]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: VMX: Move vmx_nmi_allowed after vmx_set_nmi_mask
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
e495606d 22
edf88417 23#include <linux/kvm_host.h>
6aa8b732 24#include <linux/module.h>
9d8f549d 25#include <linux/kernel.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e8edc6e0 28#include <linux/sched.h>
c7addb90 29#include <linux/moduleparam.h>
e9bda3b3 30#include <linux/mod_devicetable.h>
229456fc 31#include <linux/ftrace_event.h>
5a0e3ad6 32#include <linux/slab.h>
cafd6659 33#include <linux/tboot.h>
5fdbf976 34#include "kvm_cache_regs.h"
35920a35 35#include "x86.h"
e495606d 36
6aa8b732 37#include <asm/io.h>
3b3be0d1 38#include <asm/desc.h>
13673a90 39#include <asm/vmx.h>
6210e37b 40#include <asm/virtext.h>
a0861c02 41#include <asm/mce.h>
2acf923e
DC
42#include <asm/i387.h>
43#include <asm/xcr.h>
d7cd9796 44#include <asm/perf_event.h>
8f536b76 45#include <asm/kexec.h>
6aa8b732 46
229456fc
MT
47#include "trace.h"
48
4ecac3fd 49#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
50#define __ex_clear(x, reg) \
51 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 52
6aa8b732
AK
53MODULE_AUTHOR("Qumranet");
54MODULE_LICENSE("GPL");
55
e9bda3b3
JT
56static const struct x86_cpu_id vmx_cpu_id[] = {
57 X86_FEATURE_MATCH(X86_FEATURE_VMX),
58 {}
59};
60MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
476bc001 62static bool __read_mostly enable_vpid = 1;
736caefe 63module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 64
476bc001 65static bool __read_mostly flexpriority_enabled = 1;
736caefe 66module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 67
476bc001 68static bool __read_mostly enable_ept = 1;
736caefe 69module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 70
476bc001 71static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
72module_param_named(unrestricted_guest,
73 enable_unrestricted_guest, bool, S_IRUGO);
74
83c3a331
XH
75static bool __read_mostly enable_ept_ad_bits = 1;
76module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
a27685c3 78static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 79module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 80
476bc001 81static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
82module_param(vmm_exclusive, bool, S_IRUGO);
83
476bc001 84static bool __read_mostly fasteoi = 1;
58fbbf26
KT
85module_param(fasteoi, bool, S_IRUGO);
86
5a71785d 87static bool __read_mostly enable_apicv = 1;
01e439be 88module_param(enable_apicv, bool, S_IRUGO);
83d4c286 89
abc4fc58
AG
90static bool __read_mostly enable_shadow_vmcs = 1;
91module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
92/*
93 * If nested=1, nested virtualization is supported, i.e., guests may use
94 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
95 * use VMX instructions.
96 */
476bc001 97static bool __read_mostly nested = 0;
801d3424
NHE
98module_param(nested, bool, S_IRUGO);
99
5037878e
GN
100#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
101#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
102#define KVM_VM_CR0_ALWAYS_ON \
103 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
104#define KVM_CR4_GUEST_OWNED_BITS \
105 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
106 | X86_CR4_OSXMMEXCPT)
107
cdc0e244
AK
108#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
109#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
110
78ac8b47
AK
111#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
112
4b8d54f9
ZE
113/*
114 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
115 * ple_gap: upper bound on the amount of time between two successive
116 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 117 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
118 * ple_window: upper bound on the amount of time a guest is allowed to execute
119 * in a PAUSE loop. Tests indicate that most spinlocks are held for
120 * less than 2^12 cycles
121 * Time is measured based on a counter that runs at the same rate as the TSC,
122 * refer SDM volume 3b section 21.6.13 & 22.1.3.
123 */
00c25bce 124#define KVM_VMX_DEFAULT_PLE_GAP 128
4b8d54f9
ZE
125#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
126static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
127module_param(ple_gap, int, S_IRUGO);
128
129static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
130module_param(ple_window, int, S_IRUGO);
131
83287ea4
AK
132extern const ulong vmx_return;
133
8bf00a52 134#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 135#define VMCS02_POOL_SIZE 1
61d2ef2c 136
a2fa3e9f
GH
137struct vmcs {
138 u32 revision_id;
139 u32 abort;
140 char data[0];
141};
142
d462b819
NHE
143/*
144 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
145 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
146 * loaded on this CPU (so we can clear them if the CPU goes down).
147 */
148struct loaded_vmcs {
149 struct vmcs *vmcs;
150 int cpu;
151 int launched;
152 struct list_head loaded_vmcss_on_cpu_link;
153};
154
26bb0981
AK
155struct shared_msr_entry {
156 unsigned index;
157 u64 data;
d5696725 158 u64 mask;
26bb0981
AK
159};
160
a9d30f33
NHE
161/*
162 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
163 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
164 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
165 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
166 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
167 * More than one of these structures may exist, if L1 runs multiple L2 guests.
168 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
169 * underlying hardware which will be used to run L2.
170 * This structure is packed to ensure that its layout is identical across
171 * machines (necessary for live migration).
172 * If there are changes in this struct, VMCS12_REVISION must be changed.
173 */
22bd0358 174typedef u64 natural_width;
a9d30f33
NHE
175struct __packed vmcs12 {
176 /* According to the Intel spec, a VMCS region must start with the
177 * following two fields. Then follow implementation-specific data.
178 */
179 u32 revision_id;
180 u32 abort;
22bd0358 181
27d6c865
NHE
182 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
183 u32 padding[7]; /* room for future expansion */
184
22bd0358
NHE
185 u64 io_bitmap_a;
186 u64 io_bitmap_b;
187 u64 msr_bitmap;
188 u64 vm_exit_msr_store_addr;
189 u64 vm_exit_msr_load_addr;
190 u64 vm_entry_msr_load_addr;
191 u64 tsc_offset;
192 u64 virtual_apic_page_addr;
193 u64 apic_access_addr;
194 u64 ept_pointer;
195 u64 guest_physical_address;
196 u64 vmcs_link_pointer;
197 u64 guest_ia32_debugctl;
198 u64 guest_ia32_pat;
199 u64 guest_ia32_efer;
200 u64 guest_ia32_perf_global_ctrl;
201 u64 guest_pdptr0;
202 u64 guest_pdptr1;
203 u64 guest_pdptr2;
204 u64 guest_pdptr3;
205 u64 host_ia32_pat;
206 u64 host_ia32_efer;
207 u64 host_ia32_perf_global_ctrl;
208 u64 padding64[8]; /* room for future expansion */
209 /*
210 * To allow migration of L1 (complete with its L2 guests) between
211 * machines of different natural widths (32 or 64 bit), we cannot have
212 * unsigned long fields with no explict size. We use u64 (aliased
213 * natural_width) instead. Luckily, x86 is little-endian.
214 */
215 natural_width cr0_guest_host_mask;
216 natural_width cr4_guest_host_mask;
217 natural_width cr0_read_shadow;
218 natural_width cr4_read_shadow;
219 natural_width cr3_target_value0;
220 natural_width cr3_target_value1;
221 natural_width cr3_target_value2;
222 natural_width cr3_target_value3;
223 natural_width exit_qualification;
224 natural_width guest_linear_address;
225 natural_width guest_cr0;
226 natural_width guest_cr3;
227 natural_width guest_cr4;
228 natural_width guest_es_base;
229 natural_width guest_cs_base;
230 natural_width guest_ss_base;
231 natural_width guest_ds_base;
232 natural_width guest_fs_base;
233 natural_width guest_gs_base;
234 natural_width guest_ldtr_base;
235 natural_width guest_tr_base;
236 natural_width guest_gdtr_base;
237 natural_width guest_idtr_base;
238 natural_width guest_dr7;
239 natural_width guest_rsp;
240 natural_width guest_rip;
241 natural_width guest_rflags;
242 natural_width guest_pending_dbg_exceptions;
243 natural_width guest_sysenter_esp;
244 natural_width guest_sysenter_eip;
245 natural_width host_cr0;
246 natural_width host_cr3;
247 natural_width host_cr4;
248 natural_width host_fs_base;
249 natural_width host_gs_base;
250 natural_width host_tr_base;
251 natural_width host_gdtr_base;
252 natural_width host_idtr_base;
253 natural_width host_ia32_sysenter_esp;
254 natural_width host_ia32_sysenter_eip;
255 natural_width host_rsp;
256 natural_width host_rip;
257 natural_width paddingl[8]; /* room for future expansion */
258 u32 pin_based_vm_exec_control;
259 u32 cpu_based_vm_exec_control;
260 u32 exception_bitmap;
261 u32 page_fault_error_code_mask;
262 u32 page_fault_error_code_match;
263 u32 cr3_target_count;
264 u32 vm_exit_controls;
265 u32 vm_exit_msr_store_count;
266 u32 vm_exit_msr_load_count;
267 u32 vm_entry_controls;
268 u32 vm_entry_msr_load_count;
269 u32 vm_entry_intr_info_field;
270 u32 vm_entry_exception_error_code;
271 u32 vm_entry_instruction_len;
272 u32 tpr_threshold;
273 u32 secondary_vm_exec_control;
274 u32 vm_instruction_error;
275 u32 vm_exit_reason;
276 u32 vm_exit_intr_info;
277 u32 vm_exit_intr_error_code;
278 u32 idt_vectoring_info_field;
279 u32 idt_vectoring_error_code;
280 u32 vm_exit_instruction_len;
281 u32 vmx_instruction_info;
282 u32 guest_es_limit;
283 u32 guest_cs_limit;
284 u32 guest_ss_limit;
285 u32 guest_ds_limit;
286 u32 guest_fs_limit;
287 u32 guest_gs_limit;
288 u32 guest_ldtr_limit;
289 u32 guest_tr_limit;
290 u32 guest_gdtr_limit;
291 u32 guest_idtr_limit;
292 u32 guest_es_ar_bytes;
293 u32 guest_cs_ar_bytes;
294 u32 guest_ss_ar_bytes;
295 u32 guest_ds_ar_bytes;
296 u32 guest_fs_ar_bytes;
297 u32 guest_gs_ar_bytes;
298 u32 guest_ldtr_ar_bytes;
299 u32 guest_tr_ar_bytes;
300 u32 guest_interruptibility_info;
301 u32 guest_activity_state;
302 u32 guest_sysenter_cs;
303 u32 host_ia32_sysenter_cs;
0238ea91
JK
304 u32 vmx_preemption_timer_value;
305 u32 padding32[7]; /* room for future expansion */
22bd0358
NHE
306 u16 virtual_processor_id;
307 u16 guest_es_selector;
308 u16 guest_cs_selector;
309 u16 guest_ss_selector;
310 u16 guest_ds_selector;
311 u16 guest_fs_selector;
312 u16 guest_gs_selector;
313 u16 guest_ldtr_selector;
314 u16 guest_tr_selector;
315 u16 host_es_selector;
316 u16 host_cs_selector;
317 u16 host_ss_selector;
318 u16 host_ds_selector;
319 u16 host_fs_selector;
320 u16 host_gs_selector;
321 u16 host_tr_selector;
a9d30f33
NHE
322};
323
324/*
325 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
326 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
327 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
328 */
329#define VMCS12_REVISION 0x11e57ed0
330
331/*
332 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
333 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
334 * current implementation, 4K are reserved to avoid future complications.
335 */
336#define VMCS12_SIZE 0x1000
337
ff2f6fe9
NHE
338/* Used to remember the last vmcs02 used for some recently used vmcs12s */
339struct vmcs02_list {
340 struct list_head list;
341 gpa_t vmptr;
342 struct loaded_vmcs vmcs02;
343};
344
ec378aee
NHE
345/*
346 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
347 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
348 */
349struct nested_vmx {
350 /* Has the level1 guest done vmxon? */
351 bool vmxon;
a9d30f33
NHE
352
353 /* The guest-physical address of the current VMCS L1 keeps for L2 */
354 gpa_t current_vmptr;
355 /* The host-usable pointer to the above */
356 struct page *current_vmcs12_page;
357 struct vmcs12 *current_vmcs12;
8de48833 358 struct vmcs *current_shadow_vmcs;
012f83cb
AG
359 /*
360 * Indicates if the shadow vmcs must be updated with the
361 * data hold by vmcs12
362 */
363 bool sync_shadow_vmcs;
ff2f6fe9
NHE
364
365 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
366 struct list_head vmcs02_pool;
367 int vmcs02_num;
fe3ef05c 368 u64 vmcs01_tsc_offset;
644d711a
NHE
369 /* L2 must run next, and mustn't decide to exit to L1. */
370 bool nested_run_pending;
fe3ef05c
NHE
371 /*
372 * Guest pages referred to in vmcs02 with host-physical pointers, so
373 * we must keep them pinned while L2 runs.
374 */
375 struct page *apic_access_page;
ec378aee
NHE
376};
377
01e439be
YZ
378#define POSTED_INTR_ON 0
379/* Posted-Interrupt Descriptor */
380struct pi_desc {
381 u32 pir[8]; /* Posted interrupt requested */
382 u32 control; /* bit 0 of control is outstanding notification bit */
383 u32 rsvd[7];
384} __aligned(64);
385
a20ed54d
YZ
386static bool pi_test_and_set_on(struct pi_desc *pi_desc)
387{
388 return test_and_set_bit(POSTED_INTR_ON,
389 (unsigned long *)&pi_desc->control);
390}
391
392static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
393{
394 return test_and_clear_bit(POSTED_INTR_ON,
395 (unsigned long *)&pi_desc->control);
396}
397
398static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
399{
400 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
401}
402
a2fa3e9f 403struct vcpu_vmx {
fb3f0f51 404 struct kvm_vcpu vcpu;
313dbd49 405 unsigned long host_rsp;
29bd8a78 406 u8 fail;
69c73028 407 u8 cpl;
9d58b931 408 bool nmi_known_unmasked;
51aa01d1 409 u32 exit_intr_info;
1155f76a 410 u32 idt_vectoring_info;
6de12732 411 ulong rflags;
26bb0981 412 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
413 int nmsrs;
414 int save_nmsrs;
a547c6db 415 unsigned long host_idt_base;
a2fa3e9f 416#ifdef CONFIG_X86_64
44ea2b17
AK
417 u64 msr_host_kernel_gs_base;
418 u64 msr_guest_kernel_gs_base;
a2fa3e9f 419#endif
d462b819
NHE
420 /*
421 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
422 * non-nested (L1) guest, it always points to vmcs01. For a nested
423 * guest (L2), it points to a different VMCS.
424 */
425 struct loaded_vmcs vmcs01;
426 struct loaded_vmcs *loaded_vmcs;
427 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
428 struct msr_autoload {
429 unsigned nr;
430 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
431 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
432 } msr_autoload;
a2fa3e9f
GH
433 struct {
434 int loaded;
435 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
436#ifdef CONFIG_X86_64
437 u16 ds_sel, es_sel;
438#endif
152d3f2f
LV
439 int gs_ldt_reload_needed;
440 int fs_reload_needed;
d77c26fc 441 } host_state;
9c8cba37 442 struct {
7ffd92c5 443 int vm86_active;
78ac8b47 444 ulong save_rflags;
f5f7b2fe
AK
445 struct kvm_segment segs[8];
446 } rmode;
447 struct {
448 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
449 struct kvm_save_segment {
450 u16 selector;
451 unsigned long base;
452 u32 limit;
453 u32 ar;
f5f7b2fe 454 } seg[8];
2fb92db1 455 } segment_cache;
2384d2b3 456 int vpid;
04fa4d32 457 bool emulation_required;
3b86cd99
JK
458
459 /* Support for vnmi-less CPUs */
460 int soft_vnmi_blocked;
461 ktime_t entry_time;
462 s64 vnmi_blocked_time;
a0861c02 463 u32 exit_reason;
4e47c7a6
SY
464
465 bool rdtscp_enabled;
ec378aee 466
01e439be
YZ
467 /* Posted interrupt descriptor */
468 struct pi_desc pi_desc;
469
ec378aee
NHE
470 /* Support for a guest hypervisor (nested VMX) */
471 struct nested_vmx nested;
a2fa3e9f
GH
472};
473
2fb92db1
AK
474enum segment_cache_field {
475 SEG_FIELD_SEL = 0,
476 SEG_FIELD_BASE = 1,
477 SEG_FIELD_LIMIT = 2,
478 SEG_FIELD_AR = 3,
479
480 SEG_FIELD_NR = 4
481};
482
a2fa3e9f
GH
483static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
484{
fb3f0f51 485 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
486}
487
22bd0358
NHE
488#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
489#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
490#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
491 [number##_HIGH] = VMCS12_OFFSET(name)+4
492
4607c2d7
AG
493
494static const unsigned long shadow_read_only_fields[] = {
495 /*
496 * We do NOT shadow fields that are modified when L0
497 * traps and emulates any vmx instruction (e.g. VMPTRLD,
498 * VMXON...) executed by L1.
499 * For example, VM_INSTRUCTION_ERROR is read
500 * by L1 if a vmx instruction fails (part of the error path).
501 * Note the code assumes this logic. If for some reason
502 * we start shadowing these fields then we need to
503 * force a shadow sync when L0 emulates vmx instructions
504 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
505 * by nested_vmx_failValid)
506 */
507 VM_EXIT_REASON,
508 VM_EXIT_INTR_INFO,
509 VM_EXIT_INSTRUCTION_LEN,
510 IDT_VECTORING_INFO_FIELD,
511 IDT_VECTORING_ERROR_CODE,
512 VM_EXIT_INTR_ERROR_CODE,
513 EXIT_QUALIFICATION,
514 GUEST_LINEAR_ADDRESS,
515 GUEST_PHYSICAL_ADDRESS
516};
517static const int max_shadow_read_only_fields =
518 ARRAY_SIZE(shadow_read_only_fields);
519
520static const unsigned long shadow_read_write_fields[] = {
521 GUEST_RIP,
522 GUEST_RSP,
523 GUEST_CR0,
524 GUEST_CR3,
525 GUEST_CR4,
526 GUEST_INTERRUPTIBILITY_INFO,
527 GUEST_RFLAGS,
528 GUEST_CS_SELECTOR,
529 GUEST_CS_AR_BYTES,
530 GUEST_CS_LIMIT,
531 GUEST_CS_BASE,
532 GUEST_ES_BASE,
533 CR0_GUEST_HOST_MASK,
534 CR0_READ_SHADOW,
535 CR4_READ_SHADOW,
536 TSC_OFFSET,
537 EXCEPTION_BITMAP,
538 CPU_BASED_VM_EXEC_CONTROL,
539 VM_ENTRY_EXCEPTION_ERROR_CODE,
540 VM_ENTRY_INTR_INFO_FIELD,
541 VM_ENTRY_INSTRUCTION_LEN,
542 VM_ENTRY_EXCEPTION_ERROR_CODE,
543 HOST_FS_BASE,
544 HOST_GS_BASE,
545 HOST_FS_SELECTOR,
546 HOST_GS_SELECTOR
547};
548static const int max_shadow_read_write_fields =
549 ARRAY_SIZE(shadow_read_write_fields);
550
772e0318 551static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358
NHE
552 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
553 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
554 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
555 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
556 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
557 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
558 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
559 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
560 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
561 FIELD(HOST_ES_SELECTOR, host_es_selector),
562 FIELD(HOST_CS_SELECTOR, host_cs_selector),
563 FIELD(HOST_SS_SELECTOR, host_ss_selector),
564 FIELD(HOST_DS_SELECTOR, host_ds_selector),
565 FIELD(HOST_FS_SELECTOR, host_fs_selector),
566 FIELD(HOST_GS_SELECTOR, host_gs_selector),
567 FIELD(HOST_TR_SELECTOR, host_tr_selector),
568 FIELD64(IO_BITMAP_A, io_bitmap_a),
569 FIELD64(IO_BITMAP_B, io_bitmap_b),
570 FIELD64(MSR_BITMAP, msr_bitmap),
571 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
572 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
573 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
574 FIELD64(TSC_OFFSET, tsc_offset),
575 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
576 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
577 FIELD64(EPT_POINTER, ept_pointer),
578 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
579 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
580 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
581 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
582 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
583 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
584 FIELD64(GUEST_PDPTR0, guest_pdptr0),
585 FIELD64(GUEST_PDPTR1, guest_pdptr1),
586 FIELD64(GUEST_PDPTR2, guest_pdptr2),
587 FIELD64(GUEST_PDPTR3, guest_pdptr3),
588 FIELD64(HOST_IA32_PAT, host_ia32_pat),
589 FIELD64(HOST_IA32_EFER, host_ia32_efer),
590 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
591 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
592 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
593 FIELD(EXCEPTION_BITMAP, exception_bitmap),
594 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
595 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
596 FIELD(CR3_TARGET_COUNT, cr3_target_count),
597 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
598 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
599 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
600 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
601 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
602 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
603 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
604 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
605 FIELD(TPR_THRESHOLD, tpr_threshold),
606 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
607 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
608 FIELD(VM_EXIT_REASON, vm_exit_reason),
609 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
610 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
611 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
612 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
613 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
614 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
615 FIELD(GUEST_ES_LIMIT, guest_es_limit),
616 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
617 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
618 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
619 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
620 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
621 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
622 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
623 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
624 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
625 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
626 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
627 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
628 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
629 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
630 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
631 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
632 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
633 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
634 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
635 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
636 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 637 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
638 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
639 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
640 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
641 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
642 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
643 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
644 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
645 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
646 FIELD(EXIT_QUALIFICATION, exit_qualification),
647 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
648 FIELD(GUEST_CR0, guest_cr0),
649 FIELD(GUEST_CR3, guest_cr3),
650 FIELD(GUEST_CR4, guest_cr4),
651 FIELD(GUEST_ES_BASE, guest_es_base),
652 FIELD(GUEST_CS_BASE, guest_cs_base),
653 FIELD(GUEST_SS_BASE, guest_ss_base),
654 FIELD(GUEST_DS_BASE, guest_ds_base),
655 FIELD(GUEST_FS_BASE, guest_fs_base),
656 FIELD(GUEST_GS_BASE, guest_gs_base),
657 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
658 FIELD(GUEST_TR_BASE, guest_tr_base),
659 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
660 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
661 FIELD(GUEST_DR7, guest_dr7),
662 FIELD(GUEST_RSP, guest_rsp),
663 FIELD(GUEST_RIP, guest_rip),
664 FIELD(GUEST_RFLAGS, guest_rflags),
665 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
666 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
667 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
668 FIELD(HOST_CR0, host_cr0),
669 FIELD(HOST_CR3, host_cr3),
670 FIELD(HOST_CR4, host_cr4),
671 FIELD(HOST_FS_BASE, host_fs_base),
672 FIELD(HOST_GS_BASE, host_gs_base),
673 FIELD(HOST_TR_BASE, host_tr_base),
674 FIELD(HOST_GDTR_BASE, host_gdtr_base),
675 FIELD(HOST_IDTR_BASE, host_idtr_base),
676 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
677 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
678 FIELD(HOST_RSP, host_rsp),
679 FIELD(HOST_RIP, host_rip),
680};
681static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
682
683static inline short vmcs_field_to_offset(unsigned long field)
684{
685 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
686 return -1;
687 return vmcs_field_to_offset_table[field];
688}
689
a9d30f33
NHE
690static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
691{
692 return to_vmx(vcpu)->nested.current_vmcs12;
693}
694
695static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
696{
697 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
32cad84f 698 if (is_error_page(page))
a9d30f33 699 return NULL;
32cad84f 700
a9d30f33
NHE
701 return page;
702}
703
704static void nested_release_page(struct page *page)
705{
706 kvm_release_page_dirty(page);
707}
708
709static void nested_release_page_clean(struct page *page)
710{
711 kvm_release_page_clean(page);
712}
713
4e1096d2 714static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
715static void kvm_cpu_vmxon(u64 addr);
716static void kvm_cpu_vmxoff(void);
aff48baa 717static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
776e58ea 718static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
719static void vmx_set_segment(struct kvm_vcpu *vcpu,
720 struct kvm_segment *var, int seg);
721static void vmx_get_segment(struct kvm_vcpu *vcpu,
722 struct kvm_segment *var, int seg);
d99e4152
GN
723static bool guest_state_valid(struct kvm_vcpu *vcpu);
724static u32 vmx_segment_access_rights(struct kvm_segment *var);
a20ed54d 725static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
c3114420 726static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 727static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
75880a01 728
6aa8b732
AK
729static DEFINE_PER_CPU(struct vmcs *, vmxarea);
730static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
731/*
732 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
733 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
734 */
735static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 736static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 737
3e7c73e9
AK
738static unsigned long *vmx_io_bitmap_a;
739static unsigned long *vmx_io_bitmap_b;
5897297b
AK
740static unsigned long *vmx_msr_bitmap_legacy;
741static unsigned long *vmx_msr_bitmap_longmode;
8d14695f
YZ
742static unsigned long *vmx_msr_bitmap_legacy_x2apic;
743static unsigned long *vmx_msr_bitmap_longmode_x2apic;
4607c2d7
AG
744static unsigned long *vmx_vmread_bitmap;
745static unsigned long *vmx_vmwrite_bitmap;
fdef3ad1 746
110312c8 747static bool cpu_has_load_ia32_efer;
8bf00a52 748static bool cpu_has_load_perf_global_ctrl;
110312c8 749
2384d2b3
SY
750static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
751static DEFINE_SPINLOCK(vmx_vpid_lock);
752
1c3d14fe 753static struct vmcs_config {
6aa8b732
AK
754 int size;
755 int order;
756 u32 revision_id;
1c3d14fe
YS
757 u32 pin_based_exec_ctrl;
758 u32 cpu_based_exec_ctrl;
f78e0e2e 759 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
760 u32 vmexit_ctrl;
761 u32 vmentry_ctrl;
762} vmcs_config;
6aa8b732 763
efff9e53 764static struct vmx_capability {
d56f546d
SY
765 u32 ept;
766 u32 vpid;
767} vmx_capability;
768
6aa8b732
AK
769#define VMX_SEGMENT_FIELD(seg) \
770 [VCPU_SREG_##seg] = { \
771 .selector = GUEST_##seg##_SELECTOR, \
772 .base = GUEST_##seg##_BASE, \
773 .limit = GUEST_##seg##_LIMIT, \
774 .ar_bytes = GUEST_##seg##_AR_BYTES, \
775 }
776
772e0318 777static const struct kvm_vmx_segment_field {
6aa8b732
AK
778 unsigned selector;
779 unsigned base;
780 unsigned limit;
781 unsigned ar_bytes;
782} kvm_vmx_segment_fields[] = {
783 VMX_SEGMENT_FIELD(CS),
784 VMX_SEGMENT_FIELD(DS),
785 VMX_SEGMENT_FIELD(ES),
786 VMX_SEGMENT_FIELD(FS),
787 VMX_SEGMENT_FIELD(GS),
788 VMX_SEGMENT_FIELD(SS),
789 VMX_SEGMENT_FIELD(TR),
790 VMX_SEGMENT_FIELD(LDTR),
791};
792
26bb0981
AK
793static u64 host_efer;
794
6de4f3ad
AK
795static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
796
4d56c8a7 797/*
8c06585d 798 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
799 * away by decrementing the array size.
800 */
6aa8b732 801static const u32 vmx_msr_index[] = {
05b3e0c2 802#ifdef CONFIG_X86_64
44ea2b17 803 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 804#endif
8c06585d 805 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 806};
9d8f549d 807#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
6aa8b732 808
31299944 809static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
810{
811 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
812 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 813 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
814}
815
31299944 816static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
817{
818 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
819 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 820 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
821}
822
31299944 823static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
824{
825 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
826 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 827 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
828}
829
31299944 830static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
831{
832 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
833 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
834}
835
31299944 836static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
837{
838 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
839 INTR_INFO_VALID_MASK)) ==
840 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
841}
842
31299944 843static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 844{
04547156 845 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
846}
847
31299944 848static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 849{
04547156 850 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
851}
852
31299944 853static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 854{
04547156 855 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
856}
857
31299944 858static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 859{
04547156
SY
860 return vmcs_config.cpu_based_exec_ctrl &
861 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
862}
863
774ead3a 864static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 865{
04547156
SY
866 return vmcs_config.cpu_based_2nd_exec_ctrl &
867 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
868}
869
8d14695f
YZ
870static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
871{
872 return vmcs_config.cpu_based_2nd_exec_ctrl &
873 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
874}
875
83d4c286
YZ
876static inline bool cpu_has_vmx_apic_register_virt(void)
877{
878 return vmcs_config.cpu_based_2nd_exec_ctrl &
879 SECONDARY_EXEC_APIC_REGISTER_VIRT;
880}
881
c7c9c56c
YZ
882static inline bool cpu_has_vmx_virtual_intr_delivery(void)
883{
884 return vmcs_config.cpu_based_2nd_exec_ctrl &
885 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
886}
887
01e439be
YZ
888static inline bool cpu_has_vmx_posted_intr(void)
889{
890 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
891}
892
893static inline bool cpu_has_vmx_apicv(void)
894{
895 return cpu_has_vmx_apic_register_virt() &&
896 cpu_has_vmx_virtual_intr_delivery() &&
897 cpu_has_vmx_posted_intr();
898}
899
04547156
SY
900static inline bool cpu_has_vmx_flexpriority(void)
901{
902 return cpu_has_vmx_tpr_shadow() &&
903 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
904}
905
e799794e
MT
906static inline bool cpu_has_vmx_ept_execute_only(void)
907{
31299944 908 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
909}
910
911static inline bool cpu_has_vmx_eptp_uncacheable(void)
912{
31299944 913 return vmx_capability.ept & VMX_EPTP_UC_BIT;
e799794e
MT
914}
915
916static inline bool cpu_has_vmx_eptp_writeback(void)
917{
31299944 918 return vmx_capability.ept & VMX_EPTP_WB_BIT;
e799794e
MT
919}
920
921static inline bool cpu_has_vmx_ept_2m_page(void)
922{
31299944 923 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
924}
925
878403b7
SY
926static inline bool cpu_has_vmx_ept_1g_page(void)
927{
31299944 928 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
929}
930
4bc9b982
SY
931static inline bool cpu_has_vmx_ept_4levels(void)
932{
933 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
934}
935
83c3a331
XH
936static inline bool cpu_has_vmx_ept_ad_bits(void)
937{
938 return vmx_capability.ept & VMX_EPT_AD_BIT;
939}
940
31299944 941static inline bool cpu_has_vmx_invept_context(void)
d56f546d 942{
31299944 943 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
944}
945
31299944 946static inline bool cpu_has_vmx_invept_global(void)
d56f546d 947{
31299944 948 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
949}
950
518c8aee
GJ
951static inline bool cpu_has_vmx_invvpid_single(void)
952{
953 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
954}
955
b9d762fa
GJ
956static inline bool cpu_has_vmx_invvpid_global(void)
957{
958 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
959}
960
31299944 961static inline bool cpu_has_vmx_ept(void)
d56f546d 962{
04547156
SY
963 return vmcs_config.cpu_based_2nd_exec_ctrl &
964 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
965}
966
31299944 967static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
968{
969 return vmcs_config.cpu_based_2nd_exec_ctrl &
970 SECONDARY_EXEC_UNRESTRICTED_GUEST;
971}
972
31299944 973static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
974{
975 return vmcs_config.cpu_based_2nd_exec_ctrl &
976 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
977}
978
31299944 979static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 980{
6d3e435e 981 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
982}
983
31299944 984static inline bool cpu_has_vmx_vpid(void)
2384d2b3 985{
04547156
SY
986 return vmcs_config.cpu_based_2nd_exec_ctrl &
987 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
988}
989
31299944 990static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
991{
992 return vmcs_config.cpu_based_2nd_exec_ctrl &
993 SECONDARY_EXEC_RDTSCP;
994}
995
ad756a16
MJ
996static inline bool cpu_has_vmx_invpcid(void)
997{
998 return vmcs_config.cpu_based_2nd_exec_ctrl &
999 SECONDARY_EXEC_ENABLE_INVPCID;
1000}
1001
31299944 1002static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
1003{
1004 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1005}
1006
f5f48ee1
SY
1007static inline bool cpu_has_vmx_wbinvd_exit(void)
1008{
1009 return vmcs_config.cpu_based_2nd_exec_ctrl &
1010 SECONDARY_EXEC_WBINVD_EXITING;
1011}
1012
abc4fc58
AG
1013static inline bool cpu_has_vmx_shadow_vmcs(void)
1014{
1015 u64 vmx_msr;
1016 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1017 /* check if the cpu supports writing r/o exit information fields */
1018 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1019 return false;
1020
1021 return vmcs_config.cpu_based_2nd_exec_ctrl &
1022 SECONDARY_EXEC_SHADOW_VMCS;
1023}
1024
04547156
SY
1025static inline bool report_flexpriority(void)
1026{
1027 return flexpriority_enabled;
1028}
1029
fe3ef05c
NHE
1030static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1031{
1032 return vmcs12->cpu_based_vm_exec_control & bit;
1033}
1034
1035static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1036{
1037 return (vmcs12->cpu_based_vm_exec_control &
1038 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1039 (vmcs12->secondary_vm_exec_control & bit);
1040}
1041
644d711a
NHE
1042static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
1043 struct kvm_vcpu *vcpu)
1044{
1045 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1046}
1047
1048static inline bool is_exception(u32 intr_info)
1049{
1050 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1051 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1052}
1053
1054static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
7c177938
NHE
1055static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1056 struct vmcs12 *vmcs12,
1057 u32 reason, unsigned long qualification);
1058
8b9cf98c 1059static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1060{
1061 int i;
1062
a2fa3e9f 1063 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1064 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1065 return i;
1066 return -1;
1067}
1068
2384d2b3
SY
1069static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1070{
1071 struct {
1072 u64 vpid : 16;
1073 u64 rsvd : 48;
1074 u64 gva;
1075 } operand = { vpid, 0, gva };
1076
4ecac3fd 1077 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1078 /* CF==1 or ZF==1 --> rc = -1 */
1079 "; ja 1f ; ud2 ; 1:"
1080 : : "a"(&operand), "c"(ext) : "cc", "memory");
1081}
1082
1439442c
SY
1083static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1084{
1085 struct {
1086 u64 eptp, gpa;
1087 } operand = {eptp, gpa};
1088
4ecac3fd 1089 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1090 /* CF==1 or ZF==1 --> rc = -1 */
1091 "; ja 1f ; ud2 ; 1:\n"
1092 : : "a" (&operand), "c" (ext) : "cc", "memory");
1093}
1094
26bb0981 1095static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1096{
1097 int i;
1098
8b9cf98c 1099 i = __find_msr_index(vmx, msr);
a75beee6 1100 if (i >= 0)
a2fa3e9f 1101 return &vmx->guest_msrs[i];
8b6d44c7 1102 return NULL;
7725f0ba
AK
1103}
1104
6aa8b732
AK
1105static void vmcs_clear(struct vmcs *vmcs)
1106{
1107 u64 phys_addr = __pa(vmcs);
1108 u8 error;
1109
4ecac3fd 1110 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1111 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1112 : "cc", "memory");
1113 if (error)
1114 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1115 vmcs, phys_addr);
1116}
1117
d462b819
NHE
1118static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1119{
1120 vmcs_clear(loaded_vmcs->vmcs);
1121 loaded_vmcs->cpu = -1;
1122 loaded_vmcs->launched = 0;
1123}
1124
7725b894
DX
1125static void vmcs_load(struct vmcs *vmcs)
1126{
1127 u64 phys_addr = __pa(vmcs);
1128 u8 error;
1129
1130 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1131 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1132 : "cc", "memory");
1133 if (error)
2844d849 1134 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1135 vmcs, phys_addr);
1136}
1137
8f536b76
ZY
1138#ifdef CONFIG_KEXEC
1139/*
1140 * This bitmap is used to indicate whether the vmclear
1141 * operation is enabled on all cpus. All disabled by
1142 * default.
1143 */
1144static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1145
1146static inline void crash_enable_local_vmclear(int cpu)
1147{
1148 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1149}
1150
1151static inline void crash_disable_local_vmclear(int cpu)
1152{
1153 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1154}
1155
1156static inline int crash_local_vmclear_enabled(int cpu)
1157{
1158 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1159}
1160
1161static void crash_vmclear_local_loaded_vmcss(void)
1162{
1163 int cpu = raw_smp_processor_id();
1164 struct loaded_vmcs *v;
1165
1166 if (!crash_local_vmclear_enabled(cpu))
1167 return;
1168
1169 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1170 loaded_vmcss_on_cpu_link)
1171 vmcs_clear(v->vmcs);
1172}
1173#else
1174static inline void crash_enable_local_vmclear(int cpu) { }
1175static inline void crash_disable_local_vmclear(int cpu) { }
1176#endif /* CONFIG_KEXEC */
1177
d462b819 1178static void __loaded_vmcs_clear(void *arg)
6aa8b732 1179{
d462b819 1180 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1181 int cpu = raw_smp_processor_id();
6aa8b732 1182
d462b819
NHE
1183 if (loaded_vmcs->cpu != cpu)
1184 return; /* vcpu migration can race with cpu offline */
1185 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1186 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1187 crash_disable_local_vmclear(cpu);
d462b819 1188 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1189
1190 /*
1191 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1192 * is before setting loaded_vmcs->vcpu to -1 which is done in
1193 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1194 * then adds the vmcs into percpu list before it is deleted.
1195 */
1196 smp_wmb();
1197
d462b819 1198 loaded_vmcs_init(loaded_vmcs);
8f536b76 1199 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1200}
1201
d462b819 1202static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1203{
e6c7d321
XG
1204 int cpu = loaded_vmcs->cpu;
1205
1206 if (cpu != -1)
1207 smp_call_function_single(cpu,
1208 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1209}
1210
1760dd49 1211static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
1212{
1213 if (vmx->vpid == 0)
1214 return;
1215
518c8aee
GJ
1216 if (cpu_has_vmx_invvpid_single())
1217 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
1218}
1219
b9d762fa
GJ
1220static inline void vpid_sync_vcpu_global(void)
1221{
1222 if (cpu_has_vmx_invvpid_global())
1223 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1224}
1225
1226static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1227{
1228 if (cpu_has_vmx_invvpid_single())
1760dd49 1229 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1230 else
1231 vpid_sync_vcpu_global();
1232}
1233
1439442c
SY
1234static inline void ept_sync_global(void)
1235{
1236 if (cpu_has_vmx_invept_global())
1237 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1238}
1239
1240static inline void ept_sync_context(u64 eptp)
1241{
089d034e 1242 if (enable_ept) {
1439442c
SY
1243 if (cpu_has_vmx_invept_context())
1244 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1245 else
1246 ept_sync_global();
1247 }
1248}
1249
96304217 1250static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1251{
5e520e62 1252 unsigned long value;
6aa8b732 1253
5e520e62
AK
1254 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1255 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1256 return value;
1257}
1258
96304217 1259static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1260{
1261 return vmcs_readl(field);
1262}
1263
96304217 1264static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1265{
1266 return vmcs_readl(field);
1267}
1268
96304217 1269static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1270{
05b3e0c2 1271#ifdef CONFIG_X86_64
6aa8b732
AK
1272 return vmcs_readl(field);
1273#else
1274 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1275#endif
1276}
1277
e52de1b8
AK
1278static noinline void vmwrite_error(unsigned long field, unsigned long value)
1279{
1280 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1281 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1282 dump_stack();
1283}
1284
6aa8b732
AK
1285static void vmcs_writel(unsigned long field, unsigned long value)
1286{
1287 u8 error;
1288
4ecac3fd 1289 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1290 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1291 if (unlikely(error))
1292 vmwrite_error(field, value);
6aa8b732
AK
1293}
1294
1295static void vmcs_write16(unsigned long field, u16 value)
1296{
1297 vmcs_writel(field, value);
1298}
1299
1300static void vmcs_write32(unsigned long field, u32 value)
1301{
1302 vmcs_writel(field, value);
1303}
1304
1305static void vmcs_write64(unsigned long field, u64 value)
1306{
6aa8b732 1307 vmcs_writel(field, value);
7682f2d0 1308#ifndef CONFIG_X86_64
6aa8b732
AK
1309 asm volatile ("");
1310 vmcs_writel(field+1, value >> 32);
1311#endif
1312}
1313
2ab455cc
AL
1314static void vmcs_clear_bits(unsigned long field, u32 mask)
1315{
1316 vmcs_writel(field, vmcs_readl(field) & ~mask);
1317}
1318
1319static void vmcs_set_bits(unsigned long field, u32 mask)
1320{
1321 vmcs_writel(field, vmcs_readl(field) | mask);
1322}
1323
2fb92db1
AK
1324static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1325{
1326 vmx->segment_cache.bitmask = 0;
1327}
1328
1329static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1330 unsigned field)
1331{
1332 bool ret;
1333 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1334
1335 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1336 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1337 vmx->segment_cache.bitmask = 0;
1338 }
1339 ret = vmx->segment_cache.bitmask & mask;
1340 vmx->segment_cache.bitmask |= mask;
1341 return ret;
1342}
1343
1344static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1345{
1346 u16 *p = &vmx->segment_cache.seg[seg].selector;
1347
1348 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1349 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1350 return *p;
1351}
1352
1353static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1354{
1355 ulong *p = &vmx->segment_cache.seg[seg].base;
1356
1357 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1358 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1359 return *p;
1360}
1361
1362static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1363{
1364 u32 *p = &vmx->segment_cache.seg[seg].limit;
1365
1366 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1367 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1368 return *p;
1369}
1370
1371static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1372{
1373 u32 *p = &vmx->segment_cache.seg[seg].ar;
1374
1375 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1376 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1377 return *p;
1378}
1379
abd3f2d6
AK
1380static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1381{
1382 u32 eb;
1383
fd7373cc
JK
1384 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1385 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1386 if ((vcpu->guest_debug &
1387 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1388 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1389 eb |= 1u << BP_VECTOR;
7ffd92c5 1390 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1391 eb = ~0;
089d034e 1392 if (enable_ept)
1439442c 1393 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1394 if (vcpu->fpu_active)
1395 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1396
1397 /* When we are running a nested L2 guest and L1 specified for it a
1398 * certain exception bitmap, we must trap the same exceptions and pass
1399 * them to L1. When running L2, we will only handle the exceptions
1400 * specified above if L1 did not want them.
1401 */
1402 if (is_guest_mode(vcpu))
1403 eb |= get_vmcs12(vcpu)->exception_bitmap;
1404
abd3f2d6
AK
1405 vmcs_write32(EXCEPTION_BITMAP, eb);
1406}
1407
8bf00a52
GN
1408static void clear_atomic_switch_msr_special(unsigned long entry,
1409 unsigned long exit)
1410{
1411 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1412 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1413}
1414
61d2ef2c
AK
1415static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1416{
1417 unsigned i;
1418 struct msr_autoload *m = &vmx->msr_autoload;
1419
8bf00a52
GN
1420 switch (msr) {
1421 case MSR_EFER:
1422 if (cpu_has_load_ia32_efer) {
1423 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1424 VM_EXIT_LOAD_IA32_EFER);
1425 return;
1426 }
1427 break;
1428 case MSR_CORE_PERF_GLOBAL_CTRL:
1429 if (cpu_has_load_perf_global_ctrl) {
1430 clear_atomic_switch_msr_special(
1431 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1432 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1433 return;
1434 }
1435 break;
110312c8
AK
1436 }
1437
61d2ef2c
AK
1438 for (i = 0; i < m->nr; ++i)
1439 if (m->guest[i].index == msr)
1440 break;
1441
1442 if (i == m->nr)
1443 return;
1444 --m->nr;
1445 m->guest[i] = m->guest[m->nr];
1446 m->host[i] = m->host[m->nr];
1447 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1448 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1449}
1450
8bf00a52
GN
1451static void add_atomic_switch_msr_special(unsigned long entry,
1452 unsigned long exit, unsigned long guest_val_vmcs,
1453 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1454{
1455 vmcs_write64(guest_val_vmcs, guest_val);
1456 vmcs_write64(host_val_vmcs, host_val);
1457 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1458 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1459}
1460
61d2ef2c
AK
1461static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1462 u64 guest_val, u64 host_val)
1463{
1464 unsigned i;
1465 struct msr_autoload *m = &vmx->msr_autoload;
1466
8bf00a52
GN
1467 switch (msr) {
1468 case MSR_EFER:
1469 if (cpu_has_load_ia32_efer) {
1470 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1471 VM_EXIT_LOAD_IA32_EFER,
1472 GUEST_IA32_EFER,
1473 HOST_IA32_EFER,
1474 guest_val, host_val);
1475 return;
1476 }
1477 break;
1478 case MSR_CORE_PERF_GLOBAL_CTRL:
1479 if (cpu_has_load_perf_global_ctrl) {
1480 add_atomic_switch_msr_special(
1481 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1482 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1483 GUEST_IA32_PERF_GLOBAL_CTRL,
1484 HOST_IA32_PERF_GLOBAL_CTRL,
1485 guest_val, host_val);
1486 return;
1487 }
1488 break;
110312c8
AK
1489 }
1490
61d2ef2c
AK
1491 for (i = 0; i < m->nr; ++i)
1492 if (m->guest[i].index == msr)
1493 break;
1494
e7fc6f93
GN
1495 if (i == NR_AUTOLOAD_MSRS) {
1496 printk_once(KERN_WARNING"Not enough mst switch entries. "
1497 "Can't add msr %x\n", msr);
1498 return;
1499 } else if (i == m->nr) {
61d2ef2c
AK
1500 ++m->nr;
1501 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1502 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1503 }
1504
1505 m->guest[i].index = msr;
1506 m->guest[i].value = guest_val;
1507 m->host[i].index = msr;
1508 m->host[i].value = host_val;
1509}
1510
33ed6329
AK
1511static void reload_tss(void)
1512{
33ed6329
AK
1513 /*
1514 * VT restores TR but not its size. Useless.
1515 */
d359192f 1516 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
a5f61300 1517 struct desc_struct *descs;
33ed6329 1518
d359192f 1519 descs = (void *)gdt->address;
33ed6329
AK
1520 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1521 load_TR_desc();
33ed6329
AK
1522}
1523
92c0d900 1524static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1525{
3a34a881 1526 u64 guest_efer;
51c6cf66
AK
1527 u64 ignore_bits;
1528
f6801dff 1529 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1530
51c6cf66 1531 /*
0fa06071 1532 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
51c6cf66
AK
1533 * outside long mode
1534 */
1535 ignore_bits = EFER_NX | EFER_SCE;
1536#ifdef CONFIG_X86_64
1537 ignore_bits |= EFER_LMA | EFER_LME;
1538 /* SCE is meaningful only in long mode on Intel */
1539 if (guest_efer & EFER_LMA)
1540 ignore_bits &= ~(u64)EFER_SCE;
1541#endif
51c6cf66
AK
1542 guest_efer &= ~ignore_bits;
1543 guest_efer |= host_efer & ignore_bits;
26bb0981 1544 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1545 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1546
1547 clear_atomic_switch_msr(vmx, MSR_EFER);
1548 /* On ept, can't emulate nx, and must switch nx atomically */
1549 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1550 guest_efer = vmx->vcpu.arch.efer;
1551 if (!(guest_efer & EFER_LMA))
1552 guest_efer &= ~EFER_LME;
1553 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1554 return false;
1555 }
1556
26bb0981 1557 return true;
51c6cf66
AK
1558}
1559
2d49ec72
GN
1560static unsigned long segment_base(u16 selector)
1561{
d359192f 1562 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
2d49ec72
GN
1563 struct desc_struct *d;
1564 unsigned long table_base;
1565 unsigned long v;
1566
1567 if (!(selector & ~3))
1568 return 0;
1569
d359192f 1570 table_base = gdt->address;
2d49ec72
GN
1571
1572 if (selector & 4) { /* from ldt */
1573 u16 ldt_selector = kvm_read_ldt();
1574
1575 if (!(ldt_selector & ~3))
1576 return 0;
1577
1578 table_base = segment_base(ldt_selector);
1579 }
1580 d = (struct desc_struct *)(table_base + (selector & ~7));
1581 v = get_desc_base(d);
1582#ifdef CONFIG_X86_64
1583 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1584 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1585#endif
1586 return v;
1587}
1588
1589static inline unsigned long kvm_read_tr_base(void)
1590{
1591 u16 tr;
1592 asm("str %0" : "=g"(tr));
1593 return segment_base(tr);
1594}
1595
04d2cc77 1596static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1597{
04d2cc77 1598 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1599 int i;
04d2cc77 1600
a2fa3e9f 1601 if (vmx->host_state.loaded)
33ed6329
AK
1602 return;
1603
a2fa3e9f 1604 vmx->host_state.loaded = 1;
33ed6329
AK
1605 /*
1606 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1607 * allow segment selectors with cpl > 0 or ti == 1.
1608 */
d6e88aec 1609 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1610 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1611 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1612 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1613 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1614 vmx->host_state.fs_reload_needed = 0;
1615 } else {
33ed6329 1616 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1617 vmx->host_state.fs_reload_needed = 1;
33ed6329 1618 }
9581d442 1619 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1620 if (!(vmx->host_state.gs_sel & 7))
1621 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1622 else {
1623 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1624 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1625 }
1626
b2da15ac
AK
1627#ifdef CONFIG_X86_64
1628 savesegment(ds, vmx->host_state.ds_sel);
1629 savesegment(es, vmx->host_state.es_sel);
1630#endif
1631
33ed6329
AK
1632#ifdef CONFIG_X86_64
1633 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1634 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1635#else
a2fa3e9f
GH
1636 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1637 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1638#endif
707c0874
AK
1639
1640#ifdef CONFIG_X86_64
c8770e7b
AK
1641 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1642 if (is_long_mode(&vmx->vcpu))
44ea2b17 1643 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1644#endif
26bb0981
AK
1645 for (i = 0; i < vmx->save_nmsrs; ++i)
1646 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1647 vmx->guest_msrs[i].data,
1648 vmx->guest_msrs[i].mask);
33ed6329
AK
1649}
1650
a9b21b62 1651static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1652{
a2fa3e9f 1653 if (!vmx->host_state.loaded)
33ed6329
AK
1654 return;
1655
e1beb1d3 1656 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1657 vmx->host_state.loaded = 0;
c8770e7b
AK
1658#ifdef CONFIG_X86_64
1659 if (is_long_mode(&vmx->vcpu))
1660 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1661#endif
152d3f2f 1662 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1663 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1664#ifdef CONFIG_X86_64
9581d442 1665 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1666#else
1667 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1668#endif
33ed6329 1669 }
0a77fe4c
AK
1670 if (vmx->host_state.fs_reload_needed)
1671 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
1672#ifdef CONFIG_X86_64
1673 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1674 loadsegment(ds, vmx->host_state.ds_sel);
1675 loadsegment(es, vmx->host_state.es_sel);
1676 }
b2da15ac 1677#endif
152d3f2f 1678 reload_tss();
44ea2b17 1679#ifdef CONFIG_X86_64
c8770e7b 1680 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1681#endif
b1a74bf8
SS
1682 /*
1683 * If the FPU is not active (through the host task or
1684 * the guest vcpu), then restore the cr0.TS bit.
1685 */
1686 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1687 stts();
3444d7da 1688 load_gdt(&__get_cpu_var(host_gdt));
33ed6329
AK
1689}
1690
a9b21b62
AK
1691static void vmx_load_host_state(struct vcpu_vmx *vmx)
1692{
1693 preempt_disable();
1694 __vmx_load_host_state(vmx);
1695 preempt_enable();
1696}
1697
6aa8b732
AK
1698/*
1699 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1700 * vcpu mutex is already taken.
1701 */
15ad7146 1702static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1703{
a2fa3e9f 1704 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1705 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1706
4610c9cc
DX
1707 if (!vmm_exclusive)
1708 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1709 else if (vmx->loaded_vmcs->cpu != cpu)
1710 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1711
d462b819
NHE
1712 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1713 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1714 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1715 }
1716
d462b819 1717 if (vmx->loaded_vmcs->cpu != cpu) {
d359192f 1718 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
6aa8b732
AK
1719 unsigned long sysenter_esp;
1720
a8eeb04a 1721 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1722 local_irq_disable();
8f536b76 1723 crash_disable_local_vmclear(cpu);
5a560f8b
XG
1724
1725 /*
1726 * Read loaded_vmcs->cpu should be before fetching
1727 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1728 * See the comments in __loaded_vmcs_clear().
1729 */
1730 smp_rmb();
1731
d462b819
NHE
1732 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1733 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 1734 crash_enable_local_vmclear(cpu);
92fe13be
DX
1735 local_irq_enable();
1736
6aa8b732
AK
1737 /*
1738 * Linux uses per-cpu TSS and GDT, so set these when switching
1739 * processors.
1740 */
d6e88aec 1741 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1742 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1743
1744 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1745 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1746 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1747 }
6aa8b732
AK
1748}
1749
1750static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1751{
a9b21b62 1752 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1753 if (!vmm_exclusive) {
d462b819
NHE
1754 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1755 vcpu->cpu = -1;
4610c9cc
DX
1756 kvm_cpu_vmxoff();
1757 }
6aa8b732
AK
1758}
1759
5fd86fcf
AK
1760static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1761{
81231c69
AK
1762 ulong cr0;
1763
5fd86fcf
AK
1764 if (vcpu->fpu_active)
1765 return;
1766 vcpu->fpu_active = 1;
81231c69
AK
1767 cr0 = vmcs_readl(GUEST_CR0);
1768 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1769 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1770 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1771 update_exception_bitmap(vcpu);
edcafe3c 1772 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1773 if (is_guest_mode(vcpu))
1774 vcpu->arch.cr0_guest_owned_bits &=
1775 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1776 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1777}
1778
edcafe3c
AK
1779static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1780
fe3ef05c
NHE
1781/*
1782 * Return the cr0 value that a nested guest would read. This is a combination
1783 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1784 * its hypervisor (cr0_read_shadow).
1785 */
1786static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1787{
1788 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1789 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1790}
1791static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1792{
1793 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1794 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1795}
1796
5fd86fcf
AK
1797static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1798{
36cf24e0
NHE
1799 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1800 * set this *before* calling this function.
1801 */
edcafe3c 1802 vmx_decache_cr0_guest_bits(vcpu);
81231c69 1803 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 1804 update_exception_bitmap(vcpu);
edcafe3c
AK
1805 vcpu->arch.cr0_guest_owned_bits = 0;
1806 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
1807 if (is_guest_mode(vcpu)) {
1808 /*
1809 * L1's specified read shadow might not contain the TS bit,
1810 * so now that we turned on shadowing of this bit, we need to
1811 * set this bit of the shadow. Like in nested_vmx_run we need
1812 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1813 * up-to-date here because we just decached cr0.TS (and we'll
1814 * only update vmcs12->guest_cr0 on nested exit).
1815 */
1816 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1817 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1818 (vcpu->arch.cr0 & X86_CR0_TS);
1819 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1820 } else
1821 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
1822}
1823
6aa8b732
AK
1824static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1825{
78ac8b47 1826 unsigned long rflags, save_rflags;
345dcaa8 1827
6de12732
AK
1828 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1829 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1830 rflags = vmcs_readl(GUEST_RFLAGS);
1831 if (to_vmx(vcpu)->rmode.vm86_active) {
1832 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1833 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1834 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1835 }
1836 to_vmx(vcpu)->rflags = rflags;
78ac8b47 1837 }
6de12732 1838 return to_vmx(vcpu)->rflags;
6aa8b732
AK
1839}
1840
1841static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1842{
6de12732
AK
1843 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1844 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
1845 if (to_vmx(vcpu)->rmode.vm86_active) {
1846 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 1847 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 1848 }
6aa8b732
AK
1849 vmcs_writel(GUEST_RFLAGS, rflags);
1850}
1851
2809f5d2
GC
1852static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1853{
1854 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1855 int ret = 0;
1856
1857 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 1858 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 1859 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 1860 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2
GC
1861
1862 return ret & mask;
1863}
1864
1865static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1866{
1867 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1868 u32 interruptibility = interruptibility_old;
1869
1870 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1871
48005f64 1872 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 1873 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 1874 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
1875 interruptibility |= GUEST_INTR_STATE_STI;
1876
1877 if ((interruptibility != interruptibility_old))
1878 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1879}
1880
6aa8b732
AK
1881static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1882{
1883 unsigned long rip;
6aa8b732 1884
5fdbf976 1885 rip = kvm_rip_read(vcpu);
6aa8b732 1886 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 1887 kvm_rip_write(vcpu, rip);
6aa8b732 1888
2809f5d2
GC
1889 /* skipping an emulated instruction also counts */
1890 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
1891}
1892
0b6ac343
NHE
1893/*
1894 * KVM wants to inject page-faults which it got to the guest. This function
1895 * checks whether in a nested guest, we need to inject them to L1 or L2.
1896 * This function assumes it is called with the exit reason in vmcs02 being
1897 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1898 * is running).
1899 */
1900static int nested_pf_handled(struct kvm_vcpu *vcpu)
1901{
1902 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1903
1904 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
95871901 1905 if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
0b6ac343
NHE
1906 return 0;
1907
1908 nested_vmx_vmexit(vcpu);
1909 return 1;
1910}
1911
298101da 1912static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
1913 bool has_error_code, u32 error_code,
1914 bool reinject)
298101da 1915{
77ab6db0 1916 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 1917 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 1918
0b6ac343
NHE
1919 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1920 nested_pf_handled(vcpu))
1921 return;
1922
8ab2d2e2 1923 if (has_error_code) {
77ab6db0 1924 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
1925 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1926 }
77ab6db0 1927
7ffd92c5 1928 if (vmx->rmode.vm86_active) {
71f9833b
SH
1929 int inc_eip = 0;
1930 if (kvm_exception_is_soft(nr))
1931 inc_eip = vcpu->arch.event_exit_inst_len;
1932 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 1933 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
1934 return;
1935 }
1936
66fd3f7f
GN
1937 if (kvm_exception_is_soft(nr)) {
1938 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1939 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
1940 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1941 } else
1942 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1943
1944 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
1945}
1946
4e47c7a6
SY
1947static bool vmx_rdtscp_supported(void)
1948{
1949 return cpu_has_vmx_rdtscp();
1950}
1951
ad756a16
MJ
1952static bool vmx_invpcid_supported(void)
1953{
1954 return cpu_has_vmx_invpcid() && enable_ept;
1955}
1956
a75beee6
ED
1957/*
1958 * Swap MSR entry in host/guest MSR entry array.
1959 */
8b9cf98c 1960static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 1961{
26bb0981 1962 struct shared_msr_entry tmp;
a2fa3e9f
GH
1963
1964 tmp = vmx->guest_msrs[to];
1965 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1966 vmx->guest_msrs[from] = tmp;
a75beee6
ED
1967}
1968
8d14695f
YZ
1969static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
1970{
1971 unsigned long *msr_bitmap;
1972
1973 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
1974 if (is_long_mode(vcpu))
1975 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
1976 else
1977 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
1978 } else {
1979 if (is_long_mode(vcpu))
1980 msr_bitmap = vmx_msr_bitmap_longmode;
1981 else
1982 msr_bitmap = vmx_msr_bitmap_legacy;
1983 }
1984
1985 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1986}
1987
e38aea3e
AK
1988/*
1989 * Set up the vmcs to automatically save and restore system
1990 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1991 * mode, as fiddling with msrs is very expensive.
1992 */
8b9cf98c 1993static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 1994{
26bb0981 1995 int save_nmsrs, index;
e38aea3e 1996
a75beee6
ED
1997 save_nmsrs = 0;
1998#ifdef CONFIG_X86_64
8b9cf98c 1999 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2000 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2001 if (index >= 0)
8b9cf98c
RR
2002 move_msr_up(vmx, index, save_nmsrs++);
2003 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2004 if (index >= 0)
8b9cf98c
RR
2005 move_msr_up(vmx, index, save_nmsrs++);
2006 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2007 if (index >= 0)
8b9cf98c 2008 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
2009 index = __find_msr_index(vmx, MSR_TSC_AUX);
2010 if (index >= 0 && vmx->rdtscp_enabled)
2011 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2012 /*
8c06585d 2013 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2014 * if efer.sce is enabled.
2015 */
8c06585d 2016 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2017 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2018 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2019 }
2020#endif
92c0d900
AK
2021 index = __find_msr_index(vmx, MSR_EFER);
2022 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2023 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2024
26bb0981 2025 vmx->save_nmsrs = save_nmsrs;
5897297b 2026
8d14695f
YZ
2027 if (cpu_has_vmx_msr_bitmap())
2028 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2029}
2030
6aa8b732
AK
2031/*
2032 * reads and returns guest's timestamp counter "register"
2033 * guest_tsc = host_tsc + tsc_offset -- 21.3
2034 */
2035static u64 guest_read_tsc(void)
2036{
2037 u64 host_tsc, tsc_offset;
2038
2039 rdtscll(host_tsc);
2040 tsc_offset = vmcs_read64(TSC_OFFSET);
2041 return host_tsc + tsc_offset;
2042}
2043
d5c1785d
NHE
2044/*
2045 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2046 * counter, even if a nested guest (L2) is currently running.
2047 */
886b470c 2048u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
d5c1785d 2049{
886b470c 2050 u64 tsc_offset;
d5c1785d 2051
d5c1785d
NHE
2052 tsc_offset = is_guest_mode(vcpu) ?
2053 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2054 vmcs_read64(TSC_OFFSET);
2055 return host_tsc + tsc_offset;
2056}
2057
4051b188 2058/*
cc578287
ZA
2059 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2060 * software catchup for faster rates on slower CPUs.
4051b188 2061 */
cc578287 2062static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
4051b188 2063{
cc578287
ZA
2064 if (!scale)
2065 return;
2066
2067 if (user_tsc_khz > tsc_khz) {
2068 vcpu->arch.tsc_catchup = 1;
2069 vcpu->arch.tsc_always_catchup = 1;
2070 } else
2071 WARN(1, "user requested TSC rate below hardware speed\n");
4051b188
JR
2072}
2073
ba904635
WA
2074static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2075{
2076 return vmcs_read64(TSC_OFFSET);
2077}
2078
6aa8b732 2079/*
99e3e30a 2080 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2081 */
99e3e30a 2082static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2083{
27fc51b2 2084 if (is_guest_mode(vcpu)) {
7991825b 2085 /*
27fc51b2
NHE
2086 * We're here if L1 chose not to trap WRMSR to TSC. According
2087 * to the spec, this should set L1's TSC; The offset that L1
2088 * set for L2 remains unchanged, and still needs to be added
2089 * to the newly set TSC to get L2's TSC.
7991825b 2090 */
27fc51b2
NHE
2091 struct vmcs12 *vmcs12;
2092 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2093 /* recalculate vmcs02.TSC_OFFSET: */
2094 vmcs12 = get_vmcs12(vcpu);
2095 vmcs_write64(TSC_OFFSET, offset +
2096 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2097 vmcs12->tsc_offset : 0));
2098 } else {
2099 vmcs_write64(TSC_OFFSET, offset);
2100 }
6aa8b732
AK
2101}
2102
f1e2b260 2103static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
e48672fa
ZA
2104{
2105 u64 offset = vmcs_read64(TSC_OFFSET);
2106 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
2107 if (is_guest_mode(vcpu)) {
2108 /* Even when running L2, the adjustment needs to apply to L1 */
2109 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2110 }
e48672fa
ZA
2111}
2112
857e4099
JR
2113static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2114{
2115 return target_tsc - native_read_tsc();
2116}
2117
801d3424
NHE
2118static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2119{
2120 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2121 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2122}
2123
2124/*
2125 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2126 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2127 * all guests if the "nested" module option is off, and can also be disabled
2128 * for a single guest by disabling its VMX cpuid bit.
2129 */
2130static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2131{
2132 return nested && guest_cpuid_has_vmx(vcpu);
2133}
2134
b87a51ae
NHE
2135/*
2136 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2137 * returned for the various VMX controls MSRs when nested VMX is enabled.
2138 * The same values should also be used to verify that vmcs12 control fields are
2139 * valid during nested entry from L1 to L2.
2140 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2141 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2142 * bit in the high half is on if the corresponding bit in the control field
2143 * may be on. See also vmx_control_verify().
2144 * TODO: allow these variables to be modified (downgraded) by module options
2145 * or other means.
2146 */
2147static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2148static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2149static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2150static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2151static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
c18911a2 2152static u32 nested_vmx_misc_low, nested_vmx_misc_high;
b87a51ae
NHE
2153static __init void nested_vmx_setup_ctls_msrs(void)
2154{
2155 /*
2156 * Note that as a general rule, the high half of the MSRs (bits in
2157 * the control fields which may be 1) should be initialized by the
2158 * intersection of the underlying hardware's MSR (i.e., features which
2159 * can be supported) and the list of features we want to expose -
2160 * because they are known to be properly supported in our code.
2161 * Also, usually, the low half of the MSRs (bits which must be 1) can
2162 * be set to 0, meaning that L1 may turn off any of these bits. The
2163 * reason is that if one of these bits is necessary, it will appear
2164 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2165 * fields of vmcs01 and vmcs02, will turn these bits off - and
2166 * nested_vmx_exit_handled() will not pass related exits to L1.
2167 * These rules have exceptions below.
2168 */
2169
2170 /* pin-based controls */
eabeaacc
JK
2171 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2172 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
b87a51ae
NHE
2173 /*
2174 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2175 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2176 */
eabeaacc
JK
2177 nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2178 nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
0238ea91
JK
2179 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
2180 PIN_BASED_VMX_PREEMPTION_TIMER;
eabeaacc 2181 nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae 2182
33fb20c3
JK
2183 /*
2184 * Exit controls
2185 * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2186 * 17 must be 1.
2187 */
2188 nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b6f1250e 2189 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
b87a51ae
NHE
2190#ifdef CONFIG_X86_64
2191 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
2192#else
2193 nested_vmx_exit_ctls_high = 0;
2194#endif
33fb20c3 2195 nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
2196
2197 /* entry controls */
2198 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2199 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
33fb20c3
JK
2200 /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2201 nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
2202 nested_vmx_entry_ctls_high &=
2203 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
33fb20c3 2204 nested_vmx_entry_ctls_high |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
2205
2206 /* cpu-based controls */
2207 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2208 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2209 nested_vmx_procbased_ctls_low = 0;
2210 nested_vmx_procbased_ctls_high &=
2211 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2212 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2213 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2214 CPU_BASED_CR3_STORE_EXITING |
2215#ifdef CONFIG_X86_64
2216 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2217#endif
2218 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2219 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
dbcb4e79 2220 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
d6851fbe 2221 CPU_BASED_PAUSE_EXITING |
b87a51ae
NHE
2222 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2223 /*
2224 * We can allow some features even when not supported by the
2225 * hardware. For example, L1 can specify an MSR bitmap - and we
2226 * can use it to avoid exits to L1 - even when L0 runs L2
2227 * without MSR bitmaps.
2228 */
2229 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2230
2231 /* secondary cpu-based controls */
2232 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2233 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2234 nested_vmx_secondary_ctls_low = 0;
2235 nested_vmx_secondary_ctls_high &=
d6851fbe
JK
2236 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2237 SECONDARY_EXEC_WBINVD_EXITING;
c18911a2
JK
2238
2239 /* miscellaneous data */
2240 rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
0238ea91
JK
2241 nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
2242 VMX_MISC_SAVE_EFER_LMA;
c18911a2 2243 nested_vmx_misc_high = 0;
b87a51ae
NHE
2244}
2245
2246static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2247{
2248 /*
2249 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2250 */
2251 return ((control & high) | low) == control;
2252}
2253
2254static inline u64 vmx_control_msr(u32 low, u32 high)
2255{
2256 return low | ((u64)high << 32);
2257}
2258
2259/*
2260 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2261 * also let it use VMX-specific MSRs.
2262 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2263 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2264 * like all other MSRs).
2265 */
2266static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2267{
2268 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2269 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2270 /*
2271 * According to the spec, processors which do not support VMX
2272 * should throw a #GP(0) when VMX capability MSRs are read.
2273 */
2274 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2275 return 1;
2276 }
2277
2278 switch (msr_index) {
2279 case MSR_IA32_FEATURE_CONTROL:
2280 *pdata = 0;
2281 break;
2282 case MSR_IA32_VMX_BASIC:
2283 /*
2284 * This MSR reports some information about VMX support. We
2285 * should return information about the VMX we emulate for the
2286 * guest, and the VMCS structure we give it - not about the
2287 * VMX support of the underlying hardware.
2288 */
2289 *pdata = VMCS12_REVISION |
2290 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2291 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2292 break;
2293 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2294 case MSR_IA32_VMX_PINBASED_CTLS:
2295 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2296 nested_vmx_pinbased_ctls_high);
2297 break;
2298 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2299 case MSR_IA32_VMX_PROCBASED_CTLS:
2300 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2301 nested_vmx_procbased_ctls_high);
2302 break;
2303 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2304 case MSR_IA32_VMX_EXIT_CTLS:
2305 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2306 nested_vmx_exit_ctls_high);
2307 break;
2308 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2309 case MSR_IA32_VMX_ENTRY_CTLS:
2310 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2311 nested_vmx_entry_ctls_high);
2312 break;
2313 case MSR_IA32_VMX_MISC:
c18911a2
JK
2314 *pdata = vmx_control_msr(nested_vmx_misc_low,
2315 nested_vmx_misc_high);
b87a51ae
NHE
2316 break;
2317 /*
2318 * These MSRs specify bits which the guest must keep fixed (on or off)
2319 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2320 * We picked the standard core2 setting.
2321 */
2322#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2323#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2324 case MSR_IA32_VMX_CR0_FIXED0:
2325 *pdata = VMXON_CR0_ALWAYSON;
2326 break;
2327 case MSR_IA32_VMX_CR0_FIXED1:
2328 *pdata = -1ULL;
2329 break;
2330 case MSR_IA32_VMX_CR4_FIXED0:
2331 *pdata = VMXON_CR4_ALWAYSON;
2332 break;
2333 case MSR_IA32_VMX_CR4_FIXED1:
2334 *pdata = -1ULL;
2335 break;
2336 case MSR_IA32_VMX_VMCS_ENUM:
2337 *pdata = 0x1f;
2338 break;
2339 case MSR_IA32_VMX_PROCBASED_CTLS2:
2340 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2341 nested_vmx_secondary_ctls_high);
2342 break;
2343 case MSR_IA32_VMX_EPT_VPID_CAP:
2344 /* Currently, no nested ept or nested vpid */
2345 *pdata = 0;
2346 break;
2347 default:
2348 return 0;
2349 }
2350
2351 return 1;
2352}
2353
2354static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2355{
2356 if (!nested_vmx_allowed(vcpu))
2357 return 0;
2358
2359 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2360 /* TODO: the right thing. */
2361 return 1;
2362 /*
2363 * No need to treat VMX capability MSRs specially: If we don't handle
2364 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2365 */
2366 return 0;
2367}
2368
6aa8b732
AK
2369/*
2370 * Reads an msr value (of 'msr_index') into 'pdata'.
2371 * Returns 0 on success, non-0 otherwise.
2372 * Assumes vcpu_load() was already called.
2373 */
2374static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2375{
2376 u64 data;
26bb0981 2377 struct shared_msr_entry *msr;
6aa8b732
AK
2378
2379 if (!pdata) {
2380 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2381 return -EINVAL;
2382 }
2383
2384 switch (msr_index) {
05b3e0c2 2385#ifdef CONFIG_X86_64
6aa8b732
AK
2386 case MSR_FS_BASE:
2387 data = vmcs_readl(GUEST_FS_BASE);
2388 break;
2389 case MSR_GS_BASE:
2390 data = vmcs_readl(GUEST_GS_BASE);
2391 break;
44ea2b17
AK
2392 case MSR_KERNEL_GS_BASE:
2393 vmx_load_host_state(to_vmx(vcpu));
2394 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2395 break;
26bb0981 2396#endif
6aa8b732 2397 case MSR_EFER:
3bab1f5d 2398 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 2399 case MSR_IA32_TSC:
6aa8b732
AK
2400 data = guest_read_tsc();
2401 break;
2402 case MSR_IA32_SYSENTER_CS:
2403 data = vmcs_read32(GUEST_SYSENTER_CS);
2404 break;
2405 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2406 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2407 break;
2408 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2409 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2410 break;
4e47c7a6
SY
2411 case MSR_TSC_AUX:
2412 if (!to_vmx(vcpu)->rdtscp_enabled)
2413 return 1;
2414 /* Otherwise falls through */
6aa8b732 2415 default:
b87a51ae
NHE
2416 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2417 return 0;
8b9cf98c 2418 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d
AK
2419 if (msr) {
2420 data = msr->data;
2421 break;
6aa8b732 2422 }
3bab1f5d 2423 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
2424 }
2425
2426 *pdata = data;
2427 return 0;
2428}
2429
2430/*
2431 * Writes msr value into into the appropriate "register".
2432 * Returns 0 on success, non-0 otherwise.
2433 * Assumes vcpu_load() was already called.
2434 */
8fe8ab46 2435static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2436{
a2fa3e9f 2437 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2438 struct shared_msr_entry *msr;
2cc51560 2439 int ret = 0;
8fe8ab46
WA
2440 u32 msr_index = msr_info->index;
2441 u64 data = msr_info->data;
2cc51560 2442
6aa8b732 2443 switch (msr_index) {
3bab1f5d 2444 case MSR_EFER:
8fe8ab46 2445 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 2446 break;
16175a79 2447#ifdef CONFIG_X86_64
6aa8b732 2448 case MSR_FS_BASE:
2fb92db1 2449 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2450 vmcs_writel(GUEST_FS_BASE, data);
2451 break;
2452 case MSR_GS_BASE:
2fb92db1 2453 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2454 vmcs_writel(GUEST_GS_BASE, data);
2455 break;
44ea2b17
AK
2456 case MSR_KERNEL_GS_BASE:
2457 vmx_load_host_state(vmx);
2458 vmx->msr_guest_kernel_gs_base = data;
2459 break;
6aa8b732
AK
2460#endif
2461 case MSR_IA32_SYSENTER_CS:
2462 vmcs_write32(GUEST_SYSENTER_CS, data);
2463 break;
2464 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2465 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2466 break;
2467 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2468 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2469 break;
af24a4e4 2470 case MSR_IA32_TSC:
8fe8ab46 2471 kvm_write_tsc(vcpu, msr_info);
6aa8b732 2472 break;
468d472f
SY
2473 case MSR_IA32_CR_PAT:
2474 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2475 vmcs_write64(GUEST_IA32_PAT, data);
2476 vcpu->arch.pat = data;
2477 break;
2478 }
8fe8ab46 2479 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2480 break;
ba904635
WA
2481 case MSR_IA32_TSC_ADJUST:
2482 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6
SY
2483 break;
2484 case MSR_TSC_AUX:
2485 if (!vmx->rdtscp_enabled)
2486 return 1;
2487 /* Check reserved bit, higher 32 bits should be zero */
2488 if ((data >> 32) != 0)
2489 return 1;
2490 /* Otherwise falls through */
6aa8b732 2491 default:
b87a51ae
NHE
2492 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2493 break;
8b9cf98c 2494 msr = find_msr_entry(vmx, msr_index);
3bab1f5d
AK
2495 if (msr) {
2496 msr->data = data;
2225fd56
AK
2497 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2498 preempt_disable();
9ee73970
AK
2499 kvm_set_shared_msr(msr->index, msr->data,
2500 msr->mask);
2225fd56
AK
2501 preempt_enable();
2502 }
3bab1f5d 2503 break;
6aa8b732 2504 }
8fe8ab46 2505 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
2506 }
2507
2cc51560 2508 return ret;
6aa8b732
AK
2509}
2510
5fdbf976 2511static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2512{
5fdbf976
MT
2513 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2514 switch (reg) {
2515 case VCPU_REGS_RSP:
2516 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2517 break;
2518 case VCPU_REGS_RIP:
2519 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2520 break;
6de4f3ad
AK
2521 case VCPU_EXREG_PDPTR:
2522 if (enable_ept)
2523 ept_save_pdptrs(vcpu);
2524 break;
5fdbf976
MT
2525 default:
2526 break;
2527 }
6aa8b732
AK
2528}
2529
6aa8b732
AK
2530static __init int cpu_has_kvm_support(void)
2531{
6210e37b 2532 return cpu_has_vmx();
6aa8b732
AK
2533}
2534
2535static __init int vmx_disabled_by_bios(void)
2536{
2537 u64 msr;
2538
2539 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2540 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2541 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2542 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2543 && tboot_enabled())
2544 return 1;
23f3e991 2545 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2546 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2547 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2548 && !tboot_enabled()) {
2549 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2550 "activate TXT before enabling KVM\n");
cafd6659 2551 return 1;
f9335afe 2552 }
23f3e991
JC
2553 /* launched w/o TXT and VMX disabled */
2554 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2555 && !tboot_enabled())
2556 return 1;
cafd6659
SW
2557 }
2558
2559 return 0;
6aa8b732
AK
2560}
2561
7725b894
DX
2562static void kvm_cpu_vmxon(u64 addr)
2563{
2564 asm volatile (ASM_VMX_VMXON_RAX
2565 : : "a"(&addr), "m"(addr)
2566 : "memory", "cc");
2567}
2568
10474ae8 2569static int hardware_enable(void *garbage)
6aa8b732
AK
2570{
2571 int cpu = raw_smp_processor_id();
2572 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2573 u64 old, test_bits;
6aa8b732 2574
10474ae8
AG
2575 if (read_cr4() & X86_CR4_VMXE)
2576 return -EBUSY;
2577
d462b819 2578 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76
ZY
2579
2580 /*
2581 * Now we can enable the vmclear operation in kdump
2582 * since the loaded_vmcss_on_cpu list on this cpu
2583 * has been initialized.
2584 *
2585 * Though the cpu is not in VMX operation now, there
2586 * is no problem to enable the vmclear operation
2587 * for the loaded_vmcss_on_cpu list is empty!
2588 */
2589 crash_enable_local_vmclear(cpu);
2590
6aa8b732 2591 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2592
2593 test_bits = FEATURE_CONTROL_LOCKED;
2594 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2595 if (tboot_enabled())
2596 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2597
2598 if ((old & test_bits) != test_bits) {
6aa8b732 2599 /* enable and lock */
cafd6659
SW
2600 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2601 }
66aee91a 2602 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
10474ae8 2603
4610c9cc
DX
2604 if (vmm_exclusive) {
2605 kvm_cpu_vmxon(phys_addr);
2606 ept_sync_global();
2607 }
10474ae8 2608
3444d7da
AK
2609 store_gdt(&__get_cpu_var(host_gdt));
2610
10474ae8 2611 return 0;
6aa8b732
AK
2612}
2613
d462b819 2614static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2615{
2616 int cpu = raw_smp_processor_id();
d462b819 2617 struct loaded_vmcs *v, *n;
543e4243 2618
d462b819
NHE
2619 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2620 loaded_vmcss_on_cpu_link)
2621 __loaded_vmcs_clear(v);
543e4243
AK
2622}
2623
710ff4a8
EH
2624
2625/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2626 * tricks.
2627 */
2628static void kvm_cpu_vmxoff(void)
6aa8b732 2629{
4ecac3fd 2630 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2631}
2632
710ff4a8
EH
2633static void hardware_disable(void *garbage)
2634{
4610c9cc 2635 if (vmm_exclusive) {
d462b819 2636 vmclear_local_loaded_vmcss();
4610c9cc
DX
2637 kvm_cpu_vmxoff();
2638 }
7725b894 2639 write_cr4(read_cr4() & ~X86_CR4_VMXE);
710ff4a8
EH
2640}
2641
1c3d14fe 2642static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2643 u32 msr, u32 *result)
1c3d14fe
YS
2644{
2645 u32 vmx_msr_low, vmx_msr_high;
2646 u32 ctl = ctl_min | ctl_opt;
2647
2648 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2649
2650 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2651 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2652
2653 /* Ensure minimum (required) set of control bits are supported. */
2654 if (ctl_min & ~ctl)
002c7f7c 2655 return -EIO;
1c3d14fe
YS
2656
2657 *result = ctl;
2658 return 0;
2659}
2660
110312c8
AK
2661static __init bool allow_1_setting(u32 msr, u32 ctl)
2662{
2663 u32 vmx_msr_low, vmx_msr_high;
2664
2665 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2666 return vmx_msr_high & ctl;
2667}
2668
002c7f7c 2669static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2670{
2671 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2672 u32 min, opt, min2, opt2;
1c3d14fe
YS
2673 u32 _pin_based_exec_control = 0;
2674 u32 _cpu_based_exec_control = 0;
f78e0e2e 2675 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2676 u32 _vmexit_control = 0;
2677 u32 _vmentry_control = 0;
2678
10166744 2679 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
2680#ifdef CONFIG_X86_64
2681 CPU_BASED_CR8_LOAD_EXITING |
2682 CPU_BASED_CR8_STORE_EXITING |
2683#endif
d56f546d
SY
2684 CPU_BASED_CR3_LOAD_EXITING |
2685 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2686 CPU_BASED_USE_IO_BITMAPS |
2687 CPU_BASED_MOV_DR_EXITING |
a7052897 2688 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2689 CPU_BASED_MWAIT_EXITING |
2690 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
2691 CPU_BASED_INVLPG_EXITING |
2692 CPU_BASED_RDPMC_EXITING;
443381a8 2693
f78e0e2e 2694 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2695 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2696 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2697 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2698 &_cpu_based_exec_control) < 0)
002c7f7c 2699 return -EIO;
6e5d865c
YS
2700#ifdef CONFIG_X86_64
2701 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2702 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2703 ~CPU_BASED_CR8_STORE_EXITING;
2704#endif
f78e0e2e 2705 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
2706 min2 = 0;
2707 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 2708 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 2709 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 2710 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 2711 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 2712 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 2713 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 2714 SECONDARY_EXEC_RDTSCP |
83d4c286 2715 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 2716 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58
AG
2717 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2718 SECONDARY_EXEC_SHADOW_VMCS;
d56f546d
SY
2719 if (adjust_vmx_controls(min2, opt2,
2720 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
2721 &_cpu_based_2nd_exec_control) < 0)
2722 return -EIO;
2723 }
2724#ifndef CONFIG_X86_64
2725 if (!(_cpu_based_2nd_exec_control &
2726 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2727 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2728#endif
83d4c286
YZ
2729
2730 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2731 _cpu_based_2nd_exec_control &= ~(
8d14695f 2732 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
2733 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2734 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 2735
d56f546d 2736 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
2737 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2738 enabled */
5fff7d27
GN
2739 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2740 CPU_BASED_CR3_STORE_EXITING |
2741 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
2742 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2743 vmx_capability.ept, vmx_capability.vpid);
2744 }
1c3d14fe
YS
2745
2746 min = 0;
2747#ifdef CONFIG_X86_64
2748 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2749#endif
a547c6db
YZ
2750 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2751 VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
2752 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2753 &_vmexit_control) < 0)
002c7f7c 2754 return -EIO;
1c3d14fe 2755
01e439be
YZ
2756 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2757 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2758 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2759 &_pin_based_exec_control) < 0)
2760 return -EIO;
2761
2762 if (!(_cpu_based_2nd_exec_control &
2763 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2764 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2765 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2766
468d472f
SY
2767 min = 0;
2768 opt = VM_ENTRY_LOAD_IA32_PAT;
1c3d14fe
YS
2769 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2770 &_vmentry_control) < 0)
002c7f7c 2771 return -EIO;
6aa8b732 2772
c68876fd 2773 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
2774
2775 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2776 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 2777 return -EIO;
1c3d14fe
YS
2778
2779#ifdef CONFIG_X86_64
2780 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2781 if (vmx_msr_high & (1u<<16))
002c7f7c 2782 return -EIO;
1c3d14fe
YS
2783#endif
2784
2785 /* Require Write-Back (WB) memory type for VMCS accesses. */
2786 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 2787 return -EIO;
1c3d14fe 2788
002c7f7c
YS
2789 vmcs_conf->size = vmx_msr_high & 0x1fff;
2790 vmcs_conf->order = get_order(vmcs_config.size);
2791 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 2792
002c7f7c
YS
2793 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2794 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 2795 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
2796 vmcs_conf->vmexit_ctrl = _vmexit_control;
2797 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 2798
110312c8
AK
2799 cpu_has_load_ia32_efer =
2800 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2801 VM_ENTRY_LOAD_IA32_EFER)
2802 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2803 VM_EXIT_LOAD_IA32_EFER);
2804
8bf00a52
GN
2805 cpu_has_load_perf_global_ctrl =
2806 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2807 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2808 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2809 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2810
2811 /*
2812 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2813 * but due to arrata below it can't be used. Workaround is to use
2814 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2815 *
2816 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2817 *
2818 * AAK155 (model 26)
2819 * AAP115 (model 30)
2820 * AAT100 (model 37)
2821 * BC86,AAY89,BD102 (model 44)
2822 * BA97 (model 46)
2823 *
2824 */
2825 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2826 switch (boot_cpu_data.x86_model) {
2827 case 26:
2828 case 30:
2829 case 37:
2830 case 44:
2831 case 46:
2832 cpu_has_load_perf_global_ctrl = false;
2833 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2834 "does not work properly. Using workaround\n");
2835 break;
2836 default:
2837 break;
2838 }
2839 }
2840
1c3d14fe 2841 return 0;
c68876fd 2842}
6aa8b732
AK
2843
2844static struct vmcs *alloc_vmcs_cpu(int cpu)
2845{
2846 int node = cpu_to_node(cpu);
2847 struct page *pages;
2848 struct vmcs *vmcs;
2849
6484eb3e 2850 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
2851 if (!pages)
2852 return NULL;
2853 vmcs = page_address(pages);
1c3d14fe
YS
2854 memset(vmcs, 0, vmcs_config.size);
2855 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
2856 return vmcs;
2857}
2858
2859static struct vmcs *alloc_vmcs(void)
2860{
d3b2c338 2861 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
2862}
2863
2864static void free_vmcs(struct vmcs *vmcs)
2865{
1c3d14fe 2866 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
2867}
2868
d462b819
NHE
2869/*
2870 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2871 */
2872static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2873{
2874 if (!loaded_vmcs->vmcs)
2875 return;
2876 loaded_vmcs_clear(loaded_vmcs);
2877 free_vmcs(loaded_vmcs->vmcs);
2878 loaded_vmcs->vmcs = NULL;
2879}
2880
39959588 2881static void free_kvm_area(void)
6aa8b732
AK
2882{
2883 int cpu;
2884
3230bb47 2885 for_each_possible_cpu(cpu) {
6aa8b732 2886 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
2887 per_cpu(vmxarea, cpu) = NULL;
2888 }
6aa8b732
AK
2889}
2890
6aa8b732
AK
2891static __init int alloc_kvm_area(void)
2892{
2893 int cpu;
2894
3230bb47 2895 for_each_possible_cpu(cpu) {
6aa8b732
AK
2896 struct vmcs *vmcs;
2897
2898 vmcs = alloc_vmcs_cpu(cpu);
2899 if (!vmcs) {
2900 free_kvm_area();
2901 return -ENOMEM;
2902 }
2903
2904 per_cpu(vmxarea, cpu) = vmcs;
2905 }
2906 return 0;
2907}
2908
2909static __init int hardware_setup(void)
2910{
002c7f7c
YS
2911 if (setup_vmcs_config(&vmcs_config) < 0)
2912 return -EIO;
50a37eb4
JR
2913
2914 if (boot_cpu_has(X86_FEATURE_NX))
2915 kvm_enable_efer_bits(EFER_NX);
2916
93ba03c2
SY
2917 if (!cpu_has_vmx_vpid())
2918 enable_vpid = 0;
abc4fc58
AG
2919 if (!cpu_has_vmx_shadow_vmcs())
2920 enable_shadow_vmcs = 0;
93ba03c2 2921
4bc9b982
SY
2922 if (!cpu_has_vmx_ept() ||
2923 !cpu_has_vmx_ept_4levels()) {
93ba03c2 2924 enable_ept = 0;
3a624e29 2925 enable_unrestricted_guest = 0;
83c3a331 2926 enable_ept_ad_bits = 0;
3a624e29
NK
2927 }
2928
83c3a331
XH
2929 if (!cpu_has_vmx_ept_ad_bits())
2930 enable_ept_ad_bits = 0;
2931
3a624e29
NK
2932 if (!cpu_has_vmx_unrestricted_guest())
2933 enable_unrestricted_guest = 0;
93ba03c2
SY
2934
2935 if (!cpu_has_vmx_flexpriority())
2936 flexpriority_enabled = 0;
2937
95ba8273
GN
2938 if (!cpu_has_vmx_tpr_shadow())
2939 kvm_x86_ops->update_cr8_intercept = NULL;
2940
54dee993
MT
2941 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2942 kvm_disable_largepages();
2943
4b8d54f9
ZE
2944 if (!cpu_has_vmx_ple())
2945 ple_gap = 0;
2946
01e439be
YZ
2947 if (!cpu_has_vmx_apicv())
2948 enable_apicv = 0;
c7c9c56c 2949
01e439be 2950 if (enable_apicv)
c7c9c56c 2951 kvm_x86_ops->update_cr8_intercept = NULL;
a20ed54d 2952 else {
c7c9c56c 2953 kvm_x86_ops->hwapic_irr_update = NULL;
a20ed54d
YZ
2954 kvm_x86_ops->deliver_posted_interrupt = NULL;
2955 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
2956 }
83d4c286 2957
b87a51ae
NHE
2958 if (nested)
2959 nested_vmx_setup_ctls_msrs();
2960
6aa8b732
AK
2961 return alloc_kvm_area();
2962}
2963
2964static __exit void hardware_unsetup(void)
2965{
2966 free_kvm_area();
2967}
2968
14168786
GN
2969static bool emulation_required(struct kvm_vcpu *vcpu)
2970{
2971 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2972}
2973
91b0aa2c 2974static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 2975 struct kvm_segment *save)
6aa8b732 2976{
d99e4152
GN
2977 if (!emulate_invalid_guest_state) {
2978 /*
2979 * CS and SS RPL should be equal during guest entry according
2980 * to VMX spec, but in reality it is not always so. Since vcpu
2981 * is in the middle of the transition from real mode to
2982 * protected mode it is safe to assume that RPL 0 is a good
2983 * default value.
2984 */
2985 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2986 save->selector &= ~SELECTOR_RPL_MASK;
2987 save->dpl = save->selector & SELECTOR_RPL_MASK;
2988 save->s = 1;
6aa8b732 2989 }
d99e4152 2990 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
2991}
2992
2993static void enter_pmode(struct kvm_vcpu *vcpu)
2994{
2995 unsigned long flags;
a89a8fb9 2996 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2997
d99e4152
GN
2998 /*
2999 * Update real mode segment cache. It may be not up-to-date if sement
3000 * register was written while vcpu was in a guest mode.
3001 */
3002 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3003 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3004 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3005 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3006 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3007 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3008
7ffd92c5 3009 vmx->rmode.vm86_active = 0;
6aa8b732 3010
2fb92db1
AK
3011 vmx_segment_cache_clear(vmx);
3012
f5f7b2fe 3013 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3014
3015 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3016 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3017 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3018 vmcs_writel(GUEST_RFLAGS, flags);
3019
66aee91a
RR
3020 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3021 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3022
3023 update_exception_bitmap(vcpu);
3024
91b0aa2c
GN
3025 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3026 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3027 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3028 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3029 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3030 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
1f3141e8
GN
3031
3032 /* CPL is always 0 when CPU enters protected mode */
3033 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3034 vmx->cpl = 0;
6aa8b732
AK
3035}
3036
f5f7b2fe 3037static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3038{
772e0318 3039 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3040 struct kvm_segment var = *save;
3041
3042 var.dpl = 0x3;
3043 if (seg == VCPU_SREG_CS)
3044 var.type = 0x3;
3045
3046 if (!emulate_invalid_guest_state) {
3047 var.selector = var.base >> 4;
3048 var.base = var.base & 0xffff0;
3049 var.limit = 0xffff;
3050 var.g = 0;
3051 var.db = 0;
3052 var.present = 1;
3053 var.s = 1;
3054 var.l = 0;
3055 var.unusable = 0;
3056 var.type = 0x3;
3057 var.avl = 0;
3058 if (save->base & 0xf)
3059 printk_once(KERN_WARNING "kvm: segment base is not "
3060 "paragraph aligned when entering "
3061 "protected mode (seg=%d)", seg);
3062 }
6aa8b732 3063
d99e4152
GN
3064 vmcs_write16(sf->selector, var.selector);
3065 vmcs_write32(sf->base, var.base);
3066 vmcs_write32(sf->limit, var.limit);
3067 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3068}
3069
3070static void enter_rmode(struct kvm_vcpu *vcpu)
3071{
3072 unsigned long flags;
a89a8fb9 3073 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3074
f5f7b2fe
AK
3075 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3076 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3077 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3078 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3079 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3080 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3081 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3082
7ffd92c5 3083 vmx->rmode.vm86_active = 1;
6aa8b732 3084
776e58ea
GN
3085 /*
3086 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3087 * vcpu. Warn the user that an update is overdue.
776e58ea 3088 */
4918c6ca 3089 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3090 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3091 "called before entering vcpu\n");
776e58ea 3092
2fb92db1
AK
3093 vmx_segment_cache_clear(vmx);
3094
4918c6ca 3095 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3096 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3097 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3098
3099 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3100 vmx->rmode.save_rflags = flags;
6aa8b732 3101
053de044 3102 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3103
3104 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3105 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3106 update_exception_bitmap(vcpu);
3107
d99e4152
GN
3108 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3109 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3110 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3111 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3112 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3113 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3114
8668a3c4 3115 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3116}
3117
401d10de
AS
3118static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3119{
3120 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3121 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3122
3123 if (!msr)
3124 return;
401d10de 3125
44ea2b17
AK
3126 /*
3127 * Force kernel_gs_base reloading before EFER changes, as control
3128 * of this msr depends on is_long_mode().
3129 */
3130 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3131 vcpu->arch.efer = efer;
401d10de
AS
3132 if (efer & EFER_LMA) {
3133 vmcs_write32(VM_ENTRY_CONTROLS,
3134 vmcs_read32(VM_ENTRY_CONTROLS) |
3135 VM_ENTRY_IA32E_MODE);
3136 msr->data = efer;
3137 } else {
3138 vmcs_write32(VM_ENTRY_CONTROLS,
3139 vmcs_read32(VM_ENTRY_CONTROLS) &
3140 ~VM_ENTRY_IA32E_MODE);
3141
3142 msr->data = efer & ~EFER_LME;
3143 }
3144 setup_msrs(vmx);
3145}
3146
05b3e0c2 3147#ifdef CONFIG_X86_64
6aa8b732
AK
3148
3149static void enter_lmode(struct kvm_vcpu *vcpu)
3150{
3151 u32 guest_tr_ar;
3152
2fb92db1
AK
3153 vmx_segment_cache_clear(to_vmx(vcpu));
3154
6aa8b732
AK
3155 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3156 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3157 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3158 __func__);
6aa8b732
AK
3159 vmcs_write32(GUEST_TR_AR_BYTES,
3160 (guest_tr_ar & ~AR_TYPE_MASK)
3161 | AR_TYPE_BUSY_64_TSS);
3162 }
da38f438 3163 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
3164}
3165
3166static void exit_lmode(struct kvm_vcpu *vcpu)
3167{
6aa8b732
AK
3168 vmcs_write32(VM_ENTRY_CONTROLS,
3169 vmcs_read32(VM_ENTRY_CONTROLS)
1e4e6e00 3170 & ~VM_ENTRY_IA32E_MODE);
da38f438 3171 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
3172}
3173
3174#endif
3175
2384d2b3
SY
3176static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3177{
b9d762fa 3178 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
3179 if (enable_ept) {
3180 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3181 return;
4e1096d2 3182 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 3183 }
2384d2b3
SY
3184}
3185
e8467fda
AK
3186static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3187{
3188 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3189
3190 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3191 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3192}
3193
aff48baa
AK
3194static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3195{
3196 if (enable_ept && is_paging(vcpu))
3197 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3198 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3199}
3200
25c4c276 3201static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 3202{
fc78f519
AK
3203 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3204
3205 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3206 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
3207}
3208
1439442c
SY
3209static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3210{
6de4f3ad
AK
3211 if (!test_bit(VCPU_EXREG_PDPTR,
3212 (unsigned long *)&vcpu->arch.regs_dirty))
3213 return;
3214
1439442c 3215 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
3216 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
3217 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
3218 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
3219 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1439442c
SY
3220 }
3221}
3222
8f5d549f
AK
3223static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3224{
3225 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
3226 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3227 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3228 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3229 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 3230 }
6de4f3ad
AK
3231
3232 __set_bit(VCPU_EXREG_PDPTR,
3233 (unsigned long *)&vcpu->arch.regs_avail);
3234 __set_bit(VCPU_EXREG_PDPTR,
3235 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
3236}
3237
5e1746d6 3238static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
3239
3240static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3241 unsigned long cr0,
3242 struct kvm_vcpu *vcpu)
3243{
5233dd51
MT
3244 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3245 vmx_decache_cr3(vcpu);
1439442c
SY
3246 if (!(cr0 & X86_CR0_PG)) {
3247 /* From paging/starting to nonpaging */
3248 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3249 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
3250 (CPU_BASED_CR3_LOAD_EXITING |
3251 CPU_BASED_CR3_STORE_EXITING));
3252 vcpu->arch.cr0 = cr0;
fc78f519 3253 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
3254 } else if (!is_paging(vcpu)) {
3255 /* From nonpaging to paging */
3256 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3257 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3258 ~(CPU_BASED_CR3_LOAD_EXITING |
3259 CPU_BASED_CR3_STORE_EXITING));
3260 vcpu->arch.cr0 = cr0;
fc78f519 3261 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3262 }
95eb84a7
SY
3263
3264 if (!(cr0 & X86_CR0_WP))
3265 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3266}
3267
6aa8b732
AK
3268static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3269{
7ffd92c5 3270 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3271 unsigned long hw_cr0;
3272
5037878e 3273 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 3274 if (enable_unrestricted_guest)
5037878e 3275 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 3276 else {
5037878e 3277 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 3278
218e763f
GN
3279 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3280 enter_pmode(vcpu);
6aa8b732 3281
218e763f
GN
3282 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3283 enter_rmode(vcpu);
3284 }
6aa8b732 3285
05b3e0c2 3286#ifdef CONFIG_X86_64
f6801dff 3287 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3288 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3289 enter_lmode(vcpu);
707d92fa 3290 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3291 exit_lmode(vcpu);
3292 }
3293#endif
3294
089d034e 3295 if (enable_ept)
1439442c
SY
3296 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3297
02daab21 3298 if (!vcpu->fpu_active)
81231c69 3299 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3300
6aa8b732 3301 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3302 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3303 vcpu->arch.cr0 = cr0;
14168786
GN
3304
3305 /* depends on vcpu->arch.cr0 to be set to a new value */
3306 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3307}
3308
1439442c
SY
3309static u64 construct_eptp(unsigned long root_hpa)
3310{
3311 u64 eptp;
3312
3313 /* TODO write the value reading from MSR */
3314 eptp = VMX_EPT_DEFAULT_MT |
3315 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3316 if (enable_ept_ad_bits)
3317 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3318 eptp |= (root_hpa & PAGE_MASK);
3319
3320 return eptp;
3321}
3322
6aa8b732
AK
3323static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3324{
1439442c
SY
3325 unsigned long guest_cr3;
3326 u64 eptp;
3327
3328 guest_cr3 = cr3;
089d034e 3329 if (enable_ept) {
1439442c
SY
3330 eptp = construct_eptp(cr3);
3331 vmcs_write64(EPT_POINTER, eptp);
9f8fe504 3332 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
b927a3ce 3333 vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3334 ept_load_pdptrs(vcpu);
1439442c
SY
3335 }
3336
2384d2b3 3337 vmx_flush_tlb(vcpu);
1439442c 3338 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3339}
3340
5e1746d6 3341static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3342{
7ffd92c5 3343 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
3344 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3345
5e1746d6
NHE
3346 if (cr4 & X86_CR4_VMXE) {
3347 /*
3348 * To use VMXON (and later other VMX instructions), a guest
3349 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3350 * So basically the check on whether to allow nested VMX
3351 * is here.
3352 */
3353 if (!nested_vmx_allowed(vcpu))
3354 return 1;
1a0d74e6
JK
3355 }
3356 if (to_vmx(vcpu)->nested.vmxon &&
3357 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
5e1746d6
NHE
3358 return 1;
3359
ad312c7c 3360 vcpu->arch.cr4 = cr4;
bc23008b
AK
3361 if (enable_ept) {
3362 if (!is_paging(vcpu)) {
3363 hw_cr4 &= ~X86_CR4_PAE;
3364 hw_cr4 |= X86_CR4_PSE;
c08800a5
DX
3365 /*
3366 * SMEP is disabled if CPU is in non-paging mode in
3367 * hardware. However KVM always uses paging mode to
3368 * emulate guest non-paging mode with TDP.
3369 * To emulate this behavior, SMEP needs to be manually
3370 * disabled when guest switches to non-paging mode.
3371 */
3372 hw_cr4 &= ~X86_CR4_SMEP;
bc23008b
AK
3373 } else if (!(cr4 & X86_CR4_PAE)) {
3374 hw_cr4 &= ~X86_CR4_PAE;
3375 }
3376 }
1439442c
SY
3377
3378 vmcs_writel(CR4_READ_SHADOW, cr4);
3379 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3380 return 0;
6aa8b732
AK
3381}
3382
6aa8b732
AK
3383static void vmx_get_segment(struct kvm_vcpu *vcpu,
3384 struct kvm_segment *var, int seg)
3385{
a9179499 3386 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
3387 u32 ar;
3388
c6ad1153 3389 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 3390 *var = vmx->rmode.segs[seg];
a9179499 3391 if (seg == VCPU_SREG_TR
2fb92db1 3392 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 3393 return;
1390a28b
AK
3394 var->base = vmx_read_guest_seg_base(vmx, seg);
3395 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3396 return;
a9179499 3397 }
2fb92db1
AK
3398 var->base = vmx_read_guest_seg_base(vmx, seg);
3399 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3400 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3401 ar = vmx_read_guest_seg_ar(vmx, seg);
6aa8b732
AK
3402 var->type = ar & 15;
3403 var->s = (ar >> 4) & 1;
3404 var->dpl = (ar >> 5) & 3;
3405 var->present = (ar >> 7) & 1;
3406 var->avl = (ar >> 12) & 1;
3407 var->l = (ar >> 13) & 1;
3408 var->db = (ar >> 14) & 1;
3409 var->g = (ar >> 15) & 1;
3410 var->unusable = (ar >> 16) & 1;
3411}
3412
a9179499
AK
3413static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3414{
a9179499
AK
3415 struct kvm_segment s;
3416
3417 if (to_vmx(vcpu)->rmode.vm86_active) {
3418 vmx_get_segment(vcpu, &s, seg);
3419 return s.base;
3420 }
2fb92db1 3421 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3422}
3423
b09408d0 3424static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3425{
b09408d0
MT
3426 struct vcpu_vmx *vmx = to_vmx(vcpu);
3427
3eeb3288 3428 if (!is_protmode(vcpu))
2e4d2653
IE
3429 return 0;
3430
f4c63e5d
AK
3431 if (!is_long_mode(vcpu)
3432 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2e4d2653
IE
3433 return 3;
3434
69c73028
AK
3435 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3436 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
b09408d0 3437 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
69c73028 3438 }
d881e6f6
AK
3439
3440 return vmx->cpl;
69c73028
AK
3441}
3442
3443
653e3108 3444static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3445{
6aa8b732
AK
3446 u32 ar;
3447
f0495f9b 3448 if (var->unusable || !var->present)
6aa8b732
AK
3449 ar = 1 << 16;
3450 else {
3451 ar = var->type & 15;
3452 ar |= (var->s & 1) << 4;
3453 ar |= (var->dpl & 3) << 5;
3454 ar |= (var->present & 1) << 7;
3455 ar |= (var->avl & 1) << 12;
3456 ar |= (var->l & 1) << 13;
3457 ar |= (var->db & 1) << 14;
3458 ar |= (var->g & 1) << 15;
3459 }
653e3108
AK
3460
3461 return ar;
3462}
3463
3464static void vmx_set_segment(struct kvm_vcpu *vcpu,
3465 struct kvm_segment *var, int seg)
3466{
7ffd92c5 3467 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 3468 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 3469
2fb92db1 3470 vmx_segment_cache_clear(vmx);
2f143240
GN
3471 if (seg == VCPU_SREG_CS)
3472 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2fb92db1 3473
1ecd50a9
GN
3474 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3475 vmx->rmode.segs[seg] = *var;
3476 if (seg == VCPU_SREG_TR)
3477 vmcs_write16(sf->selector, var->selector);
3478 else if (var->s)
3479 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 3480 goto out;
653e3108 3481 }
1ecd50a9 3482
653e3108
AK
3483 vmcs_writel(sf->base, var->base);
3484 vmcs_write32(sf->limit, var->limit);
3485 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
3486
3487 /*
3488 * Fix the "Accessed" bit in AR field of segment registers for older
3489 * qemu binaries.
3490 * IA32 arch specifies that at the time of processor reset the
3491 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 3492 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
3493 * state vmexit when "unrestricted guest" mode is turned on.
3494 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3495 * tree. Newer qemu binaries with that qemu fix would not need this
3496 * kvm hack.
3497 */
3498 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 3499 var->type |= 0x1; /* Accessed */
3a624e29 3500
f924d66d 3501 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
3502
3503out:
14168786 3504 vmx->emulation_required |= emulation_required(vcpu);
6aa8b732
AK
3505}
3506
6aa8b732
AK
3507static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3508{
2fb92db1 3509 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3510
3511 *db = (ar >> 14) & 1;
3512 *l = (ar >> 13) & 1;
3513}
3514
89a27f4d 3515static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3516{
89a27f4d
GN
3517 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3518 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3519}
3520
89a27f4d 3521static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3522{
89a27f4d
GN
3523 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3524 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3525}
3526
89a27f4d 3527static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3528{
89a27f4d
GN
3529 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3530 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3531}
3532
89a27f4d 3533static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3534{
89a27f4d
GN
3535 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3536 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3537}
3538
648dfaa7
MG
3539static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3540{
3541 struct kvm_segment var;
3542 u32 ar;
3543
3544 vmx_get_segment(vcpu, &var, seg);
07f42f5f 3545 var.dpl = 0x3;
0647f4aa
GN
3546 if (seg == VCPU_SREG_CS)
3547 var.type = 0x3;
648dfaa7
MG
3548 ar = vmx_segment_access_rights(&var);
3549
3550 if (var.base != (var.selector << 4))
3551 return false;
89efbed0 3552 if (var.limit != 0xffff)
648dfaa7 3553 return false;
07f42f5f 3554 if (ar != 0xf3)
648dfaa7
MG
3555 return false;
3556
3557 return true;
3558}
3559
3560static bool code_segment_valid(struct kvm_vcpu *vcpu)
3561{
3562 struct kvm_segment cs;
3563 unsigned int cs_rpl;
3564
3565 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3566 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3567
1872a3f4
AK
3568 if (cs.unusable)
3569 return false;
648dfaa7
MG
3570 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3571 return false;
3572 if (!cs.s)
3573 return false;
1872a3f4 3574 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3575 if (cs.dpl > cs_rpl)
3576 return false;
1872a3f4 3577 } else {
648dfaa7
MG
3578 if (cs.dpl != cs_rpl)
3579 return false;
3580 }
3581 if (!cs.present)
3582 return false;
3583
3584 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3585 return true;
3586}
3587
3588static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3589{
3590 struct kvm_segment ss;
3591 unsigned int ss_rpl;
3592
3593 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3594 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3595
1872a3f4
AK
3596 if (ss.unusable)
3597 return true;
3598 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3599 return false;
3600 if (!ss.s)
3601 return false;
3602 if (ss.dpl != ss_rpl) /* DPL != RPL */
3603 return false;
3604 if (!ss.present)
3605 return false;
3606
3607 return true;
3608}
3609
3610static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3611{
3612 struct kvm_segment var;
3613 unsigned int rpl;
3614
3615 vmx_get_segment(vcpu, &var, seg);
3616 rpl = var.selector & SELECTOR_RPL_MASK;
3617
1872a3f4
AK
3618 if (var.unusable)
3619 return true;
648dfaa7
MG
3620 if (!var.s)
3621 return false;
3622 if (!var.present)
3623 return false;
3624 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3625 if (var.dpl < rpl) /* DPL < RPL */
3626 return false;
3627 }
3628
3629 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3630 * rights flags
3631 */
3632 return true;
3633}
3634
3635static bool tr_valid(struct kvm_vcpu *vcpu)
3636{
3637 struct kvm_segment tr;
3638
3639 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3640
1872a3f4
AK
3641 if (tr.unusable)
3642 return false;
648dfaa7
MG
3643 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3644 return false;
1872a3f4 3645 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3646 return false;
3647 if (!tr.present)
3648 return false;
3649
3650 return true;
3651}
3652
3653static bool ldtr_valid(struct kvm_vcpu *vcpu)
3654{
3655 struct kvm_segment ldtr;
3656
3657 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3658
1872a3f4
AK
3659 if (ldtr.unusable)
3660 return true;
648dfaa7
MG
3661 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3662 return false;
3663 if (ldtr.type != 2)
3664 return false;
3665 if (!ldtr.present)
3666 return false;
3667
3668 return true;
3669}
3670
3671static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3672{
3673 struct kvm_segment cs, ss;
3674
3675 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3676 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3677
3678 return ((cs.selector & SELECTOR_RPL_MASK) ==
3679 (ss.selector & SELECTOR_RPL_MASK));
3680}
3681
3682/*
3683 * Check if guest state is valid. Returns true if valid, false if
3684 * not.
3685 * We assume that registers are always usable
3686 */
3687static bool guest_state_valid(struct kvm_vcpu *vcpu)
3688{
c5e97c80
GN
3689 if (enable_unrestricted_guest)
3690 return true;
3691
648dfaa7 3692 /* real mode guest state checks */
f13882d8 3693 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
3694 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3695 return false;
3696 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3697 return false;
3698 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3699 return false;
3700 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3701 return false;
3702 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3703 return false;
3704 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3705 return false;
3706 } else {
3707 /* protected mode guest state checks */
3708 if (!cs_ss_rpl_check(vcpu))
3709 return false;
3710 if (!code_segment_valid(vcpu))
3711 return false;
3712 if (!stack_segment_valid(vcpu))
3713 return false;
3714 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3715 return false;
3716 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3717 return false;
3718 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3719 return false;
3720 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3721 return false;
3722 if (!tr_valid(vcpu))
3723 return false;
3724 if (!ldtr_valid(vcpu))
3725 return false;
3726 }
3727 /* TODO:
3728 * - Add checks on RIP
3729 * - Add checks on RFLAGS
3730 */
3731
3732 return true;
3733}
3734
d77c26fc 3735static int init_rmode_tss(struct kvm *kvm)
6aa8b732 3736{
40dcaa9f 3737 gfn_t fn;
195aefde 3738 u16 data = 0;
40dcaa9f 3739 int r, idx, ret = 0;
6aa8b732 3740
40dcaa9f 3741 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 3742 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
3743 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3744 if (r < 0)
10589a46 3745 goto out;
195aefde 3746 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
3747 r = kvm_write_guest_page(kvm, fn++, &data,
3748 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 3749 if (r < 0)
10589a46 3750 goto out;
195aefde
IE
3751 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3752 if (r < 0)
10589a46 3753 goto out;
195aefde
IE
3754 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3755 if (r < 0)
10589a46 3756 goto out;
195aefde 3757 data = ~0;
10589a46
MT
3758 r = kvm_write_guest_page(kvm, fn, &data,
3759 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3760 sizeof(u8));
195aefde 3761 if (r < 0)
10589a46
MT
3762 goto out;
3763
3764 ret = 1;
3765out:
40dcaa9f 3766 srcu_read_unlock(&kvm->srcu, idx);
10589a46 3767 return ret;
6aa8b732
AK
3768}
3769
b7ebfb05
SY
3770static int init_rmode_identity_map(struct kvm *kvm)
3771{
40dcaa9f 3772 int i, idx, r, ret;
b7ebfb05
SY
3773 pfn_t identity_map_pfn;
3774 u32 tmp;
3775
089d034e 3776 if (!enable_ept)
b7ebfb05
SY
3777 return 1;
3778 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3779 printk(KERN_ERR "EPT: identity-mapping pagetable "
3780 "haven't been allocated!\n");
3781 return 0;
3782 }
3783 if (likely(kvm->arch.ept_identity_pagetable_done))
3784 return 1;
3785 ret = 0;
b927a3ce 3786 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
40dcaa9f 3787 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
3788 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3789 if (r < 0)
3790 goto out;
3791 /* Set up identity-mapping pagetable for EPT in real mode */
3792 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3793 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3794 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3795 r = kvm_write_guest_page(kvm, identity_map_pfn,
3796 &tmp, i * sizeof(tmp), sizeof(tmp));
3797 if (r < 0)
3798 goto out;
3799 }
3800 kvm->arch.ept_identity_pagetable_done = true;
3801 ret = 1;
3802out:
40dcaa9f 3803 srcu_read_unlock(&kvm->srcu, idx);
b7ebfb05
SY
3804 return ret;
3805}
3806
6aa8b732
AK
3807static void seg_setup(int seg)
3808{
772e0318 3809 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 3810 unsigned int ar;
6aa8b732
AK
3811
3812 vmcs_write16(sf->selector, 0);
3813 vmcs_writel(sf->base, 0);
3814 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
3815 ar = 0x93;
3816 if (seg == VCPU_SREG_CS)
3817 ar |= 0x08; /* code segment */
3a624e29
NK
3818
3819 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
3820}
3821
f78e0e2e
SY
3822static int alloc_apic_access_page(struct kvm *kvm)
3823{
4484141a 3824 struct page *page;
f78e0e2e
SY
3825 struct kvm_userspace_memory_region kvm_userspace_mem;
3826 int r = 0;
3827
79fac95e 3828 mutex_lock(&kvm->slots_lock);
bfc6d222 3829 if (kvm->arch.apic_access_page)
f78e0e2e
SY
3830 goto out;
3831 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3832 kvm_userspace_mem.flags = 0;
3833 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3834 kvm_userspace_mem.memory_size = PAGE_SIZE;
47ae31e2 3835 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
f78e0e2e
SY
3836 if (r)
3837 goto out;
72dc67a6 3838
4484141a
XG
3839 page = gfn_to_page(kvm, 0xfee00);
3840 if (is_error_page(page)) {
3841 r = -EFAULT;
3842 goto out;
3843 }
3844
3845 kvm->arch.apic_access_page = page;
f78e0e2e 3846out:
79fac95e 3847 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
3848 return r;
3849}
3850
b7ebfb05
SY
3851static int alloc_identity_pagetable(struct kvm *kvm)
3852{
4484141a 3853 struct page *page;
b7ebfb05
SY
3854 struct kvm_userspace_memory_region kvm_userspace_mem;
3855 int r = 0;
3856
79fac95e 3857 mutex_lock(&kvm->slots_lock);
b7ebfb05
SY
3858 if (kvm->arch.ept_identity_pagetable)
3859 goto out;
3860 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3861 kvm_userspace_mem.flags = 0;
b927a3ce
SY
3862 kvm_userspace_mem.guest_phys_addr =
3863 kvm->arch.ept_identity_map_addr;
b7ebfb05 3864 kvm_userspace_mem.memory_size = PAGE_SIZE;
47ae31e2 3865 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
b7ebfb05
SY
3866 if (r)
3867 goto out;
3868
4484141a
XG
3869 page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3870 if (is_error_page(page)) {
3871 r = -EFAULT;
3872 goto out;
3873 }
3874
3875 kvm->arch.ept_identity_pagetable = page;
b7ebfb05 3876out:
79fac95e 3877 mutex_unlock(&kvm->slots_lock);
b7ebfb05
SY
3878 return r;
3879}
3880
2384d2b3
SY
3881static void allocate_vpid(struct vcpu_vmx *vmx)
3882{
3883 int vpid;
3884
3885 vmx->vpid = 0;
919818ab 3886 if (!enable_vpid)
2384d2b3
SY
3887 return;
3888 spin_lock(&vmx_vpid_lock);
3889 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3890 if (vpid < VMX_NR_VPIDS) {
3891 vmx->vpid = vpid;
3892 __set_bit(vpid, vmx_vpid_bitmap);
3893 }
3894 spin_unlock(&vmx_vpid_lock);
3895}
3896
cdbecfc3
LJ
3897static void free_vpid(struct vcpu_vmx *vmx)
3898{
3899 if (!enable_vpid)
3900 return;
3901 spin_lock(&vmx_vpid_lock);
3902 if (vmx->vpid != 0)
3903 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3904 spin_unlock(&vmx_vpid_lock);
3905}
3906
8d14695f
YZ
3907#define MSR_TYPE_R 1
3908#define MSR_TYPE_W 2
3909static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3910 u32 msr, int type)
25c5f225 3911{
3e7c73e9 3912 int f = sizeof(unsigned long);
25c5f225
SY
3913
3914 if (!cpu_has_vmx_msr_bitmap())
3915 return;
3916
3917 /*
3918 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3919 * have the write-low and read-high bitmap offsets the wrong way round.
3920 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3921 */
25c5f225 3922 if (msr <= 0x1fff) {
8d14695f
YZ
3923 if (type & MSR_TYPE_R)
3924 /* read-low */
3925 __clear_bit(msr, msr_bitmap + 0x000 / f);
3926
3927 if (type & MSR_TYPE_W)
3928 /* write-low */
3929 __clear_bit(msr, msr_bitmap + 0x800 / f);
3930
25c5f225
SY
3931 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3932 msr &= 0x1fff;
8d14695f
YZ
3933 if (type & MSR_TYPE_R)
3934 /* read-high */
3935 __clear_bit(msr, msr_bitmap + 0x400 / f);
3936
3937 if (type & MSR_TYPE_W)
3938 /* write-high */
3939 __clear_bit(msr, msr_bitmap + 0xc00 / f);
3940
3941 }
3942}
3943
3944static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3945 u32 msr, int type)
3946{
3947 int f = sizeof(unsigned long);
3948
3949 if (!cpu_has_vmx_msr_bitmap())
3950 return;
3951
3952 /*
3953 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3954 * have the write-low and read-high bitmap offsets the wrong way round.
3955 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3956 */
3957 if (msr <= 0x1fff) {
3958 if (type & MSR_TYPE_R)
3959 /* read-low */
3960 __set_bit(msr, msr_bitmap + 0x000 / f);
3961
3962 if (type & MSR_TYPE_W)
3963 /* write-low */
3964 __set_bit(msr, msr_bitmap + 0x800 / f);
3965
3966 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3967 msr &= 0x1fff;
3968 if (type & MSR_TYPE_R)
3969 /* read-high */
3970 __set_bit(msr, msr_bitmap + 0x400 / f);
3971
3972 if (type & MSR_TYPE_W)
3973 /* write-high */
3974 __set_bit(msr, msr_bitmap + 0xc00 / f);
3975
25c5f225 3976 }
25c5f225
SY
3977}
3978
5897297b
AK
3979static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3980{
3981 if (!longmode_only)
8d14695f
YZ
3982 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
3983 msr, MSR_TYPE_R | MSR_TYPE_W);
3984 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
3985 msr, MSR_TYPE_R | MSR_TYPE_W);
3986}
3987
3988static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
3989{
3990 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3991 msr, MSR_TYPE_R);
3992 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
3993 msr, MSR_TYPE_R);
3994}
3995
3996static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
3997{
3998 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3999 msr, MSR_TYPE_R);
4000 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4001 msr, MSR_TYPE_R);
4002}
4003
4004static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4005{
4006 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4007 msr, MSR_TYPE_W);
4008 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4009 msr, MSR_TYPE_W);
5897297b
AK
4010}
4011
01e439be
YZ
4012static int vmx_vm_has_apicv(struct kvm *kvm)
4013{
4014 return enable_apicv && irqchip_in_kernel(kvm);
4015}
4016
a20ed54d
YZ
4017/*
4018 * Send interrupt to vcpu via posted interrupt way.
4019 * 1. If target vcpu is running(non-root mode), send posted interrupt
4020 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4021 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4022 * interrupt from PIR in next vmentry.
4023 */
4024static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4025{
4026 struct vcpu_vmx *vmx = to_vmx(vcpu);
4027 int r;
4028
4029 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4030 return;
4031
4032 r = pi_test_and_set_on(&vmx->pi_desc);
4033 kvm_make_request(KVM_REQ_EVENT, vcpu);
6ffbbbba 4034#ifdef CONFIG_SMP
a20ed54d
YZ
4035 if (!r && (vcpu->mode == IN_GUEST_MODE))
4036 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4037 POSTED_INTR_VECTOR);
4038 else
6ffbbbba 4039#endif
a20ed54d
YZ
4040 kvm_vcpu_kick(vcpu);
4041}
4042
4043static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4044{
4045 struct vcpu_vmx *vmx = to_vmx(vcpu);
4046
4047 if (!pi_test_and_clear_on(&vmx->pi_desc))
4048 return;
4049
4050 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4051}
4052
4053static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4054{
4055 return;
4056}
4057
a3a8ff8e
NHE
4058/*
4059 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4060 * will not change in the lifetime of the guest.
4061 * Note that host-state that does change is set elsewhere. E.g., host-state
4062 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4063 */
a547c6db 4064static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
4065{
4066 u32 low32, high32;
4067 unsigned long tmpl;
4068 struct desc_ptr dt;
4069
b1a74bf8 4070 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
a3a8ff8e
NHE
4071 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
4072 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4073
4074 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
4075#ifdef CONFIG_X86_64
4076 /*
4077 * Load null selectors, so we can avoid reloading them in
4078 * __vmx_load_host_state(), in case userspace uses the null selectors
4079 * too (the expected case).
4080 */
4081 vmcs_write16(HOST_DS_SELECTOR, 0);
4082 vmcs_write16(HOST_ES_SELECTOR, 0);
4083#else
a3a8ff8e
NHE
4084 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4085 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 4086#endif
a3a8ff8e
NHE
4087 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4088 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4089
4090 native_store_idt(&dt);
4091 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 4092 vmx->host_idt_base = dt.address;
a3a8ff8e 4093
83287ea4 4094 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
4095
4096 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4097 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4098 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4099 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4100
4101 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4102 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4103 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4104 }
4105}
4106
bf8179a0
NHE
4107static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4108{
4109 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4110 if (enable_ept)
4111 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
4112 if (is_guest_mode(&vmx->vcpu))
4113 vmx->vcpu.arch.cr4_guest_owned_bits &=
4114 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
4115 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4116}
4117
01e439be
YZ
4118static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4119{
4120 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4121
4122 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4123 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4124 return pin_based_exec_ctrl;
4125}
4126
bf8179a0
NHE
4127static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4128{
4129 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4130 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4131 exec_control &= ~CPU_BASED_TPR_SHADOW;
4132#ifdef CONFIG_X86_64
4133 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4134 CPU_BASED_CR8_LOAD_EXITING;
4135#endif
4136 }
4137 if (!enable_ept)
4138 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4139 CPU_BASED_CR3_LOAD_EXITING |
4140 CPU_BASED_INVLPG_EXITING;
4141 return exec_control;
4142}
4143
4144static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4145{
4146 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4147 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4148 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4149 if (vmx->vpid == 0)
4150 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4151 if (!enable_ept) {
4152 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4153 enable_unrestricted_guest = 0;
ad756a16
MJ
4154 /* Enable INVPCID for non-ept guests may cause performance regression. */
4155 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
4156 }
4157 if (!enable_unrestricted_guest)
4158 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4159 if (!ple_gap)
4160 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
c7c9c56c
YZ
4161 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4162 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4163 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 4164 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
4165 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4166 (handle_vmptrld).
4167 We can NOT enable shadow_vmcs here because we don't have yet
4168 a current VMCS12
4169 */
4170 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
bf8179a0
NHE
4171 return exec_control;
4172}
4173
ce88decf
XG
4174static void ept_set_mmio_spte_mask(void)
4175{
4176 /*
4177 * EPT Misconfigurations can be generated if the value of bits 2:0
4178 * of an EPT paging-structure entry is 110b (write/execute).
4179 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
4180 * spte.
4181 */
4182 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
4183}
4184
6aa8b732
AK
4185/*
4186 * Sets up the vmcs for emulated real mode.
4187 */
8b9cf98c 4188static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 4189{
2e4ce7f5 4190#ifdef CONFIG_X86_64
6aa8b732 4191 unsigned long a;
2e4ce7f5 4192#endif
6aa8b732 4193 int i;
6aa8b732 4194
6aa8b732 4195 /* I/O */
3e7c73e9
AK
4196 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4197 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 4198
4607c2d7
AG
4199 if (enable_shadow_vmcs) {
4200 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4201 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4202 }
25c5f225 4203 if (cpu_has_vmx_msr_bitmap())
5897297b 4204 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 4205
6aa8b732
AK
4206 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4207
6aa8b732 4208 /* Control */
01e439be 4209 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6e5d865c 4210
bf8179a0 4211 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 4212
83ff3b9d 4213 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
4214 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4215 vmx_secondary_exec_control(vmx));
83ff3b9d 4216 }
f78e0e2e 4217
01e439be 4218 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
c7c9c56c
YZ
4219 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4220 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4221 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4222 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4223
4224 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be
YZ
4225
4226 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4227 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
4228 }
4229
4b8d54f9
ZE
4230 if (ple_gap) {
4231 vmcs_write32(PLE_GAP, ple_gap);
4232 vmcs_write32(PLE_WINDOW, ple_window);
4233 }
4234
c3707958
XG
4235 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4236 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
4237 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4238
9581d442
AK
4239 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4240 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 4241 vmx_set_constant_host_state(vmx);
05b3e0c2 4242#ifdef CONFIG_X86_64
6aa8b732
AK
4243 rdmsrl(MSR_FS_BASE, a);
4244 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4245 rdmsrl(MSR_GS_BASE, a);
4246 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4247#else
4248 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4249 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4250#endif
4251
2cc51560
ED
4252 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4253 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 4254 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 4255 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 4256 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 4257
468d472f 4258 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
4259 u32 msr_low, msr_high;
4260 u64 host_pat;
468d472f
SY
4261 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4262 host_pat = msr_low | ((u64) msr_high << 32);
4263 /* Write the default value follow host pat */
4264 vmcs_write64(GUEST_IA32_PAT, host_pat);
4265 /* Keep arch.pat sync with GUEST_IA32_PAT */
4266 vmx->vcpu.arch.pat = host_pat;
4267 }
4268
6aa8b732
AK
4269 for (i = 0; i < NR_VMX_MSR; ++i) {
4270 u32 index = vmx_msr_index[i];
4271 u32 data_low, data_high;
a2fa3e9f 4272 int j = vmx->nmsrs;
6aa8b732
AK
4273
4274 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4275 continue;
432bd6cb
AK
4276 if (wrmsr_safe(index, data_low, data_high) < 0)
4277 continue;
26bb0981
AK
4278 vmx->guest_msrs[j].index = i;
4279 vmx->guest_msrs[j].data = 0;
d5696725 4280 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 4281 ++vmx->nmsrs;
6aa8b732 4282 }
6aa8b732 4283
1c3d14fe 4284 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
6aa8b732
AK
4285
4286 /* 22.2.1, 20.8.1 */
1c3d14fe
YS
4287 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
4288
e00c8cf2 4289 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 4290 set_cr4_guest_host_mask(vmx);
e00c8cf2
AK
4291
4292 return 0;
4293}
4294
57f252f2 4295static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
e00c8cf2
AK
4296{
4297 struct vcpu_vmx *vmx = to_vmx(vcpu);
4298 u64 msr;
e00c8cf2 4299
7ffd92c5 4300 vmx->rmode.vm86_active = 0;
e00c8cf2 4301
3b86cd99
JK
4302 vmx->soft_vnmi_blocked = 0;
4303
ad312c7c 4304 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 4305 kvm_set_cr8(&vmx->vcpu, 0);
e00c8cf2 4306 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
c5af89b6 4307 if (kvm_vcpu_is_bsp(&vmx->vcpu))
e00c8cf2
AK
4308 msr |= MSR_IA32_APICBASE_BSP;
4309 kvm_set_apic_base(&vmx->vcpu, msr);
4310
2fb92db1
AK
4311 vmx_segment_cache_clear(vmx);
4312
5706be0d 4313 seg_setup(VCPU_SREG_CS);
66450a21 4314 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
04b66839 4315 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
e00c8cf2
AK
4316
4317 seg_setup(VCPU_SREG_DS);
4318 seg_setup(VCPU_SREG_ES);
4319 seg_setup(VCPU_SREG_FS);
4320 seg_setup(VCPU_SREG_GS);
4321 seg_setup(VCPU_SREG_SS);
4322
4323 vmcs_write16(GUEST_TR_SELECTOR, 0);
4324 vmcs_writel(GUEST_TR_BASE, 0);
4325 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4326 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4327
4328 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4329 vmcs_writel(GUEST_LDTR_BASE, 0);
4330 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4331 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4332
4333 vmcs_write32(GUEST_SYSENTER_CS, 0);
4334 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4335 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4336
4337 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 4338 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 4339
e00c8cf2
AK
4340 vmcs_writel(GUEST_GDTR_BASE, 0);
4341 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4342
4343 vmcs_writel(GUEST_IDTR_BASE, 0);
4344 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4345
443381a8 4346 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
4347 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4348 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4349
e00c8cf2
AK
4350 /* Special registers */
4351 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4352
4353 setup_msrs(vmx);
4354
6aa8b732
AK
4355 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4356
f78e0e2e
SY
4357 if (cpu_has_vmx_tpr_shadow()) {
4358 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4359 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4360 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 4361 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
4362 vmcs_write32(TPR_THRESHOLD, 0);
4363 }
4364
4365 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4366 vmcs_write64(APIC_ACCESS_ADDR,
bfc6d222 4367 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
6aa8b732 4368
01e439be
YZ
4369 if (vmx_vm_has_apicv(vcpu->kvm))
4370 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4371
2384d2b3
SY
4372 if (vmx->vpid != 0)
4373 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4374
fa40052c 4375 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4d4ec087 4376 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
8b9cf98c 4377 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 4378 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
4379 vmx_fpu_activate(&vmx->vcpu);
4380 update_exception_bitmap(&vmx->vcpu);
6aa8b732 4381
b9d762fa 4382 vpid_sync_context(vmx);
6aa8b732
AK
4383}
4384
b6f1250e
NHE
4385/*
4386 * In nested virtualization, check if L1 asked to exit on external interrupts.
4387 * For most existing hypervisors, this will always return true.
4388 */
4389static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4390{
4391 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4392 PIN_BASED_EXT_INTR_MASK;
4393}
4394
3b86cd99
JK
4395static void enable_irq_window(struct kvm_vcpu *vcpu)
4396{
4397 u32 cpu_based_vm_exec_control;
d6185f20
NHE
4398 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4399 /*
4400 * We get here if vmx_interrupt_allowed() said we can't
4401 * inject to L1 now because L2 must run. Ask L2 to exit
4402 * right after entry, so we can inject to L1 more promptly.
b6f1250e 4403 */
d6185f20 4404 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
b6f1250e 4405 return;
d6185f20 4406 }
3b86cd99
JK
4407
4408 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4409 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4410 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4411}
4412
4413static void enable_nmi_window(struct kvm_vcpu *vcpu)
4414{
4415 u32 cpu_based_vm_exec_control;
4416
4417 if (!cpu_has_virtual_nmis()) {
4418 enable_irq_window(vcpu);
4419 return;
4420 }
4421
30bd0c4c
AK
4422 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4423 enable_irq_window(vcpu);
4424 return;
4425 }
3b86cd99
JK
4426 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4427 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4428 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4429}
4430
66fd3f7f 4431static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 4432{
9c8cba37 4433 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
4434 uint32_t intr;
4435 int irq = vcpu->arch.interrupt.nr;
9c8cba37 4436
229456fc 4437 trace_kvm_inj_virq(irq);
2714d1d3 4438
fa89a817 4439 ++vcpu->stat.irq_injections;
7ffd92c5 4440 if (vmx->rmode.vm86_active) {
71f9833b
SH
4441 int inc_eip = 0;
4442 if (vcpu->arch.interrupt.soft)
4443 inc_eip = vcpu->arch.event_exit_inst_len;
4444 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 4445 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
4446 return;
4447 }
66fd3f7f
GN
4448 intr = irq | INTR_INFO_VALID_MASK;
4449 if (vcpu->arch.interrupt.soft) {
4450 intr |= INTR_TYPE_SOFT_INTR;
4451 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4452 vmx->vcpu.arch.event_exit_inst_len);
4453 } else
4454 intr |= INTR_TYPE_EXT_INTR;
4455 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
4456}
4457
f08864b4
SY
4458static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4459{
66a5a347
JK
4460 struct vcpu_vmx *vmx = to_vmx(vcpu);
4461
0b6ac343
NHE
4462 if (is_guest_mode(vcpu))
4463 return;
4464
3b86cd99
JK
4465 if (!cpu_has_virtual_nmis()) {
4466 /*
4467 * Tracking the NMI-blocked state in software is built upon
4468 * finding the next open IRQ window. This, in turn, depends on
4469 * well-behaving guests: They have to keep IRQs disabled at
4470 * least as long as the NMI handler runs. Otherwise we may
4471 * cause NMI nesting, maybe breaking the guest. But as this is
4472 * highly unlikely, we can live with the residual risk.
4473 */
4474 vmx->soft_vnmi_blocked = 1;
4475 vmx->vnmi_blocked_time = 0;
4476 }
4477
487b391d 4478 ++vcpu->stat.nmi_injections;
9d58b931 4479 vmx->nmi_known_unmasked = false;
7ffd92c5 4480 if (vmx->rmode.vm86_active) {
71f9833b 4481 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 4482 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
4483 return;
4484 }
f08864b4
SY
4485 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4486 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
4487}
4488
3cfc3092
JK
4489static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4490{
4491 if (!cpu_has_virtual_nmis())
4492 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
4493 if (to_vmx(vcpu)->nmi_known_unmasked)
4494 return false;
c332c83a 4495 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
4496}
4497
4498static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4499{
4500 struct vcpu_vmx *vmx = to_vmx(vcpu);
4501
4502 if (!cpu_has_virtual_nmis()) {
4503 if (vmx->soft_vnmi_blocked != masked) {
4504 vmx->soft_vnmi_blocked = masked;
4505 vmx->vnmi_blocked_time = 0;
4506 }
4507 } else {
9d58b931 4508 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
4509 if (masked)
4510 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4511 GUEST_INTR_STATE_NMI);
4512 else
4513 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4514 GUEST_INTR_STATE_NMI);
4515 }
4516}
4517
2505dc9f
JK
4518static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4519{
4520 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4521 return 0;
4522
4523 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4524 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4525 | GUEST_INTR_STATE_NMI));
4526}
4527
78646121
GN
4528static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4529{
e8457c67 4530 if (is_guest_mode(vcpu)) {
51cfe38e 4531 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
e8457c67
JK
4532
4533 if (to_vmx(vcpu)->nested.nested_run_pending)
b6f1250e 4534 return 0;
e8457c67
JK
4535 if (nested_exit_on_intr(vcpu)) {
4536 nested_vmx_vmexit(vcpu);
4537 vmcs12->vm_exit_reason =
4538 EXIT_REASON_EXTERNAL_INTERRUPT;
4539 vmcs12->vm_exit_intr_info = 0;
4540 /*
4541 * fall through to normal code, but now in L1, not L2
4542 */
4543 }
b6f1250e
NHE
4544 }
4545
c4282df9
GN
4546 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4547 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4548 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4549}
4550
cbc94022
IE
4551static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4552{
4553 int ret;
4554 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4555 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4556 .guest_phys_addr = addr,
4557 .memory_size = PAGE_SIZE * 3,
4558 .flags = 0,
4559 };
4560
47ae31e2 4561 ret = kvm_set_memory_region(kvm, &tss_mem);
cbc94022
IE
4562 if (ret)
4563 return ret;
bfc6d222 4564 kvm->arch.tss_addr = addr;
93ea5388
GN
4565 if (!init_rmode_tss(kvm))
4566 return -ENOMEM;
4567
cbc94022
IE
4568 return 0;
4569}
4570
0ca1b4f4 4571static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 4572{
77ab6db0 4573 switch (vec) {
77ab6db0 4574 case BP_VECTOR:
c573cd22
JK
4575 /*
4576 * Update instruction length as we may reinject the exception
4577 * from user space while in guest debugging mode.
4578 */
4579 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4580 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 4581 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
4582 return false;
4583 /* fall through */
4584 case DB_VECTOR:
4585 if (vcpu->guest_debug &
4586 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4587 return false;
d0bfb940
JK
4588 /* fall through */
4589 case DE_VECTOR:
77ab6db0
JK
4590 case OF_VECTOR:
4591 case BR_VECTOR:
4592 case UD_VECTOR:
4593 case DF_VECTOR:
4594 case SS_VECTOR:
4595 case GP_VECTOR:
4596 case MF_VECTOR:
0ca1b4f4
GN
4597 return true;
4598 break;
77ab6db0 4599 }
0ca1b4f4
GN
4600 return false;
4601}
4602
4603static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4604 int vec, u32 err_code)
4605{
4606 /*
4607 * Instruction with address size override prefix opcode 0x67
4608 * Cause the #SS fault with 0 error code in VM86 mode.
4609 */
4610 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4611 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4612 if (vcpu->arch.halt_request) {
4613 vcpu->arch.halt_request = 0;
4614 return kvm_emulate_halt(vcpu);
4615 }
4616 return 1;
4617 }
4618 return 0;
4619 }
4620
4621 /*
4622 * Forward all other exceptions that are valid in real mode.
4623 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4624 * the required debugging infrastructure rework.
4625 */
4626 kvm_queue_exception(vcpu, vec);
4627 return 1;
6aa8b732
AK
4628}
4629
a0861c02
AK
4630/*
4631 * Trigger machine check on the host. We assume all the MSRs are already set up
4632 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4633 * We pass a fake environment to the machine check handler because we want
4634 * the guest to be always treated like user space, no matter what context
4635 * it used internally.
4636 */
4637static void kvm_machine_check(void)
4638{
4639#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4640 struct pt_regs regs = {
4641 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4642 .flags = X86_EFLAGS_IF,
4643 };
4644
4645 do_machine_check(&regs, 0);
4646#endif
4647}
4648
851ba692 4649static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
4650{
4651 /* already handled by vcpu_run */
4652 return 1;
4653}
4654
851ba692 4655static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 4656{
1155f76a 4657 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 4658 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 4659 u32 intr_info, ex_no, error_code;
42dbaa5a 4660 unsigned long cr2, rip, dr6;
6aa8b732
AK
4661 u32 vect_info;
4662 enum emulation_result er;
4663
1155f76a 4664 vect_info = vmx->idt_vectoring_info;
88786475 4665 intr_info = vmx->exit_intr_info;
6aa8b732 4666
a0861c02 4667 if (is_machine_check(intr_info))
851ba692 4668 return handle_machine_check(vcpu);
a0861c02 4669
e4a41889 4670 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 4671 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
4672
4673 if (is_no_device(intr_info)) {
5fd86fcf 4674 vmx_fpu_activate(vcpu);
2ab455cc
AL
4675 return 1;
4676 }
4677
7aa81cc0 4678 if (is_invalid_opcode(intr_info)) {
51d8b661 4679 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 4680 if (er != EMULATE_DONE)
7ee5d940 4681 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
4682 return 1;
4683 }
4684
6aa8b732 4685 error_code = 0;
2e11384c 4686 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 4687 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
4688
4689 /*
4690 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4691 * MMIO, it is better to report an internal error.
4692 * See the comments in vmx_handle_exit.
4693 */
4694 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4695 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4696 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4697 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4698 vcpu->run->internal.ndata = 2;
4699 vcpu->run->internal.data[0] = vect_info;
4700 vcpu->run->internal.data[1] = intr_info;
4701 return 0;
4702 }
4703
6aa8b732 4704 if (is_page_fault(intr_info)) {
1439442c 4705 /* EPT won't cause page fault directly */
cf3ace79 4706 BUG_ON(enable_ept);
6aa8b732 4707 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
4708 trace_kvm_page_fault(cr2, error_code);
4709
3298b75c 4710 if (kvm_event_needs_reinjection(vcpu))
577bdc49 4711 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 4712 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
4713 }
4714
d0bfb940 4715 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
4716
4717 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4718 return handle_rmode_exception(vcpu, ex_no, error_code);
4719
42dbaa5a
JK
4720 switch (ex_no) {
4721 case DB_VECTOR:
4722 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4723 if (!(vcpu->guest_debug &
4724 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4725 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4726 kvm_queue_exception(vcpu, DB_VECTOR);
4727 return 1;
4728 }
4729 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4730 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4731 /* fall through */
4732 case BP_VECTOR:
c573cd22
JK
4733 /*
4734 * Update instruction length as we may reinject #BP from
4735 * user space while in guest debugging mode. Reading it for
4736 * #DB as well causes no harm, it is not used in that case.
4737 */
4738 vmx->vcpu.arch.event_exit_inst_len =
4739 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 4740 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 4741 rip = kvm_rip_read(vcpu);
d0bfb940
JK
4742 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4743 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
4744 break;
4745 default:
d0bfb940
JK
4746 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4747 kvm_run->ex.exception = ex_no;
4748 kvm_run->ex.error_code = error_code;
42dbaa5a 4749 break;
6aa8b732 4750 }
6aa8b732
AK
4751 return 0;
4752}
4753
851ba692 4754static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 4755{
1165f5fe 4756 ++vcpu->stat.irq_exits;
6aa8b732
AK
4757 return 1;
4758}
4759
851ba692 4760static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 4761{
851ba692 4762 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
4763 return 0;
4764}
6aa8b732 4765
851ba692 4766static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 4767{
bfdaab09 4768 unsigned long exit_qualification;
34c33d16 4769 int size, in, string;
039576c0 4770 unsigned port;
6aa8b732 4771
bfdaab09 4772 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 4773 string = (exit_qualification & 16) != 0;
cf8f70bf 4774 in = (exit_qualification & 8) != 0;
e70669ab 4775
cf8f70bf 4776 ++vcpu->stat.io_exits;
e70669ab 4777
cf8f70bf 4778 if (string || in)
51d8b661 4779 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 4780
cf8f70bf
GN
4781 port = exit_qualification >> 16;
4782 size = (exit_qualification & 7) + 1;
e93f36bc 4783 skip_emulated_instruction(vcpu);
cf8f70bf
GN
4784
4785 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
4786}
4787
102d8325
IM
4788static void
4789vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4790{
4791 /*
4792 * Patch in the VMCALL instruction:
4793 */
4794 hypercall[0] = 0x0f;
4795 hypercall[1] = 0x01;
4796 hypercall[2] = 0xc1;
102d8325
IM
4797}
4798
0fa06071 4799/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
4800static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4801{
eeadf9e7 4802 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
4803 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4804 unsigned long orig_val = val;
4805
eeadf9e7
NHE
4806 /*
4807 * We get here when L2 changed cr0 in a way that did not change
4808 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
4809 * but did change L0 shadowed bits. So we first calculate the
4810 * effective cr0 value that L1 would like to write into the
4811 * hardware. It consists of the L2-owned bits from the new
4812 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 4813 */
1a0d74e6
JK
4814 val = (val & ~vmcs12->cr0_guest_host_mask) |
4815 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4816
4817 /* TODO: will have to take unrestricted guest mode into
4818 * account */
4819 if ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)
eeadf9e7 4820 return 1;
1a0d74e6
JK
4821
4822 if (kvm_set_cr0(vcpu, val))
4823 return 1;
4824 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 4825 return 0;
1a0d74e6
JK
4826 } else {
4827 if (to_vmx(vcpu)->nested.vmxon &&
4828 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4829 return 1;
eeadf9e7 4830 return kvm_set_cr0(vcpu, val);
1a0d74e6 4831 }
eeadf9e7
NHE
4832}
4833
4834static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4835{
4836 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
4837 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4838 unsigned long orig_val = val;
4839
4840 /* analogously to handle_set_cr0 */
4841 val = (val & ~vmcs12->cr4_guest_host_mask) |
4842 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4843 if (kvm_set_cr4(vcpu, val))
eeadf9e7 4844 return 1;
1a0d74e6 4845 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
4846 return 0;
4847 } else
4848 return kvm_set_cr4(vcpu, val);
4849}
4850
4851/* called to set cr0 as approriate for clts instruction exit. */
4852static void handle_clts(struct kvm_vcpu *vcpu)
4853{
4854 if (is_guest_mode(vcpu)) {
4855 /*
4856 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4857 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4858 * just pretend it's off (also in arch.cr0 for fpu_activate).
4859 */
4860 vmcs_writel(CR0_READ_SHADOW,
4861 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4862 vcpu->arch.cr0 &= ~X86_CR0_TS;
4863 } else
4864 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4865}
4866
851ba692 4867static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 4868{
229456fc 4869 unsigned long exit_qualification, val;
6aa8b732
AK
4870 int cr;
4871 int reg;
49a9b07e 4872 int err;
6aa8b732 4873
bfdaab09 4874 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
4875 cr = exit_qualification & 15;
4876 reg = (exit_qualification >> 8) & 15;
4877 switch ((exit_qualification >> 4) & 3) {
4878 case 0: /* mov to cr */
229456fc
MT
4879 val = kvm_register_read(vcpu, reg);
4880 trace_kvm_cr_write(cr, val);
6aa8b732
AK
4881 switch (cr) {
4882 case 0:
eeadf9e7 4883 err = handle_set_cr0(vcpu, val);
db8fcefa 4884 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4885 return 1;
4886 case 3:
2390218b 4887 err = kvm_set_cr3(vcpu, val);
db8fcefa 4888 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4889 return 1;
4890 case 4:
eeadf9e7 4891 err = handle_set_cr4(vcpu, val);
db8fcefa 4892 kvm_complete_insn_gp(vcpu, err);
6aa8b732 4893 return 1;
0a5fff19
GN
4894 case 8: {
4895 u8 cr8_prev = kvm_get_cr8(vcpu);
4896 u8 cr8 = kvm_register_read(vcpu, reg);
eea1cff9 4897 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 4898 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
4899 if (irqchip_in_kernel(vcpu->kvm))
4900 return 1;
4901 if (cr8_prev <= cr8)
4902 return 1;
851ba692 4903 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
4904 return 0;
4905 }
4b8073e4 4906 }
6aa8b732 4907 break;
25c4c276 4908 case 2: /* clts */
eeadf9e7 4909 handle_clts(vcpu);
4d4ec087 4910 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 4911 skip_emulated_instruction(vcpu);
6b52d186 4912 vmx_fpu_activate(vcpu);
25c4c276 4913 return 1;
6aa8b732
AK
4914 case 1: /*mov from cr*/
4915 switch (cr) {
4916 case 3:
9f8fe504
AK
4917 val = kvm_read_cr3(vcpu);
4918 kvm_register_write(vcpu, reg, val);
4919 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4920 skip_emulated_instruction(vcpu);
4921 return 1;
4922 case 8:
229456fc
MT
4923 val = kvm_get_cr8(vcpu);
4924 kvm_register_write(vcpu, reg, val);
4925 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4926 skip_emulated_instruction(vcpu);
4927 return 1;
4928 }
4929 break;
4930 case 3: /* lmsw */
a1f83a74 4931 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 4932 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 4933 kvm_lmsw(vcpu, val);
6aa8b732
AK
4934
4935 skip_emulated_instruction(vcpu);
4936 return 1;
4937 default:
4938 break;
4939 }
851ba692 4940 vcpu->run->exit_reason = 0;
a737f256 4941 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
4942 (int)(exit_qualification >> 4) & 3, cr);
4943 return 0;
4944}
4945
851ba692 4946static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 4947{
bfdaab09 4948 unsigned long exit_qualification;
6aa8b732
AK
4949 int dr, reg;
4950
f2483415 4951 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
4952 if (!kvm_require_cpl(vcpu, 0))
4953 return 1;
42dbaa5a
JK
4954 dr = vmcs_readl(GUEST_DR7);
4955 if (dr & DR7_GD) {
4956 /*
4957 * As the vm-exit takes precedence over the debug trap, we
4958 * need to emulate the latter, either for the host or the
4959 * guest debugging itself.
4960 */
4961 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692
AK
4962 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4963 vcpu->run->debug.arch.dr7 = dr;
4964 vcpu->run->debug.arch.pc =
42dbaa5a
JK
4965 vmcs_readl(GUEST_CS_BASE) +
4966 vmcs_readl(GUEST_RIP);
851ba692
AK
4967 vcpu->run->debug.arch.exception = DB_VECTOR;
4968 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
4969 return 0;
4970 } else {
4971 vcpu->arch.dr7 &= ~DR7_GD;
4972 vcpu->arch.dr6 |= DR6_BD;
4973 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4974 kvm_queue_exception(vcpu, DB_VECTOR);
4975 return 1;
4976 }
4977 }
4978
bfdaab09 4979 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
42dbaa5a
JK
4980 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4981 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4982 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079
GN
4983 unsigned long val;
4984 if (!kvm_get_dr(vcpu, dr, &val))
4985 kvm_register_write(vcpu, reg, val);
4986 } else
4987 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
6aa8b732
AK
4988 skip_emulated_instruction(vcpu);
4989 return 1;
4990}
4991
020df079
GN
4992static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4993{
4994 vmcs_writel(GUEST_DR7, val);
4995}
4996
851ba692 4997static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 4998{
06465c5a
AK
4999 kvm_emulate_cpuid(vcpu);
5000 return 1;
6aa8b732
AK
5001}
5002
851ba692 5003static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 5004{
ad312c7c 5005 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
5006 u64 data;
5007
5008 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 5009 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 5010 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5011 return 1;
5012 }
5013
229456fc 5014 trace_kvm_msr_read(ecx, data);
2714d1d3 5015
6aa8b732 5016 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
5017 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5018 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
5019 skip_emulated_instruction(vcpu);
5020 return 1;
5021}
5022
851ba692 5023static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 5024{
8fe8ab46 5025 struct msr_data msr;
ad312c7c
ZX
5026 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5027 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5028 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 5029
8fe8ab46
WA
5030 msr.data = data;
5031 msr.index = ecx;
5032 msr.host_initiated = false;
5033 if (vmx_set_msr(vcpu, &msr) != 0) {
59200273 5034 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 5035 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5036 return 1;
5037 }
5038
59200273 5039 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
5040 skip_emulated_instruction(vcpu);
5041 return 1;
5042}
5043
851ba692 5044static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 5045{
3842d135 5046 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
5047 return 1;
5048}
5049
851ba692 5050static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 5051{
85f455f7
ED
5052 u32 cpu_based_vm_exec_control;
5053
5054 /* clear pending irq */
5055 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5056 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5057 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 5058
3842d135
AK
5059 kvm_make_request(KVM_REQ_EVENT, vcpu);
5060
a26bf12a 5061 ++vcpu->stat.irq_window_exits;
2714d1d3 5062
c1150d8c
DL
5063 /*
5064 * If the user space waits to inject interrupts, exit as soon as
5065 * possible
5066 */
8061823a 5067 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 5068 vcpu->run->request_interrupt_window &&
8061823a 5069 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 5070 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
5071 return 0;
5072 }
6aa8b732
AK
5073 return 1;
5074}
5075
851ba692 5076static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732
AK
5077{
5078 skip_emulated_instruction(vcpu);
d3bef15f 5079 return kvm_emulate_halt(vcpu);
6aa8b732
AK
5080}
5081
851ba692 5082static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 5083{
510043da 5084 skip_emulated_instruction(vcpu);
7aa81cc0
AL
5085 kvm_emulate_hypercall(vcpu);
5086 return 1;
c21415e8
IM
5087}
5088
ec25d5e6
GN
5089static int handle_invd(struct kvm_vcpu *vcpu)
5090{
51d8b661 5091 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
5092}
5093
851ba692 5094static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 5095{
f9c617f6 5096 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
5097
5098 kvm_mmu_invlpg(vcpu, exit_qualification);
5099 skip_emulated_instruction(vcpu);
5100 return 1;
5101}
5102
fee84b07
AK
5103static int handle_rdpmc(struct kvm_vcpu *vcpu)
5104{
5105 int err;
5106
5107 err = kvm_rdpmc(vcpu);
5108 kvm_complete_insn_gp(vcpu, err);
5109
5110 return 1;
5111}
5112
851ba692 5113static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01
ED
5114{
5115 skip_emulated_instruction(vcpu);
f5f48ee1 5116 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
5117 return 1;
5118}
5119
2acf923e
DC
5120static int handle_xsetbv(struct kvm_vcpu *vcpu)
5121{
5122 u64 new_bv = kvm_read_edx_eax(vcpu);
5123 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5124
5125 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5126 skip_emulated_instruction(vcpu);
5127 return 1;
5128}
5129
851ba692 5130static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 5131{
58fbbf26
KT
5132 if (likely(fasteoi)) {
5133 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5134 int access_type, offset;
5135
5136 access_type = exit_qualification & APIC_ACCESS_TYPE;
5137 offset = exit_qualification & APIC_ACCESS_OFFSET;
5138 /*
5139 * Sane guest uses MOV to write EOI, with written value
5140 * not cared. So make a short-circuit here by avoiding
5141 * heavy instruction emulation.
5142 */
5143 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5144 (offset == APIC_EOI)) {
5145 kvm_lapic_set_eoi(vcpu);
5146 skip_emulated_instruction(vcpu);
5147 return 1;
5148 }
5149 }
51d8b661 5150 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
5151}
5152
c7c9c56c
YZ
5153static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5154{
5155 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5156 int vector = exit_qualification & 0xff;
5157
5158 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5159 kvm_apic_set_eoi_accelerated(vcpu, vector);
5160 return 1;
5161}
5162
83d4c286
YZ
5163static int handle_apic_write(struct kvm_vcpu *vcpu)
5164{
5165 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5166 u32 offset = exit_qualification & 0xfff;
5167
5168 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5169 kvm_apic_write_nodecode(vcpu, offset);
5170 return 1;
5171}
5172
851ba692 5173static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 5174{
60637aac 5175 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 5176 unsigned long exit_qualification;
e269fb21
JK
5177 bool has_error_code = false;
5178 u32 error_code = 0;
37817f29 5179 u16 tss_selector;
7f3d35fd 5180 int reason, type, idt_v, idt_index;
64a7ec06
GN
5181
5182 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 5183 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 5184 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
5185
5186 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5187
5188 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
5189 if (reason == TASK_SWITCH_GATE && idt_v) {
5190 switch (type) {
5191 case INTR_TYPE_NMI_INTR:
5192 vcpu->arch.nmi_injected = false;
654f06fc 5193 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
5194 break;
5195 case INTR_TYPE_EXT_INTR:
66fd3f7f 5196 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
5197 kvm_clear_interrupt_queue(vcpu);
5198 break;
5199 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
5200 if (vmx->idt_vectoring_info &
5201 VECTORING_INFO_DELIVER_CODE_MASK) {
5202 has_error_code = true;
5203 error_code =
5204 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5205 }
5206 /* fall through */
64a7ec06
GN
5207 case INTR_TYPE_SOFT_EXCEPTION:
5208 kvm_clear_exception_queue(vcpu);
5209 break;
5210 default:
5211 break;
5212 }
60637aac 5213 }
37817f29
IE
5214 tss_selector = exit_qualification;
5215
64a7ec06
GN
5216 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5217 type != INTR_TYPE_EXT_INTR &&
5218 type != INTR_TYPE_NMI_INTR))
5219 skip_emulated_instruction(vcpu);
5220
7f3d35fd
KW
5221 if (kvm_task_switch(vcpu, tss_selector,
5222 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5223 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
5224 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5225 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5226 vcpu->run->internal.ndata = 0;
42dbaa5a 5227 return 0;
acb54517 5228 }
42dbaa5a
JK
5229
5230 /* clear all local breakpoint enable flags */
5231 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5232
5233 /*
5234 * TODO: What about debug traps on tss switch?
5235 * Are we supposed to inject them and update dr6?
5236 */
5237
5238 return 1;
37817f29
IE
5239}
5240
851ba692 5241static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 5242{
f9c617f6 5243 unsigned long exit_qualification;
1439442c 5244 gpa_t gpa;
4f5982a5 5245 u32 error_code;
1439442c 5246 int gla_validity;
1439442c 5247
f9c617f6 5248 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 5249
1439442c
SY
5250 gla_validity = (exit_qualification >> 7) & 0x3;
5251 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5252 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5253 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5254 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 5255 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
5256 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5257 (long unsigned int)exit_qualification);
851ba692
AK
5258 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5259 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 5260 return 0;
1439442c
SY
5261 }
5262
5263 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 5264 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5
XG
5265
5266 /* It is a write fault? */
5267 error_code = exit_qualification & (1U << 1);
5268 /* ept page table is present? */
5269 error_code |= (exit_qualification >> 3) & 0x1;
5270
5271 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
5272}
5273
68f89400
MT
5274static u64 ept_rsvd_mask(u64 spte, int level)
5275{
5276 int i;
5277 u64 mask = 0;
5278
5279 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5280 mask |= (1ULL << i);
5281
5282 if (level > 2)
5283 /* bits 7:3 reserved */
5284 mask |= 0xf8;
5285 else if (level == 2) {
5286 if (spte & (1ULL << 7))
5287 /* 2MB ref, bits 20:12 reserved */
5288 mask |= 0x1ff000;
5289 else
5290 /* bits 6:3 reserved */
5291 mask |= 0x78;
5292 }
5293
5294 return mask;
5295}
5296
5297static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5298 int level)
5299{
5300 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5301
5302 /* 010b (write-only) */
5303 WARN_ON((spte & 0x7) == 0x2);
5304
5305 /* 110b (write/execute) */
5306 WARN_ON((spte & 0x7) == 0x6);
5307
5308 /* 100b (execute-only) and value not supported by logical processor */
5309 if (!cpu_has_vmx_ept_execute_only())
5310 WARN_ON((spte & 0x7) == 0x4);
5311
5312 /* not 000b */
5313 if ((spte & 0x7)) {
5314 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5315
5316 if (rsvd_bits != 0) {
5317 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5318 __func__, rsvd_bits);
5319 WARN_ON(1);
5320 }
5321
5322 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5323 u64 ept_mem_type = (spte & 0x38) >> 3;
5324
5325 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5326 ept_mem_type == 7) {
5327 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5328 __func__, ept_mem_type);
5329 WARN_ON(1);
5330 }
5331 }
5332 }
5333}
5334
851ba692 5335static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
5336{
5337 u64 sptes[4];
ce88decf 5338 int nr_sptes, i, ret;
68f89400
MT
5339 gpa_t gpa;
5340
5341 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5342
ce88decf
XG
5343 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5344 if (likely(ret == 1))
5345 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5346 EMULATE_DONE;
5347 if (unlikely(!ret))
5348 return 1;
5349
5350 /* It is the real ept misconfig */
68f89400
MT
5351 printk(KERN_ERR "EPT: Misconfiguration.\n");
5352 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5353
5354 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5355
5356 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5357 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5358
851ba692
AK
5359 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5360 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
5361
5362 return 0;
5363}
5364
851ba692 5365static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
5366{
5367 u32 cpu_based_vm_exec_control;
5368
5369 /* clear pending NMI */
5370 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5371 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5372 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5373 ++vcpu->stat.nmi_window_exits;
3842d135 5374 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
5375
5376 return 1;
5377}
5378
80ced186 5379static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 5380{
8b3079a5
AK
5381 struct vcpu_vmx *vmx = to_vmx(vcpu);
5382 enum emulation_result err = EMULATE_DONE;
80ced186 5383 int ret = 1;
49e9d557
AK
5384 u32 cpu_exec_ctrl;
5385 bool intr_window_requested;
b8405c18 5386 unsigned count = 130;
49e9d557
AK
5387
5388 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5389 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 5390
b8405c18 5391 while (!guest_state_valid(vcpu) && count-- != 0) {
bdea48e3 5392 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
5393 return handle_interrupt_window(&vmx->vcpu);
5394
de87dcdd
AK
5395 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5396 return 1;
5397
991eebf9 5398 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 5399
80ced186
MG
5400 if (err == EMULATE_DO_MMIO) {
5401 ret = 0;
5402 goto out;
5403 }
1d5a4d9b 5404
de5f70e0
AK
5405 if (err != EMULATE_DONE) {
5406 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5407 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5408 vcpu->run->internal.ndata = 0;
6d77dbfc 5409 return 0;
de5f70e0 5410 }
ea953ef0
MG
5411
5412 if (signal_pending(current))
80ced186 5413 goto out;
ea953ef0
MG
5414 if (need_resched())
5415 schedule();
5416 }
5417
14168786 5418 vmx->emulation_required = emulation_required(vcpu);
80ced186
MG
5419out:
5420 return ret;
ea953ef0
MG
5421}
5422
4b8d54f9
ZE
5423/*
5424 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5425 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5426 */
9fb41ba8 5427static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9
ZE
5428{
5429 skip_emulated_instruction(vcpu);
5430 kvm_vcpu_on_spin(vcpu);
5431
5432 return 1;
5433}
5434
59708670
SY
5435static int handle_invalid_op(struct kvm_vcpu *vcpu)
5436{
5437 kvm_queue_exception(vcpu, UD_VECTOR);
5438 return 1;
5439}
5440
ff2f6fe9
NHE
5441/*
5442 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5443 * We could reuse a single VMCS for all the L2 guests, but we also want the
5444 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5445 * allows keeping them loaded on the processor, and in the future will allow
5446 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5447 * every entry if they never change.
5448 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5449 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5450 *
5451 * The following functions allocate and free a vmcs02 in this pool.
5452 */
5453
5454/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5455static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5456{
5457 struct vmcs02_list *item;
5458 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5459 if (item->vmptr == vmx->nested.current_vmptr) {
5460 list_move(&item->list, &vmx->nested.vmcs02_pool);
5461 return &item->vmcs02;
5462 }
5463
5464 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5465 /* Recycle the least recently used VMCS. */
5466 item = list_entry(vmx->nested.vmcs02_pool.prev,
5467 struct vmcs02_list, list);
5468 item->vmptr = vmx->nested.current_vmptr;
5469 list_move(&item->list, &vmx->nested.vmcs02_pool);
5470 return &item->vmcs02;
5471 }
5472
5473 /* Create a new VMCS */
0fa24ce3 5474 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
5475 if (!item)
5476 return NULL;
5477 item->vmcs02.vmcs = alloc_vmcs();
5478 if (!item->vmcs02.vmcs) {
5479 kfree(item);
5480 return NULL;
5481 }
5482 loaded_vmcs_init(&item->vmcs02);
5483 item->vmptr = vmx->nested.current_vmptr;
5484 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5485 vmx->nested.vmcs02_num++;
5486 return &item->vmcs02;
5487}
5488
5489/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5490static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5491{
5492 struct vmcs02_list *item;
5493 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5494 if (item->vmptr == vmptr) {
5495 free_loaded_vmcs(&item->vmcs02);
5496 list_del(&item->list);
5497 kfree(item);
5498 vmx->nested.vmcs02_num--;
5499 return;
5500 }
5501}
5502
5503/*
5504 * Free all VMCSs saved for this vcpu, except the one pointed by
5505 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5506 * currently used, if running L2), and vmcs01 when running L2.
5507 */
5508static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5509{
5510 struct vmcs02_list *item, *n;
5511 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5512 if (vmx->loaded_vmcs != &item->vmcs02)
5513 free_loaded_vmcs(&item->vmcs02);
5514 list_del(&item->list);
5515 kfree(item);
5516 }
5517 vmx->nested.vmcs02_num = 0;
5518
5519 if (vmx->loaded_vmcs != &vmx->vmcs01)
5520 free_loaded_vmcs(&vmx->vmcs01);
5521}
5522
145c28dd
AG
5523static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5524 u32 vm_instruction_error);
5525
ec378aee
NHE
5526/*
5527 * Emulate the VMXON instruction.
5528 * Currently, we just remember that VMX is active, and do not save or even
5529 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5530 * do not currently need to store anything in that guest-allocated memory
5531 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5532 * argument is different from the VMXON pointer (which the spec says they do).
5533 */
5534static int handle_vmon(struct kvm_vcpu *vcpu)
5535{
5536 struct kvm_segment cs;
5537 struct vcpu_vmx *vmx = to_vmx(vcpu);
8de48833 5538 struct vmcs *shadow_vmcs;
ec378aee
NHE
5539
5540 /* The Intel VMX Instruction Reference lists a bunch of bits that
5541 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5542 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5543 * Otherwise, we should fail with #UD. We test these now:
5544 */
5545 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5546 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5547 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5548 kvm_queue_exception(vcpu, UD_VECTOR);
5549 return 1;
5550 }
5551
5552 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5553 if (is_long_mode(vcpu) && !cs.l) {
5554 kvm_queue_exception(vcpu, UD_VECTOR);
5555 return 1;
5556 }
5557
5558 if (vmx_get_cpl(vcpu)) {
5559 kvm_inject_gp(vcpu, 0);
5560 return 1;
5561 }
145c28dd
AG
5562 if (vmx->nested.vmxon) {
5563 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5564 skip_emulated_instruction(vcpu);
5565 return 1;
5566 }
8de48833
AG
5567 if (enable_shadow_vmcs) {
5568 shadow_vmcs = alloc_vmcs();
5569 if (!shadow_vmcs)
5570 return -ENOMEM;
5571 /* mark vmcs as shadow */
5572 shadow_vmcs->revision_id |= (1u << 31);
5573 /* init shadow vmcs */
5574 vmcs_clear(shadow_vmcs);
5575 vmx->nested.current_shadow_vmcs = shadow_vmcs;
5576 }
ec378aee 5577
ff2f6fe9
NHE
5578 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5579 vmx->nested.vmcs02_num = 0;
5580
ec378aee
NHE
5581 vmx->nested.vmxon = true;
5582
5583 skip_emulated_instruction(vcpu);
5584 return 1;
5585}
5586
5587/*
5588 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5589 * for running VMX instructions (except VMXON, whose prerequisites are
5590 * slightly different). It also specifies what exception to inject otherwise.
5591 */
5592static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5593{
5594 struct kvm_segment cs;
5595 struct vcpu_vmx *vmx = to_vmx(vcpu);
5596
5597 if (!vmx->nested.vmxon) {
5598 kvm_queue_exception(vcpu, UD_VECTOR);
5599 return 0;
5600 }
5601
5602 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5603 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5604 (is_long_mode(vcpu) && !cs.l)) {
5605 kvm_queue_exception(vcpu, UD_VECTOR);
5606 return 0;
5607 }
5608
5609 if (vmx_get_cpl(vcpu)) {
5610 kvm_inject_gp(vcpu, 0);
5611 return 0;
5612 }
5613
5614 return 1;
5615}
5616
e7953d7f
AG
5617static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
5618{
8a1b9dd0 5619 u32 exec_control;
012f83cb
AG
5620 if (enable_shadow_vmcs) {
5621 if (vmx->nested.current_vmcs12 != NULL) {
5622 /* copy to memory all shadowed fields in case
5623 they were modified */
5624 copy_shadow_to_vmcs12(vmx);
5625 vmx->nested.sync_shadow_vmcs = false;
8a1b9dd0
AG
5626 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5627 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5628 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
5629 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb
AG
5630 }
5631 }
e7953d7f
AG
5632 kunmap(vmx->nested.current_vmcs12_page);
5633 nested_release_page(vmx->nested.current_vmcs12_page);
5634}
5635
ec378aee
NHE
5636/*
5637 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5638 * just stops using VMX.
5639 */
5640static void free_nested(struct vcpu_vmx *vmx)
5641{
5642 if (!vmx->nested.vmxon)
5643 return;
5644 vmx->nested.vmxon = false;
a9d30f33 5645 if (vmx->nested.current_vmptr != -1ull) {
e7953d7f 5646 nested_release_vmcs12(vmx);
a9d30f33
NHE
5647 vmx->nested.current_vmptr = -1ull;
5648 vmx->nested.current_vmcs12 = NULL;
5649 }
e7953d7f
AG
5650 if (enable_shadow_vmcs)
5651 free_vmcs(vmx->nested.current_shadow_vmcs);
fe3ef05c
NHE
5652 /* Unpin physical memory we referred to in current vmcs02 */
5653 if (vmx->nested.apic_access_page) {
5654 nested_release_page(vmx->nested.apic_access_page);
5655 vmx->nested.apic_access_page = 0;
5656 }
ff2f6fe9
NHE
5657
5658 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
5659}
5660
5661/* Emulate the VMXOFF instruction */
5662static int handle_vmoff(struct kvm_vcpu *vcpu)
5663{
5664 if (!nested_vmx_check_permission(vcpu))
5665 return 1;
5666 free_nested(to_vmx(vcpu));
5667 skip_emulated_instruction(vcpu);
5668 return 1;
5669}
5670
064aea77
NHE
5671/*
5672 * Decode the memory-address operand of a vmx instruction, as recorded on an
5673 * exit caused by such an instruction (run by a guest hypervisor).
5674 * On success, returns 0. When the operand is invalid, returns 1 and throws
5675 * #UD or #GP.
5676 */
5677static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5678 unsigned long exit_qualification,
5679 u32 vmx_instruction_info, gva_t *ret)
5680{
5681 /*
5682 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5683 * Execution", on an exit, vmx_instruction_info holds most of the
5684 * addressing components of the operand. Only the displacement part
5685 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5686 * For how an actual address is calculated from all these components,
5687 * refer to Vol. 1, "Operand Addressing".
5688 */
5689 int scaling = vmx_instruction_info & 3;
5690 int addr_size = (vmx_instruction_info >> 7) & 7;
5691 bool is_reg = vmx_instruction_info & (1u << 10);
5692 int seg_reg = (vmx_instruction_info >> 15) & 7;
5693 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5694 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5695 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5696 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5697
5698 if (is_reg) {
5699 kvm_queue_exception(vcpu, UD_VECTOR);
5700 return 1;
5701 }
5702
5703 /* Addr = segment_base + offset */
5704 /* offset = base + [index * scale] + displacement */
5705 *ret = vmx_get_segment_base(vcpu, seg_reg);
5706 if (base_is_valid)
5707 *ret += kvm_register_read(vcpu, base_reg);
5708 if (index_is_valid)
5709 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5710 *ret += exit_qualification; /* holds the displacement */
5711
5712 if (addr_size == 1) /* 32 bit */
5713 *ret &= 0xffffffff;
5714
5715 /*
5716 * TODO: throw #GP (and return 1) in various cases that the VM*
5717 * instructions require it - e.g., offset beyond segment limit,
5718 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5719 * address, and so on. Currently these are not checked.
5720 */
5721 return 0;
5722}
5723
0140caea
NHE
5724/*
5725 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5726 * set the success or error code of an emulated VMX instruction, as specified
5727 * by Vol 2B, VMX Instruction Reference, "Conventions".
5728 */
5729static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5730{
5731 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5732 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5733 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5734}
5735
5736static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5737{
5738 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5739 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5740 X86_EFLAGS_SF | X86_EFLAGS_OF))
5741 | X86_EFLAGS_CF);
5742}
5743
5744static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5745 u32 vm_instruction_error)
5746{
5747 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5748 /*
5749 * failValid writes the error number to the current VMCS, which
5750 * can't be done there isn't a current VMCS.
5751 */
5752 nested_vmx_failInvalid(vcpu);
5753 return;
5754 }
5755 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5756 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5757 X86_EFLAGS_SF | X86_EFLAGS_OF))
5758 | X86_EFLAGS_ZF);
5759 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
012f83cb
AG
5760 /*
5761 * We don't need to force a shadow sync because
5762 * VM_INSTRUCTION_ERROR is not shadowed
5763 */
0140caea
NHE
5764}
5765
27d6c865
NHE
5766/* Emulate the VMCLEAR instruction */
5767static int handle_vmclear(struct kvm_vcpu *vcpu)
5768{
5769 struct vcpu_vmx *vmx = to_vmx(vcpu);
5770 gva_t gva;
5771 gpa_t vmptr;
5772 struct vmcs12 *vmcs12;
5773 struct page *page;
5774 struct x86_exception e;
5775
5776 if (!nested_vmx_check_permission(vcpu))
5777 return 1;
5778
5779 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5780 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5781 return 1;
5782
5783 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5784 sizeof(vmptr), &e)) {
5785 kvm_inject_page_fault(vcpu, &e);
5786 return 1;
5787 }
5788
5789 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5790 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5791 skip_emulated_instruction(vcpu);
5792 return 1;
5793 }
5794
5795 if (vmptr == vmx->nested.current_vmptr) {
e7953d7f 5796 nested_release_vmcs12(vmx);
27d6c865
NHE
5797 vmx->nested.current_vmptr = -1ull;
5798 vmx->nested.current_vmcs12 = NULL;
5799 }
5800
5801 page = nested_get_page(vcpu, vmptr);
5802 if (page == NULL) {
5803 /*
5804 * For accurate processor emulation, VMCLEAR beyond available
5805 * physical memory should do nothing at all. However, it is
5806 * possible that a nested vmx bug, not a guest hypervisor bug,
5807 * resulted in this case, so let's shut down before doing any
5808 * more damage:
5809 */
5810 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5811 return 1;
5812 }
5813 vmcs12 = kmap(page);
5814 vmcs12->launch_state = 0;
5815 kunmap(page);
5816 nested_release_page(page);
5817
5818 nested_free_vmcs02(vmx, vmptr);
5819
5820 skip_emulated_instruction(vcpu);
5821 nested_vmx_succeed(vcpu);
5822 return 1;
5823}
5824
cd232ad0
NHE
5825static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5826
5827/* Emulate the VMLAUNCH instruction */
5828static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5829{
5830 return nested_vmx_run(vcpu, true);
5831}
5832
5833/* Emulate the VMRESUME instruction */
5834static int handle_vmresume(struct kvm_vcpu *vcpu)
5835{
5836
5837 return nested_vmx_run(vcpu, false);
5838}
5839
49f705c5
NHE
5840enum vmcs_field_type {
5841 VMCS_FIELD_TYPE_U16 = 0,
5842 VMCS_FIELD_TYPE_U64 = 1,
5843 VMCS_FIELD_TYPE_U32 = 2,
5844 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5845};
5846
5847static inline int vmcs_field_type(unsigned long field)
5848{
5849 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5850 return VMCS_FIELD_TYPE_U32;
5851 return (field >> 13) & 0x3 ;
5852}
5853
5854static inline int vmcs_field_readonly(unsigned long field)
5855{
5856 return (((field >> 10) & 0x3) == 1);
5857}
5858
5859/*
5860 * Read a vmcs12 field. Since these can have varying lengths and we return
5861 * one type, we chose the biggest type (u64) and zero-extend the return value
5862 * to that size. Note that the caller, handle_vmread, might need to use only
5863 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5864 * 64-bit fields are to be returned).
5865 */
5866static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5867 unsigned long field, u64 *ret)
5868{
5869 short offset = vmcs_field_to_offset(field);
5870 char *p;
5871
5872 if (offset < 0)
5873 return 0;
5874
5875 p = ((char *)(get_vmcs12(vcpu))) + offset;
5876
5877 switch (vmcs_field_type(field)) {
5878 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5879 *ret = *((natural_width *)p);
5880 return 1;
5881 case VMCS_FIELD_TYPE_U16:
5882 *ret = *((u16 *)p);
5883 return 1;
5884 case VMCS_FIELD_TYPE_U32:
5885 *ret = *((u32 *)p);
5886 return 1;
5887 case VMCS_FIELD_TYPE_U64:
5888 *ret = *((u64 *)p);
5889 return 1;
5890 default:
5891 return 0; /* can never happen. */
5892 }
5893}
5894
20b97fea
AG
5895
5896static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
5897 unsigned long field, u64 field_value){
5898 short offset = vmcs_field_to_offset(field);
5899 char *p = ((char *) get_vmcs12(vcpu)) + offset;
5900 if (offset < 0)
5901 return false;
5902
5903 switch (vmcs_field_type(field)) {
5904 case VMCS_FIELD_TYPE_U16:
5905 *(u16 *)p = field_value;
5906 return true;
5907 case VMCS_FIELD_TYPE_U32:
5908 *(u32 *)p = field_value;
5909 return true;
5910 case VMCS_FIELD_TYPE_U64:
5911 *(u64 *)p = field_value;
5912 return true;
5913 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5914 *(natural_width *)p = field_value;
5915 return true;
5916 default:
5917 return false; /* can never happen. */
5918 }
5919
5920}
5921
16f5b903
AG
5922static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
5923{
5924 int i;
5925 unsigned long field;
5926 u64 field_value;
5927 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
5928 unsigned long *fields = (unsigned long *)shadow_read_write_fields;
5929 int num_fields = max_shadow_read_write_fields;
5930
5931 vmcs_load(shadow_vmcs);
5932
5933 for (i = 0; i < num_fields; i++) {
5934 field = fields[i];
5935 switch (vmcs_field_type(field)) {
5936 case VMCS_FIELD_TYPE_U16:
5937 field_value = vmcs_read16(field);
5938 break;
5939 case VMCS_FIELD_TYPE_U32:
5940 field_value = vmcs_read32(field);
5941 break;
5942 case VMCS_FIELD_TYPE_U64:
5943 field_value = vmcs_read64(field);
5944 break;
5945 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5946 field_value = vmcs_readl(field);
5947 break;
5948 }
5949 vmcs12_write_any(&vmx->vcpu, field, field_value);
5950 }
5951
5952 vmcs_clear(shadow_vmcs);
5953 vmcs_load(vmx->loaded_vmcs->vmcs);
5954}
5955
c3114420
AG
5956static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
5957{
5958 unsigned long *fields[] = {
5959 (unsigned long *)shadow_read_write_fields,
5960 (unsigned long *)shadow_read_only_fields
5961 };
5962 int num_lists = ARRAY_SIZE(fields);
5963 int max_fields[] = {
5964 max_shadow_read_write_fields,
5965 max_shadow_read_only_fields
5966 };
5967 int i, q;
5968 unsigned long field;
5969 u64 field_value = 0;
5970 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
5971
5972 vmcs_load(shadow_vmcs);
5973
5974 for (q = 0; q < num_lists; q++) {
5975 for (i = 0; i < max_fields[q]; i++) {
5976 field = fields[q][i];
5977 vmcs12_read_any(&vmx->vcpu, field, &field_value);
5978
5979 switch (vmcs_field_type(field)) {
5980 case VMCS_FIELD_TYPE_U16:
5981 vmcs_write16(field, (u16)field_value);
5982 break;
5983 case VMCS_FIELD_TYPE_U32:
5984 vmcs_write32(field, (u32)field_value);
5985 break;
5986 case VMCS_FIELD_TYPE_U64:
5987 vmcs_write64(field, (u64)field_value);
5988 break;
5989 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5990 vmcs_writel(field, (long)field_value);
5991 break;
5992 }
5993 }
5994 }
5995
5996 vmcs_clear(shadow_vmcs);
5997 vmcs_load(vmx->loaded_vmcs->vmcs);
5998}
5999
49f705c5
NHE
6000/*
6001 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6002 * used before) all generate the same failure when it is missing.
6003 */
6004static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6005{
6006 struct vcpu_vmx *vmx = to_vmx(vcpu);
6007 if (vmx->nested.current_vmptr == -1ull) {
6008 nested_vmx_failInvalid(vcpu);
6009 skip_emulated_instruction(vcpu);
6010 return 0;
6011 }
6012 return 1;
6013}
6014
6015static int handle_vmread(struct kvm_vcpu *vcpu)
6016{
6017 unsigned long field;
6018 u64 field_value;
6019 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6020 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6021 gva_t gva = 0;
6022
6023 if (!nested_vmx_check_permission(vcpu) ||
6024 !nested_vmx_check_vmcs12(vcpu))
6025 return 1;
6026
6027 /* Decode instruction info and find the field to read */
6028 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6029 /* Read the field, zero-extended to a u64 field_value */
6030 if (!vmcs12_read_any(vcpu, field, &field_value)) {
6031 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6032 skip_emulated_instruction(vcpu);
6033 return 1;
6034 }
6035 /*
6036 * Now copy part of this value to register or memory, as requested.
6037 * Note that the number of bits actually copied is 32 or 64 depending
6038 * on the guest's mode (32 or 64 bit), not on the given field's length.
6039 */
6040 if (vmx_instruction_info & (1u << 10)) {
6041 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6042 field_value);
6043 } else {
6044 if (get_vmx_mem_address(vcpu, exit_qualification,
6045 vmx_instruction_info, &gva))
6046 return 1;
6047 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6048 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6049 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6050 }
6051
6052 nested_vmx_succeed(vcpu);
6053 skip_emulated_instruction(vcpu);
6054 return 1;
6055}
6056
6057
6058static int handle_vmwrite(struct kvm_vcpu *vcpu)
6059{
6060 unsigned long field;
6061 gva_t gva;
6062 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6063 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
6064 /* The value to write might be 32 or 64 bits, depending on L1's long
6065 * mode, and eventually we need to write that into a field of several
6066 * possible lengths. The code below first zero-extends the value to 64
6067 * bit (field_value), and then copies only the approriate number of
6068 * bits into the vmcs12 field.
6069 */
6070 u64 field_value = 0;
6071 struct x86_exception e;
6072
6073 if (!nested_vmx_check_permission(vcpu) ||
6074 !nested_vmx_check_vmcs12(vcpu))
6075 return 1;
6076
6077 if (vmx_instruction_info & (1u << 10))
6078 field_value = kvm_register_read(vcpu,
6079 (((vmx_instruction_info) >> 3) & 0xf));
6080 else {
6081 if (get_vmx_mem_address(vcpu, exit_qualification,
6082 vmx_instruction_info, &gva))
6083 return 1;
6084 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6085 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6086 kvm_inject_page_fault(vcpu, &e);
6087 return 1;
6088 }
6089 }
6090
6091
6092 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6093 if (vmcs_field_readonly(field)) {
6094 nested_vmx_failValid(vcpu,
6095 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6096 skip_emulated_instruction(vcpu);
6097 return 1;
6098 }
6099
20b97fea 6100 if (!vmcs12_write_any(vcpu, field, field_value)) {
49f705c5
NHE
6101 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6102 skip_emulated_instruction(vcpu);
6103 return 1;
6104 }
6105
6106 nested_vmx_succeed(vcpu);
6107 skip_emulated_instruction(vcpu);
6108 return 1;
6109}
6110
63846663
NHE
6111/* Emulate the VMPTRLD instruction */
6112static int handle_vmptrld(struct kvm_vcpu *vcpu)
6113{
6114 struct vcpu_vmx *vmx = to_vmx(vcpu);
6115 gva_t gva;
6116 gpa_t vmptr;
6117 struct x86_exception e;
8a1b9dd0 6118 u32 exec_control;
63846663
NHE
6119
6120 if (!nested_vmx_check_permission(vcpu))
6121 return 1;
6122
6123 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6124 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6125 return 1;
6126
6127 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6128 sizeof(vmptr), &e)) {
6129 kvm_inject_page_fault(vcpu, &e);
6130 return 1;
6131 }
6132
6133 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6134 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6135 skip_emulated_instruction(vcpu);
6136 return 1;
6137 }
6138
6139 if (vmx->nested.current_vmptr != vmptr) {
6140 struct vmcs12 *new_vmcs12;
6141 struct page *page;
6142 page = nested_get_page(vcpu, vmptr);
6143 if (page == NULL) {
6144 nested_vmx_failInvalid(vcpu);
6145 skip_emulated_instruction(vcpu);
6146 return 1;
6147 }
6148 new_vmcs12 = kmap(page);
6149 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6150 kunmap(page);
6151 nested_release_page_clean(page);
6152 nested_vmx_failValid(vcpu,
6153 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6154 skip_emulated_instruction(vcpu);
6155 return 1;
6156 }
e7953d7f
AG
6157 if (vmx->nested.current_vmptr != -1ull)
6158 nested_release_vmcs12(vmx);
63846663
NHE
6159
6160 vmx->nested.current_vmptr = vmptr;
6161 vmx->nested.current_vmcs12 = new_vmcs12;
6162 vmx->nested.current_vmcs12_page = page;
012f83cb 6163 if (enable_shadow_vmcs) {
8a1b9dd0
AG
6164 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6165 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6166 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6167 vmcs_write64(VMCS_LINK_POINTER,
6168 __pa(vmx->nested.current_shadow_vmcs));
012f83cb
AG
6169 vmx->nested.sync_shadow_vmcs = true;
6170 }
63846663
NHE
6171 }
6172
6173 nested_vmx_succeed(vcpu);
6174 skip_emulated_instruction(vcpu);
6175 return 1;
6176}
6177
6a4d7550
NHE
6178/* Emulate the VMPTRST instruction */
6179static int handle_vmptrst(struct kvm_vcpu *vcpu)
6180{
6181 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6182 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6183 gva_t vmcs_gva;
6184 struct x86_exception e;
6185
6186 if (!nested_vmx_check_permission(vcpu))
6187 return 1;
6188
6189 if (get_vmx_mem_address(vcpu, exit_qualification,
6190 vmx_instruction_info, &vmcs_gva))
6191 return 1;
6192 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6193 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6194 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6195 sizeof(u64), &e)) {
6196 kvm_inject_page_fault(vcpu, &e);
6197 return 1;
6198 }
6199 nested_vmx_succeed(vcpu);
6200 skip_emulated_instruction(vcpu);
6201 return 1;
6202}
6203
6aa8b732
AK
6204/*
6205 * The exit handlers return 1 if the exit was handled fully and guest execution
6206 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6207 * to be done to userspace and return 0.
6208 */
772e0318 6209static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
6210 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
6211 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 6212 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 6213 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 6214 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
6215 [EXIT_REASON_CR_ACCESS] = handle_cr,
6216 [EXIT_REASON_DR_ACCESS] = handle_dr,
6217 [EXIT_REASON_CPUID] = handle_cpuid,
6218 [EXIT_REASON_MSR_READ] = handle_rdmsr,
6219 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
6220 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
6221 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 6222 [EXIT_REASON_INVD] = handle_invd,
a7052897 6223 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 6224 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 6225 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 6226 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 6227 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 6228 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 6229 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 6230 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 6231 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 6232 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
6233 [EXIT_REASON_VMOFF] = handle_vmoff,
6234 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
6235 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6236 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 6237 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 6238 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 6239 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 6240 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 6241 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 6242 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
6243 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6244 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 6245 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
59708670
SY
6246 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
6247 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6aa8b732
AK
6248};
6249
6250static const int kvm_vmx_max_exit_handlers =
50a3485c 6251 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 6252
908a7bdd
JK
6253static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6254 struct vmcs12 *vmcs12)
6255{
6256 unsigned long exit_qualification;
6257 gpa_t bitmap, last_bitmap;
6258 unsigned int port;
6259 int size;
6260 u8 b;
6261
6262 if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
6263 return 1;
6264
6265 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6266 return 0;
6267
6268 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6269
6270 port = exit_qualification >> 16;
6271 size = (exit_qualification & 7) + 1;
6272
6273 last_bitmap = (gpa_t)-1;
6274 b = -1;
6275
6276 while (size > 0) {
6277 if (port < 0x8000)
6278 bitmap = vmcs12->io_bitmap_a;
6279 else if (port < 0x10000)
6280 bitmap = vmcs12->io_bitmap_b;
6281 else
6282 return 1;
6283 bitmap += (port & 0x7fff) / 8;
6284
6285 if (last_bitmap != bitmap)
6286 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6287 return 1;
6288 if (b & (1 << (port & 7)))
6289 return 1;
6290
6291 port++;
6292 size--;
6293 last_bitmap = bitmap;
6294 }
6295
6296 return 0;
6297}
6298
644d711a
NHE
6299/*
6300 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6301 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6302 * disinterest in the current event (read or write a specific MSR) by using an
6303 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6304 */
6305static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6306 struct vmcs12 *vmcs12, u32 exit_reason)
6307{
6308 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6309 gpa_t bitmap;
6310
cbd29cb6 6311 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
644d711a
NHE
6312 return 1;
6313
6314 /*
6315 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6316 * for the four combinations of read/write and low/high MSR numbers.
6317 * First we need to figure out which of the four to use:
6318 */
6319 bitmap = vmcs12->msr_bitmap;
6320 if (exit_reason == EXIT_REASON_MSR_WRITE)
6321 bitmap += 2048;
6322 if (msr_index >= 0xc0000000) {
6323 msr_index -= 0xc0000000;
6324 bitmap += 1024;
6325 }
6326
6327 /* Then read the msr_index'th bit from this bitmap: */
6328 if (msr_index < 1024*8) {
6329 unsigned char b;
bd31a7f5
JK
6330 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6331 return 1;
644d711a
NHE
6332 return 1 & (b >> (msr_index & 7));
6333 } else
6334 return 1; /* let L1 handle the wrong parameter */
6335}
6336
6337/*
6338 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6339 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6340 * intercept (via guest_host_mask etc.) the current event.
6341 */
6342static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6343 struct vmcs12 *vmcs12)
6344{
6345 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6346 int cr = exit_qualification & 15;
6347 int reg = (exit_qualification >> 8) & 15;
6348 unsigned long val = kvm_register_read(vcpu, reg);
6349
6350 switch ((exit_qualification >> 4) & 3) {
6351 case 0: /* mov to cr */
6352 switch (cr) {
6353 case 0:
6354 if (vmcs12->cr0_guest_host_mask &
6355 (val ^ vmcs12->cr0_read_shadow))
6356 return 1;
6357 break;
6358 case 3:
6359 if ((vmcs12->cr3_target_count >= 1 &&
6360 vmcs12->cr3_target_value0 == val) ||
6361 (vmcs12->cr3_target_count >= 2 &&
6362 vmcs12->cr3_target_value1 == val) ||
6363 (vmcs12->cr3_target_count >= 3 &&
6364 vmcs12->cr3_target_value2 == val) ||
6365 (vmcs12->cr3_target_count >= 4 &&
6366 vmcs12->cr3_target_value3 == val))
6367 return 0;
6368 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6369 return 1;
6370 break;
6371 case 4:
6372 if (vmcs12->cr4_guest_host_mask &
6373 (vmcs12->cr4_read_shadow ^ val))
6374 return 1;
6375 break;
6376 case 8:
6377 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6378 return 1;
6379 break;
6380 }
6381 break;
6382 case 2: /* clts */
6383 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6384 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6385 return 1;
6386 break;
6387 case 1: /* mov from cr */
6388 switch (cr) {
6389 case 3:
6390 if (vmcs12->cpu_based_vm_exec_control &
6391 CPU_BASED_CR3_STORE_EXITING)
6392 return 1;
6393 break;
6394 case 8:
6395 if (vmcs12->cpu_based_vm_exec_control &
6396 CPU_BASED_CR8_STORE_EXITING)
6397 return 1;
6398 break;
6399 }
6400 break;
6401 case 3: /* lmsw */
6402 /*
6403 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6404 * cr0. Other attempted changes are ignored, with no exit.
6405 */
6406 if (vmcs12->cr0_guest_host_mask & 0xe &
6407 (val ^ vmcs12->cr0_read_shadow))
6408 return 1;
6409 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6410 !(vmcs12->cr0_read_shadow & 0x1) &&
6411 (val & 0x1))
6412 return 1;
6413 break;
6414 }
6415 return 0;
6416}
6417
6418/*
6419 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6420 * should handle it ourselves in L0 (and then continue L2). Only call this
6421 * when in is_guest_mode (L2).
6422 */
6423static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6424{
644d711a
NHE
6425 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6426 struct vcpu_vmx *vmx = to_vmx(vcpu);
6427 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 6428 u32 exit_reason = vmx->exit_reason;
644d711a
NHE
6429
6430 if (vmx->nested.nested_run_pending)
6431 return 0;
6432
6433 if (unlikely(vmx->fail)) {
bd80158a
JK
6434 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6435 vmcs_read32(VM_INSTRUCTION_ERROR));
644d711a
NHE
6436 return 1;
6437 }
6438
6439 switch (exit_reason) {
6440 case EXIT_REASON_EXCEPTION_NMI:
6441 if (!is_exception(intr_info))
6442 return 0;
6443 else if (is_page_fault(intr_info))
6444 return enable_ept;
6445 return vmcs12->exception_bitmap &
6446 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6447 case EXIT_REASON_EXTERNAL_INTERRUPT:
6448 return 0;
6449 case EXIT_REASON_TRIPLE_FAULT:
6450 return 1;
6451 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 6452 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 6453 case EXIT_REASON_NMI_WINDOW:
3b656cf7 6454 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a
NHE
6455 case EXIT_REASON_TASK_SWITCH:
6456 return 1;
6457 case EXIT_REASON_CPUID:
6458 return 1;
6459 case EXIT_REASON_HLT:
6460 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6461 case EXIT_REASON_INVD:
6462 return 1;
6463 case EXIT_REASON_INVLPG:
6464 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6465 case EXIT_REASON_RDPMC:
6466 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6467 case EXIT_REASON_RDTSC:
6468 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6469 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6470 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6471 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6472 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6473 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6474 /*
6475 * VMX instructions trap unconditionally. This allows L1 to
6476 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6477 */
6478 return 1;
6479 case EXIT_REASON_CR_ACCESS:
6480 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6481 case EXIT_REASON_DR_ACCESS:
6482 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6483 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 6484 return nested_vmx_exit_handled_io(vcpu, vmcs12);
644d711a
NHE
6485 case EXIT_REASON_MSR_READ:
6486 case EXIT_REASON_MSR_WRITE:
6487 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6488 case EXIT_REASON_INVALID_STATE:
6489 return 1;
6490 case EXIT_REASON_MWAIT_INSTRUCTION:
6491 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6492 case EXIT_REASON_MONITOR_INSTRUCTION:
6493 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6494 case EXIT_REASON_PAUSE_INSTRUCTION:
6495 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6496 nested_cpu_has2(vmcs12,
6497 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6498 case EXIT_REASON_MCE_DURING_VMENTRY:
6499 return 0;
6500 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6501 return 1;
6502 case EXIT_REASON_APIC_ACCESS:
6503 return nested_cpu_has2(vmcs12,
6504 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6505 case EXIT_REASON_EPT_VIOLATION:
6506 case EXIT_REASON_EPT_MISCONFIG:
6507 return 0;
0238ea91
JK
6508 case EXIT_REASON_PREEMPTION_TIMER:
6509 return vmcs12->pin_based_vm_exec_control &
6510 PIN_BASED_VMX_PREEMPTION_TIMER;
644d711a
NHE
6511 case EXIT_REASON_WBINVD:
6512 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6513 case EXIT_REASON_XSETBV:
6514 return 1;
6515 default:
6516 return 1;
6517 }
6518}
6519
586f9607
AK
6520static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6521{
6522 *info1 = vmcs_readl(EXIT_QUALIFICATION);
6523 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6524}
6525
6aa8b732
AK
6526/*
6527 * The guest has exited. See if we can fix it or if we need userspace
6528 * assistance.
6529 */
851ba692 6530static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 6531{
29bd8a78 6532 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 6533 u32 exit_reason = vmx->exit_reason;
1155f76a 6534 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 6535
80ced186 6536 /* If guest state is invalid, start emulating */
14168786 6537 if (vmx->emulation_required)
80ced186 6538 return handle_invalid_guest_state(vcpu);
1d5a4d9b 6539
b6f1250e
NHE
6540 /*
6541 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
6542 * we did not inject a still-pending event to L1 now because of
6543 * nested_run_pending, we need to re-enable this bit.
6544 */
6545 if (vmx->nested.nested_run_pending)
6546 kvm_make_request(KVM_REQ_EVENT, vcpu);
6547
509c75ea
NHE
6548 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
6549 exit_reason == EXIT_REASON_VMRESUME))
644d711a
NHE
6550 vmx->nested.nested_run_pending = 1;
6551 else
6552 vmx->nested.nested_run_pending = 0;
6553
6554 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6555 nested_vmx_vmexit(vcpu);
6556 return 1;
6557 }
6558
5120702e
MG
6559 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6560 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6561 vcpu->run->fail_entry.hardware_entry_failure_reason
6562 = exit_reason;
6563 return 0;
6564 }
6565
29bd8a78 6566 if (unlikely(vmx->fail)) {
851ba692
AK
6567 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6568 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
6569 = vmcs_read32(VM_INSTRUCTION_ERROR);
6570 return 0;
6571 }
6aa8b732 6572
b9bf6882
XG
6573 /*
6574 * Note:
6575 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6576 * delivery event since it indicates guest is accessing MMIO.
6577 * The vm-exit can be triggered again after return to guest that
6578 * will cause infinite loop.
6579 */
d77c26fc 6580 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 6581 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 6582 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b9bf6882
XG
6583 exit_reason != EXIT_REASON_TASK_SWITCH)) {
6584 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6585 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6586 vcpu->run->internal.ndata = 2;
6587 vcpu->run->internal.data[0] = vectoring_info;
6588 vcpu->run->internal.data[1] = exit_reason;
6589 return 0;
6590 }
3b86cd99 6591
644d711a
NHE
6592 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6593 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6594 get_vmcs12(vcpu), vcpu)))) {
c4282df9 6595 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 6596 vmx->soft_vnmi_blocked = 0;
3b86cd99 6597 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 6598 vcpu->arch.nmi_pending) {
3b86cd99
JK
6599 /*
6600 * This CPU don't support us in finding the end of an
6601 * NMI-blocked window if the guest runs with IRQs
6602 * disabled. So we pull the trigger after 1 s of
6603 * futile waiting, but inform the user about this.
6604 */
6605 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6606 "state on VCPU %d after 1 s timeout\n",
6607 __func__, vcpu->vcpu_id);
6608 vmx->soft_vnmi_blocked = 0;
3b86cd99 6609 }
3b86cd99
JK
6610 }
6611
6aa8b732
AK
6612 if (exit_reason < kvm_vmx_max_exit_handlers
6613 && kvm_vmx_exit_handlers[exit_reason])
851ba692 6614 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 6615 else {
851ba692
AK
6616 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6617 vcpu->run->hw.hardware_exit_reason = exit_reason;
6aa8b732
AK
6618 }
6619 return 0;
6620}
6621
95ba8273 6622static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 6623{
95ba8273 6624 if (irr == -1 || tpr < irr) {
6e5d865c
YS
6625 vmcs_write32(TPR_THRESHOLD, 0);
6626 return;
6627 }
6628
95ba8273 6629 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
6630}
6631
8d14695f
YZ
6632static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6633{
6634 u32 sec_exec_control;
6635
6636 /*
6637 * There is not point to enable virtualize x2apic without enable
6638 * apicv
6639 */
c7c9c56c
YZ
6640 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6641 !vmx_vm_has_apicv(vcpu->kvm))
8d14695f
YZ
6642 return;
6643
6644 if (!vm_need_tpr_shadow(vcpu->kvm))
6645 return;
6646
6647 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6648
6649 if (set) {
6650 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6651 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6652 } else {
6653 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6654 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6655 }
6656 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6657
6658 vmx_set_msr_bitmap(vcpu);
6659}
6660
c7c9c56c
YZ
6661static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6662{
6663 u16 status;
6664 u8 old;
6665
6666 if (!vmx_vm_has_apicv(kvm))
6667 return;
6668
6669 if (isr == -1)
6670 isr = 0;
6671
6672 status = vmcs_read16(GUEST_INTR_STATUS);
6673 old = status >> 8;
6674 if (isr != old) {
6675 status &= 0xff;
6676 status |= isr << 8;
6677 vmcs_write16(GUEST_INTR_STATUS, status);
6678 }
6679}
6680
6681static void vmx_set_rvi(int vector)
6682{
6683 u16 status;
6684 u8 old;
6685
6686 status = vmcs_read16(GUEST_INTR_STATUS);
6687 old = (u8)status & 0xff;
6688 if ((u8)vector != old) {
6689 status &= ~0xff;
6690 status |= (u8)vector;
6691 vmcs_write16(GUEST_INTR_STATUS, status);
6692 }
6693}
6694
6695static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6696{
6697 if (max_irr == -1)
6698 return;
6699
6700 vmx_set_rvi(max_irr);
6701}
6702
6703static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6704{
3d81bc7e
YZ
6705 if (!vmx_vm_has_apicv(vcpu->kvm))
6706 return;
6707
c7c9c56c
YZ
6708 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6709 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6710 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6711 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6712}
6713
51aa01d1 6714static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 6715{
00eba012
AK
6716 u32 exit_intr_info;
6717
6718 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6719 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6720 return;
6721
c5ca8e57 6722 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 6723 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
6724
6725 /* Handle machine checks before interrupts are enabled */
00eba012 6726 if (is_machine_check(exit_intr_info))
a0861c02
AK
6727 kvm_machine_check();
6728
20f65983 6729 /* We need to handle NMIs before interrupts are enabled */
00eba012 6730 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
6731 (exit_intr_info & INTR_INFO_VALID_MASK)) {
6732 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 6733 asm("int $2");
ff9d07a0
ZY
6734 kvm_after_handle_nmi(&vmx->vcpu);
6735 }
51aa01d1 6736}
20f65983 6737
a547c6db
YZ
6738static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6739{
6740 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6741
6742 /*
6743 * If external interrupt exists, IF bit is set in rflags/eflags on the
6744 * interrupt stack frame, and interrupt will be enabled on a return
6745 * from interrupt handler.
6746 */
6747 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6748 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6749 unsigned int vector;
6750 unsigned long entry;
6751 gate_desc *desc;
6752 struct vcpu_vmx *vmx = to_vmx(vcpu);
6753#ifdef CONFIG_X86_64
6754 unsigned long tmp;
6755#endif
6756
6757 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6758 desc = (gate_desc *)vmx->host_idt_base + vector;
6759 entry = gate_offset(*desc);
6760 asm volatile(
6761#ifdef CONFIG_X86_64
6762 "mov %%" _ASM_SP ", %[sp]\n\t"
6763 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6764 "push $%c[ss]\n\t"
6765 "push %[sp]\n\t"
6766#endif
6767 "pushf\n\t"
6768 "orl $0x200, (%%" _ASM_SP ")\n\t"
6769 __ASM_SIZE(push) " $%c[cs]\n\t"
6770 "call *%[entry]\n\t"
6771 :
6772#ifdef CONFIG_X86_64
6773 [sp]"=&r"(tmp)
6774#endif
6775 :
6776 [entry]"r"(entry),
6777 [ss]"i"(__KERNEL_DS),
6778 [cs]"i"(__KERNEL_CS)
6779 );
6780 } else
6781 local_irq_enable();
6782}
6783
51aa01d1
AK
6784static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6785{
c5ca8e57 6786 u32 exit_intr_info;
51aa01d1
AK
6787 bool unblock_nmi;
6788 u8 vector;
6789 bool idtv_info_valid;
6790
6791 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 6792
cf393f75 6793 if (cpu_has_virtual_nmis()) {
9d58b931
AK
6794 if (vmx->nmi_known_unmasked)
6795 return;
c5ca8e57
AK
6796 /*
6797 * Can't use vmx->exit_intr_info since we're not sure what
6798 * the exit reason is.
6799 */
6800 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
6801 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6802 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6803 /*
7b4a25cb 6804 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
6805 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6806 * a guest IRET fault.
7b4a25cb
GN
6807 * SDM 3: 23.2.2 (September 2008)
6808 * Bit 12 is undefined in any of the following cases:
6809 * If the VM exit sets the valid bit in the IDT-vectoring
6810 * information field.
6811 * If the VM exit is due to a double fault.
cf393f75 6812 */
7b4a25cb
GN
6813 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6814 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
6815 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6816 GUEST_INTR_STATE_NMI);
9d58b931
AK
6817 else
6818 vmx->nmi_known_unmasked =
6819 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6820 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
6821 } else if (unlikely(vmx->soft_vnmi_blocked))
6822 vmx->vnmi_blocked_time +=
6823 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
6824}
6825
3ab66e8a 6826static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
6827 u32 idt_vectoring_info,
6828 int instr_len_field,
6829 int error_code_field)
51aa01d1 6830{
51aa01d1
AK
6831 u8 vector;
6832 int type;
6833 bool idtv_info_valid;
6834
6835 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 6836
3ab66e8a
JK
6837 vcpu->arch.nmi_injected = false;
6838 kvm_clear_exception_queue(vcpu);
6839 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
6840
6841 if (!idtv_info_valid)
6842 return;
6843
3ab66e8a 6844 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 6845
668f612f
AK
6846 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6847 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 6848
64a7ec06 6849 switch (type) {
37b96e98 6850 case INTR_TYPE_NMI_INTR:
3ab66e8a 6851 vcpu->arch.nmi_injected = true;
668f612f 6852 /*
7b4a25cb 6853 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
6854 * Clear bit "block by NMI" before VM entry if a NMI
6855 * delivery faulted.
668f612f 6856 */
3ab66e8a 6857 vmx_set_nmi_mask(vcpu, false);
37b96e98 6858 break;
37b96e98 6859 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 6860 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
6861 /* fall through */
6862 case INTR_TYPE_HARD_EXCEPTION:
35920a35 6863 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 6864 u32 err = vmcs_read32(error_code_field);
3ab66e8a 6865 kvm_queue_exception_e(vcpu, vector, err);
35920a35 6866 } else
3ab66e8a 6867 kvm_queue_exception(vcpu, vector);
37b96e98 6868 break;
66fd3f7f 6869 case INTR_TYPE_SOFT_INTR:
3ab66e8a 6870 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 6871 /* fall through */
37b96e98 6872 case INTR_TYPE_EXT_INTR:
3ab66e8a 6873 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
6874 break;
6875 default:
6876 break;
f7d9238f 6877 }
cf393f75
AK
6878}
6879
83422e17
AK
6880static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6881{
3ab66e8a 6882 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
6883 VM_EXIT_INSTRUCTION_LEN,
6884 IDT_VECTORING_ERROR_CODE);
6885}
6886
b463a6f7
AK
6887static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6888{
3ab66e8a 6889 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
6890 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6891 VM_ENTRY_INSTRUCTION_LEN,
6892 VM_ENTRY_EXCEPTION_ERROR_CODE);
6893
6894 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6895}
6896
d7cd9796
GN
6897static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6898{
6899 int i, nr_msrs;
6900 struct perf_guest_switch_msr *msrs;
6901
6902 msrs = perf_guest_get_msrs(&nr_msrs);
6903
6904 if (!msrs)
6905 return;
6906
6907 for (i = 0; i < nr_msrs; i++)
6908 if (msrs[i].host == msrs[i].guest)
6909 clear_atomic_switch_msr(vmx, msrs[i].msr);
6910 else
6911 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6912 msrs[i].host);
6913}
6914
a3b5ba49 6915static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 6916{
a2fa3e9f 6917 struct vcpu_vmx *vmx = to_vmx(vcpu);
2a7921b7 6918 unsigned long debugctlmsr;
104f226b
AK
6919
6920 /* Record the guest's net vcpu time for enforced NMI injections. */
6921 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6922 vmx->entry_time = ktime_get();
6923
6924 /* Don't enter VMX if guest state is invalid, let the exit handler
6925 start emulation until we arrive back to a valid state */
14168786 6926 if (vmx->emulation_required)
104f226b
AK
6927 return;
6928
012f83cb
AG
6929 if (vmx->nested.sync_shadow_vmcs) {
6930 copy_vmcs12_to_shadow(vmx);
6931 vmx->nested.sync_shadow_vmcs = false;
6932 }
6933
104f226b
AK
6934 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6935 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6936 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6937 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6938
6939 /* When single-stepping over STI and MOV SS, we must clear the
6940 * corresponding interruptibility bits in the guest state. Otherwise
6941 * vmentry fails as it then expects bit 14 (BS) in pending debug
6942 * exceptions being set, but that's not correct for the guest debugging
6943 * case. */
6944 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6945 vmx_set_interrupt_shadow(vcpu, 0);
6946
d7cd9796 6947 atomic_switch_perf_msrs(vmx);
2a7921b7 6948 debugctlmsr = get_debugctlmsr();
d7cd9796 6949
d462b819 6950 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 6951 asm(
6aa8b732 6952 /* Store host registers */
b188c81f
AK
6953 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
6954 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
6955 "push %%" _ASM_CX " \n\t"
6956 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 6957 "je 1f \n\t"
b188c81f 6958 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 6959 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 6960 "1: \n\t"
d3edefc0 6961 /* Reload cr2 if changed */
b188c81f
AK
6962 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
6963 "mov %%cr2, %%" _ASM_DX " \n\t"
6964 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 6965 "je 2f \n\t"
b188c81f 6966 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 6967 "2: \n\t"
6aa8b732 6968 /* Check if vmlaunch of vmresume is needed */
e08aa78a 6969 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 6970 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
6971 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
6972 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
6973 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
6974 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
6975 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
6976 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 6977#ifdef CONFIG_X86_64
e08aa78a
AK
6978 "mov %c[r8](%0), %%r8 \n\t"
6979 "mov %c[r9](%0), %%r9 \n\t"
6980 "mov %c[r10](%0), %%r10 \n\t"
6981 "mov %c[r11](%0), %%r11 \n\t"
6982 "mov %c[r12](%0), %%r12 \n\t"
6983 "mov %c[r13](%0), %%r13 \n\t"
6984 "mov %c[r14](%0), %%r14 \n\t"
6985 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 6986#endif
b188c81f 6987 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 6988
6aa8b732 6989 /* Enter guest mode */
83287ea4 6990 "jne 1f \n\t"
4ecac3fd 6991 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
6992 "jmp 2f \n\t"
6993 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
6994 "2: "
6aa8b732 6995 /* Save guest registers, load host registers, keep flags */
b188c81f 6996 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 6997 "pop %0 \n\t"
b188c81f
AK
6998 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
6999 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7000 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7001 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7002 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7003 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7004 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 7005#ifdef CONFIG_X86_64
e08aa78a
AK
7006 "mov %%r8, %c[r8](%0) \n\t"
7007 "mov %%r9, %c[r9](%0) \n\t"
7008 "mov %%r10, %c[r10](%0) \n\t"
7009 "mov %%r11, %c[r11](%0) \n\t"
7010 "mov %%r12, %c[r12](%0) \n\t"
7011 "mov %%r13, %c[r13](%0) \n\t"
7012 "mov %%r14, %c[r14](%0) \n\t"
7013 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 7014#endif
b188c81f
AK
7015 "mov %%cr2, %%" _ASM_AX " \n\t"
7016 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 7017
b188c81f 7018 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 7019 "setbe %c[fail](%0) \n\t"
83287ea4
AK
7020 ".pushsection .rodata \n\t"
7021 ".global vmx_return \n\t"
7022 "vmx_return: " _ASM_PTR " 2b \n\t"
7023 ".popsection"
e08aa78a 7024 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 7025 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 7026 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 7027 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
7028 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7029 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7030 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7031 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7032 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7033 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7034 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 7035#ifdef CONFIG_X86_64
ad312c7c
ZX
7036 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7037 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7038 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7039 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7040 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7041 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7042 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7043 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 7044#endif
40712fae
AK
7045 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7046 [wordsize]"i"(sizeof(ulong))
c2036300
LV
7047 : "cc", "memory"
7048#ifdef CONFIG_X86_64
b188c81f 7049 , "rax", "rbx", "rdi", "rsi"
c2036300 7050 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
7051#else
7052 , "eax", "ebx", "edi", "esi"
c2036300
LV
7053#endif
7054 );
6aa8b732 7055
2a7921b7
GN
7056 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7057 if (debugctlmsr)
7058 update_debugctlmsr(debugctlmsr);
7059
aa67f609
AK
7060#ifndef CONFIG_X86_64
7061 /*
7062 * The sysexit path does not restore ds/es, so we must set them to
7063 * a reasonable value ourselves.
7064 *
7065 * We can't defer this to vmx_load_host_state() since that function
7066 * may be executed in interrupt context, which saves and restore segments
7067 * around it, nullifying its effect.
7068 */
7069 loadsegment(ds, __USER_DS);
7070 loadsegment(es, __USER_DS);
7071#endif
7072
6de4f3ad 7073 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 7074 | (1 << VCPU_EXREG_RFLAGS)
69c73028 7075 | (1 << VCPU_EXREG_CPL)
aff48baa 7076 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 7077 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 7078 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
7079 vcpu->arch.regs_dirty = 0;
7080
1155f76a
AK
7081 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7082
d462b819 7083 vmx->loaded_vmcs->launched = 1;
1b6269db 7084
51aa01d1 7085 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 7086 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1
AK
7087
7088 vmx_complete_atomic_exit(vmx);
7089 vmx_recover_nmi_blocking(vmx);
cf393f75 7090 vmx_complete_interrupts(vmx);
6aa8b732
AK
7091}
7092
6aa8b732
AK
7093static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7094{
fb3f0f51
RR
7095 struct vcpu_vmx *vmx = to_vmx(vcpu);
7096
cdbecfc3 7097 free_vpid(vmx);
ec378aee 7098 free_nested(vmx);
d462b819 7099 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
7100 kfree(vmx->guest_msrs);
7101 kvm_vcpu_uninit(vcpu);
a4770347 7102 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
7103}
7104
fb3f0f51 7105static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 7106{
fb3f0f51 7107 int err;
c16f862d 7108 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 7109 int cpu;
6aa8b732 7110
a2fa3e9f 7111 if (!vmx)
fb3f0f51
RR
7112 return ERR_PTR(-ENOMEM);
7113
2384d2b3
SY
7114 allocate_vpid(vmx);
7115
fb3f0f51
RR
7116 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7117 if (err)
7118 goto free_vcpu;
965b58a5 7119
a2fa3e9f 7120 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
be6d05cf 7121 err = -ENOMEM;
fb3f0f51 7122 if (!vmx->guest_msrs) {
fb3f0f51
RR
7123 goto uninit_vcpu;
7124 }
965b58a5 7125
d462b819
NHE
7126 vmx->loaded_vmcs = &vmx->vmcs01;
7127 vmx->loaded_vmcs->vmcs = alloc_vmcs();
7128 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 7129 goto free_msrs;
d462b819
NHE
7130 if (!vmm_exclusive)
7131 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7132 loaded_vmcs_init(vmx->loaded_vmcs);
7133 if (!vmm_exclusive)
7134 kvm_cpu_vmxoff();
a2fa3e9f 7135
15ad7146
AK
7136 cpu = get_cpu();
7137 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 7138 vmx->vcpu.cpu = cpu;
8b9cf98c 7139 err = vmx_vcpu_setup(vmx);
fb3f0f51 7140 vmx_vcpu_put(&vmx->vcpu);
15ad7146 7141 put_cpu();
fb3f0f51
RR
7142 if (err)
7143 goto free_vmcs;
a63cb560 7144 if (vm_need_virtualize_apic_accesses(kvm)) {
be6d05cf
JK
7145 err = alloc_apic_access_page(kvm);
7146 if (err)
5e4a0b3c 7147 goto free_vmcs;
a63cb560 7148 }
fb3f0f51 7149
b927a3ce
SY
7150 if (enable_ept) {
7151 if (!kvm->arch.ept_identity_map_addr)
7152 kvm->arch.ept_identity_map_addr =
7153 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
93ea5388 7154 err = -ENOMEM;
b7ebfb05
SY
7155 if (alloc_identity_pagetable(kvm) != 0)
7156 goto free_vmcs;
93ea5388
GN
7157 if (!init_rmode_identity_map(kvm))
7158 goto free_vmcs;
b927a3ce 7159 }
b7ebfb05 7160
a9d30f33
NHE
7161 vmx->nested.current_vmptr = -1ull;
7162 vmx->nested.current_vmcs12 = NULL;
7163
fb3f0f51
RR
7164 return &vmx->vcpu;
7165
7166free_vmcs:
5f3fbc34 7167 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 7168free_msrs:
fb3f0f51
RR
7169 kfree(vmx->guest_msrs);
7170uninit_vcpu:
7171 kvm_vcpu_uninit(&vmx->vcpu);
7172free_vcpu:
cdbecfc3 7173 free_vpid(vmx);
a4770347 7174 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 7175 return ERR_PTR(err);
6aa8b732
AK
7176}
7177
002c7f7c
YS
7178static void __init vmx_check_processor_compat(void *rtn)
7179{
7180 struct vmcs_config vmcs_conf;
7181
7182 *(int *)rtn = 0;
7183 if (setup_vmcs_config(&vmcs_conf) < 0)
7184 *(int *)rtn = -EIO;
7185 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7186 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7187 smp_processor_id());
7188 *(int *)rtn = -EIO;
7189 }
7190}
7191
67253af5
SY
7192static int get_ept_level(void)
7193{
7194 return VMX_EPT_DEFAULT_GAW + 1;
7195}
7196
4b12f0de 7197static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 7198{
4b12f0de
SY
7199 u64 ret;
7200
522c68c4
SY
7201 /* For VT-d and EPT combination
7202 * 1. MMIO: always map as UC
7203 * 2. EPT with VT-d:
7204 * a. VT-d without snooping control feature: can't guarantee the
7205 * result, try to trust guest.
7206 * b. VT-d with snooping control feature: snooping control feature of
7207 * VT-d engine can guarantee the cache correctness. Just set it
7208 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 7209 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
7210 * consistent with host MTRR
7211 */
4b12f0de
SY
7212 if (is_mmio)
7213 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
522c68c4
SY
7214 else if (vcpu->kvm->arch.iommu_domain &&
7215 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
7216 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7217 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 7218 else
522c68c4 7219 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 7220 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
7221
7222 return ret;
64d4d521
SY
7223}
7224
17cc3935 7225static int vmx_get_lpage_level(void)
344f414f 7226{
878403b7
SY
7227 if (enable_ept && !cpu_has_vmx_ept_1g_page())
7228 return PT_DIRECTORY_LEVEL;
7229 else
7230 /* For shadow and EPT supported 1GB page */
7231 return PT_PDPE_LEVEL;
344f414f
JR
7232}
7233
0e851880
SY
7234static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7235{
4e47c7a6
SY
7236 struct kvm_cpuid_entry2 *best;
7237 struct vcpu_vmx *vmx = to_vmx(vcpu);
7238 u32 exec_control;
7239
7240 vmx->rdtscp_enabled = false;
7241 if (vmx_rdtscp_supported()) {
7242 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7243 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7244 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7245 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7246 vmx->rdtscp_enabled = true;
7247 else {
7248 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7249 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7250 exec_control);
7251 }
7252 }
7253 }
ad756a16 7254
ad756a16
MJ
7255 /* Exposing INVPCID only when PCID is exposed */
7256 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7257 if (vmx_invpcid_supported() &&
4f977045 7258 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
ad756a16 7259 guest_cpuid_has_pcid(vcpu)) {
29282fde 7260 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
ad756a16
MJ
7261 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7262 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7263 exec_control);
7264 } else {
29282fde
TI
7265 if (cpu_has_secondary_exec_ctrls()) {
7266 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7267 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7268 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7269 exec_control);
7270 }
ad756a16 7271 if (best)
4f977045 7272 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 7273 }
0e851880
SY
7274}
7275
d4330ef2
JR
7276static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7277{
7b8050f5
NHE
7278 if (func == 1 && nested)
7279 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
7280}
7281
fe3ef05c
NHE
7282/*
7283 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7284 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7285 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7286 * guest in a way that will both be appropriate to L1's requests, and our
7287 * needs. In addition to modifying the active vmcs (which is vmcs02), this
7288 * function also has additional necessary side-effects, like setting various
7289 * vcpu->arch fields.
7290 */
7291static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7292{
7293 struct vcpu_vmx *vmx = to_vmx(vcpu);
7294 u32 exec_control;
7295
7296 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7297 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7298 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7299 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7300 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7301 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7302 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7303 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7304 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7305 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7306 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7307 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7308 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7309 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7310 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7311 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7312 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7313 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7314 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7315 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7316 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7317 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7318 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7319 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7320 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7321 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7322 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7323 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7324 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7325 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7326 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7327 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7328 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7329 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7330 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7331 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7332
7333 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7334 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7335 vmcs12->vm_entry_intr_info_field);
7336 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7337 vmcs12->vm_entry_exception_error_code);
7338 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7339 vmcs12->vm_entry_instruction_len);
7340 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7341 vmcs12->guest_interruptibility_info);
fe3ef05c 7342 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
503cd0c5 7343 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
fe3ef05c
NHE
7344 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
7345 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7346 vmcs12->guest_pending_dbg_exceptions);
7347 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7348 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7349
7350 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7351
7352 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
7353 (vmcs_config.pin_based_exec_ctrl |
7354 vmcs12->pin_based_vm_exec_control));
7355
0238ea91
JK
7356 if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7357 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
7358 vmcs12->vmx_preemption_timer_value);
7359
fe3ef05c
NHE
7360 /*
7361 * Whether page-faults are trapped is determined by a combination of
7362 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7363 * If enable_ept, L0 doesn't care about page faults and we should
7364 * set all of these to L1's desires. However, if !enable_ept, L0 does
7365 * care about (at least some) page faults, and because it is not easy
7366 * (if at all possible?) to merge L0 and L1's desires, we simply ask
7367 * to exit on each and every L2 page fault. This is done by setting
7368 * MASK=MATCH=0 and (see below) EB.PF=1.
7369 * Note that below we don't need special code to set EB.PF beyond the
7370 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7371 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7372 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7373 *
7374 * A problem with this approach (when !enable_ept) is that L1 may be
7375 * injected with more page faults than it asked for. This could have
7376 * caused problems, but in practice existing hypervisors don't care.
7377 * To fix this, we will need to emulate the PFEC checking (on the L1
7378 * page tables), using walk_addr(), when injecting PFs to L1.
7379 */
7380 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7381 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7382 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7383 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7384
7385 if (cpu_has_secondary_exec_ctrls()) {
7386 u32 exec_control = vmx_secondary_exec_control(vmx);
7387 if (!vmx->rdtscp_enabled)
7388 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7389 /* Take the following fields only from vmcs12 */
7390 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7391 if (nested_cpu_has(vmcs12,
7392 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7393 exec_control |= vmcs12->secondary_vm_exec_control;
7394
7395 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7396 /*
7397 * Translate L1 physical address to host physical
7398 * address for vmcs02. Keep the page pinned, so this
7399 * physical address remains valid. We keep a reference
7400 * to it so we can release it later.
7401 */
7402 if (vmx->nested.apic_access_page) /* shouldn't happen */
7403 nested_release_page(vmx->nested.apic_access_page);
7404 vmx->nested.apic_access_page =
7405 nested_get_page(vcpu, vmcs12->apic_access_addr);
7406 /*
7407 * If translation failed, no matter: This feature asks
7408 * to exit when accessing the given address, and if it
7409 * can never be accessed, this feature won't do
7410 * anything anyway.
7411 */
7412 if (!vmx->nested.apic_access_page)
7413 exec_control &=
7414 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7415 else
7416 vmcs_write64(APIC_ACCESS_ADDR,
7417 page_to_phys(vmx->nested.apic_access_page));
7418 }
7419
7420 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7421 }
7422
7423
7424 /*
7425 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7426 * Some constant fields are set here by vmx_set_constant_host_state().
7427 * Other fields are different per CPU, and will be set later when
7428 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7429 */
a547c6db 7430 vmx_set_constant_host_state(vmx);
fe3ef05c
NHE
7431
7432 /*
7433 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7434 * entry, but only if the current (host) sp changed from the value
7435 * we wrote last (vmx->host_rsp). This cache is no longer relevant
7436 * if we switch vmcs, and rather than hold a separate cache per vmcs,
7437 * here we just force the write to happen on entry.
7438 */
7439 vmx->host_rsp = 0;
7440
7441 exec_control = vmx_exec_control(vmx); /* L0's desires */
7442 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7443 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7444 exec_control &= ~CPU_BASED_TPR_SHADOW;
7445 exec_control |= vmcs12->cpu_based_vm_exec_control;
7446 /*
7447 * Merging of IO and MSR bitmaps not currently supported.
7448 * Rather, exit every time.
7449 */
7450 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7451 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7452 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7453
7454 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7455
7456 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7457 * bitwise-or of what L1 wants to trap for L2, and what we want to
7458 * trap. Note that CR0.TS also needs updating - we do this later.
7459 */
7460 update_exception_bitmap(vcpu);
7461 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7462 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7463
7464 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
7465 vmcs_write32(VM_EXIT_CONTROLS,
7466 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
7467 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
7468 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7469
7470 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
7471 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7472 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7473 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7474
7475
7476 set_cr4_guest_host_mask(vmx);
7477
27fc51b2
NHE
7478 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7479 vmcs_write64(TSC_OFFSET,
7480 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7481 else
7482 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
7483
7484 if (enable_vpid) {
7485 /*
7486 * Trivially support vpid by letting L2s share their parent
7487 * L1's vpid. TODO: move to a more elaborate solution, giving
7488 * each L2 its own vpid and exposing the vpid feature to L1.
7489 */
7490 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7491 vmx_flush_tlb(vcpu);
7492 }
7493
7494 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7495 vcpu->arch.efer = vmcs12->guest_ia32_efer;
7496 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7497 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7498 else
7499 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7500 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7501 vmx_set_efer(vcpu, vcpu->arch.efer);
7502
7503 /*
7504 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7505 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7506 * The CR0_READ_SHADOW is what L2 should have expected to read given
7507 * the specifications by L1; It's not enough to take
7508 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7509 * have more bits than L1 expected.
7510 */
7511 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7512 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7513
7514 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7515 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7516
7517 /* shadow page tables on either EPT or shadow page tables */
7518 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7519 kvm_mmu_reset_context(vcpu);
7520
7521 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7522 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7523}
7524
cd232ad0
NHE
7525/*
7526 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7527 * for running an L2 nested guest.
7528 */
7529static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7530{
7531 struct vmcs12 *vmcs12;
7532 struct vcpu_vmx *vmx = to_vmx(vcpu);
7533 int cpu;
7534 struct loaded_vmcs *vmcs02;
7535
7536 if (!nested_vmx_check_permission(vcpu) ||
7537 !nested_vmx_check_vmcs12(vcpu))
7538 return 1;
7539
7540 skip_emulated_instruction(vcpu);
7541 vmcs12 = get_vmcs12(vcpu);
7542
012f83cb
AG
7543 if (enable_shadow_vmcs)
7544 copy_shadow_to_vmcs12(vmx);
7545
7c177938
NHE
7546 /*
7547 * The nested entry process starts with enforcing various prerequisites
7548 * on vmcs12 as required by the Intel SDM, and act appropriately when
7549 * they fail: As the SDM explains, some conditions should cause the
7550 * instruction to fail, while others will cause the instruction to seem
7551 * to succeed, but return an EXIT_REASON_INVALID_STATE.
7552 * To speed up the normal (success) code path, we should avoid checking
7553 * for misconfigurations which will anyway be caught by the processor
7554 * when using the merged vmcs02.
7555 */
7556 if (vmcs12->launch_state == launch) {
7557 nested_vmx_failValid(vcpu,
7558 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7559 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7560 return 1;
7561 }
7562
26539bd0
PB
7563 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
7564 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7565 return 1;
7566 }
7567
7c177938
NHE
7568 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7569 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7570 /*TODO: Also verify bits beyond physical address width are 0*/
7571 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7572 return 1;
7573 }
7574
7575 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7576 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7577 /*TODO: Also verify bits beyond physical address width are 0*/
7578 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7579 return 1;
7580 }
7581
7582 if (vmcs12->vm_entry_msr_load_count > 0 ||
7583 vmcs12->vm_exit_msr_load_count > 0 ||
7584 vmcs12->vm_exit_msr_store_count > 0) {
bd80158a
JK
7585 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7586 __func__);
7c177938
NHE
7587 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7588 return 1;
7589 }
7590
7591 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7592 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7593 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7594 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7595 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7596 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7597 !vmx_control_verify(vmcs12->vm_exit_controls,
7598 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7599 !vmx_control_verify(vmcs12->vm_entry_controls,
7600 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7601 {
7602 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7603 return 1;
7604 }
7605
7606 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7607 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7608 nested_vmx_failValid(vcpu,
7609 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7610 return 1;
7611 }
7612
7613 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7614 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7615 nested_vmx_entry_failure(vcpu, vmcs12,
7616 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7617 return 1;
7618 }
7619 if (vmcs12->vmcs_link_pointer != -1ull) {
7620 nested_vmx_entry_failure(vcpu, vmcs12,
7621 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
7622 return 1;
7623 }
7624
7625 /*
7626 * We're finally done with prerequisite checking, and can start with
7627 * the nested entry.
7628 */
7629
cd232ad0
NHE
7630 vmcs02 = nested_get_current_vmcs02(vmx);
7631 if (!vmcs02)
7632 return -ENOMEM;
7633
7634 enter_guest_mode(vcpu);
7635
7636 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
7637
7638 cpu = get_cpu();
7639 vmx->loaded_vmcs = vmcs02;
7640 vmx_vcpu_put(vcpu);
7641 vmx_vcpu_load(vcpu, cpu);
7642 vcpu->cpu = cpu;
7643 put_cpu();
7644
36c3cc42
JK
7645 vmx_segment_cache_clear(vmx);
7646
cd232ad0
NHE
7647 vmcs12->launch_state = 1;
7648
7649 prepare_vmcs02(vcpu, vmcs12);
7650
7651 /*
7652 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
7653 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
7654 * returned as far as L1 is concerned. It will only return (and set
7655 * the success flag) when L2 exits (see nested_vmx_vmexit()).
7656 */
7657 return 1;
7658}
7659
4704d0be
NHE
7660/*
7661 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
7662 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
7663 * This function returns the new value we should put in vmcs12.guest_cr0.
7664 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
7665 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
7666 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
7667 * didn't trap the bit, because if L1 did, so would L0).
7668 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
7669 * been modified by L2, and L1 knows it. So just leave the old value of
7670 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
7671 * isn't relevant, because if L0 traps this bit it can set it to anything.
7672 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
7673 * changed these bits, and therefore they need to be updated, but L0
7674 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
7675 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
7676 */
7677static inline unsigned long
7678vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7679{
7680 return
7681 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
7682 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
7683 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
7684 vcpu->arch.cr0_guest_owned_bits));
7685}
7686
7687static inline unsigned long
7688vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7689{
7690 return
7691 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
7692 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
7693 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
7694 vcpu->arch.cr4_guest_owned_bits));
7695}
7696
5f3d5799
JK
7697static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
7698 struct vmcs12 *vmcs12)
7699{
7700 u32 idt_vectoring;
7701 unsigned int nr;
7702
7703 if (vcpu->arch.exception.pending) {
7704 nr = vcpu->arch.exception.nr;
7705 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
7706
7707 if (kvm_exception_is_soft(nr)) {
7708 vmcs12->vm_exit_instruction_len =
7709 vcpu->arch.event_exit_inst_len;
7710 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
7711 } else
7712 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
7713
7714 if (vcpu->arch.exception.has_error_code) {
7715 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
7716 vmcs12->idt_vectoring_error_code =
7717 vcpu->arch.exception.error_code;
7718 }
7719
7720 vmcs12->idt_vectoring_info_field = idt_vectoring;
7721 } else if (vcpu->arch.nmi_pending) {
7722 vmcs12->idt_vectoring_info_field =
7723 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
7724 } else if (vcpu->arch.interrupt.pending) {
7725 nr = vcpu->arch.interrupt.nr;
7726 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
7727
7728 if (vcpu->arch.interrupt.soft) {
7729 idt_vectoring |= INTR_TYPE_SOFT_INTR;
7730 vmcs12->vm_entry_instruction_len =
7731 vcpu->arch.event_exit_inst_len;
7732 } else
7733 idt_vectoring |= INTR_TYPE_EXT_INTR;
7734
7735 vmcs12->idt_vectoring_info_field = idt_vectoring;
7736 }
7737}
7738
4704d0be
NHE
7739/*
7740 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
7741 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
7742 * and this function updates it to reflect the changes to the guest state while
7743 * L2 was running (and perhaps made some exits which were handled directly by L0
7744 * without going back to L1), and to reflect the exit reason.
7745 * Note that we do not have to copy here all VMCS fields, just those that
7746 * could have changed by the L2 guest or the exit - i.e., the guest-state and
7747 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
7748 * which already writes to vmcs12 directly.
7749 */
733568f9 7750static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be
NHE
7751{
7752 /* update guest state fields: */
7753 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
7754 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
7755
7756 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
7757 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7758 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
7759 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
7760
7761 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
7762 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
7763 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
7764 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
7765 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
7766 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
7767 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
7768 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
7769 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
7770 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
7771 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
7772 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
7773 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
7774 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
7775 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
7776 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
7777 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
7778 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
7779 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
7780 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
7781 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
7782 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
7783 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
7784 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
7785 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
7786 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
7787 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
7788 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
7789 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
7790 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
7791 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
7792 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
7793 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
7794 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
7795 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
7796 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7797
4704d0be
NHE
7798 vmcs12->guest_interruptibility_info =
7799 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7800 vmcs12->guest_pending_dbg_exceptions =
7801 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
7802
c18911a2
JK
7803 vmcs12->vm_entry_controls =
7804 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
7805 (vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
7806
4704d0be
NHE
7807 /* TODO: These cannot have changed unless we have MSR bitmaps and
7808 * the relevant bit asks not to trap the change */
7809 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
b8c07d55 7810 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be
NHE
7811 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
7812 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
7813 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
7814 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
7815
7816 /* update exit information fields: */
7817
957c897e 7818 vmcs12->vm_exit_reason = to_vmx(vcpu)->exit_reason;
4704d0be
NHE
7819 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7820
7821 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
c0d1c770
JK
7822 if ((vmcs12->vm_exit_intr_info &
7823 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
7824 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
7825 vmcs12->vm_exit_intr_error_code =
7826 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 7827 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
7828 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7829 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7830
5f3d5799
JK
7831 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7832 /* vm_entry_intr_info_field is cleared on exit. Emulate this
7833 * instead of reading the real value. */
4704d0be 7834 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
7835
7836 /*
7837 * Transfer the event that L0 or L1 may wanted to inject into
7838 * L2 to IDT_VECTORING_INFO_FIELD.
7839 */
7840 vmcs12_save_pending_event(vcpu, vmcs12);
7841 }
7842
7843 /*
7844 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
7845 * preserved above and would only end up incorrectly in L1.
7846 */
7847 vcpu->arch.nmi_injected = false;
7848 kvm_clear_exception_queue(vcpu);
7849 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
7850}
7851
7852/*
7853 * A part of what we need to when the nested L2 guest exits and we want to
7854 * run its L1 parent, is to reset L1's guest state to the host state specified
7855 * in vmcs12.
7856 * This function is to be called not only on normal nested exit, but also on
7857 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7858 * Failures During or After Loading Guest State").
7859 * This function should be called when the active VMCS is L1's (vmcs01).
7860 */
733568f9
JK
7861static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
7862 struct vmcs12 *vmcs12)
4704d0be
NHE
7863{
7864 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
7865 vcpu->arch.efer = vmcs12->host_ia32_efer;
7866 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
7867 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7868 else
7869 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7870 vmx_set_efer(vcpu, vcpu->arch.efer);
7871
7872 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
7873 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
c4627c72 7874 vmx_set_rflags(vcpu, X86_EFLAGS_BIT1);
4704d0be
NHE
7875 /*
7876 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7877 * actually changed, because it depends on the current state of
7878 * fpu_active (which may have changed).
7879 * Note that vmx_set_cr0 refers to efer set above.
7880 */
7881 kvm_set_cr0(vcpu, vmcs12->host_cr0);
7882 /*
7883 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7884 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7885 * but we also need to update cr0_guest_host_mask and exception_bitmap.
7886 */
7887 update_exception_bitmap(vcpu);
7888 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
7889 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7890
7891 /*
7892 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
7893 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
7894 */
7895 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
7896 kvm_set_cr4(vcpu, vmcs12->host_cr4);
7897
7898 /* shadow page tables on either EPT or shadow page tables */
7899 kvm_set_cr3(vcpu, vmcs12->host_cr3);
7900 kvm_mmu_reset_context(vcpu);
7901
7902 if (enable_vpid) {
7903 /*
7904 * Trivially support vpid by letting L2s share their parent
7905 * L1's vpid. TODO: move to a more elaborate solution, giving
7906 * each L2 its own vpid and exposing the vpid feature to L1.
7907 */
7908 vmx_flush_tlb(vcpu);
7909 }
7910
7911
7912 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7913 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7914 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7915 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7916 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7917 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7918 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7919 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7920 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7921 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7922 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7923 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7924 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7925 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7926 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7927
7928 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7929 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7930 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7931 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7932 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5
JK
7933
7934 kvm_set_dr(vcpu, 7, 0x400);
7935 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4704d0be
NHE
7936}
7937
7938/*
7939 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7940 * and modify vmcs12 to make it see what it would expect to see there if
7941 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7942 */
7943static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7944{
7945 struct vcpu_vmx *vmx = to_vmx(vcpu);
7946 int cpu;
7947 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7948
5f3d5799
JK
7949 /* trying to cancel vmlaunch/vmresume is a bug */
7950 WARN_ON_ONCE(vmx->nested.nested_run_pending);
7951
4704d0be
NHE
7952 leave_guest_mode(vcpu);
7953 prepare_vmcs12(vcpu, vmcs12);
7954
7955 cpu = get_cpu();
7956 vmx->loaded_vmcs = &vmx->vmcs01;
7957 vmx_vcpu_put(vcpu);
7958 vmx_vcpu_load(vcpu, cpu);
7959 vcpu->cpu = cpu;
7960 put_cpu();
7961
36c3cc42
JK
7962 vmx_segment_cache_clear(vmx);
7963
4704d0be
NHE
7964 /* if no vmcs02 cache requested, remove the one we used */
7965 if (VMCS02_POOL_SIZE == 0)
7966 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7967
7968 load_vmcs12_host_state(vcpu, vmcs12);
7969
27fc51b2 7970 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
7971 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7972
7973 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7974 vmx->host_rsp = 0;
7975
7976 /* Unpin physical memory we referred to in vmcs02 */
7977 if (vmx->nested.apic_access_page) {
7978 nested_release_page(vmx->nested.apic_access_page);
7979 vmx->nested.apic_access_page = 0;
7980 }
7981
7982 /*
7983 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7984 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7985 * success or failure flag accordingly.
7986 */
7987 if (unlikely(vmx->fail)) {
7988 vmx->fail = 0;
7989 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7990 } else
7991 nested_vmx_succeed(vcpu);
012f83cb
AG
7992 if (enable_shadow_vmcs)
7993 vmx->nested.sync_shadow_vmcs = true;
4704d0be
NHE
7994}
7995
7c177938
NHE
7996/*
7997 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7998 * 23.7 "VM-entry failures during or after loading guest state" (this also
7999 * lists the acceptable exit-reason and exit-qualification parameters).
8000 * It should only be called before L2 actually succeeded to run, and when
8001 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8002 */
8003static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8004 struct vmcs12 *vmcs12,
8005 u32 reason, unsigned long qualification)
8006{
8007 load_vmcs12_host_state(vcpu, vmcs12);
8008 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8009 vmcs12->exit_qualification = qualification;
8010 nested_vmx_succeed(vcpu);
012f83cb
AG
8011 if (enable_shadow_vmcs)
8012 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
8013}
8014
8a76d7f2
JR
8015static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8016 struct x86_instruction_info *info,
8017 enum x86_intercept_stage stage)
8018{
8019 return X86EMUL_CONTINUE;
8020}
8021
cbdd1bea 8022static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
8023 .cpu_has_kvm_support = cpu_has_kvm_support,
8024 .disabled_by_bios = vmx_disabled_by_bios,
8025 .hardware_setup = hardware_setup,
8026 .hardware_unsetup = hardware_unsetup,
002c7f7c 8027 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
8028 .hardware_enable = hardware_enable,
8029 .hardware_disable = hardware_disable,
04547156 8030 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
8031
8032 .vcpu_create = vmx_create_vcpu,
8033 .vcpu_free = vmx_free_vcpu,
04d2cc77 8034 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 8035
04d2cc77 8036 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
8037 .vcpu_load = vmx_vcpu_load,
8038 .vcpu_put = vmx_vcpu_put,
8039
c8639010 8040 .update_db_bp_intercept = update_exception_bitmap,
6aa8b732
AK
8041 .get_msr = vmx_get_msr,
8042 .set_msr = vmx_set_msr,
8043 .get_segment_base = vmx_get_segment_base,
8044 .get_segment = vmx_get_segment,
8045 .set_segment = vmx_set_segment,
2e4d2653 8046 .get_cpl = vmx_get_cpl,
6aa8b732 8047 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 8048 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 8049 .decache_cr3 = vmx_decache_cr3,
25c4c276 8050 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 8051 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
8052 .set_cr3 = vmx_set_cr3,
8053 .set_cr4 = vmx_set_cr4,
6aa8b732 8054 .set_efer = vmx_set_efer,
6aa8b732
AK
8055 .get_idt = vmx_get_idt,
8056 .set_idt = vmx_set_idt,
8057 .get_gdt = vmx_get_gdt,
8058 .set_gdt = vmx_set_gdt,
020df079 8059 .set_dr7 = vmx_set_dr7,
5fdbf976 8060 .cache_reg = vmx_cache_reg,
6aa8b732
AK
8061 .get_rflags = vmx_get_rflags,
8062 .set_rflags = vmx_set_rflags,
ebcbab4c 8063 .fpu_activate = vmx_fpu_activate,
02daab21 8064 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
8065
8066 .tlb_flush = vmx_flush_tlb,
6aa8b732 8067
6aa8b732 8068 .run = vmx_vcpu_run,
6062d012 8069 .handle_exit = vmx_handle_exit,
6aa8b732 8070 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
8071 .set_interrupt_shadow = vmx_set_interrupt_shadow,
8072 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 8073 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 8074 .set_irq = vmx_inject_irq,
95ba8273 8075 .set_nmi = vmx_inject_nmi,
298101da 8076 .queue_exception = vmx_queue_exception,
b463a6f7 8077 .cancel_injection = vmx_cancel_injection,
78646121 8078 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 8079 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
8080 .get_nmi_mask = vmx_get_nmi_mask,
8081 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
8082 .enable_nmi_window = enable_nmi_window,
8083 .enable_irq_window = enable_irq_window,
8084 .update_cr8_intercept = update_cr8_intercept,
8d14695f 8085 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
c7c9c56c
YZ
8086 .vm_has_apicv = vmx_vm_has_apicv,
8087 .load_eoi_exitmap = vmx_load_eoi_exitmap,
8088 .hwapic_irr_update = vmx_hwapic_irr_update,
8089 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
8090 .sync_pir_to_irr = vmx_sync_pir_to_irr,
8091 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 8092
cbc94022 8093 .set_tss_addr = vmx_set_tss_addr,
67253af5 8094 .get_tdp_level = get_ept_level,
4b12f0de 8095 .get_mt_mask = vmx_get_mt_mask,
229456fc 8096
586f9607 8097 .get_exit_info = vmx_get_exit_info,
586f9607 8098
17cc3935 8099 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
8100
8101 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
8102
8103 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 8104 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
8105
8106 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
8107
8108 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 8109
4051b188 8110 .set_tsc_khz = vmx_set_tsc_khz,
ba904635 8111 .read_tsc_offset = vmx_read_tsc_offset,
99e3e30a 8112 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 8113 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 8114 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 8115 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
8116
8117 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
8118
8119 .check_intercept = vmx_check_intercept,
a547c6db 8120 .handle_external_intr = vmx_handle_external_intr,
6aa8b732
AK
8121};
8122
8123static int __init vmx_init(void)
8124{
8d14695f 8125 int r, i, msr;
26bb0981
AK
8126
8127 rdmsrl_safe(MSR_EFER, &host_efer);
8128
8129 for (i = 0; i < NR_VMX_MSR; ++i)
8130 kvm_define_shared_msr(i, vmx_msr_index[i]);
fdef3ad1 8131
3e7c73e9 8132 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
8133 if (!vmx_io_bitmap_a)
8134 return -ENOMEM;
8135
2106a548
GC
8136 r = -ENOMEM;
8137
3e7c73e9 8138 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 8139 if (!vmx_io_bitmap_b)
fdef3ad1 8140 goto out;
fdef3ad1 8141
5897297b 8142 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 8143 if (!vmx_msr_bitmap_legacy)
25c5f225 8144 goto out1;
2106a548 8145
8d14695f
YZ
8146 vmx_msr_bitmap_legacy_x2apic =
8147 (unsigned long *)__get_free_page(GFP_KERNEL);
8148 if (!vmx_msr_bitmap_legacy_x2apic)
8149 goto out2;
25c5f225 8150
5897297b 8151 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 8152 if (!vmx_msr_bitmap_longmode)
8d14695f 8153 goto out3;
2106a548 8154
8d14695f
YZ
8155 vmx_msr_bitmap_longmode_x2apic =
8156 (unsigned long *)__get_free_page(GFP_KERNEL);
8157 if (!vmx_msr_bitmap_longmode_x2apic)
8158 goto out4;
4607c2d7
AG
8159 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8160 if (!vmx_vmread_bitmap)
8161 goto out5;
8162
8163 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8164 if (!vmx_vmwrite_bitmap)
8165 goto out6;
8166
8167 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8168 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8169 /* shadowed read/write fields */
8170 for (i = 0; i < max_shadow_read_write_fields; i++) {
8171 clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8172 clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8173 }
8174 /* shadowed read only fields */
8175 for (i = 0; i < max_shadow_read_only_fields; i++)
8176 clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
5897297b 8177
fdef3ad1
HQ
8178 /*
8179 * Allow direct access to the PC debug port (it is often used for I/O
8180 * delays, but the vmexits simply slow things down).
8181 */
3e7c73e9
AK
8182 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8183 clear_bit(0x80, vmx_io_bitmap_a);
fdef3ad1 8184
3e7c73e9 8185 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
fdef3ad1 8186
5897297b
AK
8187 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8188 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
25c5f225 8189
2384d2b3
SY
8190 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8191
0ee75bea
AK
8192 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8193 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 8194 if (r)
4607c2d7 8195 goto out7;
25c5f225 8196
8f536b76
ZY
8197#ifdef CONFIG_KEXEC
8198 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8199 crash_vmclear_local_loaded_vmcss);
8200#endif
8201
5897297b
AK
8202 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8203 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8204 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8205 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8206 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8207 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8d14695f
YZ
8208 memcpy(vmx_msr_bitmap_legacy_x2apic,
8209 vmx_msr_bitmap_legacy, PAGE_SIZE);
8210 memcpy(vmx_msr_bitmap_longmode_x2apic,
8211 vmx_msr_bitmap_longmode, PAGE_SIZE);
8212
01e439be 8213 if (enable_apicv) {
8d14695f
YZ
8214 for (msr = 0x800; msr <= 0x8ff; msr++)
8215 vmx_disable_intercept_msr_read_x2apic(msr);
8216
8217 /* According SDM, in x2apic mode, the whole id reg is used.
8218 * But in KVM, it only use the highest eight bits. Need to
8219 * intercept it */
8220 vmx_enable_intercept_msr_read_x2apic(0x802);
8221 /* TMCCT */
8222 vmx_enable_intercept_msr_read_x2apic(0x839);
8223 /* TPR */
8224 vmx_disable_intercept_msr_write_x2apic(0x808);
c7c9c56c
YZ
8225 /* EOI */
8226 vmx_disable_intercept_msr_write_x2apic(0x80b);
8227 /* SELF-IPI */
8228 vmx_disable_intercept_msr_write_x2apic(0x83f);
8d14695f 8229 }
fdef3ad1 8230
089d034e 8231 if (enable_ept) {
3f6d8c8a
XH
8232 kvm_mmu_set_mask_ptes(0ull,
8233 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8234 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8235 0ull, VMX_EPT_EXECUTABLE_MASK);
ce88decf 8236 ept_set_mmio_spte_mask();
5fdbcb9d
SY
8237 kvm_enable_tdp();
8238 } else
8239 kvm_disable_tdp();
1439442c 8240
fdef3ad1
HQ
8241 return 0;
8242
4607c2d7
AG
8243out7:
8244 free_page((unsigned long)vmx_vmwrite_bitmap);
8245out6:
8246 free_page((unsigned long)vmx_vmread_bitmap);
458f212e
YZ
8247out5:
8248 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8d14695f 8249out4:
5897297b 8250 free_page((unsigned long)vmx_msr_bitmap_longmode);
8d14695f
YZ
8251out3:
8252 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
25c5f225 8253out2:
5897297b 8254 free_page((unsigned long)vmx_msr_bitmap_legacy);
fdef3ad1 8255out1:
3e7c73e9 8256 free_page((unsigned long)vmx_io_bitmap_b);
fdef3ad1 8257out:
3e7c73e9 8258 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 8259 return r;
6aa8b732
AK
8260}
8261
8262static void __exit vmx_exit(void)
8263{
8d14695f
YZ
8264 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8265 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
5897297b
AK
8266 free_page((unsigned long)vmx_msr_bitmap_legacy);
8267 free_page((unsigned long)vmx_msr_bitmap_longmode);
3e7c73e9
AK
8268 free_page((unsigned long)vmx_io_bitmap_b);
8269 free_page((unsigned long)vmx_io_bitmap_a);
4607c2d7
AG
8270 free_page((unsigned long)vmx_vmwrite_bitmap);
8271 free_page((unsigned long)vmx_vmread_bitmap);
fdef3ad1 8272
8f536b76
ZY
8273#ifdef CONFIG_KEXEC
8274 rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8275 synchronize_rcu();
8276#endif
8277
cb498ea2 8278 kvm_exit();
6aa8b732
AK
8279}
8280
8281module_init(vmx_init)
8282module_exit(vmx_exit)