]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - arch/x86/kvm/x86.c
kvm: mmu: Don't read PDPTEs when paging is not enabled
[mirror_ubuntu-disco-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85 * - enable syscall per default because its emulated by KVM
86 * - enable LME and LMA per default on 64 bit KVM
87 */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32 __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64 __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 0;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
142
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
145
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
149
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
152
153 #define KVM_NR_SHARED_MSRS 16
154
155 struct kvm_shared_msrs_global {
156 int nr;
157 u32 msrs[KVM_NR_SHARED_MSRS];
158 };
159
160 struct kvm_shared_msrs {
161 struct user_return_notifier urn;
162 bool registered;
163 struct kvm_shared_msr_values {
164 u64 host;
165 u64 curr;
166 } values[KVM_NR_SHARED_MSRS];
167 };
168
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
171
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173 { "pf_fixed", VCPU_STAT(pf_fixed) },
174 { "pf_guest", VCPU_STAT(pf_guest) },
175 { "tlb_flush", VCPU_STAT(tlb_flush) },
176 { "invlpg", VCPU_STAT(invlpg) },
177 { "exits", VCPU_STAT(exits) },
178 { "io_exits", VCPU_STAT(io_exits) },
179 { "mmio_exits", VCPU_STAT(mmio_exits) },
180 { "signal_exits", VCPU_STAT(signal_exits) },
181 { "irq_window", VCPU_STAT(irq_window_exits) },
182 { "nmi_window", VCPU_STAT(nmi_window_exits) },
183 { "halt_exits", VCPU_STAT(halt_exits) },
184 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
188 { "hypercalls", VCPU_STAT(hypercalls) },
189 { "request_irq", VCPU_STAT(request_irq_exits) },
190 { "irq_exits", VCPU_STAT(irq_exits) },
191 { "host_state_reload", VCPU_STAT(host_state_reload) },
192 { "fpu_reload", VCPU_STAT(fpu_reload) },
193 { "insn_emulation", VCPU_STAT(insn_emulation) },
194 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195 { "irq_injections", VCPU_STAT(irq_injections) },
196 { "nmi_injections", VCPU_STAT(nmi_injections) },
197 { "req_event", VCPU_STAT(req_event) },
198 { "l1d_flush", VCPU_STAT(l1d_flush) },
199 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
200 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
201 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
202 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
203 { "mmu_flooded", VM_STAT(mmu_flooded) },
204 { "mmu_recycled", VM_STAT(mmu_recycled) },
205 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
206 { "mmu_unsync", VM_STAT(mmu_unsync) },
207 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
208 { "largepages", VM_STAT(lpages) },
209 { "max_mmu_page_hash_collisions",
210 VM_STAT(max_mmu_page_hash_collisions) },
211 { NULL }
212 };
213
214 u64 __read_mostly host_xcr0;
215
216 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
217
218 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
219 {
220 int i;
221 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
222 vcpu->arch.apf.gfns[i] = ~0;
223 }
224
225 static void kvm_on_user_return(struct user_return_notifier *urn)
226 {
227 unsigned slot;
228 struct kvm_shared_msrs *locals
229 = container_of(urn, struct kvm_shared_msrs, urn);
230 struct kvm_shared_msr_values *values;
231 unsigned long flags;
232
233 /*
234 * Disabling irqs at this point since the following code could be
235 * interrupted and executed through kvm_arch_hardware_disable()
236 */
237 local_irq_save(flags);
238 if (locals->registered) {
239 locals->registered = false;
240 user_return_notifier_unregister(urn);
241 }
242 local_irq_restore(flags);
243 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
244 values = &locals->values[slot];
245 if (values->host != values->curr) {
246 wrmsrl(shared_msrs_global.msrs[slot], values->host);
247 values->curr = values->host;
248 }
249 }
250 }
251
252 static void shared_msr_update(unsigned slot, u32 msr)
253 {
254 u64 value;
255 unsigned int cpu = smp_processor_id();
256 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
257
258 /* only read, and nobody should modify it at this time,
259 * so don't need lock */
260 if (slot >= shared_msrs_global.nr) {
261 printk(KERN_ERR "kvm: invalid MSR slot!");
262 return;
263 }
264 rdmsrl_safe(msr, &value);
265 smsr->values[slot].host = value;
266 smsr->values[slot].curr = value;
267 }
268
269 void kvm_define_shared_msr(unsigned slot, u32 msr)
270 {
271 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
272 shared_msrs_global.msrs[slot] = msr;
273 if (slot >= shared_msrs_global.nr)
274 shared_msrs_global.nr = slot + 1;
275 }
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
277
278 static void kvm_shared_msr_cpu_online(void)
279 {
280 unsigned i;
281
282 for (i = 0; i < shared_msrs_global.nr; ++i)
283 shared_msr_update(i, shared_msrs_global.msrs[i]);
284 }
285
286 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
287 {
288 unsigned int cpu = smp_processor_id();
289 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
290 int err;
291
292 if (((value ^ smsr->values[slot].curr) & mask) == 0)
293 return 0;
294 smsr->values[slot].curr = value;
295 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
296 if (err)
297 return 1;
298
299 if (!smsr->registered) {
300 smsr->urn.on_user_return = kvm_on_user_return;
301 user_return_notifier_register(&smsr->urn);
302 smsr->registered = true;
303 }
304 return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
307
308 static void drop_user_return_notifiers(void)
309 {
310 unsigned int cpu = smp_processor_id();
311 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
312
313 if (smsr->registered)
314 kvm_on_user_return(&smsr->urn);
315 }
316
317 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
318 {
319 return vcpu->arch.apic_base;
320 }
321 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
322
323 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
324 {
325 return kvm_apic_mode(kvm_get_apic_base(vcpu));
326 }
327 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
328
329 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
330 {
331 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
332 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
333 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
334 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
335
336 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
337 return 1;
338 if (!msr_info->host_initiated) {
339 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
340 return 1;
341 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
342 return 1;
343 }
344
345 kvm_lapic_set_base(vcpu, msr_info->data);
346 return 0;
347 }
348 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
349
350 asmlinkage __visible void kvm_spurious_fault(void)
351 {
352 /* Fault while not rebooting. We want the trace. */
353 BUG();
354 }
355 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
356
357 #define EXCPT_BENIGN 0
358 #define EXCPT_CONTRIBUTORY 1
359 #define EXCPT_PF 2
360
361 static int exception_class(int vector)
362 {
363 switch (vector) {
364 case PF_VECTOR:
365 return EXCPT_PF;
366 case DE_VECTOR:
367 case TS_VECTOR:
368 case NP_VECTOR:
369 case SS_VECTOR:
370 case GP_VECTOR:
371 return EXCPT_CONTRIBUTORY;
372 default:
373 break;
374 }
375 return EXCPT_BENIGN;
376 }
377
378 #define EXCPT_FAULT 0
379 #define EXCPT_TRAP 1
380 #define EXCPT_ABORT 2
381 #define EXCPT_INTERRUPT 3
382
383 static int exception_type(int vector)
384 {
385 unsigned int mask;
386
387 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
388 return EXCPT_INTERRUPT;
389
390 mask = 1 << vector;
391
392 /* #DB is trap, as instruction watchpoints are handled elsewhere */
393 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
394 return EXCPT_TRAP;
395
396 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
397 return EXCPT_ABORT;
398
399 /* Reserved exceptions will result in fault */
400 return EXCPT_FAULT;
401 }
402
403 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
404 unsigned nr, bool has_error, u32 error_code,
405 bool reinject)
406 {
407 u32 prev_nr;
408 int class1, class2;
409
410 kvm_make_request(KVM_REQ_EVENT, vcpu);
411
412 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
413 queue:
414 if (has_error && !is_protmode(vcpu))
415 has_error = false;
416 if (reinject) {
417 /*
418 * On vmentry, vcpu->arch.exception.pending is only
419 * true if an event injection was blocked by
420 * nested_run_pending. In that case, however,
421 * vcpu_enter_guest requests an immediate exit,
422 * and the guest shouldn't proceed far enough to
423 * need reinjection.
424 */
425 WARN_ON_ONCE(vcpu->arch.exception.pending);
426 vcpu->arch.exception.injected = true;
427 } else {
428 vcpu->arch.exception.pending = true;
429 vcpu->arch.exception.injected = false;
430 }
431 vcpu->arch.exception.has_error_code = has_error;
432 vcpu->arch.exception.nr = nr;
433 vcpu->arch.exception.error_code = error_code;
434 return;
435 }
436
437 /* to check exception */
438 prev_nr = vcpu->arch.exception.nr;
439 if (prev_nr == DF_VECTOR) {
440 /* triple fault -> shutdown */
441 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
442 return;
443 }
444 class1 = exception_class(prev_nr);
445 class2 = exception_class(nr);
446 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
447 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
448 /*
449 * Generate double fault per SDM Table 5-5. Set
450 * exception.pending = true so that the double fault
451 * can trigger a nested vmexit.
452 */
453 vcpu->arch.exception.pending = true;
454 vcpu->arch.exception.injected = false;
455 vcpu->arch.exception.has_error_code = true;
456 vcpu->arch.exception.nr = DF_VECTOR;
457 vcpu->arch.exception.error_code = 0;
458 } else
459 /* replace previous exception with a new one in a hope
460 that instruction re-execution will regenerate lost
461 exception */
462 goto queue;
463 }
464
465 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
466 {
467 kvm_multiple_exception(vcpu, nr, false, 0, false);
468 }
469 EXPORT_SYMBOL_GPL(kvm_queue_exception);
470
471 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
472 {
473 kvm_multiple_exception(vcpu, nr, false, 0, true);
474 }
475 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
476
477 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
478 {
479 if (err)
480 kvm_inject_gp(vcpu, 0);
481 else
482 return kvm_skip_emulated_instruction(vcpu);
483
484 return 1;
485 }
486 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
487
488 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
489 {
490 ++vcpu->stat.pf_guest;
491 vcpu->arch.exception.nested_apf =
492 is_guest_mode(vcpu) && fault->async_page_fault;
493 if (vcpu->arch.exception.nested_apf)
494 vcpu->arch.apf.nested_apf_token = fault->address;
495 else
496 vcpu->arch.cr2 = fault->address;
497 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
498 }
499 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
500
501 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
502 {
503 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
504 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
505 else
506 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
507
508 return fault->nested_page_fault;
509 }
510
511 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
512 {
513 atomic_inc(&vcpu->arch.nmi_queued);
514 kvm_make_request(KVM_REQ_NMI, vcpu);
515 }
516 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
517
518 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
519 {
520 kvm_multiple_exception(vcpu, nr, true, error_code, false);
521 }
522 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
523
524 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
525 {
526 kvm_multiple_exception(vcpu, nr, true, error_code, true);
527 }
528 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
529
530 /*
531 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
532 * a #GP and return false.
533 */
534 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
535 {
536 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
537 return true;
538 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
539 return false;
540 }
541 EXPORT_SYMBOL_GPL(kvm_require_cpl);
542
543 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
544 {
545 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
546 return true;
547
548 kvm_queue_exception(vcpu, UD_VECTOR);
549 return false;
550 }
551 EXPORT_SYMBOL_GPL(kvm_require_dr);
552
553 /*
554 * This function will be used to read from the physical memory of the currently
555 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
556 * can read from guest physical or from the guest's guest physical memory.
557 */
558 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
559 gfn_t ngfn, void *data, int offset, int len,
560 u32 access)
561 {
562 struct x86_exception exception;
563 gfn_t real_gfn;
564 gpa_t ngpa;
565
566 ngpa = gfn_to_gpa(ngfn);
567 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
568 if (real_gfn == UNMAPPED_GVA)
569 return -EFAULT;
570
571 real_gfn = gpa_to_gfn(real_gfn);
572
573 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
574 }
575 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
576
577 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
578 void *data, int offset, int len, u32 access)
579 {
580 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
581 data, offset, len, access);
582 }
583
584 /*
585 * Load the pae pdptrs. Return true is they are all valid.
586 */
587 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
588 {
589 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
590 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
591 int i;
592 int ret;
593 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
594
595 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
596 offset * sizeof(u64), sizeof(pdpte),
597 PFERR_USER_MASK|PFERR_WRITE_MASK);
598 if (ret < 0) {
599 ret = 0;
600 goto out;
601 }
602 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
603 if ((pdpte[i] & PT_PRESENT_MASK) &&
604 (pdpte[i] &
605 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
606 ret = 0;
607 goto out;
608 }
609 }
610 ret = 1;
611
612 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
613 __set_bit(VCPU_EXREG_PDPTR,
614 (unsigned long *)&vcpu->arch.regs_avail);
615 __set_bit(VCPU_EXREG_PDPTR,
616 (unsigned long *)&vcpu->arch.regs_dirty);
617 out:
618
619 return ret;
620 }
621 EXPORT_SYMBOL_GPL(load_pdptrs);
622
623 bool pdptrs_changed(struct kvm_vcpu *vcpu)
624 {
625 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
626 bool changed = true;
627 int offset;
628 gfn_t gfn;
629 int r;
630
631 if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
632 return false;
633
634 if (!test_bit(VCPU_EXREG_PDPTR,
635 (unsigned long *)&vcpu->arch.regs_avail))
636 return true;
637
638 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
639 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
640 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
641 PFERR_USER_MASK | PFERR_WRITE_MASK);
642 if (r < 0)
643 goto out;
644 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
645 out:
646
647 return changed;
648 }
649 EXPORT_SYMBOL_GPL(pdptrs_changed);
650
651 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
652 {
653 unsigned long old_cr0 = kvm_read_cr0(vcpu);
654 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
655
656 cr0 |= X86_CR0_ET;
657
658 #ifdef CONFIG_X86_64
659 if (cr0 & 0xffffffff00000000UL)
660 return 1;
661 #endif
662
663 cr0 &= ~CR0_RESERVED_BITS;
664
665 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
666 return 1;
667
668 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
669 return 1;
670
671 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
672 #ifdef CONFIG_X86_64
673 if ((vcpu->arch.efer & EFER_LME)) {
674 int cs_db, cs_l;
675
676 if (!is_pae(vcpu))
677 return 1;
678 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
679 if (cs_l)
680 return 1;
681 } else
682 #endif
683 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
684 kvm_read_cr3(vcpu)))
685 return 1;
686 }
687
688 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
689 return 1;
690
691 kvm_x86_ops->set_cr0(vcpu, cr0);
692
693 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
694 kvm_clear_async_pf_completion_queue(vcpu);
695 kvm_async_pf_hash_reset(vcpu);
696 }
697
698 if ((cr0 ^ old_cr0) & update_bits)
699 kvm_mmu_reset_context(vcpu);
700
701 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
702 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
703 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
704 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
705
706 return 0;
707 }
708 EXPORT_SYMBOL_GPL(kvm_set_cr0);
709
710 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
711 {
712 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
713 }
714 EXPORT_SYMBOL_GPL(kvm_lmsw);
715
716 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
717 {
718 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
719 !vcpu->guest_xcr0_loaded) {
720 /* kvm_set_xcr() also depends on this */
721 if (vcpu->arch.xcr0 != host_xcr0)
722 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
723 vcpu->guest_xcr0_loaded = 1;
724 }
725 }
726
727 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
728 {
729 if (vcpu->guest_xcr0_loaded) {
730 if (vcpu->arch.xcr0 != host_xcr0)
731 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
732 vcpu->guest_xcr0_loaded = 0;
733 }
734 }
735
736 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
737 {
738 u64 xcr0 = xcr;
739 u64 old_xcr0 = vcpu->arch.xcr0;
740 u64 valid_bits;
741
742 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
743 if (index != XCR_XFEATURE_ENABLED_MASK)
744 return 1;
745 if (!(xcr0 & XFEATURE_MASK_FP))
746 return 1;
747 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
748 return 1;
749
750 /*
751 * Do not allow the guest to set bits that we do not support
752 * saving. However, xcr0 bit 0 is always set, even if the
753 * emulated CPU does not support XSAVE (see fx_init).
754 */
755 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
756 if (xcr0 & ~valid_bits)
757 return 1;
758
759 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
760 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
761 return 1;
762
763 if (xcr0 & XFEATURE_MASK_AVX512) {
764 if (!(xcr0 & XFEATURE_MASK_YMM))
765 return 1;
766 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
767 return 1;
768 }
769 vcpu->arch.xcr0 = xcr0;
770
771 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
772 kvm_update_cpuid(vcpu);
773 return 0;
774 }
775
776 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
777 {
778 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
779 __kvm_set_xcr(vcpu, index, xcr)) {
780 kvm_inject_gp(vcpu, 0);
781 return 1;
782 }
783 return 0;
784 }
785 EXPORT_SYMBOL_GPL(kvm_set_xcr);
786
787 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
788 {
789 unsigned long old_cr4 = kvm_read_cr4(vcpu);
790 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
791 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
792
793 if (cr4 & CR4_RESERVED_BITS)
794 return 1;
795
796 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
797 return 1;
798
799 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
800 return 1;
801
802 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
803 return 1;
804
805 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
806 return 1;
807
808 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
809 return 1;
810
811 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
812 return 1;
813
814 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
815 return 1;
816
817 if (is_long_mode(vcpu)) {
818 if (!(cr4 & X86_CR4_PAE))
819 return 1;
820 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
821 && ((cr4 ^ old_cr4) & pdptr_bits)
822 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
823 kvm_read_cr3(vcpu)))
824 return 1;
825
826 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
827 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
828 return 1;
829
830 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
831 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
832 return 1;
833 }
834
835 if (kvm_x86_ops->set_cr4(vcpu, cr4))
836 return 1;
837
838 if (((cr4 ^ old_cr4) & pdptr_bits) ||
839 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
840 kvm_mmu_reset_context(vcpu);
841
842 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
843 kvm_update_cpuid(vcpu);
844
845 return 0;
846 }
847 EXPORT_SYMBOL_GPL(kvm_set_cr4);
848
849 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
850 {
851 bool skip_tlb_flush = false;
852 #ifdef CONFIG_X86_64
853 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
854
855 if (pcid_enabled) {
856 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
857 cr3 &= ~X86_CR3_PCID_NOFLUSH;
858 }
859 #endif
860
861 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
862 if (!skip_tlb_flush) {
863 kvm_mmu_sync_roots(vcpu);
864 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
865 }
866 return 0;
867 }
868
869 if (is_long_mode(vcpu) &&
870 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
871 return 1;
872 else if (is_pae(vcpu) && is_paging(vcpu) &&
873 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
874 return 1;
875
876 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
877 vcpu->arch.cr3 = cr3;
878 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
879
880 return 0;
881 }
882 EXPORT_SYMBOL_GPL(kvm_set_cr3);
883
884 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
885 {
886 if (cr8 & CR8_RESERVED_BITS)
887 return 1;
888 if (lapic_in_kernel(vcpu))
889 kvm_lapic_set_tpr(vcpu, cr8);
890 else
891 vcpu->arch.cr8 = cr8;
892 return 0;
893 }
894 EXPORT_SYMBOL_GPL(kvm_set_cr8);
895
896 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
897 {
898 if (lapic_in_kernel(vcpu))
899 return kvm_lapic_get_cr8(vcpu);
900 else
901 return vcpu->arch.cr8;
902 }
903 EXPORT_SYMBOL_GPL(kvm_get_cr8);
904
905 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
906 {
907 int i;
908
909 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
910 for (i = 0; i < KVM_NR_DB_REGS; i++)
911 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
912 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
913 }
914 }
915
916 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
917 {
918 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
919 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
920 }
921
922 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
923 {
924 unsigned long dr7;
925
926 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
927 dr7 = vcpu->arch.guest_debug_dr7;
928 else
929 dr7 = vcpu->arch.dr7;
930 kvm_x86_ops->set_dr7(vcpu, dr7);
931 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
932 if (dr7 & DR7_BP_EN_MASK)
933 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
934 }
935
936 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
937 {
938 u64 fixed = DR6_FIXED_1;
939
940 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
941 fixed |= DR6_RTM;
942 return fixed;
943 }
944
945 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
946 {
947 switch (dr) {
948 case 0 ... 3:
949 vcpu->arch.db[dr] = val;
950 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
951 vcpu->arch.eff_db[dr] = val;
952 break;
953 case 4:
954 /* fall through */
955 case 6:
956 if (val & 0xffffffff00000000ULL)
957 return -1; /* #GP */
958 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
959 kvm_update_dr6(vcpu);
960 break;
961 case 5:
962 /* fall through */
963 default: /* 7 */
964 if (val & 0xffffffff00000000ULL)
965 return -1; /* #GP */
966 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
967 kvm_update_dr7(vcpu);
968 break;
969 }
970
971 return 0;
972 }
973
974 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
975 {
976 if (__kvm_set_dr(vcpu, dr, val)) {
977 kvm_inject_gp(vcpu, 0);
978 return 1;
979 }
980 return 0;
981 }
982 EXPORT_SYMBOL_GPL(kvm_set_dr);
983
984 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
985 {
986 switch (dr) {
987 case 0 ... 3:
988 *val = vcpu->arch.db[dr];
989 break;
990 case 4:
991 /* fall through */
992 case 6:
993 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
994 *val = vcpu->arch.dr6;
995 else
996 *val = kvm_x86_ops->get_dr6(vcpu);
997 break;
998 case 5:
999 /* fall through */
1000 default: /* 7 */
1001 *val = vcpu->arch.dr7;
1002 break;
1003 }
1004 return 0;
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_get_dr);
1007
1008 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1009 {
1010 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1011 u64 data;
1012 int err;
1013
1014 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1015 if (err)
1016 return err;
1017 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1018 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1019 return err;
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1022
1023 /*
1024 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1025 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1026 *
1027 * This list is modified at module load time to reflect the
1028 * capabilities of the host cpu. This capabilities test skips MSRs that are
1029 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1030 * may depend on host virtualization features rather than host cpu features.
1031 */
1032
1033 static u32 msrs_to_save[] = {
1034 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1035 MSR_STAR,
1036 #ifdef CONFIG_X86_64
1037 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1038 #endif
1039 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1040 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1041 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1042 };
1043
1044 static unsigned num_msrs_to_save;
1045
1046 static u32 emulated_msrs[] = {
1047 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1048 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1049 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1050 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1051 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1052 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1053 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1054 HV_X64_MSR_RESET,
1055 HV_X64_MSR_VP_INDEX,
1056 HV_X64_MSR_VP_RUNTIME,
1057 HV_X64_MSR_SCONTROL,
1058 HV_X64_MSR_STIMER0_CONFIG,
1059 HV_X64_MSR_VP_ASSIST_PAGE,
1060 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1061 HV_X64_MSR_TSC_EMULATION_STATUS,
1062
1063 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1064 MSR_KVM_PV_EOI_EN,
1065
1066 MSR_IA32_TSC_ADJUST,
1067 MSR_IA32_TSCDEADLINE,
1068 MSR_IA32_MISC_ENABLE,
1069 MSR_IA32_MCG_STATUS,
1070 MSR_IA32_MCG_CTL,
1071 MSR_IA32_MCG_EXT_CTL,
1072 MSR_IA32_SMBASE,
1073 MSR_SMI_COUNT,
1074 MSR_PLATFORM_INFO,
1075 MSR_MISC_FEATURES_ENABLES,
1076 MSR_AMD64_VIRT_SPEC_CTRL,
1077 };
1078
1079 static unsigned num_emulated_msrs;
1080
1081 /*
1082 * List of msr numbers which are used to expose MSR-based features that
1083 * can be used by a hypervisor to validate requested CPU features.
1084 */
1085 static u32 msr_based_features[] = {
1086 MSR_IA32_VMX_BASIC,
1087 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1088 MSR_IA32_VMX_PINBASED_CTLS,
1089 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1090 MSR_IA32_VMX_PROCBASED_CTLS,
1091 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1092 MSR_IA32_VMX_EXIT_CTLS,
1093 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1094 MSR_IA32_VMX_ENTRY_CTLS,
1095 MSR_IA32_VMX_MISC,
1096 MSR_IA32_VMX_CR0_FIXED0,
1097 MSR_IA32_VMX_CR0_FIXED1,
1098 MSR_IA32_VMX_CR4_FIXED0,
1099 MSR_IA32_VMX_CR4_FIXED1,
1100 MSR_IA32_VMX_VMCS_ENUM,
1101 MSR_IA32_VMX_PROCBASED_CTLS2,
1102 MSR_IA32_VMX_EPT_VPID_CAP,
1103 MSR_IA32_VMX_VMFUNC,
1104
1105 MSR_F10H_DECFG,
1106 MSR_IA32_UCODE_REV,
1107 MSR_IA32_ARCH_CAPABILITIES,
1108 };
1109
1110 static unsigned int num_msr_based_features;
1111
1112 u64 kvm_get_arch_capabilities(void)
1113 {
1114 u64 data;
1115
1116 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1117
1118 /*
1119 * If we're doing cache flushes (either "always" or "cond")
1120 * we will do one whenever the guest does a vmlaunch/vmresume.
1121 * If an outer hypervisor is doing the cache flush for us
1122 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1123 * capability to the guest too, and if EPT is disabled we're not
1124 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1125 * require a nested hypervisor to do a flush of its own.
1126 */
1127 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1128 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1129
1130 return data;
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1133
1134 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1135 {
1136 switch (msr->index) {
1137 case MSR_IA32_ARCH_CAPABILITIES:
1138 msr->data = kvm_get_arch_capabilities();
1139 break;
1140 case MSR_IA32_UCODE_REV:
1141 rdmsrl_safe(msr->index, &msr->data);
1142 break;
1143 default:
1144 if (kvm_x86_ops->get_msr_feature(msr))
1145 return 1;
1146 }
1147 return 0;
1148 }
1149
1150 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1151 {
1152 struct kvm_msr_entry msr;
1153 int r;
1154
1155 msr.index = index;
1156 r = kvm_get_msr_feature(&msr);
1157 if (r)
1158 return r;
1159
1160 *data = msr.data;
1161
1162 return 0;
1163 }
1164
1165 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1166 {
1167 if (efer & efer_reserved_bits)
1168 return false;
1169
1170 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1171 return false;
1172
1173 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1174 return false;
1175
1176 return true;
1177 }
1178 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1179
1180 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1181 {
1182 u64 old_efer = vcpu->arch.efer;
1183
1184 if (!kvm_valid_efer(vcpu, efer))
1185 return 1;
1186
1187 if (is_paging(vcpu)
1188 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1189 return 1;
1190
1191 efer &= ~EFER_LMA;
1192 efer |= vcpu->arch.efer & EFER_LMA;
1193
1194 kvm_x86_ops->set_efer(vcpu, efer);
1195
1196 /* Update reserved bits */
1197 if ((efer ^ old_efer) & EFER_NX)
1198 kvm_mmu_reset_context(vcpu);
1199
1200 return 0;
1201 }
1202
1203 void kvm_enable_efer_bits(u64 mask)
1204 {
1205 efer_reserved_bits &= ~mask;
1206 }
1207 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1208
1209 /*
1210 * Writes msr value into into the appropriate "register".
1211 * Returns 0 on success, non-0 otherwise.
1212 * Assumes vcpu_load() was already called.
1213 */
1214 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1215 {
1216 switch (msr->index) {
1217 case MSR_FS_BASE:
1218 case MSR_GS_BASE:
1219 case MSR_KERNEL_GS_BASE:
1220 case MSR_CSTAR:
1221 case MSR_LSTAR:
1222 if (is_noncanonical_address(msr->data, vcpu))
1223 return 1;
1224 break;
1225 case MSR_IA32_SYSENTER_EIP:
1226 case MSR_IA32_SYSENTER_ESP:
1227 /*
1228 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1229 * non-canonical address is written on Intel but not on
1230 * AMD (which ignores the top 32-bits, because it does
1231 * not implement 64-bit SYSENTER).
1232 *
1233 * 64-bit code should hence be able to write a non-canonical
1234 * value on AMD. Making the address canonical ensures that
1235 * vmentry does not fail on Intel after writing a non-canonical
1236 * value, and that something deterministic happens if the guest
1237 * invokes 64-bit SYSENTER.
1238 */
1239 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1240 }
1241 return kvm_x86_ops->set_msr(vcpu, msr);
1242 }
1243 EXPORT_SYMBOL_GPL(kvm_set_msr);
1244
1245 /*
1246 * Adapt set_msr() to msr_io()'s calling convention
1247 */
1248 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1249 {
1250 struct msr_data msr;
1251 int r;
1252
1253 msr.index = index;
1254 msr.host_initiated = true;
1255 r = kvm_get_msr(vcpu, &msr);
1256 if (r)
1257 return r;
1258
1259 *data = msr.data;
1260 return 0;
1261 }
1262
1263 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1264 {
1265 struct msr_data msr;
1266
1267 msr.data = *data;
1268 msr.index = index;
1269 msr.host_initiated = true;
1270 return kvm_set_msr(vcpu, &msr);
1271 }
1272
1273 #ifdef CONFIG_X86_64
1274 struct pvclock_gtod_data {
1275 seqcount_t seq;
1276
1277 struct { /* extract of a clocksource struct */
1278 int vclock_mode;
1279 u64 cycle_last;
1280 u64 mask;
1281 u32 mult;
1282 u32 shift;
1283 } clock;
1284
1285 u64 boot_ns;
1286 u64 nsec_base;
1287 u64 wall_time_sec;
1288 };
1289
1290 static struct pvclock_gtod_data pvclock_gtod_data;
1291
1292 static void update_pvclock_gtod(struct timekeeper *tk)
1293 {
1294 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1295 u64 boot_ns;
1296
1297 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1298
1299 write_seqcount_begin(&vdata->seq);
1300
1301 /* copy pvclock gtod data */
1302 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1303 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1304 vdata->clock.mask = tk->tkr_mono.mask;
1305 vdata->clock.mult = tk->tkr_mono.mult;
1306 vdata->clock.shift = tk->tkr_mono.shift;
1307
1308 vdata->boot_ns = boot_ns;
1309 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1310
1311 vdata->wall_time_sec = tk->xtime_sec;
1312
1313 write_seqcount_end(&vdata->seq);
1314 }
1315 #endif
1316
1317 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1318 {
1319 /*
1320 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1321 * vcpu_enter_guest. This function is only called from
1322 * the physical CPU that is running vcpu.
1323 */
1324 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1325 }
1326
1327 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1328 {
1329 int version;
1330 int r;
1331 struct pvclock_wall_clock wc;
1332 struct timespec64 boot;
1333
1334 if (!wall_clock)
1335 return;
1336
1337 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1338 if (r)
1339 return;
1340
1341 if (version & 1)
1342 ++version; /* first time write, random junk */
1343
1344 ++version;
1345
1346 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1347 return;
1348
1349 /*
1350 * The guest calculates current wall clock time by adding
1351 * system time (updated by kvm_guest_time_update below) to the
1352 * wall clock specified here. guest system time equals host
1353 * system time for us, thus we must fill in host boot time here.
1354 */
1355 getboottime64(&boot);
1356
1357 if (kvm->arch.kvmclock_offset) {
1358 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1359 boot = timespec64_sub(boot, ts);
1360 }
1361 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1362 wc.nsec = boot.tv_nsec;
1363 wc.version = version;
1364
1365 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1366
1367 version++;
1368 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1369 }
1370
1371 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1372 {
1373 do_shl32_div32(dividend, divisor);
1374 return dividend;
1375 }
1376
1377 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1378 s8 *pshift, u32 *pmultiplier)
1379 {
1380 uint64_t scaled64;
1381 int32_t shift = 0;
1382 uint64_t tps64;
1383 uint32_t tps32;
1384
1385 tps64 = base_hz;
1386 scaled64 = scaled_hz;
1387 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1388 tps64 >>= 1;
1389 shift--;
1390 }
1391
1392 tps32 = (uint32_t)tps64;
1393 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1394 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1395 scaled64 >>= 1;
1396 else
1397 tps32 <<= 1;
1398 shift++;
1399 }
1400
1401 *pshift = shift;
1402 *pmultiplier = div_frac(scaled64, tps32);
1403
1404 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1405 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1406 }
1407
1408 #ifdef CONFIG_X86_64
1409 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1410 #endif
1411
1412 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1413 static unsigned long max_tsc_khz;
1414
1415 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1416 {
1417 u64 v = (u64)khz * (1000000 + ppm);
1418 do_div(v, 1000000);
1419 return v;
1420 }
1421
1422 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1423 {
1424 u64 ratio;
1425
1426 /* Guest TSC same frequency as host TSC? */
1427 if (!scale) {
1428 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1429 return 0;
1430 }
1431
1432 /* TSC scaling supported? */
1433 if (!kvm_has_tsc_control) {
1434 if (user_tsc_khz > tsc_khz) {
1435 vcpu->arch.tsc_catchup = 1;
1436 vcpu->arch.tsc_always_catchup = 1;
1437 return 0;
1438 } else {
1439 WARN(1, "user requested TSC rate below hardware speed\n");
1440 return -1;
1441 }
1442 }
1443
1444 /* TSC scaling required - calculate ratio */
1445 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1446 user_tsc_khz, tsc_khz);
1447
1448 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1449 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1450 user_tsc_khz);
1451 return -1;
1452 }
1453
1454 vcpu->arch.tsc_scaling_ratio = ratio;
1455 return 0;
1456 }
1457
1458 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1459 {
1460 u32 thresh_lo, thresh_hi;
1461 int use_scaling = 0;
1462
1463 /* tsc_khz can be zero if TSC calibration fails */
1464 if (user_tsc_khz == 0) {
1465 /* set tsc_scaling_ratio to a safe value */
1466 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1467 return -1;
1468 }
1469
1470 /* Compute a scale to convert nanoseconds in TSC cycles */
1471 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1472 &vcpu->arch.virtual_tsc_shift,
1473 &vcpu->arch.virtual_tsc_mult);
1474 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1475
1476 /*
1477 * Compute the variation in TSC rate which is acceptable
1478 * within the range of tolerance and decide if the
1479 * rate being applied is within that bounds of the hardware
1480 * rate. If so, no scaling or compensation need be done.
1481 */
1482 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1483 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1484 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1485 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1486 use_scaling = 1;
1487 }
1488 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1489 }
1490
1491 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1492 {
1493 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1494 vcpu->arch.virtual_tsc_mult,
1495 vcpu->arch.virtual_tsc_shift);
1496 tsc += vcpu->arch.this_tsc_write;
1497 return tsc;
1498 }
1499
1500 static inline int gtod_is_based_on_tsc(int mode)
1501 {
1502 return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1503 }
1504
1505 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1506 {
1507 #ifdef CONFIG_X86_64
1508 bool vcpus_matched;
1509 struct kvm_arch *ka = &vcpu->kvm->arch;
1510 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1511
1512 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1513 atomic_read(&vcpu->kvm->online_vcpus));
1514
1515 /*
1516 * Once the masterclock is enabled, always perform request in
1517 * order to update it.
1518 *
1519 * In order to enable masterclock, the host clocksource must be TSC
1520 * and the vcpus need to have matched TSCs. When that happens,
1521 * perform request to enable masterclock.
1522 */
1523 if (ka->use_master_clock ||
1524 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1525 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1526
1527 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1528 atomic_read(&vcpu->kvm->online_vcpus),
1529 ka->use_master_clock, gtod->clock.vclock_mode);
1530 #endif
1531 }
1532
1533 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1534 {
1535 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1536 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1537 }
1538
1539 /*
1540 * Multiply tsc by a fixed point number represented by ratio.
1541 *
1542 * The most significant 64-N bits (mult) of ratio represent the
1543 * integral part of the fixed point number; the remaining N bits
1544 * (frac) represent the fractional part, ie. ratio represents a fixed
1545 * point number (mult + frac * 2^(-N)).
1546 *
1547 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1548 */
1549 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1550 {
1551 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1552 }
1553
1554 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1555 {
1556 u64 _tsc = tsc;
1557 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1558
1559 if (ratio != kvm_default_tsc_scaling_ratio)
1560 _tsc = __scale_tsc(ratio, tsc);
1561
1562 return _tsc;
1563 }
1564 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1565
1566 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1567 {
1568 u64 tsc;
1569
1570 tsc = kvm_scale_tsc(vcpu, rdtsc());
1571
1572 return target_tsc - tsc;
1573 }
1574
1575 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1576 {
1577 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1578
1579 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1582
1583 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1584 {
1585 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1586 vcpu->arch.tsc_offset = offset;
1587 }
1588
1589 static inline bool kvm_check_tsc_unstable(void)
1590 {
1591 #ifdef CONFIG_X86_64
1592 /*
1593 * TSC is marked unstable when we're running on Hyper-V,
1594 * 'TSC page' clocksource is good.
1595 */
1596 if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1597 return false;
1598 #endif
1599 return check_tsc_unstable();
1600 }
1601
1602 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1603 {
1604 struct kvm *kvm = vcpu->kvm;
1605 u64 offset, ns, elapsed;
1606 unsigned long flags;
1607 bool matched;
1608 bool already_matched;
1609 u64 data = msr->data;
1610 bool synchronizing = false;
1611
1612 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1613 offset = kvm_compute_tsc_offset(vcpu, data);
1614 ns = ktime_get_boot_ns();
1615 elapsed = ns - kvm->arch.last_tsc_nsec;
1616
1617 if (vcpu->arch.virtual_tsc_khz) {
1618 if (data == 0 && msr->host_initiated) {
1619 /*
1620 * detection of vcpu initialization -- need to sync
1621 * with other vCPUs. This particularly helps to keep
1622 * kvm_clock stable after CPU hotplug
1623 */
1624 synchronizing = true;
1625 } else {
1626 u64 tsc_exp = kvm->arch.last_tsc_write +
1627 nsec_to_cycles(vcpu, elapsed);
1628 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1629 /*
1630 * Special case: TSC write with a small delta (1 second)
1631 * of virtual cycle time against real time is
1632 * interpreted as an attempt to synchronize the CPU.
1633 */
1634 synchronizing = data < tsc_exp + tsc_hz &&
1635 data + tsc_hz > tsc_exp;
1636 }
1637 }
1638
1639 /*
1640 * For a reliable TSC, we can match TSC offsets, and for an unstable
1641 * TSC, we add elapsed time in this computation. We could let the
1642 * compensation code attempt to catch up if we fall behind, but
1643 * it's better to try to match offsets from the beginning.
1644 */
1645 if (synchronizing &&
1646 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1647 if (!kvm_check_tsc_unstable()) {
1648 offset = kvm->arch.cur_tsc_offset;
1649 pr_debug("kvm: matched tsc offset for %llu\n", data);
1650 } else {
1651 u64 delta = nsec_to_cycles(vcpu, elapsed);
1652 data += delta;
1653 offset = kvm_compute_tsc_offset(vcpu, data);
1654 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1655 }
1656 matched = true;
1657 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1658 } else {
1659 /*
1660 * We split periods of matched TSC writes into generations.
1661 * For each generation, we track the original measured
1662 * nanosecond time, offset, and write, so if TSCs are in
1663 * sync, we can match exact offset, and if not, we can match
1664 * exact software computation in compute_guest_tsc()
1665 *
1666 * These values are tracked in kvm->arch.cur_xxx variables.
1667 */
1668 kvm->arch.cur_tsc_generation++;
1669 kvm->arch.cur_tsc_nsec = ns;
1670 kvm->arch.cur_tsc_write = data;
1671 kvm->arch.cur_tsc_offset = offset;
1672 matched = false;
1673 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1674 kvm->arch.cur_tsc_generation, data);
1675 }
1676
1677 /*
1678 * We also track th most recent recorded KHZ, write and time to
1679 * allow the matching interval to be extended at each write.
1680 */
1681 kvm->arch.last_tsc_nsec = ns;
1682 kvm->arch.last_tsc_write = data;
1683 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1684
1685 vcpu->arch.last_guest_tsc = data;
1686
1687 /* Keep track of which generation this VCPU has synchronized to */
1688 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1689 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1690 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1691
1692 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1693 update_ia32_tsc_adjust_msr(vcpu, offset);
1694
1695 kvm_vcpu_write_tsc_offset(vcpu, offset);
1696 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1697
1698 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1699 if (!matched) {
1700 kvm->arch.nr_vcpus_matched_tsc = 0;
1701 } else if (!already_matched) {
1702 kvm->arch.nr_vcpus_matched_tsc++;
1703 }
1704
1705 kvm_track_tsc_matching(vcpu);
1706 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1707 }
1708
1709 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1710
1711 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1712 s64 adjustment)
1713 {
1714 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1715 }
1716
1717 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1718 {
1719 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1720 WARN_ON(adjustment < 0);
1721 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1722 adjust_tsc_offset_guest(vcpu, adjustment);
1723 }
1724
1725 #ifdef CONFIG_X86_64
1726
1727 static u64 read_tsc(void)
1728 {
1729 u64 ret = (u64)rdtsc_ordered();
1730 u64 last = pvclock_gtod_data.clock.cycle_last;
1731
1732 if (likely(ret >= last))
1733 return ret;
1734
1735 /*
1736 * GCC likes to generate cmov here, but this branch is extremely
1737 * predictable (it's just a function of time and the likely is
1738 * very likely) and there's a data dependence, so force GCC
1739 * to generate a branch instead. I don't barrier() because
1740 * we don't actually need a barrier, and if this function
1741 * ever gets inlined it will generate worse code.
1742 */
1743 asm volatile ("");
1744 return last;
1745 }
1746
1747 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1748 {
1749 long v;
1750 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1751 u64 tsc_pg_val;
1752
1753 switch (gtod->clock.vclock_mode) {
1754 case VCLOCK_HVCLOCK:
1755 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1756 tsc_timestamp);
1757 if (tsc_pg_val != U64_MAX) {
1758 /* TSC page valid */
1759 *mode = VCLOCK_HVCLOCK;
1760 v = (tsc_pg_val - gtod->clock.cycle_last) &
1761 gtod->clock.mask;
1762 } else {
1763 /* TSC page invalid */
1764 *mode = VCLOCK_NONE;
1765 }
1766 break;
1767 case VCLOCK_TSC:
1768 *mode = VCLOCK_TSC;
1769 *tsc_timestamp = read_tsc();
1770 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1771 gtod->clock.mask;
1772 break;
1773 default:
1774 *mode = VCLOCK_NONE;
1775 }
1776
1777 if (*mode == VCLOCK_NONE)
1778 *tsc_timestamp = v = 0;
1779
1780 return v * gtod->clock.mult;
1781 }
1782
1783 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1784 {
1785 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1786 unsigned long seq;
1787 int mode;
1788 u64 ns;
1789
1790 do {
1791 seq = read_seqcount_begin(&gtod->seq);
1792 ns = gtod->nsec_base;
1793 ns += vgettsc(tsc_timestamp, &mode);
1794 ns >>= gtod->clock.shift;
1795 ns += gtod->boot_ns;
1796 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1797 *t = ns;
1798
1799 return mode;
1800 }
1801
1802 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1803 {
1804 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1805 unsigned long seq;
1806 int mode;
1807 u64 ns;
1808
1809 do {
1810 seq = read_seqcount_begin(&gtod->seq);
1811 ts->tv_sec = gtod->wall_time_sec;
1812 ns = gtod->nsec_base;
1813 ns += vgettsc(tsc_timestamp, &mode);
1814 ns >>= gtod->clock.shift;
1815 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1816
1817 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1818 ts->tv_nsec = ns;
1819
1820 return mode;
1821 }
1822
1823 /* returns true if host is using TSC based clocksource */
1824 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1825 {
1826 /* checked again under seqlock below */
1827 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1828 return false;
1829
1830 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1831 tsc_timestamp));
1832 }
1833
1834 /* returns true if host is using TSC based clocksource */
1835 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1836 u64 *tsc_timestamp)
1837 {
1838 /* checked again under seqlock below */
1839 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1840 return false;
1841
1842 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1843 }
1844 #endif
1845
1846 /*
1847 *
1848 * Assuming a stable TSC across physical CPUS, and a stable TSC
1849 * across virtual CPUs, the following condition is possible.
1850 * Each numbered line represents an event visible to both
1851 * CPUs at the next numbered event.
1852 *
1853 * "timespecX" represents host monotonic time. "tscX" represents
1854 * RDTSC value.
1855 *
1856 * VCPU0 on CPU0 | VCPU1 on CPU1
1857 *
1858 * 1. read timespec0,tsc0
1859 * 2. | timespec1 = timespec0 + N
1860 * | tsc1 = tsc0 + M
1861 * 3. transition to guest | transition to guest
1862 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1863 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1864 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1865 *
1866 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1867 *
1868 * - ret0 < ret1
1869 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1870 * ...
1871 * - 0 < N - M => M < N
1872 *
1873 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1874 * always the case (the difference between two distinct xtime instances
1875 * might be smaller then the difference between corresponding TSC reads,
1876 * when updating guest vcpus pvclock areas).
1877 *
1878 * To avoid that problem, do not allow visibility of distinct
1879 * system_timestamp/tsc_timestamp values simultaneously: use a master
1880 * copy of host monotonic time values. Update that master copy
1881 * in lockstep.
1882 *
1883 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1884 *
1885 */
1886
1887 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1888 {
1889 #ifdef CONFIG_X86_64
1890 struct kvm_arch *ka = &kvm->arch;
1891 int vclock_mode;
1892 bool host_tsc_clocksource, vcpus_matched;
1893
1894 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1895 atomic_read(&kvm->online_vcpus));
1896
1897 /*
1898 * If the host uses TSC clock, then passthrough TSC as stable
1899 * to the guest.
1900 */
1901 host_tsc_clocksource = kvm_get_time_and_clockread(
1902 &ka->master_kernel_ns,
1903 &ka->master_cycle_now);
1904
1905 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1906 && !ka->backwards_tsc_observed
1907 && !ka->boot_vcpu_runs_old_kvmclock;
1908
1909 if (ka->use_master_clock)
1910 atomic_set(&kvm_guest_has_master_clock, 1);
1911
1912 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1913 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1914 vcpus_matched);
1915 #endif
1916 }
1917
1918 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1919 {
1920 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1921 }
1922
1923 static void kvm_gen_update_masterclock(struct kvm *kvm)
1924 {
1925 #ifdef CONFIG_X86_64
1926 int i;
1927 struct kvm_vcpu *vcpu;
1928 struct kvm_arch *ka = &kvm->arch;
1929
1930 spin_lock(&ka->pvclock_gtod_sync_lock);
1931 kvm_make_mclock_inprogress_request(kvm);
1932 /* no guest entries from this point */
1933 pvclock_update_vm_gtod_copy(kvm);
1934
1935 kvm_for_each_vcpu(i, vcpu, kvm)
1936 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1937
1938 /* guest entries allowed */
1939 kvm_for_each_vcpu(i, vcpu, kvm)
1940 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1941
1942 spin_unlock(&ka->pvclock_gtod_sync_lock);
1943 #endif
1944 }
1945
1946 u64 get_kvmclock_ns(struct kvm *kvm)
1947 {
1948 struct kvm_arch *ka = &kvm->arch;
1949 struct pvclock_vcpu_time_info hv_clock;
1950 u64 ret;
1951
1952 spin_lock(&ka->pvclock_gtod_sync_lock);
1953 if (!ka->use_master_clock) {
1954 spin_unlock(&ka->pvclock_gtod_sync_lock);
1955 return ktime_get_boot_ns() + ka->kvmclock_offset;
1956 }
1957
1958 hv_clock.tsc_timestamp = ka->master_cycle_now;
1959 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1960 spin_unlock(&ka->pvclock_gtod_sync_lock);
1961
1962 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1963 get_cpu();
1964
1965 if (__this_cpu_read(cpu_tsc_khz)) {
1966 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1967 &hv_clock.tsc_shift,
1968 &hv_clock.tsc_to_system_mul);
1969 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1970 } else
1971 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1972
1973 put_cpu();
1974
1975 return ret;
1976 }
1977
1978 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1979 {
1980 struct kvm_vcpu_arch *vcpu = &v->arch;
1981 struct pvclock_vcpu_time_info guest_hv_clock;
1982
1983 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1984 &guest_hv_clock, sizeof(guest_hv_clock))))
1985 return;
1986
1987 /* This VCPU is paused, but it's legal for a guest to read another
1988 * VCPU's kvmclock, so we really have to follow the specification where
1989 * it says that version is odd if data is being modified, and even after
1990 * it is consistent.
1991 *
1992 * Version field updates must be kept separate. This is because
1993 * kvm_write_guest_cached might use a "rep movs" instruction, and
1994 * writes within a string instruction are weakly ordered. So there
1995 * are three writes overall.
1996 *
1997 * As a small optimization, only write the version field in the first
1998 * and third write. The vcpu->pv_time cache is still valid, because the
1999 * version field is the first in the struct.
2000 */
2001 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2002
2003 if (guest_hv_clock.version & 1)
2004 ++guest_hv_clock.version; /* first time write, random junk */
2005
2006 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2007 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2008 &vcpu->hv_clock,
2009 sizeof(vcpu->hv_clock.version));
2010
2011 smp_wmb();
2012
2013 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2014 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2015
2016 if (vcpu->pvclock_set_guest_stopped_request) {
2017 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2018 vcpu->pvclock_set_guest_stopped_request = false;
2019 }
2020
2021 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2022
2023 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2024 &vcpu->hv_clock,
2025 sizeof(vcpu->hv_clock));
2026
2027 smp_wmb();
2028
2029 vcpu->hv_clock.version++;
2030 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2031 &vcpu->hv_clock,
2032 sizeof(vcpu->hv_clock.version));
2033 }
2034
2035 static int kvm_guest_time_update(struct kvm_vcpu *v)
2036 {
2037 unsigned long flags, tgt_tsc_khz;
2038 struct kvm_vcpu_arch *vcpu = &v->arch;
2039 struct kvm_arch *ka = &v->kvm->arch;
2040 s64 kernel_ns;
2041 u64 tsc_timestamp, host_tsc;
2042 u8 pvclock_flags;
2043 bool use_master_clock;
2044
2045 kernel_ns = 0;
2046 host_tsc = 0;
2047
2048 /*
2049 * If the host uses TSC clock, then passthrough TSC as stable
2050 * to the guest.
2051 */
2052 spin_lock(&ka->pvclock_gtod_sync_lock);
2053 use_master_clock = ka->use_master_clock;
2054 if (use_master_clock) {
2055 host_tsc = ka->master_cycle_now;
2056 kernel_ns = ka->master_kernel_ns;
2057 }
2058 spin_unlock(&ka->pvclock_gtod_sync_lock);
2059
2060 /* Keep irq disabled to prevent changes to the clock */
2061 local_irq_save(flags);
2062 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2063 if (unlikely(tgt_tsc_khz == 0)) {
2064 local_irq_restore(flags);
2065 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2066 return 1;
2067 }
2068 if (!use_master_clock) {
2069 host_tsc = rdtsc();
2070 kernel_ns = ktime_get_boot_ns();
2071 }
2072
2073 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2074
2075 /*
2076 * We may have to catch up the TSC to match elapsed wall clock
2077 * time for two reasons, even if kvmclock is used.
2078 * 1) CPU could have been running below the maximum TSC rate
2079 * 2) Broken TSC compensation resets the base at each VCPU
2080 * entry to avoid unknown leaps of TSC even when running
2081 * again on the same CPU. This may cause apparent elapsed
2082 * time to disappear, and the guest to stand still or run
2083 * very slowly.
2084 */
2085 if (vcpu->tsc_catchup) {
2086 u64 tsc = compute_guest_tsc(v, kernel_ns);
2087 if (tsc > tsc_timestamp) {
2088 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2089 tsc_timestamp = tsc;
2090 }
2091 }
2092
2093 local_irq_restore(flags);
2094
2095 /* With all the info we got, fill in the values */
2096
2097 if (kvm_has_tsc_control)
2098 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2099
2100 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2101 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2102 &vcpu->hv_clock.tsc_shift,
2103 &vcpu->hv_clock.tsc_to_system_mul);
2104 vcpu->hw_tsc_khz = tgt_tsc_khz;
2105 }
2106
2107 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2108 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2109 vcpu->last_guest_tsc = tsc_timestamp;
2110
2111 /* If the host uses TSC clocksource, then it is stable */
2112 pvclock_flags = 0;
2113 if (use_master_clock)
2114 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2115
2116 vcpu->hv_clock.flags = pvclock_flags;
2117
2118 if (vcpu->pv_time_enabled)
2119 kvm_setup_pvclock_page(v);
2120 if (v == kvm_get_vcpu(v->kvm, 0))
2121 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2122 return 0;
2123 }
2124
2125 /*
2126 * kvmclock updates which are isolated to a given vcpu, such as
2127 * vcpu->cpu migration, should not allow system_timestamp from
2128 * the rest of the vcpus to remain static. Otherwise ntp frequency
2129 * correction applies to one vcpu's system_timestamp but not
2130 * the others.
2131 *
2132 * So in those cases, request a kvmclock update for all vcpus.
2133 * We need to rate-limit these requests though, as they can
2134 * considerably slow guests that have a large number of vcpus.
2135 * The time for a remote vcpu to update its kvmclock is bound
2136 * by the delay we use to rate-limit the updates.
2137 */
2138
2139 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2140
2141 static void kvmclock_update_fn(struct work_struct *work)
2142 {
2143 int i;
2144 struct delayed_work *dwork = to_delayed_work(work);
2145 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2146 kvmclock_update_work);
2147 struct kvm *kvm = container_of(ka, struct kvm, arch);
2148 struct kvm_vcpu *vcpu;
2149
2150 kvm_for_each_vcpu(i, vcpu, kvm) {
2151 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2152 kvm_vcpu_kick(vcpu);
2153 }
2154 }
2155
2156 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2157 {
2158 struct kvm *kvm = v->kvm;
2159
2160 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2161 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2162 KVMCLOCK_UPDATE_DELAY);
2163 }
2164
2165 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2166
2167 static void kvmclock_sync_fn(struct work_struct *work)
2168 {
2169 struct delayed_work *dwork = to_delayed_work(work);
2170 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2171 kvmclock_sync_work);
2172 struct kvm *kvm = container_of(ka, struct kvm, arch);
2173
2174 if (!kvmclock_periodic_sync)
2175 return;
2176
2177 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2178 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2179 KVMCLOCK_SYNC_PERIOD);
2180 }
2181
2182 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2183 {
2184 u64 mcg_cap = vcpu->arch.mcg_cap;
2185 unsigned bank_num = mcg_cap & 0xff;
2186 u32 msr = msr_info->index;
2187 u64 data = msr_info->data;
2188
2189 switch (msr) {
2190 case MSR_IA32_MCG_STATUS:
2191 vcpu->arch.mcg_status = data;
2192 break;
2193 case MSR_IA32_MCG_CTL:
2194 if (!(mcg_cap & MCG_CTL_P) &&
2195 (data || !msr_info->host_initiated))
2196 return 1;
2197 if (data != 0 && data != ~(u64)0)
2198 return 1;
2199 vcpu->arch.mcg_ctl = data;
2200 break;
2201 default:
2202 if (msr >= MSR_IA32_MC0_CTL &&
2203 msr < MSR_IA32_MCx_CTL(bank_num)) {
2204 u32 offset = msr - MSR_IA32_MC0_CTL;
2205 /* only 0 or all 1s can be written to IA32_MCi_CTL
2206 * some Linux kernels though clear bit 10 in bank 4 to
2207 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2208 * this to avoid an uncatched #GP in the guest
2209 */
2210 if ((offset & 0x3) == 0 &&
2211 data != 0 && (data | (1 << 10)) != ~(u64)0)
2212 return -1;
2213 if (!msr_info->host_initiated &&
2214 (offset & 0x3) == 1 && data != 0)
2215 return -1;
2216 vcpu->arch.mce_banks[offset] = data;
2217 break;
2218 }
2219 return 1;
2220 }
2221 return 0;
2222 }
2223
2224 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2225 {
2226 struct kvm *kvm = vcpu->kvm;
2227 int lm = is_long_mode(vcpu);
2228 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2229 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2230 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2231 : kvm->arch.xen_hvm_config.blob_size_32;
2232 u32 page_num = data & ~PAGE_MASK;
2233 u64 page_addr = data & PAGE_MASK;
2234 u8 *page;
2235 int r;
2236
2237 r = -E2BIG;
2238 if (page_num >= blob_size)
2239 goto out;
2240 r = -ENOMEM;
2241 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2242 if (IS_ERR(page)) {
2243 r = PTR_ERR(page);
2244 goto out;
2245 }
2246 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2247 goto out_free;
2248 r = 0;
2249 out_free:
2250 kfree(page);
2251 out:
2252 return r;
2253 }
2254
2255 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2256 {
2257 gpa_t gpa = data & ~0x3f;
2258
2259 /* Bits 3:5 are reserved, Should be zero */
2260 if (data & 0x38)
2261 return 1;
2262
2263 vcpu->arch.apf.msr_val = data;
2264
2265 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2266 kvm_clear_async_pf_completion_queue(vcpu);
2267 kvm_async_pf_hash_reset(vcpu);
2268 return 0;
2269 }
2270
2271 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2272 sizeof(u32)))
2273 return 1;
2274
2275 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2276 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2277 kvm_async_pf_wakeup_all(vcpu);
2278 return 0;
2279 }
2280
2281 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2282 {
2283 vcpu->arch.pv_time_enabled = false;
2284 }
2285
2286 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2287 {
2288 ++vcpu->stat.tlb_flush;
2289 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2290 }
2291
2292 static void record_steal_time(struct kvm_vcpu *vcpu)
2293 {
2294 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2295 return;
2296
2297 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2298 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2299 return;
2300
2301 /*
2302 * Doing a TLB flush here, on the guest's behalf, can avoid
2303 * expensive IPIs.
2304 */
2305 if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2306 kvm_vcpu_flush_tlb(vcpu, false);
2307
2308 if (vcpu->arch.st.steal.version & 1)
2309 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2310
2311 vcpu->arch.st.steal.version += 1;
2312
2313 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2314 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2315
2316 smp_wmb();
2317
2318 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2319 vcpu->arch.st.last_steal;
2320 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2321
2322 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2323 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2324
2325 smp_wmb();
2326
2327 vcpu->arch.st.steal.version += 1;
2328
2329 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2330 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2331 }
2332
2333 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2334 {
2335 bool pr = false;
2336 u32 msr = msr_info->index;
2337 u64 data = msr_info->data;
2338
2339 switch (msr) {
2340 case MSR_AMD64_NB_CFG:
2341 case MSR_IA32_UCODE_WRITE:
2342 case MSR_VM_HSAVE_PA:
2343 case MSR_AMD64_PATCH_LOADER:
2344 case MSR_AMD64_BU_CFG2:
2345 case MSR_AMD64_DC_CFG:
2346 break;
2347
2348 case MSR_IA32_UCODE_REV:
2349 if (msr_info->host_initiated)
2350 vcpu->arch.microcode_version = data;
2351 break;
2352 case MSR_EFER:
2353 return set_efer(vcpu, data);
2354 case MSR_K7_HWCR:
2355 data &= ~(u64)0x40; /* ignore flush filter disable */
2356 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2357 data &= ~(u64)0x8; /* ignore TLB cache disable */
2358 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2359 if (data != 0) {
2360 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2361 data);
2362 return 1;
2363 }
2364 break;
2365 case MSR_FAM10H_MMIO_CONF_BASE:
2366 if (data != 0) {
2367 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2368 "0x%llx\n", data);
2369 return 1;
2370 }
2371 break;
2372 case MSR_IA32_DEBUGCTLMSR:
2373 if (!data) {
2374 /* We support the non-activated case already */
2375 break;
2376 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2377 /* Values other than LBR and BTF are vendor-specific,
2378 thus reserved and should throw a #GP */
2379 return 1;
2380 }
2381 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2382 __func__, data);
2383 break;
2384 case 0x200 ... 0x2ff:
2385 return kvm_mtrr_set_msr(vcpu, msr, data);
2386 case MSR_IA32_APICBASE:
2387 return kvm_set_apic_base(vcpu, msr_info);
2388 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2389 return kvm_x2apic_msr_write(vcpu, msr, data);
2390 case MSR_IA32_TSCDEADLINE:
2391 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2392 break;
2393 case MSR_IA32_TSC_ADJUST:
2394 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2395 if (!msr_info->host_initiated) {
2396 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2397 adjust_tsc_offset_guest(vcpu, adj);
2398 }
2399 vcpu->arch.ia32_tsc_adjust_msr = data;
2400 }
2401 break;
2402 case MSR_IA32_MISC_ENABLE:
2403 vcpu->arch.ia32_misc_enable_msr = data;
2404 break;
2405 case MSR_IA32_SMBASE:
2406 if (!msr_info->host_initiated)
2407 return 1;
2408 vcpu->arch.smbase = data;
2409 break;
2410 case MSR_IA32_TSC:
2411 kvm_write_tsc(vcpu, msr_info);
2412 break;
2413 case MSR_SMI_COUNT:
2414 if (!msr_info->host_initiated)
2415 return 1;
2416 vcpu->arch.smi_count = data;
2417 break;
2418 case MSR_KVM_WALL_CLOCK_NEW:
2419 case MSR_KVM_WALL_CLOCK:
2420 vcpu->kvm->arch.wall_clock = data;
2421 kvm_write_wall_clock(vcpu->kvm, data);
2422 break;
2423 case MSR_KVM_SYSTEM_TIME_NEW:
2424 case MSR_KVM_SYSTEM_TIME: {
2425 struct kvm_arch *ka = &vcpu->kvm->arch;
2426
2427 kvmclock_reset(vcpu);
2428
2429 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2430 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2431
2432 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2433 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2434
2435 ka->boot_vcpu_runs_old_kvmclock = tmp;
2436 }
2437
2438 vcpu->arch.time = data;
2439 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2440
2441 /* we verify if the enable bit is set... */
2442 if (!(data & 1))
2443 break;
2444
2445 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2446 &vcpu->arch.pv_time, data & ~1ULL,
2447 sizeof(struct pvclock_vcpu_time_info)))
2448 vcpu->arch.pv_time_enabled = false;
2449 else
2450 vcpu->arch.pv_time_enabled = true;
2451
2452 break;
2453 }
2454 case MSR_KVM_ASYNC_PF_EN:
2455 if (kvm_pv_enable_async_pf(vcpu, data))
2456 return 1;
2457 break;
2458 case MSR_KVM_STEAL_TIME:
2459
2460 if (unlikely(!sched_info_on()))
2461 return 1;
2462
2463 if (data & KVM_STEAL_RESERVED_MASK)
2464 return 1;
2465
2466 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2467 data & KVM_STEAL_VALID_BITS,
2468 sizeof(struct kvm_steal_time)))
2469 return 1;
2470
2471 vcpu->arch.st.msr_val = data;
2472
2473 if (!(data & KVM_MSR_ENABLED))
2474 break;
2475
2476 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2477
2478 break;
2479 case MSR_KVM_PV_EOI_EN:
2480 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2481 return 1;
2482 break;
2483
2484 case MSR_IA32_MCG_CTL:
2485 case MSR_IA32_MCG_STATUS:
2486 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2487 return set_msr_mce(vcpu, msr_info);
2488
2489 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2490 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2491 pr = true; /* fall through */
2492 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2493 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2494 if (kvm_pmu_is_valid_msr(vcpu, msr))
2495 return kvm_pmu_set_msr(vcpu, msr_info);
2496
2497 if (pr || data != 0)
2498 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2499 "0x%x data 0x%llx\n", msr, data);
2500 break;
2501 case MSR_K7_CLK_CTL:
2502 /*
2503 * Ignore all writes to this no longer documented MSR.
2504 * Writes are only relevant for old K7 processors,
2505 * all pre-dating SVM, but a recommended workaround from
2506 * AMD for these chips. It is possible to specify the
2507 * affected processor models on the command line, hence
2508 * the need to ignore the workaround.
2509 */
2510 break;
2511 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2512 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2513 case HV_X64_MSR_CRASH_CTL:
2514 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2515 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2516 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2517 case HV_X64_MSR_TSC_EMULATION_STATUS:
2518 return kvm_hv_set_msr_common(vcpu, msr, data,
2519 msr_info->host_initiated);
2520 case MSR_IA32_BBL_CR_CTL3:
2521 /* Drop writes to this legacy MSR -- see rdmsr
2522 * counterpart for further detail.
2523 */
2524 if (report_ignored_msrs)
2525 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2526 msr, data);
2527 break;
2528 case MSR_AMD64_OSVW_ID_LENGTH:
2529 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2530 return 1;
2531 vcpu->arch.osvw.length = data;
2532 break;
2533 case MSR_AMD64_OSVW_STATUS:
2534 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2535 return 1;
2536 vcpu->arch.osvw.status = data;
2537 break;
2538 case MSR_PLATFORM_INFO:
2539 if (!msr_info->host_initiated ||
2540 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2541 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2542 cpuid_fault_enabled(vcpu)))
2543 return 1;
2544 vcpu->arch.msr_platform_info = data;
2545 break;
2546 case MSR_MISC_FEATURES_ENABLES:
2547 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2548 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2549 !supports_cpuid_fault(vcpu)))
2550 return 1;
2551 vcpu->arch.msr_misc_features_enables = data;
2552 break;
2553 default:
2554 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2555 return xen_hvm_config(vcpu, data);
2556 if (kvm_pmu_is_valid_msr(vcpu, msr))
2557 return kvm_pmu_set_msr(vcpu, msr_info);
2558 if (!ignore_msrs) {
2559 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2560 msr, data);
2561 return 1;
2562 } else {
2563 if (report_ignored_msrs)
2564 vcpu_unimpl(vcpu,
2565 "ignored wrmsr: 0x%x data 0x%llx\n",
2566 msr, data);
2567 break;
2568 }
2569 }
2570 return 0;
2571 }
2572 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2573
2574
2575 /*
2576 * Reads an msr value (of 'msr_index') into 'pdata'.
2577 * Returns 0 on success, non-0 otherwise.
2578 * Assumes vcpu_load() was already called.
2579 */
2580 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2581 {
2582 return kvm_x86_ops->get_msr(vcpu, msr);
2583 }
2584 EXPORT_SYMBOL_GPL(kvm_get_msr);
2585
2586 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2587 {
2588 u64 data;
2589 u64 mcg_cap = vcpu->arch.mcg_cap;
2590 unsigned bank_num = mcg_cap & 0xff;
2591
2592 switch (msr) {
2593 case MSR_IA32_P5_MC_ADDR:
2594 case MSR_IA32_P5_MC_TYPE:
2595 data = 0;
2596 break;
2597 case MSR_IA32_MCG_CAP:
2598 data = vcpu->arch.mcg_cap;
2599 break;
2600 case MSR_IA32_MCG_CTL:
2601 if (!(mcg_cap & MCG_CTL_P) && !host)
2602 return 1;
2603 data = vcpu->arch.mcg_ctl;
2604 break;
2605 case MSR_IA32_MCG_STATUS:
2606 data = vcpu->arch.mcg_status;
2607 break;
2608 default:
2609 if (msr >= MSR_IA32_MC0_CTL &&
2610 msr < MSR_IA32_MCx_CTL(bank_num)) {
2611 u32 offset = msr - MSR_IA32_MC0_CTL;
2612 data = vcpu->arch.mce_banks[offset];
2613 break;
2614 }
2615 return 1;
2616 }
2617 *pdata = data;
2618 return 0;
2619 }
2620
2621 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2622 {
2623 switch (msr_info->index) {
2624 case MSR_IA32_PLATFORM_ID:
2625 case MSR_IA32_EBL_CR_POWERON:
2626 case MSR_IA32_DEBUGCTLMSR:
2627 case MSR_IA32_LASTBRANCHFROMIP:
2628 case MSR_IA32_LASTBRANCHTOIP:
2629 case MSR_IA32_LASTINTFROMIP:
2630 case MSR_IA32_LASTINTTOIP:
2631 case MSR_K8_SYSCFG:
2632 case MSR_K8_TSEG_ADDR:
2633 case MSR_K8_TSEG_MASK:
2634 case MSR_K7_HWCR:
2635 case MSR_VM_HSAVE_PA:
2636 case MSR_K8_INT_PENDING_MSG:
2637 case MSR_AMD64_NB_CFG:
2638 case MSR_FAM10H_MMIO_CONF_BASE:
2639 case MSR_AMD64_BU_CFG2:
2640 case MSR_IA32_PERF_CTL:
2641 case MSR_AMD64_DC_CFG:
2642 msr_info->data = 0;
2643 break;
2644 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2645 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2646 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2647 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2648 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2649 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2650 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2651 msr_info->data = 0;
2652 break;
2653 case MSR_IA32_UCODE_REV:
2654 msr_info->data = vcpu->arch.microcode_version;
2655 break;
2656 case MSR_IA32_TSC:
2657 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2658 break;
2659 case MSR_MTRRcap:
2660 case 0x200 ... 0x2ff:
2661 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2662 case 0xcd: /* fsb frequency */
2663 msr_info->data = 3;
2664 break;
2665 /*
2666 * MSR_EBC_FREQUENCY_ID
2667 * Conservative value valid for even the basic CPU models.
2668 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2669 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2670 * and 266MHz for model 3, or 4. Set Core Clock
2671 * Frequency to System Bus Frequency Ratio to 1 (bits
2672 * 31:24) even though these are only valid for CPU
2673 * models > 2, however guests may end up dividing or
2674 * multiplying by zero otherwise.
2675 */
2676 case MSR_EBC_FREQUENCY_ID:
2677 msr_info->data = 1 << 24;
2678 break;
2679 case MSR_IA32_APICBASE:
2680 msr_info->data = kvm_get_apic_base(vcpu);
2681 break;
2682 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2683 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2684 break;
2685 case MSR_IA32_TSCDEADLINE:
2686 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2687 break;
2688 case MSR_IA32_TSC_ADJUST:
2689 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2690 break;
2691 case MSR_IA32_MISC_ENABLE:
2692 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2693 break;
2694 case MSR_IA32_SMBASE:
2695 if (!msr_info->host_initiated)
2696 return 1;
2697 msr_info->data = vcpu->arch.smbase;
2698 break;
2699 case MSR_SMI_COUNT:
2700 msr_info->data = vcpu->arch.smi_count;
2701 break;
2702 case MSR_IA32_PERF_STATUS:
2703 /* TSC increment by tick */
2704 msr_info->data = 1000ULL;
2705 /* CPU multiplier */
2706 msr_info->data |= (((uint64_t)4ULL) << 40);
2707 break;
2708 case MSR_EFER:
2709 msr_info->data = vcpu->arch.efer;
2710 break;
2711 case MSR_KVM_WALL_CLOCK:
2712 case MSR_KVM_WALL_CLOCK_NEW:
2713 msr_info->data = vcpu->kvm->arch.wall_clock;
2714 break;
2715 case MSR_KVM_SYSTEM_TIME:
2716 case MSR_KVM_SYSTEM_TIME_NEW:
2717 msr_info->data = vcpu->arch.time;
2718 break;
2719 case MSR_KVM_ASYNC_PF_EN:
2720 msr_info->data = vcpu->arch.apf.msr_val;
2721 break;
2722 case MSR_KVM_STEAL_TIME:
2723 msr_info->data = vcpu->arch.st.msr_val;
2724 break;
2725 case MSR_KVM_PV_EOI_EN:
2726 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2727 break;
2728 case MSR_IA32_P5_MC_ADDR:
2729 case MSR_IA32_P5_MC_TYPE:
2730 case MSR_IA32_MCG_CAP:
2731 case MSR_IA32_MCG_CTL:
2732 case MSR_IA32_MCG_STATUS:
2733 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2734 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2735 msr_info->host_initiated);
2736 case MSR_K7_CLK_CTL:
2737 /*
2738 * Provide expected ramp-up count for K7. All other
2739 * are set to zero, indicating minimum divisors for
2740 * every field.
2741 *
2742 * This prevents guest kernels on AMD host with CPU
2743 * type 6, model 8 and higher from exploding due to
2744 * the rdmsr failing.
2745 */
2746 msr_info->data = 0x20000000;
2747 break;
2748 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2749 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2750 case HV_X64_MSR_CRASH_CTL:
2751 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2752 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2753 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2754 case HV_X64_MSR_TSC_EMULATION_STATUS:
2755 return kvm_hv_get_msr_common(vcpu,
2756 msr_info->index, &msr_info->data,
2757 msr_info->host_initiated);
2758 break;
2759 case MSR_IA32_BBL_CR_CTL3:
2760 /* This legacy MSR exists but isn't fully documented in current
2761 * silicon. It is however accessed by winxp in very narrow
2762 * scenarios where it sets bit #19, itself documented as
2763 * a "reserved" bit. Best effort attempt to source coherent
2764 * read data here should the balance of the register be
2765 * interpreted by the guest:
2766 *
2767 * L2 cache control register 3: 64GB range, 256KB size,
2768 * enabled, latency 0x1, configured
2769 */
2770 msr_info->data = 0xbe702111;
2771 break;
2772 case MSR_AMD64_OSVW_ID_LENGTH:
2773 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2774 return 1;
2775 msr_info->data = vcpu->arch.osvw.length;
2776 break;
2777 case MSR_AMD64_OSVW_STATUS:
2778 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2779 return 1;
2780 msr_info->data = vcpu->arch.osvw.status;
2781 break;
2782 case MSR_PLATFORM_INFO:
2783 msr_info->data = vcpu->arch.msr_platform_info;
2784 break;
2785 case MSR_MISC_FEATURES_ENABLES:
2786 msr_info->data = vcpu->arch.msr_misc_features_enables;
2787 break;
2788 default:
2789 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2790 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2791 if (!ignore_msrs) {
2792 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2793 msr_info->index);
2794 return 1;
2795 } else {
2796 if (report_ignored_msrs)
2797 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2798 msr_info->index);
2799 msr_info->data = 0;
2800 }
2801 break;
2802 }
2803 return 0;
2804 }
2805 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2806
2807 /*
2808 * Read or write a bunch of msrs. All parameters are kernel addresses.
2809 *
2810 * @return number of msrs set successfully.
2811 */
2812 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2813 struct kvm_msr_entry *entries,
2814 int (*do_msr)(struct kvm_vcpu *vcpu,
2815 unsigned index, u64 *data))
2816 {
2817 int i;
2818
2819 for (i = 0; i < msrs->nmsrs; ++i)
2820 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2821 break;
2822
2823 return i;
2824 }
2825
2826 /*
2827 * Read or write a bunch of msrs. Parameters are user addresses.
2828 *
2829 * @return number of msrs set successfully.
2830 */
2831 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2832 int (*do_msr)(struct kvm_vcpu *vcpu,
2833 unsigned index, u64 *data),
2834 int writeback)
2835 {
2836 struct kvm_msrs msrs;
2837 struct kvm_msr_entry *entries;
2838 int r, n;
2839 unsigned size;
2840
2841 r = -EFAULT;
2842 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2843 goto out;
2844
2845 r = -E2BIG;
2846 if (msrs.nmsrs >= MAX_IO_MSRS)
2847 goto out;
2848
2849 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2850 entries = memdup_user(user_msrs->entries, size);
2851 if (IS_ERR(entries)) {
2852 r = PTR_ERR(entries);
2853 goto out;
2854 }
2855
2856 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2857 if (r < 0)
2858 goto out_free;
2859
2860 r = -EFAULT;
2861 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2862 goto out_free;
2863
2864 r = n;
2865
2866 out_free:
2867 kfree(entries);
2868 out:
2869 return r;
2870 }
2871
2872 static inline bool kvm_can_mwait_in_guest(void)
2873 {
2874 return boot_cpu_has(X86_FEATURE_MWAIT) &&
2875 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2876 boot_cpu_has(X86_FEATURE_ARAT);
2877 }
2878
2879 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2880 {
2881 int r = 0;
2882
2883 switch (ext) {
2884 case KVM_CAP_IRQCHIP:
2885 case KVM_CAP_HLT:
2886 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2887 case KVM_CAP_SET_TSS_ADDR:
2888 case KVM_CAP_EXT_CPUID:
2889 case KVM_CAP_EXT_EMUL_CPUID:
2890 case KVM_CAP_CLOCKSOURCE:
2891 case KVM_CAP_PIT:
2892 case KVM_CAP_NOP_IO_DELAY:
2893 case KVM_CAP_MP_STATE:
2894 case KVM_CAP_SYNC_MMU:
2895 case KVM_CAP_USER_NMI:
2896 case KVM_CAP_REINJECT_CONTROL:
2897 case KVM_CAP_IRQ_INJECT_STATUS:
2898 case KVM_CAP_IOEVENTFD:
2899 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2900 case KVM_CAP_PIT2:
2901 case KVM_CAP_PIT_STATE2:
2902 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2903 case KVM_CAP_XEN_HVM:
2904 case KVM_CAP_VCPU_EVENTS:
2905 case KVM_CAP_HYPERV:
2906 case KVM_CAP_HYPERV_VAPIC:
2907 case KVM_CAP_HYPERV_SPIN:
2908 case KVM_CAP_HYPERV_SYNIC:
2909 case KVM_CAP_HYPERV_SYNIC2:
2910 case KVM_CAP_HYPERV_VP_INDEX:
2911 case KVM_CAP_HYPERV_EVENTFD:
2912 case KVM_CAP_HYPERV_TLBFLUSH:
2913 case KVM_CAP_PCI_SEGMENT:
2914 case KVM_CAP_DEBUGREGS:
2915 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2916 case KVM_CAP_XSAVE:
2917 case KVM_CAP_ASYNC_PF:
2918 case KVM_CAP_GET_TSC_KHZ:
2919 case KVM_CAP_KVMCLOCK_CTRL:
2920 case KVM_CAP_READONLY_MEM:
2921 case KVM_CAP_HYPERV_TIME:
2922 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2923 case KVM_CAP_TSC_DEADLINE_TIMER:
2924 case KVM_CAP_ENABLE_CAP_VM:
2925 case KVM_CAP_DISABLE_QUIRKS:
2926 case KVM_CAP_SET_BOOT_CPU_ID:
2927 case KVM_CAP_SPLIT_IRQCHIP:
2928 case KVM_CAP_IMMEDIATE_EXIT:
2929 case KVM_CAP_GET_MSR_FEATURES:
2930 r = 1;
2931 break;
2932 case KVM_CAP_SYNC_REGS:
2933 r = KVM_SYNC_X86_VALID_FIELDS;
2934 break;
2935 case KVM_CAP_ADJUST_CLOCK:
2936 r = KVM_CLOCK_TSC_STABLE;
2937 break;
2938 case KVM_CAP_X86_DISABLE_EXITS:
2939 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
2940 if(kvm_can_mwait_in_guest())
2941 r |= KVM_X86_DISABLE_EXITS_MWAIT;
2942 break;
2943 case KVM_CAP_X86_SMM:
2944 /* SMBASE is usually relocated above 1M on modern chipsets,
2945 * and SMM handlers might indeed rely on 4G segment limits,
2946 * so do not report SMM to be available if real mode is
2947 * emulated via vm86 mode. Still, do not go to great lengths
2948 * to avoid userspace's usage of the feature, because it is a
2949 * fringe case that is not enabled except via specific settings
2950 * of the module parameters.
2951 */
2952 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2953 break;
2954 case KVM_CAP_VAPIC:
2955 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2956 break;
2957 case KVM_CAP_NR_VCPUS:
2958 r = KVM_SOFT_MAX_VCPUS;
2959 break;
2960 case KVM_CAP_MAX_VCPUS:
2961 r = KVM_MAX_VCPUS;
2962 break;
2963 case KVM_CAP_NR_MEMSLOTS:
2964 r = KVM_USER_MEM_SLOTS;
2965 break;
2966 case KVM_CAP_PV_MMU: /* obsolete */
2967 r = 0;
2968 break;
2969 case KVM_CAP_MCE:
2970 r = KVM_MAX_MCE_BANKS;
2971 break;
2972 case KVM_CAP_XCRS:
2973 r = boot_cpu_has(X86_FEATURE_XSAVE);
2974 break;
2975 case KVM_CAP_TSC_CONTROL:
2976 r = kvm_has_tsc_control;
2977 break;
2978 case KVM_CAP_X2APIC_API:
2979 r = KVM_X2APIC_API_VALID_FLAGS;
2980 break;
2981 case KVM_CAP_NESTED_STATE:
2982 r = kvm_x86_ops->get_nested_state ?
2983 kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
2984 break;
2985 default:
2986 break;
2987 }
2988 return r;
2989
2990 }
2991
2992 long kvm_arch_dev_ioctl(struct file *filp,
2993 unsigned int ioctl, unsigned long arg)
2994 {
2995 void __user *argp = (void __user *)arg;
2996 long r;
2997
2998 switch (ioctl) {
2999 case KVM_GET_MSR_INDEX_LIST: {
3000 struct kvm_msr_list __user *user_msr_list = argp;
3001 struct kvm_msr_list msr_list;
3002 unsigned n;
3003
3004 r = -EFAULT;
3005 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3006 goto out;
3007 n = msr_list.nmsrs;
3008 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3009 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3010 goto out;
3011 r = -E2BIG;
3012 if (n < msr_list.nmsrs)
3013 goto out;
3014 r = -EFAULT;
3015 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3016 num_msrs_to_save * sizeof(u32)))
3017 goto out;
3018 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3019 &emulated_msrs,
3020 num_emulated_msrs * sizeof(u32)))
3021 goto out;
3022 r = 0;
3023 break;
3024 }
3025 case KVM_GET_SUPPORTED_CPUID:
3026 case KVM_GET_EMULATED_CPUID: {
3027 struct kvm_cpuid2 __user *cpuid_arg = argp;
3028 struct kvm_cpuid2 cpuid;
3029
3030 r = -EFAULT;
3031 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3032 goto out;
3033
3034 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3035 ioctl);
3036 if (r)
3037 goto out;
3038
3039 r = -EFAULT;
3040 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3041 goto out;
3042 r = 0;
3043 break;
3044 }
3045 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3046 r = -EFAULT;
3047 if (copy_to_user(argp, &kvm_mce_cap_supported,
3048 sizeof(kvm_mce_cap_supported)))
3049 goto out;
3050 r = 0;
3051 break;
3052 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3053 struct kvm_msr_list __user *user_msr_list = argp;
3054 struct kvm_msr_list msr_list;
3055 unsigned int n;
3056
3057 r = -EFAULT;
3058 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3059 goto out;
3060 n = msr_list.nmsrs;
3061 msr_list.nmsrs = num_msr_based_features;
3062 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3063 goto out;
3064 r = -E2BIG;
3065 if (n < msr_list.nmsrs)
3066 goto out;
3067 r = -EFAULT;
3068 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3069 num_msr_based_features * sizeof(u32)))
3070 goto out;
3071 r = 0;
3072 break;
3073 }
3074 case KVM_GET_MSRS:
3075 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3076 break;
3077 }
3078 default:
3079 r = -EINVAL;
3080 }
3081 out:
3082 return r;
3083 }
3084
3085 static void wbinvd_ipi(void *garbage)
3086 {
3087 wbinvd();
3088 }
3089
3090 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3091 {
3092 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3093 }
3094
3095 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3096 {
3097 /* Address WBINVD may be executed by guest */
3098 if (need_emulate_wbinvd(vcpu)) {
3099 if (kvm_x86_ops->has_wbinvd_exit())
3100 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3101 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3102 smp_call_function_single(vcpu->cpu,
3103 wbinvd_ipi, NULL, 1);
3104 }
3105
3106 kvm_x86_ops->vcpu_load(vcpu, cpu);
3107
3108 /* Apply any externally detected TSC adjustments (due to suspend) */
3109 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3110 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3111 vcpu->arch.tsc_offset_adjustment = 0;
3112 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3113 }
3114
3115 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3116 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3117 rdtsc() - vcpu->arch.last_host_tsc;
3118 if (tsc_delta < 0)
3119 mark_tsc_unstable("KVM discovered backwards TSC");
3120
3121 if (kvm_check_tsc_unstable()) {
3122 u64 offset = kvm_compute_tsc_offset(vcpu,
3123 vcpu->arch.last_guest_tsc);
3124 kvm_vcpu_write_tsc_offset(vcpu, offset);
3125 vcpu->arch.tsc_catchup = 1;
3126 }
3127
3128 if (kvm_lapic_hv_timer_in_use(vcpu))
3129 kvm_lapic_restart_hv_timer(vcpu);
3130
3131 /*
3132 * On a host with synchronized TSC, there is no need to update
3133 * kvmclock on vcpu->cpu migration
3134 */
3135 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3136 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3137 if (vcpu->cpu != cpu)
3138 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3139 vcpu->cpu = cpu;
3140 }
3141
3142 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3143 }
3144
3145 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3146 {
3147 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3148 return;
3149
3150 vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3151
3152 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3153 &vcpu->arch.st.steal.preempted,
3154 offsetof(struct kvm_steal_time, preempted),
3155 sizeof(vcpu->arch.st.steal.preempted));
3156 }
3157
3158 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3159 {
3160 int idx;
3161
3162 if (vcpu->preempted)
3163 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3164
3165 /*
3166 * Disable page faults because we're in atomic context here.
3167 * kvm_write_guest_offset_cached() would call might_fault()
3168 * that relies on pagefault_disable() to tell if there's a
3169 * bug. NOTE: the write to guest memory may not go through if
3170 * during postcopy live migration or if there's heavy guest
3171 * paging.
3172 */
3173 pagefault_disable();
3174 /*
3175 * kvm_memslots() will be called by
3176 * kvm_write_guest_offset_cached() so take the srcu lock.
3177 */
3178 idx = srcu_read_lock(&vcpu->kvm->srcu);
3179 kvm_steal_time_set_preempted(vcpu);
3180 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3181 pagefault_enable();
3182 kvm_x86_ops->vcpu_put(vcpu);
3183 vcpu->arch.last_host_tsc = rdtsc();
3184 /*
3185 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3186 * on every vmexit, but if not, we might have a stale dr6 from the
3187 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3188 */
3189 set_debugreg(0, 6);
3190 }
3191
3192 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3193 struct kvm_lapic_state *s)
3194 {
3195 if (vcpu->arch.apicv_active)
3196 kvm_x86_ops->sync_pir_to_irr(vcpu);
3197
3198 return kvm_apic_get_state(vcpu, s);
3199 }
3200
3201 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3202 struct kvm_lapic_state *s)
3203 {
3204 int r;
3205
3206 r = kvm_apic_set_state(vcpu, s);
3207 if (r)
3208 return r;
3209 update_cr8_intercept(vcpu);
3210
3211 return 0;
3212 }
3213
3214 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3215 {
3216 return (!lapic_in_kernel(vcpu) ||
3217 kvm_apic_accept_pic_intr(vcpu));
3218 }
3219
3220 /*
3221 * if userspace requested an interrupt window, check that the
3222 * interrupt window is open.
3223 *
3224 * No need to exit to userspace if we already have an interrupt queued.
3225 */
3226 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3227 {
3228 return kvm_arch_interrupt_allowed(vcpu) &&
3229 !kvm_cpu_has_interrupt(vcpu) &&
3230 !kvm_event_needs_reinjection(vcpu) &&
3231 kvm_cpu_accept_dm_intr(vcpu);
3232 }
3233
3234 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3235 struct kvm_interrupt *irq)
3236 {
3237 if (irq->irq >= KVM_NR_INTERRUPTS)
3238 return -EINVAL;
3239
3240 if (!irqchip_in_kernel(vcpu->kvm)) {
3241 kvm_queue_interrupt(vcpu, irq->irq, false);
3242 kvm_make_request(KVM_REQ_EVENT, vcpu);
3243 return 0;
3244 }
3245
3246 /*
3247 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3248 * fail for in-kernel 8259.
3249 */
3250 if (pic_in_kernel(vcpu->kvm))
3251 return -ENXIO;
3252
3253 if (vcpu->arch.pending_external_vector != -1)
3254 return -EEXIST;
3255
3256 vcpu->arch.pending_external_vector = irq->irq;
3257 kvm_make_request(KVM_REQ_EVENT, vcpu);
3258 return 0;
3259 }
3260
3261 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3262 {
3263 kvm_inject_nmi(vcpu);
3264
3265 return 0;
3266 }
3267
3268 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3269 {
3270 kvm_make_request(KVM_REQ_SMI, vcpu);
3271
3272 return 0;
3273 }
3274
3275 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3276 struct kvm_tpr_access_ctl *tac)
3277 {
3278 if (tac->flags)
3279 return -EINVAL;
3280 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3281 return 0;
3282 }
3283
3284 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3285 u64 mcg_cap)
3286 {
3287 int r;
3288 unsigned bank_num = mcg_cap & 0xff, bank;
3289
3290 r = -EINVAL;
3291 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3292 goto out;
3293 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3294 goto out;
3295 r = 0;
3296 vcpu->arch.mcg_cap = mcg_cap;
3297 /* Init IA32_MCG_CTL to all 1s */
3298 if (mcg_cap & MCG_CTL_P)
3299 vcpu->arch.mcg_ctl = ~(u64)0;
3300 /* Init IA32_MCi_CTL to all 1s */
3301 for (bank = 0; bank < bank_num; bank++)
3302 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3303
3304 if (kvm_x86_ops->setup_mce)
3305 kvm_x86_ops->setup_mce(vcpu);
3306 out:
3307 return r;
3308 }
3309
3310 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3311 struct kvm_x86_mce *mce)
3312 {
3313 u64 mcg_cap = vcpu->arch.mcg_cap;
3314 unsigned bank_num = mcg_cap & 0xff;
3315 u64 *banks = vcpu->arch.mce_banks;
3316
3317 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3318 return -EINVAL;
3319 /*
3320 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3321 * reporting is disabled
3322 */
3323 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3324 vcpu->arch.mcg_ctl != ~(u64)0)
3325 return 0;
3326 banks += 4 * mce->bank;
3327 /*
3328 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3329 * reporting is disabled for the bank
3330 */
3331 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3332 return 0;
3333 if (mce->status & MCI_STATUS_UC) {
3334 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3335 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3336 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3337 return 0;
3338 }
3339 if (banks[1] & MCI_STATUS_VAL)
3340 mce->status |= MCI_STATUS_OVER;
3341 banks[2] = mce->addr;
3342 banks[3] = mce->misc;
3343 vcpu->arch.mcg_status = mce->mcg_status;
3344 banks[1] = mce->status;
3345 kvm_queue_exception(vcpu, MC_VECTOR);
3346 } else if (!(banks[1] & MCI_STATUS_VAL)
3347 || !(banks[1] & MCI_STATUS_UC)) {
3348 if (banks[1] & MCI_STATUS_VAL)
3349 mce->status |= MCI_STATUS_OVER;
3350 banks[2] = mce->addr;
3351 banks[3] = mce->misc;
3352 banks[1] = mce->status;
3353 } else
3354 banks[1] |= MCI_STATUS_OVER;
3355 return 0;
3356 }
3357
3358 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3359 struct kvm_vcpu_events *events)
3360 {
3361 process_nmi(vcpu);
3362 /*
3363 * FIXME: pass injected and pending separately. This is only
3364 * needed for nested virtualization, whose state cannot be
3365 * migrated yet. For now we can combine them.
3366 */
3367 events->exception.injected =
3368 (vcpu->arch.exception.pending ||
3369 vcpu->arch.exception.injected) &&
3370 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3371 events->exception.nr = vcpu->arch.exception.nr;
3372 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3373 events->exception.pad = 0;
3374 events->exception.error_code = vcpu->arch.exception.error_code;
3375
3376 events->interrupt.injected =
3377 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3378 events->interrupt.nr = vcpu->arch.interrupt.nr;
3379 events->interrupt.soft = 0;
3380 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3381
3382 events->nmi.injected = vcpu->arch.nmi_injected;
3383 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3384 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3385 events->nmi.pad = 0;
3386
3387 events->sipi_vector = 0; /* never valid when reporting to user space */
3388
3389 events->smi.smm = is_smm(vcpu);
3390 events->smi.pending = vcpu->arch.smi_pending;
3391 events->smi.smm_inside_nmi =
3392 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3393 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3394
3395 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3396 | KVM_VCPUEVENT_VALID_SHADOW
3397 | KVM_VCPUEVENT_VALID_SMM);
3398 memset(&events->reserved, 0, sizeof(events->reserved));
3399 }
3400
3401 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3402
3403 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3404 struct kvm_vcpu_events *events)
3405 {
3406 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3407 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3408 | KVM_VCPUEVENT_VALID_SHADOW
3409 | KVM_VCPUEVENT_VALID_SMM))
3410 return -EINVAL;
3411
3412 if (events->exception.injected &&
3413 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3414 is_guest_mode(vcpu)))
3415 return -EINVAL;
3416
3417 /* INITs are latched while in SMM */
3418 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3419 (events->smi.smm || events->smi.pending) &&
3420 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3421 return -EINVAL;
3422
3423 process_nmi(vcpu);
3424 vcpu->arch.exception.injected = false;
3425 vcpu->arch.exception.pending = events->exception.injected;
3426 vcpu->arch.exception.nr = events->exception.nr;
3427 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3428 vcpu->arch.exception.error_code = events->exception.error_code;
3429
3430 vcpu->arch.interrupt.injected = events->interrupt.injected;
3431 vcpu->arch.interrupt.nr = events->interrupt.nr;
3432 vcpu->arch.interrupt.soft = events->interrupt.soft;
3433 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3434 kvm_x86_ops->set_interrupt_shadow(vcpu,
3435 events->interrupt.shadow);
3436
3437 vcpu->arch.nmi_injected = events->nmi.injected;
3438 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3439 vcpu->arch.nmi_pending = events->nmi.pending;
3440 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3441
3442 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3443 lapic_in_kernel(vcpu))
3444 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3445
3446 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3447 u32 hflags = vcpu->arch.hflags;
3448 if (events->smi.smm)
3449 hflags |= HF_SMM_MASK;
3450 else
3451 hflags &= ~HF_SMM_MASK;
3452 kvm_set_hflags(vcpu, hflags);
3453
3454 vcpu->arch.smi_pending = events->smi.pending;
3455
3456 if (events->smi.smm) {
3457 if (events->smi.smm_inside_nmi)
3458 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3459 else
3460 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3461 if (lapic_in_kernel(vcpu)) {
3462 if (events->smi.latched_init)
3463 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3464 else
3465 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3466 }
3467 }
3468 }
3469
3470 kvm_make_request(KVM_REQ_EVENT, vcpu);
3471
3472 return 0;
3473 }
3474
3475 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3476 struct kvm_debugregs *dbgregs)
3477 {
3478 unsigned long val;
3479
3480 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3481 kvm_get_dr(vcpu, 6, &val);
3482 dbgregs->dr6 = val;
3483 dbgregs->dr7 = vcpu->arch.dr7;
3484 dbgregs->flags = 0;
3485 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3486 }
3487
3488 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3489 struct kvm_debugregs *dbgregs)
3490 {
3491 if (dbgregs->flags)
3492 return -EINVAL;
3493
3494 if (dbgregs->dr6 & ~0xffffffffull)
3495 return -EINVAL;
3496 if (dbgregs->dr7 & ~0xffffffffull)
3497 return -EINVAL;
3498
3499 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3500 kvm_update_dr0123(vcpu);
3501 vcpu->arch.dr6 = dbgregs->dr6;
3502 kvm_update_dr6(vcpu);
3503 vcpu->arch.dr7 = dbgregs->dr7;
3504 kvm_update_dr7(vcpu);
3505
3506 return 0;
3507 }
3508
3509 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3510
3511 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3512 {
3513 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3514 u64 xstate_bv = xsave->header.xfeatures;
3515 u64 valid;
3516
3517 /*
3518 * Copy legacy XSAVE area, to avoid complications with CPUID
3519 * leaves 0 and 1 in the loop below.
3520 */
3521 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3522
3523 /* Set XSTATE_BV */
3524 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3525 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3526
3527 /*
3528 * Copy each region from the possibly compacted offset to the
3529 * non-compacted offset.
3530 */
3531 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3532 while (valid) {
3533 u64 feature = valid & -valid;
3534 int index = fls64(feature) - 1;
3535 void *src = get_xsave_addr(xsave, feature);
3536
3537 if (src) {
3538 u32 size, offset, ecx, edx;
3539 cpuid_count(XSTATE_CPUID, index,
3540 &size, &offset, &ecx, &edx);
3541 if (feature == XFEATURE_MASK_PKRU)
3542 memcpy(dest + offset, &vcpu->arch.pkru,
3543 sizeof(vcpu->arch.pkru));
3544 else
3545 memcpy(dest + offset, src, size);
3546
3547 }
3548
3549 valid -= feature;
3550 }
3551 }
3552
3553 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3554 {
3555 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3556 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3557 u64 valid;
3558
3559 /*
3560 * Copy legacy XSAVE area, to avoid complications with CPUID
3561 * leaves 0 and 1 in the loop below.
3562 */
3563 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3564
3565 /* Set XSTATE_BV and possibly XCOMP_BV. */
3566 xsave->header.xfeatures = xstate_bv;
3567 if (boot_cpu_has(X86_FEATURE_XSAVES))
3568 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3569
3570 /*
3571 * Copy each region from the non-compacted offset to the
3572 * possibly compacted offset.
3573 */
3574 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3575 while (valid) {
3576 u64 feature = valid & -valid;
3577 int index = fls64(feature) - 1;
3578 void *dest = get_xsave_addr(xsave, feature);
3579
3580 if (dest) {
3581 u32 size, offset, ecx, edx;
3582 cpuid_count(XSTATE_CPUID, index,
3583 &size, &offset, &ecx, &edx);
3584 if (feature == XFEATURE_MASK_PKRU)
3585 memcpy(&vcpu->arch.pkru, src + offset,
3586 sizeof(vcpu->arch.pkru));
3587 else
3588 memcpy(dest, src + offset, size);
3589 }
3590
3591 valid -= feature;
3592 }
3593 }
3594
3595 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3596 struct kvm_xsave *guest_xsave)
3597 {
3598 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3599 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3600 fill_xsave((u8 *) guest_xsave->region, vcpu);
3601 } else {
3602 memcpy(guest_xsave->region,
3603 &vcpu->arch.guest_fpu.state.fxsave,
3604 sizeof(struct fxregs_state));
3605 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3606 XFEATURE_MASK_FPSSE;
3607 }
3608 }
3609
3610 #define XSAVE_MXCSR_OFFSET 24
3611
3612 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3613 struct kvm_xsave *guest_xsave)
3614 {
3615 u64 xstate_bv =
3616 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3617 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3618
3619 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3620 /*
3621 * Here we allow setting states that are not present in
3622 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3623 * with old userspace.
3624 */
3625 if (xstate_bv & ~kvm_supported_xcr0() ||
3626 mxcsr & ~mxcsr_feature_mask)
3627 return -EINVAL;
3628 load_xsave(vcpu, (u8 *)guest_xsave->region);
3629 } else {
3630 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3631 mxcsr & ~mxcsr_feature_mask)
3632 return -EINVAL;
3633 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3634 guest_xsave->region, sizeof(struct fxregs_state));
3635 }
3636 return 0;
3637 }
3638
3639 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3640 struct kvm_xcrs *guest_xcrs)
3641 {
3642 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3643 guest_xcrs->nr_xcrs = 0;
3644 return;
3645 }
3646
3647 guest_xcrs->nr_xcrs = 1;
3648 guest_xcrs->flags = 0;
3649 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3650 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3651 }
3652
3653 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3654 struct kvm_xcrs *guest_xcrs)
3655 {
3656 int i, r = 0;
3657
3658 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3659 return -EINVAL;
3660
3661 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3662 return -EINVAL;
3663
3664 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3665 /* Only support XCR0 currently */
3666 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3667 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3668 guest_xcrs->xcrs[i].value);
3669 break;
3670 }
3671 if (r)
3672 r = -EINVAL;
3673 return r;
3674 }
3675
3676 /*
3677 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3678 * stopped by the hypervisor. This function will be called from the host only.
3679 * EINVAL is returned when the host attempts to set the flag for a guest that
3680 * does not support pv clocks.
3681 */
3682 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3683 {
3684 if (!vcpu->arch.pv_time_enabled)
3685 return -EINVAL;
3686 vcpu->arch.pvclock_set_guest_stopped_request = true;
3687 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3688 return 0;
3689 }
3690
3691 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3692 struct kvm_enable_cap *cap)
3693 {
3694 if (cap->flags)
3695 return -EINVAL;
3696
3697 switch (cap->cap) {
3698 case KVM_CAP_HYPERV_SYNIC2:
3699 if (cap->args[0])
3700 return -EINVAL;
3701 case KVM_CAP_HYPERV_SYNIC:
3702 if (!irqchip_in_kernel(vcpu->kvm))
3703 return -EINVAL;
3704 return kvm_hv_activate_synic(vcpu, cap->cap ==
3705 KVM_CAP_HYPERV_SYNIC2);
3706 default:
3707 return -EINVAL;
3708 }
3709 }
3710
3711 long kvm_arch_vcpu_ioctl(struct file *filp,
3712 unsigned int ioctl, unsigned long arg)
3713 {
3714 struct kvm_vcpu *vcpu = filp->private_data;
3715 void __user *argp = (void __user *)arg;
3716 int r;
3717 union {
3718 struct kvm_lapic_state *lapic;
3719 struct kvm_xsave *xsave;
3720 struct kvm_xcrs *xcrs;
3721 void *buffer;
3722 } u;
3723
3724 vcpu_load(vcpu);
3725
3726 u.buffer = NULL;
3727 switch (ioctl) {
3728 case KVM_GET_LAPIC: {
3729 r = -EINVAL;
3730 if (!lapic_in_kernel(vcpu))
3731 goto out;
3732 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3733
3734 r = -ENOMEM;
3735 if (!u.lapic)
3736 goto out;
3737 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3738 if (r)
3739 goto out;
3740 r = -EFAULT;
3741 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3742 goto out;
3743 r = 0;
3744 break;
3745 }
3746 case KVM_SET_LAPIC: {
3747 r = -EINVAL;
3748 if (!lapic_in_kernel(vcpu))
3749 goto out;
3750 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3751 if (IS_ERR(u.lapic)) {
3752 r = PTR_ERR(u.lapic);
3753 goto out_nofree;
3754 }
3755
3756 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3757 break;
3758 }
3759 case KVM_INTERRUPT: {
3760 struct kvm_interrupt irq;
3761
3762 r = -EFAULT;
3763 if (copy_from_user(&irq, argp, sizeof irq))
3764 goto out;
3765 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3766 break;
3767 }
3768 case KVM_NMI: {
3769 r = kvm_vcpu_ioctl_nmi(vcpu);
3770 break;
3771 }
3772 case KVM_SMI: {
3773 r = kvm_vcpu_ioctl_smi(vcpu);
3774 break;
3775 }
3776 case KVM_SET_CPUID: {
3777 struct kvm_cpuid __user *cpuid_arg = argp;
3778 struct kvm_cpuid cpuid;
3779
3780 r = -EFAULT;
3781 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3782 goto out;
3783 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3784 break;
3785 }
3786 case KVM_SET_CPUID2: {
3787 struct kvm_cpuid2 __user *cpuid_arg = argp;
3788 struct kvm_cpuid2 cpuid;
3789
3790 r = -EFAULT;
3791 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3792 goto out;
3793 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3794 cpuid_arg->entries);
3795 break;
3796 }
3797 case KVM_GET_CPUID2: {
3798 struct kvm_cpuid2 __user *cpuid_arg = argp;
3799 struct kvm_cpuid2 cpuid;
3800
3801 r = -EFAULT;
3802 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3803 goto out;
3804 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3805 cpuid_arg->entries);
3806 if (r)
3807 goto out;
3808 r = -EFAULT;
3809 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3810 goto out;
3811 r = 0;
3812 break;
3813 }
3814 case KVM_GET_MSRS: {
3815 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3816 r = msr_io(vcpu, argp, do_get_msr, 1);
3817 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3818 break;
3819 }
3820 case KVM_SET_MSRS: {
3821 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3822 r = msr_io(vcpu, argp, do_set_msr, 0);
3823 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3824 break;
3825 }
3826 case KVM_TPR_ACCESS_REPORTING: {
3827 struct kvm_tpr_access_ctl tac;
3828
3829 r = -EFAULT;
3830 if (copy_from_user(&tac, argp, sizeof tac))
3831 goto out;
3832 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3833 if (r)
3834 goto out;
3835 r = -EFAULT;
3836 if (copy_to_user(argp, &tac, sizeof tac))
3837 goto out;
3838 r = 0;
3839 break;
3840 };
3841 case KVM_SET_VAPIC_ADDR: {
3842 struct kvm_vapic_addr va;
3843 int idx;
3844
3845 r = -EINVAL;
3846 if (!lapic_in_kernel(vcpu))
3847 goto out;
3848 r = -EFAULT;
3849 if (copy_from_user(&va, argp, sizeof va))
3850 goto out;
3851 idx = srcu_read_lock(&vcpu->kvm->srcu);
3852 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3853 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3854 break;
3855 }
3856 case KVM_X86_SETUP_MCE: {
3857 u64 mcg_cap;
3858
3859 r = -EFAULT;
3860 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3861 goto out;
3862 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3863 break;
3864 }
3865 case KVM_X86_SET_MCE: {
3866 struct kvm_x86_mce mce;
3867
3868 r = -EFAULT;
3869 if (copy_from_user(&mce, argp, sizeof mce))
3870 goto out;
3871 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3872 break;
3873 }
3874 case KVM_GET_VCPU_EVENTS: {
3875 struct kvm_vcpu_events events;
3876
3877 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3878
3879 r = -EFAULT;
3880 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3881 break;
3882 r = 0;
3883 break;
3884 }
3885 case KVM_SET_VCPU_EVENTS: {
3886 struct kvm_vcpu_events events;
3887
3888 r = -EFAULT;
3889 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3890 break;
3891
3892 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3893 break;
3894 }
3895 case KVM_GET_DEBUGREGS: {
3896 struct kvm_debugregs dbgregs;
3897
3898 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3899
3900 r = -EFAULT;
3901 if (copy_to_user(argp, &dbgregs,
3902 sizeof(struct kvm_debugregs)))
3903 break;
3904 r = 0;
3905 break;
3906 }
3907 case KVM_SET_DEBUGREGS: {
3908 struct kvm_debugregs dbgregs;
3909
3910 r = -EFAULT;
3911 if (copy_from_user(&dbgregs, argp,
3912 sizeof(struct kvm_debugregs)))
3913 break;
3914
3915 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3916 break;
3917 }
3918 case KVM_GET_XSAVE: {
3919 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3920 r = -ENOMEM;
3921 if (!u.xsave)
3922 break;
3923
3924 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3925
3926 r = -EFAULT;
3927 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3928 break;
3929 r = 0;
3930 break;
3931 }
3932 case KVM_SET_XSAVE: {
3933 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3934 if (IS_ERR(u.xsave)) {
3935 r = PTR_ERR(u.xsave);
3936 goto out_nofree;
3937 }
3938
3939 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3940 break;
3941 }
3942 case KVM_GET_XCRS: {
3943 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3944 r = -ENOMEM;
3945 if (!u.xcrs)
3946 break;
3947
3948 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3949
3950 r = -EFAULT;
3951 if (copy_to_user(argp, u.xcrs,
3952 sizeof(struct kvm_xcrs)))
3953 break;
3954 r = 0;
3955 break;
3956 }
3957 case KVM_SET_XCRS: {
3958 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3959 if (IS_ERR(u.xcrs)) {
3960 r = PTR_ERR(u.xcrs);
3961 goto out_nofree;
3962 }
3963
3964 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3965 break;
3966 }
3967 case KVM_SET_TSC_KHZ: {
3968 u32 user_tsc_khz;
3969
3970 r = -EINVAL;
3971 user_tsc_khz = (u32)arg;
3972
3973 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3974 goto out;
3975
3976 if (user_tsc_khz == 0)
3977 user_tsc_khz = tsc_khz;
3978
3979 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3980 r = 0;
3981
3982 goto out;
3983 }
3984 case KVM_GET_TSC_KHZ: {
3985 r = vcpu->arch.virtual_tsc_khz;
3986 goto out;
3987 }
3988 case KVM_KVMCLOCK_CTRL: {
3989 r = kvm_set_guest_paused(vcpu);
3990 goto out;
3991 }
3992 case KVM_ENABLE_CAP: {
3993 struct kvm_enable_cap cap;
3994
3995 r = -EFAULT;
3996 if (copy_from_user(&cap, argp, sizeof(cap)))
3997 goto out;
3998 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3999 break;
4000 }
4001 case KVM_GET_NESTED_STATE: {
4002 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4003 u32 user_data_size;
4004
4005 r = -EINVAL;
4006 if (!kvm_x86_ops->get_nested_state)
4007 break;
4008
4009 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4010 if (get_user(user_data_size, &user_kvm_nested_state->size))
4011 return -EFAULT;
4012
4013 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4014 user_data_size);
4015 if (r < 0)
4016 return r;
4017
4018 if (r > user_data_size) {
4019 if (put_user(r, &user_kvm_nested_state->size))
4020 return -EFAULT;
4021 return -E2BIG;
4022 }
4023 r = 0;
4024 break;
4025 }
4026 case KVM_SET_NESTED_STATE: {
4027 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4028 struct kvm_nested_state kvm_state;
4029
4030 r = -EINVAL;
4031 if (!kvm_x86_ops->set_nested_state)
4032 break;
4033
4034 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4035 return -EFAULT;
4036
4037 if (kvm_state.size < sizeof(kvm_state))
4038 return -EINVAL;
4039
4040 if (kvm_state.flags &
4041 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE))
4042 return -EINVAL;
4043
4044 /* nested_run_pending implies guest_mode. */
4045 if (kvm_state.flags == KVM_STATE_NESTED_RUN_PENDING)
4046 return -EINVAL;
4047
4048 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4049 break;
4050 }
4051 default:
4052 r = -EINVAL;
4053 }
4054 out:
4055 kfree(u.buffer);
4056 out_nofree:
4057 vcpu_put(vcpu);
4058 return r;
4059 }
4060
4061 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4062 {
4063 return VM_FAULT_SIGBUS;
4064 }
4065
4066 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4067 {
4068 int ret;
4069
4070 if (addr > (unsigned int)(-3 * PAGE_SIZE))
4071 return -EINVAL;
4072 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4073 return ret;
4074 }
4075
4076 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4077 u64 ident_addr)
4078 {
4079 return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4080 }
4081
4082 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4083 u32 kvm_nr_mmu_pages)
4084 {
4085 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4086 return -EINVAL;
4087
4088 mutex_lock(&kvm->slots_lock);
4089
4090 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4091 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4092
4093 mutex_unlock(&kvm->slots_lock);
4094 return 0;
4095 }
4096
4097 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4098 {
4099 return kvm->arch.n_max_mmu_pages;
4100 }
4101
4102 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4103 {
4104 struct kvm_pic *pic = kvm->arch.vpic;
4105 int r;
4106
4107 r = 0;
4108 switch (chip->chip_id) {
4109 case KVM_IRQCHIP_PIC_MASTER:
4110 memcpy(&chip->chip.pic, &pic->pics[0],
4111 sizeof(struct kvm_pic_state));
4112 break;
4113 case KVM_IRQCHIP_PIC_SLAVE:
4114 memcpy(&chip->chip.pic, &pic->pics[1],
4115 sizeof(struct kvm_pic_state));
4116 break;
4117 case KVM_IRQCHIP_IOAPIC:
4118 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4119 break;
4120 default:
4121 r = -EINVAL;
4122 break;
4123 }
4124 return r;
4125 }
4126
4127 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4128 {
4129 struct kvm_pic *pic = kvm->arch.vpic;
4130 int r;
4131
4132 r = 0;
4133 switch (chip->chip_id) {
4134 case KVM_IRQCHIP_PIC_MASTER:
4135 spin_lock(&pic->lock);
4136 memcpy(&pic->pics[0], &chip->chip.pic,
4137 sizeof(struct kvm_pic_state));
4138 spin_unlock(&pic->lock);
4139 break;
4140 case KVM_IRQCHIP_PIC_SLAVE:
4141 spin_lock(&pic->lock);
4142 memcpy(&pic->pics[1], &chip->chip.pic,
4143 sizeof(struct kvm_pic_state));
4144 spin_unlock(&pic->lock);
4145 break;
4146 case KVM_IRQCHIP_IOAPIC:
4147 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4148 break;
4149 default:
4150 r = -EINVAL;
4151 break;
4152 }
4153 kvm_pic_update_irq(pic);
4154 return r;
4155 }
4156
4157 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4158 {
4159 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4160
4161 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4162
4163 mutex_lock(&kps->lock);
4164 memcpy(ps, &kps->channels, sizeof(*ps));
4165 mutex_unlock(&kps->lock);
4166 return 0;
4167 }
4168
4169 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4170 {
4171 int i;
4172 struct kvm_pit *pit = kvm->arch.vpit;
4173
4174 mutex_lock(&pit->pit_state.lock);
4175 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4176 for (i = 0; i < 3; i++)
4177 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4178 mutex_unlock(&pit->pit_state.lock);
4179 return 0;
4180 }
4181
4182 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4183 {
4184 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4185 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4186 sizeof(ps->channels));
4187 ps->flags = kvm->arch.vpit->pit_state.flags;
4188 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4189 memset(&ps->reserved, 0, sizeof(ps->reserved));
4190 return 0;
4191 }
4192
4193 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4194 {
4195 int start = 0;
4196 int i;
4197 u32 prev_legacy, cur_legacy;
4198 struct kvm_pit *pit = kvm->arch.vpit;
4199
4200 mutex_lock(&pit->pit_state.lock);
4201 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4202 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4203 if (!prev_legacy && cur_legacy)
4204 start = 1;
4205 memcpy(&pit->pit_state.channels, &ps->channels,
4206 sizeof(pit->pit_state.channels));
4207 pit->pit_state.flags = ps->flags;
4208 for (i = 0; i < 3; i++)
4209 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4210 start && i == 0);
4211 mutex_unlock(&pit->pit_state.lock);
4212 return 0;
4213 }
4214
4215 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4216 struct kvm_reinject_control *control)
4217 {
4218 struct kvm_pit *pit = kvm->arch.vpit;
4219
4220 if (!pit)
4221 return -ENXIO;
4222
4223 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4224 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4225 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4226 */
4227 mutex_lock(&pit->pit_state.lock);
4228 kvm_pit_set_reinject(pit, control->pit_reinject);
4229 mutex_unlock(&pit->pit_state.lock);
4230
4231 return 0;
4232 }
4233
4234 /**
4235 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4236 * @kvm: kvm instance
4237 * @log: slot id and address to which we copy the log
4238 *
4239 * Steps 1-4 below provide general overview of dirty page logging. See
4240 * kvm_get_dirty_log_protect() function description for additional details.
4241 *
4242 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4243 * always flush the TLB (step 4) even if previous step failed and the dirty
4244 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4245 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4246 * writes will be marked dirty for next log read.
4247 *
4248 * 1. Take a snapshot of the bit and clear it if needed.
4249 * 2. Write protect the corresponding page.
4250 * 3. Copy the snapshot to the userspace.
4251 * 4. Flush TLB's if needed.
4252 */
4253 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4254 {
4255 bool is_dirty = false;
4256 int r;
4257
4258 mutex_lock(&kvm->slots_lock);
4259
4260 /*
4261 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4262 */
4263 if (kvm_x86_ops->flush_log_dirty)
4264 kvm_x86_ops->flush_log_dirty(kvm);
4265
4266 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4267
4268 /*
4269 * All the TLBs can be flushed out of mmu lock, see the comments in
4270 * kvm_mmu_slot_remove_write_access().
4271 */
4272 lockdep_assert_held(&kvm->slots_lock);
4273 if (is_dirty)
4274 kvm_flush_remote_tlbs(kvm);
4275
4276 mutex_unlock(&kvm->slots_lock);
4277 return r;
4278 }
4279
4280 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4281 bool line_status)
4282 {
4283 if (!irqchip_in_kernel(kvm))
4284 return -ENXIO;
4285
4286 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4287 irq_event->irq, irq_event->level,
4288 line_status);
4289 return 0;
4290 }
4291
4292 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4293 struct kvm_enable_cap *cap)
4294 {
4295 int r;
4296
4297 if (cap->flags)
4298 return -EINVAL;
4299
4300 switch (cap->cap) {
4301 case KVM_CAP_DISABLE_QUIRKS:
4302 kvm->arch.disabled_quirks = cap->args[0];
4303 r = 0;
4304 break;
4305 case KVM_CAP_SPLIT_IRQCHIP: {
4306 mutex_lock(&kvm->lock);
4307 r = -EINVAL;
4308 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4309 goto split_irqchip_unlock;
4310 r = -EEXIST;
4311 if (irqchip_in_kernel(kvm))
4312 goto split_irqchip_unlock;
4313 if (kvm->created_vcpus)
4314 goto split_irqchip_unlock;
4315 r = kvm_setup_empty_irq_routing(kvm);
4316 if (r)
4317 goto split_irqchip_unlock;
4318 /* Pairs with irqchip_in_kernel. */
4319 smp_wmb();
4320 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4321 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4322 r = 0;
4323 split_irqchip_unlock:
4324 mutex_unlock(&kvm->lock);
4325 break;
4326 }
4327 case KVM_CAP_X2APIC_API:
4328 r = -EINVAL;
4329 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4330 break;
4331
4332 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4333 kvm->arch.x2apic_format = true;
4334 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4335 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4336
4337 r = 0;
4338 break;
4339 case KVM_CAP_X86_DISABLE_EXITS:
4340 r = -EINVAL;
4341 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4342 break;
4343
4344 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4345 kvm_can_mwait_in_guest())
4346 kvm->arch.mwait_in_guest = true;
4347 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4348 kvm->arch.hlt_in_guest = true;
4349 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4350 kvm->arch.pause_in_guest = true;
4351 r = 0;
4352 break;
4353 default:
4354 r = -EINVAL;
4355 break;
4356 }
4357 return r;
4358 }
4359
4360 long kvm_arch_vm_ioctl(struct file *filp,
4361 unsigned int ioctl, unsigned long arg)
4362 {
4363 struct kvm *kvm = filp->private_data;
4364 void __user *argp = (void __user *)arg;
4365 int r = -ENOTTY;
4366 /*
4367 * This union makes it completely explicit to gcc-3.x
4368 * that these two variables' stack usage should be
4369 * combined, not added together.
4370 */
4371 union {
4372 struct kvm_pit_state ps;
4373 struct kvm_pit_state2 ps2;
4374 struct kvm_pit_config pit_config;
4375 } u;
4376
4377 switch (ioctl) {
4378 case KVM_SET_TSS_ADDR:
4379 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4380 break;
4381 case KVM_SET_IDENTITY_MAP_ADDR: {
4382 u64 ident_addr;
4383
4384 mutex_lock(&kvm->lock);
4385 r = -EINVAL;
4386 if (kvm->created_vcpus)
4387 goto set_identity_unlock;
4388 r = -EFAULT;
4389 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4390 goto set_identity_unlock;
4391 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4392 set_identity_unlock:
4393 mutex_unlock(&kvm->lock);
4394 break;
4395 }
4396 case KVM_SET_NR_MMU_PAGES:
4397 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4398 break;
4399 case KVM_GET_NR_MMU_PAGES:
4400 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4401 break;
4402 case KVM_CREATE_IRQCHIP: {
4403 mutex_lock(&kvm->lock);
4404
4405 r = -EEXIST;
4406 if (irqchip_in_kernel(kvm))
4407 goto create_irqchip_unlock;
4408
4409 r = -EINVAL;
4410 if (kvm->created_vcpus)
4411 goto create_irqchip_unlock;
4412
4413 r = kvm_pic_init(kvm);
4414 if (r)
4415 goto create_irqchip_unlock;
4416
4417 r = kvm_ioapic_init(kvm);
4418 if (r) {
4419 kvm_pic_destroy(kvm);
4420 goto create_irqchip_unlock;
4421 }
4422
4423 r = kvm_setup_default_irq_routing(kvm);
4424 if (r) {
4425 kvm_ioapic_destroy(kvm);
4426 kvm_pic_destroy(kvm);
4427 goto create_irqchip_unlock;
4428 }
4429 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4430 smp_wmb();
4431 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4432 create_irqchip_unlock:
4433 mutex_unlock(&kvm->lock);
4434 break;
4435 }
4436 case KVM_CREATE_PIT:
4437 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4438 goto create_pit;
4439 case KVM_CREATE_PIT2:
4440 r = -EFAULT;
4441 if (copy_from_user(&u.pit_config, argp,
4442 sizeof(struct kvm_pit_config)))
4443 goto out;
4444 create_pit:
4445 mutex_lock(&kvm->lock);
4446 r = -EEXIST;
4447 if (kvm->arch.vpit)
4448 goto create_pit_unlock;
4449 r = -ENOMEM;
4450 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4451 if (kvm->arch.vpit)
4452 r = 0;
4453 create_pit_unlock:
4454 mutex_unlock(&kvm->lock);
4455 break;
4456 case KVM_GET_IRQCHIP: {
4457 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4458 struct kvm_irqchip *chip;
4459
4460 chip = memdup_user(argp, sizeof(*chip));
4461 if (IS_ERR(chip)) {
4462 r = PTR_ERR(chip);
4463 goto out;
4464 }
4465
4466 r = -ENXIO;
4467 if (!irqchip_kernel(kvm))
4468 goto get_irqchip_out;
4469 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4470 if (r)
4471 goto get_irqchip_out;
4472 r = -EFAULT;
4473 if (copy_to_user(argp, chip, sizeof *chip))
4474 goto get_irqchip_out;
4475 r = 0;
4476 get_irqchip_out:
4477 kfree(chip);
4478 break;
4479 }
4480 case KVM_SET_IRQCHIP: {
4481 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4482 struct kvm_irqchip *chip;
4483
4484 chip = memdup_user(argp, sizeof(*chip));
4485 if (IS_ERR(chip)) {
4486 r = PTR_ERR(chip);
4487 goto out;
4488 }
4489
4490 r = -ENXIO;
4491 if (!irqchip_kernel(kvm))
4492 goto set_irqchip_out;
4493 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4494 if (r)
4495 goto set_irqchip_out;
4496 r = 0;
4497 set_irqchip_out:
4498 kfree(chip);
4499 break;
4500 }
4501 case KVM_GET_PIT: {
4502 r = -EFAULT;
4503 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4504 goto out;
4505 r = -ENXIO;
4506 if (!kvm->arch.vpit)
4507 goto out;
4508 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4509 if (r)
4510 goto out;
4511 r = -EFAULT;
4512 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4513 goto out;
4514 r = 0;
4515 break;
4516 }
4517 case KVM_SET_PIT: {
4518 r = -EFAULT;
4519 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4520 goto out;
4521 r = -ENXIO;
4522 if (!kvm->arch.vpit)
4523 goto out;
4524 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4525 break;
4526 }
4527 case KVM_GET_PIT2: {
4528 r = -ENXIO;
4529 if (!kvm->arch.vpit)
4530 goto out;
4531 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4532 if (r)
4533 goto out;
4534 r = -EFAULT;
4535 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4536 goto out;
4537 r = 0;
4538 break;
4539 }
4540 case KVM_SET_PIT2: {
4541 r = -EFAULT;
4542 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4543 goto out;
4544 r = -ENXIO;
4545 if (!kvm->arch.vpit)
4546 goto out;
4547 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4548 break;
4549 }
4550 case KVM_REINJECT_CONTROL: {
4551 struct kvm_reinject_control control;
4552 r = -EFAULT;
4553 if (copy_from_user(&control, argp, sizeof(control)))
4554 goto out;
4555 r = kvm_vm_ioctl_reinject(kvm, &control);
4556 break;
4557 }
4558 case KVM_SET_BOOT_CPU_ID:
4559 r = 0;
4560 mutex_lock(&kvm->lock);
4561 if (kvm->created_vcpus)
4562 r = -EBUSY;
4563 else
4564 kvm->arch.bsp_vcpu_id = arg;
4565 mutex_unlock(&kvm->lock);
4566 break;
4567 case KVM_XEN_HVM_CONFIG: {
4568 struct kvm_xen_hvm_config xhc;
4569 r = -EFAULT;
4570 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4571 goto out;
4572 r = -EINVAL;
4573 if (xhc.flags)
4574 goto out;
4575 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4576 r = 0;
4577 break;
4578 }
4579 case KVM_SET_CLOCK: {
4580 struct kvm_clock_data user_ns;
4581 u64 now_ns;
4582
4583 r = -EFAULT;
4584 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4585 goto out;
4586
4587 r = -EINVAL;
4588 if (user_ns.flags)
4589 goto out;
4590
4591 r = 0;
4592 /*
4593 * TODO: userspace has to take care of races with VCPU_RUN, so
4594 * kvm_gen_update_masterclock() can be cut down to locked
4595 * pvclock_update_vm_gtod_copy().
4596 */
4597 kvm_gen_update_masterclock(kvm);
4598 now_ns = get_kvmclock_ns(kvm);
4599 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4600 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4601 break;
4602 }
4603 case KVM_GET_CLOCK: {
4604 struct kvm_clock_data user_ns;
4605 u64 now_ns;
4606
4607 now_ns = get_kvmclock_ns(kvm);
4608 user_ns.clock = now_ns;
4609 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4610 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4611
4612 r = -EFAULT;
4613 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4614 goto out;
4615 r = 0;
4616 break;
4617 }
4618 case KVM_ENABLE_CAP: {
4619 struct kvm_enable_cap cap;
4620
4621 r = -EFAULT;
4622 if (copy_from_user(&cap, argp, sizeof(cap)))
4623 goto out;
4624 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4625 break;
4626 }
4627 case KVM_MEMORY_ENCRYPT_OP: {
4628 r = -ENOTTY;
4629 if (kvm_x86_ops->mem_enc_op)
4630 r = kvm_x86_ops->mem_enc_op(kvm, argp);
4631 break;
4632 }
4633 case KVM_MEMORY_ENCRYPT_REG_REGION: {
4634 struct kvm_enc_region region;
4635
4636 r = -EFAULT;
4637 if (copy_from_user(&region, argp, sizeof(region)))
4638 goto out;
4639
4640 r = -ENOTTY;
4641 if (kvm_x86_ops->mem_enc_reg_region)
4642 r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4643 break;
4644 }
4645 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4646 struct kvm_enc_region region;
4647
4648 r = -EFAULT;
4649 if (copy_from_user(&region, argp, sizeof(region)))
4650 goto out;
4651
4652 r = -ENOTTY;
4653 if (kvm_x86_ops->mem_enc_unreg_region)
4654 r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4655 break;
4656 }
4657 case KVM_HYPERV_EVENTFD: {
4658 struct kvm_hyperv_eventfd hvevfd;
4659
4660 r = -EFAULT;
4661 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4662 goto out;
4663 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4664 break;
4665 }
4666 default:
4667 r = -ENOTTY;
4668 }
4669 out:
4670 return r;
4671 }
4672
4673 static void kvm_init_msr_list(void)
4674 {
4675 u32 dummy[2];
4676 unsigned i, j;
4677
4678 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4679 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4680 continue;
4681
4682 /*
4683 * Even MSRs that are valid in the host may not be exposed
4684 * to the guests in some cases.
4685 */
4686 switch (msrs_to_save[i]) {
4687 case MSR_IA32_BNDCFGS:
4688 if (!kvm_x86_ops->mpx_supported())
4689 continue;
4690 break;
4691 case MSR_TSC_AUX:
4692 if (!kvm_x86_ops->rdtscp_supported())
4693 continue;
4694 break;
4695 default:
4696 break;
4697 }
4698
4699 if (j < i)
4700 msrs_to_save[j] = msrs_to_save[i];
4701 j++;
4702 }
4703 num_msrs_to_save = j;
4704
4705 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4706 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4707 continue;
4708
4709 if (j < i)
4710 emulated_msrs[j] = emulated_msrs[i];
4711 j++;
4712 }
4713 num_emulated_msrs = j;
4714
4715 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4716 struct kvm_msr_entry msr;
4717
4718 msr.index = msr_based_features[i];
4719 if (kvm_get_msr_feature(&msr))
4720 continue;
4721
4722 if (j < i)
4723 msr_based_features[j] = msr_based_features[i];
4724 j++;
4725 }
4726 num_msr_based_features = j;
4727 }
4728
4729 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4730 const void *v)
4731 {
4732 int handled = 0;
4733 int n;
4734
4735 do {
4736 n = min(len, 8);
4737 if (!(lapic_in_kernel(vcpu) &&
4738 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4739 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4740 break;
4741 handled += n;
4742 addr += n;
4743 len -= n;
4744 v += n;
4745 } while (len);
4746
4747 return handled;
4748 }
4749
4750 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4751 {
4752 int handled = 0;
4753 int n;
4754
4755 do {
4756 n = min(len, 8);
4757 if (!(lapic_in_kernel(vcpu) &&
4758 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4759 addr, n, v))
4760 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4761 break;
4762 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4763 handled += n;
4764 addr += n;
4765 len -= n;
4766 v += n;
4767 } while (len);
4768
4769 return handled;
4770 }
4771
4772 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4773 struct kvm_segment *var, int seg)
4774 {
4775 kvm_x86_ops->set_segment(vcpu, var, seg);
4776 }
4777
4778 void kvm_get_segment(struct kvm_vcpu *vcpu,
4779 struct kvm_segment *var, int seg)
4780 {
4781 kvm_x86_ops->get_segment(vcpu, var, seg);
4782 }
4783
4784 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4785 struct x86_exception *exception)
4786 {
4787 gpa_t t_gpa;
4788
4789 BUG_ON(!mmu_is_nested(vcpu));
4790
4791 /* NPT walks are always user-walks */
4792 access |= PFERR_USER_MASK;
4793 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4794
4795 return t_gpa;
4796 }
4797
4798 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4799 struct x86_exception *exception)
4800 {
4801 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4802 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4803 }
4804
4805 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4806 struct x86_exception *exception)
4807 {
4808 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4809 access |= PFERR_FETCH_MASK;
4810 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4811 }
4812
4813 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4814 struct x86_exception *exception)
4815 {
4816 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4817 access |= PFERR_WRITE_MASK;
4818 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4819 }
4820
4821 /* uses this to access any guest's mapped memory without checking CPL */
4822 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4823 struct x86_exception *exception)
4824 {
4825 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4826 }
4827
4828 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4829 struct kvm_vcpu *vcpu, u32 access,
4830 struct x86_exception *exception)
4831 {
4832 void *data = val;
4833 int r = X86EMUL_CONTINUE;
4834
4835 while (bytes) {
4836 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4837 exception);
4838 unsigned offset = addr & (PAGE_SIZE-1);
4839 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4840 int ret;
4841
4842 if (gpa == UNMAPPED_GVA)
4843 return X86EMUL_PROPAGATE_FAULT;
4844 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4845 offset, toread);
4846 if (ret < 0) {
4847 r = X86EMUL_IO_NEEDED;
4848 goto out;
4849 }
4850
4851 bytes -= toread;
4852 data += toread;
4853 addr += toread;
4854 }
4855 out:
4856 return r;
4857 }
4858
4859 /* used for instruction fetching */
4860 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4861 gva_t addr, void *val, unsigned int bytes,
4862 struct x86_exception *exception)
4863 {
4864 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4865 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4866 unsigned offset;
4867 int ret;
4868
4869 /* Inline kvm_read_guest_virt_helper for speed. */
4870 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4871 exception);
4872 if (unlikely(gpa == UNMAPPED_GVA))
4873 return X86EMUL_PROPAGATE_FAULT;
4874
4875 offset = addr & (PAGE_SIZE-1);
4876 if (WARN_ON(offset + bytes > PAGE_SIZE))
4877 bytes = (unsigned)PAGE_SIZE - offset;
4878 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4879 offset, bytes);
4880 if (unlikely(ret < 0))
4881 return X86EMUL_IO_NEEDED;
4882
4883 return X86EMUL_CONTINUE;
4884 }
4885
4886 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4887 gva_t addr, void *val, unsigned int bytes,
4888 struct x86_exception *exception)
4889 {
4890 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4891
4892 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4893 exception);
4894 }
4895 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4896
4897 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4898 gva_t addr, void *val, unsigned int bytes,
4899 struct x86_exception *exception, bool system)
4900 {
4901 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4902 u32 access = 0;
4903
4904 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4905 access |= PFERR_USER_MASK;
4906
4907 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4908 }
4909
4910 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4911 unsigned long addr, void *val, unsigned int bytes)
4912 {
4913 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4914 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4915
4916 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4917 }
4918
4919 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4920 struct kvm_vcpu *vcpu, u32 access,
4921 struct x86_exception *exception)
4922 {
4923 void *data = val;
4924 int r = X86EMUL_CONTINUE;
4925
4926 while (bytes) {
4927 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4928 access,
4929 exception);
4930 unsigned offset = addr & (PAGE_SIZE-1);
4931 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4932 int ret;
4933
4934 if (gpa == UNMAPPED_GVA)
4935 return X86EMUL_PROPAGATE_FAULT;
4936 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4937 if (ret < 0) {
4938 r = X86EMUL_IO_NEEDED;
4939 goto out;
4940 }
4941
4942 bytes -= towrite;
4943 data += towrite;
4944 addr += towrite;
4945 }
4946 out:
4947 return r;
4948 }
4949
4950 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4951 unsigned int bytes, struct x86_exception *exception,
4952 bool system)
4953 {
4954 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4955 u32 access = PFERR_WRITE_MASK;
4956
4957 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4958 access |= PFERR_USER_MASK;
4959
4960 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4961 access, exception);
4962 }
4963
4964 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4965 unsigned int bytes, struct x86_exception *exception)
4966 {
4967 /* kvm_write_guest_virt_system can pull in tons of pages. */
4968 vcpu->arch.l1tf_flush_l1d = true;
4969
4970 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4971 PFERR_WRITE_MASK, exception);
4972 }
4973 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4974
4975 int handle_ud(struct kvm_vcpu *vcpu)
4976 {
4977 int emul_type = EMULTYPE_TRAP_UD;
4978 enum emulation_result er;
4979 char sig[5]; /* ud2; .ascii "kvm" */
4980 struct x86_exception e;
4981
4982 if (force_emulation_prefix &&
4983 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
4984 sig, sizeof(sig), &e) == 0 &&
4985 memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
4986 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
4987 emul_type = 0;
4988 }
4989
4990 er = kvm_emulate_instruction(vcpu, emul_type);
4991 if (er == EMULATE_USER_EXIT)
4992 return 0;
4993 if (er != EMULATE_DONE)
4994 kvm_queue_exception(vcpu, UD_VECTOR);
4995 return 1;
4996 }
4997 EXPORT_SYMBOL_GPL(handle_ud);
4998
4999 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5000 gpa_t gpa, bool write)
5001 {
5002 /* For APIC access vmexit */
5003 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5004 return 1;
5005
5006 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5007 trace_vcpu_match_mmio(gva, gpa, write, true);
5008 return 1;
5009 }
5010
5011 return 0;
5012 }
5013
5014 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5015 gpa_t *gpa, struct x86_exception *exception,
5016 bool write)
5017 {
5018 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5019 | (write ? PFERR_WRITE_MASK : 0);
5020
5021 /*
5022 * currently PKRU is only applied to ept enabled guest so
5023 * there is no pkey in EPT page table for L1 guest or EPT
5024 * shadow page table for L2 guest.
5025 */
5026 if (vcpu_match_mmio_gva(vcpu, gva)
5027 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5028 vcpu->arch.access, 0, access)) {
5029 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5030 (gva & (PAGE_SIZE - 1));
5031 trace_vcpu_match_mmio(gva, *gpa, write, false);
5032 return 1;
5033 }
5034
5035 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5036
5037 if (*gpa == UNMAPPED_GVA)
5038 return -1;
5039
5040 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5041 }
5042
5043 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5044 const void *val, int bytes)
5045 {
5046 int ret;
5047
5048 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5049 if (ret < 0)
5050 return 0;
5051 kvm_page_track_write(vcpu, gpa, val, bytes);
5052 return 1;
5053 }
5054
5055 struct read_write_emulator_ops {
5056 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5057 int bytes);
5058 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5059 void *val, int bytes);
5060 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5061 int bytes, void *val);
5062 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5063 void *val, int bytes);
5064 bool write;
5065 };
5066
5067 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5068 {
5069 if (vcpu->mmio_read_completed) {
5070 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5071 vcpu->mmio_fragments[0].gpa, val);
5072 vcpu->mmio_read_completed = 0;
5073 return 1;
5074 }
5075
5076 return 0;
5077 }
5078
5079 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5080 void *val, int bytes)
5081 {
5082 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5083 }
5084
5085 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5086 void *val, int bytes)
5087 {
5088 return emulator_write_phys(vcpu, gpa, val, bytes);
5089 }
5090
5091 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5092 {
5093 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5094 return vcpu_mmio_write(vcpu, gpa, bytes, val);
5095 }
5096
5097 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5098 void *val, int bytes)
5099 {
5100 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5101 return X86EMUL_IO_NEEDED;
5102 }
5103
5104 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5105 void *val, int bytes)
5106 {
5107 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5108
5109 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5110 return X86EMUL_CONTINUE;
5111 }
5112
5113 static const struct read_write_emulator_ops read_emultor = {
5114 .read_write_prepare = read_prepare,
5115 .read_write_emulate = read_emulate,
5116 .read_write_mmio = vcpu_mmio_read,
5117 .read_write_exit_mmio = read_exit_mmio,
5118 };
5119
5120 static const struct read_write_emulator_ops write_emultor = {
5121 .read_write_emulate = write_emulate,
5122 .read_write_mmio = write_mmio,
5123 .read_write_exit_mmio = write_exit_mmio,
5124 .write = true,
5125 };
5126
5127 static int emulator_read_write_onepage(unsigned long addr, void *val,
5128 unsigned int bytes,
5129 struct x86_exception *exception,
5130 struct kvm_vcpu *vcpu,
5131 const struct read_write_emulator_ops *ops)
5132 {
5133 gpa_t gpa;
5134 int handled, ret;
5135 bool write = ops->write;
5136 struct kvm_mmio_fragment *frag;
5137 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5138
5139 /*
5140 * If the exit was due to a NPF we may already have a GPA.
5141 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5142 * Note, this cannot be used on string operations since string
5143 * operation using rep will only have the initial GPA from the NPF
5144 * occurred.
5145 */
5146 if (vcpu->arch.gpa_available &&
5147 emulator_can_use_gpa(ctxt) &&
5148 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5149 gpa = vcpu->arch.gpa_val;
5150 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5151 } else {
5152 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5153 if (ret < 0)
5154 return X86EMUL_PROPAGATE_FAULT;
5155 }
5156
5157 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5158 return X86EMUL_CONTINUE;
5159
5160 /*
5161 * Is this MMIO handled locally?
5162 */
5163 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5164 if (handled == bytes)
5165 return X86EMUL_CONTINUE;
5166
5167 gpa += handled;
5168 bytes -= handled;
5169 val += handled;
5170
5171 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5172 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5173 frag->gpa = gpa;
5174 frag->data = val;
5175 frag->len = bytes;
5176 return X86EMUL_CONTINUE;
5177 }
5178
5179 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5180 unsigned long addr,
5181 void *val, unsigned int bytes,
5182 struct x86_exception *exception,
5183 const struct read_write_emulator_ops *ops)
5184 {
5185 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5186 gpa_t gpa;
5187 int rc;
5188
5189 if (ops->read_write_prepare &&
5190 ops->read_write_prepare(vcpu, val, bytes))
5191 return X86EMUL_CONTINUE;
5192
5193 vcpu->mmio_nr_fragments = 0;
5194
5195 /* Crossing a page boundary? */
5196 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5197 int now;
5198
5199 now = -addr & ~PAGE_MASK;
5200 rc = emulator_read_write_onepage(addr, val, now, exception,
5201 vcpu, ops);
5202
5203 if (rc != X86EMUL_CONTINUE)
5204 return rc;
5205 addr += now;
5206 if (ctxt->mode != X86EMUL_MODE_PROT64)
5207 addr = (u32)addr;
5208 val += now;
5209 bytes -= now;
5210 }
5211
5212 rc = emulator_read_write_onepage(addr, val, bytes, exception,
5213 vcpu, ops);
5214 if (rc != X86EMUL_CONTINUE)
5215 return rc;
5216
5217 if (!vcpu->mmio_nr_fragments)
5218 return rc;
5219
5220 gpa = vcpu->mmio_fragments[0].gpa;
5221
5222 vcpu->mmio_needed = 1;
5223 vcpu->mmio_cur_fragment = 0;
5224
5225 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5226 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5227 vcpu->run->exit_reason = KVM_EXIT_MMIO;
5228 vcpu->run->mmio.phys_addr = gpa;
5229
5230 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5231 }
5232
5233 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5234 unsigned long addr,
5235 void *val,
5236 unsigned int bytes,
5237 struct x86_exception *exception)
5238 {
5239 return emulator_read_write(ctxt, addr, val, bytes,
5240 exception, &read_emultor);
5241 }
5242
5243 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5244 unsigned long addr,
5245 const void *val,
5246 unsigned int bytes,
5247 struct x86_exception *exception)
5248 {
5249 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5250 exception, &write_emultor);
5251 }
5252
5253 #define CMPXCHG_TYPE(t, ptr, old, new) \
5254 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5255
5256 #ifdef CONFIG_X86_64
5257 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5258 #else
5259 # define CMPXCHG64(ptr, old, new) \
5260 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5261 #endif
5262
5263 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5264 unsigned long addr,
5265 const void *old,
5266 const void *new,
5267 unsigned int bytes,
5268 struct x86_exception *exception)
5269 {
5270 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5271 gpa_t gpa;
5272 struct page *page;
5273 char *kaddr;
5274 bool exchanged;
5275
5276 /* guests cmpxchg8b have to be emulated atomically */
5277 if (bytes > 8 || (bytes & (bytes - 1)))
5278 goto emul_write;
5279
5280 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5281
5282 if (gpa == UNMAPPED_GVA ||
5283 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5284 goto emul_write;
5285
5286 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5287 goto emul_write;
5288
5289 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5290 if (is_error_page(page))
5291 goto emul_write;
5292
5293 kaddr = kmap_atomic(page);
5294 kaddr += offset_in_page(gpa);
5295 switch (bytes) {
5296 case 1:
5297 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5298 break;
5299 case 2:
5300 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5301 break;
5302 case 4:
5303 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5304 break;
5305 case 8:
5306 exchanged = CMPXCHG64(kaddr, old, new);
5307 break;
5308 default:
5309 BUG();
5310 }
5311 kunmap_atomic(kaddr);
5312 kvm_release_page_dirty(page);
5313
5314 if (!exchanged)
5315 return X86EMUL_CMPXCHG_FAILED;
5316
5317 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5318 kvm_page_track_write(vcpu, gpa, new, bytes);
5319
5320 return X86EMUL_CONTINUE;
5321
5322 emul_write:
5323 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5324
5325 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5326 }
5327
5328 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5329 {
5330 int r = 0, i;
5331
5332 for (i = 0; i < vcpu->arch.pio.count; i++) {
5333 if (vcpu->arch.pio.in)
5334 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5335 vcpu->arch.pio.size, pd);
5336 else
5337 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5338 vcpu->arch.pio.port, vcpu->arch.pio.size,
5339 pd);
5340 if (r)
5341 break;
5342 pd += vcpu->arch.pio.size;
5343 }
5344 return r;
5345 }
5346
5347 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5348 unsigned short port, void *val,
5349 unsigned int count, bool in)
5350 {
5351 vcpu->arch.pio.port = port;
5352 vcpu->arch.pio.in = in;
5353 vcpu->arch.pio.count = count;
5354 vcpu->arch.pio.size = size;
5355
5356 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5357 vcpu->arch.pio.count = 0;
5358 return 1;
5359 }
5360
5361 vcpu->run->exit_reason = KVM_EXIT_IO;
5362 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5363 vcpu->run->io.size = size;
5364 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5365 vcpu->run->io.count = count;
5366 vcpu->run->io.port = port;
5367
5368 return 0;
5369 }
5370
5371 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5372 int size, unsigned short port, void *val,
5373 unsigned int count)
5374 {
5375 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5376 int ret;
5377
5378 if (vcpu->arch.pio.count)
5379 goto data_avail;
5380
5381 memset(vcpu->arch.pio_data, 0, size * count);
5382
5383 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5384 if (ret) {
5385 data_avail:
5386 memcpy(val, vcpu->arch.pio_data, size * count);
5387 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5388 vcpu->arch.pio.count = 0;
5389 return 1;
5390 }
5391
5392 return 0;
5393 }
5394
5395 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5396 int size, unsigned short port,
5397 const void *val, unsigned int count)
5398 {
5399 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5400
5401 memcpy(vcpu->arch.pio_data, val, size * count);
5402 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5403 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5404 }
5405
5406 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5407 {
5408 return kvm_x86_ops->get_segment_base(vcpu, seg);
5409 }
5410
5411 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5412 {
5413 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5414 }
5415
5416 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5417 {
5418 if (!need_emulate_wbinvd(vcpu))
5419 return X86EMUL_CONTINUE;
5420
5421 if (kvm_x86_ops->has_wbinvd_exit()) {
5422 int cpu = get_cpu();
5423
5424 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5425 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5426 wbinvd_ipi, NULL, 1);
5427 put_cpu();
5428 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5429 } else
5430 wbinvd();
5431 return X86EMUL_CONTINUE;
5432 }
5433
5434 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5435 {
5436 kvm_emulate_wbinvd_noskip(vcpu);
5437 return kvm_skip_emulated_instruction(vcpu);
5438 }
5439 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5440
5441
5442
5443 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5444 {
5445 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5446 }
5447
5448 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5449 unsigned long *dest)
5450 {
5451 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5452 }
5453
5454 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5455 unsigned long value)
5456 {
5457
5458 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5459 }
5460
5461 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5462 {
5463 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5464 }
5465
5466 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5467 {
5468 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5469 unsigned long value;
5470
5471 switch (cr) {
5472 case 0:
5473 value = kvm_read_cr0(vcpu);
5474 break;
5475 case 2:
5476 value = vcpu->arch.cr2;
5477 break;
5478 case 3:
5479 value = kvm_read_cr3(vcpu);
5480 break;
5481 case 4:
5482 value = kvm_read_cr4(vcpu);
5483 break;
5484 case 8:
5485 value = kvm_get_cr8(vcpu);
5486 break;
5487 default:
5488 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5489 return 0;
5490 }
5491
5492 return value;
5493 }
5494
5495 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5496 {
5497 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5498 int res = 0;
5499
5500 switch (cr) {
5501 case 0:
5502 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5503 break;
5504 case 2:
5505 vcpu->arch.cr2 = val;
5506 break;
5507 case 3:
5508 res = kvm_set_cr3(vcpu, val);
5509 break;
5510 case 4:
5511 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5512 break;
5513 case 8:
5514 res = kvm_set_cr8(vcpu, val);
5515 break;
5516 default:
5517 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5518 res = -1;
5519 }
5520
5521 return res;
5522 }
5523
5524 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5525 {
5526 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5527 }
5528
5529 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5530 {
5531 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5532 }
5533
5534 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5535 {
5536 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5537 }
5538
5539 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5540 {
5541 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5542 }
5543
5544 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5545 {
5546 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5547 }
5548
5549 static unsigned long emulator_get_cached_segment_base(
5550 struct x86_emulate_ctxt *ctxt, int seg)
5551 {
5552 return get_segment_base(emul_to_vcpu(ctxt), seg);
5553 }
5554
5555 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5556 struct desc_struct *desc, u32 *base3,
5557 int seg)
5558 {
5559 struct kvm_segment var;
5560
5561 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5562 *selector = var.selector;
5563
5564 if (var.unusable) {
5565 memset(desc, 0, sizeof(*desc));
5566 if (base3)
5567 *base3 = 0;
5568 return false;
5569 }
5570
5571 if (var.g)
5572 var.limit >>= 12;
5573 set_desc_limit(desc, var.limit);
5574 set_desc_base(desc, (unsigned long)var.base);
5575 #ifdef CONFIG_X86_64
5576 if (base3)
5577 *base3 = var.base >> 32;
5578 #endif
5579 desc->type = var.type;
5580 desc->s = var.s;
5581 desc->dpl = var.dpl;
5582 desc->p = var.present;
5583 desc->avl = var.avl;
5584 desc->l = var.l;
5585 desc->d = var.db;
5586 desc->g = var.g;
5587
5588 return true;
5589 }
5590
5591 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5592 struct desc_struct *desc, u32 base3,
5593 int seg)
5594 {
5595 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5596 struct kvm_segment var;
5597
5598 var.selector = selector;
5599 var.base = get_desc_base(desc);
5600 #ifdef CONFIG_X86_64
5601 var.base |= ((u64)base3) << 32;
5602 #endif
5603 var.limit = get_desc_limit(desc);
5604 if (desc->g)
5605 var.limit = (var.limit << 12) | 0xfff;
5606 var.type = desc->type;
5607 var.dpl = desc->dpl;
5608 var.db = desc->d;
5609 var.s = desc->s;
5610 var.l = desc->l;
5611 var.g = desc->g;
5612 var.avl = desc->avl;
5613 var.present = desc->p;
5614 var.unusable = !var.present;
5615 var.padding = 0;
5616
5617 kvm_set_segment(vcpu, &var, seg);
5618 return;
5619 }
5620
5621 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5622 u32 msr_index, u64 *pdata)
5623 {
5624 struct msr_data msr;
5625 int r;
5626
5627 msr.index = msr_index;
5628 msr.host_initiated = false;
5629 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5630 if (r)
5631 return r;
5632
5633 *pdata = msr.data;
5634 return 0;
5635 }
5636
5637 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5638 u32 msr_index, u64 data)
5639 {
5640 struct msr_data msr;
5641
5642 msr.data = data;
5643 msr.index = msr_index;
5644 msr.host_initiated = false;
5645 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5646 }
5647
5648 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5649 {
5650 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5651
5652 return vcpu->arch.smbase;
5653 }
5654
5655 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5656 {
5657 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5658
5659 vcpu->arch.smbase = smbase;
5660 }
5661
5662 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5663 u32 pmc)
5664 {
5665 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5666 }
5667
5668 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5669 u32 pmc, u64 *pdata)
5670 {
5671 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5672 }
5673
5674 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5675 {
5676 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5677 }
5678
5679 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5680 struct x86_instruction_info *info,
5681 enum x86_intercept_stage stage)
5682 {
5683 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5684 }
5685
5686 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5687 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5688 {
5689 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5690 }
5691
5692 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5693 {
5694 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5695 }
5696
5697 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5698 {
5699 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5700 }
5701
5702 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5703 {
5704 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5705 }
5706
5707 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5708 {
5709 return emul_to_vcpu(ctxt)->arch.hflags;
5710 }
5711
5712 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5713 {
5714 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5715 }
5716
5717 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5718 {
5719 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5720 }
5721
5722 static const struct x86_emulate_ops emulate_ops = {
5723 .read_gpr = emulator_read_gpr,
5724 .write_gpr = emulator_write_gpr,
5725 .read_std = emulator_read_std,
5726 .write_std = emulator_write_std,
5727 .read_phys = kvm_read_guest_phys_system,
5728 .fetch = kvm_fetch_guest_virt,
5729 .read_emulated = emulator_read_emulated,
5730 .write_emulated = emulator_write_emulated,
5731 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5732 .invlpg = emulator_invlpg,
5733 .pio_in_emulated = emulator_pio_in_emulated,
5734 .pio_out_emulated = emulator_pio_out_emulated,
5735 .get_segment = emulator_get_segment,
5736 .set_segment = emulator_set_segment,
5737 .get_cached_segment_base = emulator_get_cached_segment_base,
5738 .get_gdt = emulator_get_gdt,
5739 .get_idt = emulator_get_idt,
5740 .set_gdt = emulator_set_gdt,
5741 .set_idt = emulator_set_idt,
5742 .get_cr = emulator_get_cr,
5743 .set_cr = emulator_set_cr,
5744 .cpl = emulator_get_cpl,
5745 .get_dr = emulator_get_dr,
5746 .set_dr = emulator_set_dr,
5747 .get_smbase = emulator_get_smbase,
5748 .set_smbase = emulator_set_smbase,
5749 .set_msr = emulator_set_msr,
5750 .get_msr = emulator_get_msr,
5751 .check_pmc = emulator_check_pmc,
5752 .read_pmc = emulator_read_pmc,
5753 .halt = emulator_halt,
5754 .wbinvd = emulator_wbinvd,
5755 .fix_hypercall = emulator_fix_hypercall,
5756 .intercept = emulator_intercept,
5757 .get_cpuid = emulator_get_cpuid,
5758 .set_nmi_mask = emulator_set_nmi_mask,
5759 .get_hflags = emulator_get_hflags,
5760 .set_hflags = emulator_set_hflags,
5761 .pre_leave_smm = emulator_pre_leave_smm,
5762 };
5763
5764 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5765 {
5766 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5767 /*
5768 * an sti; sti; sequence only disable interrupts for the first
5769 * instruction. So, if the last instruction, be it emulated or
5770 * not, left the system with the INT_STI flag enabled, it
5771 * means that the last instruction is an sti. We should not
5772 * leave the flag on in this case. The same goes for mov ss
5773 */
5774 if (int_shadow & mask)
5775 mask = 0;
5776 if (unlikely(int_shadow || mask)) {
5777 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5778 if (!mask)
5779 kvm_make_request(KVM_REQ_EVENT, vcpu);
5780 }
5781 }
5782
5783 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5784 {
5785 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5786 if (ctxt->exception.vector == PF_VECTOR)
5787 return kvm_propagate_fault(vcpu, &ctxt->exception);
5788
5789 if (ctxt->exception.error_code_valid)
5790 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5791 ctxt->exception.error_code);
5792 else
5793 kvm_queue_exception(vcpu, ctxt->exception.vector);
5794 return false;
5795 }
5796
5797 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5798 {
5799 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5800 int cs_db, cs_l;
5801
5802 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5803
5804 ctxt->eflags = kvm_get_rflags(vcpu);
5805 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5806
5807 ctxt->eip = kvm_rip_read(vcpu);
5808 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5809 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5810 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5811 cs_db ? X86EMUL_MODE_PROT32 :
5812 X86EMUL_MODE_PROT16;
5813 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5814 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5815 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5816
5817 init_decode_cache(ctxt);
5818 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5819 }
5820
5821 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5822 {
5823 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5824 int ret;
5825
5826 init_emulate_ctxt(vcpu);
5827
5828 ctxt->op_bytes = 2;
5829 ctxt->ad_bytes = 2;
5830 ctxt->_eip = ctxt->eip + inc_eip;
5831 ret = emulate_int_real(ctxt, irq);
5832
5833 if (ret != X86EMUL_CONTINUE)
5834 return EMULATE_FAIL;
5835
5836 ctxt->eip = ctxt->_eip;
5837 kvm_rip_write(vcpu, ctxt->eip);
5838 kvm_set_rflags(vcpu, ctxt->eflags);
5839
5840 return EMULATE_DONE;
5841 }
5842 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5843
5844 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5845 {
5846 int r = EMULATE_DONE;
5847
5848 ++vcpu->stat.insn_emulation_fail;
5849 trace_kvm_emulate_insn_failed(vcpu);
5850
5851 if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5852 return EMULATE_FAIL;
5853
5854 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5855 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5856 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5857 vcpu->run->internal.ndata = 0;
5858 r = EMULATE_USER_EXIT;
5859 }
5860
5861 kvm_queue_exception(vcpu, UD_VECTOR);
5862
5863 return r;
5864 }
5865
5866 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5867 bool write_fault_to_shadow_pgtable,
5868 int emulation_type)
5869 {
5870 gpa_t gpa = cr2;
5871 kvm_pfn_t pfn;
5872
5873 if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
5874 return false;
5875
5876 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5877 return false;
5878
5879 if (!vcpu->arch.mmu.direct_map) {
5880 /*
5881 * Write permission should be allowed since only
5882 * write access need to be emulated.
5883 */
5884 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5885
5886 /*
5887 * If the mapping is invalid in guest, let cpu retry
5888 * it to generate fault.
5889 */
5890 if (gpa == UNMAPPED_GVA)
5891 return true;
5892 }
5893
5894 /*
5895 * Do not retry the unhandleable instruction if it faults on the
5896 * readonly host memory, otherwise it will goto a infinite loop:
5897 * retry instruction -> write #PF -> emulation fail -> retry
5898 * instruction -> ...
5899 */
5900 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5901
5902 /*
5903 * If the instruction failed on the error pfn, it can not be fixed,
5904 * report the error to userspace.
5905 */
5906 if (is_error_noslot_pfn(pfn))
5907 return false;
5908
5909 kvm_release_pfn_clean(pfn);
5910
5911 /* The instructions are well-emulated on direct mmu. */
5912 if (vcpu->arch.mmu.direct_map) {
5913 unsigned int indirect_shadow_pages;
5914
5915 spin_lock(&vcpu->kvm->mmu_lock);
5916 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5917 spin_unlock(&vcpu->kvm->mmu_lock);
5918
5919 if (indirect_shadow_pages)
5920 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5921
5922 return true;
5923 }
5924
5925 /*
5926 * if emulation was due to access to shadowed page table
5927 * and it failed try to unshadow page and re-enter the
5928 * guest to let CPU execute the instruction.
5929 */
5930 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5931
5932 /*
5933 * If the access faults on its page table, it can not
5934 * be fixed by unprotecting shadow page and it should
5935 * be reported to userspace.
5936 */
5937 return !write_fault_to_shadow_pgtable;
5938 }
5939
5940 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5941 unsigned long cr2, int emulation_type)
5942 {
5943 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5944 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5945
5946 last_retry_eip = vcpu->arch.last_retry_eip;
5947 last_retry_addr = vcpu->arch.last_retry_addr;
5948
5949 /*
5950 * If the emulation is caused by #PF and it is non-page_table
5951 * writing instruction, it means the VM-EXIT is caused by shadow
5952 * page protected, we can zap the shadow page and retry this
5953 * instruction directly.
5954 *
5955 * Note: if the guest uses a non-page-table modifying instruction
5956 * on the PDE that points to the instruction, then we will unmap
5957 * the instruction and go to an infinite loop. So, we cache the
5958 * last retried eip and the last fault address, if we meet the eip
5959 * and the address again, we can break out of the potential infinite
5960 * loop.
5961 */
5962 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5963
5964 if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
5965 return false;
5966
5967 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5968 return false;
5969
5970 if (x86_page_table_writing_insn(ctxt))
5971 return false;
5972
5973 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5974 return false;
5975
5976 vcpu->arch.last_retry_eip = ctxt->eip;
5977 vcpu->arch.last_retry_addr = cr2;
5978
5979 if (!vcpu->arch.mmu.direct_map)
5980 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5981
5982 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5983
5984 return true;
5985 }
5986
5987 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5988 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5989
5990 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5991 {
5992 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5993 /* This is a good place to trace that we are exiting SMM. */
5994 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5995
5996 /* Process a latched INIT or SMI, if any. */
5997 kvm_make_request(KVM_REQ_EVENT, vcpu);
5998 }
5999
6000 kvm_mmu_reset_context(vcpu);
6001 }
6002
6003 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
6004 {
6005 unsigned changed = vcpu->arch.hflags ^ emul_flags;
6006
6007 vcpu->arch.hflags = emul_flags;
6008
6009 if (changed & HF_SMM_MASK)
6010 kvm_smm_changed(vcpu);
6011 }
6012
6013 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6014 unsigned long *db)
6015 {
6016 u32 dr6 = 0;
6017 int i;
6018 u32 enable, rwlen;
6019
6020 enable = dr7;
6021 rwlen = dr7 >> 16;
6022 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6023 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6024 dr6 |= (1 << i);
6025 return dr6;
6026 }
6027
6028 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6029 {
6030 struct kvm_run *kvm_run = vcpu->run;
6031
6032 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6033 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6034 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6035 kvm_run->debug.arch.exception = DB_VECTOR;
6036 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6037 *r = EMULATE_USER_EXIT;
6038 } else {
6039 /*
6040 * "Certain debug exceptions may clear bit 0-3. The
6041 * remaining contents of the DR6 register are never
6042 * cleared by the processor".
6043 */
6044 vcpu->arch.dr6 &= ~15;
6045 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
6046 kvm_queue_exception(vcpu, DB_VECTOR);
6047 }
6048 }
6049
6050 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6051 {
6052 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6053 int r = EMULATE_DONE;
6054
6055 kvm_x86_ops->skip_emulated_instruction(vcpu);
6056
6057 /*
6058 * rflags is the old, "raw" value of the flags. The new value has
6059 * not been saved yet.
6060 *
6061 * This is correct even for TF set by the guest, because "the
6062 * processor will not generate this exception after the instruction
6063 * that sets the TF flag".
6064 */
6065 if (unlikely(rflags & X86_EFLAGS_TF))
6066 kvm_vcpu_do_singlestep(vcpu, &r);
6067 return r == EMULATE_DONE;
6068 }
6069 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6070
6071 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6072 {
6073 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6074 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6075 struct kvm_run *kvm_run = vcpu->run;
6076 unsigned long eip = kvm_get_linear_rip(vcpu);
6077 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6078 vcpu->arch.guest_debug_dr7,
6079 vcpu->arch.eff_db);
6080
6081 if (dr6 != 0) {
6082 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6083 kvm_run->debug.arch.pc = eip;
6084 kvm_run->debug.arch.exception = DB_VECTOR;
6085 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6086 *r = EMULATE_USER_EXIT;
6087 return true;
6088 }
6089 }
6090
6091 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6092 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6093 unsigned long eip = kvm_get_linear_rip(vcpu);
6094 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6095 vcpu->arch.dr7,
6096 vcpu->arch.db);
6097
6098 if (dr6 != 0) {
6099 vcpu->arch.dr6 &= ~15;
6100 vcpu->arch.dr6 |= dr6 | DR6_RTM;
6101 kvm_queue_exception(vcpu, DB_VECTOR);
6102 *r = EMULATE_DONE;
6103 return true;
6104 }
6105 }
6106
6107 return false;
6108 }
6109
6110 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6111 {
6112 switch (ctxt->opcode_len) {
6113 case 1:
6114 switch (ctxt->b) {
6115 case 0xe4: /* IN */
6116 case 0xe5:
6117 case 0xec:
6118 case 0xed:
6119 case 0xe6: /* OUT */
6120 case 0xe7:
6121 case 0xee:
6122 case 0xef:
6123 case 0x6c: /* INS */
6124 case 0x6d:
6125 case 0x6e: /* OUTS */
6126 case 0x6f:
6127 return true;
6128 }
6129 break;
6130 case 2:
6131 switch (ctxt->b) {
6132 case 0x33: /* RDPMC */
6133 return true;
6134 }
6135 break;
6136 }
6137
6138 return false;
6139 }
6140
6141 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6142 unsigned long cr2,
6143 int emulation_type,
6144 void *insn,
6145 int insn_len)
6146 {
6147 int r;
6148 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6149 bool writeback = true;
6150 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6151
6152 vcpu->arch.l1tf_flush_l1d = true;
6153
6154 /*
6155 * Clear write_fault_to_shadow_pgtable here to ensure it is
6156 * never reused.
6157 */
6158 vcpu->arch.write_fault_to_shadow_pgtable = false;
6159 kvm_clear_exception_queue(vcpu);
6160
6161 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6162 init_emulate_ctxt(vcpu);
6163
6164 /*
6165 * We will reenter on the same instruction since
6166 * we do not set complete_userspace_io. This does not
6167 * handle watchpoints yet, those would be handled in
6168 * the emulate_ops.
6169 */
6170 if (!(emulation_type & EMULTYPE_SKIP) &&
6171 kvm_vcpu_check_breakpoint(vcpu, &r))
6172 return r;
6173
6174 ctxt->interruptibility = 0;
6175 ctxt->have_exception = false;
6176 ctxt->exception.vector = -1;
6177 ctxt->perm_ok = false;
6178
6179 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6180
6181 r = x86_decode_insn(ctxt, insn, insn_len);
6182
6183 trace_kvm_emulate_insn_start(vcpu);
6184 ++vcpu->stat.insn_emulation;
6185 if (r != EMULATION_OK) {
6186 if (emulation_type & EMULTYPE_TRAP_UD)
6187 return EMULATE_FAIL;
6188 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6189 emulation_type))
6190 return EMULATE_DONE;
6191 if (ctxt->have_exception && inject_emulated_exception(vcpu))
6192 return EMULATE_DONE;
6193 if (emulation_type & EMULTYPE_SKIP)
6194 return EMULATE_FAIL;
6195 return handle_emulation_failure(vcpu, emulation_type);
6196 }
6197 }
6198
6199 if ((emulation_type & EMULTYPE_VMWARE) &&
6200 !is_vmware_backdoor_opcode(ctxt))
6201 return EMULATE_FAIL;
6202
6203 if (emulation_type & EMULTYPE_SKIP) {
6204 kvm_rip_write(vcpu, ctxt->_eip);
6205 if (ctxt->eflags & X86_EFLAGS_RF)
6206 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6207 return EMULATE_DONE;
6208 }
6209
6210 if (retry_instruction(ctxt, cr2, emulation_type))
6211 return EMULATE_DONE;
6212
6213 /* this is needed for vmware backdoor interface to work since it
6214 changes registers values during IO operation */
6215 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6216 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6217 emulator_invalidate_register_cache(ctxt);
6218 }
6219
6220 restart:
6221 /* Save the faulting GPA (cr2) in the address field */
6222 ctxt->exception.address = cr2;
6223
6224 r = x86_emulate_insn(ctxt);
6225
6226 if (r == EMULATION_INTERCEPTED)
6227 return EMULATE_DONE;
6228
6229 if (r == EMULATION_FAILED) {
6230 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6231 emulation_type))
6232 return EMULATE_DONE;
6233
6234 return handle_emulation_failure(vcpu, emulation_type);
6235 }
6236
6237 if (ctxt->have_exception) {
6238 r = EMULATE_DONE;
6239 if (inject_emulated_exception(vcpu))
6240 return r;
6241 } else if (vcpu->arch.pio.count) {
6242 if (!vcpu->arch.pio.in) {
6243 /* FIXME: return into emulator if single-stepping. */
6244 vcpu->arch.pio.count = 0;
6245 } else {
6246 writeback = false;
6247 vcpu->arch.complete_userspace_io = complete_emulated_pio;
6248 }
6249 r = EMULATE_USER_EXIT;
6250 } else if (vcpu->mmio_needed) {
6251 if (!vcpu->mmio_is_write)
6252 writeback = false;
6253 r = EMULATE_USER_EXIT;
6254 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6255 } else if (r == EMULATION_RESTART)
6256 goto restart;
6257 else
6258 r = EMULATE_DONE;
6259
6260 if (writeback) {
6261 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6262 toggle_interruptibility(vcpu, ctxt->interruptibility);
6263 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6264 kvm_rip_write(vcpu, ctxt->eip);
6265 if (r == EMULATE_DONE &&
6266 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6267 kvm_vcpu_do_singlestep(vcpu, &r);
6268 if (!ctxt->have_exception ||
6269 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6270 __kvm_set_rflags(vcpu, ctxt->eflags);
6271
6272 /*
6273 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6274 * do nothing, and it will be requested again as soon as
6275 * the shadow expires. But we still need to check here,
6276 * because POPF has no interrupt shadow.
6277 */
6278 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6279 kvm_make_request(KVM_REQ_EVENT, vcpu);
6280 } else
6281 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6282
6283 return r;
6284 }
6285
6286 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6287 {
6288 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6289 }
6290 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6291
6292 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6293 void *insn, int insn_len)
6294 {
6295 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6296 }
6297 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6298
6299 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6300 unsigned short port)
6301 {
6302 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6303 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6304 size, port, &val, 1);
6305 /* do not return to emulator after return from userspace */
6306 vcpu->arch.pio.count = 0;
6307 return ret;
6308 }
6309
6310 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6311 {
6312 unsigned long val;
6313
6314 /* We should only ever be called with arch.pio.count equal to 1 */
6315 BUG_ON(vcpu->arch.pio.count != 1);
6316
6317 /* For size less than 4 we merge, else we zero extend */
6318 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6319 : 0;
6320
6321 /*
6322 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6323 * the copy and tracing
6324 */
6325 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6326 vcpu->arch.pio.port, &val, 1);
6327 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6328
6329 return 1;
6330 }
6331
6332 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6333 unsigned short port)
6334 {
6335 unsigned long val;
6336 int ret;
6337
6338 /* For size less than 4 we merge, else we zero extend */
6339 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6340
6341 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6342 &val, 1);
6343 if (ret) {
6344 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6345 return ret;
6346 }
6347
6348 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6349
6350 return 0;
6351 }
6352
6353 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6354 {
6355 int ret = kvm_skip_emulated_instruction(vcpu);
6356
6357 /*
6358 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6359 * KVM_EXIT_DEBUG here.
6360 */
6361 if (in)
6362 return kvm_fast_pio_in(vcpu, size, port) && ret;
6363 else
6364 return kvm_fast_pio_out(vcpu, size, port) && ret;
6365 }
6366 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6367
6368 static int kvmclock_cpu_down_prep(unsigned int cpu)
6369 {
6370 __this_cpu_write(cpu_tsc_khz, 0);
6371 return 0;
6372 }
6373
6374 static void tsc_khz_changed(void *data)
6375 {
6376 struct cpufreq_freqs *freq = data;
6377 unsigned long khz = 0;
6378
6379 if (data)
6380 khz = freq->new;
6381 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6382 khz = cpufreq_quick_get(raw_smp_processor_id());
6383 if (!khz)
6384 khz = tsc_khz;
6385 __this_cpu_write(cpu_tsc_khz, khz);
6386 }
6387
6388 #ifdef CONFIG_X86_64
6389 static void kvm_hyperv_tsc_notifier(void)
6390 {
6391 struct kvm *kvm;
6392 struct kvm_vcpu *vcpu;
6393 int cpu;
6394
6395 spin_lock(&kvm_lock);
6396 list_for_each_entry(kvm, &vm_list, vm_list)
6397 kvm_make_mclock_inprogress_request(kvm);
6398
6399 hyperv_stop_tsc_emulation();
6400
6401 /* TSC frequency always matches when on Hyper-V */
6402 for_each_present_cpu(cpu)
6403 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6404 kvm_max_guest_tsc_khz = tsc_khz;
6405
6406 list_for_each_entry(kvm, &vm_list, vm_list) {
6407 struct kvm_arch *ka = &kvm->arch;
6408
6409 spin_lock(&ka->pvclock_gtod_sync_lock);
6410
6411 pvclock_update_vm_gtod_copy(kvm);
6412
6413 kvm_for_each_vcpu(cpu, vcpu, kvm)
6414 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6415
6416 kvm_for_each_vcpu(cpu, vcpu, kvm)
6417 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6418
6419 spin_unlock(&ka->pvclock_gtod_sync_lock);
6420 }
6421 spin_unlock(&kvm_lock);
6422 }
6423 #endif
6424
6425 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6426 void *data)
6427 {
6428 struct cpufreq_freqs *freq = data;
6429 struct kvm *kvm;
6430 struct kvm_vcpu *vcpu;
6431 int i, send_ipi = 0;
6432
6433 /*
6434 * We allow guests to temporarily run on slowing clocks,
6435 * provided we notify them after, or to run on accelerating
6436 * clocks, provided we notify them before. Thus time never
6437 * goes backwards.
6438 *
6439 * However, we have a problem. We can't atomically update
6440 * the frequency of a given CPU from this function; it is
6441 * merely a notifier, which can be called from any CPU.
6442 * Changing the TSC frequency at arbitrary points in time
6443 * requires a recomputation of local variables related to
6444 * the TSC for each VCPU. We must flag these local variables
6445 * to be updated and be sure the update takes place with the
6446 * new frequency before any guests proceed.
6447 *
6448 * Unfortunately, the combination of hotplug CPU and frequency
6449 * change creates an intractable locking scenario; the order
6450 * of when these callouts happen is undefined with respect to
6451 * CPU hotplug, and they can race with each other. As such,
6452 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6453 * undefined; you can actually have a CPU frequency change take
6454 * place in between the computation of X and the setting of the
6455 * variable. To protect against this problem, all updates of
6456 * the per_cpu tsc_khz variable are done in an interrupt
6457 * protected IPI, and all callers wishing to update the value
6458 * must wait for a synchronous IPI to complete (which is trivial
6459 * if the caller is on the CPU already). This establishes the
6460 * necessary total order on variable updates.
6461 *
6462 * Note that because a guest time update may take place
6463 * anytime after the setting of the VCPU's request bit, the
6464 * correct TSC value must be set before the request. However,
6465 * to ensure the update actually makes it to any guest which
6466 * starts running in hardware virtualization between the set
6467 * and the acquisition of the spinlock, we must also ping the
6468 * CPU after setting the request bit.
6469 *
6470 */
6471
6472 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6473 return 0;
6474 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6475 return 0;
6476
6477 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6478
6479 spin_lock(&kvm_lock);
6480 list_for_each_entry(kvm, &vm_list, vm_list) {
6481 kvm_for_each_vcpu(i, vcpu, kvm) {
6482 if (vcpu->cpu != freq->cpu)
6483 continue;
6484 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6485 if (vcpu->cpu != smp_processor_id())
6486 send_ipi = 1;
6487 }
6488 }
6489 spin_unlock(&kvm_lock);
6490
6491 if (freq->old < freq->new && send_ipi) {
6492 /*
6493 * We upscale the frequency. Must make the guest
6494 * doesn't see old kvmclock values while running with
6495 * the new frequency, otherwise we risk the guest sees
6496 * time go backwards.
6497 *
6498 * In case we update the frequency for another cpu
6499 * (which might be in guest context) send an interrupt
6500 * to kick the cpu out of guest context. Next time
6501 * guest context is entered kvmclock will be updated,
6502 * so the guest will not see stale values.
6503 */
6504 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6505 }
6506 return 0;
6507 }
6508
6509 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6510 .notifier_call = kvmclock_cpufreq_notifier
6511 };
6512
6513 static int kvmclock_cpu_online(unsigned int cpu)
6514 {
6515 tsc_khz_changed(NULL);
6516 return 0;
6517 }
6518
6519 static void kvm_timer_init(void)
6520 {
6521 max_tsc_khz = tsc_khz;
6522
6523 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6524 #ifdef CONFIG_CPU_FREQ
6525 struct cpufreq_policy policy;
6526 int cpu;
6527
6528 memset(&policy, 0, sizeof(policy));
6529 cpu = get_cpu();
6530 cpufreq_get_policy(&policy, cpu);
6531 if (policy.cpuinfo.max_freq)
6532 max_tsc_khz = policy.cpuinfo.max_freq;
6533 put_cpu();
6534 #endif
6535 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6536 CPUFREQ_TRANSITION_NOTIFIER);
6537 }
6538 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6539
6540 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6541 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6542 }
6543
6544 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6545 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6546
6547 int kvm_is_in_guest(void)
6548 {
6549 return __this_cpu_read(current_vcpu) != NULL;
6550 }
6551
6552 static int kvm_is_user_mode(void)
6553 {
6554 int user_mode = 3;
6555
6556 if (__this_cpu_read(current_vcpu))
6557 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6558
6559 return user_mode != 0;
6560 }
6561
6562 static unsigned long kvm_get_guest_ip(void)
6563 {
6564 unsigned long ip = 0;
6565
6566 if (__this_cpu_read(current_vcpu))
6567 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6568
6569 return ip;
6570 }
6571
6572 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6573 .is_in_guest = kvm_is_in_guest,
6574 .is_user_mode = kvm_is_user_mode,
6575 .get_guest_ip = kvm_get_guest_ip,
6576 };
6577
6578 static void kvm_set_mmio_spte_mask(void)
6579 {
6580 u64 mask;
6581 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6582
6583 /*
6584 * Set the reserved bits and the present bit of an paging-structure
6585 * entry to generate page fault with PFER.RSV = 1.
6586 */
6587
6588 /*
6589 * Mask the uppermost physical address bit, which would be reserved as
6590 * long as the supported physical address width is less than 52.
6591 */
6592 mask = 1ull << 51;
6593
6594 /* Set the present bit. */
6595 mask |= 1ull;
6596
6597 /*
6598 * If reserved bit is not supported, clear the present bit to disable
6599 * mmio page fault.
6600 */
6601 if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6602 mask &= ~1ull;
6603
6604 kvm_mmu_set_mmio_spte_mask(mask, mask);
6605 }
6606
6607 #ifdef CONFIG_X86_64
6608 static void pvclock_gtod_update_fn(struct work_struct *work)
6609 {
6610 struct kvm *kvm;
6611
6612 struct kvm_vcpu *vcpu;
6613 int i;
6614
6615 spin_lock(&kvm_lock);
6616 list_for_each_entry(kvm, &vm_list, vm_list)
6617 kvm_for_each_vcpu(i, vcpu, kvm)
6618 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6619 atomic_set(&kvm_guest_has_master_clock, 0);
6620 spin_unlock(&kvm_lock);
6621 }
6622
6623 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6624
6625 /*
6626 * Notification about pvclock gtod data update.
6627 */
6628 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6629 void *priv)
6630 {
6631 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6632 struct timekeeper *tk = priv;
6633
6634 update_pvclock_gtod(tk);
6635
6636 /* disable master clock if host does not trust, or does not
6637 * use, TSC based clocksource.
6638 */
6639 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6640 atomic_read(&kvm_guest_has_master_clock) != 0)
6641 queue_work(system_long_wq, &pvclock_gtod_work);
6642
6643 return 0;
6644 }
6645
6646 static struct notifier_block pvclock_gtod_notifier = {
6647 .notifier_call = pvclock_gtod_notify,
6648 };
6649 #endif
6650
6651 int kvm_arch_init(void *opaque)
6652 {
6653 int r;
6654 struct kvm_x86_ops *ops = opaque;
6655
6656 if (kvm_x86_ops) {
6657 printk(KERN_ERR "kvm: already loaded the other module\n");
6658 r = -EEXIST;
6659 goto out;
6660 }
6661
6662 if (!ops->cpu_has_kvm_support()) {
6663 printk(KERN_ERR "kvm: no hardware support\n");
6664 r = -EOPNOTSUPP;
6665 goto out;
6666 }
6667 if (ops->disabled_by_bios()) {
6668 printk(KERN_ERR "kvm: disabled by bios\n");
6669 r = -EOPNOTSUPP;
6670 goto out;
6671 }
6672
6673 r = -ENOMEM;
6674 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6675 if (!shared_msrs) {
6676 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6677 goto out;
6678 }
6679
6680 r = kvm_mmu_module_init();
6681 if (r)
6682 goto out_free_percpu;
6683
6684 kvm_set_mmio_spte_mask();
6685
6686 kvm_x86_ops = ops;
6687
6688 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6689 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6690 PT_PRESENT_MASK, 0, sme_me_mask);
6691 kvm_timer_init();
6692
6693 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6694
6695 if (boot_cpu_has(X86_FEATURE_XSAVE))
6696 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6697
6698 kvm_lapic_init();
6699 #ifdef CONFIG_X86_64
6700 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6701
6702 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6703 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6704 #endif
6705
6706 return 0;
6707
6708 out_free_percpu:
6709 free_percpu(shared_msrs);
6710 out:
6711 return r;
6712 }
6713
6714 void kvm_arch_exit(void)
6715 {
6716 #ifdef CONFIG_X86_64
6717 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6718 clear_hv_tscchange_cb();
6719 #endif
6720 kvm_lapic_exit();
6721 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6722
6723 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6724 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6725 CPUFREQ_TRANSITION_NOTIFIER);
6726 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6727 #ifdef CONFIG_X86_64
6728 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6729 #endif
6730 kvm_x86_ops = NULL;
6731 kvm_mmu_module_exit();
6732 free_percpu(shared_msrs);
6733 }
6734
6735 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6736 {
6737 ++vcpu->stat.halt_exits;
6738 if (lapic_in_kernel(vcpu)) {
6739 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6740 return 1;
6741 } else {
6742 vcpu->run->exit_reason = KVM_EXIT_HLT;
6743 return 0;
6744 }
6745 }
6746 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6747
6748 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6749 {
6750 int ret = kvm_skip_emulated_instruction(vcpu);
6751 /*
6752 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6753 * KVM_EXIT_DEBUG here.
6754 */
6755 return kvm_vcpu_halt(vcpu) && ret;
6756 }
6757 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6758
6759 #ifdef CONFIG_X86_64
6760 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6761 unsigned long clock_type)
6762 {
6763 struct kvm_clock_pairing clock_pairing;
6764 struct timespec64 ts;
6765 u64 cycle;
6766 int ret;
6767
6768 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6769 return -KVM_EOPNOTSUPP;
6770
6771 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6772 return -KVM_EOPNOTSUPP;
6773
6774 clock_pairing.sec = ts.tv_sec;
6775 clock_pairing.nsec = ts.tv_nsec;
6776 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6777 clock_pairing.flags = 0;
6778
6779 ret = 0;
6780 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6781 sizeof(struct kvm_clock_pairing)))
6782 ret = -KVM_EFAULT;
6783
6784 return ret;
6785 }
6786 #endif
6787
6788 /*
6789 * kvm_pv_kick_cpu_op: Kick a vcpu.
6790 *
6791 * @apicid - apicid of vcpu to be kicked.
6792 */
6793 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6794 {
6795 struct kvm_lapic_irq lapic_irq;
6796
6797 lapic_irq.shorthand = 0;
6798 lapic_irq.dest_mode = 0;
6799 lapic_irq.level = 0;
6800 lapic_irq.dest_id = apicid;
6801 lapic_irq.msi_redir_hint = false;
6802
6803 lapic_irq.delivery_mode = APIC_DM_REMRD;
6804 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6805 }
6806
6807 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6808 {
6809 vcpu->arch.apicv_active = false;
6810 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6811 }
6812
6813 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6814 {
6815 unsigned long nr, a0, a1, a2, a3, ret;
6816 int op_64_bit;
6817
6818 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6819 return kvm_hv_hypercall(vcpu);
6820
6821 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6822 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6823 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6824 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6825 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6826
6827 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6828
6829 op_64_bit = is_64_bit_mode(vcpu);
6830 if (!op_64_bit) {
6831 nr &= 0xFFFFFFFF;
6832 a0 &= 0xFFFFFFFF;
6833 a1 &= 0xFFFFFFFF;
6834 a2 &= 0xFFFFFFFF;
6835 a3 &= 0xFFFFFFFF;
6836 }
6837
6838 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6839 ret = -KVM_EPERM;
6840 goto out;
6841 }
6842
6843 switch (nr) {
6844 case KVM_HC_VAPIC_POLL_IRQ:
6845 ret = 0;
6846 break;
6847 case KVM_HC_KICK_CPU:
6848 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6849 ret = 0;
6850 break;
6851 #ifdef CONFIG_X86_64
6852 case KVM_HC_CLOCK_PAIRING:
6853 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6854 break;
6855 case KVM_HC_SEND_IPI:
6856 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
6857 break;
6858 #endif
6859 default:
6860 ret = -KVM_ENOSYS;
6861 break;
6862 }
6863 out:
6864 if (!op_64_bit)
6865 ret = (u32)ret;
6866 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6867
6868 ++vcpu->stat.hypercalls;
6869 return kvm_skip_emulated_instruction(vcpu);
6870 }
6871 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6872
6873 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6874 {
6875 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6876 char instruction[3];
6877 unsigned long rip = kvm_rip_read(vcpu);
6878
6879 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6880
6881 return emulator_write_emulated(ctxt, rip, instruction, 3,
6882 &ctxt->exception);
6883 }
6884
6885 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6886 {
6887 return vcpu->run->request_interrupt_window &&
6888 likely(!pic_in_kernel(vcpu->kvm));
6889 }
6890
6891 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6892 {
6893 struct kvm_run *kvm_run = vcpu->run;
6894
6895 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6896 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6897 kvm_run->cr8 = kvm_get_cr8(vcpu);
6898 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6899 kvm_run->ready_for_interrupt_injection =
6900 pic_in_kernel(vcpu->kvm) ||
6901 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6902 }
6903
6904 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6905 {
6906 int max_irr, tpr;
6907
6908 if (!kvm_x86_ops->update_cr8_intercept)
6909 return;
6910
6911 if (!lapic_in_kernel(vcpu))
6912 return;
6913
6914 if (vcpu->arch.apicv_active)
6915 return;
6916
6917 if (!vcpu->arch.apic->vapic_addr)
6918 max_irr = kvm_lapic_find_highest_irr(vcpu);
6919 else
6920 max_irr = -1;
6921
6922 if (max_irr != -1)
6923 max_irr >>= 4;
6924
6925 tpr = kvm_lapic_get_cr8(vcpu);
6926
6927 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6928 }
6929
6930 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6931 {
6932 int r;
6933
6934 /* try to reinject previous events if any */
6935
6936 if (vcpu->arch.exception.injected)
6937 kvm_x86_ops->queue_exception(vcpu);
6938 /*
6939 * Do not inject an NMI or interrupt if there is a pending
6940 * exception. Exceptions and interrupts are recognized at
6941 * instruction boundaries, i.e. the start of an instruction.
6942 * Trap-like exceptions, e.g. #DB, have higher priority than
6943 * NMIs and interrupts, i.e. traps are recognized before an
6944 * NMI/interrupt that's pending on the same instruction.
6945 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6946 * priority, but are only generated (pended) during instruction
6947 * execution, i.e. a pending fault-like exception means the
6948 * fault occurred on the *previous* instruction and must be
6949 * serviced prior to recognizing any new events in order to
6950 * fully complete the previous instruction.
6951 */
6952 else if (!vcpu->arch.exception.pending) {
6953 if (vcpu->arch.nmi_injected)
6954 kvm_x86_ops->set_nmi(vcpu);
6955 else if (vcpu->arch.interrupt.injected)
6956 kvm_x86_ops->set_irq(vcpu);
6957 }
6958
6959 /*
6960 * Call check_nested_events() even if we reinjected a previous event
6961 * in order for caller to determine if it should require immediate-exit
6962 * from L2 to L1 due to pending L1 events which require exit
6963 * from L2 to L1.
6964 */
6965 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6966 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6967 if (r != 0)
6968 return r;
6969 }
6970
6971 /* try to inject new event if pending */
6972 if (vcpu->arch.exception.pending) {
6973 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6974 vcpu->arch.exception.has_error_code,
6975 vcpu->arch.exception.error_code);
6976
6977 WARN_ON_ONCE(vcpu->arch.exception.injected);
6978 vcpu->arch.exception.pending = false;
6979 vcpu->arch.exception.injected = true;
6980
6981 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6982 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6983 X86_EFLAGS_RF);
6984
6985 if (vcpu->arch.exception.nr == DB_VECTOR &&
6986 (vcpu->arch.dr7 & DR7_GD)) {
6987 vcpu->arch.dr7 &= ~DR7_GD;
6988 kvm_update_dr7(vcpu);
6989 }
6990
6991 kvm_x86_ops->queue_exception(vcpu);
6992 }
6993
6994 /* Don't consider new event if we re-injected an event */
6995 if (kvm_event_needs_reinjection(vcpu))
6996 return 0;
6997
6998 if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
6999 kvm_x86_ops->smi_allowed(vcpu)) {
7000 vcpu->arch.smi_pending = false;
7001 ++vcpu->arch.smi_count;
7002 enter_smm(vcpu);
7003 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7004 --vcpu->arch.nmi_pending;
7005 vcpu->arch.nmi_injected = true;
7006 kvm_x86_ops->set_nmi(vcpu);
7007 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7008 /*
7009 * Because interrupts can be injected asynchronously, we are
7010 * calling check_nested_events again here to avoid a race condition.
7011 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7012 * proposal and current concerns. Perhaps we should be setting
7013 * KVM_REQ_EVENT only on certain events and not unconditionally?
7014 */
7015 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7016 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7017 if (r != 0)
7018 return r;
7019 }
7020 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7021 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7022 false);
7023 kvm_x86_ops->set_irq(vcpu);
7024 }
7025 }
7026
7027 return 0;
7028 }
7029
7030 static void process_nmi(struct kvm_vcpu *vcpu)
7031 {
7032 unsigned limit = 2;
7033
7034 /*
7035 * x86 is limited to one NMI running, and one NMI pending after it.
7036 * If an NMI is already in progress, limit further NMIs to just one.
7037 * Otherwise, allow two (and we'll inject the first one immediately).
7038 */
7039 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7040 limit = 1;
7041
7042 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7043 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7044 kvm_make_request(KVM_REQ_EVENT, vcpu);
7045 }
7046
7047 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7048 {
7049 u32 flags = 0;
7050 flags |= seg->g << 23;
7051 flags |= seg->db << 22;
7052 flags |= seg->l << 21;
7053 flags |= seg->avl << 20;
7054 flags |= seg->present << 15;
7055 flags |= seg->dpl << 13;
7056 flags |= seg->s << 12;
7057 flags |= seg->type << 8;
7058 return flags;
7059 }
7060
7061 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7062 {
7063 struct kvm_segment seg;
7064 int offset;
7065
7066 kvm_get_segment(vcpu, &seg, n);
7067 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7068
7069 if (n < 3)
7070 offset = 0x7f84 + n * 12;
7071 else
7072 offset = 0x7f2c + (n - 3) * 12;
7073
7074 put_smstate(u32, buf, offset + 8, seg.base);
7075 put_smstate(u32, buf, offset + 4, seg.limit);
7076 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7077 }
7078
7079 #ifdef CONFIG_X86_64
7080 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7081 {
7082 struct kvm_segment seg;
7083 int offset;
7084 u16 flags;
7085
7086 kvm_get_segment(vcpu, &seg, n);
7087 offset = 0x7e00 + n * 16;
7088
7089 flags = enter_smm_get_segment_flags(&seg) >> 8;
7090 put_smstate(u16, buf, offset, seg.selector);
7091 put_smstate(u16, buf, offset + 2, flags);
7092 put_smstate(u32, buf, offset + 4, seg.limit);
7093 put_smstate(u64, buf, offset + 8, seg.base);
7094 }
7095 #endif
7096
7097 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7098 {
7099 struct desc_ptr dt;
7100 struct kvm_segment seg;
7101 unsigned long val;
7102 int i;
7103
7104 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7105 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7106 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7107 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7108
7109 for (i = 0; i < 8; i++)
7110 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7111
7112 kvm_get_dr(vcpu, 6, &val);
7113 put_smstate(u32, buf, 0x7fcc, (u32)val);
7114 kvm_get_dr(vcpu, 7, &val);
7115 put_smstate(u32, buf, 0x7fc8, (u32)val);
7116
7117 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7118 put_smstate(u32, buf, 0x7fc4, seg.selector);
7119 put_smstate(u32, buf, 0x7f64, seg.base);
7120 put_smstate(u32, buf, 0x7f60, seg.limit);
7121 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7122
7123 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7124 put_smstate(u32, buf, 0x7fc0, seg.selector);
7125 put_smstate(u32, buf, 0x7f80, seg.base);
7126 put_smstate(u32, buf, 0x7f7c, seg.limit);
7127 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7128
7129 kvm_x86_ops->get_gdt(vcpu, &dt);
7130 put_smstate(u32, buf, 0x7f74, dt.address);
7131 put_smstate(u32, buf, 0x7f70, dt.size);
7132
7133 kvm_x86_ops->get_idt(vcpu, &dt);
7134 put_smstate(u32, buf, 0x7f58, dt.address);
7135 put_smstate(u32, buf, 0x7f54, dt.size);
7136
7137 for (i = 0; i < 6; i++)
7138 enter_smm_save_seg_32(vcpu, buf, i);
7139
7140 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7141
7142 /* revision id */
7143 put_smstate(u32, buf, 0x7efc, 0x00020000);
7144 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7145 }
7146
7147 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7148 {
7149 #ifdef CONFIG_X86_64
7150 struct desc_ptr dt;
7151 struct kvm_segment seg;
7152 unsigned long val;
7153 int i;
7154
7155 for (i = 0; i < 16; i++)
7156 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7157
7158 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7159 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7160
7161 kvm_get_dr(vcpu, 6, &val);
7162 put_smstate(u64, buf, 0x7f68, val);
7163 kvm_get_dr(vcpu, 7, &val);
7164 put_smstate(u64, buf, 0x7f60, val);
7165
7166 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7167 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7168 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7169
7170 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7171
7172 /* revision id */
7173 put_smstate(u32, buf, 0x7efc, 0x00020064);
7174
7175 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7176
7177 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7178 put_smstate(u16, buf, 0x7e90, seg.selector);
7179 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7180 put_smstate(u32, buf, 0x7e94, seg.limit);
7181 put_smstate(u64, buf, 0x7e98, seg.base);
7182
7183 kvm_x86_ops->get_idt(vcpu, &dt);
7184 put_smstate(u32, buf, 0x7e84, dt.size);
7185 put_smstate(u64, buf, 0x7e88, dt.address);
7186
7187 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7188 put_smstate(u16, buf, 0x7e70, seg.selector);
7189 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7190 put_smstate(u32, buf, 0x7e74, seg.limit);
7191 put_smstate(u64, buf, 0x7e78, seg.base);
7192
7193 kvm_x86_ops->get_gdt(vcpu, &dt);
7194 put_smstate(u32, buf, 0x7e64, dt.size);
7195 put_smstate(u64, buf, 0x7e68, dt.address);
7196
7197 for (i = 0; i < 6; i++)
7198 enter_smm_save_seg_64(vcpu, buf, i);
7199 #else
7200 WARN_ON_ONCE(1);
7201 #endif
7202 }
7203
7204 static void enter_smm(struct kvm_vcpu *vcpu)
7205 {
7206 struct kvm_segment cs, ds;
7207 struct desc_ptr dt;
7208 char buf[512];
7209 u32 cr0;
7210
7211 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7212 memset(buf, 0, 512);
7213 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7214 enter_smm_save_state_64(vcpu, buf);
7215 else
7216 enter_smm_save_state_32(vcpu, buf);
7217
7218 /*
7219 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7220 * vCPU state (e.g. leave guest mode) after we've saved the state into
7221 * the SMM state-save area.
7222 */
7223 kvm_x86_ops->pre_enter_smm(vcpu, buf);
7224
7225 vcpu->arch.hflags |= HF_SMM_MASK;
7226 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7227
7228 if (kvm_x86_ops->get_nmi_mask(vcpu))
7229 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7230 else
7231 kvm_x86_ops->set_nmi_mask(vcpu, true);
7232
7233 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7234 kvm_rip_write(vcpu, 0x8000);
7235
7236 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7237 kvm_x86_ops->set_cr0(vcpu, cr0);
7238 vcpu->arch.cr0 = cr0;
7239
7240 kvm_x86_ops->set_cr4(vcpu, 0);
7241
7242 /* Undocumented: IDT limit is set to zero on entry to SMM. */
7243 dt.address = dt.size = 0;
7244 kvm_x86_ops->set_idt(vcpu, &dt);
7245
7246 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7247
7248 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7249 cs.base = vcpu->arch.smbase;
7250
7251 ds.selector = 0;
7252 ds.base = 0;
7253
7254 cs.limit = ds.limit = 0xffffffff;
7255 cs.type = ds.type = 0x3;
7256 cs.dpl = ds.dpl = 0;
7257 cs.db = ds.db = 0;
7258 cs.s = ds.s = 1;
7259 cs.l = ds.l = 0;
7260 cs.g = ds.g = 1;
7261 cs.avl = ds.avl = 0;
7262 cs.present = ds.present = 1;
7263 cs.unusable = ds.unusable = 0;
7264 cs.padding = ds.padding = 0;
7265
7266 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7267 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7268 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7269 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7270 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7271 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7272
7273 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7274 kvm_x86_ops->set_efer(vcpu, 0);
7275
7276 kvm_update_cpuid(vcpu);
7277 kvm_mmu_reset_context(vcpu);
7278 }
7279
7280 static void process_smi(struct kvm_vcpu *vcpu)
7281 {
7282 vcpu->arch.smi_pending = true;
7283 kvm_make_request(KVM_REQ_EVENT, vcpu);
7284 }
7285
7286 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7287 {
7288 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7289 }
7290
7291 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7292 {
7293 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7294 return;
7295
7296 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7297
7298 if (irqchip_split(vcpu->kvm))
7299 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7300 else {
7301 if (vcpu->arch.apicv_active)
7302 kvm_x86_ops->sync_pir_to_irr(vcpu);
7303 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7304 }
7305
7306 if (is_guest_mode(vcpu))
7307 vcpu->arch.load_eoi_exitmap_pending = true;
7308 else
7309 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7310 }
7311
7312 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7313 {
7314 u64 eoi_exit_bitmap[4];
7315
7316 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7317 return;
7318
7319 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7320 vcpu_to_synic(vcpu)->vec_bitmap, 256);
7321 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7322 }
7323
7324 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7325 unsigned long start, unsigned long end,
7326 bool blockable)
7327 {
7328 unsigned long apic_address;
7329
7330 /*
7331 * The physical address of apic access page is stored in the VMCS.
7332 * Update it when it becomes invalid.
7333 */
7334 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7335 if (start <= apic_address && apic_address < end)
7336 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7337
7338 return 0;
7339 }
7340
7341 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7342 {
7343 struct page *page = NULL;
7344
7345 if (!lapic_in_kernel(vcpu))
7346 return;
7347
7348 if (!kvm_x86_ops->set_apic_access_page_addr)
7349 return;
7350
7351 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7352 if (is_error_page(page))
7353 return;
7354 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7355
7356 /*
7357 * Do not pin apic access page in memory, the MMU notifier
7358 * will call us again if it is migrated or swapped out.
7359 */
7360 put_page(page);
7361 }
7362 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7363
7364 /*
7365 * Returns 1 to let vcpu_run() continue the guest execution loop without
7366 * exiting to the userspace. Otherwise, the value will be returned to the
7367 * userspace.
7368 */
7369 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7370 {
7371 int r;
7372 bool req_int_win =
7373 dm_request_for_irq_injection(vcpu) &&
7374 kvm_cpu_accept_dm_intr(vcpu);
7375
7376 bool req_immediate_exit = false;
7377
7378 if (kvm_request_pending(vcpu)) {
7379 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7380 kvm_x86_ops->get_vmcs12_pages(vcpu);
7381 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7382 kvm_mmu_unload(vcpu);
7383 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7384 __kvm_migrate_timers(vcpu);
7385 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7386 kvm_gen_update_masterclock(vcpu->kvm);
7387 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7388 kvm_gen_kvmclock_update(vcpu);
7389 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7390 r = kvm_guest_time_update(vcpu);
7391 if (unlikely(r))
7392 goto out;
7393 }
7394 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7395 kvm_mmu_sync_roots(vcpu);
7396 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7397 kvm_mmu_load_cr3(vcpu);
7398 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7399 kvm_vcpu_flush_tlb(vcpu, true);
7400 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7401 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7402 r = 0;
7403 goto out;
7404 }
7405 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7406 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7407 vcpu->mmio_needed = 0;
7408 r = 0;
7409 goto out;
7410 }
7411 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7412 /* Page is swapped out. Do synthetic halt */
7413 vcpu->arch.apf.halted = true;
7414 r = 1;
7415 goto out;
7416 }
7417 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7418 record_steal_time(vcpu);
7419 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7420 process_smi(vcpu);
7421 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7422 process_nmi(vcpu);
7423 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7424 kvm_pmu_handle_event(vcpu);
7425 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7426 kvm_pmu_deliver_pmi(vcpu);
7427 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7428 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7429 if (test_bit(vcpu->arch.pending_ioapic_eoi,
7430 vcpu->arch.ioapic_handled_vectors)) {
7431 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7432 vcpu->run->eoi.vector =
7433 vcpu->arch.pending_ioapic_eoi;
7434 r = 0;
7435 goto out;
7436 }
7437 }
7438 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7439 vcpu_scan_ioapic(vcpu);
7440 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7441 vcpu_load_eoi_exitmap(vcpu);
7442 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7443 kvm_vcpu_reload_apic_access_page(vcpu);
7444 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7445 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7446 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7447 r = 0;
7448 goto out;
7449 }
7450 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7451 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7452 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7453 r = 0;
7454 goto out;
7455 }
7456 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7457 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7458 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7459 r = 0;
7460 goto out;
7461 }
7462
7463 /*
7464 * KVM_REQ_HV_STIMER has to be processed after
7465 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7466 * depend on the guest clock being up-to-date
7467 */
7468 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7469 kvm_hv_process_stimers(vcpu);
7470 }
7471
7472 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7473 ++vcpu->stat.req_event;
7474 kvm_apic_accept_events(vcpu);
7475 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7476 r = 1;
7477 goto out;
7478 }
7479
7480 if (inject_pending_event(vcpu, req_int_win) != 0)
7481 req_immediate_exit = true;
7482 else {
7483 /* Enable SMI/NMI/IRQ window open exits if needed.
7484 *
7485 * SMIs have three cases:
7486 * 1) They can be nested, and then there is nothing to
7487 * do here because RSM will cause a vmexit anyway.
7488 * 2) There is an ISA-specific reason why SMI cannot be
7489 * injected, and the moment when this changes can be
7490 * intercepted.
7491 * 3) Or the SMI can be pending because
7492 * inject_pending_event has completed the injection
7493 * of an IRQ or NMI from the previous vmexit, and
7494 * then we request an immediate exit to inject the
7495 * SMI.
7496 */
7497 if (vcpu->arch.smi_pending && !is_smm(vcpu))
7498 if (!kvm_x86_ops->enable_smi_window(vcpu))
7499 req_immediate_exit = true;
7500 if (vcpu->arch.nmi_pending)
7501 kvm_x86_ops->enable_nmi_window(vcpu);
7502 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7503 kvm_x86_ops->enable_irq_window(vcpu);
7504 WARN_ON(vcpu->arch.exception.pending);
7505 }
7506
7507 if (kvm_lapic_enabled(vcpu)) {
7508 update_cr8_intercept(vcpu);
7509 kvm_lapic_sync_to_vapic(vcpu);
7510 }
7511 }
7512
7513 r = kvm_mmu_reload(vcpu);
7514 if (unlikely(r)) {
7515 goto cancel_injection;
7516 }
7517
7518 preempt_disable();
7519
7520 kvm_x86_ops->prepare_guest_switch(vcpu);
7521
7522 /*
7523 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7524 * IPI are then delayed after guest entry, which ensures that they
7525 * result in virtual interrupt delivery.
7526 */
7527 local_irq_disable();
7528 vcpu->mode = IN_GUEST_MODE;
7529
7530 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7531
7532 /*
7533 * 1) We should set ->mode before checking ->requests. Please see
7534 * the comment in kvm_vcpu_exiting_guest_mode().
7535 *
7536 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7537 * pairs with the memory barrier implicit in pi_test_and_set_on
7538 * (see vmx_deliver_posted_interrupt).
7539 *
7540 * 3) This also orders the write to mode from any reads to the page
7541 * tables done while the VCPU is running. Please see the comment
7542 * in kvm_flush_remote_tlbs.
7543 */
7544 smp_mb__after_srcu_read_unlock();
7545
7546 /*
7547 * This handles the case where a posted interrupt was
7548 * notified with kvm_vcpu_kick.
7549 */
7550 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7551 kvm_x86_ops->sync_pir_to_irr(vcpu);
7552
7553 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7554 || need_resched() || signal_pending(current)) {
7555 vcpu->mode = OUTSIDE_GUEST_MODE;
7556 smp_wmb();
7557 local_irq_enable();
7558 preempt_enable();
7559 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7560 r = 1;
7561 goto cancel_injection;
7562 }
7563
7564 kvm_load_guest_xcr0(vcpu);
7565
7566 if (req_immediate_exit) {
7567 kvm_make_request(KVM_REQ_EVENT, vcpu);
7568 smp_send_reschedule(vcpu->cpu);
7569 }
7570
7571 trace_kvm_entry(vcpu->vcpu_id);
7572 if (lapic_timer_advance_ns)
7573 wait_lapic_expire(vcpu);
7574 guest_enter_irqoff();
7575
7576 if (unlikely(vcpu->arch.switch_db_regs)) {
7577 set_debugreg(0, 7);
7578 set_debugreg(vcpu->arch.eff_db[0], 0);
7579 set_debugreg(vcpu->arch.eff_db[1], 1);
7580 set_debugreg(vcpu->arch.eff_db[2], 2);
7581 set_debugreg(vcpu->arch.eff_db[3], 3);
7582 set_debugreg(vcpu->arch.dr6, 6);
7583 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7584 }
7585
7586 kvm_x86_ops->run(vcpu);
7587
7588 /*
7589 * Do this here before restoring debug registers on the host. And
7590 * since we do this before handling the vmexit, a DR access vmexit
7591 * can (a) read the correct value of the debug registers, (b) set
7592 * KVM_DEBUGREG_WONT_EXIT again.
7593 */
7594 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7595 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7596 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7597 kvm_update_dr0123(vcpu);
7598 kvm_update_dr6(vcpu);
7599 kvm_update_dr7(vcpu);
7600 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7601 }
7602
7603 /*
7604 * If the guest has used debug registers, at least dr7
7605 * will be disabled while returning to the host.
7606 * If we don't have active breakpoints in the host, we don't
7607 * care about the messed up debug address registers. But if
7608 * we have some of them active, restore the old state.
7609 */
7610 if (hw_breakpoint_active())
7611 hw_breakpoint_restore();
7612
7613 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7614
7615 vcpu->mode = OUTSIDE_GUEST_MODE;
7616 smp_wmb();
7617
7618 kvm_put_guest_xcr0(vcpu);
7619
7620 kvm_before_interrupt(vcpu);
7621 kvm_x86_ops->handle_external_intr(vcpu);
7622 kvm_after_interrupt(vcpu);
7623
7624 ++vcpu->stat.exits;
7625
7626 guest_exit_irqoff();
7627
7628 local_irq_enable();
7629 preempt_enable();
7630
7631 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7632
7633 /*
7634 * Profile KVM exit RIPs:
7635 */
7636 if (unlikely(prof_on == KVM_PROFILING)) {
7637 unsigned long rip = kvm_rip_read(vcpu);
7638 profile_hit(KVM_PROFILING, (void *)rip);
7639 }
7640
7641 if (unlikely(vcpu->arch.tsc_always_catchup))
7642 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7643
7644 if (vcpu->arch.apic_attention)
7645 kvm_lapic_sync_from_vapic(vcpu);
7646
7647 vcpu->arch.gpa_available = false;
7648 r = kvm_x86_ops->handle_exit(vcpu);
7649 return r;
7650
7651 cancel_injection:
7652 kvm_x86_ops->cancel_injection(vcpu);
7653 if (unlikely(vcpu->arch.apic_attention))
7654 kvm_lapic_sync_from_vapic(vcpu);
7655 out:
7656 return r;
7657 }
7658
7659 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7660 {
7661 if (!kvm_arch_vcpu_runnable(vcpu) &&
7662 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7663 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7664 kvm_vcpu_block(vcpu);
7665 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7666
7667 if (kvm_x86_ops->post_block)
7668 kvm_x86_ops->post_block(vcpu);
7669
7670 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7671 return 1;
7672 }
7673
7674 kvm_apic_accept_events(vcpu);
7675 switch(vcpu->arch.mp_state) {
7676 case KVM_MP_STATE_HALTED:
7677 vcpu->arch.pv.pv_unhalted = false;
7678 vcpu->arch.mp_state =
7679 KVM_MP_STATE_RUNNABLE;
7680 case KVM_MP_STATE_RUNNABLE:
7681 vcpu->arch.apf.halted = false;
7682 break;
7683 case KVM_MP_STATE_INIT_RECEIVED:
7684 break;
7685 default:
7686 return -EINTR;
7687 break;
7688 }
7689 return 1;
7690 }
7691
7692 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7693 {
7694 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7695 kvm_x86_ops->check_nested_events(vcpu, false);
7696
7697 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7698 !vcpu->arch.apf.halted);
7699 }
7700
7701 static int vcpu_run(struct kvm_vcpu *vcpu)
7702 {
7703 int r;
7704 struct kvm *kvm = vcpu->kvm;
7705
7706 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7707 vcpu->arch.l1tf_flush_l1d = true;
7708
7709 for (;;) {
7710 if (kvm_vcpu_running(vcpu)) {
7711 r = vcpu_enter_guest(vcpu);
7712 } else {
7713 r = vcpu_block(kvm, vcpu);
7714 }
7715
7716 if (r <= 0)
7717 break;
7718
7719 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7720 if (kvm_cpu_has_pending_timer(vcpu))
7721 kvm_inject_pending_timer_irqs(vcpu);
7722
7723 if (dm_request_for_irq_injection(vcpu) &&
7724 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7725 r = 0;
7726 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7727 ++vcpu->stat.request_irq_exits;
7728 break;
7729 }
7730
7731 kvm_check_async_pf_completion(vcpu);
7732
7733 if (signal_pending(current)) {
7734 r = -EINTR;
7735 vcpu->run->exit_reason = KVM_EXIT_INTR;
7736 ++vcpu->stat.signal_exits;
7737 break;
7738 }
7739 if (need_resched()) {
7740 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7741 cond_resched();
7742 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7743 }
7744 }
7745
7746 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7747
7748 return r;
7749 }
7750
7751 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7752 {
7753 int r;
7754 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7755 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7756 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7757 if (r != EMULATE_DONE)
7758 return 0;
7759 return 1;
7760 }
7761
7762 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7763 {
7764 BUG_ON(!vcpu->arch.pio.count);
7765
7766 return complete_emulated_io(vcpu);
7767 }
7768
7769 /*
7770 * Implements the following, as a state machine:
7771 *
7772 * read:
7773 * for each fragment
7774 * for each mmio piece in the fragment
7775 * write gpa, len
7776 * exit
7777 * copy data
7778 * execute insn
7779 *
7780 * write:
7781 * for each fragment
7782 * for each mmio piece in the fragment
7783 * write gpa, len
7784 * copy data
7785 * exit
7786 */
7787 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7788 {
7789 struct kvm_run *run = vcpu->run;
7790 struct kvm_mmio_fragment *frag;
7791 unsigned len;
7792
7793 BUG_ON(!vcpu->mmio_needed);
7794
7795 /* Complete previous fragment */
7796 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7797 len = min(8u, frag->len);
7798 if (!vcpu->mmio_is_write)
7799 memcpy(frag->data, run->mmio.data, len);
7800
7801 if (frag->len <= 8) {
7802 /* Switch to the next fragment. */
7803 frag++;
7804 vcpu->mmio_cur_fragment++;
7805 } else {
7806 /* Go forward to the next mmio piece. */
7807 frag->data += len;
7808 frag->gpa += len;
7809 frag->len -= len;
7810 }
7811
7812 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7813 vcpu->mmio_needed = 0;
7814
7815 /* FIXME: return into emulator if single-stepping. */
7816 if (vcpu->mmio_is_write)
7817 return 1;
7818 vcpu->mmio_read_completed = 1;
7819 return complete_emulated_io(vcpu);
7820 }
7821
7822 run->exit_reason = KVM_EXIT_MMIO;
7823 run->mmio.phys_addr = frag->gpa;
7824 if (vcpu->mmio_is_write)
7825 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7826 run->mmio.len = min(8u, frag->len);
7827 run->mmio.is_write = vcpu->mmio_is_write;
7828 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7829 return 0;
7830 }
7831
7832 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7833 {
7834 int r;
7835
7836 vcpu_load(vcpu);
7837 kvm_sigset_activate(vcpu);
7838 kvm_load_guest_fpu(vcpu);
7839
7840 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7841 if (kvm_run->immediate_exit) {
7842 r = -EINTR;
7843 goto out;
7844 }
7845 kvm_vcpu_block(vcpu);
7846 kvm_apic_accept_events(vcpu);
7847 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7848 r = -EAGAIN;
7849 if (signal_pending(current)) {
7850 r = -EINTR;
7851 vcpu->run->exit_reason = KVM_EXIT_INTR;
7852 ++vcpu->stat.signal_exits;
7853 }
7854 goto out;
7855 }
7856
7857 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7858 r = -EINVAL;
7859 goto out;
7860 }
7861
7862 if (vcpu->run->kvm_dirty_regs) {
7863 r = sync_regs(vcpu);
7864 if (r != 0)
7865 goto out;
7866 }
7867
7868 /* re-sync apic's tpr */
7869 if (!lapic_in_kernel(vcpu)) {
7870 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7871 r = -EINVAL;
7872 goto out;
7873 }
7874 }
7875
7876 if (unlikely(vcpu->arch.complete_userspace_io)) {
7877 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7878 vcpu->arch.complete_userspace_io = NULL;
7879 r = cui(vcpu);
7880 if (r <= 0)
7881 goto out;
7882 } else
7883 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7884
7885 if (kvm_run->immediate_exit)
7886 r = -EINTR;
7887 else
7888 r = vcpu_run(vcpu);
7889
7890 out:
7891 kvm_put_guest_fpu(vcpu);
7892 if (vcpu->run->kvm_valid_regs)
7893 store_regs(vcpu);
7894 post_kvm_run_save(vcpu);
7895 kvm_sigset_deactivate(vcpu);
7896
7897 vcpu_put(vcpu);
7898 return r;
7899 }
7900
7901 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7902 {
7903 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7904 /*
7905 * We are here if userspace calls get_regs() in the middle of
7906 * instruction emulation. Registers state needs to be copied
7907 * back from emulation context to vcpu. Userspace shouldn't do
7908 * that usually, but some bad designed PV devices (vmware
7909 * backdoor interface) need this to work
7910 */
7911 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7912 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7913 }
7914 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7915 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7916 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7917 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7918 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7919 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7920 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7921 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7922 #ifdef CONFIG_X86_64
7923 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7924 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7925 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7926 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7927 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7928 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7929 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7930 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7931 #endif
7932
7933 regs->rip = kvm_rip_read(vcpu);
7934 regs->rflags = kvm_get_rflags(vcpu);
7935 }
7936
7937 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7938 {
7939 vcpu_load(vcpu);
7940 __get_regs(vcpu, regs);
7941 vcpu_put(vcpu);
7942 return 0;
7943 }
7944
7945 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7946 {
7947 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7948 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7949
7950 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7951 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7952 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7953 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7954 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7955 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7956 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7957 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7958 #ifdef CONFIG_X86_64
7959 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7960 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7961 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7962 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7963 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7964 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7965 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7966 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7967 #endif
7968
7969 kvm_rip_write(vcpu, regs->rip);
7970 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7971
7972 vcpu->arch.exception.pending = false;
7973
7974 kvm_make_request(KVM_REQ_EVENT, vcpu);
7975 }
7976
7977 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7978 {
7979 vcpu_load(vcpu);
7980 __set_regs(vcpu, regs);
7981 vcpu_put(vcpu);
7982 return 0;
7983 }
7984
7985 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7986 {
7987 struct kvm_segment cs;
7988
7989 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7990 *db = cs.db;
7991 *l = cs.l;
7992 }
7993 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7994
7995 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7996 {
7997 struct desc_ptr dt;
7998
7999 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8000 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8001 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8002 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8003 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8004 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8005
8006 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8007 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8008
8009 kvm_x86_ops->get_idt(vcpu, &dt);
8010 sregs->idt.limit = dt.size;
8011 sregs->idt.base = dt.address;
8012 kvm_x86_ops->get_gdt(vcpu, &dt);
8013 sregs->gdt.limit = dt.size;
8014 sregs->gdt.base = dt.address;
8015
8016 sregs->cr0 = kvm_read_cr0(vcpu);
8017 sregs->cr2 = vcpu->arch.cr2;
8018 sregs->cr3 = kvm_read_cr3(vcpu);
8019 sregs->cr4 = kvm_read_cr4(vcpu);
8020 sregs->cr8 = kvm_get_cr8(vcpu);
8021 sregs->efer = vcpu->arch.efer;
8022 sregs->apic_base = kvm_get_apic_base(vcpu);
8023
8024 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
8025
8026 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8027 set_bit(vcpu->arch.interrupt.nr,
8028 (unsigned long *)sregs->interrupt_bitmap);
8029 }
8030
8031 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8032 struct kvm_sregs *sregs)
8033 {
8034 vcpu_load(vcpu);
8035 __get_sregs(vcpu, sregs);
8036 vcpu_put(vcpu);
8037 return 0;
8038 }
8039
8040 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8041 struct kvm_mp_state *mp_state)
8042 {
8043 vcpu_load(vcpu);
8044
8045 kvm_apic_accept_events(vcpu);
8046 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8047 vcpu->arch.pv.pv_unhalted)
8048 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8049 else
8050 mp_state->mp_state = vcpu->arch.mp_state;
8051
8052 vcpu_put(vcpu);
8053 return 0;
8054 }
8055
8056 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8057 struct kvm_mp_state *mp_state)
8058 {
8059 int ret = -EINVAL;
8060
8061 vcpu_load(vcpu);
8062
8063 if (!lapic_in_kernel(vcpu) &&
8064 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8065 goto out;
8066
8067 /* INITs are latched while in SMM */
8068 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8069 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8070 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8071 goto out;
8072
8073 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8074 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8075 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8076 } else
8077 vcpu->arch.mp_state = mp_state->mp_state;
8078 kvm_make_request(KVM_REQ_EVENT, vcpu);
8079
8080 ret = 0;
8081 out:
8082 vcpu_put(vcpu);
8083 return ret;
8084 }
8085
8086 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8087 int reason, bool has_error_code, u32 error_code)
8088 {
8089 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8090 int ret;
8091
8092 init_emulate_ctxt(vcpu);
8093
8094 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8095 has_error_code, error_code);
8096
8097 if (ret)
8098 return EMULATE_FAIL;
8099
8100 kvm_rip_write(vcpu, ctxt->eip);
8101 kvm_set_rflags(vcpu, ctxt->eflags);
8102 kvm_make_request(KVM_REQ_EVENT, vcpu);
8103 return EMULATE_DONE;
8104 }
8105 EXPORT_SYMBOL_GPL(kvm_task_switch);
8106
8107 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8108 {
8109 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8110 (sregs->cr4 & X86_CR4_OSXSAVE))
8111 return -EINVAL;
8112
8113 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8114 /*
8115 * When EFER.LME and CR0.PG are set, the processor is in
8116 * 64-bit mode (though maybe in a 32-bit code segment).
8117 * CR4.PAE and EFER.LMA must be set.
8118 */
8119 if (!(sregs->cr4 & X86_CR4_PAE)
8120 || !(sregs->efer & EFER_LMA))
8121 return -EINVAL;
8122 } else {
8123 /*
8124 * Not in 64-bit mode: EFER.LMA is clear and the code
8125 * segment cannot be 64-bit.
8126 */
8127 if (sregs->efer & EFER_LMA || sregs->cs.l)
8128 return -EINVAL;
8129 }
8130
8131 return 0;
8132 }
8133
8134 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8135 {
8136 struct msr_data apic_base_msr;
8137 int mmu_reset_needed = 0;
8138 int cpuid_update_needed = 0;
8139 int pending_vec, max_bits, idx;
8140 struct desc_ptr dt;
8141 int ret = -EINVAL;
8142
8143 if (kvm_valid_sregs(vcpu, sregs))
8144 goto out;
8145
8146 apic_base_msr.data = sregs->apic_base;
8147 apic_base_msr.host_initiated = true;
8148 if (kvm_set_apic_base(vcpu, &apic_base_msr))
8149 goto out;
8150
8151 dt.size = sregs->idt.limit;
8152 dt.address = sregs->idt.base;
8153 kvm_x86_ops->set_idt(vcpu, &dt);
8154 dt.size = sregs->gdt.limit;
8155 dt.address = sregs->gdt.base;
8156 kvm_x86_ops->set_gdt(vcpu, &dt);
8157
8158 vcpu->arch.cr2 = sregs->cr2;
8159 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8160 vcpu->arch.cr3 = sregs->cr3;
8161 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8162
8163 kvm_set_cr8(vcpu, sregs->cr8);
8164
8165 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8166 kvm_x86_ops->set_efer(vcpu, sregs->efer);
8167
8168 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8169 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8170 vcpu->arch.cr0 = sregs->cr0;
8171
8172 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8173 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8174 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8175 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8176 if (cpuid_update_needed)
8177 kvm_update_cpuid(vcpu);
8178
8179 idx = srcu_read_lock(&vcpu->kvm->srcu);
8180 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8181 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8182 mmu_reset_needed = 1;
8183 }
8184 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8185
8186 if (mmu_reset_needed)
8187 kvm_mmu_reset_context(vcpu);
8188
8189 max_bits = KVM_NR_INTERRUPTS;
8190 pending_vec = find_first_bit(
8191 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8192 if (pending_vec < max_bits) {
8193 kvm_queue_interrupt(vcpu, pending_vec, false);
8194 pr_debug("Set back pending irq %d\n", pending_vec);
8195 }
8196
8197 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8198 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8199 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8200 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8201 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8202 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8203
8204 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8205 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8206
8207 update_cr8_intercept(vcpu);
8208
8209 /* Older userspace won't unhalt the vcpu on reset. */
8210 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8211 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8212 !is_protmode(vcpu))
8213 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8214
8215 kvm_make_request(KVM_REQ_EVENT, vcpu);
8216
8217 ret = 0;
8218 out:
8219 return ret;
8220 }
8221
8222 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8223 struct kvm_sregs *sregs)
8224 {
8225 int ret;
8226
8227 vcpu_load(vcpu);
8228 ret = __set_sregs(vcpu, sregs);
8229 vcpu_put(vcpu);
8230 return ret;
8231 }
8232
8233 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8234 struct kvm_guest_debug *dbg)
8235 {
8236 unsigned long rflags;
8237 int i, r;
8238
8239 vcpu_load(vcpu);
8240
8241 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8242 r = -EBUSY;
8243 if (vcpu->arch.exception.pending)
8244 goto out;
8245 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8246 kvm_queue_exception(vcpu, DB_VECTOR);
8247 else
8248 kvm_queue_exception(vcpu, BP_VECTOR);
8249 }
8250
8251 /*
8252 * Read rflags as long as potentially injected trace flags are still
8253 * filtered out.
8254 */
8255 rflags = kvm_get_rflags(vcpu);
8256
8257 vcpu->guest_debug = dbg->control;
8258 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8259 vcpu->guest_debug = 0;
8260
8261 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8262 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8263 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8264 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8265 } else {
8266 for (i = 0; i < KVM_NR_DB_REGS; i++)
8267 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8268 }
8269 kvm_update_dr7(vcpu);
8270
8271 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8272 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8273 get_segment_base(vcpu, VCPU_SREG_CS);
8274
8275 /*
8276 * Trigger an rflags update that will inject or remove the trace
8277 * flags.
8278 */
8279 kvm_set_rflags(vcpu, rflags);
8280
8281 kvm_x86_ops->update_bp_intercept(vcpu);
8282
8283 r = 0;
8284
8285 out:
8286 vcpu_put(vcpu);
8287 return r;
8288 }
8289
8290 /*
8291 * Translate a guest virtual address to a guest physical address.
8292 */
8293 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8294 struct kvm_translation *tr)
8295 {
8296 unsigned long vaddr = tr->linear_address;
8297 gpa_t gpa;
8298 int idx;
8299
8300 vcpu_load(vcpu);
8301
8302 idx = srcu_read_lock(&vcpu->kvm->srcu);
8303 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8304 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8305 tr->physical_address = gpa;
8306 tr->valid = gpa != UNMAPPED_GVA;
8307 tr->writeable = 1;
8308 tr->usermode = 0;
8309
8310 vcpu_put(vcpu);
8311 return 0;
8312 }
8313
8314 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8315 {
8316 struct fxregs_state *fxsave;
8317
8318 vcpu_load(vcpu);
8319
8320 fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8321 memcpy(fpu->fpr, fxsave->st_space, 128);
8322 fpu->fcw = fxsave->cwd;
8323 fpu->fsw = fxsave->swd;
8324 fpu->ftwx = fxsave->twd;
8325 fpu->last_opcode = fxsave->fop;
8326 fpu->last_ip = fxsave->rip;
8327 fpu->last_dp = fxsave->rdp;
8328 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8329
8330 vcpu_put(vcpu);
8331 return 0;
8332 }
8333
8334 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8335 {
8336 struct fxregs_state *fxsave;
8337
8338 vcpu_load(vcpu);
8339
8340 fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8341
8342 memcpy(fxsave->st_space, fpu->fpr, 128);
8343 fxsave->cwd = fpu->fcw;
8344 fxsave->swd = fpu->fsw;
8345 fxsave->twd = fpu->ftwx;
8346 fxsave->fop = fpu->last_opcode;
8347 fxsave->rip = fpu->last_ip;
8348 fxsave->rdp = fpu->last_dp;
8349 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8350
8351 vcpu_put(vcpu);
8352 return 0;
8353 }
8354
8355 static void store_regs(struct kvm_vcpu *vcpu)
8356 {
8357 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8358
8359 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8360 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8361
8362 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8363 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8364
8365 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8366 kvm_vcpu_ioctl_x86_get_vcpu_events(
8367 vcpu, &vcpu->run->s.regs.events);
8368 }
8369
8370 static int sync_regs(struct kvm_vcpu *vcpu)
8371 {
8372 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8373 return -EINVAL;
8374
8375 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8376 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8377 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8378 }
8379 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8380 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8381 return -EINVAL;
8382 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8383 }
8384 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8385 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8386 vcpu, &vcpu->run->s.regs.events))
8387 return -EINVAL;
8388 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8389 }
8390
8391 return 0;
8392 }
8393
8394 static void fx_init(struct kvm_vcpu *vcpu)
8395 {
8396 fpstate_init(&vcpu->arch.guest_fpu.state);
8397 if (boot_cpu_has(X86_FEATURE_XSAVES))
8398 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8399 host_xcr0 | XSTATE_COMPACTION_ENABLED;
8400
8401 /*
8402 * Ensure guest xcr0 is valid for loading
8403 */
8404 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8405
8406 vcpu->arch.cr0 |= X86_CR0_ET;
8407 }
8408
8409 /* Swap (qemu) user FPU context for the guest FPU context. */
8410 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8411 {
8412 preempt_disable();
8413 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8414 /* PKRU is separately restored in kvm_x86_ops->run. */
8415 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8416 ~XFEATURE_MASK_PKRU);
8417 preempt_enable();
8418 trace_kvm_fpu(1);
8419 }
8420
8421 /* When vcpu_run ends, restore user space FPU context. */
8422 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8423 {
8424 preempt_disable();
8425 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8426 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8427 preempt_enable();
8428 ++vcpu->stat.fpu_reload;
8429 trace_kvm_fpu(0);
8430 }
8431
8432 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8433 {
8434 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8435
8436 kvmclock_reset(vcpu);
8437
8438 kvm_x86_ops->vcpu_free(vcpu);
8439 free_cpumask_var(wbinvd_dirty_mask);
8440 }
8441
8442 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8443 unsigned int id)
8444 {
8445 struct kvm_vcpu *vcpu;
8446
8447 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8448 printk_once(KERN_WARNING
8449 "kvm: SMP vm created on host with unstable TSC; "
8450 "guest TSC will not be reliable\n");
8451
8452 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8453
8454 return vcpu;
8455 }
8456
8457 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8458 {
8459 kvm_vcpu_mtrr_init(vcpu);
8460 vcpu_load(vcpu);
8461 kvm_vcpu_reset(vcpu, false);
8462 kvm_mmu_setup(vcpu);
8463 vcpu_put(vcpu);
8464 return 0;
8465 }
8466
8467 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8468 {
8469 struct msr_data msr;
8470 struct kvm *kvm = vcpu->kvm;
8471
8472 kvm_hv_vcpu_postcreate(vcpu);
8473
8474 if (mutex_lock_killable(&vcpu->mutex))
8475 return;
8476 vcpu_load(vcpu);
8477 msr.data = 0x0;
8478 msr.index = MSR_IA32_TSC;
8479 msr.host_initiated = true;
8480 kvm_write_tsc(vcpu, &msr);
8481 vcpu_put(vcpu);
8482 mutex_unlock(&vcpu->mutex);
8483
8484 if (!kvmclock_periodic_sync)
8485 return;
8486
8487 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8488 KVMCLOCK_SYNC_PERIOD);
8489 }
8490
8491 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8492 {
8493 vcpu->arch.apf.msr_val = 0;
8494
8495 vcpu_load(vcpu);
8496 kvm_mmu_unload(vcpu);
8497 vcpu_put(vcpu);
8498
8499 kvm_x86_ops->vcpu_free(vcpu);
8500 }
8501
8502 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8503 {
8504 kvm_lapic_reset(vcpu, init_event);
8505
8506 vcpu->arch.hflags = 0;
8507
8508 vcpu->arch.smi_pending = 0;
8509 vcpu->arch.smi_count = 0;
8510 atomic_set(&vcpu->arch.nmi_queued, 0);
8511 vcpu->arch.nmi_pending = 0;
8512 vcpu->arch.nmi_injected = false;
8513 kvm_clear_interrupt_queue(vcpu);
8514 kvm_clear_exception_queue(vcpu);
8515 vcpu->arch.exception.pending = false;
8516
8517 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8518 kvm_update_dr0123(vcpu);
8519 vcpu->arch.dr6 = DR6_INIT;
8520 kvm_update_dr6(vcpu);
8521 vcpu->arch.dr7 = DR7_FIXED_1;
8522 kvm_update_dr7(vcpu);
8523
8524 vcpu->arch.cr2 = 0;
8525
8526 kvm_make_request(KVM_REQ_EVENT, vcpu);
8527 vcpu->arch.apf.msr_val = 0;
8528 vcpu->arch.st.msr_val = 0;
8529
8530 kvmclock_reset(vcpu);
8531
8532 kvm_clear_async_pf_completion_queue(vcpu);
8533 kvm_async_pf_hash_reset(vcpu);
8534 vcpu->arch.apf.halted = false;
8535
8536 if (kvm_mpx_supported()) {
8537 void *mpx_state_buffer;
8538
8539 /*
8540 * To avoid have the INIT path from kvm_apic_has_events() that be
8541 * called with loaded FPU and does not let userspace fix the state.
8542 */
8543 if (init_event)
8544 kvm_put_guest_fpu(vcpu);
8545 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8546 XFEATURE_MASK_BNDREGS);
8547 if (mpx_state_buffer)
8548 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8549 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8550 XFEATURE_MASK_BNDCSR);
8551 if (mpx_state_buffer)
8552 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8553 if (init_event)
8554 kvm_load_guest_fpu(vcpu);
8555 }
8556
8557 if (!init_event) {
8558 kvm_pmu_reset(vcpu);
8559 vcpu->arch.smbase = 0x30000;
8560
8561 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8562 vcpu->arch.msr_misc_features_enables = 0;
8563
8564 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8565 }
8566
8567 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8568 vcpu->arch.regs_avail = ~0;
8569 vcpu->arch.regs_dirty = ~0;
8570
8571 vcpu->arch.ia32_xss = 0;
8572
8573 kvm_x86_ops->vcpu_reset(vcpu, init_event);
8574 }
8575
8576 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8577 {
8578 struct kvm_segment cs;
8579
8580 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8581 cs.selector = vector << 8;
8582 cs.base = vector << 12;
8583 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8584 kvm_rip_write(vcpu, 0);
8585 }
8586
8587 int kvm_arch_hardware_enable(void)
8588 {
8589 struct kvm *kvm;
8590 struct kvm_vcpu *vcpu;
8591 int i;
8592 int ret;
8593 u64 local_tsc;
8594 u64 max_tsc = 0;
8595 bool stable, backwards_tsc = false;
8596
8597 kvm_shared_msr_cpu_online();
8598 ret = kvm_x86_ops->hardware_enable();
8599 if (ret != 0)
8600 return ret;
8601
8602 local_tsc = rdtsc();
8603 stable = !kvm_check_tsc_unstable();
8604 list_for_each_entry(kvm, &vm_list, vm_list) {
8605 kvm_for_each_vcpu(i, vcpu, kvm) {
8606 if (!stable && vcpu->cpu == smp_processor_id())
8607 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8608 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8609 backwards_tsc = true;
8610 if (vcpu->arch.last_host_tsc > max_tsc)
8611 max_tsc = vcpu->arch.last_host_tsc;
8612 }
8613 }
8614 }
8615
8616 /*
8617 * Sometimes, even reliable TSCs go backwards. This happens on
8618 * platforms that reset TSC during suspend or hibernate actions, but
8619 * maintain synchronization. We must compensate. Fortunately, we can
8620 * detect that condition here, which happens early in CPU bringup,
8621 * before any KVM threads can be running. Unfortunately, we can't
8622 * bring the TSCs fully up to date with real time, as we aren't yet far
8623 * enough into CPU bringup that we know how much real time has actually
8624 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8625 * variables that haven't been updated yet.
8626 *
8627 * So we simply find the maximum observed TSC above, then record the
8628 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8629 * the adjustment will be applied. Note that we accumulate
8630 * adjustments, in case multiple suspend cycles happen before some VCPU
8631 * gets a chance to run again. In the event that no KVM threads get a
8632 * chance to run, we will miss the entire elapsed period, as we'll have
8633 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8634 * loose cycle time. This isn't too big a deal, since the loss will be
8635 * uniform across all VCPUs (not to mention the scenario is extremely
8636 * unlikely). It is possible that a second hibernate recovery happens
8637 * much faster than a first, causing the observed TSC here to be
8638 * smaller; this would require additional padding adjustment, which is
8639 * why we set last_host_tsc to the local tsc observed here.
8640 *
8641 * N.B. - this code below runs only on platforms with reliable TSC,
8642 * as that is the only way backwards_tsc is set above. Also note
8643 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8644 * have the same delta_cyc adjustment applied if backwards_tsc
8645 * is detected. Note further, this adjustment is only done once,
8646 * as we reset last_host_tsc on all VCPUs to stop this from being
8647 * called multiple times (one for each physical CPU bringup).
8648 *
8649 * Platforms with unreliable TSCs don't have to deal with this, they
8650 * will be compensated by the logic in vcpu_load, which sets the TSC to
8651 * catchup mode. This will catchup all VCPUs to real time, but cannot
8652 * guarantee that they stay in perfect synchronization.
8653 */
8654 if (backwards_tsc) {
8655 u64 delta_cyc = max_tsc - local_tsc;
8656 list_for_each_entry(kvm, &vm_list, vm_list) {
8657 kvm->arch.backwards_tsc_observed = true;
8658 kvm_for_each_vcpu(i, vcpu, kvm) {
8659 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8660 vcpu->arch.last_host_tsc = local_tsc;
8661 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8662 }
8663
8664 /*
8665 * We have to disable TSC offset matching.. if you were
8666 * booting a VM while issuing an S4 host suspend....
8667 * you may have some problem. Solving this issue is
8668 * left as an exercise to the reader.
8669 */
8670 kvm->arch.last_tsc_nsec = 0;
8671 kvm->arch.last_tsc_write = 0;
8672 }
8673
8674 }
8675 return 0;
8676 }
8677
8678 void kvm_arch_hardware_disable(void)
8679 {
8680 kvm_x86_ops->hardware_disable();
8681 drop_user_return_notifiers();
8682 }
8683
8684 int kvm_arch_hardware_setup(void)
8685 {
8686 int r;
8687
8688 r = kvm_x86_ops->hardware_setup();
8689 if (r != 0)
8690 return r;
8691
8692 if (kvm_has_tsc_control) {
8693 /*
8694 * Make sure the user can only configure tsc_khz values that
8695 * fit into a signed integer.
8696 * A min value is not calculated because it will always
8697 * be 1 on all machines.
8698 */
8699 u64 max = min(0x7fffffffULL,
8700 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8701 kvm_max_guest_tsc_khz = max;
8702
8703 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8704 }
8705
8706 kvm_init_msr_list();
8707 return 0;
8708 }
8709
8710 void kvm_arch_hardware_unsetup(void)
8711 {
8712 kvm_x86_ops->hardware_unsetup();
8713 }
8714
8715 void kvm_arch_check_processor_compat(void *rtn)
8716 {
8717 kvm_x86_ops->check_processor_compatibility(rtn);
8718 }
8719
8720 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8721 {
8722 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8723 }
8724 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8725
8726 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8727 {
8728 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8729 }
8730
8731 struct static_key kvm_no_apic_vcpu __read_mostly;
8732 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8733
8734 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8735 {
8736 struct page *page;
8737 int r;
8738
8739 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8740 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8741 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8742 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8743 else
8744 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8745
8746 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8747 if (!page) {
8748 r = -ENOMEM;
8749 goto fail;
8750 }
8751 vcpu->arch.pio_data = page_address(page);
8752
8753 kvm_set_tsc_khz(vcpu, max_tsc_khz);
8754
8755 r = kvm_mmu_create(vcpu);
8756 if (r < 0)
8757 goto fail_free_pio_data;
8758
8759 if (irqchip_in_kernel(vcpu->kvm)) {
8760 r = kvm_create_lapic(vcpu);
8761 if (r < 0)
8762 goto fail_mmu_destroy;
8763 } else
8764 static_key_slow_inc(&kvm_no_apic_vcpu);
8765
8766 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8767 GFP_KERNEL);
8768 if (!vcpu->arch.mce_banks) {
8769 r = -ENOMEM;
8770 goto fail_free_lapic;
8771 }
8772 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8773
8774 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8775 r = -ENOMEM;
8776 goto fail_free_mce_banks;
8777 }
8778
8779 fx_init(vcpu);
8780
8781 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8782
8783 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8784
8785 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8786
8787 kvm_async_pf_hash_reset(vcpu);
8788 kvm_pmu_init(vcpu);
8789
8790 vcpu->arch.pending_external_vector = -1;
8791 vcpu->arch.preempted_in_kernel = false;
8792
8793 kvm_hv_vcpu_init(vcpu);
8794
8795 return 0;
8796
8797 fail_free_mce_banks:
8798 kfree(vcpu->arch.mce_banks);
8799 fail_free_lapic:
8800 kvm_free_lapic(vcpu);
8801 fail_mmu_destroy:
8802 kvm_mmu_destroy(vcpu);
8803 fail_free_pio_data:
8804 free_page((unsigned long)vcpu->arch.pio_data);
8805 fail:
8806 return r;
8807 }
8808
8809 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8810 {
8811 int idx;
8812
8813 kvm_hv_vcpu_uninit(vcpu);
8814 kvm_pmu_destroy(vcpu);
8815 kfree(vcpu->arch.mce_banks);
8816 kvm_free_lapic(vcpu);
8817 idx = srcu_read_lock(&vcpu->kvm->srcu);
8818 kvm_mmu_destroy(vcpu);
8819 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8820 free_page((unsigned long)vcpu->arch.pio_data);
8821 if (!lapic_in_kernel(vcpu))
8822 static_key_slow_dec(&kvm_no_apic_vcpu);
8823 }
8824
8825 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8826 {
8827 vcpu->arch.l1tf_flush_l1d = true;
8828 kvm_x86_ops->sched_in(vcpu, cpu);
8829 }
8830
8831 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8832 {
8833 if (type)
8834 return -EINVAL;
8835
8836 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8837 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8838 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8839 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8840 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8841
8842 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8843 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8844 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8845 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8846 &kvm->arch.irq_sources_bitmap);
8847
8848 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8849 mutex_init(&kvm->arch.apic_map_lock);
8850 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8851
8852 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8853 pvclock_update_vm_gtod_copy(kvm);
8854
8855 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8856 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8857
8858 kvm_hv_init_vm(kvm);
8859 kvm_page_track_init(kvm);
8860 kvm_mmu_init_vm(kvm);
8861
8862 if (kvm_x86_ops->vm_init)
8863 return kvm_x86_ops->vm_init(kvm);
8864
8865 return 0;
8866 }
8867
8868 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8869 {
8870 vcpu_load(vcpu);
8871 kvm_mmu_unload(vcpu);
8872 vcpu_put(vcpu);
8873 }
8874
8875 static void kvm_free_vcpus(struct kvm *kvm)
8876 {
8877 unsigned int i;
8878 struct kvm_vcpu *vcpu;
8879
8880 /*
8881 * Unpin any mmu pages first.
8882 */
8883 kvm_for_each_vcpu(i, vcpu, kvm) {
8884 kvm_clear_async_pf_completion_queue(vcpu);
8885 kvm_unload_vcpu_mmu(vcpu);
8886 }
8887 kvm_for_each_vcpu(i, vcpu, kvm)
8888 kvm_arch_vcpu_free(vcpu);
8889
8890 mutex_lock(&kvm->lock);
8891 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8892 kvm->vcpus[i] = NULL;
8893
8894 atomic_set(&kvm->online_vcpus, 0);
8895 mutex_unlock(&kvm->lock);
8896 }
8897
8898 void kvm_arch_sync_events(struct kvm *kvm)
8899 {
8900 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8901 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8902 kvm_free_pit(kvm);
8903 }
8904
8905 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8906 {
8907 int i, r;
8908 unsigned long hva;
8909 struct kvm_memslots *slots = kvm_memslots(kvm);
8910 struct kvm_memory_slot *slot, old;
8911
8912 /* Called with kvm->slots_lock held. */
8913 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8914 return -EINVAL;
8915
8916 slot = id_to_memslot(slots, id);
8917 if (size) {
8918 if (slot->npages)
8919 return -EEXIST;
8920
8921 /*
8922 * MAP_SHARED to prevent internal slot pages from being moved
8923 * by fork()/COW.
8924 */
8925 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8926 MAP_SHARED | MAP_ANONYMOUS, 0);
8927 if (IS_ERR((void *)hva))
8928 return PTR_ERR((void *)hva);
8929 } else {
8930 if (!slot->npages)
8931 return 0;
8932
8933 hva = 0;
8934 }
8935
8936 old = *slot;
8937 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8938 struct kvm_userspace_memory_region m;
8939
8940 m.slot = id | (i << 16);
8941 m.flags = 0;
8942 m.guest_phys_addr = gpa;
8943 m.userspace_addr = hva;
8944 m.memory_size = size;
8945 r = __kvm_set_memory_region(kvm, &m);
8946 if (r < 0)
8947 return r;
8948 }
8949
8950 if (!size)
8951 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8952
8953 return 0;
8954 }
8955 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8956
8957 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8958 {
8959 int r;
8960
8961 mutex_lock(&kvm->slots_lock);
8962 r = __x86_set_memory_region(kvm, id, gpa, size);
8963 mutex_unlock(&kvm->slots_lock);
8964
8965 return r;
8966 }
8967 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8968
8969 void kvm_arch_destroy_vm(struct kvm *kvm)
8970 {
8971 if (current->mm == kvm->mm) {
8972 /*
8973 * Free memory regions allocated on behalf of userspace,
8974 * unless the the memory map has changed due to process exit
8975 * or fd copying.
8976 */
8977 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8978 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8979 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8980 }
8981 if (kvm_x86_ops->vm_destroy)
8982 kvm_x86_ops->vm_destroy(kvm);
8983 kvm_pic_destroy(kvm);
8984 kvm_ioapic_destroy(kvm);
8985 kvm_free_vcpus(kvm);
8986 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8987 kvm_mmu_uninit_vm(kvm);
8988 kvm_page_track_cleanup(kvm);
8989 kvm_hv_destroy_vm(kvm);
8990 }
8991
8992 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8993 struct kvm_memory_slot *dont)
8994 {
8995 int i;
8996
8997 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8998 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8999 kvfree(free->arch.rmap[i]);
9000 free->arch.rmap[i] = NULL;
9001 }
9002 if (i == 0)
9003 continue;
9004
9005 if (!dont || free->arch.lpage_info[i - 1] !=
9006 dont->arch.lpage_info[i - 1]) {
9007 kvfree(free->arch.lpage_info[i - 1]);
9008 free->arch.lpage_info[i - 1] = NULL;
9009 }
9010 }
9011
9012 kvm_page_track_free_memslot(free, dont);
9013 }
9014
9015 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9016 unsigned long npages)
9017 {
9018 int i;
9019
9020 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9021 struct kvm_lpage_info *linfo;
9022 unsigned long ugfn;
9023 int lpages;
9024 int level = i + 1;
9025
9026 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9027 slot->base_gfn, level) + 1;
9028
9029 slot->arch.rmap[i] =
9030 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9031 GFP_KERNEL);
9032 if (!slot->arch.rmap[i])
9033 goto out_free;
9034 if (i == 0)
9035 continue;
9036
9037 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
9038 if (!linfo)
9039 goto out_free;
9040
9041 slot->arch.lpage_info[i - 1] = linfo;
9042
9043 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9044 linfo[0].disallow_lpage = 1;
9045 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9046 linfo[lpages - 1].disallow_lpage = 1;
9047 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9048 /*
9049 * If the gfn and userspace address are not aligned wrt each
9050 * other, or if explicitly asked to, disable large page
9051 * support for this slot
9052 */
9053 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9054 !kvm_largepages_enabled()) {
9055 unsigned long j;
9056
9057 for (j = 0; j < lpages; ++j)
9058 linfo[j].disallow_lpage = 1;
9059 }
9060 }
9061
9062 if (kvm_page_track_create_memslot(slot, npages))
9063 goto out_free;
9064
9065 return 0;
9066
9067 out_free:
9068 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9069 kvfree(slot->arch.rmap[i]);
9070 slot->arch.rmap[i] = NULL;
9071 if (i == 0)
9072 continue;
9073
9074 kvfree(slot->arch.lpage_info[i - 1]);
9075 slot->arch.lpage_info[i - 1] = NULL;
9076 }
9077 return -ENOMEM;
9078 }
9079
9080 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
9081 {
9082 /*
9083 * memslots->generation has been incremented.
9084 * mmio generation may have reached its maximum value.
9085 */
9086 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
9087 }
9088
9089 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9090 struct kvm_memory_slot *memslot,
9091 const struct kvm_userspace_memory_region *mem,
9092 enum kvm_mr_change change)
9093 {
9094 return 0;
9095 }
9096
9097 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9098 struct kvm_memory_slot *new)
9099 {
9100 /* Still write protect RO slot */
9101 if (new->flags & KVM_MEM_READONLY) {
9102 kvm_mmu_slot_remove_write_access(kvm, new);
9103 return;
9104 }
9105
9106 /*
9107 * Call kvm_x86_ops dirty logging hooks when they are valid.
9108 *
9109 * kvm_x86_ops->slot_disable_log_dirty is called when:
9110 *
9111 * - KVM_MR_CREATE with dirty logging is disabled
9112 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9113 *
9114 * The reason is, in case of PML, we need to set D-bit for any slots
9115 * with dirty logging disabled in order to eliminate unnecessary GPA
9116 * logging in PML buffer (and potential PML buffer full VMEXT). This
9117 * guarantees leaving PML enabled during guest's lifetime won't have
9118 * any additonal overhead from PML when guest is running with dirty
9119 * logging disabled for memory slots.
9120 *
9121 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9122 * to dirty logging mode.
9123 *
9124 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9125 *
9126 * In case of write protect:
9127 *
9128 * Write protect all pages for dirty logging.
9129 *
9130 * All the sptes including the large sptes which point to this
9131 * slot are set to readonly. We can not create any new large
9132 * spte on this slot until the end of the logging.
9133 *
9134 * See the comments in fast_page_fault().
9135 */
9136 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9137 if (kvm_x86_ops->slot_enable_log_dirty)
9138 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9139 else
9140 kvm_mmu_slot_remove_write_access(kvm, new);
9141 } else {
9142 if (kvm_x86_ops->slot_disable_log_dirty)
9143 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9144 }
9145 }
9146
9147 void kvm_arch_commit_memory_region(struct kvm *kvm,
9148 const struct kvm_userspace_memory_region *mem,
9149 const struct kvm_memory_slot *old,
9150 const struct kvm_memory_slot *new,
9151 enum kvm_mr_change change)
9152 {
9153 int nr_mmu_pages = 0;
9154
9155 if (!kvm->arch.n_requested_mmu_pages)
9156 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9157
9158 if (nr_mmu_pages)
9159 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9160
9161 /*
9162 * Dirty logging tracks sptes in 4k granularity, meaning that large
9163 * sptes have to be split. If live migration is successful, the guest
9164 * in the source machine will be destroyed and large sptes will be
9165 * created in the destination. However, if the guest continues to run
9166 * in the source machine (for example if live migration fails), small
9167 * sptes will remain around and cause bad performance.
9168 *
9169 * Scan sptes if dirty logging has been stopped, dropping those
9170 * which can be collapsed into a single large-page spte. Later
9171 * page faults will create the large-page sptes.
9172 */
9173 if ((change != KVM_MR_DELETE) &&
9174 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9175 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9176 kvm_mmu_zap_collapsible_sptes(kvm, new);
9177
9178 /*
9179 * Set up write protection and/or dirty logging for the new slot.
9180 *
9181 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9182 * been zapped so no dirty logging staff is needed for old slot. For
9183 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9184 * new and it's also covered when dealing with the new slot.
9185 *
9186 * FIXME: const-ify all uses of struct kvm_memory_slot.
9187 */
9188 if (change != KVM_MR_DELETE)
9189 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9190 }
9191
9192 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9193 {
9194 kvm_mmu_invalidate_zap_all_pages(kvm);
9195 }
9196
9197 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9198 struct kvm_memory_slot *slot)
9199 {
9200 kvm_page_track_flush_slot(kvm, slot);
9201 }
9202
9203 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9204 {
9205 if (!list_empty_careful(&vcpu->async_pf.done))
9206 return true;
9207
9208 if (kvm_apic_has_events(vcpu))
9209 return true;
9210
9211 if (vcpu->arch.pv.pv_unhalted)
9212 return true;
9213
9214 if (vcpu->arch.exception.pending)
9215 return true;
9216
9217 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9218 (vcpu->arch.nmi_pending &&
9219 kvm_x86_ops->nmi_allowed(vcpu)))
9220 return true;
9221
9222 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9223 (vcpu->arch.smi_pending && !is_smm(vcpu)))
9224 return true;
9225
9226 if (kvm_arch_interrupt_allowed(vcpu) &&
9227 kvm_cpu_has_interrupt(vcpu))
9228 return true;
9229
9230 if (kvm_hv_has_stimer_pending(vcpu))
9231 return true;
9232
9233 return false;
9234 }
9235
9236 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9237 {
9238 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9239 }
9240
9241 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9242 {
9243 return vcpu->arch.preempted_in_kernel;
9244 }
9245
9246 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9247 {
9248 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9249 }
9250
9251 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9252 {
9253 return kvm_x86_ops->interrupt_allowed(vcpu);
9254 }
9255
9256 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9257 {
9258 if (is_64_bit_mode(vcpu))
9259 return kvm_rip_read(vcpu);
9260 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9261 kvm_rip_read(vcpu));
9262 }
9263 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9264
9265 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9266 {
9267 return kvm_get_linear_rip(vcpu) == linear_rip;
9268 }
9269 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9270
9271 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9272 {
9273 unsigned long rflags;
9274
9275 rflags = kvm_x86_ops->get_rflags(vcpu);
9276 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9277 rflags &= ~X86_EFLAGS_TF;
9278 return rflags;
9279 }
9280 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9281
9282 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9283 {
9284 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9285 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9286 rflags |= X86_EFLAGS_TF;
9287 kvm_x86_ops->set_rflags(vcpu, rflags);
9288 }
9289
9290 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9291 {
9292 __kvm_set_rflags(vcpu, rflags);
9293 kvm_make_request(KVM_REQ_EVENT, vcpu);
9294 }
9295 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9296
9297 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9298 {
9299 int r;
9300
9301 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9302 work->wakeup_all)
9303 return;
9304
9305 r = kvm_mmu_reload(vcpu);
9306 if (unlikely(r))
9307 return;
9308
9309 if (!vcpu->arch.mmu.direct_map &&
9310 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9311 return;
9312
9313 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9314 }
9315
9316 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9317 {
9318 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9319 }
9320
9321 static inline u32 kvm_async_pf_next_probe(u32 key)
9322 {
9323 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9324 }
9325
9326 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9327 {
9328 u32 key = kvm_async_pf_hash_fn(gfn);
9329
9330 while (vcpu->arch.apf.gfns[key] != ~0)
9331 key = kvm_async_pf_next_probe(key);
9332
9333 vcpu->arch.apf.gfns[key] = gfn;
9334 }
9335
9336 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9337 {
9338 int i;
9339 u32 key = kvm_async_pf_hash_fn(gfn);
9340
9341 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9342 (vcpu->arch.apf.gfns[key] != gfn &&
9343 vcpu->arch.apf.gfns[key] != ~0); i++)
9344 key = kvm_async_pf_next_probe(key);
9345
9346 return key;
9347 }
9348
9349 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9350 {
9351 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9352 }
9353
9354 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9355 {
9356 u32 i, j, k;
9357
9358 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9359 while (true) {
9360 vcpu->arch.apf.gfns[i] = ~0;
9361 do {
9362 j = kvm_async_pf_next_probe(j);
9363 if (vcpu->arch.apf.gfns[j] == ~0)
9364 return;
9365 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9366 /*
9367 * k lies cyclically in ]i,j]
9368 * | i.k.j |
9369 * |....j i.k.| or |.k..j i...|
9370 */
9371 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9372 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9373 i = j;
9374 }
9375 }
9376
9377 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9378 {
9379
9380 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9381 sizeof(val));
9382 }
9383
9384 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9385 {
9386
9387 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9388 sizeof(u32));
9389 }
9390
9391 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9392 struct kvm_async_pf *work)
9393 {
9394 struct x86_exception fault;
9395
9396 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9397 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9398
9399 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9400 (vcpu->arch.apf.send_user_only &&
9401 kvm_x86_ops->get_cpl(vcpu) == 0))
9402 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9403 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9404 fault.vector = PF_VECTOR;
9405 fault.error_code_valid = true;
9406 fault.error_code = 0;
9407 fault.nested_page_fault = false;
9408 fault.address = work->arch.token;
9409 fault.async_page_fault = true;
9410 kvm_inject_page_fault(vcpu, &fault);
9411 }
9412 }
9413
9414 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9415 struct kvm_async_pf *work)
9416 {
9417 struct x86_exception fault;
9418 u32 val;
9419
9420 if (work->wakeup_all)
9421 work->arch.token = ~0; /* broadcast wakeup */
9422 else
9423 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9424 trace_kvm_async_pf_ready(work->arch.token, work->gva);
9425
9426 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9427 !apf_get_user(vcpu, &val)) {
9428 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9429 vcpu->arch.exception.pending &&
9430 vcpu->arch.exception.nr == PF_VECTOR &&
9431 !apf_put_user(vcpu, 0)) {
9432 vcpu->arch.exception.injected = false;
9433 vcpu->arch.exception.pending = false;
9434 vcpu->arch.exception.nr = 0;
9435 vcpu->arch.exception.has_error_code = false;
9436 vcpu->arch.exception.error_code = 0;
9437 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9438 fault.vector = PF_VECTOR;
9439 fault.error_code_valid = true;
9440 fault.error_code = 0;
9441 fault.nested_page_fault = false;
9442 fault.address = work->arch.token;
9443 fault.async_page_fault = true;
9444 kvm_inject_page_fault(vcpu, &fault);
9445 }
9446 }
9447 vcpu->arch.apf.halted = false;
9448 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9449 }
9450
9451 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9452 {
9453 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9454 return true;
9455 else
9456 return kvm_can_do_async_pf(vcpu);
9457 }
9458
9459 void kvm_arch_start_assignment(struct kvm *kvm)
9460 {
9461 atomic_inc(&kvm->arch.assigned_device_count);
9462 }
9463 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9464
9465 void kvm_arch_end_assignment(struct kvm *kvm)
9466 {
9467 atomic_dec(&kvm->arch.assigned_device_count);
9468 }
9469 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9470
9471 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9472 {
9473 return atomic_read(&kvm->arch.assigned_device_count);
9474 }
9475 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9476
9477 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9478 {
9479 atomic_inc(&kvm->arch.noncoherent_dma_count);
9480 }
9481 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9482
9483 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9484 {
9485 atomic_dec(&kvm->arch.noncoherent_dma_count);
9486 }
9487 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9488
9489 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9490 {
9491 return atomic_read(&kvm->arch.noncoherent_dma_count);
9492 }
9493 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9494
9495 bool kvm_arch_has_irq_bypass(void)
9496 {
9497 return kvm_x86_ops->update_pi_irte != NULL;
9498 }
9499
9500 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9501 struct irq_bypass_producer *prod)
9502 {
9503 struct kvm_kernel_irqfd *irqfd =
9504 container_of(cons, struct kvm_kernel_irqfd, consumer);
9505
9506 irqfd->producer = prod;
9507
9508 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9509 prod->irq, irqfd->gsi, 1);
9510 }
9511
9512 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9513 struct irq_bypass_producer *prod)
9514 {
9515 int ret;
9516 struct kvm_kernel_irqfd *irqfd =
9517 container_of(cons, struct kvm_kernel_irqfd, consumer);
9518
9519 WARN_ON(irqfd->producer != prod);
9520 irqfd->producer = NULL;
9521
9522 /*
9523 * When producer of consumer is unregistered, we change back to
9524 * remapped mode, so we can re-use the current implementation
9525 * when the irq is masked/disabled or the consumer side (KVM
9526 * int this case doesn't want to receive the interrupts.
9527 */
9528 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9529 if (ret)
9530 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9531 " fails: %d\n", irqfd->consumer.token, ret);
9532 }
9533
9534 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9535 uint32_t guest_irq, bool set)
9536 {
9537 if (!kvm_x86_ops->update_pi_irte)
9538 return -EINVAL;
9539
9540 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9541 }
9542
9543 bool kvm_vector_hashing_enabled(void)
9544 {
9545 return vector_hashing;
9546 }
9547 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9548
9549 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9550 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9551 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9552 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9553 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9554 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9555 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9556 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9557 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9558 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9559 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);