irr) {
6e5d865c
YS
5925 vmcs_write32(TPR_THRESHOLD, 0);
5926 return;
5927 }
5928
95ba8273 5929 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
5930}
5931
51aa01d1 5932static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 5933{
00eba012
AK
5934 u32 exit_intr_info;
5935
5936 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5937 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5938 return;
5939
c5ca8e57 5940 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 5941 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
5942
5943 /* Handle machine checks before interrupts are enabled */
00eba012 5944 if (is_machine_check(exit_intr_info))
a0861c02
AK
5945 kvm_machine_check();
5946
20f65983 5947 /* We need to handle NMIs before interrupts are enabled */
00eba012 5948 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
5949 (exit_intr_info & INTR_INFO_VALID_MASK)) {
5950 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 5951 asm("int $2");
ff9d07a0
ZY
5952 kvm_after_handle_nmi(&vmx->vcpu);
5953 }
51aa01d1 5954}
20f65983 5955
51aa01d1
AK
5956static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5957{
c5ca8e57 5958 u32 exit_intr_info;
51aa01d1
AK
5959 bool unblock_nmi;
5960 u8 vector;
5961 bool idtv_info_valid;
5962
5963 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 5964
cf393f75 5965 if (cpu_has_virtual_nmis()) {
9d58b931
AK
5966 if (vmx->nmi_known_unmasked)
5967 return;
c5ca8e57
AK
5968 /*
5969 * Can't use vmx->exit_intr_info since we're not sure what
5970 * the exit reason is.
5971 */
5972 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
5973 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5974 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5975 /*
7b4a25cb 5976 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
5977 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5978 * a guest IRET fault.
7b4a25cb
GN
5979 * SDM 3: 23.2.2 (September 2008)
5980 * Bit 12 is undefined in any of the following cases:
5981 * If the VM exit sets the valid bit in the IDT-vectoring
5982 * information field.
5983 * If the VM exit is due to a double fault.
cf393f75 5984 */
7b4a25cb
GN
5985 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5986 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
5987 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5988 GUEST_INTR_STATE_NMI);
9d58b931
AK
5989 else
5990 vmx->nmi_known_unmasked =
5991 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5992 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
5993 } else if (unlikely(vmx->soft_vnmi_blocked))
5994 vmx->vnmi_blocked_time +=
5995 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
5996}
5997
83422e17
AK
5998static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
5999 u32 idt_vectoring_info,
6000 int instr_len_field,
6001 int error_code_field)
51aa01d1 6002{
51aa01d1
AK
6003 u8 vector;
6004 int type;
6005 bool idtv_info_valid;
6006
6007 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 6008
37b96e98
GN
6009 vmx->vcpu.arch.nmi_injected = false;
6010 kvm_clear_exception_queue(&vmx->vcpu);
6011 kvm_clear_interrupt_queue(&vmx->vcpu);
6012
6013 if (!idtv_info_valid)
6014 return;
6015
3842d135
AK
6016 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6017
668f612f
AK
6018 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6019 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 6020
64a7ec06 6021 switch (type) {
37b96e98
GN
6022 case INTR_TYPE_NMI_INTR:
6023 vmx->vcpu.arch.nmi_injected = true;
668f612f 6024 /*
7b4a25cb 6025 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
6026 * Clear bit "block by NMI" before VM entry if a NMI
6027 * delivery faulted.
668f612f 6028 */
654f06fc 6029 vmx_set_nmi_mask(&vmx->vcpu, false);
37b96e98 6030 break;
37b96e98 6031 case INTR_TYPE_SOFT_EXCEPTION:
66fd3f7f 6032 vmx->vcpu.arch.event_exit_inst_len =
83422e17 6033 vmcs_read32(instr_len_field);
66fd3f7f
GN
6034 /* fall through */
6035 case INTR_TYPE_HARD_EXCEPTION:
35920a35 6036 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 6037 u32 err = vmcs_read32(error_code_field);
37b96e98 6038 kvm_queue_exception_e(&vmx->vcpu, vector, err);
35920a35
AK
6039 } else
6040 kvm_queue_exception(&vmx->vcpu, vector);
37b96e98 6041 break;
66fd3f7f
GN
6042 case INTR_TYPE_SOFT_INTR:
6043 vmx->vcpu.arch.event_exit_inst_len =
83422e17 6044 vmcs_read32(instr_len_field);
66fd3f7f 6045 /* fall through */
37b96e98 6046 case INTR_TYPE_EXT_INTR:
66fd3f7f
GN
6047 kvm_queue_interrupt(&vmx->vcpu, vector,
6048 type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
6049 break;
6050 default:
6051 break;
f7d9238f 6052 }
cf393f75
AK
6053}
6054
83422e17
AK
6055static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6056{
66c78ae4
NHE
6057 if (is_guest_mode(&vmx->vcpu))
6058 return;
83422e17
AK
6059 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6060 VM_EXIT_INSTRUCTION_LEN,
6061 IDT_VECTORING_ERROR_CODE);
6062}
6063
b463a6f7
AK
6064static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6065{
66c78ae4
NHE
6066 if (is_guest_mode(vcpu))
6067 return;
b463a6f7
AK
6068 __vmx_complete_interrupts(to_vmx(vcpu),
6069 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6070 VM_ENTRY_INSTRUCTION_LEN,
6071 VM_ENTRY_EXCEPTION_ERROR_CODE);
6072
6073 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6074}
6075
d7cd9796
GN
6076static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6077{
6078 int i, nr_msrs;
6079 struct perf_guest_switch_msr *msrs;
6080
6081 msrs = perf_guest_get_msrs(&nr_msrs);
6082
6083 if (!msrs)
6084 return;
6085
6086 for (i = 0; i < nr_msrs; i++)
6087 if (msrs[i].host == msrs[i].guest)
6088 clear_atomic_switch_msr(vmx, msrs[i].msr);
6089 else
6090 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6091 msrs[i].host);
6092}
6093
c801949d
AK
6094#ifdef CONFIG_X86_64
6095#define R "r"
6096#define Q "q"
6097#else
6098#define R "e"
6099#define Q "l"
6100#endif
6101
a3b5ba49 6102static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 6103{
a2fa3e9f 6104 struct vcpu_vmx *vmx = to_vmx(vcpu);
104f226b 6105
66c78ae4
NHE
6106 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6107 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6108 if (vmcs12->idt_vectoring_info_field &
6109 VECTORING_INFO_VALID_MASK) {
6110 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6111 vmcs12->idt_vectoring_info_field);
6112 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6113 vmcs12->vm_exit_instruction_len);
6114 if (vmcs12->idt_vectoring_info_field &
6115 VECTORING_INFO_DELIVER_CODE_MASK)
6116 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6117 vmcs12->idt_vectoring_error_code);
6118 }
6119 }
6120
104f226b
AK
6121 /* Record the guest's net vcpu time for enforced NMI injections. */
6122 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6123 vmx->entry_time = ktime_get();
6124
6125 /* Don't enter VMX if guest state is invalid, let the exit handler
6126 start emulation until we arrive back to a valid state */
6127 if (vmx->emulation_required && emulate_invalid_guest_state)
6128 return;
6129
6130 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6131 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6132 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6133 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6134
6135 /* When single-stepping over STI and MOV SS, we must clear the
6136 * corresponding interruptibility bits in the guest state. Otherwise
6137 * vmentry fails as it then expects bit 14 (BS) in pending debug
6138 * exceptions being set, but that's not correct for the guest debugging
6139 * case. */
6140 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6141 vmx_set_interrupt_shadow(vcpu, 0);
6142
d7cd9796
GN
6143 atomic_switch_perf_msrs(vmx);
6144
d462b819 6145 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 6146 asm(
6aa8b732 6147 /* Store host registers */
c801949d 6148 "push %%"R"dx; push %%"R"bp;"
40712fae 6149 "push %%"R"cx \n\t" /* placeholder for guest rcx */
c801949d 6150 "push %%"R"cx \n\t"
313dbd49
AK
6151 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6152 "je 1f \n\t"
6153 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
4ecac3fd 6154 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 6155 "1: \n\t"
d3edefc0
AK
6156 /* Reload cr2 if changed */
6157 "mov %c[cr2](%0), %%"R"ax \n\t"
6158 "mov %%cr2, %%"R"dx \n\t"
6159 "cmp %%"R"ax, %%"R"dx \n\t"
6160 "je 2f \n\t"
6161 "mov %%"R"ax, %%cr2 \n\t"
6162 "2: \n\t"
6aa8b732 6163 /* Check if vmlaunch of vmresume is needed */
e08aa78a 6164 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 6165 /* Load guest registers. Don't clobber flags. */
c801949d
AK
6166 "mov %c[rax](%0), %%"R"ax \n\t"
6167 "mov %c[rbx](%0), %%"R"bx \n\t"
6168 "mov %c[rdx](%0), %%"R"dx \n\t"
6169 "mov %c[rsi](%0), %%"R"si \n\t"
6170 "mov %c[rdi](%0), %%"R"di \n\t"
6171 "mov %c[rbp](%0), %%"R"bp \n\t"
05b3e0c2 6172#ifdef CONFIG_X86_64
e08aa78a
AK
6173 "mov %c[r8](%0), %%r8 \n\t"
6174 "mov %c[r9](%0), %%r9 \n\t"
6175 "mov %c[r10](%0), %%r10 \n\t"
6176 "mov %c[r11](%0), %%r11 \n\t"
6177 "mov %c[r12](%0), %%r12 \n\t"
6178 "mov %c[r13](%0), %%r13 \n\t"
6179 "mov %c[r14](%0), %%r14 \n\t"
6180 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 6181#endif
c801949d
AK
6182 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6183
6aa8b732 6184 /* Enter guest mode */
cd2276a7 6185 "jne .Llaunched \n\t"
4ecac3fd 6186 __ex(ASM_VMX_VMLAUNCH) "\n\t"
cd2276a7 6187 "jmp .Lkvm_vmx_return \n\t"
4ecac3fd 6188 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
cd2276a7 6189 ".Lkvm_vmx_return: "
6aa8b732 6190 /* Save guest registers, load host registers, keep flags */
40712fae
AK
6191 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6192 "pop %0 \n\t"
c801949d
AK
6193 "mov %%"R"ax, %c[rax](%0) \n\t"
6194 "mov %%"R"bx, %c[rbx](%0) \n\t"
1c696d0e 6195 "pop"Q" %c[rcx](%0) \n\t"
c801949d
AK
6196 "mov %%"R"dx, %c[rdx](%0) \n\t"
6197 "mov %%"R"si, %c[rsi](%0) \n\t"
6198 "mov %%"R"di, %c[rdi](%0) \n\t"
6199 "mov %%"R"bp, %c[rbp](%0) \n\t"
05b3e0c2 6200#ifdef CONFIG_X86_64
e08aa78a
AK
6201 "mov %%r8, %c[r8](%0) \n\t"
6202 "mov %%r9, %c[r9](%0) \n\t"
6203 "mov %%r10, %c[r10](%0) \n\t"
6204 "mov %%r11, %c[r11](%0) \n\t"
6205 "mov %%r12, %c[r12](%0) \n\t"
6206 "mov %%r13, %c[r13](%0) \n\t"
6207 "mov %%r14, %c[r14](%0) \n\t"
6208 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 6209#endif
c801949d
AK
6210 "mov %%cr2, %%"R"ax \n\t"
6211 "mov %%"R"ax, %c[cr2](%0) \n\t"
6212
1c696d0e 6213 "pop %%"R"bp; pop %%"R"dx \n\t"
e08aa78a
AK
6214 "setbe %c[fail](%0) \n\t"
6215 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 6216 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 6217 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 6218 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
6219 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6220 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6221 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6222 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6223 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6224 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6225 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 6226#ifdef CONFIG_X86_64
ad312c7c
ZX
6227 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6228 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6229 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6230 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6231 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6232 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6233 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6234 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 6235#endif
40712fae
AK
6236 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6237 [wordsize]"i"(sizeof(ulong))
c2036300 6238 : "cc", "memory"
07d6f555 6239 , R"ax", R"bx", R"di", R"si"
c2036300 6240#ifdef CONFIG_X86_64
c2036300
LV
6241 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6242#endif
6243 );
6aa8b732 6244
6de4f3ad 6245 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 6246 | (1 << VCPU_EXREG_RFLAGS)
69c73028 6247 | (1 << VCPU_EXREG_CPL)
aff48baa 6248 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 6249 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 6250 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
6251 vcpu->arch.regs_dirty = 0;
6252
1155f76a
AK
6253 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6254
66c78ae4
NHE
6255 if (is_guest_mode(vcpu)) {
6256 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6257 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6258 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6259 vmcs12->idt_vectoring_error_code =
6260 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6261 vmcs12->vm_exit_instruction_len =
6262 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6263 }
6264 }
6265
d77c26fc 6266 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
d462b819 6267 vmx->loaded_vmcs->launched = 1;
1b6269db 6268
51aa01d1 6269 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 6270 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1
AK
6271
6272 vmx_complete_atomic_exit(vmx);
6273 vmx_recover_nmi_blocking(vmx);
cf393f75 6274 vmx_complete_interrupts(vmx);
6aa8b732
AK
6275}
6276
c801949d
AK
6277#undef R
6278#undef Q
6279
6aa8b732
AK
6280static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6281{
fb3f0f51
RR
6282 struct vcpu_vmx *vmx = to_vmx(vcpu);
6283
cdbecfc3 6284 free_vpid(vmx);
ec378aee 6285 free_nested(vmx);
d462b819 6286 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
6287 kfree(vmx->guest_msrs);
6288 kvm_vcpu_uninit(vcpu);
a4770347 6289 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
6290}
6291
fb3f0f51 6292static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 6293{
fb3f0f51 6294 int err;
c16f862d 6295 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 6296 int cpu;
6aa8b732 6297
a2fa3e9f 6298 if (!vmx)
fb3f0f51
RR
6299 return ERR_PTR(-ENOMEM);
6300
2384d2b3
SY
6301 allocate_vpid(vmx);
6302
fb3f0f51
RR
6303 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6304 if (err)
6305 goto free_vcpu;
965b58a5 6306
a2fa3e9f 6307 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
be6d05cf 6308 err = -ENOMEM;
fb3f0f51 6309 if (!vmx->guest_msrs) {
fb3f0f51
RR
6310 goto uninit_vcpu;
6311 }
965b58a5 6312
d462b819
NHE
6313 vmx->loaded_vmcs = &vmx->vmcs01;
6314 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6315 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 6316 goto free_msrs;
d462b819
NHE
6317 if (!vmm_exclusive)
6318 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6319 loaded_vmcs_init(vmx->loaded_vmcs);
6320 if (!vmm_exclusive)
6321 kvm_cpu_vmxoff();
a2fa3e9f 6322
15ad7146
AK
6323 cpu = get_cpu();
6324 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 6325 vmx->vcpu.cpu = cpu;
8b9cf98c 6326 err = vmx_vcpu_setup(vmx);
fb3f0f51 6327 vmx_vcpu_put(&vmx->vcpu);
15ad7146 6328 put_cpu();
fb3f0f51
RR
6329 if (err)
6330 goto free_vmcs;
5e4a0b3c 6331 if (vm_need_virtualize_apic_accesses(kvm))
be6d05cf
JK
6332 err = alloc_apic_access_page(kvm);
6333 if (err)
5e4a0b3c 6334 goto free_vmcs;
fb3f0f51 6335
b927a3ce
SY
6336 if (enable_ept) {
6337 if (!kvm->arch.ept_identity_map_addr)
6338 kvm->arch.ept_identity_map_addr =
6339 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
93ea5388 6340 err = -ENOMEM;
b7ebfb05
SY
6341 if (alloc_identity_pagetable(kvm) != 0)
6342 goto free_vmcs;
93ea5388
GN
6343 if (!init_rmode_identity_map(kvm))
6344 goto free_vmcs;
b927a3ce 6345 }
b7ebfb05 6346
a9d30f33
NHE
6347 vmx->nested.current_vmptr = -1ull;
6348 vmx->nested.current_vmcs12 = NULL;
6349
fb3f0f51
RR
6350 return &vmx->vcpu;
6351
6352free_vmcs:
d462b819 6353 free_vmcs(vmx->loaded_vmcs->vmcs);
fb3f0f51 6354free_msrs:
fb3f0f51
RR
6355 kfree(vmx->guest_msrs);
6356uninit_vcpu:
6357 kvm_vcpu_uninit(&vmx->vcpu);
6358free_vcpu:
cdbecfc3 6359 free_vpid(vmx);
a4770347 6360 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 6361 return ERR_PTR(err);
6aa8b732
AK
6362}
6363
002c7f7c
YS
6364static void __init vmx_check_processor_compat(void *rtn)
6365{
6366 struct vmcs_config vmcs_conf;
6367
6368 *(int *)rtn = 0;
6369 if (setup_vmcs_config(&vmcs_conf) < 0)
6370 *(int *)rtn = -EIO;
6371 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6372 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6373 smp_processor_id());
6374 *(int *)rtn = -EIO;
6375 }
6376}
6377
67253af5
SY
6378static int get_ept_level(void)
6379{
6380 return VMX_EPT_DEFAULT_GAW + 1;
6381}
6382
4b12f0de 6383static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 6384{
4b12f0de
SY
6385 u64 ret;
6386
522c68c4
SY
6387 /* For VT-d and EPT combination
6388 * 1. MMIO: always map as UC
6389 * 2. EPT with VT-d:
6390 * a. VT-d without snooping control feature: can't guarantee the
6391 * result, try to trust guest.
6392 * b. VT-d with snooping control feature: snooping control feature of
6393 * VT-d engine can guarantee the cache correctness. Just set it
6394 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 6395 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
6396 * consistent with host MTRR
6397 */
4b12f0de
SY
6398 if (is_mmio)
6399 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
522c68c4
SY
6400 else if (vcpu->kvm->arch.iommu_domain &&
6401 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6402 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6403 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 6404 else
522c68c4 6405 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 6406 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
6407
6408 return ret;
64d4d521
SY
6409}
6410
17cc3935 6411static int vmx_get_lpage_level(void)
344f414f 6412{
878403b7
SY
6413 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6414 return PT_DIRECTORY_LEVEL;
6415 else
6416 /* For shadow and EPT supported 1GB page */
6417 return PT_PDPE_LEVEL;
344f414f
JR
6418}
6419
0e851880
SY
6420static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6421{
4e47c7a6
SY
6422 struct kvm_cpuid_entry2 *best;
6423 struct vcpu_vmx *vmx = to_vmx(vcpu);
6424 u32 exec_control;
6425
6426 vmx->rdtscp_enabled = false;
6427 if (vmx_rdtscp_supported()) {
6428 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6429 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6430 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6431 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6432 vmx->rdtscp_enabled = true;
6433 else {
6434 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6435 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6436 exec_control);
6437 }
6438 }
6439 }
0e851880
SY
6440}
6441
d4330ef2
JR
6442static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6443{
7b8050f5
NHE
6444 if (func == 1 && nested)
6445 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
6446}
6447
fe3ef05c
NHE
6448/*
6449 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6450 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6451 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6452 * guest in a way that will both be appropriate to L1's requests, and our
6453 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6454 * function also has additional necessary side-effects, like setting various
6455 * vcpu->arch fields.
6456 */
6457static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6458{
6459 struct vcpu_vmx *vmx = to_vmx(vcpu);
6460 u32 exec_control;
6461
6462 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6463 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6464 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6465 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6466 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6467 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6468 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6469 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6470 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6471 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6472 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6473 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6474 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6475 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6476 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6477 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6478 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6479 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6480 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6481 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6482 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6483 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6484 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6485 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6486 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6487 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6488 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6489 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6490 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6491 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6492 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6493 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6494 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6495 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6496 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6497 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6498
6499 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6500 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6501 vmcs12->vm_entry_intr_info_field);
6502 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6503 vmcs12->vm_entry_exception_error_code);
6504 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6505 vmcs12->vm_entry_instruction_len);
6506 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6507 vmcs12->guest_interruptibility_info);
6508 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6509 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6510 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6511 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6512 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6513 vmcs12->guest_pending_dbg_exceptions);
6514 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6515 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6516
6517 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6518
6519 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6520 (vmcs_config.pin_based_exec_ctrl |
6521 vmcs12->pin_based_vm_exec_control));
6522
6523 /*
6524 * Whether page-faults are trapped is determined by a combination of
6525 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6526 * If enable_ept, L0 doesn't care about page faults and we should
6527 * set all of these to L1's desires. However, if !enable_ept, L0 does
6528 * care about (at least some) page faults, and because it is not easy
6529 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6530 * to exit on each and every L2 page fault. This is done by setting
6531 * MASK=MATCH=0 and (see below) EB.PF=1.
6532 * Note that below we don't need special code to set EB.PF beyond the
6533 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6534 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6535 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6536 *
6537 * A problem with this approach (when !enable_ept) is that L1 may be
6538 * injected with more page faults than it asked for. This could have
6539 * caused problems, but in practice existing hypervisors don't care.
6540 * To fix this, we will need to emulate the PFEC checking (on the L1
6541 * page tables), using walk_addr(), when injecting PFs to L1.
6542 */
6543 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6544 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6545 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6546 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6547
6548 if (cpu_has_secondary_exec_ctrls()) {
6549 u32 exec_control = vmx_secondary_exec_control(vmx);
6550 if (!vmx->rdtscp_enabled)
6551 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6552 /* Take the following fields only from vmcs12 */
6553 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6554 if (nested_cpu_has(vmcs12,
6555 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6556 exec_control |= vmcs12->secondary_vm_exec_control;
6557
6558 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6559 /*
6560 * Translate L1 physical address to host physical
6561 * address for vmcs02. Keep the page pinned, so this
6562 * physical address remains valid. We keep a reference
6563 * to it so we can release it later.
6564 */
6565 if (vmx->nested.apic_access_page) /* shouldn't happen */
6566 nested_release_page(vmx->nested.apic_access_page);
6567 vmx->nested.apic_access_page =
6568 nested_get_page(vcpu, vmcs12->apic_access_addr);
6569 /*
6570 * If translation failed, no matter: This feature asks
6571 * to exit when accessing the given address, and if it
6572 * can never be accessed, this feature won't do
6573 * anything anyway.
6574 */
6575 if (!vmx->nested.apic_access_page)
6576 exec_control &=
6577 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6578 else
6579 vmcs_write64(APIC_ACCESS_ADDR,
6580 page_to_phys(vmx->nested.apic_access_page));
6581 }
6582
6583 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6584 }
6585
6586
6587 /*
6588 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6589 * Some constant fields are set here by vmx_set_constant_host_state().
6590 * Other fields are different per CPU, and will be set later when
6591 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6592 */
6593 vmx_set_constant_host_state();
6594
6595 /*
6596 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6597 * entry, but only if the current (host) sp changed from the value
6598 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6599 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6600 * here we just force the write to happen on entry.
6601 */
6602 vmx->host_rsp = 0;
6603
6604 exec_control = vmx_exec_control(vmx); /* L0's desires */
6605 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6606 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6607 exec_control &= ~CPU_BASED_TPR_SHADOW;
6608 exec_control |= vmcs12->cpu_based_vm_exec_control;
6609 /*
6610 * Merging of IO and MSR bitmaps not currently supported.
6611 * Rather, exit every time.
6612 */
6613 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6614 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6615 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6616
6617 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6618
6619 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6620 * bitwise-or of what L1 wants to trap for L2, and what we want to
6621 * trap. Note that CR0.TS also needs updating - we do this later.
6622 */
6623 update_exception_bitmap(vcpu);
6624 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6625 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6626
6627 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6628 vmcs_write32(VM_EXIT_CONTROLS,
6629 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6630 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6631 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6632
6633 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6634 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6635 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6636 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6637
6638
6639 set_cr4_guest_host_mask(vmx);
6640
27fc51b2
NHE
6641 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6642 vmcs_write64(TSC_OFFSET,
6643 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6644 else
6645 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
6646
6647 if (enable_vpid) {
6648 /*
6649 * Trivially support vpid by letting L2s share their parent
6650 * L1's vpid. TODO: move to a more elaborate solution, giving
6651 * each L2 its own vpid and exposing the vpid feature to L1.
6652 */
6653 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6654 vmx_flush_tlb(vcpu);
6655 }
6656
6657 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6658 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6659 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6660 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6661 else
6662 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6663 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6664 vmx_set_efer(vcpu, vcpu->arch.efer);
6665
6666 /*
6667 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6668 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6669 * The CR0_READ_SHADOW is what L2 should have expected to read given
6670 * the specifications by L1; It's not enough to take
6671 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6672 * have more bits than L1 expected.
6673 */
6674 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6675 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6676
6677 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6678 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6679
6680 /* shadow page tables on either EPT or shadow page tables */
6681 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6682 kvm_mmu_reset_context(vcpu);
6683
6684 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6685 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6686}
6687
cd232ad0
NHE
6688/*
6689 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6690 * for running an L2 nested guest.
6691 */
6692static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6693{
6694 struct vmcs12 *vmcs12;
6695 struct vcpu_vmx *vmx = to_vmx(vcpu);
6696 int cpu;
6697 struct loaded_vmcs *vmcs02;
6698
6699 if (!nested_vmx_check_permission(vcpu) ||
6700 !nested_vmx_check_vmcs12(vcpu))
6701 return 1;
6702
6703 skip_emulated_instruction(vcpu);
6704 vmcs12 = get_vmcs12(vcpu);
6705
7c177938
NHE
6706 /*
6707 * The nested entry process starts with enforcing various prerequisites
6708 * on vmcs12 as required by the Intel SDM, and act appropriately when
6709 * they fail: As the SDM explains, some conditions should cause the
6710 * instruction to fail, while others will cause the instruction to seem
6711 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6712 * To speed up the normal (success) code path, we should avoid checking
6713 * for misconfigurations which will anyway be caught by the processor
6714 * when using the merged vmcs02.
6715 */
6716 if (vmcs12->launch_state == launch) {
6717 nested_vmx_failValid(vcpu,
6718 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6719 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6720 return 1;
6721 }
6722
6723 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6724 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6725 /*TODO: Also verify bits beyond physical address width are 0*/
6726 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6727 return 1;
6728 }
6729
6730 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6731 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6732 /*TODO: Also verify bits beyond physical address width are 0*/
6733 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6734 return 1;
6735 }
6736
6737 if (vmcs12->vm_entry_msr_load_count > 0 ||
6738 vmcs12->vm_exit_msr_load_count > 0 ||
6739 vmcs12->vm_exit_msr_store_count > 0) {
bd80158a
JK
6740 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6741 __func__);
7c177938
NHE
6742 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6743 return 1;
6744 }
6745
6746 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6747 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6748 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6749 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6750 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6751 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6752 !vmx_control_verify(vmcs12->vm_exit_controls,
6753 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6754 !vmx_control_verify(vmcs12->vm_entry_controls,
6755 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6756 {
6757 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6758 return 1;
6759 }
6760
6761 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6762 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6763 nested_vmx_failValid(vcpu,
6764 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6765 return 1;
6766 }
6767
6768 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6769 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6770 nested_vmx_entry_failure(vcpu, vmcs12,
6771 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6772 return 1;
6773 }
6774 if (vmcs12->vmcs_link_pointer != -1ull) {
6775 nested_vmx_entry_failure(vcpu, vmcs12,
6776 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6777 return 1;
6778 }
6779
6780 /*
6781 * We're finally done with prerequisite checking, and can start with
6782 * the nested entry.
6783 */
6784
cd232ad0
NHE
6785 vmcs02 = nested_get_current_vmcs02(vmx);
6786 if (!vmcs02)
6787 return -ENOMEM;
6788
6789 enter_guest_mode(vcpu);
6790
6791 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6792
6793 cpu = get_cpu();
6794 vmx->loaded_vmcs = vmcs02;
6795 vmx_vcpu_put(vcpu);
6796 vmx_vcpu_load(vcpu, cpu);
6797 vcpu->cpu = cpu;
6798 put_cpu();
6799
6800 vmcs12->launch_state = 1;
6801
6802 prepare_vmcs02(vcpu, vmcs12);
6803
6804 /*
6805 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6806 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6807 * returned as far as L1 is concerned. It will only return (and set
6808 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6809 */
6810 return 1;
6811}
6812
4704d0be
NHE
6813/*
6814 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6815 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6816 * This function returns the new value we should put in vmcs12.guest_cr0.
6817 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6818 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6819 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6820 * didn't trap the bit, because if L1 did, so would L0).
6821 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6822 * been modified by L2, and L1 knows it. So just leave the old value of
6823 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6824 * isn't relevant, because if L0 traps this bit it can set it to anything.
6825 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6826 * changed these bits, and therefore they need to be updated, but L0
6827 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6828 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6829 */
6830static inline unsigned long
6831vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6832{
6833 return
6834 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6835 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6836 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6837 vcpu->arch.cr0_guest_owned_bits));
6838}
6839
6840static inline unsigned long
6841vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6842{
6843 return
6844 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6845 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6846 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6847 vcpu->arch.cr4_guest_owned_bits));
6848}
6849
6850/*
6851 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6852 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6853 * and this function updates it to reflect the changes to the guest state while
6854 * L2 was running (and perhaps made some exits which were handled directly by L0
6855 * without going back to L1), and to reflect the exit reason.
6856 * Note that we do not have to copy here all VMCS fields, just those that
6857 * could have changed by the L2 guest or the exit - i.e., the guest-state and
6858 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6859 * which already writes to vmcs12 directly.
6860 */
6861void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6862{
6863 /* update guest state fields: */
6864 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6865 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6866
6867 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6868 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6869 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6870 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6871
6872 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6873 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6874 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6875 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6876 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6877 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6878 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6879 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6880 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6881 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6882 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6883 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6884 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6885 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6886 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6887 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6888 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6889 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6890 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6891 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6892 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6893 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6894 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6895 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6896 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6897 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6898 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6899 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6900 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6901 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6902 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6903 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6904 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6905 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6906 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6907 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6908
6909 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6910 vmcs12->guest_interruptibility_info =
6911 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6912 vmcs12->guest_pending_dbg_exceptions =
6913 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6914
6915 /* TODO: These cannot have changed unless we have MSR bitmaps and
6916 * the relevant bit asks not to trap the change */
6917 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
6918 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
6919 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
6920 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
6921 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
6922 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
6923
6924 /* update exit information fields: */
6925
6926 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
6927 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6928
6929 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6930 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6931 vmcs12->idt_vectoring_info_field =
6932 vmcs_read32(IDT_VECTORING_INFO_FIELD);
6933 vmcs12->idt_vectoring_error_code =
6934 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6935 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6936 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6937
6938 /* clear vm-entry fields which are to be cleared on exit */
6939 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6940 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
6941}
6942
6943/*
6944 * A part of what we need to when the nested L2 guest exits and we want to
6945 * run its L1 parent, is to reset L1's guest state to the host state specified
6946 * in vmcs12.
6947 * This function is to be called not only on normal nested exit, but also on
6948 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6949 * Failures During or After Loading Guest State").
6950 * This function should be called when the active VMCS is L1's (vmcs01).
6951 */
6952void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6953{
6954 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
6955 vcpu->arch.efer = vmcs12->host_ia32_efer;
6956 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
6957 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6958 else
6959 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6960 vmx_set_efer(vcpu, vcpu->arch.efer);
6961
6962 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
6963 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
6964 /*
6965 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6966 * actually changed, because it depends on the current state of
6967 * fpu_active (which may have changed).
6968 * Note that vmx_set_cr0 refers to efer set above.
6969 */
6970 kvm_set_cr0(vcpu, vmcs12->host_cr0);
6971 /*
6972 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6973 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6974 * but we also need to update cr0_guest_host_mask and exception_bitmap.
6975 */
6976 update_exception_bitmap(vcpu);
6977 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
6978 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6979
6980 /*
6981 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6982 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6983 */
6984 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
6985 kvm_set_cr4(vcpu, vmcs12->host_cr4);
6986
6987 /* shadow page tables on either EPT or shadow page tables */
6988 kvm_set_cr3(vcpu, vmcs12->host_cr3);
6989 kvm_mmu_reset_context(vcpu);
6990
6991 if (enable_vpid) {
6992 /*
6993 * Trivially support vpid by letting L2s share their parent
6994 * L1's vpid. TODO: move to a more elaborate solution, giving
6995 * each L2 its own vpid and exposing the vpid feature to L1.
6996 */
6997 vmx_flush_tlb(vcpu);
6998 }
6999
7000
7001 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7002 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7003 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7004 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7005 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7006 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7007 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7008 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7009 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7010 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7011 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7012 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7013 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7014 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7015 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7016
7017 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7018 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7019 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7020 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7021 vmcs12->host_ia32_perf_global_ctrl);
7022}
7023
7024/*
7025 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7026 * and modify vmcs12 to make it see what it would expect to see there if
7027 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7028 */
7029static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7030{
7031 struct vcpu_vmx *vmx = to_vmx(vcpu);
7032 int cpu;
7033 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7034
7035 leave_guest_mode(vcpu);
7036 prepare_vmcs12(vcpu, vmcs12);
7037
7038 cpu = get_cpu();
7039 vmx->loaded_vmcs = &vmx->vmcs01;
7040 vmx_vcpu_put(vcpu);
7041 vmx_vcpu_load(vcpu, cpu);
7042 vcpu->cpu = cpu;
7043 put_cpu();
7044
7045 /* if no vmcs02 cache requested, remove the one we used */
7046 if (VMCS02_POOL_SIZE == 0)
7047 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7048
7049 load_vmcs12_host_state(vcpu, vmcs12);
7050
27fc51b2 7051 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
7052 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7053
7054 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7055 vmx->host_rsp = 0;
7056
7057 /* Unpin physical memory we referred to in vmcs02 */
7058 if (vmx->nested.apic_access_page) {
7059 nested_release_page(vmx->nested.apic_access_page);
7060 vmx->nested.apic_access_page = 0;
7061 }
7062
7063 /*
7064 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7065 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7066 * success or failure flag accordingly.
7067 */
7068 if (unlikely(vmx->fail)) {
7069 vmx->fail = 0;
7070 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7071 } else
7072 nested_vmx_succeed(vcpu);
7073}
7074
7c177938
NHE
7075/*
7076 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7077 * 23.7 "VM-entry failures during or after loading guest state" (this also
7078 * lists the acceptable exit-reason and exit-qualification parameters).
7079 * It should only be called before L2 actually succeeded to run, and when
7080 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7081 */
7082static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7083 struct vmcs12 *vmcs12,
7084 u32 reason, unsigned long qualification)
7085{
7086 load_vmcs12_host_state(vcpu, vmcs12);
7087 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7088 vmcs12->exit_qualification = qualification;
7089 nested_vmx_succeed(vcpu);
7090}
7091
8a76d7f2
JR
7092static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7093 struct x86_instruction_info *info,
7094 enum x86_intercept_stage stage)
7095{
7096 return X86EMUL_CONTINUE;
7097}
7098
cbdd1bea 7099static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
7100 .cpu_has_kvm_support = cpu_has_kvm_support,
7101 .disabled_by_bios = vmx_disabled_by_bios,
7102 .hardware_setup = hardware_setup,
7103 .hardware_unsetup = hardware_unsetup,
002c7f7c 7104 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
7105 .hardware_enable = hardware_enable,
7106 .hardware_disable = hardware_disable,
04547156 7107 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
7108
7109 .vcpu_create = vmx_create_vcpu,
7110 .vcpu_free = vmx_free_vcpu,
04d2cc77 7111 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 7112
04d2cc77 7113 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
7114 .vcpu_load = vmx_vcpu_load,
7115 .vcpu_put = vmx_vcpu_put,
7116
7117 .set_guest_debug = set_guest_debug,
7118 .get_msr = vmx_get_msr,
7119 .set_msr = vmx_set_msr,
7120 .get_segment_base = vmx_get_segment_base,
7121 .get_segment = vmx_get_segment,
7122 .set_segment = vmx_set_segment,
2e4d2653 7123 .get_cpl = vmx_get_cpl,
6aa8b732 7124 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 7125 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 7126 .decache_cr3 = vmx_decache_cr3,
25c4c276 7127 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 7128 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
7129 .set_cr3 = vmx_set_cr3,
7130 .set_cr4 = vmx_set_cr4,
6aa8b732 7131 .set_efer = vmx_set_efer,
6aa8b732
AK
7132 .get_idt = vmx_get_idt,
7133 .set_idt = vmx_set_idt,
7134 .get_gdt = vmx_get_gdt,
7135 .set_gdt = vmx_set_gdt,
020df079 7136 .set_dr7 = vmx_set_dr7,
5fdbf976 7137 .cache_reg = vmx_cache_reg,
6aa8b732
AK
7138 .get_rflags = vmx_get_rflags,
7139 .set_rflags = vmx_set_rflags,
ebcbab4c 7140 .fpu_activate = vmx_fpu_activate,
02daab21 7141 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
7142
7143 .tlb_flush = vmx_flush_tlb,
6aa8b732 7144
6aa8b732 7145 .run = vmx_vcpu_run,
6062d012 7146 .handle_exit = vmx_handle_exit,
6aa8b732 7147 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
7148 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7149 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 7150 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 7151 .set_irq = vmx_inject_irq,
95ba8273 7152 .set_nmi = vmx_inject_nmi,
298101da 7153 .queue_exception = vmx_queue_exception,
b463a6f7 7154 .cancel_injection = vmx_cancel_injection,
78646121 7155 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 7156 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
7157 .get_nmi_mask = vmx_get_nmi_mask,
7158 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
7159 .enable_nmi_window = enable_nmi_window,
7160 .enable_irq_window = enable_irq_window,
7161 .update_cr8_intercept = update_cr8_intercept,
95ba8273 7162
cbc94022 7163 .set_tss_addr = vmx_set_tss_addr,
67253af5 7164 .get_tdp_level = get_ept_level,
4b12f0de 7165 .get_mt_mask = vmx_get_mt_mask,
229456fc 7166
586f9607 7167 .get_exit_info = vmx_get_exit_info,
586f9607 7168
17cc3935 7169 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
7170
7171 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
7172
7173 .rdtscp_supported = vmx_rdtscp_supported,
d4330ef2
JR
7174
7175 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
7176
7177 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 7178
4051b188 7179 .set_tsc_khz = vmx_set_tsc_khz,
99e3e30a 7180 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 7181 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 7182 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 7183 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
7184
7185 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
7186
7187 .check_intercept = vmx_check_intercept,
6aa8b732
AK
7188};
7189
7190static int __init vmx_init(void)
7191{
26bb0981
AK
7192 int r, i;
7193
7194 rdmsrl_safe(MSR_EFER, &host_efer);
7195
7196 for (i = 0; i < NR_VMX_MSR; ++i)
7197 kvm_define_shared_msr(i, vmx_msr_index[i]);
fdef3ad1 7198
3e7c73e9 7199 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
7200 if (!vmx_io_bitmap_a)
7201 return -ENOMEM;
7202
3e7c73e9 7203 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
7204 if (!vmx_io_bitmap_b) {
7205 r = -ENOMEM;
7206 goto out;
7207 }
7208
5897297b
AK
7209 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7210 if (!vmx_msr_bitmap_legacy) {
25c5f225
SY
7211 r = -ENOMEM;
7212 goto out1;
7213 }
7214
5897297b
AK
7215 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7216 if (!vmx_msr_bitmap_longmode) {
7217 r = -ENOMEM;
7218 goto out2;
7219 }
7220
fdef3ad1
HQ
7221 /*
7222 * Allow direct access to the PC debug port (it is often used for I/O
7223 * delays, but the vmexits simply slow things down).
7224 */
3e7c73e9
AK
7225 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7226 clear_bit(0x80, vmx_io_bitmap_a);
fdef3ad1 7227
3e7c73e9 7228 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
fdef3ad1 7229
5897297b
AK
7230 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7231 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
25c5f225 7232
2384d2b3
SY
7233 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7234
0ee75bea
AK
7235 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7236 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 7237 if (r)
5897297b 7238 goto out3;
25c5f225 7239
5897297b
AK
7240 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7241 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7242 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7243 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7244 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7245 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
fdef3ad1 7246
089d034e 7247 if (enable_ept) {
534e38b4 7248 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4b12f0de 7249 VMX_EPT_EXECUTABLE_MASK);
ce88decf 7250 ept_set_mmio_spte_mask();
5fdbcb9d
SY
7251 kvm_enable_tdp();
7252 } else
7253 kvm_disable_tdp();
1439442c 7254
fdef3ad1
HQ
7255 return 0;
7256
5897297b
AK
7257out3:
7258 free_page((unsigned long)vmx_msr_bitmap_longmode);
25c5f225 7259out2:
5897297b 7260 free_page((unsigned long)vmx_msr_bitmap_legacy);
fdef3ad1 7261out1:
3e7c73e9 7262 free_page((unsigned long)vmx_io_bitmap_b);
fdef3ad1 7263out:
3e7c73e9 7264 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7265 return r;
6aa8b732
AK
7266}
7267
7268static void __exit vmx_exit(void)
7269{
5897297b
AK
7270 free_page((unsigned long)vmx_msr_bitmap_legacy);
7271 free_page((unsigned long)vmx_msr_bitmap_longmode);
3e7c73e9
AK
7272 free_page((unsigned long)vmx_io_bitmap_b);
7273 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7274
cb498ea2 7275 kvm_exit();
6aa8b732
AK
7276}
7277
7278module_init(vmx_init)
7279module_exit(vmx_exit)