]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: remove useless check of "ret" variable prior to returning the same value
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
e495606d 22
edf88417 23#include <linux/kvm_host.h>
6aa8b732 24#include <linux/module.h>
9d8f549d 25#include <linux/kernel.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e8edc6e0 28#include <linux/sched.h>
c7addb90 29#include <linux/moduleparam.h>
e9bda3b3 30#include <linux/mod_devicetable.h>
229456fc 31#include <linux/ftrace_event.h>
5a0e3ad6 32#include <linux/slab.h>
cafd6659 33#include <linux/tboot.h>
f4124500 34#include <linux/hrtimer.h>
5fdbf976 35#include "kvm_cache_regs.h"
35920a35 36#include "x86.h"
e495606d 37
6aa8b732 38#include <asm/io.h>
3b3be0d1 39#include <asm/desc.h>
13673a90 40#include <asm/vmx.h>
6210e37b 41#include <asm/virtext.h>
a0861c02 42#include <asm/mce.h>
2acf923e
DC
43#include <asm/i387.h>
44#include <asm/xcr.h>
d7cd9796 45#include <asm/perf_event.h>
81908bf4 46#include <asm/debugreg.h>
8f536b76 47#include <asm/kexec.h>
dab2087d 48#include <asm/apic.h>
6aa8b732 49
229456fc
MT
50#include "trace.h"
51
4ecac3fd 52#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
53#define __ex_clear(x, reg) \
54 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 55
6aa8b732
AK
56MODULE_AUTHOR("Qumranet");
57MODULE_LICENSE("GPL");
58
e9bda3b3
JT
59static const struct x86_cpu_id vmx_cpu_id[] = {
60 X86_FEATURE_MATCH(X86_FEATURE_VMX),
61 {}
62};
63MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
64
476bc001 65static bool __read_mostly enable_vpid = 1;
736caefe 66module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 67
476bc001 68static bool __read_mostly flexpriority_enabled = 1;
736caefe 69module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 70
476bc001 71static bool __read_mostly enable_ept = 1;
736caefe 72module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 73
476bc001 74static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
75module_param_named(unrestricted_guest,
76 enable_unrestricted_guest, bool, S_IRUGO);
77
83c3a331
XH
78static bool __read_mostly enable_ept_ad_bits = 1;
79module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
80
a27685c3 81static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 82module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 83
476bc001 84static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
85module_param(vmm_exclusive, bool, S_IRUGO);
86
476bc001 87static bool __read_mostly fasteoi = 1;
58fbbf26
KT
88module_param(fasteoi, bool, S_IRUGO);
89
5a71785d 90static bool __read_mostly enable_apicv = 1;
01e439be 91module_param(enable_apicv, bool, S_IRUGO);
83d4c286 92
abc4fc58
AG
93static bool __read_mostly enable_shadow_vmcs = 1;
94module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
95/*
96 * If nested=1, nested virtualization is supported, i.e., guests may use
97 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
98 * use VMX instructions.
99 */
476bc001 100static bool __read_mostly nested = 0;
801d3424
NHE
101module_param(nested, bool, S_IRUGO);
102
20300099
WL
103static u64 __read_mostly host_xss;
104
843e4330
KH
105static bool __read_mostly enable_pml = 1;
106module_param_named(pml, enable_pml, bool, S_IRUGO);
107
5037878e
GN
108#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
109#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
110#define KVM_VM_CR0_ALWAYS_ON \
111 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
112#define KVM_CR4_GUEST_OWNED_BITS \
113 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 114 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 115
cdc0e244
AK
116#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
117#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
118
78ac8b47
AK
119#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
120
f4124500
JK
121#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
122
4b8d54f9
ZE
123/*
124 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
125 * ple_gap: upper bound on the amount of time between two successive
126 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 127 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
128 * ple_window: upper bound on the amount of time a guest is allowed to execute
129 * in a PAUSE loop. Tests indicate that most spinlocks are held for
130 * less than 2^12 cycles
131 * Time is measured based on a counter that runs at the same rate as the TSC,
132 * refer SDM volume 3b section 21.6.13 & 22.1.3.
133 */
b4a2d31d
RK
134#define KVM_VMX_DEFAULT_PLE_GAP 128
135#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
136#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
137#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
138#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
139 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
140
4b8d54f9
ZE
141static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
142module_param(ple_gap, int, S_IRUGO);
143
144static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
145module_param(ple_window, int, S_IRUGO);
146
b4a2d31d
RK
147/* Default doubles per-vcpu window every exit. */
148static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
149module_param(ple_window_grow, int, S_IRUGO);
150
151/* Default resets per-vcpu window every exit to ple_window. */
152static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
153module_param(ple_window_shrink, int, S_IRUGO);
154
155/* Default is to compute the maximum so we can never overflow. */
156static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
157static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
158module_param(ple_window_max, int, S_IRUGO);
159
83287ea4
AK
160extern const ulong vmx_return;
161
8bf00a52 162#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 163#define VMCS02_POOL_SIZE 1
61d2ef2c 164
a2fa3e9f
GH
165struct vmcs {
166 u32 revision_id;
167 u32 abort;
168 char data[0];
169};
170
d462b819
NHE
171/*
172 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
173 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
174 * loaded on this CPU (so we can clear them if the CPU goes down).
175 */
176struct loaded_vmcs {
177 struct vmcs *vmcs;
178 int cpu;
179 int launched;
180 struct list_head loaded_vmcss_on_cpu_link;
181};
182
26bb0981
AK
183struct shared_msr_entry {
184 unsigned index;
185 u64 data;
d5696725 186 u64 mask;
26bb0981
AK
187};
188
a9d30f33
NHE
189/*
190 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
191 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
192 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
193 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
194 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
195 * More than one of these structures may exist, if L1 runs multiple L2 guests.
196 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
197 * underlying hardware which will be used to run L2.
198 * This structure is packed to ensure that its layout is identical across
199 * machines (necessary for live migration).
200 * If there are changes in this struct, VMCS12_REVISION must be changed.
201 */
22bd0358 202typedef u64 natural_width;
a9d30f33
NHE
203struct __packed vmcs12 {
204 /* According to the Intel spec, a VMCS region must start with the
205 * following two fields. Then follow implementation-specific data.
206 */
207 u32 revision_id;
208 u32 abort;
22bd0358 209
27d6c865
NHE
210 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
211 u32 padding[7]; /* room for future expansion */
212
22bd0358
NHE
213 u64 io_bitmap_a;
214 u64 io_bitmap_b;
215 u64 msr_bitmap;
216 u64 vm_exit_msr_store_addr;
217 u64 vm_exit_msr_load_addr;
218 u64 vm_entry_msr_load_addr;
219 u64 tsc_offset;
220 u64 virtual_apic_page_addr;
221 u64 apic_access_addr;
705699a1 222 u64 posted_intr_desc_addr;
22bd0358 223 u64 ept_pointer;
608406e2
WV
224 u64 eoi_exit_bitmap0;
225 u64 eoi_exit_bitmap1;
226 u64 eoi_exit_bitmap2;
227 u64 eoi_exit_bitmap3;
81dc01f7 228 u64 xss_exit_bitmap;
22bd0358
NHE
229 u64 guest_physical_address;
230 u64 vmcs_link_pointer;
231 u64 guest_ia32_debugctl;
232 u64 guest_ia32_pat;
233 u64 guest_ia32_efer;
234 u64 guest_ia32_perf_global_ctrl;
235 u64 guest_pdptr0;
236 u64 guest_pdptr1;
237 u64 guest_pdptr2;
238 u64 guest_pdptr3;
36be0b9d 239 u64 guest_bndcfgs;
22bd0358
NHE
240 u64 host_ia32_pat;
241 u64 host_ia32_efer;
242 u64 host_ia32_perf_global_ctrl;
243 u64 padding64[8]; /* room for future expansion */
244 /*
245 * To allow migration of L1 (complete with its L2 guests) between
246 * machines of different natural widths (32 or 64 bit), we cannot have
247 * unsigned long fields with no explict size. We use u64 (aliased
248 * natural_width) instead. Luckily, x86 is little-endian.
249 */
250 natural_width cr0_guest_host_mask;
251 natural_width cr4_guest_host_mask;
252 natural_width cr0_read_shadow;
253 natural_width cr4_read_shadow;
254 natural_width cr3_target_value0;
255 natural_width cr3_target_value1;
256 natural_width cr3_target_value2;
257 natural_width cr3_target_value3;
258 natural_width exit_qualification;
259 natural_width guest_linear_address;
260 natural_width guest_cr0;
261 natural_width guest_cr3;
262 natural_width guest_cr4;
263 natural_width guest_es_base;
264 natural_width guest_cs_base;
265 natural_width guest_ss_base;
266 natural_width guest_ds_base;
267 natural_width guest_fs_base;
268 natural_width guest_gs_base;
269 natural_width guest_ldtr_base;
270 natural_width guest_tr_base;
271 natural_width guest_gdtr_base;
272 natural_width guest_idtr_base;
273 natural_width guest_dr7;
274 natural_width guest_rsp;
275 natural_width guest_rip;
276 natural_width guest_rflags;
277 natural_width guest_pending_dbg_exceptions;
278 natural_width guest_sysenter_esp;
279 natural_width guest_sysenter_eip;
280 natural_width host_cr0;
281 natural_width host_cr3;
282 natural_width host_cr4;
283 natural_width host_fs_base;
284 natural_width host_gs_base;
285 natural_width host_tr_base;
286 natural_width host_gdtr_base;
287 natural_width host_idtr_base;
288 natural_width host_ia32_sysenter_esp;
289 natural_width host_ia32_sysenter_eip;
290 natural_width host_rsp;
291 natural_width host_rip;
292 natural_width paddingl[8]; /* room for future expansion */
293 u32 pin_based_vm_exec_control;
294 u32 cpu_based_vm_exec_control;
295 u32 exception_bitmap;
296 u32 page_fault_error_code_mask;
297 u32 page_fault_error_code_match;
298 u32 cr3_target_count;
299 u32 vm_exit_controls;
300 u32 vm_exit_msr_store_count;
301 u32 vm_exit_msr_load_count;
302 u32 vm_entry_controls;
303 u32 vm_entry_msr_load_count;
304 u32 vm_entry_intr_info_field;
305 u32 vm_entry_exception_error_code;
306 u32 vm_entry_instruction_len;
307 u32 tpr_threshold;
308 u32 secondary_vm_exec_control;
309 u32 vm_instruction_error;
310 u32 vm_exit_reason;
311 u32 vm_exit_intr_info;
312 u32 vm_exit_intr_error_code;
313 u32 idt_vectoring_info_field;
314 u32 idt_vectoring_error_code;
315 u32 vm_exit_instruction_len;
316 u32 vmx_instruction_info;
317 u32 guest_es_limit;
318 u32 guest_cs_limit;
319 u32 guest_ss_limit;
320 u32 guest_ds_limit;
321 u32 guest_fs_limit;
322 u32 guest_gs_limit;
323 u32 guest_ldtr_limit;
324 u32 guest_tr_limit;
325 u32 guest_gdtr_limit;
326 u32 guest_idtr_limit;
327 u32 guest_es_ar_bytes;
328 u32 guest_cs_ar_bytes;
329 u32 guest_ss_ar_bytes;
330 u32 guest_ds_ar_bytes;
331 u32 guest_fs_ar_bytes;
332 u32 guest_gs_ar_bytes;
333 u32 guest_ldtr_ar_bytes;
334 u32 guest_tr_ar_bytes;
335 u32 guest_interruptibility_info;
336 u32 guest_activity_state;
337 u32 guest_sysenter_cs;
338 u32 host_ia32_sysenter_cs;
0238ea91
JK
339 u32 vmx_preemption_timer_value;
340 u32 padding32[7]; /* room for future expansion */
22bd0358 341 u16 virtual_processor_id;
705699a1 342 u16 posted_intr_nv;
22bd0358
NHE
343 u16 guest_es_selector;
344 u16 guest_cs_selector;
345 u16 guest_ss_selector;
346 u16 guest_ds_selector;
347 u16 guest_fs_selector;
348 u16 guest_gs_selector;
349 u16 guest_ldtr_selector;
350 u16 guest_tr_selector;
608406e2 351 u16 guest_intr_status;
22bd0358
NHE
352 u16 host_es_selector;
353 u16 host_cs_selector;
354 u16 host_ss_selector;
355 u16 host_ds_selector;
356 u16 host_fs_selector;
357 u16 host_gs_selector;
358 u16 host_tr_selector;
a9d30f33
NHE
359};
360
361/*
362 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
363 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
364 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
365 */
366#define VMCS12_REVISION 0x11e57ed0
367
368/*
369 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
370 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
371 * current implementation, 4K are reserved to avoid future complications.
372 */
373#define VMCS12_SIZE 0x1000
374
ff2f6fe9
NHE
375/* Used to remember the last vmcs02 used for some recently used vmcs12s */
376struct vmcs02_list {
377 struct list_head list;
378 gpa_t vmptr;
379 struct loaded_vmcs vmcs02;
380};
381
ec378aee
NHE
382/*
383 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
384 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
385 */
386struct nested_vmx {
387 /* Has the level1 guest done vmxon? */
388 bool vmxon;
3573e22c 389 gpa_t vmxon_ptr;
a9d30f33
NHE
390
391 /* The guest-physical address of the current VMCS L1 keeps for L2 */
392 gpa_t current_vmptr;
393 /* The host-usable pointer to the above */
394 struct page *current_vmcs12_page;
395 struct vmcs12 *current_vmcs12;
8de48833 396 struct vmcs *current_shadow_vmcs;
012f83cb
AG
397 /*
398 * Indicates if the shadow vmcs must be updated with the
399 * data hold by vmcs12
400 */
401 bool sync_shadow_vmcs;
ff2f6fe9
NHE
402
403 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
404 struct list_head vmcs02_pool;
405 int vmcs02_num;
fe3ef05c 406 u64 vmcs01_tsc_offset;
644d711a
NHE
407 /* L2 must run next, and mustn't decide to exit to L1. */
408 bool nested_run_pending;
fe3ef05c
NHE
409 /*
410 * Guest pages referred to in vmcs02 with host-physical pointers, so
411 * we must keep them pinned while L2 runs.
412 */
413 struct page *apic_access_page;
a7c0b07d 414 struct page *virtual_apic_page;
705699a1
WV
415 struct page *pi_desc_page;
416 struct pi_desc *pi_desc;
417 bool pi_pending;
418 u16 posted_intr_nv;
b3897a49 419 u64 msr_ia32_feature_control;
f4124500
JK
420
421 struct hrtimer preemption_timer;
422 bool preemption_timer_expired;
2996fca0
JK
423
424 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
425 u64 vmcs01_debugctl;
b9c237bb
WV
426
427 u32 nested_vmx_procbased_ctls_low;
428 u32 nested_vmx_procbased_ctls_high;
429 u32 nested_vmx_true_procbased_ctls_low;
430 u32 nested_vmx_secondary_ctls_low;
431 u32 nested_vmx_secondary_ctls_high;
432 u32 nested_vmx_pinbased_ctls_low;
433 u32 nested_vmx_pinbased_ctls_high;
434 u32 nested_vmx_exit_ctls_low;
435 u32 nested_vmx_exit_ctls_high;
436 u32 nested_vmx_true_exit_ctls_low;
437 u32 nested_vmx_entry_ctls_low;
438 u32 nested_vmx_entry_ctls_high;
439 u32 nested_vmx_true_entry_ctls_low;
440 u32 nested_vmx_misc_low;
441 u32 nested_vmx_misc_high;
442 u32 nested_vmx_ept_caps;
ec378aee
NHE
443};
444
01e439be
YZ
445#define POSTED_INTR_ON 0
446/* Posted-Interrupt Descriptor */
447struct pi_desc {
448 u32 pir[8]; /* Posted interrupt requested */
449 u32 control; /* bit 0 of control is outstanding notification bit */
450 u32 rsvd[7];
451} __aligned(64);
452
a20ed54d
YZ
453static bool pi_test_and_set_on(struct pi_desc *pi_desc)
454{
455 return test_and_set_bit(POSTED_INTR_ON,
456 (unsigned long *)&pi_desc->control);
457}
458
459static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
460{
461 return test_and_clear_bit(POSTED_INTR_ON,
462 (unsigned long *)&pi_desc->control);
463}
464
465static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
466{
467 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
468}
469
a2fa3e9f 470struct vcpu_vmx {
fb3f0f51 471 struct kvm_vcpu vcpu;
313dbd49 472 unsigned long host_rsp;
29bd8a78 473 u8 fail;
9d58b931 474 bool nmi_known_unmasked;
51aa01d1 475 u32 exit_intr_info;
1155f76a 476 u32 idt_vectoring_info;
6de12732 477 ulong rflags;
26bb0981 478 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
479 int nmsrs;
480 int save_nmsrs;
a547c6db 481 unsigned long host_idt_base;
a2fa3e9f 482#ifdef CONFIG_X86_64
44ea2b17
AK
483 u64 msr_host_kernel_gs_base;
484 u64 msr_guest_kernel_gs_base;
a2fa3e9f 485#endif
2961e876
GN
486 u32 vm_entry_controls_shadow;
487 u32 vm_exit_controls_shadow;
d462b819
NHE
488 /*
489 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
490 * non-nested (L1) guest, it always points to vmcs01. For a nested
491 * guest (L2), it points to a different VMCS.
492 */
493 struct loaded_vmcs vmcs01;
494 struct loaded_vmcs *loaded_vmcs;
495 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
496 struct msr_autoload {
497 unsigned nr;
498 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
499 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
500 } msr_autoload;
a2fa3e9f
GH
501 struct {
502 int loaded;
503 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
504#ifdef CONFIG_X86_64
505 u16 ds_sel, es_sel;
506#endif
152d3f2f
LV
507 int gs_ldt_reload_needed;
508 int fs_reload_needed;
da8999d3 509 u64 msr_host_bndcfgs;
d974baa3 510 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 511 } host_state;
9c8cba37 512 struct {
7ffd92c5 513 int vm86_active;
78ac8b47 514 ulong save_rflags;
f5f7b2fe
AK
515 struct kvm_segment segs[8];
516 } rmode;
517 struct {
518 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
519 struct kvm_save_segment {
520 u16 selector;
521 unsigned long base;
522 u32 limit;
523 u32 ar;
f5f7b2fe 524 } seg[8];
2fb92db1 525 } segment_cache;
2384d2b3 526 int vpid;
04fa4d32 527 bool emulation_required;
3b86cd99
JK
528
529 /* Support for vnmi-less CPUs */
530 int soft_vnmi_blocked;
531 ktime_t entry_time;
532 s64 vnmi_blocked_time;
a0861c02 533 u32 exit_reason;
4e47c7a6
SY
534
535 bool rdtscp_enabled;
ec378aee 536
01e439be
YZ
537 /* Posted interrupt descriptor */
538 struct pi_desc pi_desc;
539
ec378aee
NHE
540 /* Support for a guest hypervisor (nested VMX) */
541 struct nested_vmx nested;
a7653ecd
RK
542
543 /* Dynamic PLE window. */
544 int ple_window;
545 bool ple_window_dirty;
843e4330
KH
546
547 /* Support for PML */
548#define PML_ENTITY_NUM 512
549 struct page *pml_pg;
a2fa3e9f
GH
550};
551
2fb92db1
AK
552enum segment_cache_field {
553 SEG_FIELD_SEL = 0,
554 SEG_FIELD_BASE = 1,
555 SEG_FIELD_LIMIT = 2,
556 SEG_FIELD_AR = 3,
557
558 SEG_FIELD_NR = 4
559};
560
a2fa3e9f
GH
561static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
562{
fb3f0f51 563 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
564}
565
22bd0358
NHE
566#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
567#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
568#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
569 [number##_HIGH] = VMCS12_OFFSET(name)+4
570
4607c2d7 571
fe2b201b 572static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
573 /*
574 * We do NOT shadow fields that are modified when L0
575 * traps and emulates any vmx instruction (e.g. VMPTRLD,
576 * VMXON...) executed by L1.
577 * For example, VM_INSTRUCTION_ERROR is read
578 * by L1 if a vmx instruction fails (part of the error path).
579 * Note the code assumes this logic. If for some reason
580 * we start shadowing these fields then we need to
581 * force a shadow sync when L0 emulates vmx instructions
582 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
583 * by nested_vmx_failValid)
584 */
585 VM_EXIT_REASON,
586 VM_EXIT_INTR_INFO,
587 VM_EXIT_INSTRUCTION_LEN,
588 IDT_VECTORING_INFO_FIELD,
589 IDT_VECTORING_ERROR_CODE,
590 VM_EXIT_INTR_ERROR_CODE,
591 EXIT_QUALIFICATION,
592 GUEST_LINEAR_ADDRESS,
593 GUEST_PHYSICAL_ADDRESS
594};
fe2b201b 595static int max_shadow_read_only_fields =
4607c2d7
AG
596 ARRAY_SIZE(shadow_read_only_fields);
597
fe2b201b 598static unsigned long shadow_read_write_fields[] = {
a7c0b07d 599 TPR_THRESHOLD,
4607c2d7
AG
600 GUEST_RIP,
601 GUEST_RSP,
602 GUEST_CR0,
603 GUEST_CR3,
604 GUEST_CR4,
605 GUEST_INTERRUPTIBILITY_INFO,
606 GUEST_RFLAGS,
607 GUEST_CS_SELECTOR,
608 GUEST_CS_AR_BYTES,
609 GUEST_CS_LIMIT,
610 GUEST_CS_BASE,
611 GUEST_ES_BASE,
36be0b9d 612 GUEST_BNDCFGS,
4607c2d7
AG
613 CR0_GUEST_HOST_MASK,
614 CR0_READ_SHADOW,
615 CR4_READ_SHADOW,
616 TSC_OFFSET,
617 EXCEPTION_BITMAP,
618 CPU_BASED_VM_EXEC_CONTROL,
619 VM_ENTRY_EXCEPTION_ERROR_CODE,
620 VM_ENTRY_INTR_INFO_FIELD,
621 VM_ENTRY_INSTRUCTION_LEN,
622 VM_ENTRY_EXCEPTION_ERROR_CODE,
623 HOST_FS_BASE,
624 HOST_GS_BASE,
625 HOST_FS_SELECTOR,
626 HOST_GS_SELECTOR
627};
fe2b201b 628static int max_shadow_read_write_fields =
4607c2d7
AG
629 ARRAY_SIZE(shadow_read_write_fields);
630
772e0318 631static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 632 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 633 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
634 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
635 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
636 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
637 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
638 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
639 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
640 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
641 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 642 FIELD(GUEST_INTR_STATUS, guest_intr_status),
22bd0358
NHE
643 FIELD(HOST_ES_SELECTOR, host_es_selector),
644 FIELD(HOST_CS_SELECTOR, host_cs_selector),
645 FIELD(HOST_SS_SELECTOR, host_ss_selector),
646 FIELD(HOST_DS_SELECTOR, host_ds_selector),
647 FIELD(HOST_FS_SELECTOR, host_fs_selector),
648 FIELD(HOST_GS_SELECTOR, host_gs_selector),
649 FIELD(HOST_TR_SELECTOR, host_tr_selector),
650 FIELD64(IO_BITMAP_A, io_bitmap_a),
651 FIELD64(IO_BITMAP_B, io_bitmap_b),
652 FIELD64(MSR_BITMAP, msr_bitmap),
653 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
654 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
655 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
656 FIELD64(TSC_OFFSET, tsc_offset),
657 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
658 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 659 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
22bd0358 660 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
661 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
662 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
663 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
664 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
81dc01f7 665 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
666 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
667 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
668 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
669 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
670 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
671 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
672 FIELD64(GUEST_PDPTR0, guest_pdptr0),
673 FIELD64(GUEST_PDPTR1, guest_pdptr1),
674 FIELD64(GUEST_PDPTR2, guest_pdptr2),
675 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 676 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
677 FIELD64(HOST_IA32_PAT, host_ia32_pat),
678 FIELD64(HOST_IA32_EFER, host_ia32_efer),
679 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
680 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
681 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
682 FIELD(EXCEPTION_BITMAP, exception_bitmap),
683 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
684 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
685 FIELD(CR3_TARGET_COUNT, cr3_target_count),
686 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
687 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
688 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
689 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
690 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
691 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
692 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
693 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
694 FIELD(TPR_THRESHOLD, tpr_threshold),
695 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
696 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
697 FIELD(VM_EXIT_REASON, vm_exit_reason),
698 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
699 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
700 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
701 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
702 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
703 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
704 FIELD(GUEST_ES_LIMIT, guest_es_limit),
705 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
706 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
707 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
708 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
709 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
710 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
711 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
712 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
713 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
714 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
715 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
716 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
717 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
718 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
719 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
720 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
721 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
722 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
723 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
724 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
725 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 726 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
727 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
728 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
729 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
730 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
731 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
732 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
733 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
734 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
735 FIELD(EXIT_QUALIFICATION, exit_qualification),
736 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
737 FIELD(GUEST_CR0, guest_cr0),
738 FIELD(GUEST_CR3, guest_cr3),
739 FIELD(GUEST_CR4, guest_cr4),
740 FIELD(GUEST_ES_BASE, guest_es_base),
741 FIELD(GUEST_CS_BASE, guest_cs_base),
742 FIELD(GUEST_SS_BASE, guest_ss_base),
743 FIELD(GUEST_DS_BASE, guest_ds_base),
744 FIELD(GUEST_FS_BASE, guest_fs_base),
745 FIELD(GUEST_GS_BASE, guest_gs_base),
746 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
747 FIELD(GUEST_TR_BASE, guest_tr_base),
748 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
749 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
750 FIELD(GUEST_DR7, guest_dr7),
751 FIELD(GUEST_RSP, guest_rsp),
752 FIELD(GUEST_RIP, guest_rip),
753 FIELD(GUEST_RFLAGS, guest_rflags),
754 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
755 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
756 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
757 FIELD(HOST_CR0, host_cr0),
758 FIELD(HOST_CR3, host_cr3),
759 FIELD(HOST_CR4, host_cr4),
760 FIELD(HOST_FS_BASE, host_fs_base),
761 FIELD(HOST_GS_BASE, host_gs_base),
762 FIELD(HOST_TR_BASE, host_tr_base),
763 FIELD(HOST_GDTR_BASE, host_gdtr_base),
764 FIELD(HOST_IDTR_BASE, host_idtr_base),
765 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
766 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
767 FIELD(HOST_RSP, host_rsp),
768 FIELD(HOST_RIP, host_rip),
769};
22bd0358
NHE
770
771static inline short vmcs_field_to_offset(unsigned long field)
772{
a2ae9df7
PB
773 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
774
775 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
776 vmcs_field_to_offset_table[field] == 0)
777 return -ENOENT;
778
22bd0358
NHE
779 return vmcs_field_to_offset_table[field];
780}
781
a9d30f33
NHE
782static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
783{
784 return to_vmx(vcpu)->nested.current_vmcs12;
785}
786
787static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
788{
789 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
32cad84f 790 if (is_error_page(page))
a9d30f33 791 return NULL;
32cad84f 792
a9d30f33
NHE
793 return page;
794}
795
796static void nested_release_page(struct page *page)
797{
798 kvm_release_page_dirty(page);
799}
800
801static void nested_release_page_clean(struct page *page)
802{
803 kvm_release_page_clean(page);
804}
805
bfd0a56b 806static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
4e1096d2 807static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
808static void kvm_cpu_vmxon(u64 addr);
809static void kvm_cpu_vmxoff(void);
93c4adc7 810static bool vmx_mpx_supported(void);
f53cd63c 811static bool vmx_xsaves_supported(void);
705699a1 812static int vmx_vm_has_apicv(struct kvm *kvm);
776e58ea 813static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
814static void vmx_set_segment(struct kvm_vcpu *vcpu,
815 struct kvm_segment *var, int seg);
816static void vmx_get_segment(struct kvm_vcpu *vcpu,
817 struct kvm_segment *var, int seg);
d99e4152
GN
818static bool guest_state_valid(struct kvm_vcpu *vcpu);
819static u32 vmx_segment_access_rights(struct kvm_segment *var);
a20ed54d 820static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
c3114420 821static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 822static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 823static int alloc_identity_pagetable(struct kvm *kvm);
75880a01 824
6aa8b732
AK
825static DEFINE_PER_CPU(struct vmcs *, vmxarea);
826static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
827/*
828 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
829 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
830 */
831static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 832static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 833
3e7c73e9
AK
834static unsigned long *vmx_io_bitmap_a;
835static unsigned long *vmx_io_bitmap_b;
5897297b
AK
836static unsigned long *vmx_msr_bitmap_legacy;
837static unsigned long *vmx_msr_bitmap_longmode;
8d14695f
YZ
838static unsigned long *vmx_msr_bitmap_legacy_x2apic;
839static unsigned long *vmx_msr_bitmap_longmode_x2apic;
3af18d9c 840static unsigned long *vmx_msr_bitmap_nested;
4607c2d7
AG
841static unsigned long *vmx_vmread_bitmap;
842static unsigned long *vmx_vmwrite_bitmap;
fdef3ad1 843
110312c8 844static bool cpu_has_load_ia32_efer;
8bf00a52 845static bool cpu_has_load_perf_global_ctrl;
110312c8 846
2384d2b3
SY
847static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
848static DEFINE_SPINLOCK(vmx_vpid_lock);
849
1c3d14fe 850static struct vmcs_config {
6aa8b732
AK
851 int size;
852 int order;
853 u32 revision_id;
1c3d14fe
YS
854 u32 pin_based_exec_ctrl;
855 u32 cpu_based_exec_ctrl;
f78e0e2e 856 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
857 u32 vmexit_ctrl;
858 u32 vmentry_ctrl;
859} vmcs_config;
6aa8b732 860
efff9e53 861static struct vmx_capability {
d56f546d
SY
862 u32 ept;
863 u32 vpid;
864} vmx_capability;
865
6aa8b732
AK
866#define VMX_SEGMENT_FIELD(seg) \
867 [VCPU_SREG_##seg] = { \
868 .selector = GUEST_##seg##_SELECTOR, \
869 .base = GUEST_##seg##_BASE, \
870 .limit = GUEST_##seg##_LIMIT, \
871 .ar_bytes = GUEST_##seg##_AR_BYTES, \
872 }
873
772e0318 874static const struct kvm_vmx_segment_field {
6aa8b732
AK
875 unsigned selector;
876 unsigned base;
877 unsigned limit;
878 unsigned ar_bytes;
879} kvm_vmx_segment_fields[] = {
880 VMX_SEGMENT_FIELD(CS),
881 VMX_SEGMENT_FIELD(DS),
882 VMX_SEGMENT_FIELD(ES),
883 VMX_SEGMENT_FIELD(FS),
884 VMX_SEGMENT_FIELD(GS),
885 VMX_SEGMENT_FIELD(SS),
886 VMX_SEGMENT_FIELD(TR),
887 VMX_SEGMENT_FIELD(LDTR),
888};
889
26bb0981
AK
890static u64 host_efer;
891
6de4f3ad
AK
892static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
893
4d56c8a7 894/*
8c06585d 895 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
896 * away by decrementing the array size.
897 */
6aa8b732 898static const u32 vmx_msr_index[] = {
05b3e0c2 899#ifdef CONFIG_X86_64
44ea2b17 900 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 901#endif
8c06585d 902 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 903};
6aa8b732 904
31299944 905static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
906{
907 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
908 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 909 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
910}
911
31299944 912static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
913{
914 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
915 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 916 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
917}
918
31299944 919static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
920{
921 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
922 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 923 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
924}
925
31299944 926static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
927{
928 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
929 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
930}
931
31299944 932static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
933{
934 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
935 INTR_INFO_VALID_MASK)) ==
936 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
937}
938
31299944 939static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 940{
04547156 941 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
942}
943
31299944 944static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 945{
04547156 946 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
947}
948
31299944 949static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 950{
04547156 951 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
952}
953
31299944 954static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 955{
04547156
SY
956 return vmcs_config.cpu_based_exec_ctrl &
957 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
958}
959
774ead3a 960static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 961{
04547156
SY
962 return vmcs_config.cpu_based_2nd_exec_ctrl &
963 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
964}
965
8d14695f
YZ
966static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
967{
968 return vmcs_config.cpu_based_2nd_exec_ctrl &
969 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
970}
971
83d4c286
YZ
972static inline bool cpu_has_vmx_apic_register_virt(void)
973{
974 return vmcs_config.cpu_based_2nd_exec_ctrl &
975 SECONDARY_EXEC_APIC_REGISTER_VIRT;
976}
977
c7c9c56c
YZ
978static inline bool cpu_has_vmx_virtual_intr_delivery(void)
979{
980 return vmcs_config.cpu_based_2nd_exec_ctrl &
981 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
982}
983
01e439be
YZ
984static inline bool cpu_has_vmx_posted_intr(void)
985{
986 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
987}
988
989static inline bool cpu_has_vmx_apicv(void)
990{
991 return cpu_has_vmx_apic_register_virt() &&
992 cpu_has_vmx_virtual_intr_delivery() &&
993 cpu_has_vmx_posted_intr();
994}
995
04547156
SY
996static inline bool cpu_has_vmx_flexpriority(void)
997{
998 return cpu_has_vmx_tpr_shadow() &&
999 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1000}
1001
e799794e
MT
1002static inline bool cpu_has_vmx_ept_execute_only(void)
1003{
31299944 1004 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1005}
1006
e799794e
MT
1007static inline bool cpu_has_vmx_ept_2m_page(void)
1008{
31299944 1009 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1010}
1011
878403b7
SY
1012static inline bool cpu_has_vmx_ept_1g_page(void)
1013{
31299944 1014 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1015}
1016
4bc9b982
SY
1017static inline bool cpu_has_vmx_ept_4levels(void)
1018{
1019 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1020}
1021
83c3a331
XH
1022static inline bool cpu_has_vmx_ept_ad_bits(void)
1023{
1024 return vmx_capability.ept & VMX_EPT_AD_BIT;
1025}
1026
31299944 1027static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1028{
31299944 1029 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1030}
1031
31299944 1032static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1033{
31299944 1034 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1035}
1036
518c8aee
GJ
1037static inline bool cpu_has_vmx_invvpid_single(void)
1038{
1039 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1040}
1041
b9d762fa
GJ
1042static inline bool cpu_has_vmx_invvpid_global(void)
1043{
1044 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1045}
1046
31299944 1047static inline bool cpu_has_vmx_ept(void)
d56f546d 1048{
04547156
SY
1049 return vmcs_config.cpu_based_2nd_exec_ctrl &
1050 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1051}
1052
31299944 1053static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1054{
1055 return vmcs_config.cpu_based_2nd_exec_ctrl &
1056 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1057}
1058
31299944 1059static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1060{
1061 return vmcs_config.cpu_based_2nd_exec_ctrl &
1062 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1063}
1064
31299944 1065static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 1066{
6d3e435e 1067 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
1068}
1069
31299944 1070static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1071{
04547156
SY
1072 return vmcs_config.cpu_based_2nd_exec_ctrl &
1073 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1074}
1075
31299944 1076static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1077{
1078 return vmcs_config.cpu_based_2nd_exec_ctrl &
1079 SECONDARY_EXEC_RDTSCP;
1080}
1081
ad756a16
MJ
1082static inline bool cpu_has_vmx_invpcid(void)
1083{
1084 return vmcs_config.cpu_based_2nd_exec_ctrl &
1085 SECONDARY_EXEC_ENABLE_INVPCID;
1086}
1087
31299944 1088static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
1089{
1090 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1091}
1092
f5f48ee1
SY
1093static inline bool cpu_has_vmx_wbinvd_exit(void)
1094{
1095 return vmcs_config.cpu_based_2nd_exec_ctrl &
1096 SECONDARY_EXEC_WBINVD_EXITING;
1097}
1098
abc4fc58
AG
1099static inline bool cpu_has_vmx_shadow_vmcs(void)
1100{
1101 u64 vmx_msr;
1102 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1103 /* check if the cpu supports writing r/o exit information fields */
1104 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1105 return false;
1106
1107 return vmcs_config.cpu_based_2nd_exec_ctrl &
1108 SECONDARY_EXEC_SHADOW_VMCS;
1109}
1110
843e4330
KH
1111static inline bool cpu_has_vmx_pml(void)
1112{
1113 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1114}
1115
04547156
SY
1116static inline bool report_flexpriority(void)
1117{
1118 return flexpriority_enabled;
1119}
1120
fe3ef05c
NHE
1121static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1122{
1123 return vmcs12->cpu_based_vm_exec_control & bit;
1124}
1125
1126static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1127{
1128 return (vmcs12->cpu_based_vm_exec_control &
1129 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1130 (vmcs12->secondary_vm_exec_control & bit);
1131}
1132
f5c4368f 1133static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1134{
1135 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1136}
1137
f4124500
JK
1138static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1139{
1140 return vmcs12->pin_based_vm_exec_control &
1141 PIN_BASED_VMX_PREEMPTION_TIMER;
1142}
1143
155a97a3
NHE
1144static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1145{
1146 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1147}
1148
81dc01f7
WL
1149static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1150{
1151 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1152 vmx_xsaves_supported();
1153}
1154
f2b93280
WV
1155static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1156{
1157 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1158}
1159
82f0dd4b
WV
1160static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1161{
1162 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1163}
1164
608406e2
WV
1165static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1166{
1167 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1168}
1169
705699a1
WV
1170static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1171{
1172 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1173}
1174
644d711a
NHE
1175static inline bool is_exception(u32 intr_info)
1176{
1177 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1178 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1179}
1180
533558bc
JK
1181static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1182 u32 exit_intr_info,
1183 unsigned long exit_qualification);
7c177938
NHE
1184static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1185 struct vmcs12 *vmcs12,
1186 u32 reason, unsigned long qualification);
1187
8b9cf98c 1188static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1189{
1190 int i;
1191
a2fa3e9f 1192 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1193 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1194 return i;
1195 return -1;
1196}
1197
2384d2b3
SY
1198static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1199{
1200 struct {
1201 u64 vpid : 16;
1202 u64 rsvd : 48;
1203 u64 gva;
1204 } operand = { vpid, 0, gva };
1205
4ecac3fd 1206 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1207 /* CF==1 or ZF==1 --> rc = -1 */
1208 "; ja 1f ; ud2 ; 1:"
1209 : : "a"(&operand), "c"(ext) : "cc", "memory");
1210}
1211
1439442c
SY
1212static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1213{
1214 struct {
1215 u64 eptp, gpa;
1216 } operand = {eptp, gpa};
1217
4ecac3fd 1218 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1219 /* CF==1 or ZF==1 --> rc = -1 */
1220 "; ja 1f ; ud2 ; 1:\n"
1221 : : "a" (&operand), "c" (ext) : "cc", "memory");
1222}
1223
26bb0981 1224static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1225{
1226 int i;
1227
8b9cf98c 1228 i = __find_msr_index(vmx, msr);
a75beee6 1229 if (i >= 0)
a2fa3e9f 1230 return &vmx->guest_msrs[i];
8b6d44c7 1231 return NULL;
7725f0ba
AK
1232}
1233
6aa8b732
AK
1234static void vmcs_clear(struct vmcs *vmcs)
1235{
1236 u64 phys_addr = __pa(vmcs);
1237 u8 error;
1238
4ecac3fd 1239 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1240 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1241 : "cc", "memory");
1242 if (error)
1243 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1244 vmcs, phys_addr);
1245}
1246
d462b819
NHE
1247static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1248{
1249 vmcs_clear(loaded_vmcs->vmcs);
1250 loaded_vmcs->cpu = -1;
1251 loaded_vmcs->launched = 0;
1252}
1253
7725b894
DX
1254static void vmcs_load(struct vmcs *vmcs)
1255{
1256 u64 phys_addr = __pa(vmcs);
1257 u8 error;
1258
1259 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1260 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1261 : "cc", "memory");
1262 if (error)
2844d849 1263 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1264 vmcs, phys_addr);
1265}
1266
8f536b76
ZY
1267#ifdef CONFIG_KEXEC
1268/*
1269 * This bitmap is used to indicate whether the vmclear
1270 * operation is enabled on all cpus. All disabled by
1271 * default.
1272 */
1273static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1274
1275static inline void crash_enable_local_vmclear(int cpu)
1276{
1277 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1278}
1279
1280static inline void crash_disable_local_vmclear(int cpu)
1281{
1282 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1283}
1284
1285static inline int crash_local_vmclear_enabled(int cpu)
1286{
1287 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1288}
1289
1290static void crash_vmclear_local_loaded_vmcss(void)
1291{
1292 int cpu = raw_smp_processor_id();
1293 struct loaded_vmcs *v;
1294
1295 if (!crash_local_vmclear_enabled(cpu))
1296 return;
1297
1298 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1299 loaded_vmcss_on_cpu_link)
1300 vmcs_clear(v->vmcs);
1301}
1302#else
1303static inline void crash_enable_local_vmclear(int cpu) { }
1304static inline void crash_disable_local_vmclear(int cpu) { }
1305#endif /* CONFIG_KEXEC */
1306
d462b819 1307static void __loaded_vmcs_clear(void *arg)
6aa8b732 1308{
d462b819 1309 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1310 int cpu = raw_smp_processor_id();
6aa8b732 1311
d462b819
NHE
1312 if (loaded_vmcs->cpu != cpu)
1313 return; /* vcpu migration can race with cpu offline */
1314 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1315 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1316 crash_disable_local_vmclear(cpu);
d462b819 1317 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1318
1319 /*
1320 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1321 * is before setting loaded_vmcs->vcpu to -1 which is done in
1322 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1323 * then adds the vmcs into percpu list before it is deleted.
1324 */
1325 smp_wmb();
1326
d462b819 1327 loaded_vmcs_init(loaded_vmcs);
8f536b76 1328 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1329}
1330
d462b819 1331static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1332{
e6c7d321
XG
1333 int cpu = loaded_vmcs->cpu;
1334
1335 if (cpu != -1)
1336 smp_call_function_single(cpu,
1337 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1338}
1339
1760dd49 1340static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
1341{
1342 if (vmx->vpid == 0)
1343 return;
1344
518c8aee
GJ
1345 if (cpu_has_vmx_invvpid_single())
1346 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
1347}
1348
b9d762fa
GJ
1349static inline void vpid_sync_vcpu_global(void)
1350{
1351 if (cpu_has_vmx_invvpid_global())
1352 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1353}
1354
1355static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1356{
1357 if (cpu_has_vmx_invvpid_single())
1760dd49 1358 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1359 else
1360 vpid_sync_vcpu_global();
1361}
1362
1439442c
SY
1363static inline void ept_sync_global(void)
1364{
1365 if (cpu_has_vmx_invept_global())
1366 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1367}
1368
1369static inline void ept_sync_context(u64 eptp)
1370{
089d034e 1371 if (enable_ept) {
1439442c
SY
1372 if (cpu_has_vmx_invept_context())
1373 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1374 else
1375 ept_sync_global();
1376 }
1377}
1378
96304217 1379static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1380{
5e520e62 1381 unsigned long value;
6aa8b732 1382
5e520e62
AK
1383 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1384 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1385 return value;
1386}
1387
96304217 1388static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1389{
1390 return vmcs_readl(field);
1391}
1392
96304217 1393static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1394{
1395 return vmcs_readl(field);
1396}
1397
96304217 1398static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1399{
05b3e0c2 1400#ifdef CONFIG_X86_64
6aa8b732
AK
1401 return vmcs_readl(field);
1402#else
1403 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1404#endif
1405}
1406
e52de1b8
AK
1407static noinline void vmwrite_error(unsigned long field, unsigned long value)
1408{
1409 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1410 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1411 dump_stack();
1412}
1413
6aa8b732
AK
1414static void vmcs_writel(unsigned long field, unsigned long value)
1415{
1416 u8 error;
1417
4ecac3fd 1418 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1419 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1420 if (unlikely(error))
1421 vmwrite_error(field, value);
6aa8b732
AK
1422}
1423
1424static void vmcs_write16(unsigned long field, u16 value)
1425{
1426 vmcs_writel(field, value);
1427}
1428
1429static void vmcs_write32(unsigned long field, u32 value)
1430{
1431 vmcs_writel(field, value);
1432}
1433
1434static void vmcs_write64(unsigned long field, u64 value)
1435{
6aa8b732 1436 vmcs_writel(field, value);
7682f2d0 1437#ifndef CONFIG_X86_64
6aa8b732
AK
1438 asm volatile ("");
1439 vmcs_writel(field+1, value >> 32);
1440#endif
1441}
1442
2ab455cc
AL
1443static void vmcs_clear_bits(unsigned long field, u32 mask)
1444{
1445 vmcs_writel(field, vmcs_readl(field) & ~mask);
1446}
1447
1448static void vmcs_set_bits(unsigned long field, u32 mask)
1449{
1450 vmcs_writel(field, vmcs_readl(field) | mask);
1451}
1452
2961e876
GN
1453static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1454{
1455 vmcs_write32(VM_ENTRY_CONTROLS, val);
1456 vmx->vm_entry_controls_shadow = val;
1457}
1458
1459static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1460{
1461 if (vmx->vm_entry_controls_shadow != val)
1462 vm_entry_controls_init(vmx, val);
1463}
1464
1465static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1466{
1467 return vmx->vm_entry_controls_shadow;
1468}
1469
1470
1471static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1472{
1473 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1474}
1475
1476static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1477{
1478 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1479}
1480
1481static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1482{
1483 vmcs_write32(VM_EXIT_CONTROLS, val);
1484 vmx->vm_exit_controls_shadow = val;
1485}
1486
1487static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1488{
1489 if (vmx->vm_exit_controls_shadow != val)
1490 vm_exit_controls_init(vmx, val);
1491}
1492
1493static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1494{
1495 return vmx->vm_exit_controls_shadow;
1496}
1497
1498
1499static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1500{
1501 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1502}
1503
1504static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1505{
1506 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1507}
1508
2fb92db1
AK
1509static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1510{
1511 vmx->segment_cache.bitmask = 0;
1512}
1513
1514static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1515 unsigned field)
1516{
1517 bool ret;
1518 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1519
1520 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1521 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1522 vmx->segment_cache.bitmask = 0;
1523 }
1524 ret = vmx->segment_cache.bitmask & mask;
1525 vmx->segment_cache.bitmask |= mask;
1526 return ret;
1527}
1528
1529static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1530{
1531 u16 *p = &vmx->segment_cache.seg[seg].selector;
1532
1533 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1534 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1535 return *p;
1536}
1537
1538static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1539{
1540 ulong *p = &vmx->segment_cache.seg[seg].base;
1541
1542 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1543 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1544 return *p;
1545}
1546
1547static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1548{
1549 u32 *p = &vmx->segment_cache.seg[seg].limit;
1550
1551 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1552 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1553 return *p;
1554}
1555
1556static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1557{
1558 u32 *p = &vmx->segment_cache.seg[seg].ar;
1559
1560 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1561 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1562 return *p;
1563}
1564
abd3f2d6
AK
1565static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1566{
1567 u32 eb;
1568
fd7373cc
JK
1569 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1570 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1571 if ((vcpu->guest_debug &
1572 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1573 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1574 eb |= 1u << BP_VECTOR;
7ffd92c5 1575 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1576 eb = ~0;
089d034e 1577 if (enable_ept)
1439442c 1578 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1579 if (vcpu->fpu_active)
1580 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1581
1582 /* When we are running a nested L2 guest and L1 specified for it a
1583 * certain exception bitmap, we must trap the same exceptions and pass
1584 * them to L1. When running L2, we will only handle the exceptions
1585 * specified above if L1 did not want them.
1586 */
1587 if (is_guest_mode(vcpu))
1588 eb |= get_vmcs12(vcpu)->exception_bitmap;
1589
abd3f2d6
AK
1590 vmcs_write32(EXCEPTION_BITMAP, eb);
1591}
1592
2961e876
GN
1593static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1594 unsigned long entry, unsigned long exit)
8bf00a52 1595{
2961e876
GN
1596 vm_entry_controls_clearbit(vmx, entry);
1597 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1598}
1599
61d2ef2c
AK
1600static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1601{
1602 unsigned i;
1603 struct msr_autoload *m = &vmx->msr_autoload;
1604
8bf00a52
GN
1605 switch (msr) {
1606 case MSR_EFER:
1607 if (cpu_has_load_ia32_efer) {
2961e876
GN
1608 clear_atomic_switch_msr_special(vmx,
1609 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1610 VM_EXIT_LOAD_IA32_EFER);
1611 return;
1612 }
1613 break;
1614 case MSR_CORE_PERF_GLOBAL_CTRL:
1615 if (cpu_has_load_perf_global_ctrl) {
2961e876 1616 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1617 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1618 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1619 return;
1620 }
1621 break;
110312c8
AK
1622 }
1623
61d2ef2c
AK
1624 for (i = 0; i < m->nr; ++i)
1625 if (m->guest[i].index == msr)
1626 break;
1627
1628 if (i == m->nr)
1629 return;
1630 --m->nr;
1631 m->guest[i] = m->guest[m->nr];
1632 m->host[i] = m->host[m->nr];
1633 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1634 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1635}
1636
2961e876
GN
1637static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1638 unsigned long entry, unsigned long exit,
1639 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1640 u64 guest_val, u64 host_val)
8bf00a52
GN
1641{
1642 vmcs_write64(guest_val_vmcs, guest_val);
1643 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1644 vm_entry_controls_setbit(vmx, entry);
1645 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1646}
1647
61d2ef2c
AK
1648static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1649 u64 guest_val, u64 host_val)
1650{
1651 unsigned i;
1652 struct msr_autoload *m = &vmx->msr_autoload;
1653
8bf00a52
GN
1654 switch (msr) {
1655 case MSR_EFER:
1656 if (cpu_has_load_ia32_efer) {
2961e876
GN
1657 add_atomic_switch_msr_special(vmx,
1658 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1659 VM_EXIT_LOAD_IA32_EFER,
1660 GUEST_IA32_EFER,
1661 HOST_IA32_EFER,
1662 guest_val, host_val);
1663 return;
1664 }
1665 break;
1666 case MSR_CORE_PERF_GLOBAL_CTRL:
1667 if (cpu_has_load_perf_global_ctrl) {
2961e876 1668 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1669 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1670 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1671 GUEST_IA32_PERF_GLOBAL_CTRL,
1672 HOST_IA32_PERF_GLOBAL_CTRL,
1673 guest_val, host_val);
1674 return;
1675 }
1676 break;
110312c8
AK
1677 }
1678
61d2ef2c
AK
1679 for (i = 0; i < m->nr; ++i)
1680 if (m->guest[i].index == msr)
1681 break;
1682
e7fc6f93 1683 if (i == NR_AUTOLOAD_MSRS) {
60266204 1684 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1685 "Can't add msr %x\n", msr);
1686 return;
1687 } else if (i == m->nr) {
61d2ef2c
AK
1688 ++m->nr;
1689 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1690 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1691 }
1692
1693 m->guest[i].index = msr;
1694 m->guest[i].value = guest_val;
1695 m->host[i].index = msr;
1696 m->host[i].value = host_val;
1697}
1698
33ed6329
AK
1699static void reload_tss(void)
1700{
33ed6329
AK
1701 /*
1702 * VT restores TR but not its size. Useless.
1703 */
89cbc767 1704 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
a5f61300 1705 struct desc_struct *descs;
33ed6329 1706
d359192f 1707 descs = (void *)gdt->address;
33ed6329
AK
1708 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1709 load_TR_desc();
33ed6329
AK
1710}
1711
92c0d900 1712static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1713{
3a34a881 1714 u64 guest_efer;
51c6cf66
AK
1715 u64 ignore_bits;
1716
f6801dff 1717 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1718
51c6cf66 1719 /*
0fa06071 1720 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
51c6cf66
AK
1721 * outside long mode
1722 */
1723 ignore_bits = EFER_NX | EFER_SCE;
1724#ifdef CONFIG_X86_64
1725 ignore_bits |= EFER_LMA | EFER_LME;
1726 /* SCE is meaningful only in long mode on Intel */
1727 if (guest_efer & EFER_LMA)
1728 ignore_bits &= ~(u64)EFER_SCE;
1729#endif
51c6cf66
AK
1730 guest_efer &= ~ignore_bits;
1731 guest_efer |= host_efer & ignore_bits;
26bb0981 1732 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1733 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1734
1735 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
1736
1737 /*
1738 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1739 * On CPUs that support "load IA32_EFER", always switch EFER
1740 * atomically, since it's faster than switching it manually.
1741 */
1742 if (cpu_has_load_ia32_efer ||
1743 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
1744 guest_efer = vmx->vcpu.arch.efer;
1745 if (!(guest_efer & EFER_LMA))
1746 guest_efer &= ~EFER_LME;
54b98bff
AL
1747 if (guest_efer != host_efer)
1748 add_atomic_switch_msr(vmx, MSR_EFER,
1749 guest_efer, host_efer);
84ad33ef
AK
1750 return false;
1751 }
1752
26bb0981 1753 return true;
51c6cf66
AK
1754}
1755
2d49ec72
GN
1756static unsigned long segment_base(u16 selector)
1757{
89cbc767 1758 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2d49ec72
GN
1759 struct desc_struct *d;
1760 unsigned long table_base;
1761 unsigned long v;
1762
1763 if (!(selector & ~3))
1764 return 0;
1765
d359192f 1766 table_base = gdt->address;
2d49ec72
GN
1767
1768 if (selector & 4) { /* from ldt */
1769 u16 ldt_selector = kvm_read_ldt();
1770
1771 if (!(ldt_selector & ~3))
1772 return 0;
1773
1774 table_base = segment_base(ldt_selector);
1775 }
1776 d = (struct desc_struct *)(table_base + (selector & ~7));
1777 v = get_desc_base(d);
1778#ifdef CONFIG_X86_64
1779 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1780 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1781#endif
1782 return v;
1783}
1784
1785static inline unsigned long kvm_read_tr_base(void)
1786{
1787 u16 tr;
1788 asm("str %0" : "=g"(tr));
1789 return segment_base(tr);
1790}
1791
04d2cc77 1792static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1793{
04d2cc77 1794 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1795 int i;
04d2cc77 1796
a2fa3e9f 1797 if (vmx->host_state.loaded)
33ed6329
AK
1798 return;
1799
a2fa3e9f 1800 vmx->host_state.loaded = 1;
33ed6329
AK
1801 /*
1802 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1803 * allow segment selectors with cpl > 0 or ti == 1.
1804 */
d6e88aec 1805 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1806 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1807 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1808 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1809 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1810 vmx->host_state.fs_reload_needed = 0;
1811 } else {
33ed6329 1812 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1813 vmx->host_state.fs_reload_needed = 1;
33ed6329 1814 }
9581d442 1815 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1816 if (!(vmx->host_state.gs_sel & 7))
1817 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1818 else {
1819 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1820 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1821 }
1822
b2da15ac
AK
1823#ifdef CONFIG_X86_64
1824 savesegment(ds, vmx->host_state.ds_sel);
1825 savesegment(es, vmx->host_state.es_sel);
1826#endif
1827
33ed6329
AK
1828#ifdef CONFIG_X86_64
1829 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1830 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1831#else
a2fa3e9f
GH
1832 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1833 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1834#endif
707c0874
AK
1835
1836#ifdef CONFIG_X86_64
c8770e7b
AK
1837 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1838 if (is_long_mode(&vmx->vcpu))
44ea2b17 1839 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1840#endif
da8999d3
LJ
1841 if (boot_cpu_has(X86_FEATURE_MPX))
1842 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
1843 for (i = 0; i < vmx->save_nmsrs; ++i)
1844 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1845 vmx->guest_msrs[i].data,
1846 vmx->guest_msrs[i].mask);
33ed6329
AK
1847}
1848
a9b21b62 1849static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1850{
a2fa3e9f 1851 if (!vmx->host_state.loaded)
33ed6329
AK
1852 return;
1853
e1beb1d3 1854 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1855 vmx->host_state.loaded = 0;
c8770e7b
AK
1856#ifdef CONFIG_X86_64
1857 if (is_long_mode(&vmx->vcpu))
1858 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1859#endif
152d3f2f 1860 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1861 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1862#ifdef CONFIG_X86_64
9581d442 1863 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1864#else
1865 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1866#endif
33ed6329 1867 }
0a77fe4c
AK
1868 if (vmx->host_state.fs_reload_needed)
1869 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
1870#ifdef CONFIG_X86_64
1871 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1872 loadsegment(ds, vmx->host_state.ds_sel);
1873 loadsegment(es, vmx->host_state.es_sel);
1874 }
b2da15ac 1875#endif
152d3f2f 1876 reload_tss();
44ea2b17 1877#ifdef CONFIG_X86_64
c8770e7b 1878 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1879#endif
da8999d3
LJ
1880 if (vmx->host_state.msr_host_bndcfgs)
1881 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
b1a74bf8
SS
1882 /*
1883 * If the FPU is not active (through the host task or
1884 * the guest vcpu), then restore the cr0.TS bit.
1885 */
1886 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1887 stts();
89cbc767 1888 load_gdt(this_cpu_ptr(&host_gdt));
33ed6329
AK
1889}
1890
a9b21b62
AK
1891static void vmx_load_host_state(struct vcpu_vmx *vmx)
1892{
1893 preempt_disable();
1894 __vmx_load_host_state(vmx);
1895 preempt_enable();
1896}
1897
6aa8b732
AK
1898/*
1899 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1900 * vcpu mutex is already taken.
1901 */
15ad7146 1902static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1903{
a2fa3e9f 1904 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1905 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1906
4610c9cc
DX
1907 if (!vmm_exclusive)
1908 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1909 else if (vmx->loaded_vmcs->cpu != cpu)
1910 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1911
d462b819
NHE
1912 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1913 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1914 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1915 }
1916
d462b819 1917 if (vmx->loaded_vmcs->cpu != cpu) {
89cbc767 1918 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
6aa8b732
AK
1919 unsigned long sysenter_esp;
1920
a8eeb04a 1921 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1922 local_irq_disable();
8f536b76 1923 crash_disable_local_vmclear(cpu);
5a560f8b
XG
1924
1925 /*
1926 * Read loaded_vmcs->cpu should be before fetching
1927 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1928 * See the comments in __loaded_vmcs_clear().
1929 */
1930 smp_rmb();
1931
d462b819
NHE
1932 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1933 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 1934 crash_enable_local_vmclear(cpu);
92fe13be
DX
1935 local_irq_enable();
1936
6aa8b732
AK
1937 /*
1938 * Linux uses per-cpu TSS and GDT, so set these when switching
1939 * processors.
1940 */
d6e88aec 1941 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1942 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1943
1944 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1945 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1946 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1947 }
6aa8b732
AK
1948}
1949
1950static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1951{
a9b21b62 1952 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1953 if (!vmm_exclusive) {
d462b819
NHE
1954 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1955 vcpu->cpu = -1;
4610c9cc
DX
1956 kvm_cpu_vmxoff();
1957 }
6aa8b732
AK
1958}
1959
5fd86fcf
AK
1960static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1961{
81231c69
AK
1962 ulong cr0;
1963
5fd86fcf
AK
1964 if (vcpu->fpu_active)
1965 return;
1966 vcpu->fpu_active = 1;
81231c69
AK
1967 cr0 = vmcs_readl(GUEST_CR0);
1968 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1969 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1970 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1971 update_exception_bitmap(vcpu);
edcafe3c 1972 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1973 if (is_guest_mode(vcpu))
1974 vcpu->arch.cr0_guest_owned_bits &=
1975 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1976 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1977}
1978
edcafe3c
AK
1979static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1980
fe3ef05c
NHE
1981/*
1982 * Return the cr0 value that a nested guest would read. This is a combination
1983 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1984 * its hypervisor (cr0_read_shadow).
1985 */
1986static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1987{
1988 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1989 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1990}
1991static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1992{
1993 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1994 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1995}
1996
5fd86fcf
AK
1997static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1998{
36cf24e0
NHE
1999 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2000 * set this *before* calling this function.
2001 */
edcafe3c 2002 vmx_decache_cr0_guest_bits(vcpu);
81231c69 2003 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 2004 update_exception_bitmap(vcpu);
edcafe3c
AK
2005 vcpu->arch.cr0_guest_owned_bits = 0;
2006 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
2007 if (is_guest_mode(vcpu)) {
2008 /*
2009 * L1's specified read shadow might not contain the TS bit,
2010 * so now that we turned on shadowing of this bit, we need to
2011 * set this bit of the shadow. Like in nested_vmx_run we need
2012 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2013 * up-to-date here because we just decached cr0.TS (and we'll
2014 * only update vmcs12->guest_cr0 on nested exit).
2015 */
2016 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2017 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2018 (vcpu->arch.cr0 & X86_CR0_TS);
2019 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2020 } else
2021 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
2022}
2023
6aa8b732
AK
2024static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2025{
78ac8b47 2026 unsigned long rflags, save_rflags;
345dcaa8 2027
6de12732
AK
2028 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2029 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2030 rflags = vmcs_readl(GUEST_RFLAGS);
2031 if (to_vmx(vcpu)->rmode.vm86_active) {
2032 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2033 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2034 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2035 }
2036 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2037 }
6de12732 2038 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2039}
2040
2041static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2042{
6de12732
AK
2043 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2044 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2045 if (to_vmx(vcpu)->rmode.vm86_active) {
2046 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2047 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2048 }
6aa8b732
AK
2049 vmcs_writel(GUEST_RFLAGS, rflags);
2050}
2051
37ccdcbe 2052static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2053{
2054 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2055 int ret = 0;
2056
2057 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2058 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2059 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2060 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2061
37ccdcbe 2062 return ret;
2809f5d2
GC
2063}
2064
2065static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2066{
2067 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2068 u32 interruptibility = interruptibility_old;
2069
2070 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2071
48005f64 2072 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2073 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2074 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2075 interruptibility |= GUEST_INTR_STATE_STI;
2076
2077 if ((interruptibility != interruptibility_old))
2078 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2079}
2080
6aa8b732
AK
2081static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2082{
2083 unsigned long rip;
6aa8b732 2084
5fdbf976 2085 rip = kvm_rip_read(vcpu);
6aa8b732 2086 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2087 kvm_rip_write(vcpu, rip);
6aa8b732 2088
2809f5d2
GC
2089 /* skipping an emulated instruction also counts */
2090 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2091}
2092
0b6ac343
NHE
2093/*
2094 * KVM wants to inject page-faults which it got to the guest. This function
2095 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2096 */
e011c663 2097static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
0b6ac343
NHE
2098{
2099 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2100
e011c663 2101 if (!(vmcs12->exception_bitmap & (1u << nr)))
0b6ac343
NHE
2102 return 0;
2103
533558bc
JK
2104 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2105 vmcs_read32(VM_EXIT_INTR_INFO),
2106 vmcs_readl(EXIT_QUALIFICATION));
0b6ac343
NHE
2107 return 1;
2108}
2109
298101da 2110static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
2111 bool has_error_code, u32 error_code,
2112 bool reinject)
298101da 2113{
77ab6db0 2114 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 2115 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2116
e011c663
GN
2117 if (!reinject && is_guest_mode(vcpu) &&
2118 nested_vmx_check_exception(vcpu, nr))
0b6ac343
NHE
2119 return;
2120
8ab2d2e2 2121 if (has_error_code) {
77ab6db0 2122 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2123 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2124 }
77ab6db0 2125
7ffd92c5 2126 if (vmx->rmode.vm86_active) {
71f9833b
SH
2127 int inc_eip = 0;
2128 if (kvm_exception_is_soft(nr))
2129 inc_eip = vcpu->arch.event_exit_inst_len;
2130 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2131 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2132 return;
2133 }
2134
66fd3f7f
GN
2135 if (kvm_exception_is_soft(nr)) {
2136 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2137 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2138 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2139 } else
2140 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2141
2142 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2143}
2144
4e47c7a6
SY
2145static bool vmx_rdtscp_supported(void)
2146{
2147 return cpu_has_vmx_rdtscp();
2148}
2149
ad756a16
MJ
2150static bool vmx_invpcid_supported(void)
2151{
2152 return cpu_has_vmx_invpcid() && enable_ept;
2153}
2154
a75beee6
ED
2155/*
2156 * Swap MSR entry in host/guest MSR entry array.
2157 */
8b9cf98c 2158static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2159{
26bb0981 2160 struct shared_msr_entry tmp;
a2fa3e9f
GH
2161
2162 tmp = vmx->guest_msrs[to];
2163 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2164 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2165}
2166
8d14695f
YZ
2167static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2168{
2169 unsigned long *msr_bitmap;
2170
2171 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2172 if (is_long_mode(vcpu))
2173 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2174 else
2175 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2176 } else {
2177 if (is_long_mode(vcpu))
2178 msr_bitmap = vmx_msr_bitmap_longmode;
2179 else
2180 msr_bitmap = vmx_msr_bitmap_legacy;
2181 }
2182
2183 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2184}
2185
e38aea3e
AK
2186/*
2187 * Set up the vmcs to automatically save and restore system
2188 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2189 * mode, as fiddling with msrs is very expensive.
2190 */
8b9cf98c 2191static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2192{
26bb0981 2193 int save_nmsrs, index;
e38aea3e 2194
a75beee6
ED
2195 save_nmsrs = 0;
2196#ifdef CONFIG_X86_64
8b9cf98c 2197 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2198 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2199 if (index >= 0)
8b9cf98c
RR
2200 move_msr_up(vmx, index, save_nmsrs++);
2201 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2202 if (index >= 0)
8b9cf98c
RR
2203 move_msr_up(vmx, index, save_nmsrs++);
2204 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2205 if (index >= 0)
8b9cf98c 2206 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
2207 index = __find_msr_index(vmx, MSR_TSC_AUX);
2208 if (index >= 0 && vmx->rdtscp_enabled)
2209 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2210 /*
8c06585d 2211 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2212 * if efer.sce is enabled.
2213 */
8c06585d 2214 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2215 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2216 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2217 }
2218#endif
92c0d900
AK
2219 index = __find_msr_index(vmx, MSR_EFER);
2220 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2221 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2222
26bb0981 2223 vmx->save_nmsrs = save_nmsrs;
5897297b 2224
8d14695f
YZ
2225 if (cpu_has_vmx_msr_bitmap())
2226 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2227}
2228
6aa8b732
AK
2229/*
2230 * reads and returns guest's timestamp counter "register"
2231 * guest_tsc = host_tsc + tsc_offset -- 21.3
2232 */
2233static u64 guest_read_tsc(void)
2234{
2235 u64 host_tsc, tsc_offset;
2236
2237 rdtscll(host_tsc);
2238 tsc_offset = vmcs_read64(TSC_OFFSET);
2239 return host_tsc + tsc_offset;
2240}
2241
d5c1785d
NHE
2242/*
2243 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2244 * counter, even if a nested guest (L2) is currently running.
2245 */
48d89b92 2246static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
d5c1785d 2247{
886b470c 2248 u64 tsc_offset;
d5c1785d 2249
d5c1785d
NHE
2250 tsc_offset = is_guest_mode(vcpu) ?
2251 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2252 vmcs_read64(TSC_OFFSET);
2253 return host_tsc + tsc_offset;
2254}
2255
4051b188 2256/*
cc578287
ZA
2257 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2258 * software catchup for faster rates on slower CPUs.
4051b188 2259 */
cc578287 2260static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
4051b188 2261{
cc578287
ZA
2262 if (!scale)
2263 return;
2264
2265 if (user_tsc_khz > tsc_khz) {
2266 vcpu->arch.tsc_catchup = 1;
2267 vcpu->arch.tsc_always_catchup = 1;
2268 } else
2269 WARN(1, "user requested TSC rate below hardware speed\n");
4051b188
JR
2270}
2271
ba904635
WA
2272static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2273{
2274 return vmcs_read64(TSC_OFFSET);
2275}
2276
6aa8b732 2277/*
99e3e30a 2278 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2279 */
99e3e30a 2280static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2281{
27fc51b2 2282 if (is_guest_mode(vcpu)) {
7991825b 2283 /*
27fc51b2
NHE
2284 * We're here if L1 chose not to trap WRMSR to TSC. According
2285 * to the spec, this should set L1's TSC; The offset that L1
2286 * set for L2 remains unchanged, and still needs to be added
2287 * to the newly set TSC to get L2's TSC.
7991825b 2288 */
27fc51b2
NHE
2289 struct vmcs12 *vmcs12;
2290 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2291 /* recalculate vmcs02.TSC_OFFSET: */
2292 vmcs12 = get_vmcs12(vcpu);
2293 vmcs_write64(TSC_OFFSET, offset +
2294 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2295 vmcs12->tsc_offset : 0));
2296 } else {
489223ed
YY
2297 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2298 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2299 vmcs_write64(TSC_OFFSET, offset);
2300 }
6aa8b732
AK
2301}
2302
f1e2b260 2303static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
e48672fa
ZA
2304{
2305 u64 offset = vmcs_read64(TSC_OFFSET);
489223ed 2306
e48672fa 2307 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
2308 if (is_guest_mode(vcpu)) {
2309 /* Even when running L2, the adjustment needs to apply to L1 */
2310 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
489223ed
YY
2311 } else
2312 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2313 offset + adjustment);
e48672fa
ZA
2314}
2315
857e4099
JR
2316static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2317{
2318 return target_tsc - native_read_tsc();
2319}
2320
801d3424
NHE
2321static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2322{
2323 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2324 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2325}
2326
2327/*
2328 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2329 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2330 * all guests if the "nested" module option is off, and can also be disabled
2331 * for a single guest by disabling its VMX cpuid bit.
2332 */
2333static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2334{
2335 return nested && guest_cpuid_has_vmx(vcpu);
2336}
2337
b87a51ae
NHE
2338/*
2339 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2340 * returned for the various VMX controls MSRs when nested VMX is enabled.
2341 * The same values should also be used to verify that vmcs12 control fields are
2342 * valid during nested entry from L1 to L2.
2343 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2344 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2345 * bit in the high half is on if the corresponding bit in the control field
2346 * may be on. See also vmx_control_verify().
b87a51ae 2347 */
b9c237bb 2348static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2349{
2350 /*
2351 * Note that as a general rule, the high half of the MSRs (bits in
2352 * the control fields which may be 1) should be initialized by the
2353 * intersection of the underlying hardware's MSR (i.e., features which
2354 * can be supported) and the list of features we want to expose -
2355 * because they are known to be properly supported in our code.
2356 * Also, usually, the low half of the MSRs (bits which must be 1) can
2357 * be set to 0, meaning that L1 may turn off any of these bits. The
2358 * reason is that if one of these bits is necessary, it will appear
2359 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2360 * fields of vmcs01 and vmcs02, will turn these bits off - and
2361 * nested_vmx_exit_handled() will not pass related exits to L1.
2362 * These rules have exceptions below.
2363 */
2364
2365 /* pin-based controls */
eabeaacc 2366 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2367 vmx->nested.nested_vmx_pinbased_ctls_low,
2368 vmx->nested.nested_vmx_pinbased_ctls_high);
2369 vmx->nested.nested_vmx_pinbased_ctls_low |=
2370 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2371 vmx->nested.nested_vmx_pinbased_ctls_high &=
2372 PIN_BASED_EXT_INTR_MASK |
2373 PIN_BASED_NMI_EXITING |
2374 PIN_BASED_VIRTUAL_NMIS;
2375 vmx->nested.nested_vmx_pinbased_ctls_high |=
2376 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2377 PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1
WV
2378 if (vmx_vm_has_apicv(vmx->vcpu.kvm))
2379 vmx->nested.nested_vmx_pinbased_ctls_high |=
2380 PIN_BASED_POSTED_INTR;
b87a51ae 2381
3dbcd8da 2382 /* exit controls */
c0dfee58 2383 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2384 vmx->nested.nested_vmx_exit_ctls_low,
2385 vmx->nested.nested_vmx_exit_ctls_high);
2386 vmx->nested.nested_vmx_exit_ctls_low =
2387 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2388
b9c237bb 2389 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2390#ifdef CONFIG_X86_64
c0dfee58 2391 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2392#endif
f4124500 2393 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2394 vmx->nested.nested_vmx_exit_ctls_high |=
2395 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2396 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2397 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2398
36be0b9d 2399 if (vmx_mpx_supported())
b9c237bb 2400 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2401
2996fca0 2402 /* We support free control of debug control saving. */
b9c237bb
WV
2403 vmx->nested.nested_vmx_true_exit_ctls_low =
2404 vmx->nested.nested_vmx_exit_ctls_low &
2996fca0
JK
2405 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2406
b87a51ae
NHE
2407 /* entry controls */
2408 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2409 vmx->nested.nested_vmx_entry_ctls_low,
2410 vmx->nested.nested_vmx_entry_ctls_high);
2411 vmx->nested.nested_vmx_entry_ctls_low =
2412 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2413 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2414#ifdef CONFIG_X86_64
2415 VM_ENTRY_IA32E_MODE |
2416#endif
2417 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2418 vmx->nested.nested_vmx_entry_ctls_high |=
2419 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
36be0b9d 2420 if (vmx_mpx_supported())
b9c237bb 2421 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2422
2996fca0 2423 /* We support free control of debug control loading. */
b9c237bb
WV
2424 vmx->nested.nested_vmx_true_entry_ctls_low =
2425 vmx->nested.nested_vmx_entry_ctls_low &
2996fca0
JK
2426 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2427
b87a51ae
NHE
2428 /* cpu-based controls */
2429 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2430 vmx->nested.nested_vmx_procbased_ctls_low,
2431 vmx->nested.nested_vmx_procbased_ctls_high);
2432 vmx->nested.nested_vmx_procbased_ctls_low =
2433 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2434 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2435 CPU_BASED_VIRTUAL_INTR_PENDING |
2436 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2437 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2438 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2439 CPU_BASED_CR3_STORE_EXITING |
2440#ifdef CONFIG_X86_64
2441 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2442#endif
2443 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2444 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
dbcb4e79 2445 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
a7c0b07d 2446 CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
b87a51ae
NHE
2447 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2448 /*
2449 * We can allow some features even when not supported by the
2450 * hardware. For example, L1 can specify an MSR bitmap - and we
2451 * can use it to avoid exits to L1 - even when L0 runs L2
2452 * without MSR bitmaps.
2453 */
b9c237bb
WV
2454 vmx->nested.nested_vmx_procbased_ctls_high |=
2455 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2456 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2457
3dcdf3ec 2458 /* We support free control of CR3 access interception. */
b9c237bb
WV
2459 vmx->nested.nested_vmx_true_procbased_ctls_low =
2460 vmx->nested.nested_vmx_procbased_ctls_low &
3dcdf3ec
JK
2461 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2462
b87a51ae
NHE
2463 /* secondary cpu-based controls */
2464 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2465 vmx->nested.nested_vmx_secondary_ctls_low,
2466 vmx->nested.nested_vmx_secondary_ctls_high);
2467 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2468 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2469 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 2470 SECONDARY_EXEC_RDTSCP |
f2b93280 2471 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
82f0dd4b 2472 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2473 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
81dc01f7
WL
2474 SECONDARY_EXEC_WBINVD_EXITING |
2475 SECONDARY_EXEC_XSAVES;
c18911a2 2476
afa61f75
NHE
2477 if (enable_ept) {
2478 /* nested EPT: emulate EPT also to L1 */
b9c237bb
WV
2479 vmx->nested.nested_vmx_secondary_ctls_high |=
2480 SECONDARY_EXEC_ENABLE_EPT |
78051e3b 2481 SECONDARY_EXEC_UNRESTRICTED_GUEST;
b9c237bb 2482 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
d3134dbf
JK
2483 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2484 VMX_EPT_INVEPT_BIT;
b9c237bb 2485 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
afa61f75 2486 /*
4b855078
BD
2487 * For nested guests, we don't do anything specific
2488 * for single context invalidation. Hence, only advertise
2489 * support for global context invalidation.
afa61f75 2490 */
b9c237bb 2491 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
afa61f75 2492 } else
b9c237bb 2493 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2494
c18911a2 2495 /* miscellaneous data */
b9c237bb
WV
2496 rdmsr(MSR_IA32_VMX_MISC,
2497 vmx->nested.nested_vmx_misc_low,
2498 vmx->nested.nested_vmx_misc_high);
2499 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2500 vmx->nested.nested_vmx_misc_low |=
2501 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2502 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2503 vmx->nested.nested_vmx_misc_high = 0;
b87a51ae
NHE
2504}
2505
2506static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2507{
2508 /*
2509 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2510 */
2511 return ((control & high) | low) == control;
2512}
2513
2514static inline u64 vmx_control_msr(u32 low, u32 high)
2515{
2516 return low | ((u64)high << 32);
2517}
2518
cae50139 2519/* Returns 0 on success, non-0 otherwise. */
b87a51ae
NHE
2520static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2521{
b9c237bb
WV
2522 struct vcpu_vmx *vmx = to_vmx(vcpu);
2523
b87a51ae 2524 switch (msr_index) {
b87a51ae
NHE
2525 case MSR_IA32_VMX_BASIC:
2526 /*
2527 * This MSR reports some information about VMX support. We
2528 * should return information about the VMX we emulate for the
2529 * guest, and the VMCS structure we give it - not about the
2530 * VMX support of the underlying hardware.
2531 */
3dbcd8da 2532 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
b87a51ae
NHE
2533 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2534 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2535 break;
2536 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2537 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
2538 *pdata = vmx_control_msr(
2539 vmx->nested.nested_vmx_pinbased_ctls_low,
2540 vmx->nested.nested_vmx_pinbased_ctls_high);
b87a51ae
NHE
2541 break;
2542 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
b9c237bb
WV
2543 *pdata = vmx_control_msr(
2544 vmx->nested.nested_vmx_true_procbased_ctls_low,
2545 vmx->nested.nested_vmx_procbased_ctls_high);
3dcdf3ec 2546 break;
b87a51ae 2547 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
2548 *pdata = vmx_control_msr(
2549 vmx->nested.nested_vmx_procbased_ctls_low,
2550 vmx->nested.nested_vmx_procbased_ctls_high);
b87a51ae
NHE
2551 break;
2552 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
b9c237bb
WV
2553 *pdata = vmx_control_msr(
2554 vmx->nested.nested_vmx_true_exit_ctls_low,
2555 vmx->nested.nested_vmx_exit_ctls_high);
2996fca0 2556 break;
b87a51ae 2557 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
2558 *pdata = vmx_control_msr(
2559 vmx->nested.nested_vmx_exit_ctls_low,
2560 vmx->nested.nested_vmx_exit_ctls_high);
b87a51ae
NHE
2561 break;
2562 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
b9c237bb
WV
2563 *pdata = vmx_control_msr(
2564 vmx->nested.nested_vmx_true_entry_ctls_low,
2565 vmx->nested.nested_vmx_entry_ctls_high);
2996fca0 2566 break;
b87a51ae 2567 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
2568 *pdata = vmx_control_msr(
2569 vmx->nested.nested_vmx_entry_ctls_low,
2570 vmx->nested.nested_vmx_entry_ctls_high);
b87a51ae
NHE
2571 break;
2572 case MSR_IA32_VMX_MISC:
b9c237bb
WV
2573 *pdata = vmx_control_msr(
2574 vmx->nested.nested_vmx_misc_low,
2575 vmx->nested.nested_vmx_misc_high);
b87a51ae
NHE
2576 break;
2577 /*
2578 * These MSRs specify bits which the guest must keep fixed (on or off)
2579 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2580 * We picked the standard core2 setting.
2581 */
2582#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2583#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2584 case MSR_IA32_VMX_CR0_FIXED0:
2585 *pdata = VMXON_CR0_ALWAYSON;
2586 break;
2587 case MSR_IA32_VMX_CR0_FIXED1:
2588 *pdata = -1ULL;
2589 break;
2590 case MSR_IA32_VMX_CR4_FIXED0:
2591 *pdata = VMXON_CR4_ALWAYSON;
2592 break;
2593 case MSR_IA32_VMX_CR4_FIXED1:
2594 *pdata = -1ULL;
2595 break;
2596 case MSR_IA32_VMX_VMCS_ENUM:
5381417f 2597 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
b87a51ae
NHE
2598 break;
2599 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
2600 *pdata = vmx_control_msr(
2601 vmx->nested.nested_vmx_secondary_ctls_low,
2602 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
2603 break;
2604 case MSR_IA32_VMX_EPT_VPID_CAP:
afa61f75 2605 /* Currently, no nested vpid support */
b9c237bb 2606 *pdata = vmx->nested.nested_vmx_ept_caps;
b87a51ae
NHE
2607 break;
2608 default:
b87a51ae 2609 return 1;
b3897a49
NHE
2610 }
2611
b87a51ae
NHE
2612 return 0;
2613}
2614
6aa8b732
AK
2615/*
2616 * Reads an msr value (of 'msr_index') into 'pdata'.
2617 * Returns 0 on success, non-0 otherwise.
2618 * Assumes vcpu_load() was already called.
2619 */
2620static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2621{
2622 u64 data;
26bb0981 2623 struct shared_msr_entry *msr;
6aa8b732
AK
2624
2625 if (!pdata) {
2626 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2627 return -EINVAL;
2628 }
2629
2630 switch (msr_index) {
05b3e0c2 2631#ifdef CONFIG_X86_64
6aa8b732
AK
2632 case MSR_FS_BASE:
2633 data = vmcs_readl(GUEST_FS_BASE);
2634 break;
2635 case MSR_GS_BASE:
2636 data = vmcs_readl(GUEST_GS_BASE);
2637 break;
44ea2b17
AK
2638 case MSR_KERNEL_GS_BASE:
2639 vmx_load_host_state(to_vmx(vcpu));
2640 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2641 break;
26bb0981 2642#endif
6aa8b732 2643 case MSR_EFER:
3bab1f5d 2644 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 2645 case MSR_IA32_TSC:
6aa8b732
AK
2646 data = guest_read_tsc();
2647 break;
2648 case MSR_IA32_SYSENTER_CS:
2649 data = vmcs_read32(GUEST_SYSENTER_CS);
2650 break;
2651 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2652 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2653 break;
2654 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2655 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2656 break;
0dd376e7 2657 case MSR_IA32_BNDCFGS:
93c4adc7
PB
2658 if (!vmx_mpx_supported())
2659 return 1;
0dd376e7
LJ
2660 data = vmcs_read64(GUEST_BNDCFGS);
2661 break;
cae50139
JK
2662 case MSR_IA32_FEATURE_CONTROL:
2663 if (!nested_vmx_allowed(vcpu))
2664 return 1;
2665 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2666 break;
2667 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2668 if (!nested_vmx_allowed(vcpu))
2669 return 1;
2670 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
20300099
WL
2671 case MSR_IA32_XSS:
2672 if (!vmx_xsaves_supported())
2673 return 1;
2674 data = vcpu->arch.ia32_xss;
2675 break;
4e47c7a6
SY
2676 case MSR_TSC_AUX:
2677 if (!to_vmx(vcpu)->rdtscp_enabled)
2678 return 1;
2679 /* Otherwise falls through */
6aa8b732 2680 default:
8b9cf98c 2681 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d
AK
2682 if (msr) {
2683 data = msr->data;
2684 break;
6aa8b732 2685 }
3bab1f5d 2686 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
2687 }
2688
2689 *pdata = data;
2690 return 0;
2691}
2692
cae50139
JK
2693static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2694
6aa8b732
AK
2695/*
2696 * Writes msr value into into the appropriate "register".
2697 * Returns 0 on success, non-0 otherwise.
2698 * Assumes vcpu_load() was already called.
2699 */
8fe8ab46 2700static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2701{
a2fa3e9f 2702 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2703 struct shared_msr_entry *msr;
2cc51560 2704 int ret = 0;
8fe8ab46
WA
2705 u32 msr_index = msr_info->index;
2706 u64 data = msr_info->data;
2cc51560 2707
6aa8b732 2708 switch (msr_index) {
3bab1f5d 2709 case MSR_EFER:
8fe8ab46 2710 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 2711 break;
16175a79 2712#ifdef CONFIG_X86_64
6aa8b732 2713 case MSR_FS_BASE:
2fb92db1 2714 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2715 vmcs_writel(GUEST_FS_BASE, data);
2716 break;
2717 case MSR_GS_BASE:
2fb92db1 2718 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2719 vmcs_writel(GUEST_GS_BASE, data);
2720 break;
44ea2b17
AK
2721 case MSR_KERNEL_GS_BASE:
2722 vmx_load_host_state(vmx);
2723 vmx->msr_guest_kernel_gs_base = data;
2724 break;
6aa8b732
AK
2725#endif
2726 case MSR_IA32_SYSENTER_CS:
2727 vmcs_write32(GUEST_SYSENTER_CS, data);
2728 break;
2729 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2730 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2731 break;
2732 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2733 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2734 break;
0dd376e7 2735 case MSR_IA32_BNDCFGS:
93c4adc7
PB
2736 if (!vmx_mpx_supported())
2737 return 1;
0dd376e7
LJ
2738 vmcs_write64(GUEST_BNDCFGS, data);
2739 break;
af24a4e4 2740 case MSR_IA32_TSC:
8fe8ab46 2741 kvm_write_tsc(vcpu, msr_info);
6aa8b732 2742 break;
468d472f
SY
2743 case MSR_IA32_CR_PAT:
2744 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
2745 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2746 return 1;
468d472f
SY
2747 vmcs_write64(GUEST_IA32_PAT, data);
2748 vcpu->arch.pat = data;
2749 break;
2750 }
8fe8ab46 2751 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2752 break;
ba904635
WA
2753 case MSR_IA32_TSC_ADJUST:
2754 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2755 break;
cae50139
JK
2756 case MSR_IA32_FEATURE_CONTROL:
2757 if (!nested_vmx_allowed(vcpu) ||
2758 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2759 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2760 return 1;
2761 vmx->nested.msr_ia32_feature_control = data;
2762 if (msr_info->host_initiated && data == 0)
2763 vmx_leave_nested(vcpu);
2764 break;
2765 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2766 return 1; /* they are read-only */
20300099
WL
2767 case MSR_IA32_XSS:
2768 if (!vmx_xsaves_supported())
2769 return 1;
2770 /*
2771 * The only supported bit as of Skylake is bit 8, but
2772 * it is not supported on KVM.
2773 */
2774 if (data != 0)
2775 return 1;
2776 vcpu->arch.ia32_xss = data;
2777 if (vcpu->arch.ia32_xss != host_xss)
2778 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2779 vcpu->arch.ia32_xss, host_xss);
2780 else
2781 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2782 break;
4e47c7a6
SY
2783 case MSR_TSC_AUX:
2784 if (!vmx->rdtscp_enabled)
2785 return 1;
2786 /* Check reserved bit, higher 32 bits should be zero */
2787 if ((data >> 32) != 0)
2788 return 1;
2789 /* Otherwise falls through */
6aa8b732 2790 default:
8b9cf98c 2791 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 2792 if (msr) {
8b3c3104 2793 u64 old_msr_data = msr->data;
3bab1f5d 2794 msr->data = data;
2225fd56
AK
2795 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2796 preempt_disable();
8b3c3104
AH
2797 ret = kvm_set_shared_msr(msr->index, msr->data,
2798 msr->mask);
2225fd56 2799 preempt_enable();
8b3c3104
AH
2800 if (ret)
2801 msr->data = old_msr_data;
2225fd56 2802 }
3bab1f5d 2803 break;
6aa8b732 2804 }
8fe8ab46 2805 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
2806 }
2807
2cc51560 2808 return ret;
6aa8b732
AK
2809}
2810
5fdbf976 2811static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2812{
5fdbf976
MT
2813 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2814 switch (reg) {
2815 case VCPU_REGS_RSP:
2816 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2817 break;
2818 case VCPU_REGS_RIP:
2819 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2820 break;
6de4f3ad
AK
2821 case VCPU_EXREG_PDPTR:
2822 if (enable_ept)
2823 ept_save_pdptrs(vcpu);
2824 break;
5fdbf976
MT
2825 default:
2826 break;
2827 }
6aa8b732
AK
2828}
2829
6aa8b732
AK
2830static __init int cpu_has_kvm_support(void)
2831{
6210e37b 2832 return cpu_has_vmx();
6aa8b732
AK
2833}
2834
2835static __init int vmx_disabled_by_bios(void)
2836{
2837 u64 msr;
2838
2839 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2840 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2841 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2842 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2843 && tboot_enabled())
2844 return 1;
23f3e991 2845 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2846 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2847 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2848 && !tboot_enabled()) {
2849 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2850 "activate TXT before enabling KVM\n");
cafd6659 2851 return 1;
f9335afe 2852 }
23f3e991
JC
2853 /* launched w/o TXT and VMX disabled */
2854 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2855 && !tboot_enabled())
2856 return 1;
cafd6659
SW
2857 }
2858
2859 return 0;
6aa8b732
AK
2860}
2861
7725b894
DX
2862static void kvm_cpu_vmxon(u64 addr)
2863{
2864 asm volatile (ASM_VMX_VMXON_RAX
2865 : : "a"(&addr), "m"(addr)
2866 : "memory", "cc");
2867}
2868
13a34e06 2869static int hardware_enable(void)
6aa8b732
AK
2870{
2871 int cpu = raw_smp_processor_id();
2872 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2873 u64 old, test_bits;
6aa8b732 2874
1e02ce4c 2875 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
2876 return -EBUSY;
2877
d462b819 2878 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76
ZY
2879
2880 /*
2881 * Now we can enable the vmclear operation in kdump
2882 * since the loaded_vmcss_on_cpu list on this cpu
2883 * has been initialized.
2884 *
2885 * Though the cpu is not in VMX operation now, there
2886 * is no problem to enable the vmclear operation
2887 * for the loaded_vmcss_on_cpu list is empty!
2888 */
2889 crash_enable_local_vmclear(cpu);
2890
6aa8b732 2891 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2892
2893 test_bits = FEATURE_CONTROL_LOCKED;
2894 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2895 if (tboot_enabled())
2896 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2897
2898 if ((old & test_bits) != test_bits) {
6aa8b732 2899 /* enable and lock */
cafd6659
SW
2900 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2901 }
375074cc 2902 cr4_set_bits(X86_CR4_VMXE);
10474ae8 2903
4610c9cc
DX
2904 if (vmm_exclusive) {
2905 kvm_cpu_vmxon(phys_addr);
2906 ept_sync_global();
2907 }
10474ae8 2908
89cbc767 2909 native_store_gdt(this_cpu_ptr(&host_gdt));
3444d7da 2910
10474ae8 2911 return 0;
6aa8b732
AK
2912}
2913
d462b819 2914static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2915{
2916 int cpu = raw_smp_processor_id();
d462b819 2917 struct loaded_vmcs *v, *n;
543e4243 2918
d462b819
NHE
2919 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2920 loaded_vmcss_on_cpu_link)
2921 __loaded_vmcs_clear(v);
543e4243
AK
2922}
2923
710ff4a8
EH
2924
2925/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2926 * tricks.
2927 */
2928static void kvm_cpu_vmxoff(void)
6aa8b732 2929{
4ecac3fd 2930 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2931}
2932
13a34e06 2933static void hardware_disable(void)
710ff4a8 2934{
4610c9cc 2935 if (vmm_exclusive) {
d462b819 2936 vmclear_local_loaded_vmcss();
4610c9cc
DX
2937 kvm_cpu_vmxoff();
2938 }
375074cc 2939 cr4_clear_bits(X86_CR4_VMXE);
710ff4a8
EH
2940}
2941
1c3d14fe 2942static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2943 u32 msr, u32 *result)
1c3d14fe
YS
2944{
2945 u32 vmx_msr_low, vmx_msr_high;
2946 u32 ctl = ctl_min | ctl_opt;
2947
2948 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2949
2950 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2951 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2952
2953 /* Ensure minimum (required) set of control bits are supported. */
2954 if (ctl_min & ~ctl)
002c7f7c 2955 return -EIO;
1c3d14fe
YS
2956
2957 *result = ctl;
2958 return 0;
2959}
2960
110312c8
AK
2961static __init bool allow_1_setting(u32 msr, u32 ctl)
2962{
2963 u32 vmx_msr_low, vmx_msr_high;
2964
2965 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2966 return vmx_msr_high & ctl;
2967}
2968
002c7f7c 2969static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2970{
2971 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2972 u32 min, opt, min2, opt2;
1c3d14fe
YS
2973 u32 _pin_based_exec_control = 0;
2974 u32 _cpu_based_exec_control = 0;
f78e0e2e 2975 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2976 u32 _vmexit_control = 0;
2977 u32 _vmentry_control = 0;
2978
10166744 2979 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
2980#ifdef CONFIG_X86_64
2981 CPU_BASED_CR8_LOAD_EXITING |
2982 CPU_BASED_CR8_STORE_EXITING |
2983#endif
d56f546d
SY
2984 CPU_BASED_CR3_LOAD_EXITING |
2985 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2986 CPU_BASED_USE_IO_BITMAPS |
2987 CPU_BASED_MOV_DR_EXITING |
a7052897 2988 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2989 CPU_BASED_MWAIT_EXITING |
2990 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
2991 CPU_BASED_INVLPG_EXITING |
2992 CPU_BASED_RDPMC_EXITING;
443381a8 2993
f78e0e2e 2994 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2995 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2996 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2997 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2998 &_cpu_based_exec_control) < 0)
002c7f7c 2999 return -EIO;
6e5d865c
YS
3000#ifdef CONFIG_X86_64
3001 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3002 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3003 ~CPU_BASED_CR8_STORE_EXITING;
3004#endif
f78e0e2e 3005 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3006 min2 = 0;
3007 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3008 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3009 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3010 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3011 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3012 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3013 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3014 SECONDARY_EXEC_RDTSCP |
83d4c286 3015 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3016 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3017 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3018 SECONDARY_EXEC_SHADOW_VMCS |
843e4330
KH
3019 SECONDARY_EXEC_XSAVES |
3020 SECONDARY_EXEC_ENABLE_PML;
d56f546d
SY
3021 if (adjust_vmx_controls(min2, opt2,
3022 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3023 &_cpu_based_2nd_exec_control) < 0)
3024 return -EIO;
3025 }
3026#ifndef CONFIG_X86_64
3027 if (!(_cpu_based_2nd_exec_control &
3028 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3029 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3030#endif
83d4c286
YZ
3031
3032 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3033 _cpu_based_2nd_exec_control &= ~(
8d14695f 3034 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3035 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3036 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3037
d56f546d 3038 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3039 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3040 enabled */
5fff7d27
GN
3041 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3042 CPU_BASED_CR3_STORE_EXITING |
3043 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3044 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3045 vmx_capability.ept, vmx_capability.vpid);
3046 }
1c3d14fe 3047
81908bf4 3048 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
1c3d14fe
YS
3049#ifdef CONFIG_X86_64
3050 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3051#endif
a547c6db 3052 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
da8999d3 3053 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3054 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3055 &_vmexit_control) < 0)
002c7f7c 3056 return -EIO;
1c3d14fe 3057
01e439be
YZ
3058 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3059 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3060 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3061 &_pin_based_exec_control) < 0)
3062 return -EIO;
3063
3064 if (!(_cpu_based_2nd_exec_control &
3065 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3066 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3067 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3068
c845f9c6 3069 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3070 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3071 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3072 &_vmentry_control) < 0)
002c7f7c 3073 return -EIO;
6aa8b732 3074
c68876fd 3075 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3076
3077 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3078 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3079 return -EIO;
1c3d14fe
YS
3080
3081#ifdef CONFIG_X86_64
3082 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3083 if (vmx_msr_high & (1u<<16))
002c7f7c 3084 return -EIO;
1c3d14fe
YS
3085#endif
3086
3087 /* Require Write-Back (WB) memory type for VMCS accesses. */
3088 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3089 return -EIO;
1c3d14fe 3090
002c7f7c
YS
3091 vmcs_conf->size = vmx_msr_high & 0x1fff;
3092 vmcs_conf->order = get_order(vmcs_config.size);
3093 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3094
002c7f7c
YS
3095 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3096 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3097 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3098 vmcs_conf->vmexit_ctrl = _vmexit_control;
3099 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3100
110312c8
AK
3101 cpu_has_load_ia32_efer =
3102 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3103 VM_ENTRY_LOAD_IA32_EFER)
3104 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3105 VM_EXIT_LOAD_IA32_EFER);
3106
8bf00a52
GN
3107 cpu_has_load_perf_global_ctrl =
3108 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3109 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3110 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3111 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3112
3113 /*
3114 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3115 * but due to arrata below it can't be used. Workaround is to use
3116 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3117 *
3118 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3119 *
3120 * AAK155 (model 26)
3121 * AAP115 (model 30)
3122 * AAT100 (model 37)
3123 * BC86,AAY89,BD102 (model 44)
3124 * BA97 (model 46)
3125 *
3126 */
3127 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3128 switch (boot_cpu_data.x86_model) {
3129 case 26:
3130 case 30:
3131 case 37:
3132 case 44:
3133 case 46:
3134 cpu_has_load_perf_global_ctrl = false;
3135 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3136 "does not work properly. Using workaround\n");
3137 break;
3138 default:
3139 break;
3140 }
3141 }
3142
20300099
WL
3143 if (cpu_has_xsaves)
3144 rdmsrl(MSR_IA32_XSS, host_xss);
3145
1c3d14fe 3146 return 0;
c68876fd 3147}
6aa8b732
AK
3148
3149static struct vmcs *alloc_vmcs_cpu(int cpu)
3150{
3151 int node = cpu_to_node(cpu);
3152 struct page *pages;
3153 struct vmcs *vmcs;
3154
6484eb3e 3155 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3156 if (!pages)
3157 return NULL;
3158 vmcs = page_address(pages);
1c3d14fe
YS
3159 memset(vmcs, 0, vmcs_config.size);
3160 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3161 return vmcs;
3162}
3163
3164static struct vmcs *alloc_vmcs(void)
3165{
d3b2c338 3166 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3167}
3168
3169static void free_vmcs(struct vmcs *vmcs)
3170{
1c3d14fe 3171 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3172}
3173
d462b819
NHE
3174/*
3175 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3176 */
3177static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3178{
3179 if (!loaded_vmcs->vmcs)
3180 return;
3181 loaded_vmcs_clear(loaded_vmcs);
3182 free_vmcs(loaded_vmcs->vmcs);
3183 loaded_vmcs->vmcs = NULL;
3184}
3185
39959588 3186static void free_kvm_area(void)
6aa8b732
AK
3187{
3188 int cpu;
3189
3230bb47 3190 for_each_possible_cpu(cpu) {
6aa8b732 3191 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3192 per_cpu(vmxarea, cpu) = NULL;
3193 }
6aa8b732
AK
3194}
3195
fe2b201b
BD
3196static void init_vmcs_shadow_fields(void)
3197{
3198 int i, j;
3199
3200 /* No checks for read only fields yet */
3201
3202 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3203 switch (shadow_read_write_fields[i]) {
3204 case GUEST_BNDCFGS:
3205 if (!vmx_mpx_supported())
3206 continue;
3207 break;
3208 default:
3209 break;
3210 }
3211
3212 if (j < i)
3213 shadow_read_write_fields[j] =
3214 shadow_read_write_fields[i];
3215 j++;
3216 }
3217 max_shadow_read_write_fields = j;
3218
3219 /* shadowed fields guest access without vmexit */
3220 for (i = 0; i < max_shadow_read_write_fields; i++) {
3221 clear_bit(shadow_read_write_fields[i],
3222 vmx_vmwrite_bitmap);
3223 clear_bit(shadow_read_write_fields[i],
3224 vmx_vmread_bitmap);
3225 }
3226 for (i = 0; i < max_shadow_read_only_fields; i++)
3227 clear_bit(shadow_read_only_fields[i],
3228 vmx_vmread_bitmap);
3229}
3230
6aa8b732
AK
3231static __init int alloc_kvm_area(void)
3232{
3233 int cpu;
3234
3230bb47 3235 for_each_possible_cpu(cpu) {
6aa8b732
AK
3236 struct vmcs *vmcs;
3237
3238 vmcs = alloc_vmcs_cpu(cpu);
3239 if (!vmcs) {
3240 free_kvm_area();
3241 return -ENOMEM;
3242 }
3243
3244 per_cpu(vmxarea, cpu) = vmcs;
3245 }
3246 return 0;
3247}
3248
14168786
GN
3249static bool emulation_required(struct kvm_vcpu *vcpu)
3250{
3251 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3252}
3253
91b0aa2c 3254static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3255 struct kvm_segment *save)
6aa8b732 3256{
d99e4152
GN
3257 if (!emulate_invalid_guest_state) {
3258 /*
3259 * CS and SS RPL should be equal during guest entry according
3260 * to VMX spec, but in reality it is not always so. Since vcpu
3261 * is in the middle of the transition from real mode to
3262 * protected mode it is safe to assume that RPL 0 is a good
3263 * default value.
3264 */
3265 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3266 save->selector &= ~SEGMENT_RPL_MASK;
3267 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3268 save->s = 1;
6aa8b732 3269 }
d99e4152 3270 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3271}
3272
3273static void enter_pmode(struct kvm_vcpu *vcpu)
3274{
3275 unsigned long flags;
a89a8fb9 3276 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3277
d99e4152
GN
3278 /*
3279 * Update real mode segment cache. It may be not up-to-date if sement
3280 * register was written while vcpu was in a guest mode.
3281 */
3282 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3283 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3284 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3285 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3286 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3287 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3288
7ffd92c5 3289 vmx->rmode.vm86_active = 0;
6aa8b732 3290
2fb92db1
AK
3291 vmx_segment_cache_clear(vmx);
3292
f5f7b2fe 3293 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3294
3295 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3296 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3297 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3298 vmcs_writel(GUEST_RFLAGS, flags);
3299
66aee91a
RR
3300 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3301 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3302
3303 update_exception_bitmap(vcpu);
3304
91b0aa2c
GN
3305 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3306 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3307 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3308 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3309 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3310 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3311}
3312
f5f7b2fe 3313static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3314{
772e0318 3315 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3316 struct kvm_segment var = *save;
3317
3318 var.dpl = 0x3;
3319 if (seg == VCPU_SREG_CS)
3320 var.type = 0x3;
3321
3322 if (!emulate_invalid_guest_state) {
3323 var.selector = var.base >> 4;
3324 var.base = var.base & 0xffff0;
3325 var.limit = 0xffff;
3326 var.g = 0;
3327 var.db = 0;
3328 var.present = 1;
3329 var.s = 1;
3330 var.l = 0;
3331 var.unusable = 0;
3332 var.type = 0x3;
3333 var.avl = 0;
3334 if (save->base & 0xf)
3335 printk_once(KERN_WARNING "kvm: segment base is not "
3336 "paragraph aligned when entering "
3337 "protected mode (seg=%d)", seg);
3338 }
6aa8b732 3339
d99e4152
GN
3340 vmcs_write16(sf->selector, var.selector);
3341 vmcs_write32(sf->base, var.base);
3342 vmcs_write32(sf->limit, var.limit);
3343 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3344}
3345
3346static void enter_rmode(struct kvm_vcpu *vcpu)
3347{
3348 unsigned long flags;
a89a8fb9 3349 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3350
f5f7b2fe
AK
3351 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3352 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3353 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3354 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3355 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3356 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3357 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3358
7ffd92c5 3359 vmx->rmode.vm86_active = 1;
6aa8b732 3360
776e58ea
GN
3361 /*
3362 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3363 * vcpu. Warn the user that an update is overdue.
776e58ea 3364 */
4918c6ca 3365 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3366 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3367 "called before entering vcpu\n");
776e58ea 3368
2fb92db1
AK
3369 vmx_segment_cache_clear(vmx);
3370
4918c6ca 3371 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3372 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3373 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3374
3375 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3376 vmx->rmode.save_rflags = flags;
6aa8b732 3377
053de044 3378 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3379
3380 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3381 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3382 update_exception_bitmap(vcpu);
3383
d99e4152
GN
3384 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3385 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3386 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3387 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3388 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3389 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3390
8668a3c4 3391 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3392}
3393
401d10de
AS
3394static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3395{
3396 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3397 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3398
3399 if (!msr)
3400 return;
401d10de 3401
44ea2b17
AK
3402 /*
3403 * Force kernel_gs_base reloading before EFER changes, as control
3404 * of this msr depends on is_long_mode().
3405 */
3406 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3407 vcpu->arch.efer = efer;
401d10de 3408 if (efer & EFER_LMA) {
2961e876 3409 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3410 msr->data = efer;
3411 } else {
2961e876 3412 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3413
3414 msr->data = efer & ~EFER_LME;
3415 }
3416 setup_msrs(vmx);
3417}
3418
05b3e0c2 3419#ifdef CONFIG_X86_64
6aa8b732
AK
3420
3421static void enter_lmode(struct kvm_vcpu *vcpu)
3422{
3423 u32 guest_tr_ar;
3424
2fb92db1
AK
3425 vmx_segment_cache_clear(to_vmx(vcpu));
3426
6aa8b732
AK
3427 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3428 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3429 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3430 __func__);
6aa8b732
AK
3431 vmcs_write32(GUEST_TR_AR_BYTES,
3432 (guest_tr_ar & ~AR_TYPE_MASK)
3433 | AR_TYPE_BUSY_64_TSS);
3434 }
da38f438 3435 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
3436}
3437
3438static void exit_lmode(struct kvm_vcpu *vcpu)
3439{
2961e876 3440 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 3441 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
3442}
3443
3444#endif
3445
2384d2b3
SY
3446static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3447{
b9d762fa 3448 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
3449 if (enable_ept) {
3450 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3451 return;
4e1096d2 3452 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 3453 }
2384d2b3
SY
3454}
3455
e8467fda
AK
3456static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3457{
3458 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3459
3460 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3461 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3462}
3463
aff48baa
AK
3464static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3465{
3466 if (enable_ept && is_paging(vcpu))
3467 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3468 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3469}
3470
25c4c276 3471static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 3472{
fc78f519
AK
3473 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3474
3475 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3476 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
3477}
3478
1439442c
SY
3479static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3480{
d0d538b9
GN
3481 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3482
6de4f3ad
AK
3483 if (!test_bit(VCPU_EXREG_PDPTR,
3484 (unsigned long *)&vcpu->arch.regs_dirty))
3485 return;
3486
1439442c 3487 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3488 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3489 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3490 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3491 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
3492 }
3493}
3494
8f5d549f
AK
3495static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3496{
d0d538b9
GN
3497 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3498
8f5d549f 3499 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3500 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3501 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3502 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3503 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 3504 }
6de4f3ad
AK
3505
3506 __set_bit(VCPU_EXREG_PDPTR,
3507 (unsigned long *)&vcpu->arch.regs_avail);
3508 __set_bit(VCPU_EXREG_PDPTR,
3509 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
3510}
3511
5e1746d6 3512static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
3513
3514static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3515 unsigned long cr0,
3516 struct kvm_vcpu *vcpu)
3517{
5233dd51
MT
3518 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3519 vmx_decache_cr3(vcpu);
1439442c
SY
3520 if (!(cr0 & X86_CR0_PG)) {
3521 /* From paging/starting to nonpaging */
3522 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3523 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
3524 (CPU_BASED_CR3_LOAD_EXITING |
3525 CPU_BASED_CR3_STORE_EXITING));
3526 vcpu->arch.cr0 = cr0;
fc78f519 3527 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
3528 } else if (!is_paging(vcpu)) {
3529 /* From nonpaging to paging */
3530 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3531 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3532 ~(CPU_BASED_CR3_LOAD_EXITING |
3533 CPU_BASED_CR3_STORE_EXITING));
3534 vcpu->arch.cr0 = cr0;
fc78f519 3535 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3536 }
95eb84a7
SY
3537
3538 if (!(cr0 & X86_CR0_WP))
3539 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3540}
3541
6aa8b732
AK
3542static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3543{
7ffd92c5 3544 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3545 unsigned long hw_cr0;
3546
5037878e 3547 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 3548 if (enable_unrestricted_guest)
5037878e 3549 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 3550 else {
5037878e 3551 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 3552
218e763f
GN
3553 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3554 enter_pmode(vcpu);
6aa8b732 3555
218e763f
GN
3556 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3557 enter_rmode(vcpu);
3558 }
6aa8b732 3559
05b3e0c2 3560#ifdef CONFIG_X86_64
f6801dff 3561 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3562 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3563 enter_lmode(vcpu);
707d92fa 3564 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3565 exit_lmode(vcpu);
3566 }
3567#endif
3568
089d034e 3569 if (enable_ept)
1439442c
SY
3570 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3571
02daab21 3572 if (!vcpu->fpu_active)
81231c69 3573 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3574
6aa8b732 3575 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3576 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3577 vcpu->arch.cr0 = cr0;
14168786
GN
3578
3579 /* depends on vcpu->arch.cr0 to be set to a new value */
3580 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3581}
3582
1439442c
SY
3583static u64 construct_eptp(unsigned long root_hpa)
3584{
3585 u64 eptp;
3586
3587 /* TODO write the value reading from MSR */
3588 eptp = VMX_EPT_DEFAULT_MT |
3589 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3590 if (enable_ept_ad_bits)
3591 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3592 eptp |= (root_hpa & PAGE_MASK);
3593
3594 return eptp;
3595}
3596
6aa8b732
AK
3597static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3598{
1439442c
SY
3599 unsigned long guest_cr3;
3600 u64 eptp;
3601
3602 guest_cr3 = cr3;
089d034e 3603 if (enable_ept) {
1439442c
SY
3604 eptp = construct_eptp(cr3);
3605 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
3606 if (is_paging(vcpu) || is_guest_mode(vcpu))
3607 guest_cr3 = kvm_read_cr3(vcpu);
3608 else
3609 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3610 ept_load_pdptrs(vcpu);
1439442c
SY
3611 }
3612
2384d2b3 3613 vmx_flush_tlb(vcpu);
1439442c 3614 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3615}
3616
5e1746d6 3617static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3618{
7ffd92c5 3619 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
3620 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3621
5e1746d6
NHE
3622 if (cr4 & X86_CR4_VMXE) {
3623 /*
3624 * To use VMXON (and later other VMX instructions), a guest
3625 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3626 * So basically the check on whether to allow nested VMX
3627 * is here.
3628 */
3629 if (!nested_vmx_allowed(vcpu))
3630 return 1;
1a0d74e6
JK
3631 }
3632 if (to_vmx(vcpu)->nested.vmxon &&
3633 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
5e1746d6
NHE
3634 return 1;
3635
ad312c7c 3636 vcpu->arch.cr4 = cr4;
bc23008b
AK
3637 if (enable_ept) {
3638 if (!is_paging(vcpu)) {
3639 hw_cr4 &= ~X86_CR4_PAE;
3640 hw_cr4 |= X86_CR4_PSE;
c08800a5 3641 /*
e1e746b3
FW
3642 * SMEP/SMAP is disabled if CPU is in non-paging mode
3643 * in hardware. However KVM always uses paging mode to
c08800a5 3644 * emulate guest non-paging mode with TDP.
e1e746b3
FW
3645 * To emulate this behavior, SMEP/SMAP needs to be
3646 * manually disabled when guest switches to non-paging
3647 * mode.
c08800a5 3648 */
e1e746b3 3649 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
bc23008b
AK
3650 } else if (!(cr4 & X86_CR4_PAE)) {
3651 hw_cr4 &= ~X86_CR4_PAE;
3652 }
3653 }
1439442c
SY
3654
3655 vmcs_writel(CR4_READ_SHADOW, cr4);
3656 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3657 return 0;
6aa8b732
AK
3658}
3659
6aa8b732
AK
3660static void vmx_get_segment(struct kvm_vcpu *vcpu,
3661 struct kvm_segment *var, int seg)
3662{
a9179499 3663 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
3664 u32 ar;
3665
c6ad1153 3666 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 3667 *var = vmx->rmode.segs[seg];
a9179499 3668 if (seg == VCPU_SREG_TR
2fb92db1 3669 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 3670 return;
1390a28b
AK
3671 var->base = vmx_read_guest_seg_base(vmx, seg);
3672 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3673 return;
a9179499 3674 }
2fb92db1
AK
3675 var->base = vmx_read_guest_seg_base(vmx, seg);
3676 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3677 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3678 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 3679 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
3680 var->type = ar & 15;
3681 var->s = (ar >> 4) & 1;
3682 var->dpl = (ar >> 5) & 3;
03617c18
GN
3683 /*
3684 * Some userspaces do not preserve unusable property. Since usable
3685 * segment has to be present according to VMX spec we can use present
3686 * property to amend userspace bug by making unusable segment always
3687 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3688 * segment as unusable.
3689 */
3690 var->present = !var->unusable;
6aa8b732
AK
3691 var->avl = (ar >> 12) & 1;
3692 var->l = (ar >> 13) & 1;
3693 var->db = (ar >> 14) & 1;
3694 var->g = (ar >> 15) & 1;
6aa8b732
AK
3695}
3696
a9179499
AK
3697static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3698{
a9179499
AK
3699 struct kvm_segment s;
3700
3701 if (to_vmx(vcpu)->rmode.vm86_active) {
3702 vmx_get_segment(vcpu, &s, seg);
3703 return s.base;
3704 }
2fb92db1 3705 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3706}
3707
b09408d0 3708static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3709{
b09408d0
MT
3710 struct vcpu_vmx *vmx = to_vmx(vcpu);
3711
ae9fedc7 3712 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 3713 return 0;
ae9fedc7
PB
3714 else {
3715 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3716 return AR_DPL(ar);
69c73028 3717 }
69c73028
AK
3718}
3719
653e3108 3720static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3721{
6aa8b732
AK
3722 u32 ar;
3723
f0495f9b 3724 if (var->unusable || !var->present)
6aa8b732
AK
3725 ar = 1 << 16;
3726 else {
3727 ar = var->type & 15;
3728 ar |= (var->s & 1) << 4;
3729 ar |= (var->dpl & 3) << 5;
3730 ar |= (var->present & 1) << 7;
3731 ar |= (var->avl & 1) << 12;
3732 ar |= (var->l & 1) << 13;
3733 ar |= (var->db & 1) << 14;
3734 ar |= (var->g & 1) << 15;
3735 }
653e3108
AK
3736
3737 return ar;
3738}
3739
3740static void vmx_set_segment(struct kvm_vcpu *vcpu,
3741 struct kvm_segment *var, int seg)
3742{
7ffd92c5 3743 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 3744 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 3745
2fb92db1
AK
3746 vmx_segment_cache_clear(vmx);
3747
1ecd50a9
GN
3748 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3749 vmx->rmode.segs[seg] = *var;
3750 if (seg == VCPU_SREG_TR)
3751 vmcs_write16(sf->selector, var->selector);
3752 else if (var->s)
3753 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 3754 goto out;
653e3108 3755 }
1ecd50a9 3756
653e3108
AK
3757 vmcs_writel(sf->base, var->base);
3758 vmcs_write32(sf->limit, var->limit);
3759 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
3760
3761 /*
3762 * Fix the "Accessed" bit in AR field of segment registers for older
3763 * qemu binaries.
3764 * IA32 arch specifies that at the time of processor reset the
3765 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 3766 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
3767 * state vmexit when "unrestricted guest" mode is turned on.
3768 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3769 * tree. Newer qemu binaries with that qemu fix would not need this
3770 * kvm hack.
3771 */
3772 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 3773 var->type |= 0x1; /* Accessed */
3a624e29 3774
f924d66d 3775 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
3776
3777out:
98eb2f8b 3778 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3779}
3780
6aa8b732
AK
3781static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3782{
2fb92db1 3783 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3784
3785 *db = (ar >> 14) & 1;
3786 *l = (ar >> 13) & 1;
3787}
3788
89a27f4d 3789static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3790{
89a27f4d
GN
3791 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3792 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3793}
3794
89a27f4d 3795static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3796{
89a27f4d
GN
3797 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3798 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3799}
3800
89a27f4d 3801static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3802{
89a27f4d
GN
3803 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3804 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3805}
3806
89a27f4d 3807static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3808{
89a27f4d
GN
3809 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3810 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3811}
3812
648dfaa7
MG
3813static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3814{
3815 struct kvm_segment var;
3816 u32 ar;
3817
3818 vmx_get_segment(vcpu, &var, seg);
07f42f5f 3819 var.dpl = 0x3;
0647f4aa
GN
3820 if (seg == VCPU_SREG_CS)
3821 var.type = 0x3;
648dfaa7
MG
3822 ar = vmx_segment_access_rights(&var);
3823
3824 if (var.base != (var.selector << 4))
3825 return false;
89efbed0 3826 if (var.limit != 0xffff)
648dfaa7 3827 return false;
07f42f5f 3828 if (ar != 0xf3)
648dfaa7
MG
3829 return false;
3830
3831 return true;
3832}
3833
3834static bool code_segment_valid(struct kvm_vcpu *vcpu)
3835{
3836 struct kvm_segment cs;
3837 unsigned int cs_rpl;
3838
3839 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 3840 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 3841
1872a3f4
AK
3842 if (cs.unusable)
3843 return false;
648dfaa7
MG
3844 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3845 return false;
3846 if (!cs.s)
3847 return false;
1872a3f4 3848 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3849 if (cs.dpl > cs_rpl)
3850 return false;
1872a3f4 3851 } else {
648dfaa7
MG
3852 if (cs.dpl != cs_rpl)
3853 return false;
3854 }
3855 if (!cs.present)
3856 return false;
3857
3858 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3859 return true;
3860}
3861
3862static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3863{
3864 struct kvm_segment ss;
3865 unsigned int ss_rpl;
3866
3867 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 3868 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 3869
1872a3f4
AK
3870 if (ss.unusable)
3871 return true;
3872 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3873 return false;
3874 if (!ss.s)
3875 return false;
3876 if (ss.dpl != ss_rpl) /* DPL != RPL */
3877 return false;
3878 if (!ss.present)
3879 return false;
3880
3881 return true;
3882}
3883
3884static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3885{
3886 struct kvm_segment var;
3887 unsigned int rpl;
3888
3889 vmx_get_segment(vcpu, &var, seg);
b32a9918 3890 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 3891
1872a3f4
AK
3892 if (var.unusable)
3893 return true;
648dfaa7
MG
3894 if (!var.s)
3895 return false;
3896 if (!var.present)
3897 return false;
3898 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3899 if (var.dpl < rpl) /* DPL < RPL */
3900 return false;
3901 }
3902
3903 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3904 * rights flags
3905 */
3906 return true;
3907}
3908
3909static bool tr_valid(struct kvm_vcpu *vcpu)
3910{
3911 struct kvm_segment tr;
3912
3913 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3914
1872a3f4
AK
3915 if (tr.unusable)
3916 return false;
b32a9918 3917 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 3918 return false;
1872a3f4 3919 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3920 return false;
3921 if (!tr.present)
3922 return false;
3923
3924 return true;
3925}
3926
3927static bool ldtr_valid(struct kvm_vcpu *vcpu)
3928{
3929 struct kvm_segment ldtr;
3930
3931 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3932
1872a3f4
AK
3933 if (ldtr.unusable)
3934 return true;
b32a9918 3935 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
3936 return false;
3937 if (ldtr.type != 2)
3938 return false;
3939 if (!ldtr.present)
3940 return false;
3941
3942 return true;
3943}
3944
3945static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3946{
3947 struct kvm_segment cs, ss;
3948
3949 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3950 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3951
b32a9918
NA
3952 return ((cs.selector & SEGMENT_RPL_MASK) ==
3953 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
3954}
3955
3956/*
3957 * Check if guest state is valid. Returns true if valid, false if
3958 * not.
3959 * We assume that registers are always usable
3960 */
3961static bool guest_state_valid(struct kvm_vcpu *vcpu)
3962{
c5e97c80
GN
3963 if (enable_unrestricted_guest)
3964 return true;
3965
648dfaa7 3966 /* real mode guest state checks */
f13882d8 3967 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
3968 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3969 return false;
3970 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3971 return false;
3972 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3973 return false;
3974 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3975 return false;
3976 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3977 return false;
3978 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3979 return false;
3980 } else {
3981 /* protected mode guest state checks */
3982 if (!cs_ss_rpl_check(vcpu))
3983 return false;
3984 if (!code_segment_valid(vcpu))
3985 return false;
3986 if (!stack_segment_valid(vcpu))
3987 return false;
3988 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3989 return false;
3990 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3991 return false;
3992 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3993 return false;
3994 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3995 return false;
3996 if (!tr_valid(vcpu))
3997 return false;
3998 if (!ldtr_valid(vcpu))
3999 return false;
4000 }
4001 /* TODO:
4002 * - Add checks on RIP
4003 * - Add checks on RFLAGS
4004 */
4005
4006 return true;
4007}
4008
d77c26fc 4009static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4010{
40dcaa9f 4011 gfn_t fn;
195aefde 4012 u16 data = 0;
1f755a82 4013 int idx, r;
6aa8b732 4014
40dcaa9f 4015 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4016 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4017 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4018 if (r < 0)
10589a46 4019 goto out;
195aefde 4020 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4021 r = kvm_write_guest_page(kvm, fn++, &data,
4022 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4023 if (r < 0)
10589a46 4024 goto out;
195aefde
IE
4025 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4026 if (r < 0)
10589a46 4027 goto out;
195aefde
IE
4028 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4029 if (r < 0)
10589a46 4030 goto out;
195aefde 4031 data = ~0;
10589a46
MT
4032 r = kvm_write_guest_page(kvm, fn, &data,
4033 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4034 sizeof(u8));
10589a46 4035out:
40dcaa9f 4036 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4037 return r;
6aa8b732
AK
4038}
4039
b7ebfb05
SY
4040static int init_rmode_identity_map(struct kvm *kvm)
4041{
f51770ed 4042 int i, idx, r = 0;
b7ebfb05
SY
4043 pfn_t identity_map_pfn;
4044 u32 tmp;
4045
089d034e 4046 if (!enable_ept)
f51770ed 4047 return 0;
a255d479
TC
4048
4049 /* Protect kvm->arch.ept_identity_pagetable_done. */
4050 mutex_lock(&kvm->slots_lock);
4051
f51770ed 4052 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4053 goto out2;
a255d479 4054
b927a3ce 4055 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4056
4057 r = alloc_identity_pagetable(kvm);
f51770ed 4058 if (r < 0)
a255d479
TC
4059 goto out2;
4060
40dcaa9f 4061 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4062 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4063 if (r < 0)
4064 goto out;
4065 /* Set up identity-mapping pagetable for EPT in real mode */
4066 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4067 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4068 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4069 r = kvm_write_guest_page(kvm, identity_map_pfn,
4070 &tmp, i * sizeof(tmp), sizeof(tmp));
4071 if (r < 0)
4072 goto out;
4073 }
4074 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4075
b7ebfb05 4076out:
40dcaa9f 4077 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4078
4079out2:
4080 mutex_unlock(&kvm->slots_lock);
f51770ed 4081 return r;
b7ebfb05
SY
4082}
4083
6aa8b732
AK
4084static void seg_setup(int seg)
4085{
772e0318 4086 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4087 unsigned int ar;
6aa8b732
AK
4088
4089 vmcs_write16(sf->selector, 0);
4090 vmcs_writel(sf->base, 0);
4091 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4092 ar = 0x93;
4093 if (seg == VCPU_SREG_CS)
4094 ar |= 0x08; /* code segment */
3a624e29
NK
4095
4096 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4097}
4098
f78e0e2e
SY
4099static int alloc_apic_access_page(struct kvm *kvm)
4100{
4484141a 4101 struct page *page;
f78e0e2e
SY
4102 struct kvm_userspace_memory_region kvm_userspace_mem;
4103 int r = 0;
4104
79fac95e 4105 mutex_lock(&kvm->slots_lock);
c24ae0dc 4106 if (kvm->arch.apic_access_page_done)
f78e0e2e
SY
4107 goto out;
4108 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4109 kvm_userspace_mem.flags = 0;
73a6d941 4110 kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
f78e0e2e 4111 kvm_userspace_mem.memory_size = PAGE_SIZE;
47ae31e2 4112 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
f78e0e2e
SY
4113 if (r)
4114 goto out;
72dc67a6 4115
73a6d941 4116 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4117 if (is_error_page(page)) {
4118 r = -EFAULT;
4119 goto out;
4120 }
4121
c24ae0dc
TC
4122 /*
4123 * Do not pin the page in memory, so that memory hot-unplug
4124 * is able to migrate it.
4125 */
4126 put_page(page);
4127 kvm->arch.apic_access_page_done = true;
f78e0e2e 4128out:
79fac95e 4129 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4130 return r;
4131}
4132
b7ebfb05
SY
4133static int alloc_identity_pagetable(struct kvm *kvm)
4134{
a255d479
TC
4135 /* Called with kvm->slots_lock held. */
4136
b7ebfb05
SY
4137 struct kvm_userspace_memory_region kvm_userspace_mem;
4138 int r = 0;
4139
a255d479
TC
4140 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4141
b7ebfb05
SY
4142 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4143 kvm_userspace_mem.flags = 0;
b927a3ce
SY
4144 kvm_userspace_mem.guest_phys_addr =
4145 kvm->arch.ept_identity_map_addr;
b7ebfb05 4146 kvm_userspace_mem.memory_size = PAGE_SIZE;
47ae31e2 4147 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
b7ebfb05 4148
b7ebfb05
SY
4149 return r;
4150}
4151
2384d2b3
SY
4152static void allocate_vpid(struct vcpu_vmx *vmx)
4153{
4154 int vpid;
4155
4156 vmx->vpid = 0;
919818ab 4157 if (!enable_vpid)
2384d2b3
SY
4158 return;
4159 spin_lock(&vmx_vpid_lock);
4160 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4161 if (vpid < VMX_NR_VPIDS) {
4162 vmx->vpid = vpid;
4163 __set_bit(vpid, vmx_vpid_bitmap);
4164 }
4165 spin_unlock(&vmx_vpid_lock);
4166}
4167
cdbecfc3
LJ
4168static void free_vpid(struct vcpu_vmx *vmx)
4169{
4170 if (!enable_vpid)
4171 return;
4172 spin_lock(&vmx_vpid_lock);
4173 if (vmx->vpid != 0)
4174 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4175 spin_unlock(&vmx_vpid_lock);
4176}
4177
8d14695f
YZ
4178#define MSR_TYPE_R 1
4179#define MSR_TYPE_W 2
4180static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4181 u32 msr, int type)
25c5f225 4182{
3e7c73e9 4183 int f = sizeof(unsigned long);
25c5f225
SY
4184
4185 if (!cpu_has_vmx_msr_bitmap())
4186 return;
4187
4188 /*
4189 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4190 * have the write-low and read-high bitmap offsets the wrong way round.
4191 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4192 */
25c5f225 4193 if (msr <= 0x1fff) {
8d14695f
YZ
4194 if (type & MSR_TYPE_R)
4195 /* read-low */
4196 __clear_bit(msr, msr_bitmap + 0x000 / f);
4197
4198 if (type & MSR_TYPE_W)
4199 /* write-low */
4200 __clear_bit(msr, msr_bitmap + 0x800 / f);
4201
25c5f225
SY
4202 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4203 msr &= 0x1fff;
8d14695f
YZ
4204 if (type & MSR_TYPE_R)
4205 /* read-high */
4206 __clear_bit(msr, msr_bitmap + 0x400 / f);
4207
4208 if (type & MSR_TYPE_W)
4209 /* write-high */
4210 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4211
4212 }
4213}
4214
4215static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4216 u32 msr, int type)
4217{
4218 int f = sizeof(unsigned long);
4219
4220 if (!cpu_has_vmx_msr_bitmap())
4221 return;
4222
4223 /*
4224 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4225 * have the write-low and read-high bitmap offsets the wrong way round.
4226 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4227 */
4228 if (msr <= 0x1fff) {
4229 if (type & MSR_TYPE_R)
4230 /* read-low */
4231 __set_bit(msr, msr_bitmap + 0x000 / f);
4232
4233 if (type & MSR_TYPE_W)
4234 /* write-low */
4235 __set_bit(msr, msr_bitmap + 0x800 / f);
4236
4237 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4238 msr &= 0x1fff;
4239 if (type & MSR_TYPE_R)
4240 /* read-high */
4241 __set_bit(msr, msr_bitmap + 0x400 / f);
4242
4243 if (type & MSR_TYPE_W)
4244 /* write-high */
4245 __set_bit(msr, msr_bitmap + 0xc00 / f);
4246
25c5f225 4247 }
25c5f225
SY
4248}
4249
f2b93280
WV
4250/*
4251 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4252 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4253 */
4254static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4255 unsigned long *msr_bitmap_nested,
4256 u32 msr, int type)
4257{
4258 int f = sizeof(unsigned long);
4259
4260 if (!cpu_has_vmx_msr_bitmap()) {
4261 WARN_ON(1);
4262 return;
4263 }
4264
4265 /*
4266 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4267 * have the write-low and read-high bitmap offsets the wrong way round.
4268 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4269 */
4270 if (msr <= 0x1fff) {
4271 if (type & MSR_TYPE_R &&
4272 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4273 /* read-low */
4274 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4275
4276 if (type & MSR_TYPE_W &&
4277 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4278 /* write-low */
4279 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4280
4281 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4282 msr &= 0x1fff;
4283 if (type & MSR_TYPE_R &&
4284 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4285 /* read-high */
4286 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4287
4288 if (type & MSR_TYPE_W &&
4289 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4290 /* write-high */
4291 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4292
4293 }
4294}
4295
5897297b
AK
4296static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4297{
4298 if (!longmode_only)
8d14695f
YZ
4299 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4300 msr, MSR_TYPE_R | MSR_TYPE_W);
4301 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4302 msr, MSR_TYPE_R | MSR_TYPE_W);
4303}
4304
4305static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4306{
4307 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4308 msr, MSR_TYPE_R);
4309 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4310 msr, MSR_TYPE_R);
4311}
4312
4313static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4314{
4315 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4316 msr, MSR_TYPE_R);
4317 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4318 msr, MSR_TYPE_R);
4319}
4320
4321static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4322{
4323 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4324 msr, MSR_TYPE_W);
4325 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4326 msr, MSR_TYPE_W);
5897297b
AK
4327}
4328
01e439be
YZ
4329static int vmx_vm_has_apicv(struct kvm *kvm)
4330{
4331 return enable_apicv && irqchip_in_kernel(kvm);
4332}
4333
705699a1
WV
4334static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4335{
4336 struct vcpu_vmx *vmx = to_vmx(vcpu);
4337 int max_irr;
4338 void *vapic_page;
4339 u16 status;
4340
4341 if (vmx->nested.pi_desc &&
4342 vmx->nested.pi_pending) {
4343 vmx->nested.pi_pending = false;
4344 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4345 return 0;
4346
4347 max_irr = find_last_bit(
4348 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4349
4350 if (max_irr == 256)
4351 return 0;
4352
4353 vapic_page = kmap(vmx->nested.virtual_apic_page);
4354 if (!vapic_page) {
4355 WARN_ON(1);
4356 return -ENOMEM;
4357 }
4358 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4359 kunmap(vmx->nested.virtual_apic_page);
4360
4361 status = vmcs_read16(GUEST_INTR_STATUS);
4362 if ((u8)max_irr > ((u8)status & 0xff)) {
4363 status &= ~0xff;
4364 status |= (u8)max_irr;
4365 vmcs_write16(GUEST_INTR_STATUS, status);
4366 }
4367 }
4368 return 0;
4369}
4370
21bc8dc5
RK
4371static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4372{
4373#ifdef CONFIG_SMP
4374 if (vcpu->mode == IN_GUEST_MODE) {
4375 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4376 POSTED_INTR_VECTOR);
4377 return true;
4378 }
4379#endif
4380 return false;
4381}
4382
705699a1
WV
4383static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4384 int vector)
4385{
4386 struct vcpu_vmx *vmx = to_vmx(vcpu);
4387
4388 if (is_guest_mode(vcpu) &&
4389 vector == vmx->nested.posted_intr_nv) {
4390 /* the PIR and ON have been set by L1. */
21bc8dc5 4391 kvm_vcpu_trigger_posted_interrupt(vcpu);
705699a1
WV
4392 /*
4393 * If a posted intr is not recognized by hardware,
4394 * we will accomplish it in the next vmentry.
4395 */
4396 vmx->nested.pi_pending = true;
4397 kvm_make_request(KVM_REQ_EVENT, vcpu);
4398 return 0;
4399 }
4400 return -1;
4401}
a20ed54d
YZ
4402/*
4403 * Send interrupt to vcpu via posted interrupt way.
4404 * 1. If target vcpu is running(non-root mode), send posted interrupt
4405 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4406 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4407 * interrupt from PIR in next vmentry.
4408 */
4409static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4410{
4411 struct vcpu_vmx *vmx = to_vmx(vcpu);
4412 int r;
4413
705699a1
WV
4414 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4415 if (!r)
4416 return;
4417
a20ed54d
YZ
4418 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4419 return;
4420
4421 r = pi_test_and_set_on(&vmx->pi_desc);
4422 kvm_make_request(KVM_REQ_EVENT, vcpu);
21bc8dc5 4423 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
a20ed54d
YZ
4424 kvm_vcpu_kick(vcpu);
4425}
4426
4427static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4428{
4429 struct vcpu_vmx *vmx = to_vmx(vcpu);
4430
4431 if (!pi_test_and_clear_on(&vmx->pi_desc))
4432 return;
4433
4434 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4435}
4436
4437static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4438{
4439 return;
4440}
4441
a3a8ff8e
NHE
4442/*
4443 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4444 * will not change in the lifetime of the guest.
4445 * Note that host-state that does change is set elsewhere. E.g., host-state
4446 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4447 */
a547c6db 4448static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
4449{
4450 u32 low32, high32;
4451 unsigned long tmpl;
4452 struct desc_ptr dt;
d974baa3 4453 unsigned long cr4;
a3a8ff8e 4454
b1a74bf8 4455 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
a3a8ff8e
NHE
4456 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4457
d974baa3 4458 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 4459 cr4 = cr4_read_shadow();
d974baa3
AL
4460 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4461 vmx->host_state.vmcs_host_cr4 = cr4;
4462
a3a8ff8e 4463 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
4464#ifdef CONFIG_X86_64
4465 /*
4466 * Load null selectors, so we can avoid reloading them in
4467 * __vmx_load_host_state(), in case userspace uses the null selectors
4468 * too (the expected case).
4469 */
4470 vmcs_write16(HOST_DS_SELECTOR, 0);
4471 vmcs_write16(HOST_ES_SELECTOR, 0);
4472#else
a3a8ff8e
NHE
4473 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4474 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 4475#endif
a3a8ff8e
NHE
4476 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4477 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4478
4479 native_store_idt(&dt);
4480 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 4481 vmx->host_idt_base = dt.address;
a3a8ff8e 4482
83287ea4 4483 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
4484
4485 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4486 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4487 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4488 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4489
4490 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4491 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4492 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4493 }
4494}
4495
bf8179a0
NHE
4496static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4497{
4498 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4499 if (enable_ept)
4500 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
4501 if (is_guest_mode(&vmx->vcpu))
4502 vmx->vcpu.arch.cr4_guest_owned_bits &=
4503 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
4504 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4505}
4506
01e439be
YZ
4507static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4508{
4509 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4510
4511 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4512 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4513 return pin_based_exec_ctrl;
4514}
4515
bf8179a0
NHE
4516static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4517{
4518 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
4519
4520 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4521 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4522
bf8179a0
NHE
4523 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4524 exec_control &= ~CPU_BASED_TPR_SHADOW;
4525#ifdef CONFIG_X86_64
4526 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4527 CPU_BASED_CR8_LOAD_EXITING;
4528#endif
4529 }
4530 if (!enable_ept)
4531 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4532 CPU_BASED_CR3_LOAD_EXITING |
4533 CPU_BASED_INVLPG_EXITING;
4534 return exec_control;
4535}
4536
4537static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4538{
4539 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4540 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4541 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4542 if (vmx->vpid == 0)
4543 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4544 if (!enable_ept) {
4545 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4546 enable_unrestricted_guest = 0;
ad756a16
MJ
4547 /* Enable INVPCID for non-ept guests may cause performance regression. */
4548 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
4549 }
4550 if (!enable_unrestricted_guest)
4551 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4552 if (!ple_gap)
4553 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
c7c9c56c
YZ
4554 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4555 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4556 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 4557 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
4558 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4559 (handle_vmptrld).
4560 We can NOT enable shadow_vmcs here because we don't have yet
4561 a current VMCS12
4562 */
4563 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
843e4330
KH
4564 /* PML is enabled/disabled in creating/destorying vcpu */
4565 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4566
bf8179a0
NHE
4567 return exec_control;
4568}
4569
ce88decf
XG
4570static void ept_set_mmio_spte_mask(void)
4571{
4572 /*
4573 * EPT Misconfigurations can be generated if the value of bits 2:0
4574 * of an EPT paging-structure entry is 110b (write/execute).
885032b9 4575 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
ce88decf
XG
4576 * spte.
4577 */
885032b9 4578 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
ce88decf
XG
4579}
4580
f53cd63c 4581#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
4582/*
4583 * Sets up the vmcs for emulated real mode.
4584 */
8b9cf98c 4585static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 4586{
2e4ce7f5 4587#ifdef CONFIG_X86_64
6aa8b732 4588 unsigned long a;
2e4ce7f5 4589#endif
6aa8b732 4590 int i;
6aa8b732 4591
6aa8b732 4592 /* I/O */
3e7c73e9
AK
4593 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4594 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 4595
4607c2d7
AG
4596 if (enable_shadow_vmcs) {
4597 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4598 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4599 }
25c5f225 4600 if (cpu_has_vmx_msr_bitmap())
5897297b 4601 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 4602
6aa8b732
AK
4603 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4604
6aa8b732 4605 /* Control */
01e439be 4606 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6e5d865c 4607
bf8179a0 4608 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 4609
83ff3b9d 4610 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
4611 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4612 vmx_secondary_exec_control(vmx));
83ff3b9d 4613 }
f78e0e2e 4614
01e439be 4615 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
c7c9c56c
YZ
4616 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4617 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4618 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4619 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4620
4621 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be
YZ
4622
4623 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4624 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
4625 }
4626
4b8d54f9
ZE
4627 if (ple_gap) {
4628 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
4629 vmx->ple_window = ple_window;
4630 vmx->ple_window_dirty = true;
4b8d54f9
ZE
4631 }
4632
c3707958
XG
4633 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4634 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
4635 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4636
9581d442
AK
4637 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4638 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 4639 vmx_set_constant_host_state(vmx);
05b3e0c2 4640#ifdef CONFIG_X86_64
6aa8b732
AK
4641 rdmsrl(MSR_FS_BASE, a);
4642 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4643 rdmsrl(MSR_GS_BASE, a);
4644 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4645#else
4646 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4647 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4648#endif
4649
2cc51560
ED
4650 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4651 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 4652 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 4653 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 4654 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 4655
468d472f 4656 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
4657 u32 msr_low, msr_high;
4658 u64 host_pat;
468d472f
SY
4659 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4660 host_pat = msr_low | ((u64) msr_high << 32);
4661 /* Write the default value follow host pat */
4662 vmcs_write64(GUEST_IA32_PAT, host_pat);
4663 /* Keep arch.pat sync with GUEST_IA32_PAT */
4664 vmx->vcpu.arch.pat = host_pat;
4665 }
4666
03916db9 4667 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
4668 u32 index = vmx_msr_index[i];
4669 u32 data_low, data_high;
a2fa3e9f 4670 int j = vmx->nmsrs;
6aa8b732
AK
4671
4672 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4673 continue;
432bd6cb
AK
4674 if (wrmsr_safe(index, data_low, data_high) < 0)
4675 continue;
26bb0981
AK
4676 vmx->guest_msrs[j].index = i;
4677 vmx->guest_msrs[j].data = 0;
d5696725 4678 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 4679 ++vmx->nmsrs;
6aa8b732 4680 }
6aa8b732 4681
2961e876
GN
4682
4683 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
4684
4685 /* 22.2.1, 20.8.1 */
2961e876 4686 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 4687
e00c8cf2 4688 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 4689 set_cr4_guest_host_mask(vmx);
e00c8cf2 4690
f53cd63c
WL
4691 if (vmx_xsaves_supported())
4692 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4693
e00c8cf2
AK
4694 return 0;
4695}
4696
57f252f2 4697static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
e00c8cf2
AK
4698{
4699 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 4700 struct msr_data apic_base_msr;
e00c8cf2 4701
7ffd92c5 4702 vmx->rmode.vm86_active = 0;
e00c8cf2 4703
3b86cd99
JK
4704 vmx->soft_vnmi_blocked = 0;
4705
ad312c7c 4706 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 4707 kvm_set_cr8(&vmx->vcpu, 0);
73a6d941 4708 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
c5af89b6 4709 if (kvm_vcpu_is_bsp(&vmx->vcpu))
58cb628d
JK
4710 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4711 apic_base_msr.host_initiated = true;
4712 kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
e00c8cf2 4713
2fb92db1
AK
4714 vmx_segment_cache_clear(vmx);
4715
5706be0d 4716 seg_setup(VCPU_SREG_CS);
66450a21 4717 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
04b66839 4718 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
e00c8cf2
AK
4719
4720 seg_setup(VCPU_SREG_DS);
4721 seg_setup(VCPU_SREG_ES);
4722 seg_setup(VCPU_SREG_FS);
4723 seg_setup(VCPU_SREG_GS);
4724 seg_setup(VCPU_SREG_SS);
4725
4726 vmcs_write16(GUEST_TR_SELECTOR, 0);
4727 vmcs_writel(GUEST_TR_BASE, 0);
4728 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4729 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4730
4731 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4732 vmcs_writel(GUEST_LDTR_BASE, 0);
4733 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4734 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4735
4736 vmcs_write32(GUEST_SYSENTER_CS, 0);
4737 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4738 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4739
4740 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 4741 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 4742
e00c8cf2
AK
4743 vmcs_writel(GUEST_GDTR_BASE, 0);
4744 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4745
4746 vmcs_writel(GUEST_IDTR_BASE, 0);
4747 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4748
443381a8 4749 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
4750 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4751 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4752
e00c8cf2
AK
4753 /* Special registers */
4754 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4755
4756 setup_msrs(vmx);
4757
6aa8b732
AK
4758 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4759
f78e0e2e
SY
4760 if (cpu_has_vmx_tpr_shadow()) {
4761 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4762 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4763 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 4764 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
4765 vmcs_write32(TPR_THRESHOLD, 0);
4766 }
4767
a73896cb 4768 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 4769
01e439be
YZ
4770 if (vmx_vm_has_apicv(vcpu->kvm))
4771 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4772
2384d2b3
SY
4773 if (vmx->vpid != 0)
4774 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4775
fa40052c 4776 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4d4ec087 4777 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
8b9cf98c 4778 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 4779 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
4780 vmx_fpu_activate(&vmx->vcpu);
4781 update_exception_bitmap(&vmx->vcpu);
6aa8b732 4782
b9d762fa 4783 vpid_sync_context(vmx);
6aa8b732
AK
4784}
4785
b6f1250e
NHE
4786/*
4787 * In nested virtualization, check if L1 asked to exit on external interrupts.
4788 * For most existing hypervisors, this will always return true.
4789 */
4790static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4791{
4792 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4793 PIN_BASED_EXT_INTR_MASK;
4794}
4795
77b0f5d6
BD
4796/*
4797 * In nested virtualization, check if L1 has set
4798 * VM_EXIT_ACK_INTR_ON_EXIT
4799 */
4800static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4801{
4802 return get_vmcs12(vcpu)->vm_exit_controls &
4803 VM_EXIT_ACK_INTR_ON_EXIT;
4804}
4805
ea8ceb83
JK
4806static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4807{
4808 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4809 PIN_BASED_NMI_EXITING;
4810}
4811
c9a7953f 4812static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
4813{
4814 u32 cpu_based_vm_exec_control;
730dca42 4815
3b86cd99
JK
4816 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4817 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4818 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4819}
4820
c9a7953f 4821static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
4822{
4823 u32 cpu_based_vm_exec_control;
4824
c9a7953f
JK
4825 if (!cpu_has_virtual_nmis() ||
4826 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4827 enable_irq_window(vcpu);
4828 return;
4829 }
3b86cd99
JK
4830
4831 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4832 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4833 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4834}
4835
66fd3f7f 4836static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 4837{
9c8cba37 4838 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
4839 uint32_t intr;
4840 int irq = vcpu->arch.interrupt.nr;
9c8cba37 4841
229456fc 4842 trace_kvm_inj_virq(irq);
2714d1d3 4843
fa89a817 4844 ++vcpu->stat.irq_injections;
7ffd92c5 4845 if (vmx->rmode.vm86_active) {
71f9833b
SH
4846 int inc_eip = 0;
4847 if (vcpu->arch.interrupt.soft)
4848 inc_eip = vcpu->arch.event_exit_inst_len;
4849 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 4850 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
4851 return;
4852 }
66fd3f7f
GN
4853 intr = irq | INTR_INFO_VALID_MASK;
4854 if (vcpu->arch.interrupt.soft) {
4855 intr |= INTR_TYPE_SOFT_INTR;
4856 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4857 vmx->vcpu.arch.event_exit_inst_len);
4858 } else
4859 intr |= INTR_TYPE_EXT_INTR;
4860 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
4861}
4862
f08864b4
SY
4863static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4864{
66a5a347
JK
4865 struct vcpu_vmx *vmx = to_vmx(vcpu);
4866
0b6ac343
NHE
4867 if (is_guest_mode(vcpu))
4868 return;
4869
3b86cd99
JK
4870 if (!cpu_has_virtual_nmis()) {
4871 /*
4872 * Tracking the NMI-blocked state in software is built upon
4873 * finding the next open IRQ window. This, in turn, depends on
4874 * well-behaving guests: They have to keep IRQs disabled at
4875 * least as long as the NMI handler runs. Otherwise we may
4876 * cause NMI nesting, maybe breaking the guest. But as this is
4877 * highly unlikely, we can live with the residual risk.
4878 */
4879 vmx->soft_vnmi_blocked = 1;
4880 vmx->vnmi_blocked_time = 0;
4881 }
4882
487b391d 4883 ++vcpu->stat.nmi_injections;
9d58b931 4884 vmx->nmi_known_unmasked = false;
7ffd92c5 4885 if (vmx->rmode.vm86_active) {
71f9833b 4886 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 4887 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
4888 return;
4889 }
f08864b4
SY
4890 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4891 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
4892}
4893
3cfc3092
JK
4894static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4895{
4896 if (!cpu_has_virtual_nmis())
4897 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
4898 if (to_vmx(vcpu)->nmi_known_unmasked)
4899 return false;
c332c83a 4900 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
4901}
4902
4903static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4904{
4905 struct vcpu_vmx *vmx = to_vmx(vcpu);
4906
4907 if (!cpu_has_virtual_nmis()) {
4908 if (vmx->soft_vnmi_blocked != masked) {
4909 vmx->soft_vnmi_blocked = masked;
4910 vmx->vnmi_blocked_time = 0;
4911 }
4912 } else {
9d58b931 4913 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
4914 if (masked)
4915 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4916 GUEST_INTR_STATE_NMI);
4917 else
4918 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4919 GUEST_INTR_STATE_NMI);
4920 }
4921}
4922
2505dc9f
JK
4923static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4924{
b6b8a145
JK
4925 if (to_vmx(vcpu)->nested.nested_run_pending)
4926 return 0;
ea8ceb83 4927
2505dc9f
JK
4928 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4929 return 0;
4930
4931 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4932 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4933 | GUEST_INTR_STATE_NMI));
4934}
4935
78646121
GN
4936static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4937{
b6b8a145
JK
4938 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4939 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
4940 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4941 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4942}
4943
cbc94022
IE
4944static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4945{
4946 int ret;
4947 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4948 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4949 .guest_phys_addr = addr,
4950 .memory_size = PAGE_SIZE * 3,
4951 .flags = 0,
4952 };
4953
47ae31e2 4954 ret = kvm_set_memory_region(kvm, &tss_mem);
cbc94022
IE
4955 if (ret)
4956 return ret;
bfc6d222 4957 kvm->arch.tss_addr = addr;
1f755a82 4958 return init_rmode_tss(kvm);
cbc94022
IE
4959}
4960
0ca1b4f4 4961static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 4962{
77ab6db0 4963 switch (vec) {
77ab6db0 4964 case BP_VECTOR:
c573cd22
JK
4965 /*
4966 * Update instruction length as we may reinject the exception
4967 * from user space while in guest debugging mode.
4968 */
4969 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4970 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 4971 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
4972 return false;
4973 /* fall through */
4974 case DB_VECTOR:
4975 if (vcpu->guest_debug &
4976 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4977 return false;
d0bfb940
JK
4978 /* fall through */
4979 case DE_VECTOR:
77ab6db0
JK
4980 case OF_VECTOR:
4981 case BR_VECTOR:
4982 case UD_VECTOR:
4983 case DF_VECTOR:
4984 case SS_VECTOR:
4985 case GP_VECTOR:
4986 case MF_VECTOR:
0ca1b4f4
GN
4987 return true;
4988 break;
77ab6db0 4989 }
0ca1b4f4
GN
4990 return false;
4991}
4992
4993static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4994 int vec, u32 err_code)
4995{
4996 /*
4997 * Instruction with address size override prefix opcode 0x67
4998 * Cause the #SS fault with 0 error code in VM86 mode.
4999 */
5000 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5001 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5002 if (vcpu->arch.halt_request) {
5003 vcpu->arch.halt_request = 0;
5cb56059 5004 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5005 }
5006 return 1;
5007 }
5008 return 0;
5009 }
5010
5011 /*
5012 * Forward all other exceptions that are valid in real mode.
5013 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5014 * the required debugging infrastructure rework.
5015 */
5016 kvm_queue_exception(vcpu, vec);
5017 return 1;
6aa8b732
AK
5018}
5019
a0861c02
AK
5020/*
5021 * Trigger machine check on the host. We assume all the MSRs are already set up
5022 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5023 * We pass a fake environment to the machine check handler because we want
5024 * the guest to be always treated like user space, no matter what context
5025 * it used internally.
5026 */
5027static void kvm_machine_check(void)
5028{
5029#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5030 struct pt_regs regs = {
5031 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5032 .flags = X86_EFLAGS_IF,
5033 };
5034
5035 do_machine_check(&regs, 0);
5036#endif
5037}
5038
851ba692 5039static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5040{
5041 /* already handled by vcpu_run */
5042 return 1;
5043}
5044
851ba692 5045static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5046{
1155f76a 5047 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5048 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5049 u32 intr_info, ex_no, error_code;
42dbaa5a 5050 unsigned long cr2, rip, dr6;
6aa8b732
AK
5051 u32 vect_info;
5052 enum emulation_result er;
5053
1155f76a 5054 vect_info = vmx->idt_vectoring_info;
88786475 5055 intr_info = vmx->exit_intr_info;
6aa8b732 5056
a0861c02 5057 if (is_machine_check(intr_info))
851ba692 5058 return handle_machine_check(vcpu);
a0861c02 5059
e4a41889 5060 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 5061 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
5062
5063 if (is_no_device(intr_info)) {
5fd86fcf 5064 vmx_fpu_activate(vcpu);
2ab455cc
AL
5065 return 1;
5066 }
5067
7aa81cc0 5068 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5069 if (is_guest_mode(vcpu)) {
5070 kvm_queue_exception(vcpu, UD_VECTOR);
5071 return 1;
5072 }
51d8b661 5073 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5074 if (er != EMULATE_DONE)
7ee5d940 5075 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5076 return 1;
5077 }
5078
6aa8b732 5079 error_code = 0;
2e11384c 5080 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5081 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5082
5083 /*
5084 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5085 * MMIO, it is better to report an internal error.
5086 * See the comments in vmx_handle_exit.
5087 */
5088 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5089 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5090 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5091 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5092 vcpu->run->internal.ndata = 2;
5093 vcpu->run->internal.data[0] = vect_info;
5094 vcpu->run->internal.data[1] = intr_info;
5095 return 0;
5096 }
5097
6aa8b732 5098 if (is_page_fault(intr_info)) {
1439442c 5099 /* EPT won't cause page fault directly */
cf3ace79 5100 BUG_ON(enable_ept);
6aa8b732 5101 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
5102 trace_kvm_page_fault(cr2, error_code);
5103
3298b75c 5104 if (kvm_event_needs_reinjection(vcpu))
577bdc49 5105 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 5106 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
5107 }
5108
d0bfb940 5109 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5110
5111 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5112 return handle_rmode_exception(vcpu, ex_no, error_code);
5113
42dbaa5a
JK
5114 switch (ex_no) {
5115 case DB_VECTOR:
5116 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5117 if (!(vcpu->guest_debug &
5118 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5119 vcpu->arch.dr6 &= ~15;
6f43ed01 5120 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5121 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5122 skip_emulated_instruction(vcpu);
5123
42dbaa5a
JK
5124 kvm_queue_exception(vcpu, DB_VECTOR);
5125 return 1;
5126 }
5127 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5128 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5129 /* fall through */
5130 case BP_VECTOR:
c573cd22
JK
5131 /*
5132 * Update instruction length as we may reinject #BP from
5133 * user space while in guest debugging mode. Reading it for
5134 * #DB as well causes no harm, it is not used in that case.
5135 */
5136 vmx->vcpu.arch.event_exit_inst_len =
5137 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5138 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5139 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5140 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5141 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5142 break;
5143 default:
d0bfb940
JK
5144 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5145 kvm_run->ex.exception = ex_no;
5146 kvm_run->ex.error_code = error_code;
42dbaa5a 5147 break;
6aa8b732 5148 }
6aa8b732
AK
5149 return 0;
5150}
5151
851ba692 5152static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5153{
1165f5fe 5154 ++vcpu->stat.irq_exits;
6aa8b732
AK
5155 return 1;
5156}
5157
851ba692 5158static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5159{
851ba692 5160 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
5161 return 0;
5162}
6aa8b732 5163
851ba692 5164static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5165{
bfdaab09 5166 unsigned long exit_qualification;
34c33d16 5167 int size, in, string;
039576c0 5168 unsigned port;
6aa8b732 5169
bfdaab09 5170 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5171 string = (exit_qualification & 16) != 0;
cf8f70bf 5172 in = (exit_qualification & 8) != 0;
e70669ab 5173
cf8f70bf 5174 ++vcpu->stat.io_exits;
e70669ab 5175
cf8f70bf 5176 if (string || in)
51d8b661 5177 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5178
cf8f70bf
GN
5179 port = exit_qualification >> 16;
5180 size = (exit_qualification & 7) + 1;
e93f36bc 5181 skip_emulated_instruction(vcpu);
cf8f70bf
GN
5182
5183 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
5184}
5185
102d8325
IM
5186static void
5187vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5188{
5189 /*
5190 * Patch in the VMCALL instruction:
5191 */
5192 hypercall[0] = 0x0f;
5193 hypercall[1] = 0x01;
5194 hypercall[2] = 0xc1;
102d8325
IM
5195}
5196
b9c237bb 5197static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
92fbc7b1
JK
5198{
5199 unsigned long always_on = VMXON_CR0_ALWAYSON;
b9c237bb 5200 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
92fbc7b1 5201
b9c237bb 5202 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
92fbc7b1
JK
5203 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5204 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5205 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5206 return (val & always_on) == always_on;
5207}
5208
0fa06071 5209/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5210static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5211{
eeadf9e7 5212 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5213 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5214 unsigned long orig_val = val;
5215
eeadf9e7
NHE
5216 /*
5217 * We get here when L2 changed cr0 in a way that did not change
5218 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
5219 * but did change L0 shadowed bits. So we first calculate the
5220 * effective cr0 value that L1 would like to write into the
5221 * hardware. It consists of the L2-owned bits from the new
5222 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 5223 */
1a0d74e6
JK
5224 val = (val & ~vmcs12->cr0_guest_host_mask) |
5225 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5226
b9c237bb 5227 if (!nested_cr0_valid(vcpu, val))
eeadf9e7 5228 return 1;
1a0d74e6
JK
5229
5230 if (kvm_set_cr0(vcpu, val))
5231 return 1;
5232 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 5233 return 0;
1a0d74e6
JK
5234 } else {
5235 if (to_vmx(vcpu)->nested.vmxon &&
5236 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5237 return 1;
eeadf9e7 5238 return kvm_set_cr0(vcpu, val);
1a0d74e6 5239 }
eeadf9e7
NHE
5240}
5241
5242static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5243{
5244 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5245 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5246 unsigned long orig_val = val;
5247
5248 /* analogously to handle_set_cr0 */
5249 val = (val & ~vmcs12->cr4_guest_host_mask) |
5250 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5251 if (kvm_set_cr4(vcpu, val))
eeadf9e7 5252 return 1;
1a0d74e6 5253 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
5254 return 0;
5255 } else
5256 return kvm_set_cr4(vcpu, val);
5257}
5258
5259/* called to set cr0 as approriate for clts instruction exit. */
5260static void handle_clts(struct kvm_vcpu *vcpu)
5261{
5262 if (is_guest_mode(vcpu)) {
5263 /*
5264 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5265 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5266 * just pretend it's off (also in arch.cr0 for fpu_activate).
5267 */
5268 vmcs_writel(CR0_READ_SHADOW,
5269 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5270 vcpu->arch.cr0 &= ~X86_CR0_TS;
5271 } else
5272 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5273}
5274
851ba692 5275static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 5276{
229456fc 5277 unsigned long exit_qualification, val;
6aa8b732
AK
5278 int cr;
5279 int reg;
49a9b07e 5280 int err;
6aa8b732 5281
bfdaab09 5282 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5283 cr = exit_qualification & 15;
5284 reg = (exit_qualification >> 8) & 15;
5285 switch ((exit_qualification >> 4) & 3) {
5286 case 0: /* mov to cr */
1e32c079 5287 val = kvm_register_readl(vcpu, reg);
229456fc 5288 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5289 switch (cr) {
5290 case 0:
eeadf9e7 5291 err = handle_set_cr0(vcpu, val);
db8fcefa 5292 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5293 return 1;
5294 case 3:
2390218b 5295 err = kvm_set_cr3(vcpu, val);
db8fcefa 5296 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5297 return 1;
5298 case 4:
eeadf9e7 5299 err = handle_set_cr4(vcpu, val);
db8fcefa 5300 kvm_complete_insn_gp(vcpu, err);
6aa8b732 5301 return 1;
0a5fff19
GN
5302 case 8: {
5303 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 5304 u8 cr8 = (u8)val;
eea1cff9 5305 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 5306 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
5307 if (irqchip_in_kernel(vcpu->kvm))
5308 return 1;
5309 if (cr8_prev <= cr8)
5310 return 1;
851ba692 5311 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5312 return 0;
5313 }
4b8073e4 5314 }
6aa8b732 5315 break;
25c4c276 5316 case 2: /* clts */
eeadf9e7 5317 handle_clts(vcpu);
4d4ec087 5318 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 5319 skip_emulated_instruction(vcpu);
6b52d186 5320 vmx_fpu_activate(vcpu);
25c4c276 5321 return 1;
6aa8b732
AK
5322 case 1: /*mov from cr*/
5323 switch (cr) {
5324 case 3:
9f8fe504
AK
5325 val = kvm_read_cr3(vcpu);
5326 kvm_register_write(vcpu, reg, val);
5327 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5328 skip_emulated_instruction(vcpu);
5329 return 1;
5330 case 8:
229456fc
MT
5331 val = kvm_get_cr8(vcpu);
5332 kvm_register_write(vcpu, reg, val);
5333 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5334 skip_emulated_instruction(vcpu);
5335 return 1;
5336 }
5337 break;
5338 case 3: /* lmsw */
a1f83a74 5339 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 5340 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 5341 kvm_lmsw(vcpu, val);
6aa8b732
AK
5342
5343 skip_emulated_instruction(vcpu);
5344 return 1;
5345 default:
5346 break;
5347 }
851ba692 5348 vcpu->run->exit_reason = 0;
a737f256 5349 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
5350 (int)(exit_qualification >> 4) & 3, cr);
5351 return 0;
5352}
5353
851ba692 5354static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 5355{
bfdaab09 5356 unsigned long exit_qualification;
16f8a6f9
NA
5357 int dr, dr7, reg;
5358
5359 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5360 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5361
5362 /* First, if DR does not exist, trigger UD */
5363 if (!kvm_require_dr(vcpu, dr))
5364 return 1;
6aa8b732 5365
f2483415 5366 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
5367 if (!kvm_require_cpl(vcpu, 0))
5368 return 1;
16f8a6f9
NA
5369 dr7 = vmcs_readl(GUEST_DR7);
5370 if (dr7 & DR7_GD) {
42dbaa5a
JK
5371 /*
5372 * As the vm-exit takes precedence over the debug trap, we
5373 * need to emulate the latter, either for the host or the
5374 * guest debugging itself.
5375 */
5376 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 5377 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 5378 vcpu->run->debug.arch.dr7 = dr7;
82b32774 5379 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
5380 vcpu->run->debug.arch.exception = DB_VECTOR;
5381 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
5382 return 0;
5383 } else {
7305eb5d 5384 vcpu->arch.dr6 &= ~15;
6f43ed01 5385 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
5386 kvm_queue_exception(vcpu, DB_VECTOR);
5387 return 1;
5388 }
5389 }
5390
81908bf4
PB
5391 if (vcpu->guest_debug == 0) {
5392 u32 cpu_based_vm_exec_control;
5393
5394 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5395 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5396 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5397
5398 /*
5399 * No more DR vmexits; force a reload of the debug registers
5400 * and reenter on this instruction. The next vmexit will
5401 * retrieve the full state of the debug registers.
5402 */
5403 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5404 return 1;
5405 }
5406
42dbaa5a
JK
5407 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5408 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 5409 unsigned long val;
4c4d563b
JK
5410
5411 if (kvm_get_dr(vcpu, dr, &val))
5412 return 1;
5413 kvm_register_write(vcpu, reg, val);
020df079 5414 } else
5777392e 5415 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
5416 return 1;
5417
6aa8b732
AK
5418 skip_emulated_instruction(vcpu);
5419 return 1;
5420}
5421
73aaf249
JK
5422static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5423{
5424 return vcpu->arch.dr6;
5425}
5426
5427static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5428{
5429}
5430
81908bf4
PB
5431static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5432{
5433 u32 cpu_based_vm_exec_control;
5434
5435 get_debugreg(vcpu->arch.db[0], 0);
5436 get_debugreg(vcpu->arch.db[1], 1);
5437 get_debugreg(vcpu->arch.db[2], 2);
5438 get_debugreg(vcpu->arch.db[3], 3);
5439 get_debugreg(vcpu->arch.dr6, 6);
5440 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5441
5442 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5443
5444 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5445 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5446 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5447}
5448
020df079
GN
5449static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5450{
5451 vmcs_writel(GUEST_DR7, val);
5452}
5453
851ba692 5454static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 5455{
06465c5a
AK
5456 kvm_emulate_cpuid(vcpu);
5457 return 1;
6aa8b732
AK
5458}
5459
851ba692 5460static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 5461{
ad312c7c 5462 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
5463 u64 data;
5464
5465 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 5466 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 5467 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5468 return 1;
5469 }
5470
229456fc 5471 trace_kvm_msr_read(ecx, data);
2714d1d3 5472
6aa8b732 5473 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
5474 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5475 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
5476 skip_emulated_instruction(vcpu);
5477 return 1;
5478}
5479
851ba692 5480static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 5481{
8fe8ab46 5482 struct msr_data msr;
ad312c7c
ZX
5483 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5484 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5485 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 5486
8fe8ab46
WA
5487 msr.data = data;
5488 msr.index = ecx;
5489 msr.host_initiated = false;
854e8bb1 5490 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 5491 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 5492 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5493 return 1;
5494 }
5495
59200273 5496 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
5497 skip_emulated_instruction(vcpu);
5498 return 1;
5499}
5500
851ba692 5501static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 5502{
3842d135 5503 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
5504 return 1;
5505}
5506
851ba692 5507static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 5508{
85f455f7
ED
5509 u32 cpu_based_vm_exec_control;
5510
5511 /* clear pending irq */
5512 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5513 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5514 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 5515
3842d135
AK
5516 kvm_make_request(KVM_REQ_EVENT, vcpu);
5517
a26bf12a 5518 ++vcpu->stat.irq_window_exits;
2714d1d3 5519
c1150d8c
DL
5520 /*
5521 * If the user space waits to inject interrupts, exit as soon as
5522 * possible
5523 */
8061823a 5524 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 5525 vcpu->run->request_interrupt_window &&
8061823a 5526 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 5527 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
5528 return 0;
5529 }
6aa8b732
AK
5530 return 1;
5531}
5532
851ba692 5533static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 5534{
d3bef15f 5535 return kvm_emulate_halt(vcpu);
6aa8b732
AK
5536}
5537
851ba692 5538static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 5539{
7aa81cc0
AL
5540 kvm_emulate_hypercall(vcpu);
5541 return 1;
c21415e8
IM
5542}
5543
ec25d5e6
GN
5544static int handle_invd(struct kvm_vcpu *vcpu)
5545{
51d8b661 5546 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
5547}
5548
851ba692 5549static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 5550{
f9c617f6 5551 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
5552
5553 kvm_mmu_invlpg(vcpu, exit_qualification);
5554 skip_emulated_instruction(vcpu);
5555 return 1;
5556}
5557
fee84b07
AK
5558static int handle_rdpmc(struct kvm_vcpu *vcpu)
5559{
5560 int err;
5561
5562 err = kvm_rdpmc(vcpu);
5563 kvm_complete_insn_gp(vcpu, err);
5564
5565 return 1;
5566}
5567
851ba692 5568static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 5569{
f5f48ee1 5570 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
5571 return 1;
5572}
5573
2acf923e
DC
5574static int handle_xsetbv(struct kvm_vcpu *vcpu)
5575{
5576 u64 new_bv = kvm_read_edx_eax(vcpu);
5577 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5578
5579 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5580 skip_emulated_instruction(vcpu);
5581 return 1;
5582}
5583
f53cd63c
WL
5584static int handle_xsaves(struct kvm_vcpu *vcpu)
5585{
5586 skip_emulated_instruction(vcpu);
5587 WARN(1, "this should never happen\n");
5588 return 1;
5589}
5590
5591static int handle_xrstors(struct kvm_vcpu *vcpu)
5592{
5593 skip_emulated_instruction(vcpu);
5594 WARN(1, "this should never happen\n");
5595 return 1;
5596}
5597
851ba692 5598static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 5599{
58fbbf26
KT
5600 if (likely(fasteoi)) {
5601 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5602 int access_type, offset;
5603
5604 access_type = exit_qualification & APIC_ACCESS_TYPE;
5605 offset = exit_qualification & APIC_ACCESS_OFFSET;
5606 /*
5607 * Sane guest uses MOV to write EOI, with written value
5608 * not cared. So make a short-circuit here by avoiding
5609 * heavy instruction emulation.
5610 */
5611 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5612 (offset == APIC_EOI)) {
5613 kvm_lapic_set_eoi(vcpu);
5614 skip_emulated_instruction(vcpu);
5615 return 1;
5616 }
5617 }
51d8b661 5618 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
5619}
5620
c7c9c56c
YZ
5621static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5622{
5623 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5624 int vector = exit_qualification & 0xff;
5625
5626 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5627 kvm_apic_set_eoi_accelerated(vcpu, vector);
5628 return 1;
5629}
5630
83d4c286
YZ
5631static int handle_apic_write(struct kvm_vcpu *vcpu)
5632{
5633 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5634 u32 offset = exit_qualification & 0xfff;
5635
5636 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5637 kvm_apic_write_nodecode(vcpu, offset);
5638 return 1;
5639}
5640
851ba692 5641static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 5642{
60637aac 5643 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 5644 unsigned long exit_qualification;
e269fb21
JK
5645 bool has_error_code = false;
5646 u32 error_code = 0;
37817f29 5647 u16 tss_selector;
7f3d35fd 5648 int reason, type, idt_v, idt_index;
64a7ec06
GN
5649
5650 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 5651 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 5652 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
5653
5654 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5655
5656 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
5657 if (reason == TASK_SWITCH_GATE && idt_v) {
5658 switch (type) {
5659 case INTR_TYPE_NMI_INTR:
5660 vcpu->arch.nmi_injected = false;
654f06fc 5661 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
5662 break;
5663 case INTR_TYPE_EXT_INTR:
66fd3f7f 5664 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
5665 kvm_clear_interrupt_queue(vcpu);
5666 break;
5667 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
5668 if (vmx->idt_vectoring_info &
5669 VECTORING_INFO_DELIVER_CODE_MASK) {
5670 has_error_code = true;
5671 error_code =
5672 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5673 }
5674 /* fall through */
64a7ec06
GN
5675 case INTR_TYPE_SOFT_EXCEPTION:
5676 kvm_clear_exception_queue(vcpu);
5677 break;
5678 default:
5679 break;
5680 }
60637aac 5681 }
37817f29
IE
5682 tss_selector = exit_qualification;
5683
64a7ec06
GN
5684 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5685 type != INTR_TYPE_EXT_INTR &&
5686 type != INTR_TYPE_NMI_INTR))
5687 skip_emulated_instruction(vcpu);
5688
7f3d35fd
KW
5689 if (kvm_task_switch(vcpu, tss_selector,
5690 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5691 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
5692 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5693 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5694 vcpu->run->internal.ndata = 0;
42dbaa5a 5695 return 0;
acb54517 5696 }
42dbaa5a
JK
5697
5698 /* clear all local breakpoint enable flags */
0e8a0996 5699 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x155);
42dbaa5a
JK
5700
5701 /*
5702 * TODO: What about debug traps on tss switch?
5703 * Are we supposed to inject them and update dr6?
5704 */
5705
5706 return 1;
37817f29
IE
5707}
5708
851ba692 5709static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 5710{
f9c617f6 5711 unsigned long exit_qualification;
1439442c 5712 gpa_t gpa;
4f5982a5 5713 u32 error_code;
1439442c 5714 int gla_validity;
1439442c 5715
f9c617f6 5716 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 5717
1439442c
SY
5718 gla_validity = (exit_qualification >> 7) & 0x3;
5719 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5720 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5721 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5722 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 5723 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
5724 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5725 (long unsigned int)exit_qualification);
851ba692
AK
5726 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5727 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 5728 return 0;
1439442c
SY
5729 }
5730
0be9c7a8
GN
5731 /*
5732 * EPT violation happened while executing iret from NMI,
5733 * "blocked by NMI" bit has to be set before next VM entry.
5734 * There are errata that may cause this bit to not be set:
5735 * AAK134, BY25.
5736 */
bcd1c294
GN
5737 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5738 cpu_has_virtual_nmis() &&
5739 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
5740 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5741
1439442c 5742 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 5743 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5
XG
5744
5745 /* It is a write fault? */
81ed33e4 5746 error_code = exit_qualification & PFERR_WRITE_MASK;
25d92081 5747 /* It is a fetch fault? */
81ed33e4 5748 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
4f5982a5 5749 /* ept page table is present? */
81ed33e4 5750 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
4f5982a5 5751
25d92081
YZ
5752 vcpu->arch.exit_qualification = exit_qualification;
5753
4f5982a5 5754 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
5755}
5756
68f89400
MT
5757static u64 ept_rsvd_mask(u64 spte, int level)
5758{
5759 int i;
5760 u64 mask = 0;
5761
5762 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5763 mask |= (1ULL << i);
5764
a32e8459 5765 if (level == 4)
68f89400
MT
5766 /* bits 7:3 reserved */
5767 mask |= 0xf8;
a32e8459
WL
5768 else if (spte & (1ULL << 7))
5769 /*
5770 * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5771 * level == 1 if the hypervisor is using the ignored bit 7.
5772 */
5773 mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
5774 else if (level > 1)
5775 /* bits 6:3 reserved */
5776 mask |= 0x78;
68f89400
MT
5777
5778 return mask;
5779}
5780
5781static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5782 int level)
5783{
5784 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5785
5786 /* 010b (write-only) */
5787 WARN_ON((spte & 0x7) == 0x2);
5788
5789 /* 110b (write/execute) */
5790 WARN_ON((spte & 0x7) == 0x6);
5791
5792 /* 100b (execute-only) and value not supported by logical processor */
5793 if (!cpu_has_vmx_ept_execute_only())
5794 WARN_ON((spte & 0x7) == 0x4);
5795
5796 /* not 000b */
5797 if ((spte & 0x7)) {
5798 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5799
5800 if (rsvd_bits != 0) {
5801 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5802 __func__, rsvd_bits);
5803 WARN_ON(1);
5804 }
5805
a32e8459
WL
5806 /* bits 5:3 are _not_ reserved for large page or leaf page */
5807 if ((rsvd_bits & 0x38) == 0) {
68f89400
MT
5808 u64 ept_mem_type = (spte & 0x38) >> 3;
5809
5810 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5811 ept_mem_type == 7) {
5812 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5813 __func__, ept_mem_type);
5814 WARN_ON(1);
5815 }
5816 }
5817 }
5818}
5819
851ba692 5820static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
5821{
5822 u64 sptes[4];
ce88decf 5823 int nr_sptes, i, ret;
68f89400
MT
5824 gpa_t gpa;
5825
5826 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
68c3b4d1
MT
5827 if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5828 skip_emulated_instruction(vcpu);
5829 return 1;
5830 }
68f89400 5831
ce88decf 5832 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
b37fbea6 5833 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
5834 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5835 EMULATE_DONE;
f8f55942
XG
5836
5837 if (unlikely(ret == RET_MMIO_PF_INVALID))
5838 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5839
b37fbea6 5840 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
5841 return 1;
5842
5843 /* It is the real ept misconfig */
68f89400
MT
5844 printk(KERN_ERR "EPT: Misconfiguration.\n");
5845 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5846
5847 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5848
5849 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5850 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5851
851ba692
AK
5852 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5853 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
5854
5855 return 0;
5856}
5857
851ba692 5858static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
5859{
5860 u32 cpu_based_vm_exec_control;
5861
5862 /* clear pending NMI */
5863 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5864 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5865 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5866 ++vcpu->stat.nmi_window_exits;
3842d135 5867 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
5868
5869 return 1;
5870}
5871
80ced186 5872static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 5873{
8b3079a5
AK
5874 struct vcpu_vmx *vmx = to_vmx(vcpu);
5875 enum emulation_result err = EMULATE_DONE;
80ced186 5876 int ret = 1;
49e9d557
AK
5877 u32 cpu_exec_ctrl;
5878 bool intr_window_requested;
b8405c18 5879 unsigned count = 130;
49e9d557
AK
5880
5881 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5882 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 5883
98eb2f8b 5884 while (vmx->emulation_required && count-- != 0) {
bdea48e3 5885 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
5886 return handle_interrupt_window(&vmx->vcpu);
5887
de87dcdd
AK
5888 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5889 return 1;
5890
991eebf9 5891 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 5892
ac0a48c3 5893 if (err == EMULATE_USER_EXIT) {
94452b9e 5894 ++vcpu->stat.mmio_exits;
80ced186
MG
5895 ret = 0;
5896 goto out;
5897 }
1d5a4d9b 5898
de5f70e0
AK
5899 if (err != EMULATE_DONE) {
5900 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5901 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5902 vcpu->run->internal.ndata = 0;
6d77dbfc 5903 return 0;
de5f70e0 5904 }
ea953ef0 5905
8d76c49e
GN
5906 if (vcpu->arch.halt_request) {
5907 vcpu->arch.halt_request = 0;
5cb56059 5908 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
5909 goto out;
5910 }
5911
ea953ef0 5912 if (signal_pending(current))
80ced186 5913 goto out;
ea953ef0
MG
5914 if (need_resched())
5915 schedule();
5916 }
5917
80ced186
MG
5918out:
5919 return ret;
ea953ef0
MG
5920}
5921
b4a2d31d
RK
5922static int __grow_ple_window(int val)
5923{
5924 if (ple_window_grow < 1)
5925 return ple_window;
5926
5927 val = min(val, ple_window_actual_max);
5928
5929 if (ple_window_grow < ple_window)
5930 val *= ple_window_grow;
5931 else
5932 val += ple_window_grow;
5933
5934 return val;
5935}
5936
5937static int __shrink_ple_window(int val, int modifier, int minimum)
5938{
5939 if (modifier < 1)
5940 return ple_window;
5941
5942 if (modifier < ple_window)
5943 val /= modifier;
5944 else
5945 val -= modifier;
5946
5947 return max(val, minimum);
5948}
5949
5950static void grow_ple_window(struct kvm_vcpu *vcpu)
5951{
5952 struct vcpu_vmx *vmx = to_vmx(vcpu);
5953 int old = vmx->ple_window;
5954
5955 vmx->ple_window = __grow_ple_window(old);
5956
5957 if (vmx->ple_window != old)
5958 vmx->ple_window_dirty = true;
7b46268d
RK
5959
5960 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
5961}
5962
5963static void shrink_ple_window(struct kvm_vcpu *vcpu)
5964{
5965 struct vcpu_vmx *vmx = to_vmx(vcpu);
5966 int old = vmx->ple_window;
5967
5968 vmx->ple_window = __shrink_ple_window(old,
5969 ple_window_shrink, ple_window);
5970
5971 if (vmx->ple_window != old)
5972 vmx->ple_window_dirty = true;
7b46268d
RK
5973
5974 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
5975}
5976
5977/*
5978 * ple_window_actual_max is computed to be one grow_ple_window() below
5979 * ple_window_max. (See __grow_ple_window for the reason.)
5980 * This prevents overflows, because ple_window_max is int.
5981 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5982 * this process.
5983 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5984 */
5985static void update_ple_window_actual_max(void)
5986{
5987 ple_window_actual_max =
5988 __shrink_ple_window(max(ple_window_max, ple_window),
5989 ple_window_grow, INT_MIN);
5990}
5991
f2c7648d
TC
5992static __init int hardware_setup(void)
5993{
34a1cd60
TC
5994 int r = -ENOMEM, i, msr;
5995
5996 rdmsrl_safe(MSR_EFER, &host_efer);
5997
5998 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
5999 kvm_define_shared_msr(i, vmx_msr_index[i]);
6000
6001 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6002 if (!vmx_io_bitmap_a)
6003 return r;
6004
6005 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6006 if (!vmx_io_bitmap_b)
6007 goto out;
6008
6009 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6010 if (!vmx_msr_bitmap_legacy)
6011 goto out1;
6012
6013 vmx_msr_bitmap_legacy_x2apic =
6014 (unsigned long *)__get_free_page(GFP_KERNEL);
6015 if (!vmx_msr_bitmap_legacy_x2apic)
6016 goto out2;
6017
6018 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6019 if (!vmx_msr_bitmap_longmode)
6020 goto out3;
6021
6022 vmx_msr_bitmap_longmode_x2apic =
6023 (unsigned long *)__get_free_page(GFP_KERNEL);
6024 if (!vmx_msr_bitmap_longmode_x2apic)
6025 goto out4;
3af18d9c
WV
6026
6027 if (nested) {
6028 vmx_msr_bitmap_nested =
6029 (unsigned long *)__get_free_page(GFP_KERNEL);
6030 if (!vmx_msr_bitmap_nested)
6031 goto out5;
6032 }
6033
34a1cd60
TC
6034 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6035 if (!vmx_vmread_bitmap)
3af18d9c 6036 goto out6;
34a1cd60
TC
6037
6038 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6039 if (!vmx_vmwrite_bitmap)
3af18d9c 6040 goto out7;
34a1cd60
TC
6041
6042 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6043 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6044
6045 /*
6046 * Allow direct access to the PC debug port (it is often used for I/O
6047 * delays, but the vmexits simply slow things down).
6048 */
6049 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6050 clear_bit(0x80, vmx_io_bitmap_a);
6051
6052 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6053
6054 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6055 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3af18d9c
WV
6056 if (nested)
6057 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
34a1cd60 6058
34a1cd60
TC
6059 if (setup_vmcs_config(&vmcs_config) < 0) {
6060 r = -EIO;
3af18d9c 6061 goto out8;
baa03522 6062 }
f2c7648d
TC
6063
6064 if (boot_cpu_has(X86_FEATURE_NX))
6065 kvm_enable_efer_bits(EFER_NX);
6066
6067 if (!cpu_has_vmx_vpid())
6068 enable_vpid = 0;
6069 if (!cpu_has_vmx_shadow_vmcs())
6070 enable_shadow_vmcs = 0;
6071 if (enable_shadow_vmcs)
6072 init_vmcs_shadow_fields();
6073
6074 if (!cpu_has_vmx_ept() ||
6075 !cpu_has_vmx_ept_4levels()) {
6076 enable_ept = 0;
6077 enable_unrestricted_guest = 0;
6078 enable_ept_ad_bits = 0;
6079 }
6080
6081 if (!cpu_has_vmx_ept_ad_bits())
6082 enable_ept_ad_bits = 0;
6083
6084 if (!cpu_has_vmx_unrestricted_guest())
6085 enable_unrestricted_guest = 0;
6086
ad15a296 6087 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6088 flexpriority_enabled = 0;
6089
ad15a296
PB
6090 /*
6091 * set_apic_access_page_addr() is used to reload apic access
6092 * page upon invalidation. No need to do anything if not
6093 * using the APIC_ACCESS_ADDR VMCS field.
6094 */
6095 if (!flexpriority_enabled)
f2c7648d 6096 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6097
6098 if (!cpu_has_vmx_tpr_shadow())
6099 kvm_x86_ops->update_cr8_intercept = NULL;
6100
6101 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6102 kvm_disable_largepages();
6103
6104 if (!cpu_has_vmx_ple())
6105 ple_gap = 0;
6106
6107 if (!cpu_has_vmx_apicv())
6108 enable_apicv = 0;
6109
6110 if (enable_apicv)
6111 kvm_x86_ops->update_cr8_intercept = NULL;
6112 else {
6113 kvm_x86_ops->hwapic_irr_update = NULL;
b4eef9b3 6114 kvm_x86_ops->hwapic_isr_update = NULL;
f2c7648d
TC
6115 kvm_x86_ops->deliver_posted_interrupt = NULL;
6116 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6117 }
6118
baa03522
TC
6119 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6120 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6121 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6122 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6123 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6124 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6125 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6126
6127 memcpy(vmx_msr_bitmap_legacy_x2apic,
6128 vmx_msr_bitmap_legacy, PAGE_SIZE);
6129 memcpy(vmx_msr_bitmap_longmode_x2apic,
6130 vmx_msr_bitmap_longmode, PAGE_SIZE);
6131
6132 if (enable_apicv) {
6133 for (msr = 0x800; msr <= 0x8ff; msr++)
6134 vmx_disable_intercept_msr_read_x2apic(msr);
6135
6136 /* According SDM, in x2apic mode, the whole id reg is used.
6137 * But in KVM, it only use the highest eight bits. Need to
6138 * intercept it */
6139 vmx_enable_intercept_msr_read_x2apic(0x802);
6140 /* TMCCT */
6141 vmx_enable_intercept_msr_read_x2apic(0x839);
6142 /* TPR */
6143 vmx_disable_intercept_msr_write_x2apic(0x808);
6144 /* EOI */
6145 vmx_disable_intercept_msr_write_x2apic(0x80b);
6146 /* SELF-IPI */
6147 vmx_disable_intercept_msr_write_x2apic(0x83f);
6148 }
6149
6150 if (enable_ept) {
6151 kvm_mmu_set_mask_ptes(0ull,
6152 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6153 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6154 0ull, VMX_EPT_EXECUTABLE_MASK);
6155 ept_set_mmio_spte_mask();
6156 kvm_enable_tdp();
6157 } else
6158 kvm_disable_tdp();
6159
6160 update_ple_window_actual_max();
6161
843e4330
KH
6162 /*
6163 * Only enable PML when hardware supports PML feature, and both EPT
6164 * and EPT A/D bit features are enabled -- PML depends on them to work.
6165 */
6166 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6167 enable_pml = 0;
6168
6169 if (!enable_pml) {
6170 kvm_x86_ops->slot_enable_log_dirty = NULL;
6171 kvm_x86_ops->slot_disable_log_dirty = NULL;
6172 kvm_x86_ops->flush_log_dirty = NULL;
6173 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6174 }
6175
f2c7648d 6176 return alloc_kvm_area();
34a1cd60 6177
3af18d9c 6178out8:
34a1cd60 6179 free_page((unsigned long)vmx_vmwrite_bitmap);
3af18d9c 6180out7:
34a1cd60 6181 free_page((unsigned long)vmx_vmread_bitmap);
3af18d9c
WV
6182out6:
6183 if (nested)
6184 free_page((unsigned long)vmx_msr_bitmap_nested);
34a1cd60
TC
6185out5:
6186 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6187out4:
6188 free_page((unsigned long)vmx_msr_bitmap_longmode);
6189out3:
6190 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6191out2:
6192 free_page((unsigned long)vmx_msr_bitmap_legacy);
6193out1:
6194 free_page((unsigned long)vmx_io_bitmap_b);
6195out:
6196 free_page((unsigned long)vmx_io_bitmap_a);
6197
6198 return r;
f2c7648d
TC
6199}
6200
6201static __exit void hardware_unsetup(void)
6202{
34a1cd60
TC
6203 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6204 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6205 free_page((unsigned long)vmx_msr_bitmap_legacy);
6206 free_page((unsigned long)vmx_msr_bitmap_longmode);
6207 free_page((unsigned long)vmx_io_bitmap_b);
6208 free_page((unsigned long)vmx_io_bitmap_a);
6209 free_page((unsigned long)vmx_vmwrite_bitmap);
6210 free_page((unsigned long)vmx_vmread_bitmap);
3af18d9c
WV
6211 if (nested)
6212 free_page((unsigned long)vmx_msr_bitmap_nested);
34a1cd60 6213
f2c7648d
TC
6214 free_kvm_area();
6215}
6216
4b8d54f9
ZE
6217/*
6218 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6219 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6220 */
9fb41ba8 6221static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6222{
b4a2d31d
RK
6223 if (ple_gap)
6224 grow_ple_window(vcpu);
6225
4b8d54f9
ZE
6226 skip_emulated_instruction(vcpu);
6227 kvm_vcpu_on_spin(vcpu);
6228
6229 return 1;
6230}
6231
87c00572 6232static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6233{
87c00572 6234 skip_emulated_instruction(vcpu);
59708670
SY
6235 return 1;
6236}
6237
87c00572
GS
6238static int handle_mwait(struct kvm_vcpu *vcpu)
6239{
6240 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6241 return handle_nop(vcpu);
6242}
6243
6244static int handle_monitor(struct kvm_vcpu *vcpu)
6245{
6246 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6247 return handle_nop(vcpu);
6248}
6249
ff2f6fe9
NHE
6250/*
6251 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6252 * We could reuse a single VMCS for all the L2 guests, but we also want the
6253 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6254 * allows keeping them loaded on the processor, and in the future will allow
6255 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6256 * every entry if they never change.
6257 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6258 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6259 *
6260 * The following functions allocate and free a vmcs02 in this pool.
6261 */
6262
6263/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6264static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6265{
6266 struct vmcs02_list *item;
6267 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6268 if (item->vmptr == vmx->nested.current_vmptr) {
6269 list_move(&item->list, &vmx->nested.vmcs02_pool);
6270 return &item->vmcs02;
6271 }
6272
6273 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6274 /* Recycle the least recently used VMCS. */
6275 item = list_entry(vmx->nested.vmcs02_pool.prev,
6276 struct vmcs02_list, list);
6277 item->vmptr = vmx->nested.current_vmptr;
6278 list_move(&item->list, &vmx->nested.vmcs02_pool);
6279 return &item->vmcs02;
6280 }
6281
6282 /* Create a new VMCS */
0fa24ce3 6283 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6284 if (!item)
6285 return NULL;
6286 item->vmcs02.vmcs = alloc_vmcs();
6287 if (!item->vmcs02.vmcs) {
6288 kfree(item);
6289 return NULL;
6290 }
6291 loaded_vmcs_init(&item->vmcs02);
6292 item->vmptr = vmx->nested.current_vmptr;
6293 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6294 vmx->nested.vmcs02_num++;
6295 return &item->vmcs02;
6296}
6297
6298/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6299static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6300{
6301 struct vmcs02_list *item;
6302 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6303 if (item->vmptr == vmptr) {
6304 free_loaded_vmcs(&item->vmcs02);
6305 list_del(&item->list);
6306 kfree(item);
6307 vmx->nested.vmcs02_num--;
6308 return;
6309 }
6310}
6311
6312/*
6313 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6314 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6315 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6316 */
6317static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6318{
6319 struct vmcs02_list *item, *n;
4fa7734c
PB
6320
6321 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 6322 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
6323 /*
6324 * Something will leak if the above WARN triggers. Better than
6325 * a use-after-free.
6326 */
6327 if (vmx->loaded_vmcs == &item->vmcs02)
6328 continue;
6329
6330 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
6331 list_del(&item->list);
6332 kfree(item);
4fa7734c 6333 vmx->nested.vmcs02_num--;
ff2f6fe9 6334 }
ff2f6fe9
NHE
6335}
6336
0658fbaa
ACL
6337/*
6338 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6339 * set the success or error code of an emulated VMX instruction, as specified
6340 * by Vol 2B, VMX Instruction Reference, "Conventions".
6341 */
6342static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6343{
6344 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6345 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6346 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6347}
6348
6349static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6350{
6351 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6352 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6353 X86_EFLAGS_SF | X86_EFLAGS_OF))
6354 | X86_EFLAGS_CF);
6355}
6356
145c28dd 6357static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
6358 u32 vm_instruction_error)
6359{
6360 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6361 /*
6362 * failValid writes the error number to the current VMCS, which
6363 * can't be done there isn't a current VMCS.
6364 */
6365 nested_vmx_failInvalid(vcpu);
6366 return;
6367 }
6368 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6369 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6370 X86_EFLAGS_SF | X86_EFLAGS_OF))
6371 | X86_EFLAGS_ZF);
6372 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6373 /*
6374 * We don't need to force a shadow sync because
6375 * VM_INSTRUCTION_ERROR is not shadowed
6376 */
6377}
145c28dd 6378
ff651cb6
WV
6379static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6380{
6381 /* TODO: not to reset guest simply here. */
6382 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6383 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6384}
6385
f4124500
JK
6386static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6387{
6388 struct vcpu_vmx *vmx =
6389 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6390
6391 vmx->nested.preemption_timer_expired = true;
6392 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6393 kvm_vcpu_kick(&vmx->vcpu);
6394
6395 return HRTIMER_NORESTART;
6396}
6397
19677e32
BD
6398/*
6399 * Decode the memory-address operand of a vmx instruction, as recorded on an
6400 * exit caused by such an instruction (run by a guest hypervisor).
6401 * On success, returns 0. When the operand is invalid, returns 1 and throws
6402 * #UD or #GP.
6403 */
6404static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6405 unsigned long exit_qualification,
6406 u32 vmx_instruction_info, gva_t *ret)
6407{
6408 /*
6409 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6410 * Execution", on an exit, vmx_instruction_info holds most of the
6411 * addressing components of the operand. Only the displacement part
6412 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6413 * For how an actual address is calculated from all these components,
6414 * refer to Vol. 1, "Operand Addressing".
6415 */
6416 int scaling = vmx_instruction_info & 3;
6417 int addr_size = (vmx_instruction_info >> 7) & 7;
6418 bool is_reg = vmx_instruction_info & (1u << 10);
6419 int seg_reg = (vmx_instruction_info >> 15) & 7;
6420 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6421 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6422 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6423 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6424
6425 if (is_reg) {
6426 kvm_queue_exception(vcpu, UD_VECTOR);
6427 return 1;
6428 }
6429
6430 /* Addr = segment_base + offset */
6431 /* offset = base + [index * scale] + displacement */
6432 *ret = vmx_get_segment_base(vcpu, seg_reg);
6433 if (base_is_valid)
6434 *ret += kvm_register_read(vcpu, base_reg);
6435 if (index_is_valid)
6436 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
6437 *ret += exit_qualification; /* holds the displacement */
6438
6439 if (addr_size == 1) /* 32 bit */
6440 *ret &= 0xffffffff;
6441
6442 /*
6443 * TODO: throw #GP (and return 1) in various cases that the VM*
6444 * instructions require it - e.g., offset beyond segment limit,
6445 * unusable or unreadable/unwritable segment, non-canonical 64-bit
6446 * address, and so on. Currently these are not checked.
6447 */
6448 return 0;
6449}
6450
3573e22c
BD
6451/*
6452 * This function performs the various checks including
6453 * - if it's 4KB aligned
6454 * - No bits beyond the physical address width are set
6455 * - Returns 0 on success or else 1
4291b588 6456 * (Intel SDM Section 30.3)
3573e22c 6457 */
4291b588
BD
6458static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6459 gpa_t *vmpointer)
3573e22c
BD
6460{
6461 gva_t gva;
6462 gpa_t vmptr;
6463 struct x86_exception e;
6464 struct page *page;
6465 struct vcpu_vmx *vmx = to_vmx(vcpu);
6466 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6467
6468 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6469 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6470 return 1;
6471
6472 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6473 sizeof(vmptr), &e)) {
6474 kvm_inject_page_fault(vcpu, &e);
6475 return 1;
6476 }
6477
6478 switch (exit_reason) {
6479 case EXIT_REASON_VMON:
6480 /*
6481 * SDM 3: 24.11.5
6482 * The first 4 bytes of VMXON region contain the supported
6483 * VMCS revision identifier
6484 *
6485 * Note - IA32_VMX_BASIC[48] will never be 1
6486 * for the nested case;
6487 * which replaces physical address width with 32
6488 *
6489 */
bc39c4db 6490 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
3573e22c
BD
6491 nested_vmx_failInvalid(vcpu);
6492 skip_emulated_instruction(vcpu);
6493 return 1;
6494 }
6495
6496 page = nested_get_page(vcpu, vmptr);
6497 if (page == NULL ||
6498 *(u32 *)kmap(page) != VMCS12_REVISION) {
6499 nested_vmx_failInvalid(vcpu);
6500 kunmap(page);
6501 skip_emulated_instruction(vcpu);
6502 return 1;
6503 }
6504 kunmap(page);
6505 vmx->nested.vmxon_ptr = vmptr;
6506 break;
4291b588 6507 case EXIT_REASON_VMCLEAR:
bc39c4db 6508 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6509 nested_vmx_failValid(vcpu,
6510 VMXERR_VMCLEAR_INVALID_ADDRESS);
6511 skip_emulated_instruction(vcpu);
6512 return 1;
6513 }
6514
6515 if (vmptr == vmx->nested.vmxon_ptr) {
6516 nested_vmx_failValid(vcpu,
6517 VMXERR_VMCLEAR_VMXON_POINTER);
6518 skip_emulated_instruction(vcpu);
6519 return 1;
6520 }
6521 break;
6522 case EXIT_REASON_VMPTRLD:
bc39c4db 6523 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6524 nested_vmx_failValid(vcpu,
6525 VMXERR_VMPTRLD_INVALID_ADDRESS);
6526 skip_emulated_instruction(vcpu);
6527 return 1;
6528 }
3573e22c 6529
4291b588
BD
6530 if (vmptr == vmx->nested.vmxon_ptr) {
6531 nested_vmx_failValid(vcpu,
6532 VMXERR_VMCLEAR_VMXON_POINTER);
6533 skip_emulated_instruction(vcpu);
6534 return 1;
6535 }
6536 break;
3573e22c
BD
6537 default:
6538 return 1; /* shouldn't happen */
6539 }
6540
4291b588
BD
6541 if (vmpointer)
6542 *vmpointer = vmptr;
3573e22c
BD
6543 return 0;
6544}
6545
ec378aee
NHE
6546/*
6547 * Emulate the VMXON instruction.
6548 * Currently, we just remember that VMX is active, and do not save or even
6549 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6550 * do not currently need to store anything in that guest-allocated memory
6551 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6552 * argument is different from the VMXON pointer (which the spec says they do).
6553 */
6554static int handle_vmon(struct kvm_vcpu *vcpu)
6555{
6556 struct kvm_segment cs;
6557 struct vcpu_vmx *vmx = to_vmx(vcpu);
8de48833 6558 struct vmcs *shadow_vmcs;
b3897a49
NHE
6559 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6560 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee
NHE
6561
6562 /* The Intel VMX Instruction Reference lists a bunch of bits that
6563 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6564 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6565 * Otherwise, we should fail with #UD. We test these now:
6566 */
6567 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6568 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6569 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6570 kvm_queue_exception(vcpu, UD_VECTOR);
6571 return 1;
6572 }
6573
6574 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6575 if (is_long_mode(vcpu) && !cs.l) {
6576 kvm_queue_exception(vcpu, UD_VECTOR);
6577 return 1;
6578 }
6579
6580 if (vmx_get_cpl(vcpu)) {
6581 kvm_inject_gp(vcpu, 0);
6582 return 1;
6583 }
3573e22c 6584
4291b588 6585 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
3573e22c
BD
6586 return 1;
6587
145c28dd
AG
6588 if (vmx->nested.vmxon) {
6589 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6590 skip_emulated_instruction(vcpu);
6591 return 1;
6592 }
b3897a49
NHE
6593
6594 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6595 != VMXON_NEEDED_FEATURES) {
6596 kvm_inject_gp(vcpu, 0);
6597 return 1;
6598 }
6599
8de48833
AG
6600 if (enable_shadow_vmcs) {
6601 shadow_vmcs = alloc_vmcs();
6602 if (!shadow_vmcs)
6603 return -ENOMEM;
6604 /* mark vmcs as shadow */
6605 shadow_vmcs->revision_id |= (1u << 31);
6606 /* init shadow vmcs */
6607 vmcs_clear(shadow_vmcs);
6608 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6609 }
ec378aee 6610
ff2f6fe9
NHE
6611 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6612 vmx->nested.vmcs02_num = 0;
6613
f4124500
JK
6614 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6615 HRTIMER_MODE_REL);
6616 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6617
ec378aee
NHE
6618 vmx->nested.vmxon = true;
6619
6620 skip_emulated_instruction(vcpu);
a25eb114 6621 nested_vmx_succeed(vcpu);
ec378aee
NHE
6622 return 1;
6623}
6624
6625/*
6626 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6627 * for running VMX instructions (except VMXON, whose prerequisites are
6628 * slightly different). It also specifies what exception to inject otherwise.
6629 */
6630static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6631{
6632 struct kvm_segment cs;
6633 struct vcpu_vmx *vmx = to_vmx(vcpu);
6634
6635 if (!vmx->nested.vmxon) {
6636 kvm_queue_exception(vcpu, UD_VECTOR);
6637 return 0;
6638 }
6639
6640 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6641 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6642 (is_long_mode(vcpu) && !cs.l)) {
6643 kvm_queue_exception(vcpu, UD_VECTOR);
6644 return 0;
6645 }
6646
6647 if (vmx_get_cpl(vcpu)) {
6648 kvm_inject_gp(vcpu, 0);
6649 return 0;
6650 }
6651
6652 return 1;
6653}
6654
e7953d7f
AG
6655static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6656{
8a1b9dd0 6657 u32 exec_control;
9a2a05b9
PB
6658 if (vmx->nested.current_vmptr == -1ull)
6659 return;
6660
6661 /* current_vmptr and current_vmcs12 are always set/reset together */
6662 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6663 return;
6664
012f83cb 6665 if (enable_shadow_vmcs) {
9a2a05b9
PB
6666 /* copy to memory all shadowed fields in case
6667 they were modified */
6668 copy_shadow_to_vmcs12(vmx);
6669 vmx->nested.sync_shadow_vmcs = false;
6670 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6671 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6672 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6673 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb 6674 }
705699a1 6675 vmx->nested.posted_intr_nv = -1;
e7953d7f
AG
6676 kunmap(vmx->nested.current_vmcs12_page);
6677 nested_release_page(vmx->nested.current_vmcs12_page);
9a2a05b9
PB
6678 vmx->nested.current_vmptr = -1ull;
6679 vmx->nested.current_vmcs12 = NULL;
e7953d7f
AG
6680}
6681
ec378aee
NHE
6682/*
6683 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6684 * just stops using VMX.
6685 */
6686static void free_nested(struct vcpu_vmx *vmx)
6687{
6688 if (!vmx->nested.vmxon)
6689 return;
9a2a05b9 6690
ec378aee 6691 vmx->nested.vmxon = false;
9a2a05b9 6692 nested_release_vmcs12(vmx);
e7953d7f
AG
6693 if (enable_shadow_vmcs)
6694 free_vmcs(vmx->nested.current_shadow_vmcs);
fe3ef05c
NHE
6695 /* Unpin physical memory we referred to in current vmcs02 */
6696 if (vmx->nested.apic_access_page) {
6697 nested_release_page(vmx->nested.apic_access_page);
48d89b92 6698 vmx->nested.apic_access_page = NULL;
fe3ef05c 6699 }
a7c0b07d
WL
6700 if (vmx->nested.virtual_apic_page) {
6701 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 6702 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 6703 }
705699a1
WV
6704 if (vmx->nested.pi_desc_page) {
6705 kunmap(vmx->nested.pi_desc_page);
6706 nested_release_page(vmx->nested.pi_desc_page);
6707 vmx->nested.pi_desc_page = NULL;
6708 vmx->nested.pi_desc = NULL;
6709 }
ff2f6fe9
NHE
6710
6711 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
6712}
6713
6714/* Emulate the VMXOFF instruction */
6715static int handle_vmoff(struct kvm_vcpu *vcpu)
6716{
6717 if (!nested_vmx_check_permission(vcpu))
6718 return 1;
6719 free_nested(to_vmx(vcpu));
6720 skip_emulated_instruction(vcpu);
a25eb114 6721 nested_vmx_succeed(vcpu);
ec378aee
NHE
6722 return 1;
6723}
6724
27d6c865
NHE
6725/* Emulate the VMCLEAR instruction */
6726static int handle_vmclear(struct kvm_vcpu *vcpu)
6727{
6728 struct vcpu_vmx *vmx = to_vmx(vcpu);
27d6c865
NHE
6729 gpa_t vmptr;
6730 struct vmcs12 *vmcs12;
6731 struct page *page;
27d6c865
NHE
6732
6733 if (!nested_vmx_check_permission(vcpu))
6734 return 1;
6735
4291b588 6736 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
27d6c865 6737 return 1;
27d6c865 6738
9a2a05b9 6739 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 6740 nested_release_vmcs12(vmx);
27d6c865
NHE
6741
6742 page = nested_get_page(vcpu, vmptr);
6743 if (page == NULL) {
6744 /*
6745 * For accurate processor emulation, VMCLEAR beyond available
6746 * physical memory should do nothing at all. However, it is
6747 * possible that a nested vmx bug, not a guest hypervisor bug,
6748 * resulted in this case, so let's shut down before doing any
6749 * more damage:
6750 */
6751 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6752 return 1;
6753 }
6754 vmcs12 = kmap(page);
6755 vmcs12->launch_state = 0;
6756 kunmap(page);
6757 nested_release_page(page);
6758
6759 nested_free_vmcs02(vmx, vmptr);
6760
6761 skip_emulated_instruction(vcpu);
6762 nested_vmx_succeed(vcpu);
6763 return 1;
6764}
6765
cd232ad0
NHE
6766static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6767
6768/* Emulate the VMLAUNCH instruction */
6769static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6770{
6771 return nested_vmx_run(vcpu, true);
6772}
6773
6774/* Emulate the VMRESUME instruction */
6775static int handle_vmresume(struct kvm_vcpu *vcpu)
6776{
6777
6778 return nested_vmx_run(vcpu, false);
6779}
6780
49f705c5
NHE
6781enum vmcs_field_type {
6782 VMCS_FIELD_TYPE_U16 = 0,
6783 VMCS_FIELD_TYPE_U64 = 1,
6784 VMCS_FIELD_TYPE_U32 = 2,
6785 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6786};
6787
6788static inline int vmcs_field_type(unsigned long field)
6789{
6790 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6791 return VMCS_FIELD_TYPE_U32;
6792 return (field >> 13) & 0x3 ;
6793}
6794
6795static inline int vmcs_field_readonly(unsigned long field)
6796{
6797 return (((field >> 10) & 0x3) == 1);
6798}
6799
6800/*
6801 * Read a vmcs12 field. Since these can have varying lengths and we return
6802 * one type, we chose the biggest type (u64) and zero-extend the return value
6803 * to that size. Note that the caller, handle_vmread, might need to use only
6804 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6805 * 64-bit fields are to be returned).
6806 */
a2ae9df7
PB
6807static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6808 unsigned long field, u64 *ret)
49f705c5
NHE
6809{
6810 short offset = vmcs_field_to_offset(field);
6811 char *p;
6812
6813 if (offset < 0)
a2ae9df7 6814 return offset;
49f705c5
NHE
6815
6816 p = ((char *)(get_vmcs12(vcpu))) + offset;
6817
6818 switch (vmcs_field_type(field)) {
6819 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6820 *ret = *((natural_width *)p);
a2ae9df7 6821 return 0;
49f705c5
NHE
6822 case VMCS_FIELD_TYPE_U16:
6823 *ret = *((u16 *)p);
a2ae9df7 6824 return 0;
49f705c5
NHE
6825 case VMCS_FIELD_TYPE_U32:
6826 *ret = *((u32 *)p);
a2ae9df7 6827 return 0;
49f705c5
NHE
6828 case VMCS_FIELD_TYPE_U64:
6829 *ret = *((u64 *)p);
a2ae9df7 6830 return 0;
49f705c5 6831 default:
a2ae9df7
PB
6832 WARN_ON(1);
6833 return -ENOENT;
49f705c5
NHE
6834 }
6835}
6836
20b97fea 6837
a2ae9df7
PB
6838static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6839 unsigned long field, u64 field_value){
20b97fea
AG
6840 short offset = vmcs_field_to_offset(field);
6841 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6842 if (offset < 0)
a2ae9df7 6843 return offset;
20b97fea
AG
6844
6845 switch (vmcs_field_type(field)) {
6846 case VMCS_FIELD_TYPE_U16:
6847 *(u16 *)p = field_value;
a2ae9df7 6848 return 0;
20b97fea
AG
6849 case VMCS_FIELD_TYPE_U32:
6850 *(u32 *)p = field_value;
a2ae9df7 6851 return 0;
20b97fea
AG
6852 case VMCS_FIELD_TYPE_U64:
6853 *(u64 *)p = field_value;
a2ae9df7 6854 return 0;
20b97fea
AG
6855 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6856 *(natural_width *)p = field_value;
a2ae9df7 6857 return 0;
20b97fea 6858 default:
a2ae9df7
PB
6859 WARN_ON(1);
6860 return -ENOENT;
20b97fea
AG
6861 }
6862
6863}
6864
16f5b903
AG
6865static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6866{
6867 int i;
6868 unsigned long field;
6869 u64 field_value;
6870 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
c2bae893
MK
6871 const unsigned long *fields = shadow_read_write_fields;
6872 const int num_fields = max_shadow_read_write_fields;
16f5b903 6873
282da870
JK
6874 preempt_disable();
6875
16f5b903
AG
6876 vmcs_load(shadow_vmcs);
6877
6878 for (i = 0; i < num_fields; i++) {
6879 field = fields[i];
6880 switch (vmcs_field_type(field)) {
6881 case VMCS_FIELD_TYPE_U16:
6882 field_value = vmcs_read16(field);
6883 break;
6884 case VMCS_FIELD_TYPE_U32:
6885 field_value = vmcs_read32(field);
6886 break;
6887 case VMCS_FIELD_TYPE_U64:
6888 field_value = vmcs_read64(field);
6889 break;
6890 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6891 field_value = vmcs_readl(field);
6892 break;
a2ae9df7
PB
6893 default:
6894 WARN_ON(1);
6895 continue;
16f5b903
AG
6896 }
6897 vmcs12_write_any(&vmx->vcpu, field, field_value);
6898 }
6899
6900 vmcs_clear(shadow_vmcs);
6901 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
6902
6903 preempt_enable();
16f5b903
AG
6904}
6905
c3114420
AG
6906static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6907{
c2bae893
MK
6908 const unsigned long *fields[] = {
6909 shadow_read_write_fields,
6910 shadow_read_only_fields
c3114420 6911 };
c2bae893 6912 const int max_fields[] = {
c3114420
AG
6913 max_shadow_read_write_fields,
6914 max_shadow_read_only_fields
6915 };
6916 int i, q;
6917 unsigned long field;
6918 u64 field_value = 0;
6919 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6920
6921 vmcs_load(shadow_vmcs);
6922
c2bae893 6923 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
6924 for (i = 0; i < max_fields[q]; i++) {
6925 field = fields[q][i];
6926 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6927
6928 switch (vmcs_field_type(field)) {
6929 case VMCS_FIELD_TYPE_U16:
6930 vmcs_write16(field, (u16)field_value);
6931 break;
6932 case VMCS_FIELD_TYPE_U32:
6933 vmcs_write32(field, (u32)field_value);
6934 break;
6935 case VMCS_FIELD_TYPE_U64:
6936 vmcs_write64(field, (u64)field_value);
6937 break;
6938 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6939 vmcs_writel(field, (long)field_value);
6940 break;
a2ae9df7
PB
6941 default:
6942 WARN_ON(1);
6943 break;
c3114420
AG
6944 }
6945 }
6946 }
6947
6948 vmcs_clear(shadow_vmcs);
6949 vmcs_load(vmx->loaded_vmcs->vmcs);
6950}
6951
49f705c5
NHE
6952/*
6953 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6954 * used before) all generate the same failure when it is missing.
6955 */
6956static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6957{
6958 struct vcpu_vmx *vmx = to_vmx(vcpu);
6959 if (vmx->nested.current_vmptr == -1ull) {
6960 nested_vmx_failInvalid(vcpu);
6961 skip_emulated_instruction(vcpu);
6962 return 0;
6963 }
6964 return 1;
6965}
6966
6967static int handle_vmread(struct kvm_vcpu *vcpu)
6968{
6969 unsigned long field;
6970 u64 field_value;
6971 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6972 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6973 gva_t gva = 0;
6974
6975 if (!nested_vmx_check_permission(vcpu) ||
6976 !nested_vmx_check_vmcs12(vcpu))
6977 return 1;
6978
6979 /* Decode instruction info and find the field to read */
27e6fb5d 6980 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 6981 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 6982 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5
NHE
6983 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6984 skip_emulated_instruction(vcpu);
6985 return 1;
6986 }
6987 /*
6988 * Now copy part of this value to register or memory, as requested.
6989 * Note that the number of bits actually copied is 32 or 64 depending
6990 * on the guest's mode (32 or 64 bit), not on the given field's length.
6991 */
6992 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 6993 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
6994 field_value);
6995 } else {
6996 if (get_vmx_mem_address(vcpu, exit_qualification,
6997 vmx_instruction_info, &gva))
6998 return 1;
6999 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7000 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7001 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7002 }
7003
7004 nested_vmx_succeed(vcpu);
7005 skip_emulated_instruction(vcpu);
7006 return 1;
7007}
7008
7009
7010static int handle_vmwrite(struct kvm_vcpu *vcpu)
7011{
7012 unsigned long field;
7013 gva_t gva;
7014 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7015 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7016 /* The value to write might be 32 or 64 bits, depending on L1's long
7017 * mode, and eventually we need to write that into a field of several
7018 * possible lengths. The code below first zero-extends the value to 64
7019 * bit (field_value), and then copies only the approriate number of
7020 * bits into the vmcs12 field.
7021 */
7022 u64 field_value = 0;
7023 struct x86_exception e;
7024
7025 if (!nested_vmx_check_permission(vcpu) ||
7026 !nested_vmx_check_vmcs12(vcpu))
7027 return 1;
7028
7029 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7030 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7031 (((vmx_instruction_info) >> 3) & 0xf));
7032 else {
7033 if (get_vmx_mem_address(vcpu, exit_qualification,
7034 vmx_instruction_info, &gva))
7035 return 1;
7036 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7037 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7038 kvm_inject_page_fault(vcpu, &e);
7039 return 1;
7040 }
7041 }
7042
7043
27e6fb5d 7044 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7045 if (vmcs_field_readonly(field)) {
7046 nested_vmx_failValid(vcpu,
7047 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7048 skip_emulated_instruction(vcpu);
7049 return 1;
7050 }
7051
a2ae9df7 7052 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5
NHE
7053 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7054 skip_emulated_instruction(vcpu);
7055 return 1;
7056 }
7057
7058 nested_vmx_succeed(vcpu);
7059 skip_emulated_instruction(vcpu);
7060 return 1;
7061}
7062
63846663
NHE
7063/* Emulate the VMPTRLD instruction */
7064static int handle_vmptrld(struct kvm_vcpu *vcpu)
7065{
7066 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7067 gpa_t vmptr;
8a1b9dd0 7068 u32 exec_control;
63846663
NHE
7069
7070 if (!nested_vmx_check_permission(vcpu))
7071 return 1;
7072
4291b588 7073 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
63846663 7074 return 1;
63846663
NHE
7075
7076 if (vmx->nested.current_vmptr != vmptr) {
7077 struct vmcs12 *new_vmcs12;
7078 struct page *page;
7079 page = nested_get_page(vcpu, vmptr);
7080 if (page == NULL) {
7081 nested_vmx_failInvalid(vcpu);
7082 skip_emulated_instruction(vcpu);
7083 return 1;
7084 }
7085 new_vmcs12 = kmap(page);
7086 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7087 kunmap(page);
7088 nested_release_page_clean(page);
7089 nested_vmx_failValid(vcpu,
7090 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7091 skip_emulated_instruction(vcpu);
7092 return 1;
7093 }
63846663 7094
9a2a05b9 7095 nested_release_vmcs12(vmx);
63846663
NHE
7096 vmx->nested.current_vmptr = vmptr;
7097 vmx->nested.current_vmcs12 = new_vmcs12;
7098 vmx->nested.current_vmcs12_page = page;
012f83cb 7099 if (enable_shadow_vmcs) {
8a1b9dd0
AG
7100 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7101 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
7102 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7103 vmcs_write64(VMCS_LINK_POINTER,
7104 __pa(vmx->nested.current_shadow_vmcs));
012f83cb
AG
7105 vmx->nested.sync_shadow_vmcs = true;
7106 }
63846663
NHE
7107 }
7108
7109 nested_vmx_succeed(vcpu);
7110 skip_emulated_instruction(vcpu);
7111 return 1;
7112}
7113
6a4d7550
NHE
7114/* Emulate the VMPTRST instruction */
7115static int handle_vmptrst(struct kvm_vcpu *vcpu)
7116{
7117 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7118 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7119 gva_t vmcs_gva;
7120 struct x86_exception e;
7121
7122 if (!nested_vmx_check_permission(vcpu))
7123 return 1;
7124
7125 if (get_vmx_mem_address(vcpu, exit_qualification,
7126 vmx_instruction_info, &vmcs_gva))
7127 return 1;
7128 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7129 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7130 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7131 sizeof(u64), &e)) {
7132 kvm_inject_page_fault(vcpu, &e);
7133 return 1;
7134 }
7135 nested_vmx_succeed(vcpu);
7136 skip_emulated_instruction(vcpu);
7137 return 1;
7138}
7139
bfd0a56b
NHE
7140/* Emulate the INVEPT instruction */
7141static int handle_invept(struct kvm_vcpu *vcpu)
7142{
b9c237bb 7143 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7144 u32 vmx_instruction_info, types;
7145 unsigned long type;
7146 gva_t gva;
7147 struct x86_exception e;
7148 struct {
7149 u64 eptp, gpa;
7150 } operand;
bfd0a56b 7151
b9c237bb
WV
7152 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7153 SECONDARY_EXEC_ENABLE_EPT) ||
7154 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7155 kvm_queue_exception(vcpu, UD_VECTOR);
7156 return 1;
7157 }
7158
7159 if (!nested_vmx_check_permission(vcpu))
7160 return 1;
7161
7162 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7163 kvm_queue_exception(vcpu, UD_VECTOR);
7164 return 1;
7165 }
7166
7167 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7168 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7169
b9c237bb 7170 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b
NHE
7171
7172 if (!(types & (1UL << type))) {
7173 nested_vmx_failValid(vcpu,
7174 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7175 return 1;
7176 }
7177
7178 /* According to the Intel VMX instruction reference, the memory
7179 * operand is read even if it isn't needed (e.g., for type==global)
7180 */
7181 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7182 vmx_instruction_info, &gva))
7183 return 1;
7184 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7185 sizeof(operand), &e)) {
7186 kvm_inject_page_fault(vcpu, &e);
7187 return 1;
7188 }
7189
7190 switch (type) {
bfd0a56b
NHE
7191 case VMX_EPT_EXTENT_GLOBAL:
7192 kvm_mmu_sync_roots(vcpu);
77c3913b 7193 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7194 nested_vmx_succeed(vcpu);
7195 break;
7196 default:
4b855078 7197 /* Trap single context invalidation invept calls */
bfd0a56b
NHE
7198 BUG_ON(1);
7199 break;
7200 }
7201
7202 skip_emulated_instruction(vcpu);
7203 return 1;
7204}
7205
a642fc30
PM
7206static int handle_invvpid(struct kvm_vcpu *vcpu)
7207{
7208 kvm_queue_exception(vcpu, UD_VECTOR);
7209 return 1;
7210}
7211
843e4330
KH
7212static int handle_pml_full(struct kvm_vcpu *vcpu)
7213{
7214 unsigned long exit_qualification;
7215
7216 trace_kvm_pml_full(vcpu->vcpu_id);
7217
7218 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7219
7220 /*
7221 * PML buffer FULL happened while executing iret from NMI,
7222 * "blocked by NMI" bit has to be set before next VM entry.
7223 */
7224 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7225 cpu_has_virtual_nmis() &&
7226 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7227 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7228 GUEST_INTR_STATE_NMI);
7229
7230 /*
7231 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7232 * here.., and there's no userspace involvement needed for PML.
7233 */
7234 return 1;
7235}
7236
6aa8b732
AK
7237/*
7238 * The exit handlers return 1 if the exit was handled fully and guest execution
7239 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7240 * to be done to userspace and return 0.
7241 */
772e0318 7242static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
7243 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7244 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 7245 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 7246 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 7247 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
7248 [EXIT_REASON_CR_ACCESS] = handle_cr,
7249 [EXIT_REASON_DR_ACCESS] = handle_dr,
7250 [EXIT_REASON_CPUID] = handle_cpuid,
7251 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7252 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7253 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7254 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 7255 [EXIT_REASON_INVD] = handle_invd,
a7052897 7256 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 7257 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 7258 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 7259 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 7260 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 7261 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 7262 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 7263 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 7264 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 7265 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
7266 [EXIT_REASON_VMOFF] = handle_vmoff,
7267 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
7268 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7269 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 7270 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 7271 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 7272 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 7273 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 7274 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 7275 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
7276 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7277 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 7278 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572
GS
7279 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7280 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 7281 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 7282 [EXIT_REASON_INVVPID] = handle_invvpid,
f53cd63c
WL
7283 [EXIT_REASON_XSAVES] = handle_xsaves,
7284 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 7285 [EXIT_REASON_PML_FULL] = handle_pml_full,
6aa8b732
AK
7286};
7287
7288static const int kvm_vmx_max_exit_handlers =
50a3485c 7289 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 7290
908a7bdd
JK
7291static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7292 struct vmcs12 *vmcs12)
7293{
7294 unsigned long exit_qualification;
7295 gpa_t bitmap, last_bitmap;
7296 unsigned int port;
7297 int size;
7298 u8 b;
7299
908a7bdd 7300 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 7301 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
7302
7303 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7304
7305 port = exit_qualification >> 16;
7306 size = (exit_qualification & 7) + 1;
7307
7308 last_bitmap = (gpa_t)-1;
7309 b = -1;
7310
7311 while (size > 0) {
7312 if (port < 0x8000)
7313 bitmap = vmcs12->io_bitmap_a;
7314 else if (port < 0x10000)
7315 bitmap = vmcs12->io_bitmap_b;
7316 else
7317 return 1;
7318 bitmap += (port & 0x7fff) / 8;
7319
7320 if (last_bitmap != bitmap)
7321 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
7322 return 1;
7323 if (b & (1 << (port & 7)))
7324 return 1;
7325
7326 port++;
7327 size--;
7328 last_bitmap = bitmap;
7329 }
7330
7331 return 0;
7332}
7333
644d711a
NHE
7334/*
7335 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7336 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7337 * disinterest in the current event (read or write a specific MSR) by using an
7338 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7339 */
7340static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7341 struct vmcs12 *vmcs12, u32 exit_reason)
7342{
7343 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7344 gpa_t bitmap;
7345
cbd29cb6 7346 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
644d711a
NHE
7347 return 1;
7348
7349 /*
7350 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7351 * for the four combinations of read/write and low/high MSR numbers.
7352 * First we need to figure out which of the four to use:
7353 */
7354 bitmap = vmcs12->msr_bitmap;
7355 if (exit_reason == EXIT_REASON_MSR_WRITE)
7356 bitmap += 2048;
7357 if (msr_index >= 0xc0000000) {
7358 msr_index -= 0xc0000000;
7359 bitmap += 1024;
7360 }
7361
7362 /* Then read the msr_index'th bit from this bitmap: */
7363 if (msr_index < 1024*8) {
7364 unsigned char b;
bd31a7f5
JK
7365 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
7366 return 1;
644d711a
NHE
7367 return 1 & (b >> (msr_index & 7));
7368 } else
7369 return 1; /* let L1 handle the wrong parameter */
7370}
7371
7372/*
7373 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7374 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7375 * intercept (via guest_host_mask etc.) the current event.
7376 */
7377static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7378 struct vmcs12 *vmcs12)
7379{
7380 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7381 int cr = exit_qualification & 15;
7382 int reg = (exit_qualification >> 8) & 15;
1e32c079 7383 unsigned long val = kvm_register_readl(vcpu, reg);
644d711a
NHE
7384
7385 switch ((exit_qualification >> 4) & 3) {
7386 case 0: /* mov to cr */
7387 switch (cr) {
7388 case 0:
7389 if (vmcs12->cr0_guest_host_mask &
7390 (val ^ vmcs12->cr0_read_shadow))
7391 return 1;
7392 break;
7393 case 3:
7394 if ((vmcs12->cr3_target_count >= 1 &&
7395 vmcs12->cr3_target_value0 == val) ||
7396 (vmcs12->cr3_target_count >= 2 &&
7397 vmcs12->cr3_target_value1 == val) ||
7398 (vmcs12->cr3_target_count >= 3 &&
7399 vmcs12->cr3_target_value2 == val) ||
7400 (vmcs12->cr3_target_count >= 4 &&
7401 vmcs12->cr3_target_value3 == val))
7402 return 0;
7403 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7404 return 1;
7405 break;
7406 case 4:
7407 if (vmcs12->cr4_guest_host_mask &
7408 (vmcs12->cr4_read_shadow ^ val))
7409 return 1;
7410 break;
7411 case 8:
7412 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7413 return 1;
7414 break;
7415 }
7416 break;
7417 case 2: /* clts */
7418 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7419 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7420 return 1;
7421 break;
7422 case 1: /* mov from cr */
7423 switch (cr) {
7424 case 3:
7425 if (vmcs12->cpu_based_vm_exec_control &
7426 CPU_BASED_CR3_STORE_EXITING)
7427 return 1;
7428 break;
7429 case 8:
7430 if (vmcs12->cpu_based_vm_exec_control &
7431 CPU_BASED_CR8_STORE_EXITING)
7432 return 1;
7433 break;
7434 }
7435 break;
7436 case 3: /* lmsw */
7437 /*
7438 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7439 * cr0. Other attempted changes are ignored, with no exit.
7440 */
7441 if (vmcs12->cr0_guest_host_mask & 0xe &
7442 (val ^ vmcs12->cr0_read_shadow))
7443 return 1;
7444 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7445 !(vmcs12->cr0_read_shadow & 0x1) &&
7446 (val & 0x1))
7447 return 1;
7448 break;
7449 }
7450 return 0;
7451}
7452
7453/*
7454 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7455 * should handle it ourselves in L0 (and then continue L2). Only call this
7456 * when in is_guest_mode (L2).
7457 */
7458static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7459{
644d711a
NHE
7460 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7461 struct vcpu_vmx *vmx = to_vmx(vcpu);
7462 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 7463 u32 exit_reason = vmx->exit_reason;
644d711a 7464
542060ea
JK
7465 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7466 vmcs_readl(EXIT_QUALIFICATION),
7467 vmx->idt_vectoring_info,
7468 intr_info,
7469 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7470 KVM_ISA_VMX);
7471
644d711a
NHE
7472 if (vmx->nested.nested_run_pending)
7473 return 0;
7474
7475 if (unlikely(vmx->fail)) {
bd80158a
JK
7476 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7477 vmcs_read32(VM_INSTRUCTION_ERROR));
644d711a
NHE
7478 return 1;
7479 }
7480
7481 switch (exit_reason) {
7482 case EXIT_REASON_EXCEPTION_NMI:
7483 if (!is_exception(intr_info))
7484 return 0;
7485 else if (is_page_fault(intr_info))
7486 return enable_ept;
e504c909 7487 else if (is_no_device(intr_info) &&
ccf9844e 7488 !(vmcs12->guest_cr0 & X86_CR0_TS))
e504c909 7489 return 0;
644d711a
NHE
7490 return vmcs12->exception_bitmap &
7491 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7492 case EXIT_REASON_EXTERNAL_INTERRUPT:
7493 return 0;
7494 case EXIT_REASON_TRIPLE_FAULT:
7495 return 1;
7496 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 7497 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 7498 case EXIT_REASON_NMI_WINDOW:
3b656cf7 7499 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a
NHE
7500 case EXIT_REASON_TASK_SWITCH:
7501 return 1;
7502 case EXIT_REASON_CPUID:
bc613494
MT
7503 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7504 return 0;
644d711a
NHE
7505 return 1;
7506 case EXIT_REASON_HLT:
7507 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7508 case EXIT_REASON_INVD:
7509 return 1;
7510 case EXIT_REASON_INVLPG:
7511 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7512 case EXIT_REASON_RDPMC:
7513 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
b3a2a907 7514 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
7515 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7516 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7517 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7518 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7519 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7520 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 7521 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
7522 /*
7523 * VMX instructions trap unconditionally. This allows L1 to
7524 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7525 */
7526 return 1;
7527 case EXIT_REASON_CR_ACCESS:
7528 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7529 case EXIT_REASON_DR_ACCESS:
7530 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7531 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 7532 return nested_vmx_exit_handled_io(vcpu, vmcs12);
644d711a
NHE
7533 case EXIT_REASON_MSR_READ:
7534 case EXIT_REASON_MSR_WRITE:
7535 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7536 case EXIT_REASON_INVALID_STATE:
7537 return 1;
7538 case EXIT_REASON_MWAIT_INSTRUCTION:
7539 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7540 case EXIT_REASON_MONITOR_INSTRUCTION:
7541 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7542 case EXIT_REASON_PAUSE_INSTRUCTION:
7543 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7544 nested_cpu_has2(vmcs12,
7545 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7546 case EXIT_REASON_MCE_DURING_VMENTRY:
7547 return 0;
7548 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 7549 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
7550 case EXIT_REASON_APIC_ACCESS:
7551 return nested_cpu_has2(vmcs12,
7552 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 7553 case EXIT_REASON_APIC_WRITE:
608406e2
WV
7554 case EXIT_REASON_EOI_INDUCED:
7555 /* apic_write and eoi_induced should exit unconditionally. */
82f0dd4b 7556 return 1;
644d711a 7557 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
7558 /*
7559 * L0 always deals with the EPT violation. If nested EPT is
7560 * used, and the nested mmu code discovers that the address is
7561 * missing in the guest EPT table (EPT12), the EPT violation
7562 * will be injected with nested_ept_inject_page_fault()
7563 */
7564 return 0;
644d711a 7565 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
7566 /*
7567 * L2 never uses directly L1's EPT, but rather L0's own EPT
7568 * table (shadow on EPT) or a merged EPT table that L0 built
7569 * (EPT on EPT). So any problems with the structure of the
7570 * table is L0's fault.
7571 */
644d711a
NHE
7572 return 0;
7573 case EXIT_REASON_WBINVD:
7574 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7575 case EXIT_REASON_XSETBV:
7576 return 1;
81dc01f7
WL
7577 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7578 /*
7579 * This should never happen, since it is not possible to
7580 * set XSS to a non-zero value---neither in L1 nor in L2.
7581 * If if it were, XSS would have to be checked against
7582 * the XSS exit bitmap in vmcs12.
7583 */
7584 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
644d711a
NHE
7585 default:
7586 return 1;
7587 }
7588}
7589
586f9607
AK
7590static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7591{
7592 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7593 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7594}
7595
843e4330
KH
7596static int vmx_enable_pml(struct vcpu_vmx *vmx)
7597{
7598 struct page *pml_pg;
7599 u32 exec_control;
7600
7601 pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7602 if (!pml_pg)
7603 return -ENOMEM;
7604
7605 vmx->pml_pg = pml_pg;
7606
7607 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7608 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7609
7610 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7611 exec_control |= SECONDARY_EXEC_ENABLE_PML;
7612 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7613
7614 return 0;
7615}
7616
7617static void vmx_disable_pml(struct vcpu_vmx *vmx)
7618{
7619 u32 exec_control;
7620
7621 ASSERT(vmx->pml_pg);
7622 __free_page(vmx->pml_pg);
7623 vmx->pml_pg = NULL;
7624
7625 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7626 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
7627 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7628}
7629
7630static void vmx_flush_pml_buffer(struct vcpu_vmx *vmx)
7631{
7632 struct kvm *kvm = vmx->vcpu.kvm;
7633 u64 *pml_buf;
7634 u16 pml_idx;
7635
7636 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7637
7638 /* Do nothing if PML buffer is empty */
7639 if (pml_idx == (PML_ENTITY_NUM - 1))
7640 return;
7641
7642 /* PML index always points to next available PML buffer entity */
7643 if (pml_idx >= PML_ENTITY_NUM)
7644 pml_idx = 0;
7645 else
7646 pml_idx++;
7647
7648 pml_buf = page_address(vmx->pml_pg);
7649 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7650 u64 gpa;
7651
7652 gpa = pml_buf[pml_idx];
7653 WARN_ON(gpa & (PAGE_SIZE - 1));
7654 mark_page_dirty(kvm, gpa >> PAGE_SHIFT);
7655 }
7656
7657 /* reset PML index */
7658 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7659}
7660
7661/*
7662 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7663 * Called before reporting dirty_bitmap to userspace.
7664 */
7665static void kvm_flush_pml_buffers(struct kvm *kvm)
7666{
7667 int i;
7668 struct kvm_vcpu *vcpu;
7669 /*
7670 * We only need to kick vcpu out of guest mode here, as PML buffer
7671 * is flushed at beginning of all VMEXITs, and it's obvious that only
7672 * vcpus running in guest are possible to have unflushed GPAs in PML
7673 * buffer.
7674 */
7675 kvm_for_each_vcpu(i, vcpu, kvm)
7676 kvm_vcpu_kick(vcpu);
7677}
7678
6aa8b732
AK
7679/*
7680 * The guest has exited. See if we can fix it or if we need userspace
7681 * assistance.
7682 */
851ba692 7683static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 7684{
29bd8a78 7685 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 7686 u32 exit_reason = vmx->exit_reason;
1155f76a 7687 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 7688
843e4330
KH
7689 /*
7690 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
7691 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
7692 * querying dirty_bitmap, we only need to kick all vcpus out of guest
7693 * mode as if vcpus is in root mode, the PML buffer must has been
7694 * flushed already.
7695 */
7696 if (enable_pml)
7697 vmx_flush_pml_buffer(vmx);
7698
80ced186 7699 /* If guest state is invalid, start emulating */
14168786 7700 if (vmx->emulation_required)
80ced186 7701 return handle_invalid_guest_state(vcpu);
1d5a4d9b 7702
644d711a 7703 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
533558bc
JK
7704 nested_vmx_vmexit(vcpu, exit_reason,
7705 vmcs_read32(VM_EXIT_INTR_INFO),
7706 vmcs_readl(EXIT_QUALIFICATION));
644d711a
NHE
7707 return 1;
7708 }
7709
5120702e
MG
7710 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7711 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7712 vcpu->run->fail_entry.hardware_entry_failure_reason
7713 = exit_reason;
7714 return 0;
7715 }
7716
29bd8a78 7717 if (unlikely(vmx->fail)) {
851ba692
AK
7718 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7719 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
7720 = vmcs_read32(VM_INSTRUCTION_ERROR);
7721 return 0;
7722 }
6aa8b732 7723
b9bf6882
XG
7724 /*
7725 * Note:
7726 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7727 * delivery event since it indicates guest is accessing MMIO.
7728 * The vm-exit can be triggered again after return to guest that
7729 * will cause infinite loop.
7730 */
d77c26fc 7731 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 7732 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 7733 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b9bf6882
XG
7734 exit_reason != EXIT_REASON_TASK_SWITCH)) {
7735 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7736 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7737 vcpu->run->internal.ndata = 2;
7738 vcpu->run->internal.data[0] = vectoring_info;
7739 vcpu->run->internal.data[1] = exit_reason;
7740 return 0;
7741 }
3b86cd99 7742
644d711a
NHE
7743 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7744 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
f5c4368f 7745 get_vmcs12(vcpu))))) {
c4282df9 7746 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 7747 vmx->soft_vnmi_blocked = 0;
3b86cd99 7748 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 7749 vcpu->arch.nmi_pending) {
3b86cd99
JK
7750 /*
7751 * This CPU don't support us in finding the end of an
7752 * NMI-blocked window if the guest runs with IRQs
7753 * disabled. So we pull the trigger after 1 s of
7754 * futile waiting, but inform the user about this.
7755 */
7756 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7757 "state on VCPU %d after 1 s timeout\n",
7758 __func__, vcpu->vcpu_id);
7759 vmx->soft_vnmi_blocked = 0;
3b86cd99 7760 }
3b86cd99
JK
7761 }
7762
6aa8b732
AK
7763 if (exit_reason < kvm_vmx_max_exit_handlers
7764 && kvm_vmx_exit_handlers[exit_reason])
851ba692 7765 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 7766 else {
2bc19dc3
MT
7767 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7768 kvm_queue_exception(vcpu, UD_VECTOR);
7769 return 1;
6aa8b732 7770 }
6aa8b732
AK
7771}
7772
95ba8273 7773static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 7774{
a7c0b07d
WL
7775 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7776
7777 if (is_guest_mode(vcpu) &&
7778 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7779 return;
7780
95ba8273 7781 if (irr == -1 || tpr < irr) {
6e5d865c
YS
7782 vmcs_write32(TPR_THRESHOLD, 0);
7783 return;
7784 }
7785
95ba8273 7786 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
7787}
7788
8d14695f
YZ
7789static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7790{
7791 u32 sec_exec_control;
7792
7793 /*
7794 * There is not point to enable virtualize x2apic without enable
7795 * apicv
7796 */
c7c9c56c
YZ
7797 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7798 !vmx_vm_has_apicv(vcpu->kvm))
8d14695f
YZ
7799 return;
7800
7801 if (!vm_need_tpr_shadow(vcpu->kvm))
7802 return;
7803
7804 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7805
7806 if (set) {
7807 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7808 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7809 } else {
7810 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7811 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7812 }
7813 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7814
7815 vmx_set_msr_bitmap(vcpu);
7816}
7817
38b99173
TC
7818static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7819{
7820 struct vcpu_vmx *vmx = to_vmx(vcpu);
7821
7822 /*
7823 * Currently we do not handle the nested case where L2 has an
7824 * APIC access page of its own; that page is still pinned.
7825 * Hence, we skip the case where the VCPU is in guest mode _and_
7826 * L1 prepared an APIC access page for L2.
7827 *
7828 * For the case where L1 and L2 share the same APIC access page
7829 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7830 * in the vmcs12), this function will only update either the vmcs01
7831 * or the vmcs02. If the former, the vmcs02 will be updated by
7832 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
7833 * the next L2->L1 exit.
7834 */
7835 if (!is_guest_mode(vcpu) ||
7836 !nested_cpu_has2(vmx->nested.current_vmcs12,
7837 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7838 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7839}
7840
c7c9c56c
YZ
7841static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7842{
7843 u16 status;
7844 u8 old;
7845
c7c9c56c
YZ
7846 if (isr == -1)
7847 isr = 0;
7848
7849 status = vmcs_read16(GUEST_INTR_STATUS);
7850 old = status >> 8;
7851 if (isr != old) {
7852 status &= 0xff;
7853 status |= isr << 8;
7854 vmcs_write16(GUEST_INTR_STATUS, status);
7855 }
7856}
7857
7858static void vmx_set_rvi(int vector)
7859{
7860 u16 status;
7861 u8 old;
7862
4114c27d
WW
7863 if (vector == -1)
7864 vector = 0;
7865
c7c9c56c
YZ
7866 status = vmcs_read16(GUEST_INTR_STATUS);
7867 old = (u8)status & 0xff;
7868 if ((u8)vector != old) {
7869 status &= ~0xff;
7870 status |= (u8)vector;
7871 vmcs_write16(GUEST_INTR_STATUS, status);
7872 }
7873}
7874
7875static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7876{
4114c27d
WW
7877 if (!is_guest_mode(vcpu)) {
7878 vmx_set_rvi(max_irr);
7879 return;
7880 }
7881
c7c9c56c
YZ
7882 if (max_irr == -1)
7883 return;
7884
963fee16 7885 /*
4114c27d
WW
7886 * In guest mode. If a vmexit is needed, vmx_check_nested_events
7887 * handles it.
963fee16 7888 */
4114c27d 7889 if (nested_exit_on_intr(vcpu))
963fee16
WL
7890 return;
7891
963fee16 7892 /*
4114c27d 7893 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
7894 * is run without virtual interrupt delivery.
7895 */
7896 if (!kvm_event_needs_reinjection(vcpu) &&
7897 vmx_interrupt_allowed(vcpu)) {
7898 kvm_queue_interrupt(vcpu, max_irr, false);
7899 vmx_inject_irq(vcpu);
7900 }
c7c9c56c
YZ
7901}
7902
7903static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7904{
3d81bc7e
YZ
7905 if (!vmx_vm_has_apicv(vcpu->kvm))
7906 return;
7907
c7c9c56c
YZ
7908 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7909 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7910 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7911 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7912}
7913
51aa01d1 7914static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 7915{
00eba012
AK
7916 u32 exit_intr_info;
7917
7918 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7919 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7920 return;
7921
c5ca8e57 7922 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 7923 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
7924
7925 /* Handle machine checks before interrupts are enabled */
00eba012 7926 if (is_machine_check(exit_intr_info))
a0861c02
AK
7927 kvm_machine_check();
7928
20f65983 7929 /* We need to handle NMIs before interrupts are enabled */
00eba012 7930 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
7931 (exit_intr_info & INTR_INFO_VALID_MASK)) {
7932 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 7933 asm("int $2");
ff9d07a0
ZY
7934 kvm_after_handle_nmi(&vmx->vcpu);
7935 }
51aa01d1 7936}
20f65983 7937
a547c6db
YZ
7938static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7939{
7940 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7941
7942 /*
7943 * If external interrupt exists, IF bit is set in rflags/eflags on the
7944 * interrupt stack frame, and interrupt will be enabled on a return
7945 * from interrupt handler.
7946 */
7947 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7948 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7949 unsigned int vector;
7950 unsigned long entry;
7951 gate_desc *desc;
7952 struct vcpu_vmx *vmx = to_vmx(vcpu);
7953#ifdef CONFIG_X86_64
7954 unsigned long tmp;
7955#endif
7956
7957 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7958 desc = (gate_desc *)vmx->host_idt_base + vector;
7959 entry = gate_offset(*desc);
7960 asm volatile(
7961#ifdef CONFIG_X86_64
7962 "mov %%" _ASM_SP ", %[sp]\n\t"
7963 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7964 "push $%c[ss]\n\t"
7965 "push %[sp]\n\t"
7966#endif
7967 "pushf\n\t"
7968 "orl $0x200, (%%" _ASM_SP ")\n\t"
7969 __ASM_SIZE(push) " $%c[cs]\n\t"
7970 "call *%[entry]\n\t"
7971 :
7972#ifdef CONFIG_X86_64
7973 [sp]"=&r"(tmp)
7974#endif
7975 :
7976 [entry]"r"(entry),
7977 [ss]"i"(__KERNEL_DS),
7978 [cs]"i"(__KERNEL_CS)
7979 );
7980 } else
7981 local_irq_enable();
7982}
7983
da8999d3
LJ
7984static bool vmx_mpx_supported(void)
7985{
7986 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7987 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7988}
7989
55412b2e
WL
7990static bool vmx_xsaves_supported(void)
7991{
7992 return vmcs_config.cpu_based_2nd_exec_ctrl &
7993 SECONDARY_EXEC_XSAVES;
7994}
7995
51aa01d1
AK
7996static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7997{
c5ca8e57 7998 u32 exit_intr_info;
51aa01d1
AK
7999 bool unblock_nmi;
8000 u8 vector;
8001 bool idtv_info_valid;
8002
8003 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 8004
cf393f75 8005 if (cpu_has_virtual_nmis()) {
9d58b931
AK
8006 if (vmx->nmi_known_unmasked)
8007 return;
c5ca8e57
AK
8008 /*
8009 * Can't use vmx->exit_intr_info since we're not sure what
8010 * the exit reason is.
8011 */
8012 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
8013 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8014 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8015 /*
7b4a25cb 8016 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
8017 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8018 * a guest IRET fault.
7b4a25cb
GN
8019 * SDM 3: 23.2.2 (September 2008)
8020 * Bit 12 is undefined in any of the following cases:
8021 * If the VM exit sets the valid bit in the IDT-vectoring
8022 * information field.
8023 * If the VM exit is due to a double fault.
cf393f75 8024 */
7b4a25cb
GN
8025 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8026 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
8027 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8028 GUEST_INTR_STATE_NMI);
9d58b931
AK
8029 else
8030 vmx->nmi_known_unmasked =
8031 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8032 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
8033 } else if (unlikely(vmx->soft_vnmi_blocked))
8034 vmx->vnmi_blocked_time +=
8035 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
8036}
8037
3ab66e8a 8038static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
8039 u32 idt_vectoring_info,
8040 int instr_len_field,
8041 int error_code_field)
51aa01d1 8042{
51aa01d1
AK
8043 u8 vector;
8044 int type;
8045 bool idtv_info_valid;
8046
8047 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 8048
3ab66e8a
JK
8049 vcpu->arch.nmi_injected = false;
8050 kvm_clear_exception_queue(vcpu);
8051 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
8052
8053 if (!idtv_info_valid)
8054 return;
8055
3ab66e8a 8056 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 8057
668f612f
AK
8058 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8059 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 8060
64a7ec06 8061 switch (type) {
37b96e98 8062 case INTR_TYPE_NMI_INTR:
3ab66e8a 8063 vcpu->arch.nmi_injected = true;
668f612f 8064 /*
7b4a25cb 8065 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
8066 * Clear bit "block by NMI" before VM entry if a NMI
8067 * delivery faulted.
668f612f 8068 */
3ab66e8a 8069 vmx_set_nmi_mask(vcpu, false);
37b96e98 8070 break;
37b96e98 8071 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 8072 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
8073 /* fall through */
8074 case INTR_TYPE_HARD_EXCEPTION:
35920a35 8075 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 8076 u32 err = vmcs_read32(error_code_field);
851eb667 8077 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 8078 } else
851eb667 8079 kvm_requeue_exception(vcpu, vector);
37b96e98 8080 break;
66fd3f7f 8081 case INTR_TYPE_SOFT_INTR:
3ab66e8a 8082 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 8083 /* fall through */
37b96e98 8084 case INTR_TYPE_EXT_INTR:
3ab66e8a 8085 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
8086 break;
8087 default:
8088 break;
f7d9238f 8089 }
cf393f75
AK
8090}
8091
83422e17
AK
8092static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8093{
3ab66e8a 8094 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
8095 VM_EXIT_INSTRUCTION_LEN,
8096 IDT_VECTORING_ERROR_CODE);
8097}
8098
b463a6f7
AK
8099static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8100{
3ab66e8a 8101 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
8102 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8103 VM_ENTRY_INSTRUCTION_LEN,
8104 VM_ENTRY_EXCEPTION_ERROR_CODE);
8105
8106 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8107}
8108
d7cd9796
GN
8109static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8110{
8111 int i, nr_msrs;
8112 struct perf_guest_switch_msr *msrs;
8113
8114 msrs = perf_guest_get_msrs(&nr_msrs);
8115
8116 if (!msrs)
8117 return;
8118
8119 for (i = 0; i < nr_msrs; i++)
8120 if (msrs[i].host == msrs[i].guest)
8121 clear_atomic_switch_msr(vmx, msrs[i].msr);
8122 else
8123 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8124 msrs[i].host);
8125}
8126
a3b5ba49 8127static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 8128{
a2fa3e9f 8129 struct vcpu_vmx *vmx = to_vmx(vcpu);
d974baa3 8130 unsigned long debugctlmsr, cr4;
104f226b
AK
8131
8132 /* Record the guest's net vcpu time for enforced NMI injections. */
8133 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8134 vmx->entry_time = ktime_get();
8135
8136 /* Don't enter VMX if guest state is invalid, let the exit handler
8137 start emulation until we arrive back to a valid state */
14168786 8138 if (vmx->emulation_required)
104f226b
AK
8139 return;
8140
a7653ecd
RK
8141 if (vmx->ple_window_dirty) {
8142 vmx->ple_window_dirty = false;
8143 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8144 }
8145
012f83cb
AG
8146 if (vmx->nested.sync_shadow_vmcs) {
8147 copy_vmcs12_to_shadow(vmx);
8148 vmx->nested.sync_shadow_vmcs = false;
8149 }
8150
104f226b
AK
8151 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8152 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8153 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8154 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8155
1e02ce4c 8156 cr4 = cr4_read_shadow();
d974baa3
AL
8157 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8158 vmcs_writel(HOST_CR4, cr4);
8159 vmx->host_state.vmcs_host_cr4 = cr4;
8160 }
8161
104f226b
AK
8162 /* When single-stepping over STI and MOV SS, we must clear the
8163 * corresponding interruptibility bits in the guest state. Otherwise
8164 * vmentry fails as it then expects bit 14 (BS) in pending debug
8165 * exceptions being set, but that's not correct for the guest debugging
8166 * case. */
8167 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8168 vmx_set_interrupt_shadow(vcpu, 0);
8169
d7cd9796 8170 atomic_switch_perf_msrs(vmx);
2a7921b7 8171 debugctlmsr = get_debugctlmsr();
d7cd9796 8172
d462b819 8173 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 8174 asm(
6aa8b732 8175 /* Store host registers */
b188c81f
AK
8176 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8177 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8178 "push %%" _ASM_CX " \n\t"
8179 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 8180 "je 1f \n\t"
b188c81f 8181 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 8182 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 8183 "1: \n\t"
d3edefc0 8184 /* Reload cr2 if changed */
b188c81f
AK
8185 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8186 "mov %%cr2, %%" _ASM_DX " \n\t"
8187 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 8188 "je 2f \n\t"
b188c81f 8189 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 8190 "2: \n\t"
6aa8b732 8191 /* Check if vmlaunch of vmresume is needed */
e08aa78a 8192 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 8193 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
8194 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8195 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8196 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8197 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8198 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8199 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 8200#ifdef CONFIG_X86_64
e08aa78a
AK
8201 "mov %c[r8](%0), %%r8 \n\t"
8202 "mov %c[r9](%0), %%r9 \n\t"
8203 "mov %c[r10](%0), %%r10 \n\t"
8204 "mov %c[r11](%0), %%r11 \n\t"
8205 "mov %c[r12](%0), %%r12 \n\t"
8206 "mov %c[r13](%0), %%r13 \n\t"
8207 "mov %c[r14](%0), %%r14 \n\t"
8208 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 8209#endif
b188c81f 8210 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 8211
6aa8b732 8212 /* Enter guest mode */
83287ea4 8213 "jne 1f \n\t"
4ecac3fd 8214 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
8215 "jmp 2f \n\t"
8216 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8217 "2: "
6aa8b732 8218 /* Save guest registers, load host registers, keep flags */
b188c81f 8219 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 8220 "pop %0 \n\t"
b188c81f
AK
8221 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8222 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8223 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8224 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8225 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8226 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8227 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 8228#ifdef CONFIG_X86_64
e08aa78a
AK
8229 "mov %%r8, %c[r8](%0) \n\t"
8230 "mov %%r9, %c[r9](%0) \n\t"
8231 "mov %%r10, %c[r10](%0) \n\t"
8232 "mov %%r11, %c[r11](%0) \n\t"
8233 "mov %%r12, %c[r12](%0) \n\t"
8234 "mov %%r13, %c[r13](%0) \n\t"
8235 "mov %%r14, %c[r14](%0) \n\t"
8236 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 8237#endif
b188c81f
AK
8238 "mov %%cr2, %%" _ASM_AX " \n\t"
8239 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 8240
b188c81f 8241 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 8242 "setbe %c[fail](%0) \n\t"
83287ea4
AK
8243 ".pushsection .rodata \n\t"
8244 ".global vmx_return \n\t"
8245 "vmx_return: " _ASM_PTR " 2b \n\t"
8246 ".popsection"
e08aa78a 8247 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 8248 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 8249 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 8250 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
8251 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8252 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8253 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8254 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8255 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8256 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8257 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 8258#ifdef CONFIG_X86_64
ad312c7c
ZX
8259 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8260 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8261 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8262 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8263 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8264 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8265 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8266 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 8267#endif
40712fae
AK
8268 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8269 [wordsize]"i"(sizeof(ulong))
c2036300
LV
8270 : "cc", "memory"
8271#ifdef CONFIG_X86_64
b188c81f 8272 , "rax", "rbx", "rdi", "rsi"
c2036300 8273 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
8274#else
8275 , "eax", "ebx", "edi", "esi"
c2036300
LV
8276#endif
8277 );
6aa8b732 8278
2a7921b7
GN
8279 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8280 if (debugctlmsr)
8281 update_debugctlmsr(debugctlmsr);
8282
aa67f609
AK
8283#ifndef CONFIG_X86_64
8284 /*
8285 * The sysexit path does not restore ds/es, so we must set them to
8286 * a reasonable value ourselves.
8287 *
8288 * We can't defer this to vmx_load_host_state() since that function
8289 * may be executed in interrupt context, which saves and restore segments
8290 * around it, nullifying its effect.
8291 */
8292 loadsegment(ds, __USER_DS);
8293 loadsegment(es, __USER_DS);
8294#endif
8295
6de4f3ad 8296 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 8297 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 8298 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 8299 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 8300 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
8301 vcpu->arch.regs_dirty = 0;
8302
1155f76a
AK
8303 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8304
d462b819 8305 vmx->loaded_vmcs->launched = 1;
1b6269db 8306
51aa01d1 8307 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 8308 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1 8309
e0b890d3
GN
8310 /*
8311 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8312 * we did not inject a still-pending event to L1 now because of
8313 * nested_run_pending, we need to re-enable this bit.
8314 */
8315 if (vmx->nested.nested_run_pending)
8316 kvm_make_request(KVM_REQ_EVENT, vcpu);
8317
8318 vmx->nested.nested_run_pending = 0;
8319
51aa01d1
AK
8320 vmx_complete_atomic_exit(vmx);
8321 vmx_recover_nmi_blocking(vmx);
cf393f75 8322 vmx_complete_interrupts(vmx);
6aa8b732
AK
8323}
8324
4fa7734c
PB
8325static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8326{
8327 struct vcpu_vmx *vmx = to_vmx(vcpu);
8328 int cpu;
8329
8330 if (vmx->loaded_vmcs == &vmx->vmcs01)
8331 return;
8332
8333 cpu = get_cpu();
8334 vmx->loaded_vmcs = &vmx->vmcs01;
8335 vmx_vcpu_put(vcpu);
8336 vmx_vcpu_load(vcpu, cpu);
8337 vcpu->cpu = cpu;
8338 put_cpu();
8339}
8340
6aa8b732
AK
8341static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8342{
fb3f0f51
RR
8343 struct vcpu_vmx *vmx = to_vmx(vcpu);
8344
843e4330
KH
8345 if (enable_pml)
8346 vmx_disable_pml(vmx);
cdbecfc3 8347 free_vpid(vmx);
4fa7734c
PB
8348 leave_guest_mode(vcpu);
8349 vmx_load_vmcs01(vcpu);
26a865f4 8350 free_nested(vmx);
4fa7734c 8351 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
8352 kfree(vmx->guest_msrs);
8353 kvm_vcpu_uninit(vcpu);
a4770347 8354 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
8355}
8356
fb3f0f51 8357static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 8358{
fb3f0f51 8359 int err;
c16f862d 8360 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 8361 int cpu;
6aa8b732 8362
a2fa3e9f 8363 if (!vmx)
fb3f0f51
RR
8364 return ERR_PTR(-ENOMEM);
8365
2384d2b3
SY
8366 allocate_vpid(vmx);
8367
fb3f0f51
RR
8368 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8369 if (err)
8370 goto free_vcpu;
965b58a5 8371
a2fa3e9f 8372 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
8373 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8374 > PAGE_SIZE);
0123be42 8375
be6d05cf 8376 err = -ENOMEM;
fb3f0f51 8377 if (!vmx->guest_msrs) {
fb3f0f51
RR
8378 goto uninit_vcpu;
8379 }
965b58a5 8380
d462b819
NHE
8381 vmx->loaded_vmcs = &vmx->vmcs01;
8382 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8383 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 8384 goto free_msrs;
d462b819
NHE
8385 if (!vmm_exclusive)
8386 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8387 loaded_vmcs_init(vmx->loaded_vmcs);
8388 if (!vmm_exclusive)
8389 kvm_cpu_vmxoff();
a2fa3e9f 8390
15ad7146
AK
8391 cpu = get_cpu();
8392 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 8393 vmx->vcpu.cpu = cpu;
8b9cf98c 8394 err = vmx_vcpu_setup(vmx);
fb3f0f51 8395 vmx_vcpu_put(&vmx->vcpu);
15ad7146 8396 put_cpu();
fb3f0f51
RR
8397 if (err)
8398 goto free_vmcs;
a63cb560 8399 if (vm_need_virtualize_apic_accesses(kvm)) {
be6d05cf
JK
8400 err = alloc_apic_access_page(kvm);
8401 if (err)
5e4a0b3c 8402 goto free_vmcs;
a63cb560 8403 }
fb3f0f51 8404
b927a3ce
SY
8405 if (enable_ept) {
8406 if (!kvm->arch.ept_identity_map_addr)
8407 kvm->arch.ept_identity_map_addr =
8408 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
8409 err = init_rmode_identity_map(kvm);
8410 if (err)
93ea5388 8411 goto free_vmcs;
b927a3ce 8412 }
b7ebfb05 8413
b9c237bb
WV
8414 if (nested)
8415 nested_vmx_setup_ctls_msrs(vmx);
8416
705699a1 8417 vmx->nested.posted_intr_nv = -1;
a9d30f33
NHE
8418 vmx->nested.current_vmptr = -1ull;
8419 vmx->nested.current_vmcs12 = NULL;
8420
843e4330
KH
8421 /*
8422 * If PML is turned on, failure on enabling PML just results in failure
8423 * of creating the vcpu, therefore we can simplify PML logic (by
8424 * avoiding dealing with cases, such as enabling PML partially on vcpus
8425 * for the guest, etc.
8426 */
8427 if (enable_pml) {
8428 err = vmx_enable_pml(vmx);
8429 if (err)
8430 goto free_vmcs;
8431 }
8432
fb3f0f51
RR
8433 return &vmx->vcpu;
8434
8435free_vmcs:
5f3fbc34 8436 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 8437free_msrs:
fb3f0f51
RR
8438 kfree(vmx->guest_msrs);
8439uninit_vcpu:
8440 kvm_vcpu_uninit(&vmx->vcpu);
8441free_vcpu:
cdbecfc3 8442 free_vpid(vmx);
a4770347 8443 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 8444 return ERR_PTR(err);
6aa8b732
AK
8445}
8446
002c7f7c
YS
8447static void __init vmx_check_processor_compat(void *rtn)
8448{
8449 struct vmcs_config vmcs_conf;
8450
8451 *(int *)rtn = 0;
8452 if (setup_vmcs_config(&vmcs_conf) < 0)
8453 *(int *)rtn = -EIO;
8454 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8455 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8456 smp_processor_id());
8457 *(int *)rtn = -EIO;
8458 }
8459}
8460
67253af5
SY
8461static int get_ept_level(void)
8462{
8463 return VMX_EPT_DEFAULT_GAW + 1;
8464}
8465
4b12f0de 8466static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 8467{
4b12f0de
SY
8468 u64 ret;
8469
522c68c4
SY
8470 /* For VT-d and EPT combination
8471 * 1. MMIO: always map as UC
8472 * 2. EPT with VT-d:
8473 * a. VT-d without snooping control feature: can't guarantee the
8474 * result, try to trust guest.
8475 * b. VT-d with snooping control feature: snooping control feature of
8476 * VT-d engine can guarantee the cache correctness. Just set it
8477 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 8478 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
8479 * consistent with host MTRR
8480 */
4b12f0de
SY
8481 if (is_mmio)
8482 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
e0f0bbc5 8483 else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
522c68c4
SY
8484 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
8485 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 8486 else
522c68c4 8487 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 8488 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
8489
8490 return ret;
64d4d521
SY
8491}
8492
17cc3935 8493static int vmx_get_lpage_level(void)
344f414f 8494{
878403b7
SY
8495 if (enable_ept && !cpu_has_vmx_ept_1g_page())
8496 return PT_DIRECTORY_LEVEL;
8497 else
8498 /* For shadow and EPT supported 1GB page */
8499 return PT_PDPE_LEVEL;
344f414f
JR
8500}
8501
0e851880
SY
8502static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8503{
4e47c7a6
SY
8504 struct kvm_cpuid_entry2 *best;
8505 struct vcpu_vmx *vmx = to_vmx(vcpu);
8506 u32 exec_control;
8507
8508 vmx->rdtscp_enabled = false;
8509 if (vmx_rdtscp_supported()) {
8510 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8511 if (exec_control & SECONDARY_EXEC_RDTSCP) {
8512 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
8513 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
8514 vmx->rdtscp_enabled = true;
8515 else {
8516 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8517 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8518 exec_control);
8519 }
8520 }
b3a2a907
JK
8521 if (nested && !vmx->rdtscp_enabled)
8522 vmx->nested.nested_vmx_secondary_ctls_high &=
8523 ~SECONDARY_EXEC_RDTSCP;
4e47c7a6 8524 }
ad756a16 8525
ad756a16
MJ
8526 /* Exposing INVPCID only when PCID is exposed */
8527 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8528 if (vmx_invpcid_supported() &&
4f977045 8529 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
ad756a16 8530 guest_cpuid_has_pcid(vcpu)) {
29282fde 8531 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
ad756a16
MJ
8532 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
8533 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8534 exec_control);
8535 } else {
29282fde
TI
8536 if (cpu_has_secondary_exec_ctrls()) {
8537 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8538 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8539 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8540 exec_control);
8541 }
ad756a16 8542 if (best)
4f977045 8543 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 8544 }
0e851880
SY
8545}
8546
d4330ef2
JR
8547static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8548{
7b8050f5
NHE
8549 if (func == 1 && nested)
8550 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
8551}
8552
25d92081
YZ
8553static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8554 struct x86_exception *fault)
8555{
533558bc
JK
8556 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8557 u32 exit_reason;
25d92081
YZ
8558
8559 if (fault->error_code & PFERR_RSVD_MASK)
533558bc 8560 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 8561 else
533558bc
JK
8562 exit_reason = EXIT_REASON_EPT_VIOLATION;
8563 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
25d92081
YZ
8564 vmcs12->guest_physical_address = fault->address;
8565}
8566
155a97a3
NHE
8567/* Callbacks for nested_ept_init_mmu_context: */
8568
8569static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8570{
8571 /* return the page table to be shadowed - in our case, EPT12 */
8572 return get_vmcs12(vcpu)->ept_pointer;
8573}
8574
8a3c1a33 8575static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 8576{
ad896af0
PB
8577 WARN_ON(mmu_is_nested(vcpu));
8578 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb
WV
8579 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
8580 VMX_EPT_EXECUTE_ONLY_BIT);
155a97a3
NHE
8581 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
8582 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
8583 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8584
8585 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
155a97a3
NHE
8586}
8587
8588static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8589{
8590 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8591}
8592
19d5f10b
EK
8593static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
8594 u16 error_code)
8595{
8596 bool inequality, bit;
8597
8598 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
8599 inequality =
8600 (error_code & vmcs12->page_fault_error_code_mask) !=
8601 vmcs12->page_fault_error_code_match;
8602 return inequality ^ bit;
8603}
8604
feaf0c7d
GN
8605static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8606 struct x86_exception *fault)
8607{
8608 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8609
8610 WARN_ON(!is_guest_mode(vcpu));
8611
19d5f10b 8612 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
533558bc
JK
8613 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
8614 vmcs_read32(VM_EXIT_INTR_INFO),
8615 vmcs_readl(EXIT_QUALIFICATION));
feaf0c7d
GN
8616 else
8617 kvm_inject_page_fault(vcpu, fault);
8618}
8619
a2bcba50
WL
8620static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
8621 struct vmcs12 *vmcs12)
8622{
8623 struct vcpu_vmx *vmx = to_vmx(vcpu);
8624
8625 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a7c0b07d 8626 /* TODO: Also verify bits beyond physical address width are 0 */
a2bcba50 8627 if (!PAGE_ALIGNED(vmcs12->apic_access_addr))
a2bcba50
WL
8628 return false;
8629
8630 /*
8631 * Translate L1 physical address to host physical
8632 * address for vmcs02. Keep the page pinned, so this
8633 * physical address remains valid. We keep a reference
8634 * to it so we can release it later.
8635 */
8636 if (vmx->nested.apic_access_page) /* shouldn't happen */
8637 nested_release_page(vmx->nested.apic_access_page);
8638 vmx->nested.apic_access_page =
8639 nested_get_page(vcpu, vmcs12->apic_access_addr);
8640 }
a7c0b07d
WL
8641
8642 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8643 /* TODO: Also verify bits beyond physical address width are 0 */
8644 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr))
8645 return false;
8646
8647 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8648 nested_release_page(vmx->nested.virtual_apic_page);
8649 vmx->nested.virtual_apic_page =
8650 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8651
8652 /*
8653 * Failing the vm entry is _not_ what the processor does
8654 * but it's basically the only possibility we have.
8655 * We could still enter the guest if CR8 load exits are
8656 * enabled, CR8 store exits are enabled, and virtualize APIC
8657 * access is disabled; in this case the processor would never
8658 * use the TPR shadow and we could simply clear the bit from
8659 * the execution control. But such a configuration is useless,
8660 * so let's keep the code simple.
8661 */
8662 if (!vmx->nested.virtual_apic_page)
8663 return false;
8664 }
8665
705699a1
WV
8666 if (nested_cpu_has_posted_intr(vmcs12)) {
8667 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64))
8668 return false;
8669
8670 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
8671 kunmap(vmx->nested.pi_desc_page);
8672 nested_release_page(vmx->nested.pi_desc_page);
8673 }
8674 vmx->nested.pi_desc_page =
8675 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
8676 if (!vmx->nested.pi_desc_page)
8677 return false;
8678
8679 vmx->nested.pi_desc =
8680 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
8681 if (!vmx->nested.pi_desc) {
8682 nested_release_page_clean(vmx->nested.pi_desc_page);
8683 return false;
8684 }
8685 vmx->nested.pi_desc =
8686 (struct pi_desc *)((void *)vmx->nested.pi_desc +
8687 (unsigned long)(vmcs12->posted_intr_desc_addr &
8688 (PAGE_SIZE - 1)));
8689 }
8690
a2bcba50
WL
8691 return true;
8692}
8693
f4124500
JK
8694static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8695{
8696 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8697 struct vcpu_vmx *vmx = to_vmx(vcpu);
8698
8699 if (vcpu->arch.virtual_tsc_khz == 0)
8700 return;
8701
8702 /* Make sure short timeouts reliably trigger an immediate vmexit.
8703 * hrtimer_start does not guarantee this. */
8704 if (preemption_timeout <= 1) {
8705 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8706 return;
8707 }
8708
8709 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8710 preemption_timeout *= 1000000;
8711 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8712 hrtimer_start(&vmx->nested.preemption_timer,
8713 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8714}
8715
3af18d9c
WV
8716static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
8717 struct vmcs12 *vmcs12)
8718{
8719 int maxphyaddr;
8720 u64 addr;
8721
8722 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8723 return 0;
8724
8725 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
8726 WARN_ON(1);
8727 return -EINVAL;
8728 }
8729 maxphyaddr = cpuid_maxphyaddr(vcpu);
8730
8731 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
8732 ((addr + PAGE_SIZE) >> maxphyaddr))
8733 return -EINVAL;
8734
8735 return 0;
8736}
8737
8738/*
8739 * Merge L0's and L1's MSR bitmap, return false to indicate that
8740 * we do not use the hardware.
8741 */
8742static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
8743 struct vmcs12 *vmcs12)
8744{
82f0dd4b 8745 int msr;
f2b93280
WV
8746 struct page *page;
8747 unsigned long *msr_bitmap;
8748
8749 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
8750 return false;
8751
8752 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
8753 if (!page) {
8754 WARN_ON(1);
8755 return false;
8756 }
8757 msr_bitmap = (unsigned long *)kmap(page);
8758 if (!msr_bitmap) {
8759 nested_release_page_clean(page);
8760 WARN_ON(1);
8761 return false;
8762 }
8763
8764 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
8765 if (nested_cpu_has_apic_reg_virt(vmcs12))
8766 for (msr = 0x800; msr <= 0x8ff; msr++)
8767 nested_vmx_disable_intercept_for_msr(
8768 msr_bitmap,
8769 vmx_msr_bitmap_nested,
8770 msr, MSR_TYPE_R);
f2b93280
WV
8771 /* TPR is allowed */
8772 nested_vmx_disable_intercept_for_msr(msr_bitmap,
8773 vmx_msr_bitmap_nested,
8774 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8775 MSR_TYPE_R | MSR_TYPE_W);
608406e2
WV
8776 if (nested_cpu_has_vid(vmcs12)) {
8777 /* EOI and self-IPI are allowed */
8778 nested_vmx_disable_intercept_for_msr(
8779 msr_bitmap,
8780 vmx_msr_bitmap_nested,
8781 APIC_BASE_MSR + (APIC_EOI >> 4),
8782 MSR_TYPE_W);
8783 nested_vmx_disable_intercept_for_msr(
8784 msr_bitmap,
8785 vmx_msr_bitmap_nested,
8786 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8787 MSR_TYPE_W);
8788 }
82f0dd4b
WV
8789 } else {
8790 /*
8791 * Enable reading intercept of all the x2apic
8792 * MSRs. We should not rely on vmcs12 to do any
8793 * optimizations here, it may have been modified
8794 * by L1.
8795 */
8796 for (msr = 0x800; msr <= 0x8ff; msr++)
8797 __vmx_enable_intercept_for_msr(
8798 vmx_msr_bitmap_nested,
8799 msr,
8800 MSR_TYPE_R);
8801
f2b93280
WV
8802 __vmx_enable_intercept_for_msr(
8803 vmx_msr_bitmap_nested,
8804 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
82f0dd4b 8805 MSR_TYPE_W);
608406e2
WV
8806 __vmx_enable_intercept_for_msr(
8807 vmx_msr_bitmap_nested,
8808 APIC_BASE_MSR + (APIC_EOI >> 4),
8809 MSR_TYPE_W);
8810 __vmx_enable_intercept_for_msr(
8811 vmx_msr_bitmap_nested,
8812 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8813 MSR_TYPE_W);
82f0dd4b 8814 }
f2b93280
WV
8815 kunmap(page);
8816 nested_release_page_clean(page);
8817
8818 return true;
8819}
8820
8821static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
8822 struct vmcs12 *vmcs12)
8823{
82f0dd4b 8824 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 8825 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
8826 !nested_cpu_has_vid(vmcs12) &&
8827 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
8828 return 0;
8829
8830 /*
8831 * If virtualize x2apic mode is enabled,
8832 * virtualize apic access must be disabled.
8833 */
82f0dd4b
WV
8834 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
8835 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
8836 return -EINVAL;
8837
608406e2
WV
8838 /*
8839 * If virtual interrupt delivery is enabled,
8840 * we must exit on external interrupts.
8841 */
8842 if (nested_cpu_has_vid(vmcs12) &&
8843 !nested_exit_on_intr(vcpu))
8844 return -EINVAL;
8845
705699a1
WV
8846 /*
8847 * bits 15:8 should be zero in posted_intr_nv,
8848 * the descriptor address has been already checked
8849 * in nested_get_vmcs12_pages.
8850 */
8851 if (nested_cpu_has_posted_intr(vmcs12) &&
8852 (!nested_cpu_has_vid(vmcs12) ||
8853 !nested_exit_intr_ack_set(vcpu) ||
8854 vmcs12->posted_intr_nv & 0xff00))
8855 return -EINVAL;
8856
f2b93280
WV
8857 /* tpr shadow is needed by all apicv features. */
8858 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8859 return -EINVAL;
8860
8861 return 0;
3af18d9c
WV
8862}
8863
e9ac033e
EK
8864static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
8865 unsigned long count_field,
8866 unsigned long addr_field,
8867 int maxphyaddr)
ff651cb6 8868{
e9ac033e
EK
8869 u64 count, addr;
8870
8871 if (vmcs12_read_any(vcpu, count_field, &count) ||
8872 vmcs12_read_any(vcpu, addr_field, &addr)) {
8873 WARN_ON(1);
8874 return -EINVAL;
8875 }
8876 if (count == 0)
8877 return 0;
8878 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
8879 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
8880 pr_warn_ratelimited(
8881 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
8882 addr_field, maxphyaddr, count, addr);
8883 return -EINVAL;
8884 }
8885 return 0;
8886}
8887
8888static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
8889 struct vmcs12 *vmcs12)
8890{
8891 int maxphyaddr;
8892
8893 if (vmcs12->vm_exit_msr_load_count == 0 &&
8894 vmcs12->vm_exit_msr_store_count == 0 &&
8895 vmcs12->vm_entry_msr_load_count == 0)
8896 return 0; /* Fast path */
8897 maxphyaddr = cpuid_maxphyaddr(vcpu);
8898 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
8899 VM_EXIT_MSR_LOAD_ADDR, maxphyaddr) ||
8900 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
8901 VM_EXIT_MSR_STORE_ADDR, maxphyaddr) ||
8902 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
8903 VM_ENTRY_MSR_LOAD_ADDR, maxphyaddr))
8904 return -EINVAL;
8905 return 0;
8906}
8907
8908static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
8909 struct vmx_msr_entry *e)
8910{
8911 /* x2APIC MSR accesses are not allowed */
8912 if (apic_x2apic_mode(vcpu->arch.apic) && e->index >> 8 == 0x8)
8913 return -EINVAL;
8914 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
8915 e->index == MSR_IA32_UCODE_REV)
8916 return -EINVAL;
8917 if (e->reserved != 0)
ff651cb6
WV
8918 return -EINVAL;
8919 return 0;
8920}
8921
e9ac033e
EK
8922static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
8923 struct vmx_msr_entry *e)
ff651cb6
WV
8924{
8925 if (e->index == MSR_FS_BASE ||
8926 e->index == MSR_GS_BASE ||
e9ac033e
EK
8927 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
8928 nested_vmx_msr_check_common(vcpu, e))
8929 return -EINVAL;
8930 return 0;
8931}
8932
8933static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
8934 struct vmx_msr_entry *e)
8935{
8936 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
8937 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
8938 return -EINVAL;
8939 return 0;
8940}
8941
8942/*
8943 * Load guest's/host's msr at nested entry/exit.
8944 * return 0 for success, entry index for failure.
8945 */
8946static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
8947{
8948 u32 i;
8949 struct vmx_msr_entry e;
8950 struct msr_data msr;
8951
8952 msr.host_initiated = false;
8953 for (i = 0; i < count; i++) {
e9ac033e
EK
8954 if (kvm_read_guest(vcpu->kvm, gpa + i * sizeof(e),
8955 &e, sizeof(e))) {
8956 pr_warn_ratelimited(
8957 "%s cannot read MSR entry (%u, 0x%08llx)\n",
8958 __func__, i, gpa + i * sizeof(e));
ff651cb6 8959 goto fail;
e9ac033e
EK
8960 }
8961 if (nested_vmx_load_msr_check(vcpu, &e)) {
8962 pr_warn_ratelimited(
8963 "%s check failed (%u, 0x%x, 0x%x)\n",
8964 __func__, i, e.index, e.reserved);
8965 goto fail;
8966 }
ff651cb6
WV
8967 msr.index = e.index;
8968 msr.data = e.value;
e9ac033e
EK
8969 if (kvm_set_msr(vcpu, &msr)) {
8970 pr_warn_ratelimited(
8971 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
8972 __func__, i, e.index, e.value);
ff651cb6 8973 goto fail;
e9ac033e 8974 }
ff651cb6
WV
8975 }
8976 return 0;
8977fail:
8978 return i + 1;
8979}
8980
8981static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
8982{
8983 u32 i;
8984 struct vmx_msr_entry e;
8985
8986 for (i = 0; i < count; i++) {
e9ac033e
EK
8987 if (kvm_read_guest(vcpu->kvm,
8988 gpa + i * sizeof(e),
8989 &e, 2 * sizeof(u32))) {
8990 pr_warn_ratelimited(
8991 "%s cannot read MSR entry (%u, 0x%08llx)\n",
8992 __func__, i, gpa + i * sizeof(e));
ff651cb6 8993 return -EINVAL;
e9ac033e
EK
8994 }
8995 if (nested_vmx_store_msr_check(vcpu, &e)) {
8996 pr_warn_ratelimited(
8997 "%s check failed (%u, 0x%x, 0x%x)\n",
8998 __func__, i, e.index, e.reserved);
ff651cb6 8999 return -EINVAL;
e9ac033e
EK
9000 }
9001 if (kvm_get_msr(vcpu, e.index, &e.value)) {
9002 pr_warn_ratelimited(
9003 "%s cannot read MSR (%u, 0x%x)\n",
9004 __func__, i, e.index);
9005 return -EINVAL;
9006 }
9007 if (kvm_write_guest(vcpu->kvm,
9008 gpa + i * sizeof(e) +
ff651cb6 9009 offsetof(struct vmx_msr_entry, value),
e9ac033e
EK
9010 &e.value, sizeof(e.value))) {
9011 pr_warn_ratelimited(
9012 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9013 __func__, i, e.index, e.value);
9014 return -EINVAL;
9015 }
ff651cb6
WV
9016 }
9017 return 0;
9018}
9019
fe3ef05c
NHE
9020/*
9021 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9022 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 9023 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
9024 * guest in a way that will both be appropriate to L1's requests, and our
9025 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9026 * function also has additional necessary side-effects, like setting various
9027 * vcpu->arch fields.
9028 */
9029static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9030{
9031 struct vcpu_vmx *vmx = to_vmx(vcpu);
9032 u32 exec_control;
9033
9034 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9035 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9036 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9037 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9038 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9039 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9040 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9041 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9042 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9043 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9044 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9045 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9046 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9047 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9048 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9049 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9050 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9051 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9052 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9053 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9054 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9055 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9056 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9057 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9058 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9059 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9060 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9061 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9062 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9063 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9064 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9065 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9066 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9067 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9068 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9069 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9070
2996fca0
JK
9071 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9072 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9073 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9074 } else {
9075 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9076 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9077 }
fe3ef05c
NHE
9078 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9079 vmcs12->vm_entry_intr_info_field);
9080 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9081 vmcs12->vm_entry_exception_error_code);
9082 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9083 vmcs12->vm_entry_instruction_len);
9084 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9085 vmcs12->guest_interruptibility_info);
fe3ef05c 9086 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 9087 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
9088 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9089 vmcs12->guest_pending_dbg_exceptions);
9090 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9091 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9092
81dc01f7
WL
9093 if (nested_cpu_has_xsaves(vmcs12))
9094 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
9095 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9096
f4124500
JK
9097 exec_control = vmcs12->pin_based_vm_exec_control;
9098 exec_control |= vmcs_config.pin_based_exec_ctrl;
705699a1
WV
9099 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9100
9101 if (nested_cpu_has_posted_intr(vmcs12)) {
9102 /*
9103 * Note that we use L0's vector here and in
9104 * vmx_deliver_nested_posted_interrupt.
9105 */
9106 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9107 vmx->nested.pi_pending = false;
9108 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9109 vmcs_write64(POSTED_INTR_DESC_ADDR,
9110 page_to_phys(vmx->nested.pi_desc_page) +
9111 (unsigned long)(vmcs12->posted_intr_desc_addr &
9112 (PAGE_SIZE - 1)));
9113 } else
9114 exec_control &= ~PIN_BASED_POSTED_INTR;
9115
f4124500 9116 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 9117
f4124500
JK
9118 vmx->nested.preemption_timer_expired = false;
9119 if (nested_cpu_has_preemption_timer(vmcs12))
9120 vmx_start_preemption_timer(vcpu);
0238ea91 9121
fe3ef05c
NHE
9122 /*
9123 * Whether page-faults are trapped is determined by a combination of
9124 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9125 * If enable_ept, L0 doesn't care about page faults and we should
9126 * set all of these to L1's desires. However, if !enable_ept, L0 does
9127 * care about (at least some) page faults, and because it is not easy
9128 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9129 * to exit on each and every L2 page fault. This is done by setting
9130 * MASK=MATCH=0 and (see below) EB.PF=1.
9131 * Note that below we don't need special code to set EB.PF beyond the
9132 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9133 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9134 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9135 *
9136 * A problem with this approach (when !enable_ept) is that L1 may be
9137 * injected with more page faults than it asked for. This could have
9138 * caused problems, but in practice existing hypervisors don't care.
9139 * To fix this, we will need to emulate the PFEC checking (on the L1
9140 * page tables), using walk_addr(), when injecting PFs to L1.
9141 */
9142 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9143 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9144 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9145 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9146
9147 if (cpu_has_secondary_exec_ctrls()) {
f4124500 9148 exec_control = vmx_secondary_exec_control(vmx);
fe3ef05c
NHE
9149 if (!vmx->rdtscp_enabled)
9150 exec_control &= ~SECONDARY_EXEC_RDTSCP;
9151 /* Take the following fields only from vmcs12 */
696dfd95 9152 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 9153 SECONDARY_EXEC_RDTSCP |
696dfd95 9154 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
b3a2a907 9155 SECONDARY_EXEC_APIC_REGISTER_VIRT);
fe3ef05c
NHE
9156 if (nested_cpu_has(vmcs12,
9157 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9158 exec_control |= vmcs12->secondary_vm_exec_control;
9159
9160 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
fe3ef05c
NHE
9161 /*
9162 * If translation failed, no matter: This feature asks
9163 * to exit when accessing the given address, and if it
9164 * can never be accessed, this feature won't do
9165 * anything anyway.
9166 */
9167 if (!vmx->nested.apic_access_page)
9168 exec_control &=
9169 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9170 else
9171 vmcs_write64(APIC_ACCESS_ADDR,
9172 page_to_phys(vmx->nested.apic_access_page));
f2b93280
WV
9173 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9174 (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))) {
ca3f257a
JK
9175 exec_control |=
9176 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
38b99173 9177 kvm_vcpu_reload_apic_access_page(vcpu);
fe3ef05c
NHE
9178 }
9179
608406e2
WV
9180 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9181 vmcs_write64(EOI_EXIT_BITMAP0,
9182 vmcs12->eoi_exit_bitmap0);
9183 vmcs_write64(EOI_EXIT_BITMAP1,
9184 vmcs12->eoi_exit_bitmap1);
9185 vmcs_write64(EOI_EXIT_BITMAP2,
9186 vmcs12->eoi_exit_bitmap2);
9187 vmcs_write64(EOI_EXIT_BITMAP3,
9188 vmcs12->eoi_exit_bitmap3);
9189 vmcs_write16(GUEST_INTR_STATUS,
9190 vmcs12->guest_intr_status);
9191 }
9192
fe3ef05c
NHE
9193 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9194 }
9195
9196
9197 /*
9198 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9199 * Some constant fields are set here by vmx_set_constant_host_state().
9200 * Other fields are different per CPU, and will be set later when
9201 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9202 */
a547c6db 9203 vmx_set_constant_host_state(vmx);
fe3ef05c
NHE
9204
9205 /*
9206 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9207 * entry, but only if the current (host) sp changed from the value
9208 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9209 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9210 * here we just force the write to happen on entry.
9211 */
9212 vmx->host_rsp = 0;
9213
9214 exec_control = vmx_exec_control(vmx); /* L0's desires */
9215 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9216 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9217 exec_control &= ~CPU_BASED_TPR_SHADOW;
9218 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d
WL
9219
9220 if (exec_control & CPU_BASED_TPR_SHADOW) {
9221 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9222 page_to_phys(vmx->nested.virtual_apic_page));
9223 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9224 }
9225
3af18d9c
WV
9226 if (cpu_has_vmx_msr_bitmap() &&
9227 exec_control & CPU_BASED_USE_MSR_BITMAPS &&
9228 nested_vmx_merge_msr_bitmap(vcpu, vmcs12)) {
9229 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_nested));
9230 } else
9231 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9232
fe3ef05c 9233 /*
3af18d9c 9234 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
9235 * Rather, exit every time.
9236 */
fe3ef05c
NHE
9237 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9238 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9239
9240 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9241
9242 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9243 * bitwise-or of what L1 wants to trap for L2, and what we want to
9244 * trap. Note that CR0.TS also needs updating - we do this later.
9245 */
9246 update_exception_bitmap(vcpu);
9247 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9248 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9249
8049d651
NHE
9250 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9251 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9252 * bits are further modified by vmx_set_efer() below.
9253 */
f4124500 9254 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
9255
9256 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9257 * emulated by vmx_set_efer(), below.
9258 */
2961e876 9259 vm_entry_controls_init(vmx,
8049d651
NHE
9260 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9261 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
9262 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9263
44811c02 9264 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 9265 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02
JK
9266 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9267 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
fe3ef05c
NHE
9268 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9269
9270
9271 set_cr4_guest_host_mask(vmx);
9272
36be0b9d
PB
9273 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9274 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9275
27fc51b2
NHE
9276 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9277 vmcs_write64(TSC_OFFSET,
9278 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9279 else
9280 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
9281
9282 if (enable_vpid) {
9283 /*
9284 * Trivially support vpid by letting L2s share their parent
9285 * L1's vpid. TODO: move to a more elaborate solution, giving
9286 * each L2 its own vpid and exposing the vpid feature to L1.
9287 */
9288 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9289 vmx_flush_tlb(vcpu);
9290 }
9291
155a97a3
NHE
9292 if (nested_cpu_has_ept(vmcs12)) {
9293 kvm_mmu_unload(vcpu);
9294 nested_ept_init_mmu_context(vcpu);
9295 }
9296
fe3ef05c
NHE
9297 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9298 vcpu->arch.efer = vmcs12->guest_ia32_efer;
d1fa0352 9299 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
fe3ef05c
NHE
9300 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9301 else
9302 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9303 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9304 vmx_set_efer(vcpu, vcpu->arch.efer);
9305
9306 /*
9307 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9308 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9309 * The CR0_READ_SHADOW is what L2 should have expected to read given
9310 * the specifications by L1; It's not enough to take
9311 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9312 * have more bits than L1 expected.
9313 */
9314 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9315 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9316
9317 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9318 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9319
9320 /* shadow page tables on either EPT or shadow page tables */
9321 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9322 kvm_mmu_reset_context(vcpu);
9323
feaf0c7d
GN
9324 if (!enable_ept)
9325 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9326
3633cfc3
NHE
9327 /*
9328 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9329 */
9330 if (enable_ept) {
9331 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9332 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9333 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9334 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9335 }
9336
fe3ef05c
NHE
9337 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9338 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9339}
9340
cd232ad0
NHE
9341/*
9342 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9343 * for running an L2 nested guest.
9344 */
9345static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9346{
9347 struct vmcs12 *vmcs12;
9348 struct vcpu_vmx *vmx = to_vmx(vcpu);
9349 int cpu;
9350 struct loaded_vmcs *vmcs02;
384bb783 9351 bool ia32e;
ff651cb6 9352 u32 msr_entry_idx;
cd232ad0
NHE
9353
9354 if (!nested_vmx_check_permission(vcpu) ||
9355 !nested_vmx_check_vmcs12(vcpu))
9356 return 1;
9357
9358 skip_emulated_instruction(vcpu);
9359 vmcs12 = get_vmcs12(vcpu);
9360
012f83cb
AG
9361 if (enable_shadow_vmcs)
9362 copy_shadow_to_vmcs12(vmx);
9363
7c177938
NHE
9364 /*
9365 * The nested entry process starts with enforcing various prerequisites
9366 * on vmcs12 as required by the Intel SDM, and act appropriately when
9367 * they fail: As the SDM explains, some conditions should cause the
9368 * instruction to fail, while others will cause the instruction to seem
9369 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9370 * To speed up the normal (success) code path, we should avoid checking
9371 * for misconfigurations which will anyway be caught by the processor
9372 * when using the merged vmcs02.
9373 */
9374 if (vmcs12->launch_state == launch) {
9375 nested_vmx_failValid(vcpu,
9376 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9377 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9378 return 1;
9379 }
9380
6dfacadd
JK
9381 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9382 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
26539bd0
PB
9383 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9384 return 1;
9385 }
9386
3af18d9c 9387 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
7c177938
NHE
9388 /*TODO: Also verify bits beyond physical address width are 0*/
9389 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9390 return 1;
9391 }
9392
3af18d9c 9393 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
7c177938
NHE
9394 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9395 return 1;
9396 }
9397
f2b93280
WV
9398 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9399 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9400 return 1;
9401 }
9402
e9ac033e
EK
9403 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9404 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9405 return 1;
9406 }
9407
7c177938 9408 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
b9c237bb
WV
9409 vmx->nested.nested_vmx_true_procbased_ctls_low,
9410 vmx->nested.nested_vmx_procbased_ctls_high) ||
7c177938 9411 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
b9c237bb
WV
9412 vmx->nested.nested_vmx_secondary_ctls_low,
9413 vmx->nested.nested_vmx_secondary_ctls_high) ||
7c177938 9414 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
9415 vmx->nested.nested_vmx_pinbased_ctls_low,
9416 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 9417 !vmx_control_verify(vmcs12->vm_exit_controls,
b9c237bb
WV
9418 vmx->nested.nested_vmx_true_exit_ctls_low,
9419 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 9420 !vmx_control_verify(vmcs12->vm_entry_controls,
b9c237bb
WV
9421 vmx->nested.nested_vmx_true_entry_ctls_low,
9422 vmx->nested.nested_vmx_entry_ctls_high))
7c177938
NHE
9423 {
9424 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9425 return 1;
9426 }
9427
9428 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9429 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9430 nested_vmx_failValid(vcpu,
9431 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9432 return 1;
9433 }
9434
b9c237bb 9435 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
7c177938
NHE
9436 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9437 nested_vmx_entry_failure(vcpu, vmcs12,
9438 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9439 return 1;
9440 }
9441 if (vmcs12->vmcs_link_pointer != -1ull) {
9442 nested_vmx_entry_failure(vcpu, vmcs12,
9443 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9444 return 1;
9445 }
9446
384bb783 9447 /*
cb0c8cda 9448 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
9449 * are performed on the field for the IA32_EFER MSR:
9450 * - Bits reserved in the IA32_EFER MSR must be 0.
9451 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9452 * the IA-32e mode guest VM-exit control. It must also be identical
9453 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9454 * CR0.PG) is 1.
9455 */
9456 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9457 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9458 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9459 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9460 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9461 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9462 nested_vmx_entry_failure(vcpu, vmcs12,
9463 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9464 return 1;
9465 }
9466 }
9467
9468 /*
9469 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9470 * IA32_EFER MSR must be 0 in the field for that register. In addition,
9471 * the values of the LMA and LME bits in the field must each be that of
9472 * the host address-space size VM-exit control.
9473 */
9474 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9475 ia32e = (vmcs12->vm_exit_controls &
9476 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9477 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9478 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9479 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9480 nested_vmx_entry_failure(vcpu, vmcs12,
9481 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9482 return 1;
9483 }
9484 }
9485
7c177938
NHE
9486 /*
9487 * We're finally done with prerequisite checking, and can start with
9488 * the nested entry.
9489 */
9490
cd232ad0
NHE
9491 vmcs02 = nested_get_current_vmcs02(vmx);
9492 if (!vmcs02)
9493 return -ENOMEM;
9494
9495 enter_guest_mode(vcpu);
9496
9497 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9498
2996fca0
JK
9499 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9500 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9501
cd232ad0
NHE
9502 cpu = get_cpu();
9503 vmx->loaded_vmcs = vmcs02;
9504 vmx_vcpu_put(vcpu);
9505 vmx_vcpu_load(vcpu, cpu);
9506 vcpu->cpu = cpu;
9507 put_cpu();
9508
36c3cc42
JK
9509 vmx_segment_cache_clear(vmx);
9510
cd232ad0
NHE
9511 prepare_vmcs02(vcpu, vmcs12);
9512
ff651cb6
WV
9513 msr_entry_idx = nested_vmx_load_msr(vcpu,
9514 vmcs12->vm_entry_msr_load_addr,
9515 vmcs12->vm_entry_msr_load_count);
9516 if (msr_entry_idx) {
9517 leave_guest_mode(vcpu);
9518 vmx_load_vmcs01(vcpu);
9519 nested_vmx_entry_failure(vcpu, vmcs12,
9520 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
9521 return 1;
9522 }
9523
9524 vmcs12->launch_state = 1;
9525
6dfacadd 9526 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 9527 return kvm_vcpu_halt(vcpu);
6dfacadd 9528
7af40ad3
JK
9529 vmx->nested.nested_run_pending = 1;
9530
cd232ad0
NHE
9531 /*
9532 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9533 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9534 * returned as far as L1 is concerned. It will only return (and set
9535 * the success flag) when L2 exits (see nested_vmx_vmexit()).
9536 */
9537 return 1;
9538}
9539
4704d0be
NHE
9540/*
9541 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9542 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9543 * This function returns the new value we should put in vmcs12.guest_cr0.
9544 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9545 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9546 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9547 * didn't trap the bit, because if L1 did, so would L0).
9548 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9549 * been modified by L2, and L1 knows it. So just leave the old value of
9550 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
9551 * isn't relevant, because if L0 traps this bit it can set it to anything.
9552 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
9553 * changed these bits, and therefore they need to be updated, but L0
9554 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
9555 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
9556 */
9557static inline unsigned long
9558vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9559{
9560 return
9561 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
9562 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
9563 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
9564 vcpu->arch.cr0_guest_owned_bits));
9565}
9566
9567static inline unsigned long
9568vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9569{
9570 return
9571 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
9572 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
9573 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
9574 vcpu->arch.cr4_guest_owned_bits));
9575}
9576
5f3d5799
JK
9577static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
9578 struct vmcs12 *vmcs12)
9579{
9580 u32 idt_vectoring;
9581 unsigned int nr;
9582
851eb667 9583 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
9584 nr = vcpu->arch.exception.nr;
9585 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9586
9587 if (kvm_exception_is_soft(nr)) {
9588 vmcs12->vm_exit_instruction_len =
9589 vcpu->arch.event_exit_inst_len;
9590 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
9591 } else
9592 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
9593
9594 if (vcpu->arch.exception.has_error_code) {
9595 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
9596 vmcs12->idt_vectoring_error_code =
9597 vcpu->arch.exception.error_code;
9598 }
9599
9600 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 9601 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
9602 vmcs12->idt_vectoring_info_field =
9603 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
9604 } else if (vcpu->arch.interrupt.pending) {
9605 nr = vcpu->arch.interrupt.nr;
9606 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9607
9608 if (vcpu->arch.interrupt.soft) {
9609 idt_vectoring |= INTR_TYPE_SOFT_INTR;
9610 vmcs12->vm_entry_instruction_len =
9611 vcpu->arch.event_exit_inst_len;
9612 } else
9613 idt_vectoring |= INTR_TYPE_EXT_INTR;
9614
9615 vmcs12->idt_vectoring_info_field = idt_vectoring;
9616 }
9617}
9618
b6b8a145
JK
9619static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
9620{
9621 struct vcpu_vmx *vmx = to_vmx(vcpu);
9622
f4124500
JK
9623 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
9624 vmx->nested.preemption_timer_expired) {
9625 if (vmx->nested.nested_run_pending)
9626 return -EBUSY;
9627 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
9628 return 0;
9629 }
9630
b6b8a145 9631 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
220c5672
JK
9632 if (vmx->nested.nested_run_pending ||
9633 vcpu->arch.interrupt.pending)
b6b8a145
JK
9634 return -EBUSY;
9635 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9636 NMI_VECTOR | INTR_TYPE_NMI_INTR |
9637 INTR_INFO_VALID_MASK, 0);
9638 /*
9639 * The NMI-triggered VM exit counts as injection:
9640 * clear this one and block further NMIs.
9641 */
9642 vcpu->arch.nmi_pending = 0;
9643 vmx_set_nmi_mask(vcpu, true);
9644 return 0;
9645 }
9646
9647 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
9648 nested_exit_on_intr(vcpu)) {
9649 if (vmx->nested.nested_run_pending)
9650 return -EBUSY;
9651 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 9652 return 0;
b6b8a145
JK
9653 }
9654
705699a1 9655 return vmx_complete_nested_posted_interrupt(vcpu);
b6b8a145
JK
9656}
9657
f4124500
JK
9658static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
9659{
9660 ktime_t remaining =
9661 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
9662 u64 value;
9663
9664 if (ktime_to_ns(remaining) <= 0)
9665 return 0;
9666
9667 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
9668 do_div(value, 1000000);
9669 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9670}
9671
4704d0be
NHE
9672/*
9673 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
9674 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
9675 * and this function updates it to reflect the changes to the guest state while
9676 * L2 was running (and perhaps made some exits which were handled directly by L0
9677 * without going back to L1), and to reflect the exit reason.
9678 * Note that we do not have to copy here all VMCS fields, just those that
9679 * could have changed by the L2 guest or the exit - i.e., the guest-state and
9680 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
9681 * which already writes to vmcs12 directly.
9682 */
533558bc
JK
9683static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9684 u32 exit_reason, u32 exit_intr_info,
9685 unsigned long exit_qualification)
4704d0be
NHE
9686{
9687 /* update guest state fields: */
9688 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
9689 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
9690
4704d0be
NHE
9691 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
9692 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
9693 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
9694
9695 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
9696 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
9697 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
9698 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
9699 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
9700 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
9701 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
9702 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
9703 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
9704 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
9705 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
9706 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
9707 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
9708 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
9709 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
9710 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
9711 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
9712 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
9713 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
9714 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
9715 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
9716 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
9717 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
9718 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
9719 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
9720 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
9721 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
9722 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
9723 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
9724 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
9725 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
9726 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
9727 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
9728 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
9729 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
9730 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
9731
4704d0be
NHE
9732 vmcs12->guest_interruptibility_info =
9733 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
9734 vmcs12->guest_pending_dbg_exceptions =
9735 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
9736 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
9737 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
9738 else
9739 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 9740
f4124500
JK
9741 if (nested_cpu_has_preemption_timer(vmcs12)) {
9742 if (vmcs12->vm_exit_controls &
9743 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
9744 vmcs12->vmx_preemption_timer_value =
9745 vmx_get_preemption_timer_value(vcpu);
9746 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
9747 }
7854cbca 9748
3633cfc3
NHE
9749 /*
9750 * In some cases (usually, nested EPT), L2 is allowed to change its
9751 * own CR3 without exiting. If it has changed it, we must keep it.
9752 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
9753 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
9754 *
9755 * Additionally, restore L2's PDPTR to vmcs12.
9756 */
9757 if (enable_ept) {
9758 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
9759 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
9760 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
9761 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
9762 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
9763 }
9764
608406e2
WV
9765 if (nested_cpu_has_vid(vmcs12))
9766 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
9767
c18911a2
JK
9768 vmcs12->vm_entry_controls =
9769 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 9770 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 9771
2996fca0
JK
9772 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
9773 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
9774 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9775 }
9776
4704d0be
NHE
9777 /* TODO: These cannot have changed unless we have MSR bitmaps and
9778 * the relevant bit asks not to trap the change */
b8c07d55 9779 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 9780 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
9781 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
9782 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
9783 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
9784 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
9785 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
36be0b9d
PB
9786 if (vmx_mpx_supported())
9787 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
81dc01f7
WL
9788 if (nested_cpu_has_xsaves(vmcs12))
9789 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
4704d0be
NHE
9790
9791 /* update exit information fields: */
9792
533558bc
JK
9793 vmcs12->vm_exit_reason = exit_reason;
9794 vmcs12->exit_qualification = exit_qualification;
4704d0be 9795
533558bc 9796 vmcs12->vm_exit_intr_info = exit_intr_info;
c0d1c770
JK
9797 if ((vmcs12->vm_exit_intr_info &
9798 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
9799 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
9800 vmcs12->vm_exit_intr_error_code =
9801 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 9802 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
9803 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
9804 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9805
5f3d5799
JK
9806 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
9807 /* vm_entry_intr_info_field is cleared on exit. Emulate this
9808 * instead of reading the real value. */
4704d0be 9809 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
9810
9811 /*
9812 * Transfer the event that L0 or L1 may wanted to inject into
9813 * L2 to IDT_VECTORING_INFO_FIELD.
9814 */
9815 vmcs12_save_pending_event(vcpu, vmcs12);
9816 }
9817
9818 /*
9819 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
9820 * preserved above and would only end up incorrectly in L1.
9821 */
9822 vcpu->arch.nmi_injected = false;
9823 kvm_clear_exception_queue(vcpu);
9824 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
9825}
9826
9827/*
9828 * A part of what we need to when the nested L2 guest exits and we want to
9829 * run its L1 parent, is to reset L1's guest state to the host state specified
9830 * in vmcs12.
9831 * This function is to be called not only on normal nested exit, but also on
9832 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
9833 * Failures During or After Loading Guest State").
9834 * This function should be called when the active VMCS is L1's (vmcs01).
9835 */
733568f9
JK
9836static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
9837 struct vmcs12 *vmcs12)
4704d0be 9838{
21feb4eb
ACL
9839 struct kvm_segment seg;
9840
4704d0be
NHE
9841 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
9842 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 9843 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
9844 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9845 else
9846 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9847 vmx_set_efer(vcpu, vcpu->arch.efer);
9848
9849 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
9850 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 9851 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
9852 /*
9853 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
9854 * actually changed, because it depends on the current state of
9855 * fpu_active (which may have changed).
9856 * Note that vmx_set_cr0 refers to efer set above.
9857 */
9e3e4dbf 9858 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be
NHE
9859 /*
9860 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
9861 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
9862 * but we also need to update cr0_guest_host_mask and exception_bitmap.
9863 */
9864 update_exception_bitmap(vcpu);
9865 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
9866 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9867
9868 /*
9869 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
9870 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
9871 */
9872 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
9873 kvm_set_cr4(vcpu, vmcs12->host_cr4);
9874
29bf08f1 9875 nested_ept_uninit_mmu_context(vcpu);
155a97a3 9876
4704d0be
NHE
9877 kvm_set_cr3(vcpu, vmcs12->host_cr3);
9878 kvm_mmu_reset_context(vcpu);
9879
feaf0c7d
GN
9880 if (!enable_ept)
9881 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
9882
4704d0be
NHE
9883 if (enable_vpid) {
9884 /*
9885 * Trivially support vpid by letting L2s share their parent
9886 * L1's vpid. TODO: move to a more elaborate solution, giving
9887 * each L2 its own vpid and exposing the vpid feature to L1.
9888 */
9889 vmx_flush_tlb(vcpu);
9890 }
9891
9892
9893 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
9894 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
9895 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
9896 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
9897 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 9898
36be0b9d
PB
9899 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
9900 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
9901 vmcs_write64(GUEST_BNDCFGS, 0);
9902
44811c02 9903 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 9904 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
9905 vcpu->arch.pat = vmcs12->host_ia32_pat;
9906 }
4704d0be
NHE
9907 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
9908 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
9909 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 9910
21feb4eb
ACL
9911 /* Set L1 segment info according to Intel SDM
9912 27.5.2 Loading Host Segment and Descriptor-Table Registers */
9913 seg = (struct kvm_segment) {
9914 .base = 0,
9915 .limit = 0xFFFFFFFF,
9916 .selector = vmcs12->host_cs_selector,
9917 .type = 11,
9918 .present = 1,
9919 .s = 1,
9920 .g = 1
9921 };
9922 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
9923 seg.l = 1;
9924 else
9925 seg.db = 1;
9926 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
9927 seg = (struct kvm_segment) {
9928 .base = 0,
9929 .limit = 0xFFFFFFFF,
9930 .type = 3,
9931 .present = 1,
9932 .s = 1,
9933 .db = 1,
9934 .g = 1
9935 };
9936 seg.selector = vmcs12->host_ds_selector;
9937 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
9938 seg.selector = vmcs12->host_es_selector;
9939 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
9940 seg.selector = vmcs12->host_ss_selector;
9941 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
9942 seg.selector = vmcs12->host_fs_selector;
9943 seg.base = vmcs12->host_fs_base;
9944 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
9945 seg.selector = vmcs12->host_gs_selector;
9946 seg.base = vmcs12->host_gs_base;
9947 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
9948 seg = (struct kvm_segment) {
205befd9 9949 .base = vmcs12->host_tr_base,
21feb4eb
ACL
9950 .limit = 0x67,
9951 .selector = vmcs12->host_tr_selector,
9952 .type = 11,
9953 .present = 1
9954 };
9955 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
9956
503cd0c5
JK
9957 kvm_set_dr(vcpu, 7, 0x400);
9958 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 9959
3af18d9c
WV
9960 if (cpu_has_vmx_msr_bitmap())
9961 vmx_set_msr_bitmap(vcpu);
9962
ff651cb6
WV
9963 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
9964 vmcs12->vm_exit_msr_load_count))
9965 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
9966}
9967
9968/*
9969 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
9970 * and modify vmcs12 to make it see what it would expect to see there if
9971 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
9972 */
533558bc
JK
9973static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
9974 u32 exit_intr_info,
9975 unsigned long exit_qualification)
4704d0be
NHE
9976{
9977 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
9978 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9979
5f3d5799
JK
9980 /* trying to cancel vmlaunch/vmresume is a bug */
9981 WARN_ON_ONCE(vmx->nested.nested_run_pending);
9982
4704d0be 9983 leave_guest_mode(vcpu);
533558bc
JK
9984 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
9985 exit_qualification);
4704d0be 9986
ff651cb6
WV
9987 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
9988 vmcs12->vm_exit_msr_store_count))
9989 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
9990
f3380ca5
WL
9991 vmx_load_vmcs01(vcpu);
9992
77b0f5d6
BD
9993 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
9994 && nested_exit_intr_ack_set(vcpu)) {
9995 int irq = kvm_cpu_get_interrupt(vcpu);
9996 WARN_ON(irq < 0);
9997 vmcs12->vm_exit_intr_info = irq |
9998 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
9999 }
10000
542060ea
JK
10001 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10002 vmcs12->exit_qualification,
10003 vmcs12->idt_vectoring_info_field,
10004 vmcs12->vm_exit_intr_info,
10005 vmcs12->vm_exit_intr_error_code,
10006 KVM_ISA_VMX);
4704d0be 10007
2961e876
GN
10008 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10009 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
36c3cc42
JK
10010 vmx_segment_cache_clear(vmx);
10011
4704d0be
NHE
10012 /* if no vmcs02 cache requested, remove the one we used */
10013 if (VMCS02_POOL_SIZE == 0)
10014 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10015
10016 load_vmcs12_host_state(vcpu, vmcs12);
10017
27fc51b2 10018 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
10019 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10020
10021 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10022 vmx->host_rsp = 0;
10023
10024 /* Unpin physical memory we referred to in vmcs02 */
10025 if (vmx->nested.apic_access_page) {
10026 nested_release_page(vmx->nested.apic_access_page);
48d89b92 10027 vmx->nested.apic_access_page = NULL;
4704d0be 10028 }
a7c0b07d
WL
10029 if (vmx->nested.virtual_apic_page) {
10030 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 10031 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 10032 }
705699a1
WV
10033 if (vmx->nested.pi_desc_page) {
10034 kunmap(vmx->nested.pi_desc_page);
10035 nested_release_page(vmx->nested.pi_desc_page);
10036 vmx->nested.pi_desc_page = NULL;
10037 vmx->nested.pi_desc = NULL;
10038 }
4704d0be 10039
38b99173
TC
10040 /*
10041 * We are now running in L2, mmu_notifier will force to reload the
10042 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10043 */
10044 kvm_vcpu_reload_apic_access_page(vcpu);
10045
4704d0be
NHE
10046 /*
10047 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10048 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10049 * success or failure flag accordingly.
10050 */
10051 if (unlikely(vmx->fail)) {
10052 vmx->fail = 0;
10053 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10054 } else
10055 nested_vmx_succeed(vcpu);
012f83cb
AG
10056 if (enable_shadow_vmcs)
10057 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
10058
10059 /* in case we halted in L2 */
10060 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
10061}
10062
42124925
JK
10063/*
10064 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10065 */
10066static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10067{
10068 if (is_guest_mode(vcpu))
533558bc 10069 nested_vmx_vmexit(vcpu, -1, 0, 0);
42124925
JK
10070 free_nested(to_vmx(vcpu));
10071}
10072
7c177938
NHE
10073/*
10074 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10075 * 23.7 "VM-entry failures during or after loading guest state" (this also
10076 * lists the acceptable exit-reason and exit-qualification parameters).
10077 * It should only be called before L2 actually succeeded to run, and when
10078 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10079 */
10080static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10081 struct vmcs12 *vmcs12,
10082 u32 reason, unsigned long qualification)
10083{
10084 load_vmcs12_host_state(vcpu, vmcs12);
10085 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10086 vmcs12->exit_qualification = qualification;
10087 nested_vmx_succeed(vcpu);
012f83cb
AG
10088 if (enable_shadow_vmcs)
10089 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
10090}
10091
8a76d7f2
JR
10092static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10093 struct x86_instruction_info *info,
10094 enum x86_intercept_stage stage)
10095{
10096 return X86EMUL_CONTINUE;
10097}
10098
48d89b92 10099static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 10100{
b4a2d31d
RK
10101 if (ple_gap)
10102 shrink_ple_window(vcpu);
ae97a3b8
RK
10103}
10104
843e4330
KH
10105static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10106 struct kvm_memory_slot *slot)
10107{
10108 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10109 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10110}
10111
10112static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10113 struct kvm_memory_slot *slot)
10114{
10115 kvm_mmu_slot_set_dirty(kvm, slot);
10116}
10117
10118static void vmx_flush_log_dirty(struct kvm *kvm)
10119{
10120 kvm_flush_pml_buffers(kvm);
10121}
10122
10123static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10124 struct kvm_memory_slot *memslot,
10125 gfn_t offset, unsigned long mask)
10126{
10127 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10128}
10129
cbdd1bea 10130static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
10131 .cpu_has_kvm_support = cpu_has_kvm_support,
10132 .disabled_by_bios = vmx_disabled_by_bios,
10133 .hardware_setup = hardware_setup,
10134 .hardware_unsetup = hardware_unsetup,
002c7f7c 10135 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
10136 .hardware_enable = hardware_enable,
10137 .hardware_disable = hardware_disable,
04547156 10138 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
10139
10140 .vcpu_create = vmx_create_vcpu,
10141 .vcpu_free = vmx_free_vcpu,
04d2cc77 10142 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 10143
04d2cc77 10144 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
10145 .vcpu_load = vmx_vcpu_load,
10146 .vcpu_put = vmx_vcpu_put,
10147
c8639010 10148 .update_db_bp_intercept = update_exception_bitmap,
6aa8b732
AK
10149 .get_msr = vmx_get_msr,
10150 .set_msr = vmx_set_msr,
10151 .get_segment_base = vmx_get_segment_base,
10152 .get_segment = vmx_get_segment,
10153 .set_segment = vmx_set_segment,
2e4d2653 10154 .get_cpl = vmx_get_cpl,
6aa8b732 10155 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 10156 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 10157 .decache_cr3 = vmx_decache_cr3,
25c4c276 10158 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 10159 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
10160 .set_cr3 = vmx_set_cr3,
10161 .set_cr4 = vmx_set_cr4,
6aa8b732 10162 .set_efer = vmx_set_efer,
6aa8b732
AK
10163 .get_idt = vmx_get_idt,
10164 .set_idt = vmx_set_idt,
10165 .get_gdt = vmx_get_gdt,
10166 .set_gdt = vmx_set_gdt,
73aaf249
JK
10167 .get_dr6 = vmx_get_dr6,
10168 .set_dr6 = vmx_set_dr6,
020df079 10169 .set_dr7 = vmx_set_dr7,
81908bf4 10170 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 10171 .cache_reg = vmx_cache_reg,
6aa8b732
AK
10172 .get_rflags = vmx_get_rflags,
10173 .set_rflags = vmx_set_rflags,
02daab21 10174 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
10175
10176 .tlb_flush = vmx_flush_tlb,
6aa8b732 10177
6aa8b732 10178 .run = vmx_vcpu_run,
6062d012 10179 .handle_exit = vmx_handle_exit,
6aa8b732 10180 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
10181 .set_interrupt_shadow = vmx_set_interrupt_shadow,
10182 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 10183 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 10184 .set_irq = vmx_inject_irq,
95ba8273 10185 .set_nmi = vmx_inject_nmi,
298101da 10186 .queue_exception = vmx_queue_exception,
b463a6f7 10187 .cancel_injection = vmx_cancel_injection,
78646121 10188 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 10189 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
10190 .get_nmi_mask = vmx_get_nmi_mask,
10191 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
10192 .enable_nmi_window = enable_nmi_window,
10193 .enable_irq_window = enable_irq_window,
10194 .update_cr8_intercept = update_cr8_intercept,
8d14695f 10195 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 10196 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
c7c9c56c
YZ
10197 .vm_has_apicv = vmx_vm_has_apicv,
10198 .load_eoi_exitmap = vmx_load_eoi_exitmap,
10199 .hwapic_irr_update = vmx_hwapic_irr_update,
10200 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
10201 .sync_pir_to_irr = vmx_sync_pir_to_irr,
10202 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 10203
cbc94022 10204 .set_tss_addr = vmx_set_tss_addr,
67253af5 10205 .get_tdp_level = get_ept_level,
4b12f0de 10206 .get_mt_mask = vmx_get_mt_mask,
229456fc 10207
586f9607 10208 .get_exit_info = vmx_get_exit_info,
586f9607 10209
17cc3935 10210 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
10211
10212 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
10213
10214 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 10215 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
10216
10217 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
10218
10219 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 10220
4051b188 10221 .set_tsc_khz = vmx_set_tsc_khz,
ba904635 10222 .read_tsc_offset = vmx_read_tsc_offset,
99e3e30a 10223 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 10224 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 10225 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 10226 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
10227
10228 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
10229
10230 .check_intercept = vmx_check_intercept,
a547c6db 10231 .handle_external_intr = vmx_handle_external_intr,
da8999d3 10232 .mpx_supported = vmx_mpx_supported,
55412b2e 10233 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
10234
10235 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
10236
10237 .sched_in = vmx_sched_in,
843e4330
KH
10238
10239 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10240 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10241 .flush_log_dirty = vmx_flush_log_dirty,
10242 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
6aa8b732
AK
10243};
10244
10245static int __init vmx_init(void)
10246{
34a1cd60
TC
10247 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10248 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 10249 if (r)
34a1cd60 10250 return r;
25c5f225 10251
8f536b76
ZY
10252#ifdef CONFIG_KEXEC
10253 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10254 crash_vmclear_local_loaded_vmcss);
10255#endif
10256
fdef3ad1 10257 return 0;
6aa8b732
AK
10258}
10259
10260static void __exit vmx_exit(void)
10261{
8f536b76 10262#ifdef CONFIG_KEXEC
3b63a43f 10263 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
10264 synchronize_rcu();
10265#endif
10266
cb498ea2 10267 kvm_exit();
6aa8b732
AK
10268}
10269
10270module_init(vmx_init)
10271module_exit(vmx_exit)