]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - arch/x86/kvm/x86.c
kvm/x86: split ioapic-handled and EOI exit bitmaps
[mirror_ubuntu-disco-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74
75 #define emul_to_vcpu(ctxt) \
76 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77
78 /* EFER defaults:
79 * - enable syscall per default because its emulated by KVM
80 * - enable LME and LMA per default on 64 bit KVM
81 */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32 __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64 __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly backwards_tsc_observed = false;
127
128 #define KVM_NR_SHARED_MSRS 16
129
130 struct kvm_shared_msrs_global {
131 int nr;
132 u32 msrs[KVM_NR_SHARED_MSRS];
133 };
134
135 struct kvm_shared_msrs {
136 struct user_return_notifier urn;
137 bool registered;
138 struct kvm_shared_msr_values {
139 u64 host;
140 u64 curr;
141 } values[KVM_NR_SHARED_MSRS];
142 };
143
144 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
145 static struct kvm_shared_msrs __percpu *shared_msrs;
146
147 struct kvm_stats_debugfs_item debugfs_entries[] = {
148 { "pf_fixed", VCPU_STAT(pf_fixed) },
149 { "pf_guest", VCPU_STAT(pf_guest) },
150 { "tlb_flush", VCPU_STAT(tlb_flush) },
151 { "invlpg", VCPU_STAT(invlpg) },
152 { "exits", VCPU_STAT(exits) },
153 { "io_exits", VCPU_STAT(io_exits) },
154 { "mmio_exits", VCPU_STAT(mmio_exits) },
155 { "signal_exits", VCPU_STAT(signal_exits) },
156 { "irq_window", VCPU_STAT(irq_window_exits) },
157 { "nmi_window", VCPU_STAT(nmi_window_exits) },
158 { "halt_exits", VCPU_STAT(halt_exits) },
159 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
160 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
161 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
162 { "hypercalls", VCPU_STAT(hypercalls) },
163 { "request_irq", VCPU_STAT(request_irq_exits) },
164 { "irq_exits", VCPU_STAT(irq_exits) },
165 { "host_state_reload", VCPU_STAT(host_state_reload) },
166 { "efer_reload", VCPU_STAT(efer_reload) },
167 { "fpu_reload", VCPU_STAT(fpu_reload) },
168 { "insn_emulation", VCPU_STAT(insn_emulation) },
169 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
170 { "irq_injections", VCPU_STAT(irq_injections) },
171 { "nmi_injections", VCPU_STAT(nmi_injections) },
172 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
173 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
174 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
175 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
176 { "mmu_flooded", VM_STAT(mmu_flooded) },
177 { "mmu_recycled", VM_STAT(mmu_recycled) },
178 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
179 { "mmu_unsync", VM_STAT(mmu_unsync) },
180 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
181 { "largepages", VM_STAT(lpages) },
182 { NULL }
183 };
184
185 u64 __read_mostly host_xcr0;
186
187 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
188
189 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
190 {
191 int i;
192 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
193 vcpu->arch.apf.gfns[i] = ~0;
194 }
195
196 static void kvm_on_user_return(struct user_return_notifier *urn)
197 {
198 unsigned slot;
199 struct kvm_shared_msrs *locals
200 = container_of(urn, struct kvm_shared_msrs, urn);
201 struct kvm_shared_msr_values *values;
202
203 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
204 values = &locals->values[slot];
205 if (values->host != values->curr) {
206 wrmsrl(shared_msrs_global.msrs[slot], values->host);
207 values->curr = values->host;
208 }
209 }
210 locals->registered = false;
211 user_return_notifier_unregister(urn);
212 }
213
214 static void shared_msr_update(unsigned slot, u32 msr)
215 {
216 u64 value;
217 unsigned int cpu = smp_processor_id();
218 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
219
220 /* only read, and nobody should modify it at this time,
221 * so don't need lock */
222 if (slot >= shared_msrs_global.nr) {
223 printk(KERN_ERR "kvm: invalid MSR slot!");
224 return;
225 }
226 rdmsrl_safe(msr, &value);
227 smsr->values[slot].host = value;
228 smsr->values[slot].curr = value;
229 }
230
231 void kvm_define_shared_msr(unsigned slot, u32 msr)
232 {
233 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
234 shared_msrs_global.msrs[slot] = msr;
235 if (slot >= shared_msrs_global.nr)
236 shared_msrs_global.nr = slot + 1;
237 }
238 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
239
240 static void kvm_shared_msr_cpu_online(void)
241 {
242 unsigned i;
243
244 for (i = 0; i < shared_msrs_global.nr; ++i)
245 shared_msr_update(i, shared_msrs_global.msrs[i]);
246 }
247
248 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
249 {
250 unsigned int cpu = smp_processor_id();
251 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
252 int err;
253
254 if (((value ^ smsr->values[slot].curr) & mask) == 0)
255 return 0;
256 smsr->values[slot].curr = value;
257 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
258 if (err)
259 return 1;
260
261 if (!smsr->registered) {
262 smsr->urn.on_user_return = kvm_on_user_return;
263 user_return_notifier_register(&smsr->urn);
264 smsr->registered = true;
265 }
266 return 0;
267 }
268 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
269
270 static void drop_user_return_notifiers(void)
271 {
272 unsigned int cpu = smp_processor_id();
273 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274
275 if (smsr->registered)
276 kvm_on_user_return(&smsr->urn);
277 }
278
279 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
280 {
281 return vcpu->arch.apic_base;
282 }
283 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
284
285 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
286 {
287 u64 old_state = vcpu->arch.apic_base &
288 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
289 u64 new_state = msr_info->data &
290 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
291 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
292 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
293
294 if (!msr_info->host_initiated &&
295 ((msr_info->data & reserved_bits) != 0 ||
296 new_state == X2APIC_ENABLE ||
297 (new_state == MSR_IA32_APICBASE_ENABLE &&
298 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
299 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
300 old_state == 0)))
301 return 1;
302
303 kvm_lapic_set_base(vcpu, msr_info->data);
304 return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
307
308 asmlinkage __visible void kvm_spurious_fault(void)
309 {
310 /* Fault while not rebooting. We want the trace. */
311 BUG();
312 }
313 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
314
315 #define EXCPT_BENIGN 0
316 #define EXCPT_CONTRIBUTORY 1
317 #define EXCPT_PF 2
318
319 static int exception_class(int vector)
320 {
321 switch (vector) {
322 case PF_VECTOR:
323 return EXCPT_PF;
324 case DE_VECTOR:
325 case TS_VECTOR:
326 case NP_VECTOR:
327 case SS_VECTOR:
328 case GP_VECTOR:
329 return EXCPT_CONTRIBUTORY;
330 default:
331 break;
332 }
333 return EXCPT_BENIGN;
334 }
335
336 #define EXCPT_FAULT 0
337 #define EXCPT_TRAP 1
338 #define EXCPT_ABORT 2
339 #define EXCPT_INTERRUPT 3
340
341 static int exception_type(int vector)
342 {
343 unsigned int mask;
344
345 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
346 return EXCPT_INTERRUPT;
347
348 mask = 1 << vector;
349
350 /* #DB is trap, as instruction watchpoints are handled elsewhere */
351 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
352 return EXCPT_TRAP;
353
354 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
355 return EXCPT_ABORT;
356
357 /* Reserved exceptions will result in fault */
358 return EXCPT_FAULT;
359 }
360
361 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
362 unsigned nr, bool has_error, u32 error_code,
363 bool reinject)
364 {
365 u32 prev_nr;
366 int class1, class2;
367
368 kvm_make_request(KVM_REQ_EVENT, vcpu);
369
370 if (!vcpu->arch.exception.pending) {
371 queue:
372 if (has_error && !is_protmode(vcpu))
373 has_error = false;
374 vcpu->arch.exception.pending = true;
375 vcpu->arch.exception.has_error_code = has_error;
376 vcpu->arch.exception.nr = nr;
377 vcpu->arch.exception.error_code = error_code;
378 vcpu->arch.exception.reinject = reinject;
379 return;
380 }
381
382 /* to check exception */
383 prev_nr = vcpu->arch.exception.nr;
384 if (prev_nr == DF_VECTOR) {
385 /* triple fault -> shutdown */
386 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
387 return;
388 }
389 class1 = exception_class(prev_nr);
390 class2 = exception_class(nr);
391 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
392 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
393 /* generate double fault per SDM Table 5-5 */
394 vcpu->arch.exception.pending = true;
395 vcpu->arch.exception.has_error_code = true;
396 vcpu->arch.exception.nr = DF_VECTOR;
397 vcpu->arch.exception.error_code = 0;
398 } else
399 /* replace previous exception with a new one in a hope
400 that instruction re-execution will regenerate lost
401 exception */
402 goto queue;
403 }
404
405 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
406 {
407 kvm_multiple_exception(vcpu, nr, false, 0, false);
408 }
409 EXPORT_SYMBOL_GPL(kvm_queue_exception);
410
411 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
412 {
413 kvm_multiple_exception(vcpu, nr, false, 0, true);
414 }
415 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
416
417 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
418 {
419 if (err)
420 kvm_inject_gp(vcpu, 0);
421 else
422 kvm_x86_ops->skip_emulated_instruction(vcpu);
423 }
424 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
425
426 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428 ++vcpu->stat.pf_guest;
429 vcpu->arch.cr2 = fault->address;
430 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
431 }
432 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
433
434 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
435 {
436 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
437 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
438 else
439 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
440
441 return fault->nested_page_fault;
442 }
443
444 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
445 {
446 atomic_inc(&vcpu->arch.nmi_queued);
447 kvm_make_request(KVM_REQ_NMI, vcpu);
448 }
449 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
450
451 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
452 {
453 kvm_multiple_exception(vcpu, nr, true, error_code, false);
454 }
455 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
456
457 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
458 {
459 kvm_multiple_exception(vcpu, nr, true, error_code, true);
460 }
461 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
462
463 /*
464 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
465 * a #GP and return false.
466 */
467 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
468 {
469 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
470 return true;
471 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
472 return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_cpl);
475
476 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
477 {
478 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
479 return true;
480
481 kvm_queue_exception(vcpu, UD_VECTOR);
482 return false;
483 }
484 EXPORT_SYMBOL_GPL(kvm_require_dr);
485
486 /*
487 * This function will be used to read from the physical memory of the currently
488 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
489 * can read from guest physical or from the guest's guest physical memory.
490 */
491 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
492 gfn_t ngfn, void *data, int offset, int len,
493 u32 access)
494 {
495 struct x86_exception exception;
496 gfn_t real_gfn;
497 gpa_t ngpa;
498
499 ngpa = gfn_to_gpa(ngfn);
500 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
501 if (real_gfn == UNMAPPED_GVA)
502 return -EFAULT;
503
504 real_gfn = gpa_to_gfn(real_gfn);
505
506 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
507 }
508 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
509
510 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
511 void *data, int offset, int len, u32 access)
512 {
513 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
514 data, offset, len, access);
515 }
516
517 /*
518 * Load the pae pdptrs. Return true is they are all valid.
519 */
520 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
521 {
522 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
523 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
524 int i;
525 int ret;
526 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
527
528 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
529 offset * sizeof(u64), sizeof(pdpte),
530 PFERR_USER_MASK|PFERR_WRITE_MASK);
531 if (ret < 0) {
532 ret = 0;
533 goto out;
534 }
535 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
536 if (is_present_gpte(pdpte[i]) &&
537 (pdpte[i] &
538 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
539 ret = 0;
540 goto out;
541 }
542 }
543 ret = 1;
544
545 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
546 __set_bit(VCPU_EXREG_PDPTR,
547 (unsigned long *)&vcpu->arch.regs_avail);
548 __set_bit(VCPU_EXREG_PDPTR,
549 (unsigned long *)&vcpu->arch.regs_dirty);
550 out:
551
552 return ret;
553 }
554 EXPORT_SYMBOL_GPL(load_pdptrs);
555
556 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
557 {
558 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
559 bool changed = true;
560 int offset;
561 gfn_t gfn;
562 int r;
563
564 if (is_long_mode(vcpu) || !is_pae(vcpu))
565 return false;
566
567 if (!test_bit(VCPU_EXREG_PDPTR,
568 (unsigned long *)&vcpu->arch.regs_avail))
569 return true;
570
571 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
572 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
573 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
574 PFERR_USER_MASK | PFERR_WRITE_MASK);
575 if (r < 0)
576 goto out;
577 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
578 out:
579
580 return changed;
581 }
582
583 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
584 {
585 unsigned long old_cr0 = kvm_read_cr0(vcpu);
586 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
587
588 cr0 |= X86_CR0_ET;
589
590 #ifdef CONFIG_X86_64
591 if (cr0 & 0xffffffff00000000UL)
592 return 1;
593 #endif
594
595 cr0 &= ~CR0_RESERVED_BITS;
596
597 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
598 return 1;
599
600 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
601 return 1;
602
603 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
604 #ifdef CONFIG_X86_64
605 if ((vcpu->arch.efer & EFER_LME)) {
606 int cs_db, cs_l;
607
608 if (!is_pae(vcpu))
609 return 1;
610 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
611 if (cs_l)
612 return 1;
613 } else
614 #endif
615 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
616 kvm_read_cr3(vcpu)))
617 return 1;
618 }
619
620 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
621 return 1;
622
623 kvm_x86_ops->set_cr0(vcpu, cr0);
624
625 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
626 kvm_clear_async_pf_completion_queue(vcpu);
627 kvm_async_pf_hash_reset(vcpu);
628 }
629
630 if ((cr0 ^ old_cr0) & update_bits)
631 kvm_mmu_reset_context(vcpu);
632
633 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
634 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
635 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
636 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
637
638 return 0;
639 }
640 EXPORT_SYMBOL_GPL(kvm_set_cr0);
641
642 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
643 {
644 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
645 }
646 EXPORT_SYMBOL_GPL(kvm_lmsw);
647
648 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
649 {
650 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
651 !vcpu->guest_xcr0_loaded) {
652 /* kvm_set_xcr() also depends on this */
653 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
654 vcpu->guest_xcr0_loaded = 1;
655 }
656 }
657
658 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
659 {
660 if (vcpu->guest_xcr0_loaded) {
661 if (vcpu->arch.xcr0 != host_xcr0)
662 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
663 vcpu->guest_xcr0_loaded = 0;
664 }
665 }
666
667 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
668 {
669 u64 xcr0 = xcr;
670 u64 old_xcr0 = vcpu->arch.xcr0;
671 u64 valid_bits;
672
673 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
674 if (index != XCR_XFEATURE_ENABLED_MASK)
675 return 1;
676 if (!(xcr0 & XFEATURE_MASK_FP))
677 return 1;
678 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
679 return 1;
680
681 /*
682 * Do not allow the guest to set bits that we do not support
683 * saving. However, xcr0 bit 0 is always set, even if the
684 * emulated CPU does not support XSAVE (see fx_init).
685 */
686 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
687 if (xcr0 & ~valid_bits)
688 return 1;
689
690 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
691 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
692 return 1;
693
694 if (xcr0 & XFEATURE_MASK_AVX512) {
695 if (!(xcr0 & XFEATURE_MASK_YMM))
696 return 1;
697 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
698 return 1;
699 }
700 kvm_put_guest_xcr0(vcpu);
701 vcpu->arch.xcr0 = xcr0;
702
703 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
704 kvm_update_cpuid(vcpu);
705 return 0;
706 }
707
708 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
709 {
710 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
711 __kvm_set_xcr(vcpu, index, xcr)) {
712 kvm_inject_gp(vcpu, 0);
713 return 1;
714 }
715 return 0;
716 }
717 EXPORT_SYMBOL_GPL(kvm_set_xcr);
718
719 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
720 {
721 unsigned long old_cr4 = kvm_read_cr4(vcpu);
722 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
723 X86_CR4_SMEP | X86_CR4_SMAP;
724
725 if (cr4 & CR4_RESERVED_BITS)
726 return 1;
727
728 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
729 return 1;
730
731 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
732 return 1;
733
734 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
735 return 1;
736
737 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
738 return 1;
739
740 if (is_long_mode(vcpu)) {
741 if (!(cr4 & X86_CR4_PAE))
742 return 1;
743 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
744 && ((cr4 ^ old_cr4) & pdptr_bits)
745 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
746 kvm_read_cr3(vcpu)))
747 return 1;
748
749 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
750 if (!guest_cpuid_has_pcid(vcpu))
751 return 1;
752
753 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
754 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
755 return 1;
756 }
757
758 if (kvm_x86_ops->set_cr4(vcpu, cr4))
759 return 1;
760
761 if (((cr4 ^ old_cr4) & pdptr_bits) ||
762 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
763 kvm_mmu_reset_context(vcpu);
764
765 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
766 kvm_update_cpuid(vcpu);
767
768 return 0;
769 }
770 EXPORT_SYMBOL_GPL(kvm_set_cr4);
771
772 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
773 {
774 #ifdef CONFIG_X86_64
775 cr3 &= ~CR3_PCID_INVD;
776 #endif
777
778 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
779 kvm_mmu_sync_roots(vcpu);
780 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
781 return 0;
782 }
783
784 if (is_long_mode(vcpu)) {
785 if (cr3 & CR3_L_MODE_RESERVED_BITS)
786 return 1;
787 } else if (is_pae(vcpu) && is_paging(vcpu) &&
788 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
789 return 1;
790
791 vcpu->arch.cr3 = cr3;
792 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
793 kvm_mmu_new_cr3(vcpu);
794 return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr3);
797
798 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
799 {
800 if (cr8 & CR8_RESERVED_BITS)
801 return 1;
802 if (lapic_in_kernel(vcpu))
803 kvm_lapic_set_tpr(vcpu, cr8);
804 else
805 vcpu->arch.cr8 = cr8;
806 return 0;
807 }
808 EXPORT_SYMBOL_GPL(kvm_set_cr8);
809
810 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
811 {
812 if (lapic_in_kernel(vcpu))
813 return kvm_lapic_get_cr8(vcpu);
814 else
815 return vcpu->arch.cr8;
816 }
817 EXPORT_SYMBOL_GPL(kvm_get_cr8);
818
819 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
820 {
821 int i;
822
823 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
824 for (i = 0; i < KVM_NR_DB_REGS; i++)
825 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
826 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
827 }
828 }
829
830 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
831 {
832 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
833 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
834 }
835
836 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
837 {
838 unsigned long dr7;
839
840 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
841 dr7 = vcpu->arch.guest_debug_dr7;
842 else
843 dr7 = vcpu->arch.dr7;
844 kvm_x86_ops->set_dr7(vcpu, dr7);
845 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
846 if (dr7 & DR7_BP_EN_MASK)
847 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
848 }
849
850 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
851 {
852 u64 fixed = DR6_FIXED_1;
853
854 if (!guest_cpuid_has_rtm(vcpu))
855 fixed |= DR6_RTM;
856 return fixed;
857 }
858
859 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
860 {
861 switch (dr) {
862 case 0 ... 3:
863 vcpu->arch.db[dr] = val;
864 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
865 vcpu->arch.eff_db[dr] = val;
866 break;
867 case 4:
868 /* fall through */
869 case 6:
870 if (val & 0xffffffff00000000ULL)
871 return -1; /* #GP */
872 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
873 kvm_update_dr6(vcpu);
874 break;
875 case 5:
876 /* fall through */
877 default: /* 7 */
878 if (val & 0xffffffff00000000ULL)
879 return -1; /* #GP */
880 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
881 kvm_update_dr7(vcpu);
882 break;
883 }
884
885 return 0;
886 }
887
888 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
889 {
890 if (__kvm_set_dr(vcpu, dr, val)) {
891 kvm_inject_gp(vcpu, 0);
892 return 1;
893 }
894 return 0;
895 }
896 EXPORT_SYMBOL_GPL(kvm_set_dr);
897
898 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
899 {
900 switch (dr) {
901 case 0 ... 3:
902 *val = vcpu->arch.db[dr];
903 break;
904 case 4:
905 /* fall through */
906 case 6:
907 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
908 *val = vcpu->arch.dr6;
909 else
910 *val = kvm_x86_ops->get_dr6(vcpu);
911 break;
912 case 5:
913 /* fall through */
914 default: /* 7 */
915 *val = vcpu->arch.dr7;
916 break;
917 }
918 return 0;
919 }
920 EXPORT_SYMBOL_GPL(kvm_get_dr);
921
922 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
923 {
924 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
925 u64 data;
926 int err;
927
928 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
929 if (err)
930 return err;
931 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
932 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
933 return err;
934 }
935 EXPORT_SYMBOL_GPL(kvm_rdpmc);
936
937 /*
938 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
939 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
940 *
941 * This list is modified at module load time to reflect the
942 * capabilities of the host cpu. This capabilities test skips MSRs that are
943 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
944 * may depend on host virtualization features rather than host cpu features.
945 */
946
947 static u32 msrs_to_save[] = {
948 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
949 MSR_STAR,
950 #ifdef CONFIG_X86_64
951 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
952 #endif
953 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
954 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
955 };
956
957 static unsigned num_msrs_to_save;
958
959 static u32 emulated_msrs[] = {
960 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
961 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
962 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
963 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
964 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
965 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
966 HV_X64_MSR_RESET,
967 HV_X64_MSR_VP_INDEX,
968 HV_X64_MSR_VP_RUNTIME,
969 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
970 MSR_KVM_PV_EOI_EN,
971
972 MSR_IA32_TSC_ADJUST,
973 MSR_IA32_TSCDEADLINE,
974 MSR_IA32_MISC_ENABLE,
975 MSR_IA32_MCG_STATUS,
976 MSR_IA32_MCG_CTL,
977 MSR_IA32_SMBASE,
978 };
979
980 static unsigned num_emulated_msrs;
981
982 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
983 {
984 if (efer & efer_reserved_bits)
985 return false;
986
987 if (efer & EFER_FFXSR) {
988 struct kvm_cpuid_entry2 *feat;
989
990 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
991 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
992 return false;
993 }
994
995 if (efer & EFER_SVME) {
996 struct kvm_cpuid_entry2 *feat;
997
998 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
999 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1000 return false;
1001 }
1002
1003 return true;
1004 }
1005 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1006
1007 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1008 {
1009 u64 old_efer = vcpu->arch.efer;
1010
1011 if (!kvm_valid_efer(vcpu, efer))
1012 return 1;
1013
1014 if (is_paging(vcpu)
1015 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1016 return 1;
1017
1018 efer &= ~EFER_LMA;
1019 efer |= vcpu->arch.efer & EFER_LMA;
1020
1021 kvm_x86_ops->set_efer(vcpu, efer);
1022
1023 /* Update reserved bits */
1024 if ((efer ^ old_efer) & EFER_NX)
1025 kvm_mmu_reset_context(vcpu);
1026
1027 return 0;
1028 }
1029
1030 void kvm_enable_efer_bits(u64 mask)
1031 {
1032 efer_reserved_bits &= ~mask;
1033 }
1034 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1035
1036 /*
1037 * Writes msr value into into the appropriate "register".
1038 * Returns 0 on success, non-0 otherwise.
1039 * Assumes vcpu_load() was already called.
1040 */
1041 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1042 {
1043 switch (msr->index) {
1044 case MSR_FS_BASE:
1045 case MSR_GS_BASE:
1046 case MSR_KERNEL_GS_BASE:
1047 case MSR_CSTAR:
1048 case MSR_LSTAR:
1049 if (is_noncanonical_address(msr->data))
1050 return 1;
1051 break;
1052 case MSR_IA32_SYSENTER_EIP:
1053 case MSR_IA32_SYSENTER_ESP:
1054 /*
1055 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1056 * non-canonical address is written on Intel but not on
1057 * AMD (which ignores the top 32-bits, because it does
1058 * not implement 64-bit SYSENTER).
1059 *
1060 * 64-bit code should hence be able to write a non-canonical
1061 * value on AMD. Making the address canonical ensures that
1062 * vmentry does not fail on Intel after writing a non-canonical
1063 * value, and that something deterministic happens if the guest
1064 * invokes 64-bit SYSENTER.
1065 */
1066 msr->data = get_canonical(msr->data);
1067 }
1068 return kvm_x86_ops->set_msr(vcpu, msr);
1069 }
1070 EXPORT_SYMBOL_GPL(kvm_set_msr);
1071
1072 /*
1073 * Adapt set_msr() to msr_io()'s calling convention
1074 */
1075 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1076 {
1077 struct msr_data msr;
1078 int r;
1079
1080 msr.index = index;
1081 msr.host_initiated = true;
1082 r = kvm_get_msr(vcpu, &msr);
1083 if (r)
1084 return r;
1085
1086 *data = msr.data;
1087 return 0;
1088 }
1089
1090 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1091 {
1092 struct msr_data msr;
1093
1094 msr.data = *data;
1095 msr.index = index;
1096 msr.host_initiated = true;
1097 return kvm_set_msr(vcpu, &msr);
1098 }
1099
1100 #ifdef CONFIG_X86_64
1101 struct pvclock_gtod_data {
1102 seqcount_t seq;
1103
1104 struct { /* extract of a clocksource struct */
1105 int vclock_mode;
1106 cycle_t cycle_last;
1107 cycle_t mask;
1108 u32 mult;
1109 u32 shift;
1110 } clock;
1111
1112 u64 boot_ns;
1113 u64 nsec_base;
1114 };
1115
1116 static struct pvclock_gtod_data pvclock_gtod_data;
1117
1118 static void update_pvclock_gtod(struct timekeeper *tk)
1119 {
1120 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1121 u64 boot_ns;
1122
1123 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1124
1125 write_seqcount_begin(&vdata->seq);
1126
1127 /* copy pvclock gtod data */
1128 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1129 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1130 vdata->clock.mask = tk->tkr_mono.mask;
1131 vdata->clock.mult = tk->tkr_mono.mult;
1132 vdata->clock.shift = tk->tkr_mono.shift;
1133
1134 vdata->boot_ns = boot_ns;
1135 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1136
1137 write_seqcount_end(&vdata->seq);
1138 }
1139 #endif
1140
1141 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1142 {
1143 /*
1144 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1145 * vcpu_enter_guest. This function is only called from
1146 * the physical CPU that is running vcpu.
1147 */
1148 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1149 }
1150
1151 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1152 {
1153 int version;
1154 int r;
1155 struct pvclock_wall_clock wc;
1156 struct timespec boot;
1157
1158 if (!wall_clock)
1159 return;
1160
1161 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1162 if (r)
1163 return;
1164
1165 if (version & 1)
1166 ++version; /* first time write, random junk */
1167
1168 ++version;
1169
1170 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1171
1172 /*
1173 * The guest calculates current wall clock time by adding
1174 * system time (updated by kvm_guest_time_update below) to the
1175 * wall clock specified here. guest system time equals host
1176 * system time for us, thus we must fill in host boot time here.
1177 */
1178 getboottime(&boot);
1179
1180 if (kvm->arch.kvmclock_offset) {
1181 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1182 boot = timespec_sub(boot, ts);
1183 }
1184 wc.sec = boot.tv_sec;
1185 wc.nsec = boot.tv_nsec;
1186 wc.version = version;
1187
1188 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1189
1190 version++;
1191 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1192 }
1193
1194 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1195 {
1196 uint32_t quotient, remainder;
1197
1198 /* Don't try to replace with do_div(), this one calculates
1199 * "(dividend << 32) / divisor" */
1200 __asm__ ( "divl %4"
1201 : "=a" (quotient), "=d" (remainder)
1202 : "0" (0), "1" (dividend), "r" (divisor) );
1203 return quotient;
1204 }
1205
1206 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1207 s8 *pshift, u32 *pmultiplier)
1208 {
1209 uint64_t scaled64;
1210 int32_t shift = 0;
1211 uint64_t tps64;
1212 uint32_t tps32;
1213
1214 tps64 = base_khz * 1000LL;
1215 scaled64 = scaled_khz * 1000LL;
1216 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1217 tps64 >>= 1;
1218 shift--;
1219 }
1220
1221 tps32 = (uint32_t)tps64;
1222 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1223 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1224 scaled64 >>= 1;
1225 else
1226 tps32 <<= 1;
1227 shift++;
1228 }
1229
1230 *pshift = shift;
1231 *pmultiplier = div_frac(scaled64, tps32);
1232
1233 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1234 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1235 }
1236
1237 #ifdef CONFIG_X86_64
1238 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1239 #endif
1240
1241 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1242 static unsigned long max_tsc_khz;
1243
1244 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1245 {
1246 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1247 vcpu->arch.virtual_tsc_shift);
1248 }
1249
1250 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1251 {
1252 u64 v = (u64)khz * (1000000 + ppm);
1253 do_div(v, 1000000);
1254 return v;
1255 }
1256
1257 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1258 {
1259 u64 ratio;
1260
1261 /* Guest TSC same frequency as host TSC? */
1262 if (!scale) {
1263 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1264 return 0;
1265 }
1266
1267 /* TSC scaling supported? */
1268 if (!kvm_has_tsc_control) {
1269 if (user_tsc_khz > tsc_khz) {
1270 vcpu->arch.tsc_catchup = 1;
1271 vcpu->arch.tsc_always_catchup = 1;
1272 return 0;
1273 } else {
1274 WARN(1, "user requested TSC rate below hardware speed\n");
1275 return -1;
1276 }
1277 }
1278
1279 /* TSC scaling required - calculate ratio */
1280 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1281 user_tsc_khz, tsc_khz);
1282
1283 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1284 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1285 user_tsc_khz);
1286 return -1;
1287 }
1288
1289 vcpu->arch.tsc_scaling_ratio = ratio;
1290 return 0;
1291 }
1292
1293 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1294 {
1295 u32 thresh_lo, thresh_hi;
1296 int use_scaling = 0;
1297
1298 /* tsc_khz can be zero if TSC calibration fails */
1299 if (this_tsc_khz == 0) {
1300 /* set tsc_scaling_ratio to a safe value */
1301 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1302 return -1;
1303 }
1304
1305 /* Compute a scale to convert nanoseconds in TSC cycles */
1306 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1307 &vcpu->arch.virtual_tsc_shift,
1308 &vcpu->arch.virtual_tsc_mult);
1309 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1310
1311 /*
1312 * Compute the variation in TSC rate which is acceptable
1313 * within the range of tolerance and decide if the
1314 * rate being applied is within that bounds of the hardware
1315 * rate. If so, no scaling or compensation need be done.
1316 */
1317 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1318 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1319 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1320 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1321 use_scaling = 1;
1322 }
1323 return set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1324 }
1325
1326 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1327 {
1328 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1329 vcpu->arch.virtual_tsc_mult,
1330 vcpu->arch.virtual_tsc_shift);
1331 tsc += vcpu->arch.this_tsc_write;
1332 return tsc;
1333 }
1334
1335 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1336 {
1337 #ifdef CONFIG_X86_64
1338 bool vcpus_matched;
1339 struct kvm_arch *ka = &vcpu->kvm->arch;
1340 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1341
1342 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1343 atomic_read(&vcpu->kvm->online_vcpus));
1344
1345 /*
1346 * Once the masterclock is enabled, always perform request in
1347 * order to update it.
1348 *
1349 * In order to enable masterclock, the host clocksource must be TSC
1350 * and the vcpus need to have matched TSCs. When that happens,
1351 * perform request to enable masterclock.
1352 */
1353 if (ka->use_master_clock ||
1354 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1355 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1356
1357 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1358 atomic_read(&vcpu->kvm->online_vcpus),
1359 ka->use_master_clock, gtod->clock.vclock_mode);
1360 #endif
1361 }
1362
1363 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1364 {
1365 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1366 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1367 }
1368
1369 /*
1370 * Multiply tsc by a fixed point number represented by ratio.
1371 *
1372 * The most significant 64-N bits (mult) of ratio represent the
1373 * integral part of the fixed point number; the remaining N bits
1374 * (frac) represent the fractional part, ie. ratio represents a fixed
1375 * point number (mult + frac * 2^(-N)).
1376 *
1377 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1378 */
1379 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1380 {
1381 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1382 }
1383
1384 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1385 {
1386 u64 _tsc = tsc;
1387 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1388
1389 if (ratio != kvm_default_tsc_scaling_ratio)
1390 _tsc = __scale_tsc(ratio, tsc);
1391
1392 return _tsc;
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1395
1396 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1397 {
1398 u64 tsc;
1399
1400 tsc = kvm_scale_tsc(vcpu, rdtsc());
1401
1402 return target_tsc - tsc;
1403 }
1404
1405 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1406 {
1407 return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1408 }
1409 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1410
1411 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1412 {
1413 struct kvm *kvm = vcpu->kvm;
1414 u64 offset, ns, elapsed;
1415 unsigned long flags;
1416 s64 usdiff;
1417 bool matched;
1418 bool already_matched;
1419 u64 data = msr->data;
1420
1421 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1422 offset = kvm_compute_tsc_offset(vcpu, data);
1423 ns = get_kernel_ns();
1424 elapsed = ns - kvm->arch.last_tsc_nsec;
1425
1426 if (vcpu->arch.virtual_tsc_khz) {
1427 int faulted = 0;
1428
1429 /* n.b - signed multiplication and division required */
1430 usdiff = data - kvm->arch.last_tsc_write;
1431 #ifdef CONFIG_X86_64
1432 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1433 #else
1434 /* do_div() only does unsigned */
1435 asm("1: idivl %[divisor]\n"
1436 "2: xor %%edx, %%edx\n"
1437 " movl $0, %[faulted]\n"
1438 "3:\n"
1439 ".section .fixup,\"ax\"\n"
1440 "4: movl $1, %[faulted]\n"
1441 " jmp 3b\n"
1442 ".previous\n"
1443
1444 _ASM_EXTABLE(1b, 4b)
1445
1446 : "=A"(usdiff), [faulted] "=r" (faulted)
1447 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1448
1449 #endif
1450 do_div(elapsed, 1000);
1451 usdiff -= elapsed;
1452 if (usdiff < 0)
1453 usdiff = -usdiff;
1454
1455 /* idivl overflow => difference is larger than USEC_PER_SEC */
1456 if (faulted)
1457 usdiff = USEC_PER_SEC;
1458 } else
1459 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1460
1461 /*
1462 * Special case: TSC write with a small delta (1 second) of virtual
1463 * cycle time against real time is interpreted as an attempt to
1464 * synchronize the CPU.
1465 *
1466 * For a reliable TSC, we can match TSC offsets, and for an unstable
1467 * TSC, we add elapsed time in this computation. We could let the
1468 * compensation code attempt to catch up if we fall behind, but
1469 * it's better to try to match offsets from the beginning.
1470 */
1471 if (usdiff < USEC_PER_SEC &&
1472 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1473 if (!check_tsc_unstable()) {
1474 offset = kvm->arch.cur_tsc_offset;
1475 pr_debug("kvm: matched tsc offset for %llu\n", data);
1476 } else {
1477 u64 delta = nsec_to_cycles(vcpu, elapsed);
1478 data += delta;
1479 offset = kvm_compute_tsc_offset(vcpu, data);
1480 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1481 }
1482 matched = true;
1483 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1484 } else {
1485 /*
1486 * We split periods of matched TSC writes into generations.
1487 * For each generation, we track the original measured
1488 * nanosecond time, offset, and write, so if TSCs are in
1489 * sync, we can match exact offset, and if not, we can match
1490 * exact software computation in compute_guest_tsc()
1491 *
1492 * These values are tracked in kvm->arch.cur_xxx variables.
1493 */
1494 kvm->arch.cur_tsc_generation++;
1495 kvm->arch.cur_tsc_nsec = ns;
1496 kvm->arch.cur_tsc_write = data;
1497 kvm->arch.cur_tsc_offset = offset;
1498 matched = false;
1499 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1500 kvm->arch.cur_tsc_generation, data);
1501 }
1502
1503 /*
1504 * We also track th most recent recorded KHZ, write and time to
1505 * allow the matching interval to be extended at each write.
1506 */
1507 kvm->arch.last_tsc_nsec = ns;
1508 kvm->arch.last_tsc_write = data;
1509 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1510
1511 vcpu->arch.last_guest_tsc = data;
1512
1513 /* Keep track of which generation this VCPU has synchronized to */
1514 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1515 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1516 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1517
1518 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1519 update_ia32_tsc_adjust_msr(vcpu, offset);
1520 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1521 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1522
1523 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1524 if (!matched) {
1525 kvm->arch.nr_vcpus_matched_tsc = 0;
1526 } else if (!already_matched) {
1527 kvm->arch.nr_vcpus_matched_tsc++;
1528 }
1529
1530 kvm_track_tsc_matching(vcpu);
1531 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1532 }
1533
1534 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1535
1536 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1537 s64 adjustment)
1538 {
1539 kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1540 }
1541
1542 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1543 {
1544 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1545 WARN_ON(adjustment < 0);
1546 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1547 kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1548 }
1549
1550 #ifdef CONFIG_X86_64
1551
1552 static cycle_t read_tsc(void)
1553 {
1554 cycle_t ret = (cycle_t)rdtsc_ordered();
1555 u64 last = pvclock_gtod_data.clock.cycle_last;
1556
1557 if (likely(ret >= last))
1558 return ret;
1559
1560 /*
1561 * GCC likes to generate cmov here, but this branch is extremely
1562 * predictable (it's just a funciton of time and the likely is
1563 * very likely) and there's a data dependence, so force GCC
1564 * to generate a branch instead. I don't barrier() because
1565 * we don't actually need a barrier, and if this function
1566 * ever gets inlined it will generate worse code.
1567 */
1568 asm volatile ("");
1569 return last;
1570 }
1571
1572 static inline u64 vgettsc(cycle_t *cycle_now)
1573 {
1574 long v;
1575 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1576
1577 *cycle_now = read_tsc();
1578
1579 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1580 return v * gtod->clock.mult;
1581 }
1582
1583 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1584 {
1585 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1586 unsigned long seq;
1587 int mode;
1588 u64 ns;
1589
1590 do {
1591 seq = read_seqcount_begin(&gtod->seq);
1592 mode = gtod->clock.vclock_mode;
1593 ns = gtod->nsec_base;
1594 ns += vgettsc(cycle_now);
1595 ns >>= gtod->clock.shift;
1596 ns += gtod->boot_ns;
1597 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1598 *t = ns;
1599
1600 return mode;
1601 }
1602
1603 /* returns true if host is using tsc clocksource */
1604 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1605 {
1606 /* checked again under seqlock below */
1607 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1608 return false;
1609
1610 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1611 }
1612 #endif
1613
1614 /*
1615 *
1616 * Assuming a stable TSC across physical CPUS, and a stable TSC
1617 * across virtual CPUs, the following condition is possible.
1618 * Each numbered line represents an event visible to both
1619 * CPUs at the next numbered event.
1620 *
1621 * "timespecX" represents host monotonic time. "tscX" represents
1622 * RDTSC value.
1623 *
1624 * VCPU0 on CPU0 | VCPU1 on CPU1
1625 *
1626 * 1. read timespec0,tsc0
1627 * 2. | timespec1 = timespec0 + N
1628 * | tsc1 = tsc0 + M
1629 * 3. transition to guest | transition to guest
1630 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1631 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1632 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1633 *
1634 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1635 *
1636 * - ret0 < ret1
1637 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1638 * ...
1639 * - 0 < N - M => M < N
1640 *
1641 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1642 * always the case (the difference between two distinct xtime instances
1643 * might be smaller then the difference between corresponding TSC reads,
1644 * when updating guest vcpus pvclock areas).
1645 *
1646 * To avoid that problem, do not allow visibility of distinct
1647 * system_timestamp/tsc_timestamp values simultaneously: use a master
1648 * copy of host monotonic time values. Update that master copy
1649 * in lockstep.
1650 *
1651 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1652 *
1653 */
1654
1655 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1656 {
1657 #ifdef CONFIG_X86_64
1658 struct kvm_arch *ka = &kvm->arch;
1659 int vclock_mode;
1660 bool host_tsc_clocksource, vcpus_matched;
1661
1662 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1663 atomic_read(&kvm->online_vcpus));
1664
1665 /*
1666 * If the host uses TSC clock, then passthrough TSC as stable
1667 * to the guest.
1668 */
1669 host_tsc_clocksource = kvm_get_time_and_clockread(
1670 &ka->master_kernel_ns,
1671 &ka->master_cycle_now);
1672
1673 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1674 && !backwards_tsc_observed
1675 && !ka->boot_vcpu_runs_old_kvmclock;
1676
1677 if (ka->use_master_clock)
1678 atomic_set(&kvm_guest_has_master_clock, 1);
1679
1680 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1681 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1682 vcpus_matched);
1683 #endif
1684 }
1685
1686 static void kvm_gen_update_masterclock(struct kvm *kvm)
1687 {
1688 #ifdef CONFIG_X86_64
1689 int i;
1690 struct kvm_vcpu *vcpu;
1691 struct kvm_arch *ka = &kvm->arch;
1692
1693 spin_lock(&ka->pvclock_gtod_sync_lock);
1694 kvm_make_mclock_inprogress_request(kvm);
1695 /* no guest entries from this point */
1696 pvclock_update_vm_gtod_copy(kvm);
1697
1698 kvm_for_each_vcpu(i, vcpu, kvm)
1699 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1700
1701 /* guest entries allowed */
1702 kvm_for_each_vcpu(i, vcpu, kvm)
1703 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1704
1705 spin_unlock(&ka->pvclock_gtod_sync_lock);
1706 #endif
1707 }
1708
1709 static int kvm_guest_time_update(struct kvm_vcpu *v)
1710 {
1711 unsigned long flags, this_tsc_khz, tgt_tsc_khz;
1712 struct kvm_vcpu_arch *vcpu = &v->arch;
1713 struct kvm_arch *ka = &v->kvm->arch;
1714 s64 kernel_ns;
1715 u64 tsc_timestamp, host_tsc;
1716 struct pvclock_vcpu_time_info guest_hv_clock;
1717 u8 pvclock_flags;
1718 bool use_master_clock;
1719
1720 kernel_ns = 0;
1721 host_tsc = 0;
1722
1723 /*
1724 * If the host uses TSC clock, then passthrough TSC as stable
1725 * to the guest.
1726 */
1727 spin_lock(&ka->pvclock_gtod_sync_lock);
1728 use_master_clock = ka->use_master_clock;
1729 if (use_master_clock) {
1730 host_tsc = ka->master_cycle_now;
1731 kernel_ns = ka->master_kernel_ns;
1732 }
1733 spin_unlock(&ka->pvclock_gtod_sync_lock);
1734
1735 /* Keep irq disabled to prevent changes to the clock */
1736 local_irq_save(flags);
1737 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1738 if (unlikely(this_tsc_khz == 0)) {
1739 local_irq_restore(flags);
1740 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1741 return 1;
1742 }
1743 if (!use_master_clock) {
1744 host_tsc = rdtsc();
1745 kernel_ns = get_kernel_ns();
1746 }
1747
1748 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1749
1750 /*
1751 * We may have to catch up the TSC to match elapsed wall clock
1752 * time for two reasons, even if kvmclock is used.
1753 * 1) CPU could have been running below the maximum TSC rate
1754 * 2) Broken TSC compensation resets the base at each VCPU
1755 * entry to avoid unknown leaps of TSC even when running
1756 * again on the same CPU. This may cause apparent elapsed
1757 * time to disappear, and the guest to stand still or run
1758 * very slowly.
1759 */
1760 if (vcpu->tsc_catchup) {
1761 u64 tsc = compute_guest_tsc(v, kernel_ns);
1762 if (tsc > tsc_timestamp) {
1763 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1764 tsc_timestamp = tsc;
1765 }
1766 }
1767
1768 local_irq_restore(flags);
1769
1770 if (!vcpu->pv_time_enabled)
1771 return 0;
1772
1773 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1774 tgt_tsc_khz = kvm_has_tsc_control ?
1775 vcpu->virtual_tsc_khz : this_tsc_khz;
1776 kvm_get_time_scale(NSEC_PER_SEC / 1000, tgt_tsc_khz,
1777 &vcpu->hv_clock.tsc_shift,
1778 &vcpu->hv_clock.tsc_to_system_mul);
1779 vcpu->hw_tsc_khz = this_tsc_khz;
1780 }
1781
1782 /* With all the info we got, fill in the values */
1783 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1784 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1785 vcpu->last_guest_tsc = tsc_timestamp;
1786
1787 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1788 &guest_hv_clock, sizeof(guest_hv_clock))))
1789 return 0;
1790
1791 /* This VCPU is paused, but it's legal for a guest to read another
1792 * VCPU's kvmclock, so we really have to follow the specification where
1793 * it says that version is odd if data is being modified, and even after
1794 * it is consistent.
1795 *
1796 * Version field updates must be kept separate. This is because
1797 * kvm_write_guest_cached might use a "rep movs" instruction, and
1798 * writes within a string instruction are weakly ordered. So there
1799 * are three writes overall.
1800 *
1801 * As a small optimization, only write the version field in the first
1802 * and third write. The vcpu->pv_time cache is still valid, because the
1803 * version field is the first in the struct.
1804 */
1805 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1806
1807 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1808 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1809 &vcpu->hv_clock,
1810 sizeof(vcpu->hv_clock.version));
1811
1812 smp_wmb();
1813
1814 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1815 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1816
1817 if (vcpu->pvclock_set_guest_stopped_request) {
1818 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1819 vcpu->pvclock_set_guest_stopped_request = false;
1820 }
1821
1822 /* If the host uses TSC clocksource, then it is stable */
1823 if (use_master_clock)
1824 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1825
1826 vcpu->hv_clock.flags = pvclock_flags;
1827
1828 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1829
1830 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1831 &vcpu->hv_clock,
1832 sizeof(vcpu->hv_clock));
1833
1834 smp_wmb();
1835
1836 vcpu->hv_clock.version++;
1837 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1838 &vcpu->hv_clock,
1839 sizeof(vcpu->hv_clock.version));
1840 return 0;
1841 }
1842
1843 /*
1844 * kvmclock updates which are isolated to a given vcpu, such as
1845 * vcpu->cpu migration, should not allow system_timestamp from
1846 * the rest of the vcpus to remain static. Otherwise ntp frequency
1847 * correction applies to one vcpu's system_timestamp but not
1848 * the others.
1849 *
1850 * So in those cases, request a kvmclock update for all vcpus.
1851 * We need to rate-limit these requests though, as they can
1852 * considerably slow guests that have a large number of vcpus.
1853 * The time for a remote vcpu to update its kvmclock is bound
1854 * by the delay we use to rate-limit the updates.
1855 */
1856
1857 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1858
1859 static void kvmclock_update_fn(struct work_struct *work)
1860 {
1861 int i;
1862 struct delayed_work *dwork = to_delayed_work(work);
1863 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1864 kvmclock_update_work);
1865 struct kvm *kvm = container_of(ka, struct kvm, arch);
1866 struct kvm_vcpu *vcpu;
1867
1868 kvm_for_each_vcpu(i, vcpu, kvm) {
1869 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1870 kvm_vcpu_kick(vcpu);
1871 }
1872 }
1873
1874 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1875 {
1876 struct kvm *kvm = v->kvm;
1877
1878 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1879 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1880 KVMCLOCK_UPDATE_DELAY);
1881 }
1882
1883 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1884
1885 static void kvmclock_sync_fn(struct work_struct *work)
1886 {
1887 struct delayed_work *dwork = to_delayed_work(work);
1888 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1889 kvmclock_sync_work);
1890 struct kvm *kvm = container_of(ka, struct kvm, arch);
1891
1892 if (!kvmclock_periodic_sync)
1893 return;
1894
1895 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1896 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1897 KVMCLOCK_SYNC_PERIOD);
1898 }
1899
1900 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1901 {
1902 u64 mcg_cap = vcpu->arch.mcg_cap;
1903 unsigned bank_num = mcg_cap & 0xff;
1904
1905 switch (msr) {
1906 case MSR_IA32_MCG_STATUS:
1907 vcpu->arch.mcg_status = data;
1908 break;
1909 case MSR_IA32_MCG_CTL:
1910 if (!(mcg_cap & MCG_CTL_P))
1911 return 1;
1912 if (data != 0 && data != ~(u64)0)
1913 return -1;
1914 vcpu->arch.mcg_ctl = data;
1915 break;
1916 default:
1917 if (msr >= MSR_IA32_MC0_CTL &&
1918 msr < MSR_IA32_MCx_CTL(bank_num)) {
1919 u32 offset = msr - MSR_IA32_MC0_CTL;
1920 /* only 0 or all 1s can be written to IA32_MCi_CTL
1921 * some Linux kernels though clear bit 10 in bank 4 to
1922 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1923 * this to avoid an uncatched #GP in the guest
1924 */
1925 if ((offset & 0x3) == 0 &&
1926 data != 0 && (data | (1 << 10)) != ~(u64)0)
1927 return -1;
1928 vcpu->arch.mce_banks[offset] = data;
1929 break;
1930 }
1931 return 1;
1932 }
1933 return 0;
1934 }
1935
1936 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1937 {
1938 struct kvm *kvm = vcpu->kvm;
1939 int lm = is_long_mode(vcpu);
1940 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1941 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1942 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1943 : kvm->arch.xen_hvm_config.blob_size_32;
1944 u32 page_num = data & ~PAGE_MASK;
1945 u64 page_addr = data & PAGE_MASK;
1946 u8 *page;
1947 int r;
1948
1949 r = -E2BIG;
1950 if (page_num >= blob_size)
1951 goto out;
1952 r = -ENOMEM;
1953 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1954 if (IS_ERR(page)) {
1955 r = PTR_ERR(page);
1956 goto out;
1957 }
1958 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1959 goto out_free;
1960 r = 0;
1961 out_free:
1962 kfree(page);
1963 out:
1964 return r;
1965 }
1966
1967 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1968 {
1969 gpa_t gpa = data & ~0x3f;
1970
1971 /* Bits 2:5 are reserved, Should be zero */
1972 if (data & 0x3c)
1973 return 1;
1974
1975 vcpu->arch.apf.msr_val = data;
1976
1977 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1978 kvm_clear_async_pf_completion_queue(vcpu);
1979 kvm_async_pf_hash_reset(vcpu);
1980 return 0;
1981 }
1982
1983 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1984 sizeof(u32)))
1985 return 1;
1986
1987 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1988 kvm_async_pf_wakeup_all(vcpu);
1989 return 0;
1990 }
1991
1992 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1993 {
1994 vcpu->arch.pv_time_enabled = false;
1995 }
1996
1997 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1998 {
1999 u64 delta;
2000
2001 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2002 return;
2003
2004 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2005 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2006 vcpu->arch.st.accum_steal = delta;
2007 }
2008
2009 static void record_steal_time(struct kvm_vcpu *vcpu)
2010 {
2011 accumulate_steal_time(vcpu);
2012
2013 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2014 return;
2015
2016 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2017 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2018 return;
2019
2020 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2021 vcpu->arch.st.steal.version += 2;
2022 vcpu->arch.st.accum_steal = 0;
2023
2024 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2025 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2026 }
2027
2028 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2029 {
2030 bool pr = false;
2031 u32 msr = msr_info->index;
2032 u64 data = msr_info->data;
2033
2034 switch (msr) {
2035 case MSR_AMD64_NB_CFG:
2036 case MSR_IA32_UCODE_REV:
2037 case MSR_IA32_UCODE_WRITE:
2038 case MSR_VM_HSAVE_PA:
2039 case MSR_AMD64_PATCH_LOADER:
2040 case MSR_AMD64_BU_CFG2:
2041 break;
2042
2043 case MSR_EFER:
2044 return set_efer(vcpu, data);
2045 case MSR_K7_HWCR:
2046 data &= ~(u64)0x40; /* ignore flush filter disable */
2047 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2048 data &= ~(u64)0x8; /* ignore TLB cache disable */
2049 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2050 if (data != 0) {
2051 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2052 data);
2053 return 1;
2054 }
2055 break;
2056 case MSR_FAM10H_MMIO_CONF_BASE:
2057 if (data != 0) {
2058 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2059 "0x%llx\n", data);
2060 return 1;
2061 }
2062 break;
2063 case MSR_IA32_DEBUGCTLMSR:
2064 if (!data) {
2065 /* We support the non-activated case already */
2066 break;
2067 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2068 /* Values other than LBR and BTF are vendor-specific,
2069 thus reserved and should throw a #GP */
2070 return 1;
2071 }
2072 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2073 __func__, data);
2074 break;
2075 case 0x200 ... 0x2ff:
2076 return kvm_mtrr_set_msr(vcpu, msr, data);
2077 case MSR_IA32_APICBASE:
2078 return kvm_set_apic_base(vcpu, msr_info);
2079 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2080 return kvm_x2apic_msr_write(vcpu, msr, data);
2081 case MSR_IA32_TSCDEADLINE:
2082 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2083 break;
2084 case MSR_IA32_TSC_ADJUST:
2085 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2086 if (!msr_info->host_initiated) {
2087 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2088 adjust_tsc_offset_guest(vcpu, adj);
2089 }
2090 vcpu->arch.ia32_tsc_adjust_msr = data;
2091 }
2092 break;
2093 case MSR_IA32_MISC_ENABLE:
2094 vcpu->arch.ia32_misc_enable_msr = data;
2095 break;
2096 case MSR_IA32_SMBASE:
2097 if (!msr_info->host_initiated)
2098 return 1;
2099 vcpu->arch.smbase = data;
2100 break;
2101 case MSR_KVM_WALL_CLOCK_NEW:
2102 case MSR_KVM_WALL_CLOCK:
2103 vcpu->kvm->arch.wall_clock = data;
2104 kvm_write_wall_clock(vcpu->kvm, data);
2105 break;
2106 case MSR_KVM_SYSTEM_TIME_NEW:
2107 case MSR_KVM_SYSTEM_TIME: {
2108 u64 gpa_offset;
2109 struct kvm_arch *ka = &vcpu->kvm->arch;
2110
2111 kvmclock_reset(vcpu);
2112
2113 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2114 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2115
2116 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2117 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2118 &vcpu->requests);
2119
2120 ka->boot_vcpu_runs_old_kvmclock = tmp;
2121 }
2122
2123 vcpu->arch.time = data;
2124 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2125
2126 /* we verify if the enable bit is set... */
2127 if (!(data & 1))
2128 break;
2129
2130 gpa_offset = data & ~(PAGE_MASK | 1);
2131
2132 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2133 &vcpu->arch.pv_time, data & ~1ULL,
2134 sizeof(struct pvclock_vcpu_time_info)))
2135 vcpu->arch.pv_time_enabled = false;
2136 else
2137 vcpu->arch.pv_time_enabled = true;
2138
2139 break;
2140 }
2141 case MSR_KVM_ASYNC_PF_EN:
2142 if (kvm_pv_enable_async_pf(vcpu, data))
2143 return 1;
2144 break;
2145 case MSR_KVM_STEAL_TIME:
2146
2147 if (unlikely(!sched_info_on()))
2148 return 1;
2149
2150 if (data & KVM_STEAL_RESERVED_MASK)
2151 return 1;
2152
2153 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2154 data & KVM_STEAL_VALID_BITS,
2155 sizeof(struct kvm_steal_time)))
2156 return 1;
2157
2158 vcpu->arch.st.msr_val = data;
2159
2160 if (!(data & KVM_MSR_ENABLED))
2161 break;
2162
2163 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2164
2165 break;
2166 case MSR_KVM_PV_EOI_EN:
2167 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2168 return 1;
2169 break;
2170
2171 case MSR_IA32_MCG_CTL:
2172 case MSR_IA32_MCG_STATUS:
2173 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2174 return set_msr_mce(vcpu, msr, data);
2175
2176 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2177 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2178 pr = true; /* fall through */
2179 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2180 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2181 if (kvm_pmu_is_valid_msr(vcpu, msr))
2182 return kvm_pmu_set_msr(vcpu, msr_info);
2183
2184 if (pr || data != 0)
2185 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2186 "0x%x data 0x%llx\n", msr, data);
2187 break;
2188 case MSR_K7_CLK_CTL:
2189 /*
2190 * Ignore all writes to this no longer documented MSR.
2191 * Writes are only relevant for old K7 processors,
2192 * all pre-dating SVM, but a recommended workaround from
2193 * AMD for these chips. It is possible to specify the
2194 * affected processor models on the command line, hence
2195 * the need to ignore the workaround.
2196 */
2197 break;
2198 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2199 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2200 case HV_X64_MSR_CRASH_CTL:
2201 return kvm_hv_set_msr_common(vcpu, msr, data,
2202 msr_info->host_initiated);
2203 case MSR_IA32_BBL_CR_CTL3:
2204 /* Drop writes to this legacy MSR -- see rdmsr
2205 * counterpart for further detail.
2206 */
2207 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2208 break;
2209 case MSR_AMD64_OSVW_ID_LENGTH:
2210 if (!guest_cpuid_has_osvw(vcpu))
2211 return 1;
2212 vcpu->arch.osvw.length = data;
2213 break;
2214 case MSR_AMD64_OSVW_STATUS:
2215 if (!guest_cpuid_has_osvw(vcpu))
2216 return 1;
2217 vcpu->arch.osvw.status = data;
2218 break;
2219 default:
2220 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2221 return xen_hvm_config(vcpu, data);
2222 if (kvm_pmu_is_valid_msr(vcpu, msr))
2223 return kvm_pmu_set_msr(vcpu, msr_info);
2224 if (!ignore_msrs) {
2225 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2226 msr, data);
2227 return 1;
2228 } else {
2229 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2230 msr, data);
2231 break;
2232 }
2233 }
2234 return 0;
2235 }
2236 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2237
2238
2239 /*
2240 * Reads an msr value (of 'msr_index') into 'pdata'.
2241 * Returns 0 on success, non-0 otherwise.
2242 * Assumes vcpu_load() was already called.
2243 */
2244 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2245 {
2246 return kvm_x86_ops->get_msr(vcpu, msr);
2247 }
2248 EXPORT_SYMBOL_GPL(kvm_get_msr);
2249
2250 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2251 {
2252 u64 data;
2253 u64 mcg_cap = vcpu->arch.mcg_cap;
2254 unsigned bank_num = mcg_cap & 0xff;
2255
2256 switch (msr) {
2257 case MSR_IA32_P5_MC_ADDR:
2258 case MSR_IA32_P5_MC_TYPE:
2259 data = 0;
2260 break;
2261 case MSR_IA32_MCG_CAP:
2262 data = vcpu->arch.mcg_cap;
2263 break;
2264 case MSR_IA32_MCG_CTL:
2265 if (!(mcg_cap & MCG_CTL_P))
2266 return 1;
2267 data = vcpu->arch.mcg_ctl;
2268 break;
2269 case MSR_IA32_MCG_STATUS:
2270 data = vcpu->arch.mcg_status;
2271 break;
2272 default:
2273 if (msr >= MSR_IA32_MC0_CTL &&
2274 msr < MSR_IA32_MCx_CTL(bank_num)) {
2275 u32 offset = msr - MSR_IA32_MC0_CTL;
2276 data = vcpu->arch.mce_banks[offset];
2277 break;
2278 }
2279 return 1;
2280 }
2281 *pdata = data;
2282 return 0;
2283 }
2284
2285 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2286 {
2287 switch (msr_info->index) {
2288 case MSR_IA32_PLATFORM_ID:
2289 case MSR_IA32_EBL_CR_POWERON:
2290 case MSR_IA32_DEBUGCTLMSR:
2291 case MSR_IA32_LASTBRANCHFROMIP:
2292 case MSR_IA32_LASTBRANCHTOIP:
2293 case MSR_IA32_LASTINTFROMIP:
2294 case MSR_IA32_LASTINTTOIP:
2295 case MSR_K8_SYSCFG:
2296 case MSR_K8_TSEG_ADDR:
2297 case MSR_K8_TSEG_MASK:
2298 case MSR_K7_HWCR:
2299 case MSR_VM_HSAVE_PA:
2300 case MSR_K8_INT_PENDING_MSG:
2301 case MSR_AMD64_NB_CFG:
2302 case MSR_FAM10H_MMIO_CONF_BASE:
2303 case MSR_AMD64_BU_CFG2:
2304 msr_info->data = 0;
2305 break;
2306 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2307 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2308 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2309 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2310 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2311 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2312 msr_info->data = 0;
2313 break;
2314 case MSR_IA32_UCODE_REV:
2315 msr_info->data = 0x100000000ULL;
2316 break;
2317 case MSR_MTRRcap:
2318 case 0x200 ... 0x2ff:
2319 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2320 case 0xcd: /* fsb frequency */
2321 msr_info->data = 3;
2322 break;
2323 /*
2324 * MSR_EBC_FREQUENCY_ID
2325 * Conservative value valid for even the basic CPU models.
2326 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2327 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2328 * and 266MHz for model 3, or 4. Set Core Clock
2329 * Frequency to System Bus Frequency Ratio to 1 (bits
2330 * 31:24) even though these are only valid for CPU
2331 * models > 2, however guests may end up dividing or
2332 * multiplying by zero otherwise.
2333 */
2334 case MSR_EBC_FREQUENCY_ID:
2335 msr_info->data = 1 << 24;
2336 break;
2337 case MSR_IA32_APICBASE:
2338 msr_info->data = kvm_get_apic_base(vcpu);
2339 break;
2340 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2341 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2342 break;
2343 case MSR_IA32_TSCDEADLINE:
2344 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2345 break;
2346 case MSR_IA32_TSC_ADJUST:
2347 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2348 break;
2349 case MSR_IA32_MISC_ENABLE:
2350 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2351 break;
2352 case MSR_IA32_SMBASE:
2353 if (!msr_info->host_initiated)
2354 return 1;
2355 msr_info->data = vcpu->arch.smbase;
2356 break;
2357 case MSR_IA32_PERF_STATUS:
2358 /* TSC increment by tick */
2359 msr_info->data = 1000ULL;
2360 /* CPU multiplier */
2361 msr_info->data |= (((uint64_t)4ULL) << 40);
2362 break;
2363 case MSR_EFER:
2364 msr_info->data = vcpu->arch.efer;
2365 break;
2366 case MSR_KVM_WALL_CLOCK:
2367 case MSR_KVM_WALL_CLOCK_NEW:
2368 msr_info->data = vcpu->kvm->arch.wall_clock;
2369 break;
2370 case MSR_KVM_SYSTEM_TIME:
2371 case MSR_KVM_SYSTEM_TIME_NEW:
2372 msr_info->data = vcpu->arch.time;
2373 break;
2374 case MSR_KVM_ASYNC_PF_EN:
2375 msr_info->data = vcpu->arch.apf.msr_val;
2376 break;
2377 case MSR_KVM_STEAL_TIME:
2378 msr_info->data = vcpu->arch.st.msr_val;
2379 break;
2380 case MSR_KVM_PV_EOI_EN:
2381 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2382 break;
2383 case MSR_IA32_P5_MC_ADDR:
2384 case MSR_IA32_P5_MC_TYPE:
2385 case MSR_IA32_MCG_CAP:
2386 case MSR_IA32_MCG_CTL:
2387 case MSR_IA32_MCG_STATUS:
2388 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2389 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2390 case MSR_K7_CLK_CTL:
2391 /*
2392 * Provide expected ramp-up count for K7. All other
2393 * are set to zero, indicating minimum divisors for
2394 * every field.
2395 *
2396 * This prevents guest kernels on AMD host with CPU
2397 * type 6, model 8 and higher from exploding due to
2398 * the rdmsr failing.
2399 */
2400 msr_info->data = 0x20000000;
2401 break;
2402 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2403 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2404 case HV_X64_MSR_CRASH_CTL:
2405 return kvm_hv_get_msr_common(vcpu,
2406 msr_info->index, &msr_info->data);
2407 break;
2408 case MSR_IA32_BBL_CR_CTL3:
2409 /* This legacy MSR exists but isn't fully documented in current
2410 * silicon. It is however accessed by winxp in very narrow
2411 * scenarios where it sets bit #19, itself documented as
2412 * a "reserved" bit. Best effort attempt to source coherent
2413 * read data here should the balance of the register be
2414 * interpreted by the guest:
2415 *
2416 * L2 cache control register 3: 64GB range, 256KB size,
2417 * enabled, latency 0x1, configured
2418 */
2419 msr_info->data = 0xbe702111;
2420 break;
2421 case MSR_AMD64_OSVW_ID_LENGTH:
2422 if (!guest_cpuid_has_osvw(vcpu))
2423 return 1;
2424 msr_info->data = vcpu->arch.osvw.length;
2425 break;
2426 case MSR_AMD64_OSVW_STATUS:
2427 if (!guest_cpuid_has_osvw(vcpu))
2428 return 1;
2429 msr_info->data = vcpu->arch.osvw.status;
2430 break;
2431 default:
2432 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2433 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2434 if (!ignore_msrs) {
2435 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2436 return 1;
2437 } else {
2438 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2439 msr_info->data = 0;
2440 }
2441 break;
2442 }
2443 return 0;
2444 }
2445 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2446
2447 /*
2448 * Read or write a bunch of msrs. All parameters are kernel addresses.
2449 *
2450 * @return number of msrs set successfully.
2451 */
2452 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2453 struct kvm_msr_entry *entries,
2454 int (*do_msr)(struct kvm_vcpu *vcpu,
2455 unsigned index, u64 *data))
2456 {
2457 int i, idx;
2458
2459 idx = srcu_read_lock(&vcpu->kvm->srcu);
2460 for (i = 0; i < msrs->nmsrs; ++i)
2461 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2462 break;
2463 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2464
2465 return i;
2466 }
2467
2468 /*
2469 * Read or write a bunch of msrs. Parameters are user addresses.
2470 *
2471 * @return number of msrs set successfully.
2472 */
2473 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2474 int (*do_msr)(struct kvm_vcpu *vcpu,
2475 unsigned index, u64 *data),
2476 int writeback)
2477 {
2478 struct kvm_msrs msrs;
2479 struct kvm_msr_entry *entries;
2480 int r, n;
2481 unsigned size;
2482
2483 r = -EFAULT;
2484 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2485 goto out;
2486
2487 r = -E2BIG;
2488 if (msrs.nmsrs >= MAX_IO_MSRS)
2489 goto out;
2490
2491 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2492 entries = memdup_user(user_msrs->entries, size);
2493 if (IS_ERR(entries)) {
2494 r = PTR_ERR(entries);
2495 goto out;
2496 }
2497
2498 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2499 if (r < 0)
2500 goto out_free;
2501
2502 r = -EFAULT;
2503 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2504 goto out_free;
2505
2506 r = n;
2507
2508 out_free:
2509 kfree(entries);
2510 out:
2511 return r;
2512 }
2513
2514 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2515 {
2516 int r;
2517
2518 switch (ext) {
2519 case KVM_CAP_IRQCHIP:
2520 case KVM_CAP_HLT:
2521 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2522 case KVM_CAP_SET_TSS_ADDR:
2523 case KVM_CAP_EXT_CPUID:
2524 case KVM_CAP_EXT_EMUL_CPUID:
2525 case KVM_CAP_CLOCKSOURCE:
2526 case KVM_CAP_PIT:
2527 case KVM_CAP_NOP_IO_DELAY:
2528 case KVM_CAP_MP_STATE:
2529 case KVM_CAP_SYNC_MMU:
2530 case KVM_CAP_USER_NMI:
2531 case KVM_CAP_REINJECT_CONTROL:
2532 case KVM_CAP_IRQ_INJECT_STATUS:
2533 case KVM_CAP_IOEVENTFD:
2534 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2535 case KVM_CAP_PIT2:
2536 case KVM_CAP_PIT_STATE2:
2537 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2538 case KVM_CAP_XEN_HVM:
2539 case KVM_CAP_ADJUST_CLOCK:
2540 case KVM_CAP_VCPU_EVENTS:
2541 case KVM_CAP_HYPERV:
2542 case KVM_CAP_HYPERV_VAPIC:
2543 case KVM_CAP_HYPERV_SPIN:
2544 case KVM_CAP_PCI_SEGMENT:
2545 case KVM_CAP_DEBUGREGS:
2546 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2547 case KVM_CAP_XSAVE:
2548 case KVM_CAP_ASYNC_PF:
2549 case KVM_CAP_GET_TSC_KHZ:
2550 case KVM_CAP_KVMCLOCK_CTRL:
2551 case KVM_CAP_READONLY_MEM:
2552 case KVM_CAP_HYPERV_TIME:
2553 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2554 case KVM_CAP_TSC_DEADLINE_TIMER:
2555 case KVM_CAP_ENABLE_CAP_VM:
2556 case KVM_CAP_DISABLE_QUIRKS:
2557 case KVM_CAP_SET_BOOT_CPU_ID:
2558 case KVM_CAP_SPLIT_IRQCHIP:
2559 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2560 case KVM_CAP_ASSIGN_DEV_IRQ:
2561 case KVM_CAP_PCI_2_3:
2562 #endif
2563 r = 1;
2564 break;
2565 case KVM_CAP_X86_SMM:
2566 /* SMBASE is usually relocated above 1M on modern chipsets,
2567 * and SMM handlers might indeed rely on 4G segment limits,
2568 * so do not report SMM to be available if real mode is
2569 * emulated via vm86 mode. Still, do not go to great lengths
2570 * to avoid userspace's usage of the feature, because it is a
2571 * fringe case that is not enabled except via specific settings
2572 * of the module parameters.
2573 */
2574 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2575 break;
2576 case KVM_CAP_COALESCED_MMIO:
2577 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2578 break;
2579 case KVM_CAP_VAPIC:
2580 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2581 break;
2582 case KVM_CAP_NR_VCPUS:
2583 r = KVM_SOFT_MAX_VCPUS;
2584 break;
2585 case KVM_CAP_MAX_VCPUS:
2586 r = KVM_MAX_VCPUS;
2587 break;
2588 case KVM_CAP_NR_MEMSLOTS:
2589 r = KVM_USER_MEM_SLOTS;
2590 break;
2591 case KVM_CAP_PV_MMU: /* obsolete */
2592 r = 0;
2593 break;
2594 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2595 case KVM_CAP_IOMMU:
2596 r = iommu_present(&pci_bus_type);
2597 break;
2598 #endif
2599 case KVM_CAP_MCE:
2600 r = KVM_MAX_MCE_BANKS;
2601 break;
2602 case KVM_CAP_XCRS:
2603 r = cpu_has_xsave;
2604 break;
2605 case KVM_CAP_TSC_CONTROL:
2606 r = kvm_has_tsc_control;
2607 break;
2608 default:
2609 r = 0;
2610 break;
2611 }
2612 return r;
2613
2614 }
2615
2616 long kvm_arch_dev_ioctl(struct file *filp,
2617 unsigned int ioctl, unsigned long arg)
2618 {
2619 void __user *argp = (void __user *)arg;
2620 long r;
2621
2622 switch (ioctl) {
2623 case KVM_GET_MSR_INDEX_LIST: {
2624 struct kvm_msr_list __user *user_msr_list = argp;
2625 struct kvm_msr_list msr_list;
2626 unsigned n;
2627
2628 r = -EFAULT;
2629 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2630 goto out;
2631 n = msr_list.nmsrs;
2632 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2633 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2634 goto out;
2635 r = -E2BIG;
2636 if (n < msr_list.nmsrs)
2637 goto out;
2638 r = -EFAULT;
2639 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2640 num_msrs_to_save * sizeof(u32)))
2641 goto out;
2642 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2643 &emulated_msrs,
2644 num_emulated_msrs * sizeof(u32)))
2645 goto out;
2646 r = 0;
2647 break;
2648 }
2649 case KVM_GET_SUPPORTED_CPUID:
2650 case KVM_GET_EMULATED_CPUID: {
2651 struct kvm_cpuid2 __user *cpuid_arg = argp;
2652 struct kvm_cpuid2 cpuid;
2653
2654 r = -EFAULT;
2655 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2656 goto out;
2657
2658 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2659 ioctl);
2660 if (r)
2661 goto out;
2662
2663 r = -EFAULT;
2664 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2665 goto out;
2666 r = 0;
2667 break;
2668 }
2669 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2670 u64 mce_cap;
2671
2672 mce_cap = KVM_MCE_CAP_SUPPORTED;
2673 r = -EFAULT;
2674 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2675 goto out;
2676 r = 0;
2677 break;
2678 }
2679 default:
2680 r = -EINVAL;
2681 }
2682 out:
2683 return r;
2684 }
2685
2686 static void wbinvd_ipi(void *garbage)
2687 {
2688 wbinvd();
2689 }
2690
2691 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2692 {
2693 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2694 }
2695
2696 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2697 {
2698 /* Address WBINVD may be executed by guest */
2699 if (need_emulate_wbinvd(vcpu)) {
2700 if (kvm_x86_ops->has_wbinvd_exit())
2701 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2702 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2703 smp_call_function_single(vcpu->cpu,
2704 wbinvd_ipi, NULL, 1);
2705 }
2706
2707 kvm_x86_ops->vcpu_load(vcpu, cpu);
2708
2709 /* Apply any externally detected TSC adjustments (due to suspend) */
2710 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2711 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2712 vcpu->arch.tsc_offset_adjustment = 0;
2713 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2714 }
2715
2716 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2717 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2718 rdtsc() - vcpu->arch.last_host_tsc;
2719 if (tsc_delta < 0)
2720 mark_tsc_unstable("KVM discovered backwards TSC");
2721 if (check_tsc_unstable()) {
2722 u64 offset = kvm_compute_tsc_offset(vcpu,
2723 vcpu->arch.last_guest_tsc);
2724 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2725 vcpu->arch.tsc_catchup = 1;
2726 }
2727 /*
2728 * On a host with synchronized TSC, there is no need to update
2729 * kvmclock on vcpu->cpu migration
2730 */
2731 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2732 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2733 if (vcpu->cpu != cpu)
2734 kvm_migrate_timers(vcpu);
2735 vcpu->cpu = cpu;
2736 }
2737
2738 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2739 }
2740
2741 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2742 {
2743 kvm_x86_ops->vcpu_put(vcpu);
2744 kvm_put_guest_fpu(vcpu);
2745 vcpu->arch.last_host_tsc = rdtsc();
2746 }
2747
2748 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2749 struct kvm_lapic_state *s)
2750 {
2751 kvm_x86_ops->sync_pir_to_irr(vcpu);
2752 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2753
2754 return 0;
2755 }
2756
2757 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2758 struct kvm_lapic_state *s)
2759 {
2760 kvm_apic_post_state_restore(vcpu, s);
2761 update_cr8_intercept(vcpu);
2762
2763 return 0;
2764 }
2765
2766 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2767 {
2768 return (!lapic_in_kernel(vcpu) ||
2769 kvm_apic_accept_pic_intr(vcpu));
2770 }
2771
2772 /*
2773 * if userspace requested an interrupt window, check that the
2774 * interrupt window is open.
2775 *
2776 * No need to exit to userspace if we already have an interrupt queued.
2777 */
2778 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2779 {
2780 return kvm_arch_interrupt_allowed(vcpu) &&
2781 !kvm_cpu_has_interrupt(vcpu) &&
2782 !kvm_event_needs_reinjection(vcpu) &&
2783 kvm_cpu_accept_dm_intr(vcpu);
2784 }
2785
2786 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2787 struct kvm_interrupt *irq)
2788 {
2789 if (irq->irq >= KVM_NR_INTERRUPTS)
2790 return -EINVAL;
2791
2792 if (!irqchip_in_kernel(vcpu->kvm)) {
2793 kvm_queue_interrupt(vcpu, irq->irq, false);
2794 kvm_make_request(KVM_REQ_EVENT, vcpu);
2795 return 0;
2796 }
2797
2798 /*
2799 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2800 * fail for in-kernel 8259.
2801 */
2802 if (pic_in_kernel(vcpu->kvm))
2803 return -ENXIO;
2804
2805 if (vcpu->arch.pending_external_vector != -1)
2806 return -EEXIST;
2807
2808 vcpu->arch.pending_external_vector = irq->irq;
2809 kvm_make_request(KVM_REQ_EVENT, vcpu);
2810 return 0;
2811 }
2812
2813 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2814 {
2815 kvm_inject_nmi(vcpu);
2816
2817 return 0;
2818 }
2819
2820 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2821 {
2822 kvm_make_request(KVM_REQ_SMI, vcpu);
2823
2824 return 0;
2825 }
2826
2827 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2828 struct kvm_tpr_access_ctl *tac)
2829 {
2830 if (tac->flags)
2831 return -EINVAL;
2832 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2833 return 0;
2834 }
2835
2836 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2837 u64 mcg_cap)
2838 {
2839 int r;
2840 unsigned bank_num = mcg_cap & 0xff, bank;
2841
2842 r = -EINVAL;
2843 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2844 goto out;
2845 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2846 goto out;
2847 r = 0;
2848 vcpu->arch.mcg_cap = mcg_cap;
2849 /* Init IA32_MCG_CTL to all 1s */
2850 if (mcg_cap & MCG_CTL_P)
2851 vcpu->arch.mcg_ctl = ~(u64)0;
2852 /* Init IA32_MCi_CTL to all 1s */
2853 for (bank = 0; bank < bank_num; bank++)
2854 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2855 out:
2856 return r;
2857 }
2858
2859 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2860 struct kvm_x86_mce *mce)
2861 {
2862 u64 mcg_cap = vcpu->arch.mcg_cap;
2863 unsigned bank_num = mcg_cap & 0xff;
2864 u64 *banks = vcpu->arch.mce_banks;
2865
2866 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2867 return -EINVAL;
2868 /*
2869 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2870 * reporting is disabled
2871 */
2872 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2873 vcpu->arch.mcg_ctl != ~(u64)0)
2874 return 0;
2875 banks += 4 * mce->bank;
2876 /*
2877 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2878 * reporting is disabled for the bank
2879 */
2880 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2881 return 0;
2882 if (mce->status & MCI_STATUS_UC) {
2883 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2884 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2885 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2886 return 0;
2887 }
2888 if (banks[1] & MCI_STATUS_VAL)
2889 mce->status |= MCI_STATUS_OVER;
2890 banks[2] = mce->addr;
2891 banks[3] = mce->misc;
2892 vcpu->arch.mcg_status = mce->mcg_status;
2893 banks[1] = mce->status;
2894 kvm_queue_exception(vcpu, MC_VECTOR);
2895 } else if (!(banks[1] & MCI_STATUS_VAL)
2896 || !(banks[1] & MCI_STATUS_UC)) {
2897 if (banks[1] & MCI_STATUS_VAL)
2898 mce->status |= MCI_STATUS_OVER;
2899 banks[2] = mce->addr;
2900 banks[3] = mce->misc;
2901 banks[1] = mce->status;
2902 } else
2903 banks[1] |= MCI_STATUS_OVER;
2904 return 0;
2905 }
2906
2907 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2908 struct kvm_vcpu_events *events)
2909 {
2910 process_nmi(vcpu);
2911 events->exception.injected =
2912 vcpu->arch.exception.pending &&
2913 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2914 events->exception.nr = vcpu->arch.exception.nr;
2915 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2916 events->exception.pad = 0;
2917 events->exception.error_code = vcpu->arch.exception.error_code;
2918
2919 events->interrupt.injected =
2920 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2921 events->interrupt.nr = vcpu->arch.interrupt.nr;
2922 events->interrupt.soft = 0;
2923 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2924
2925 events->nmi.injected = vcpu->arch.nmi_injected;
2926 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2927 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2928 events->nmi.pad = 0;
2929
2930 events->sipi_vector = 0; /* never valid when reporting to user space */
2931
2932 events->smi.smm = is_smm(vcpu);
2933 events->smi.pending = vcpu->arch.smi_pending;
2934 events->smi.smm_inside_nmi =
2935 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2936 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2937
2938 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2939 | KVM_VCPUEVENT_VALID_SHADOW
2940 | KVM_VCPUEVENT_VALID_SMM);
2941 memset(&events->reserved, 0, sizeof(events->reserved));
2942 }
2943
2944 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2945 struct kvm_vcpu_events *events)
2946 {
2947 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2948 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2949 | KVM_VCPUEVENT_VALID_SHADOW
2950 | KVM_VCPUEVENT_VALID_SMM))
2951 return -EINVAL;
2952
2953 process_nmi(vcpu);
2954 vcpu->arch.exception.pending = events->exception.injected;
2955 vcpu->arch.exception.nr = events->exception.nr;
2956 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2957 vcpu->arch.exception.error_code = events->exception.error_code;
2958
2959 vcpu->arch.interrupt.pending = events->interrupt.injected;
2960 vcpu->arch.interrupt.nr = events->interrupt.nr;
2961 vcpu->arch.interrupt.soft = events->interrupt.soft;
2962 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2963 kvm_x86_ops->set_interrupt_shadow(vcpu,
2964 events->interrupt.shadow);
2965
2966 vcpu->arch.nmi_injected = events->nmi.injected;
2967 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2968 vcpu->arch.nmi_pending = events->nmi.pending;
2969 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2970
2971 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2972 kvm_vcpu_has_lapic(vcpu))
2973 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2974
2975 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2976 if (events->smi.smm)
2977 vcpu->arch.hflags |= HF_SMM_MASK;
2978 else
2979 vcpu->arch.hflags &= ~HF_SMM_MASK;
2980 vcpu->arch.smi_pending = events->smi.pending;
2981 if (events->smi.smm_inside_nmi)
2982 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2983 else
2984 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2985 if (kvm_vcpu_has_lapic(vcpu)) {
2986 if (events->smi.latched_init)
2987 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2988 else
2989 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2990 }
2991 }
2992
2993 kvm_make_request(KVM_REQ_EVENT, vcpu);
2994
2995 return 0;
2996 }
2997
2998 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2999 struct kvm_debugregs *dbgregs)
3000 {
3001 unsigned long val;
3002
3003 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3004 kvm_get_dr(vcpu, 6, &val);
3005 dbgregs->dr6 = val;
3006 dbgregs->dr7 = vcpu->arch.dr7;
3007 dbgregs->flags = 0;
3008 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3009 }
3010
3011 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3012 struct kvm_debugregs *dbgregs)
3013 {
3014 if (dbgregs->flags)
3015 return -EINVAL;
3016
3017 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3018 kvm_update_dr0123(vcpu);
3019 vcpu->arch.dr6 = dbgregs->dr6;
3020 kvm_update_dr6(vcpu);
3021 vcpu->arch.dr7 = dbgregs->dr7;
3022 kvm_update_dr7(vcpu);
3023
3024 return 0;
3025 }
3026
3027 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3028
3029 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3030 {
3031 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3032 u64 xstate_bv = xsave->header.xfeatures;
3033 u64 valid;
3034
3035 /*
3036 * Copy legacy XSAVE area, to avoid complications with CPUID
3037 * leaves 0 and 1 in the loop below.
3038 */
3039 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3040
3041 /* Set XSTATE_BV */
3042 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3043
3044 /*
3045 * Copy each region from the possibly compacted offset to the
3046 * non-compacted offset.
3047 */
3048 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3049 while (valid) {
3050 u64 feature = valid & -valid;
3051 int index = fls64(feature) - 1;
3052 void *src = get_xsave_addr(xsave, feature);
3053
3054 if (src) {
3055 u32 size, offset, ecx, edx;
3056 cpuid_count(XSTATE_CPUID, index,
3057 &size, &offset, &ecx, &edx);
3058 memcpy(dest + offset, src, size);
3059 }
3060
3061 valid -= feature;
3062 }
3063 }
3064
3065 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3066 {
3067 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3068 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3069 u64 valid;
3070
3071 /*
3072 * Copy legacy XSAVE area, to avoid complications with CPUID
3073 * leaves 0 and 1 in the loop below.
3074 */
3075 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3076
3077 /* Set XSTATE_BV and possibly XCOMP_BV. */
3078 xsave->header.xfeatures = xstate_bv;
3079 if (cpu_has_xsaves)
3080 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3081
3082 /*
3083 * Copy each region from the non-compacted offset to the
3084 * possibly compacted offset.
3085 */
3086 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3087 while (valid) {
3088 u64 feature = valid & -valid;
3089 int index = fls64(feature) - 1;
3090 void *dest = get_xsave_addr(xsave, feature);
3091
3092 if (dest) {
3093 u32 size, offset, ecx, edx;
3094 cpuid_count(XSTATE_CPUID, index,
3095 &size, &offset, &ecx, &edx);
3096 memcpy(dest, src + offset, size);
3097 }
3098
3099 valid -= feature;
3100 }
3101 }
3102
3103 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3104 struct kvm_xsave *guest_xsave)
3105 {
3106 if (cpu_has_xsave) {
3107 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3108 fill_xsave((u8 *) guest_xsave->region, vcpu);
3109 } else {
3110 memcpy(guest_xsave->region,
3111 &vcpu->arch.guest_fpu.state.fxsave,
3112 sizeof(struct fxregs_state));
3113 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3114 XFEATURE_MASK_FPSSE;
3115 }
3116 }
3117
3118 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3119 struct kvm_xsave *guest_xsave)
3120 {
3121 u64 xstate_bv =
3122 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3123
3124 if (cpu_has_xsave) {
3125 /*
3126 * Here we allow setting states that are not present in
3127 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3128 * with old userspace.
3129 */
3130 if (xstate_bv & ~kvm_supported_xcr0())
3131 return -EINVAL;
3132 load_xsave(vcpu, (u8 *)guest_xsave->region);
3133 } else {
3134 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3135 return -EINVAL;
3136 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3137 guest_xsave->region, sizeof(struct fxregs_state));
3138 }
3139 return 0;
3140 }
3141
3142 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3143 struct kvm_xcrs *guest_xcrs)
3144 {
3145 if (!cpu_has_xsave) {
3146 guest_xcrs->nr_xcrs = 0;
3147 return;
3148 }
3149
3150 guest_xcrs->nr_xcrs = 1;
3151 guest_xcrs->flags = 0;
3152 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3153 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3154 }
3155
3156 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3157 struct kvm_xcrs *guest_xcrs)
3158 {
3159 int i, r = 0;
3160
3161 if (!cpu_has_xsave)
3162 return -EINVAL;
3163
3164 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3165 return -EINVAL;
3166
3167 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3168 /* Only support XCR0 currently */
3169 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3170 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3171 guest_xcrs->xcrs[i].value);
3172 break;
3173 }
3174 if (r)
3175 r = -EINVAL;
3176 return r;
3177 }
3178
3179 /*
3180 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3181 * stopped by the hypervisor. This function will be called from the host only.
3182 * EINVAL is returned when the host attempts to set the flag for a guest that
3183 * does not support pv clocks.
3184 */
3185 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3186 {
3187 if (!vcpu->arch.pv_time_enabled)
3188 return -EINVAL;
3189 vcpu->arch.pvclock_set_guest_stopped_request = true;
3190 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3191 return 0;
3192 }
3193
3194 long kvm_arch_vcpu_ioctl(struct file *filp,
3195 unsigned int ioctl, unsigned long arg)
3196 {
3197 struct kvm_vcpu *vcpu = filp->private_data;
3198 void __user *argp = (void __user *)arg;
3199 int r;
3200 union {
3201 struct kvm_lapic_state *lapic;
3202 struct kvm_xsave *xsave;
3203 struct kvm_xcrs *xcrs;
3204 void *buffer;
3205 } u;
3206
3207 u.buffer = NULL;
3208 switch (ioctl) {
3209 case KVM_GET_LAPIC: {
3210 r = -EINVAL;
3211 if (!vcpu->arch.apic)
3212 goto out;
3213 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3214
3215 r = -ENOMEM;
3216 if (!u.lapic)
3217 goto out;
3218 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3219 if (r)
3220 goto out;
3221 r = -EFAULT;
3222 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3223 goto out;
3224 r = 0;
3225 break;
3226 }
3227 case KVM_SET_LAPIC: {
3228 r = -EINVAL;
3229 if (!vcpu->arch.apic)
3230 goto out;
3231 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3232 if (IS_ERR(u.lapic))
3233 return PTR_ERR(u.lapic);
3234
3235 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3236 break;
3237 }
3238 case KVM_INTERRUPT: {
3239 struct kvm_interrupt irq;
3240
3241 r = -EFAULT;
3242 if (copy_from_user(&irq, argp, sizeof irq))
3243 goto out;
3244 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3245 break;
3246 }
3247 case KVM_NMI: {
3248 r = kvm_vcpu_ioctl_nmi(vcpu);
3249 break;
3250 }
3251 case KVM_SMI: {
3252 r = kvm_vcpu_ioctl_smi(vcpu);
3253 break;
3254 }
3255 case KVM_SET_CPUID: {
3256 struct kvm_cpuid __user *cpuid_arg = argp;
3257 struct kvm_cpuid cpuid;
3258
3259 r = -EFAULT;
3260 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3261 goto out;
3262 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3263 break;
3264 }
3265 case KVM_SET_CPUID2: {
3266 struct kvm_cpuid2 __user *cpuid_arg = argp;
3267 struct kvm_cpuid2 cpuid;
3268
3269 r = -EFAULT;
3270 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3271 goto out;
3272 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3273 cpuid_arg->entries);
3274 break;
3275 }
3276 case KVM_GET_CPUID2: {
3277 struct kvm_cpuid2 __user *cpuid_arg = argp;
3278 struct kvm_cpuid2 cpuid;
3279
3280 r = -EFAULT;
3281 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3282 goto out;
3283 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3284 cpuid_arg->entries);
3285 if (r)
3286 goto out;
3287 r = -EFAULT;
3288 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3289 goto out;
3290 r = 0;
3291 break;
3292 }
3293 case KVM_GET_MSRS:
3294 r = msr_io(vcpu, argp, do_get_msr, 1);
3295 break;
3296 case KVM_SET_MSRS:
3297 r = msr_io(vcpu, argp, do_set_msr, 0);
3298 break;
3299 case KVM_TPR_ACCESS_REPORTING: {
3300 struct kvm_tpr_access_ctl tac;
3301
3302 r = -EFAULT;
3303 if (copy_from_user(&tac, argp, sizeof tac))
3304 goto out;
3305 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3306 if (r)
3307 goto out;
3308 r = -EFAULT;
3309 if (copy_to_user(argp, &tac, sizeof tac))
3310 goto out;
3311 r = 0;
3312 break;
3313 };
3314 case KVM_SET_VAPIC_ADDR: {
3315 struct kvm_vapic_addr va;
3316
3317 r = -EINVAL;
3318 if (!lapic_in_kernel(vcpu))
3319 goto out;
3320 r = -EFAULT;
3321 if (copy_from_user(&va, argp, sizeof va))
3322 goto out;
3323 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3324 break;
3325 }
3326 case KVM_X86_SETUP_MCE: {
3327 u64 mcg_cap;
3328
3329 r = -EFAULT;
3330 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3331 goto out;
3332 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3333 break;
3334 }
3335 case KVM_X86_SET_MCE: {
3336 struct kvm_x86_mce mce;
3337
3338 r = -EFAULT;
3339 if (copy_from_user(&mce, argp, sizeof mce))
3340 goto out;
3341 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3342 break;
3343 }
3344 case KVM_GET_VCPU_EVENTS: {
3345 struct kvm_vcpu_events events;
3346
3347 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3348
3349 r = -EFAULT;
3350 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3351 break;
3352 r = 0;
3353 break;
3354 }
3355 case KVM_SET_VCPU_EVENTS: {
3356 struct kvm_vcpu_events events;
3357
3358 r = -EFAULT;
3359 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3360 break;
3361
3362 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3363 break;
3364 }
3365 case KVM_GET_DEBUGREGS: {
3366 struct kvm_debugregs dbgregs;
3367
3368 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3369
3370 r = -EFAULT;
3371 if (copy_to_user(argp, &dbgregs,
3372 sizeof(struct kvm_debugregs)))
3373 break;
3374 r = 0;
3375 break;
3376 }
3377 case KVM_SET_DEBUGREGS: {
3378 struct kvm_debugregs dbgregs;
3379
3380 r = -EFAULT;
3381 if (copy_from_user(&dbgregs, argp,
3382 sizeof(struct kvm_debugregs)))
3383 break;
3384
3385 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3386 break;
3387 }
3388 case KVM_GET_XSAVE: {
3389 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3390 r = -ENOMEM;
3391 if (!u.xsave)
3392 break;
3393
3394 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3395
3396 r = -EFAULT;
3397 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3398 break;
3399 r = 0;
3400 break;
3401 }
3402 case KVM_SET_XSAVE: {
3403 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3404 if (IS_ERR(u.xsave))
3405 return PTR_ERR(u.xsave);
3406
3407 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3408 break;
3409 }
3410 case KVM_GET_XCRS: {
3411 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3412 r = -ENOMEM;
3413 if (!u.xcrs)
3414 break;
3415
3416 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3417
3418 r = -EFAULT;
3419 if (copy_to_user(argp, u.xcrs,
3420 sizeof(struct kvm_xcrs)))
3421 break;
3422 r = 0;
3423 break;
3424 }
3425 case KVM_SET_XCRS: {
3426 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3427 if (IS_ERR(u.xcrs))
3428 return PTR_ERR(u.xcrs);
3429
3430 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3431 break;
3432 }
3433 case KVM_SET_TSC_KHZ: {
3434 u32 user_tsc_khz;
3435
3436 r = -EINVAL;
3437 user_tsc_khz = (u32)arg;
3438
3439 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3440 goto out;
3441
3442 if (user_tsc_khz == 0)
3443 user_tsc_khz = tsc_khz;
3444
3445 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3446 r = 0;
3447
3448 goto out;
3449 }
3450 case KVM_GET_TSC_KHZ: {
3451 r = vcpu->arch.virtual_tsc_khz;
3452 goto out;
3453 }
3454 case KVM_KVMCLOCK_CTRL: {
3455 r = kvm_set_guest_paused(vcpu);
3456 goto out;
3457 }
3458 default:
3459 r = -EINVAL;
3460 }
3461 out:
3462 kfree(u.buffer);
3463 return r;
3464 }
3465
3466 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3467 {
3468 return VM_FAULT_SIGBUS;
3469 }
3470
3471 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3472 {
3473 int ret;
3474
3475 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3476 return -EINVAL;
3477 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3478 return ret;
3479 }
3480
3481 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3482 u64 ident_addr)
3483 {
3484 kvm->arch.ept_identity_map_addr = ident_addr;
3485 return 0;
3486 }
3487
3488 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3489 u32 kvm_nr_mmu_pages)
3490 {
3491 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3492 return -EINVAL;
3493
3494 mutex_lock(&kvm->slots_lock);
3495
3496 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3497 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3498
3499 mutex_unlock(&kvm->slots_lock);
3500 return 0;
3501 }
3502
3503 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3504 {
3505 return kvm->arch.n_max_mmu_pages;
3506 }
3507
3508 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3509 {
3510 int r;
3511
3512 r = 0;
3513 switch (chip->chip_id) {
3514 case KVM_IRQCHIP_PIC_MASTER:
3515 memcpy(&chip->chip.pic,
3516 &pic_irqchip(kvm)->pics[0],
3517 sizeof(struct kvm_pic_state));
3518 break;
3519 case KVM_IRQCHIP_PIC_SLAVE:
3520 memcpy(&chip->chip.pic,
3521 &pic_irqchip(kvm)->pics[1],
3522 sizeof(struct kvm_pic_state));
3523 break;
3524 case KVM_IRQCHIP_IOAPIC:
3525 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3526 break;
3527 default:
3528 r = -EINVAL;
3529 break;
3530 }
3531 return r;
3532 }
3533
3534 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3535 {
3536 int r;
3537
3538 r = 0;
3539 switch (chip->chip_id) {
3540 case KVM_IRQCHIP_PIC_MASTER:
3541 spin_lock(&pic_irqchip(kvm)->lock);
3542 memcpy(&pic_irqchip(kvm)->pics[0],
3543 &chip->chip.pic,
3544 sizeof(struct kvm_pic_state));
3545 spin_unlock(&pic_irqchip(kvm)->lock);
3546 break;
3547 case KVM_IRQCHIP_PIC_SLAVE:
3548 spin_lock(&pic_irqchip(kvm)->lock);
3549 memcpy(&pic_irqchip(kvm)->pics[1],
3550 &chip->chip.pic,
3551 sizeof(struct kvm_pic_state));
3552 spin_unlock(&pic_irqchip(kvm)->lock);
3553 break;
3554 case KVM_IRQCHIP_IOAPIC:
3555 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3556 break;
3557 default:
3558 r = -EINVAL;
3559 break;
3560 }
3561 kvm_pic_update_irq(pic_irqchip(kvm));
3562 return r;
3563 }
3564
3565 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3566 {
3567 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3568 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3569 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3570 return 0;
3571 }
3572
3573 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3574 {
3575 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3576 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3577 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3578 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3579 return 0;
3580 }
3581
3582 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3583 {
3584 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3585 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3586 sizeof(ps->channels));
3587 ps->flags = kvm->arch.vpit->pit_state.flags;
3588 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3589 memset(&ps->reserved, 0, sizeof(ps->reserved));
3590 return 0;
3591 }
3592
3593 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3594 {
3595 int start = 0;
3596 u32 prev_legacy, cur_legacy;
3597 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3598 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3599 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3600 if (!prev_legacy && cur_legacy)
3601 start = 1;
3602 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3603 sizeof(kvm->arch.vpit->pit_state.channels));
3604 kvm->arch.vpit->pit_state.flags = ps->flags;
3605 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3606 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3607 return 0;
3608 }
3609
3610 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3611 struct kvm_reinject_control *control)
3612 {
3613 if (!kvm->arch.vpit)
3614 return -ENXIO;
3615 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3616 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3617 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3618 return 0;
3619 }
3620
3621 /**
3622 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3623 * @kvm: kvm instance
3624 * @log: slot id and address to which we copy the log
3625 *
3626 * Steps 1-4 below provide general overview of dirty page logging. See
3627 * kvm_get_dirty_log_protect() function description for additional details.
3628 *
3629 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3630 * always flush the TLB (step 4) even if previous step failed and the dirty
3631 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3632 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3633 * writes will be marked dirty for next log read.
3634 *
3635 * 1. Take a snapshot of the bit and clear it if needed.
3636 * 2. Write protect the corresponding page.
3637 * 3. Copy the snapshot to the userspace.
3638 * 4. Flush TLB's if needed.
3639 */
3640 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3641 {
3642 bool is_dirty = false;
3643 int r;
3644
3645 mutex_lock(&kvm->slots_lock);
3646
3647 /*
3648 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3649 */
3650 if (kvm_x86_ops->flush_log_dirty)
3651 kvm_x86_ops->flush_log_dirty(kvm);
3652
3653 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3654
3655 /*
3656 * All the TLBs can be flushed out of mmu lock, see the comments in
3657 * kvm_mmu_slot_remove_write_access().
3658 */
3659 lockdep_assert_held(&kvm->slots_lock);
3660 if (is_dirty)
3661 kvm_flush_remote_tlbs(kvm);
3662
3663 mutex_unlock(&kvm->slots_lock);
3664 return r;
3665 }
3666
3667 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3668 bool line_status)
3669 {
3670 if (!irqchip_in_kernel(kvm))
3671 return -ENXIO;
3672
3673 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3674 irq_event->irq, irq_event->level,
3675 line_status);
3676 return 0;
3677 }
3678
3679 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3680 struct kvm_enable_cap *cap)
3681 {
3682 int r;
3683
3684 if (cap->flags)
3685 return -EINVAL;
3686
3687 switch (cap->cap) {
3688 case KVM_CAP_DISABLE_QUIRKS:
3689 kvm->arch.disabled_quirks = cap->args[0];
3690 r = 0;
3691 break;
3692 case KVM_CAP_SPLIT_IRQCHIP: {
3693 mutex_lock(&kvm->lock);
3694 r = -EINVAL;
3695 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3696 goto split_irqchip_unlock;
3697 r = -EEXIST;
3698 if (irqchip_in_kernel(kvm))
3699 goto split_irqchip_unlock;
3700 if (atomic_read(&kvm->online_vcpus))
3701 goto split_irqchip_unlock;
3702 r = kvm_setup_empty_irq_routing(kvm);
3703 if (r)
3704 goto split_irqchip_unlock;
3705 /* Pairs with irqchip_in_kernel. */
3706 smp_wmb();
3707 kvm->arch.irqchip_split = true;
3708 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3709 r = 0;
3710 split_irqchip_unlock:
3711 mutex_unlock(&kvm->lock);
3712 break;
3713 }
3714 default:
3715 r = -EINVAL;
3716 break;
3717 }
3718 return r;
3719 }
3720
3721 long kvm_arch_vm_ioctl(struct file *filp,
3722 unsigned int ioctl, unsigned long arg)
3723 {
3724 struct kvm *kvm = filp->private_data;
3725 void __user *argp = (void __user *)arg;
3726 int r = -ENOTTY;
3727 /*
3728 * This union makes it completely explicit to gcc-3.x
3729 * that these two variables' stack usage should be
3730 * combined, not added together.
3731 */
3732 union {
3733 struct kvm_pit_state ps;
3734 struct kvm_pit_state2 ps2;
3735 struct kvm_pit_config pit_config;
3736 } u;
3737
3738 switch (ioctl) {
3739 case KVM_SET_TSS_ADDR:
3740 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3741 break;
3742 case KVM_SET_IDENTITY_MAP_ADDR: {
3743 u64 ident_addr;
3744
3745 r = -EFAULT;
3746 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3747 goto out;
3748 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3749 break;
3750 }
3751 case KVM_SET_NR_MMU_PAGES:
3752 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3753 break;
3754 case KVM_GET_NR_MMU_PAGES:
3755 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3756 break;
3757 case KVM_CREATE_IRQCHIP: {
3758 struct kvm_pic *vpic;
3759
3760 mutex_lock(&kvm->lock);
3761 r = -EEXIST;
3762 if (kvm->arch.vpic)
3763 goto create_irqchip_unlock;
3764 r = -EINVAL;
3765 if (atomic_read(&kvm->online_vcpus))
3766 goto create_irqchip_unlock;
3767 r = -ENOMEM;
3768 vpic = kvm_create_pic(kvm);
3769 if (vpic) {
3770 r = kvm_ioapic_init(kvm);
3771 if (r) {
3772 mutex_lock(&kvm->slots_lock);
3773 kvm_destroy_pic(vpic);
3774 mutex_unlock(&kvm->slots_lock);
3775 goto create_irqchip_unlock;
3776 }
3777 } else
3778 goto create_irqchip_unlock;
3779 r = kvm_setup_default_irq_routing(kvm);
3780 if (r) {
3781 mutex_lock(&kvm->slots_lock);
3782 mutex_lock(&kvm->irq_lock);
3783 kvm_ioapic_destroy(kvm);
3784 kvm_destroy_pic(vpic);
3785 mutex_unlock(&kvm->irq_lock);
3786 mutex_unlock(&kvm->slots_lock);
3787 goto create_irqchip_unlock;
3788 }
3789 /* Write kvm->irq_routing before kvm->arch.vpic. */
3790 smp_wmb();
3791 kvm->arch.vpic = vpic;
3792 create_irqchip_unlock:
3793 mutex_unlock(&kvm->lock);
3794 break;
3795 }
3796 case KVM_CREATE_PIT:
3797 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3798 goto create_pit;
3799 case KVM_CREATE_PIT2:
3800 r = -EFAULT;
3801 if (copy_from_user(&u.pit_config, argp,
3802 sizeof(struct kvm_pit_config)))
3803 goto out;
3804 create_pit:
3805 mutex_lock(&kvm->slots_lock);
3806 r = -EEXIST;
3807 if (kvm->arch.vpit)
3808 goto create_pit_unlock;
3809 r = -ENOMEM;
3810 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3811 if (kvm->arch.vpit)
3812 r = 0;
3813 create_pit_unlock:
3814 mutex_unlock(&kvm->slots_lock);
3815 break;
3816 case KVM_GET_IRQCHIP: {
3817 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3818 struct kvm_irqchip *chip;
3819
3820 chip = memdup_user(argp, sizeof(*chip));
3821 if (IS_ERR(chip)) {
3822 r = PTR_ERR(chip);
3823 goto out;
3824 }
3825
3826 r = -ENXIO;
3827 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3828 goto get_irqchip_out;
3829 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3830 if (r)
3831 goto get_irqchip_out;
3832 r = -EFAULT;
3833 if (copy_to_user(argp, chip, sizeof *chip))
3834 goto get_irqchip_out;
3835 r = 0;
3836 get_irqchip_out:
3837 kfree(chip);
3838 break;
3839 }
3840 case KVM_SET_IRQCHIP: {
3841 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3842 struct kvm_irqchip *chip;
3843
3844 chip = memdup_user(argp, sizeof(*chip));
3845 if (IS_ERR(chip)) {
3846 r = PTR_ERR(chip);
3847 goto out;
3848 }
3849
3850 r = -ENXIO;
3851 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3852 goto set_irqchip_out;
3853 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3854 if (r)
3855 goto set_irqchip_out;
3856 r = 0;
3857 set_irqchip_out:
3858 kfree(chip);
3859 break;
3860 }
3861 case KVM_GET_PIT: {
3862 r = -EFAULT;
3863 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3864 goto out;
3865 r = -ENXIO;
3866 if (!kvm->arch.vpit)
3867 goto out;
3868 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3869 if (r)
3870 goto out;
3871 r = -EFAULT;
3872 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3873 goto out;
3874 r = 0;
3875 break;
3876 }
3877 case KVM_SET_PIT: {
3878 r = -EFAULT;
3879 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3880 goto out;
3881 r = -ENXIO;
3882 if (!kvm->arch.vpit)
3883 goto out;
3884 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3885 break;
3886 }
3887 case KVM_GET_PIT2: {
3888 r = -ENXIO;
3889 if (!kvm->arch.vpit)
3890 goto out;
3891 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3892 if (r)
3893 goto out;
3894 r = -EFAULT;
3895 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3896 goto out;
3897 r = 0;
3898 break;
3899 }
3900 case KVM_SET_PIT2: {
3901 r = -EFAULT;
3902 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3903 goto out;
3904 r = -ENXIO;
3905 if (!kvm->arch.vpit)
3906 goto out;
3907 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3908 break;
3909 }
3910 case KVM_REINJECT_CONTROL: {
3911 struct kvm_reinject_control control;
3912 r = -EFAULT;
3913 if (copy_from_user(&control, argp, sizeof(control)))
3914 goto out;
3915 r = kvm_vm_ioctl_reinject(kvm, &control);
3916 break;
3917 }
3918 case KVM_SET_BOOT_CPU_ID:
3919 r = 0;
3920 mutex_lock(&kvm->lock);
3921 if (atomic_read(&kvm->online_vcpus) != 0)
3922 r = -EBUSY;
3923 else
3924 kvm->arch.bsp_vcpu_id = arg;
3925 mutex_unlock(&kvm->lock);
3926 break;
3927 case KVM_XEN_HVM_CONFIG: {
3928 r = -EFAULT;
3929 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3930 sizeof(struct kvm_xen_hvm_config)))
3931 goto out;
3932 r = -EINVAL;
3933 if (kvm->arch.xen_hvm_config.flags)
3934 goto out;
3935 r = 0;
3936 break;
3937 }
3938 case KVM_SET_CLOCK: {
3939 struct kvm_clock_data user_ns;
3940 u64 now_ns;
3941 s64 delta;
3942
3943 r = -EFAULT;
3944 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3945 goto out;
3946
3947 r = -EINVAL;
3948 if (user_ns.flags)
3949 goto out;
3950
3951 r = 0;
3952 local_irq_disable();
3953 now_ns = get_kernel_ns();
3954 delta = user_ns.clock - now_ns;
3955 local_irq_enable();
3956 kvm->arch.kvmclock_offset = delta;
3957 kvm_gen_update_masterclock(kvm);
3958 break;
3959 }
3960 case KVM_GET_CLOCK: {
3961 struct kvm_clock_data user_ns;
3962 u64 now_ns;
3963
3964 local_irq_disable();
3965 now_ns = get_kernel_ns();
3966 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3967 local_irq_enable();
3968 user_ns.flags = 0;
3969 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3970
3971 r = -EFAULT;
3972 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3973 goto out;
3974 r = 0;
3975 break;
3976 }
3977 case KVM_ENABLE_CAP: {
3978 struct kvm_enable_cap cap;
3979
3980 r = -EFAULT;
3981 if (copy_from_user(&cap, argp, sizeof(cap)))
3982 goto out;
3983 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
3984 break;
3985 }
3986 default:
3987 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
3988 }
3989 out:
3990 return r;
3991 }
3992
3993 static void kvm_init_msr_list(void)
3994 {
3995 u32 dummy[2];
3996 unsigned i, j;
3997
3998 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
3999 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4000 continue;
4001
4002 /*
4003 * Even MSRs that are valid in the host may not be exposed
4004 * to the guests in some cases. We could work around this
4005 * in VMX with the generic MSR save/load machinery, but it
4006 * is not really worthwhile since it will really only
4007 * happen with nested virtualization.
4008 */
4009 switch (msrs_to_save[i]) {
4010 case MSR_IA32_BNDCFGS:
4011 if (!kvm_x86_ops->mpx_supported())
4012 continue;
4013 break;
4014 default:
4015 break;
4016 }
4017
4018 if (j < i)
4019 msrs_to_save[j] = msrs_to_save[i];
4020 j++;
4021 }
4022 num_msrs_to_save = j;
4023
4024 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4025 switch (emulated_msrs[i]) {
4026 case MSR_IA32_SMBASE:
4027 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4028 continue;
4029 break;
4030 default:
4031 break;
4032 }
4033
4034 if (j < i)
4035 emulated_msrs[j] = emulated_msrs[i];
4036 j++;
4037 }
4038 num_emulated_msrs = j;
4039 }
4040
4041 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4042 const void *v)
4043 {
4044 int handled = 0;
4045 int n;
4046
4047 do {
4048 n = min(len, 8);
4049 if (!(vcpu->arch.apic &&
4050 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4051 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4052 break;
4053 handled += n;
4054 addr += n;
4055 len -= n;
4056 v += n;
4057 } while (len);
4058
4059 return handled;
4060 }
4061
4062 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4063 {
4064 int handled = 0;
4065 int n;
4066
4067 do {
4068 n = min(len, 8);
4069 if (!(vcpu->arch.apic &&
4070 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4071 addr, n, v))
4072 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4073 break;
4074 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4075 handled += n;
4076 addr += n;
4077 len -= n;
4078 v += n;
4079 } while (len);
4080
4081 return handled;
4082 }
4083
4084 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4085 struct kvm_segment *var, int seg)
4086 {
4087 kvm_x86_ops->set_segment(vcpu, var, seg);
4088 }
4089
4090 void kvm_get_segment(struct kvm_vcpu *vcpu,
4091 struct kvm_segment *var, int seg)
4092 {
4093 kvm_x86_ops->get_segment(vcpu, var, seg);
4094 }
4095
4096 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4097 struct x86_exception *exception)
4098 {
4099 gpa_t t_gpa;
4100
4101 BUG_ON(!mmu_is_nested(vcpu));
4102
4103 /* NPT walks are always user-walks */
4104 access |= PFERR_USER_MASK;
4105 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4106
4107 return t_gpa;
4108 }
4109
4110 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4111 struct x86_exception *exception)
4112 {
4113 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4114 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4115 }
4116
4117 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4118 struct x86_exception *exception)
4119 {
4120 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4121 access |= PFERR_FETCH_MASK;
4122 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4123 }
4124
4125 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4126 struct x86_exception *exception)
4127 {
4128 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4129 access |= PFERR_WRITE_MASK;
4130 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4131 }
4132
4133 /* uses this to access any guest's mapped memory without checking CPL */
4134 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4135 struct x86_exception *exception)
4136 {
4137 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4138 }
4139
4140 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4141 struct kvm_vcpu *vcpu, u32 access,
4142 struct x86_exception *exception)
4143 {
4144 void *data = val;
4145 int r = X86EMUL_CONTINUE;
4146
4147 while (bytes) {
4148 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4149 exception);
4150 unsigned offset = addr & (PAGE_SIZE-1);
4151 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4152 int ret;
4153
4154 if (gpa == UNMAPPED_GVA)
4155 return X86EMUL_PROPAGATE_FAULT;
4156 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4157 offset, toread);
4158 if (ret < 0) {
4159 r = X86EMUL_IO_NEEDED;
4160 goto out;
4161 }
4162
4163 bytes -= toread;
4164 data += toread;
4165 addr += toread;
4166 }
4167 out:
4168 return r;
4169 }
4170
4171 /* used for instruction fetching */
4172 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4173 gva_t addr, void *val, unsigned int bytes,
4174 struct x86_exception *exception)
4175 {
4176 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4177 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4178 unsigned offset;
4179 int ret;
4180
4181 /* Inline kvm_read_guest_virt_helper for speed. */
4182 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4183 exception);
4184 if (unlikely(gpa == UNMAPPED_GVA))
4185 return X86EMUL_PROPAGATE_FAULT;
4186
4187 offset = addr & (PAGE_SIZE-1);
4188 if (WARN_ON(offset + bytes > PAGE_SIZE))
4189 bytes = (unsigned)PAGE_SIZE - offset;
4190 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4191 offset, bytes);
4192 if (unlikely(ret < 0))
4193 return X86EMUL_IO_NEEDED;
4194
4195 return X86EMUL_CONTINUE;
4196 }
4197
4198 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4199 gva_t addr, void *val, unsigned int bytes,
4200 struct x86_exception *exception)
4201 {
4202 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4203 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4204
4205 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4206 exception);
4207 }
4208 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4209
4210 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4211 gva_t addr, void *val, unsigned int bytes,
4212 struct x86_exception *exception)
4213 {
4214 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4215 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4216 }
4217
4218 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4219 unsigned long addr, void *val, unsigned int bytes)
4220 {
4221 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4222 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4223
4224 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4225 }
4226
4227 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4228 gva_t addr, void *val,
4229 unsigned int bytes,
4230 struct x86_exception *exception)
4231 {
4232 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4233 void *data = val;
4234 int r = X86EMUL_CONTINUE;
4235
4236 while (bytes) {
4237 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4238 PFERR_WRITE_MASK,
4239 exception);
4240 unsigned offset = addr & (PAGE_SIZE-1);
4241 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4242 int ret;
4243
4244 if (gpa == UNMAPPED_GVA)
4245 return X86EMUL_PROPAGATE_FAULT;
4246 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4247 if (ret < 0) {
4248 r = X86EMUL_IO_NEEDED;
4249 goto out;
4250 }
4251
4252 bytes -= towrite;
4253 data += towrite;
4254 addr += towrite;
4255 }
4256 out:
4257 return r;
4258 }
4259 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4260
4261 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4262 gpa_t *gpa, struct x86_exception *exception,
4263 bool write)
4264 {
4265 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4266 | (write ? PFERR_WRITE_MASK : 0);
4267
4268 if (vcpu_match_mmio_gva(vcpu, gva)
4269 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4270 vcpu->arch.access, access)) {
4271 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4272 (gva & (PAGE_SIZE - 1));
4273 trace_vcpu_match_mmio(gva, *gpa, write, false);
4274 return 1;
4275 }
4276
4277 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4278
4279 if (*gpa == UNMAPPED_GVA)
4280 return -1;
4281
4282 /* For APIC access vmexit */
4283 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4284 return 1;
4285
4286 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4287 trace_vcpu_match_mmio(gva, *gpa, write, true);
4288 return 1;
4289 }
4290
4291 return 0;
4292 }
4293
4294 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4295 const void *val, int bytes)
4296 {
4297 int ret;
4298
4299 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4300 if (ret < 0)
4301 return 0;
4302 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4303 return 1;
4304 }
4305
4306 struct read_write_emulator_ops {
4307 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4308 int bytes);
4309 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4310 void *val, int bytes);
4311 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4312 int bytes, void *val);
4313 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4314 void *val, int bytes);
4315 bool write;
4316 };
4317
4318 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4319 {
4320 if (vcpu->mmio_read_completed) {
4321 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4322 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4323 vcpu->mmio_read_completed = 0;
4324 return 1;
4325 }
4326
4327 return 0;
4328 }
4329
4330 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4331 void *val, int bytes)
4332 {
4333 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4334 }
4335
4336 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4337 void *val, int bytes)
4338 {
4339 return emulator_write_phys(vcpu, gpa, val, bytes);
4340 }
4341
4342 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4343 {
4344 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4345 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4346 }
4347
4348 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4349 void *val, int bytes)
4350 {
4351 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4352 return X86EMUL_IO_NEEDED;
4353 }
4354
4355 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4356 void *val, int bytes)
4357 {
4358 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4359
4360 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4361 return X86EMUL_CONTINUE;
4362 }
4363
4364 static const struct read_write_emulator_ops read_emultor = {
4365 .read_write_prepare = read_prepare,
4366 .read_write_emulate = read_emulate,
4367 .read_write_mmio = vcpu_mmio_read,
4368 .read_write_exit_mmio = read_exit_mmio,
4369 };
4370
4371 static const struct read_write_emulator_ops write_emultor = {
4372 .read_write_emulate = write_emulate,
4373 .read_write_mmio = write_mmio,
4374 .read_write_exit_mmio = write_exit_mmio,
4375 .write = true,
4376 };
4377
4378 static int emulator_read_write_onepage(unsigned long addr, void *val,
4379 unsigned int bytes,
4380 struct x86_exception *exception,
4381 struct kvm_vcpu *vcpu,
4382 const struct read_write_emulator_ops *ops)
4383 {
4384 gpa_t gpa;
4385 int handled, ret;
4386 bool write = ops->write;
4387 struct kvm_mmio_fragment *frag;
4388
4389 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4390
4391 if (ret < 0)
4392 return X86EMUL_PROPAGATE_FAULT;
4393
4394 /* For APIC access vmexit */
4395 if (ret)
4396 goto mmio;
4397
4398 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4399 return X86EMUL_CONTINUE;
4400
4401 mmio:
4402 /*
4403 * Is this MMIO handled locally?
4404 */
4405 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4406 if (handled == bytes)
4407 return X86EMUL_CONTINUE;
4408
4409 gpa += handled;
4410 bytes -= handled;
4411 val += handled;
4412
4413 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4414 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4415 frag->gpa = gpa;
4416 frag->data = val;
4417 frag->len = bytes;
4418 return X86EMUL_CONTINUE;
4419 }
4420
4421 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4422 unsigned long addr,
4423 void *val, unsigned int bytes,
4424 struct x86_exception *exception,
4425 const struct read_write_emulator_ops *ops)
4426 {
4427 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4428 gpa_t gpa;
4429 int rc;
4430
4431 if (ops->read_write_prepare &&
4432 ops->read_write_prepare(vcpu, val, bytes))
4433 return X86EMUL_CONTINUE;
4434
4435 vcpu->mmio_nr_fragments = 0;
4436
4437 /* Crossing a page boundary? */
4438 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4439 int now;
4440
4441 now = -addr & ~PAGE_MASK;
4442 rc = emulator_read_write_onepage(addr, val, now, exception,
4443 vcpu, ops);
4444
4445 if (rc != X86EMUL_CONTINUE)
4446 return rc;
4447 addr += now;
4448 if (ctxt->mode != X86EMUL_MODE_PROT64)
4449 addr = (u32)addr;
4450 val += now;
4451 bytes -= now;
4452 }
4453
4454 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4455 vcpu, ops);
4456 if (rc != X86EMUL_CONTINUE)
4457 return rc;
4458
4459 if (!vcpu->mmio_nr_fragments)
4460 return rc;
4461
4462 gpa = vcpu->mmio_fragments[0].gpa;
4463
4464 vcpu->mmio_needed = 1;
4465 vcpu->mmio_cur_fragment = 0;
4466
4467 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4468 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4469 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4470 vcpu->run->mmio.phys_addr = gpa;
4471
4472 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4473 }
4474
4475 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4476 unsigned long addr,
4477 void *val,
4478 unsigned int bytes,
4479 struct x86_exception *exception)
4480 {
4481 return emulator_read_write(ctxt, addr, val, bytes,
4482 exception, &read_emultor);
4483 }
4484
4485 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4486 unsigned long addr,
4487 const void *val,
4488 unsigned int bytes,
4489 struct x86_exception *exception)
4490 {
4491 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4492 exception, &write_emultor);
4493 }
4494
4495 #define CMPXCHG_TYPE(t, ptr, old, new) \
4496 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4497
4498 #ifdef CONFIG_X86_64
4499 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4500 #else
4501 # define CMPXCHG64(ptr, old, new) \
4502 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4503 #endif
4504
4505 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4506 unsigned long addr,
4507 const void *old,
4508 const void *new,
4509 unsigned int bytes,
4510 struct x86_exception *exception)
4511 {
4512 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4513 gpa_t gpa;
4514 struct page *page;
4515 char *kaddr;
4516 bool exchanged;
4517
4518 /* guests cmpxchg8b have to be emulated atomically */
4519 if (bytes > 8 || (bytes & (bytes - 1)))
4520 goto emul_write;
4521
4522 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4523
4524 if (gpa == UNMAPPED_GVA ||
4525 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4526 goto emul_write;
4527
4528 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4529 goto emul_write;
4530
4531 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4532 if (is_error_page(page))
4533 goto emul_write;
4534
4535 kaddr = kmap_atomic(page);
4536 kaddr += offset_in_page(gpa);
4537 switch (bytes) {
4538 case 1:
4539 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4540 break;
4541 case 2:
4542 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4543 break;
4544 case 4:
4545 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4546 break;
4547 case 8:
4548 exchanged = CMPXCHG64(kaddr, old, new);
4549 break;
4550 default:
4551 BUG();
4552 }
4553 kunmap_atomic(kaddr);
4554 kvm_release_page_dirty(page);
4555
4556 if (!exchanged)
4557 return X86EMUL_CMPXCHG_FAILED;
4558
4559 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4560 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4561
4562 return X86EMUL_CONTINUE;
4563
4564 emul_write:
4565 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4566
4567 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4568 }
4569
4570 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4571 {
4572 /* TODO: String I/O for in kernel device */
4573 int r;
4574
4575 if (vcpu->arch.pio.in)
4576 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4577 vcpu->arch.pio.size, pd);
4578 else
4579 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4580 vcpu->arch.pio.port, vcpu->arch.pio.size,
4581 pd);
4582 return r;
4583 }
4584
4585 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4586 unsigned short port, void *val,
4587 unsigned int count, bool in)
4588 {
4589 vcpu->arch.pio.port = port;
4590 vcpu->arch.pio.in = in;
4591 vcpu->arch.pio.count = count;
4592 vcpu->arch.pio.size = size;
4593
4594 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4595 vcpu->arch.pio.count = 0;
4596 return 1;
4597 }
4598
4599 vcpu->run->exit_reason = KVM_EXIT_IO;
4600 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4601 vcpu->run->io.size = size;
4602 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4603 vcpu->run->io.count = count;
4604 vcpu->run->io.port = port;
4605
4606 return 0;
4607 }
4608
4609 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4610 int size, unsigned short port, void *val,
4611 unsigned int count)
4612 {
4613 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4614 int ret;
4615
4616 if (vcpu->arch.pio.count)
4617 goto data_avail;
4618
4619 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4620 if (ret) {
4621 data_avail:
4622 memcpy(val, vcpu->arch.pio_data, size * count);
4623 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4624 vcpu->arch.pio.count = 0;
4625 return 1;
4626 }
4627
4628 return 0;
4629 }
4630
4631 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4632 int size, unsigned short port,
4633 const void *val, unsigned int count)
4634 {
4635 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4636
4637 memcpy(vcpu->arch.pio_data, val, size * count);
4638 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4639 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4640 }
4641
4642 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4643 {
4644 return kvm_x86_ops->get_segment_base(vcpu, seg);
4645 }
4646
4647 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4648 {
4649 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4650 }
4651
4652 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4653 {
4654 if (!need_emulate_wbinvd(vcpu))
4655 return X86EMUL_CONTINUE;
4656
4657 if (kvm_x86_ops->has_wbinvd_exit()) {
4658 int cpu = get_cpu();
4659
4660 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4661 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4662 wbinvd_ipi, NULL, 1);
4663 put_cpu();
4664 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4665 } else
4666 wbinvd();
4667 return X86EMUL_CONTINUE;
4668 }
4669
4670 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4671 {
4672 kvm_x86_ops->skip_emulated_instruction(vcpu);
4673 return kvm_emulate_wbinvd_noskip(vcpu);
4674 }
4675 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4676
4677
4678
4679 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4680 {
4681 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4682 }
4683
4684 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4685 unsigned long *dest)
4686 {
4687 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4688 }
4689
4690 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4691 unsigned long value)
4692 {
4693
4694 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4695 }
4696
4697 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4698 {
4699 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4700 }
4701
4702 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4703 {
4704 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4705 unsigned long value;
4706
4707 switch (cr) {
4708 case 0:
4709 value = kvm_read_cr0(vcpu);
4710 break;
4711 case 2:
4712 value = vcpu->arch.cr2;
4713 break;
4714 case 3:
4715 value = kvm_read_cr3(vcpu);
4716 break;
4717 case 4:
4718 value = kvm_read_cr4(vcpu);
4719 break;
4720 case 8:
4721 value = kvm_get_cr8(vcpu);
4722 break;
4723 default:
4724 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4725 return 0;
4726 }
4727
4728 return value;
4729 }
4730
4731 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4732 {
4733 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4734 int res = 0;
4735
4736 switch (cr) {
4737 case 0:
4738 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4739 break;
4740 case 2:
4741 vcpu->arch.cr2 = val;
4742 break;
4743 case 3:
4744 res = kvm_set_cr3(vcpu, val);
4745 break;
4746 case 4:
4747 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4748 break;
4749 case 8:
4750 res = kvm_set_cr8(vcpu, val);
4751 break;
4752 default:
4753 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4754 res = -1;
4755 }
4756
4757 return res;
4758 }
4759
4760 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4761 {
4762 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4763 }
4764
4765 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4766 {
4767 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4768 }
4769
4770 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4771 {
4772 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4773 }
4774
4775 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4776 {
4777 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4778 }
4779
4780 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4781 {
4782 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4783 }
4784
4785 static unsigned long emulator_get_cached_segment_base(
4786 struct x86_emulate_ctxt *ctxt, int seg)
4787 {
4788 return get_segment_base(emul_to_vcpu(ctxt), seg);
4789 }
4790
4791 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4792 struct desc_struct *desc, u32 *base3,
4793 int seg)
4794 {
4795 struct kvm_segment var;
4796
4797 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4798 *selector = var.selector;
4799
4800 if (var.unusable) {
4801 memset(desc, 0, sizeof(*desc));
4802 return false;
4803 }
4804
4805 if (var.g)
4806 var.limit >>= 12;
4807 set_desc_limit(desc, var.limit);
4808 set_desc_base(desc, (unsigned long)var.base);
4809 #ifdef CONFIG_X86_64
4810 if (base3)
4811 *base3 = var.base >> 32;
4812 #endif
4813 desc->type = var.type;
4814 desc->s = var.s;
4815 desc->dpl = var.dpl;
4816 desc->p = var.present;
4817 desc->avl = var.avl;
4818 desc->l = var.l;
4819 desc->d = var.db;
4820 desc->g = var.g;
4821
4822 return true;
4823 }
4824
4825 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4826 struct desc_struct *desc, u32 base3,
4827 int seg)
4828 {
4829 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4830 struct kvm_segment var;
4831
4832 var.selector = selector;
4833 var.base = get_desc_base(desc);
4834 #ifdef CONFIG_X86_64
4835 var.base |= ((u64)base3) << 32;
4836 #endif
4837 var.limit = get_desc_limit(desc);
4838 if (desc->g)
4839 var.limit = (var.limit << 12) | 0xfff;
4840 var.type = desc->type;
4841 var.dpl = desc->dpl;
4842 var.db = desc->d;
4843 var.s = desc->s;
4844 var.l = desc->l;
4845 var.g = desc->g;
4846 var.avl = desc->avl;
4847 var.present = desc->p;
4848 var.unusable = !var.present;
4849 var.padding = 0;
4850
4851 kvm_set_segment(vcpu, &var, seg);
4852 return;
4853 }
4854
4855 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4856 u32 msr_index, u64 *pdata)
4857 {
4858 struct msr_data msr;
4859 int r;
4860
4861 msr.index = msr_index;
4862 msr.host_initiated = false;
4863 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4864 if (r)
4865 return r;
4866
4867 *pdata = msr.data;
4868 return 0;
4869 }
4870
4871 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4872 u32 msr_index, u64 data)
4873 {
4874 struct msr_data msr;
4875
4876 msr.data = data;
4877 msr.index = msr_index;
4878 msr.host_initiated = false;
4879 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4880 }
4881
4882 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4883 {
4884 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4885
4886 return vcpu->arch.smbase;
4887 }
4888
4889 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4890 {
4891 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4892
4893 vcpu->arch.smbase = smbase;
4894 }
4895
4896 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4897 u32 pmc)
4898 {
4899 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4900 }
4901
4902 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4903 u32 pmc, u64 *pdata)
4904 {
4905 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4906 }
4907
4908 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4909 {
4910 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4911 }
4912
4913 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4914 {
4915 preempt_disable();
4916 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4917 /*
4918 * CR0.TS may reference the host fpu state, not the guest fpu state,
4919 * so it may be clear at this point.
4920 */
4921 clts();
4922 }
4923
4924 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4925 {
4926 preempt_enable();
4927 }
4928
4929 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4930 struct x86_instruction_info *info,
4931 enum x86_intercept_stage stage)
4932 {
4933 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4934 }
4935
4936 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4937 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4938 {
4939 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4940 }
4941
4942 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4943 {
4944 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4945 }
4946
4947 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4948 {
4949 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4950 }
4951
4952 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4953 {
4954 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4955 }
4956
4957 static const struct x86_emulate_ops emulate_ops = {
4958 .read_gpr = emulator_read_gpr,
4959 .write_gpr = emulator_write_gpr,
4960 .read_std = kvm_read_guest_virt_system,
4961 .write_std = kvm_write_guest_virt_system,
4962 .read_phys = kvm_read_guest_phys_system,
4963 .fetch = kvm_fetch_guest_virt,
4964 .read_emulated = emulator_read_emulated,
4965 .write_emulated = emulator_write_emulated,
4966 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4967 .invlpg = emulator_invlpg,
4968 .pio_in_emulated = emulator_pio_in_emulated,
4969 .pio_out_emulated = emulator_pio_out_emulated,
4970 .get_segment = emulator_get_segment,
4971 .set_segment = emulator_set_segment,
4972 .get_cached_segment_base = emulator_get_cached_segment_base,
4973 .get_gdt = emulator_get_gdt,
4974 .get_idt = emulator_get_idt,
4975 .set_gdt = emulator_set_gdt,
4976 .set_idt = emulator_set_idt,
4977 .get_cr = emulator_get_cr,
4978 .set_cr = emulator_set_cr,
4979 .cpl = emulator_get_cpl,
4980 .get_dr = emulator_get_dr,
4981 .set_dr = emulator_set_dr,
4982 .get_smbase = emulator_get_smbase,
4983 .set_smbase = emulator_set_smbase,
4984 .set_msr = emulator_set_msr,
4985 .get_msr = emulator_get_msr,
4986 .check_pmc = emulator_check_pmc,
4987 .read_pmc = emulator_read_pmc,
4988 .halt = emulator_halt,
4989 .wbinvd = emulator_wbinvd,
4990 .fix_hypercall = emulator_fix_hypercall,
4991 .get_fpu = emulator_get_fpu,
4992 .put_fpu = emulator_put_fpu,
4993 .intercept = emulator_intercept,
4994 .get_cpuid = emulator_get_cpuid,
4995 .set_nmi_mask = emulator_set_nmi_mask,
4996 };
4997
4998 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4999 {
5000 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5001 /*
5002 * an sti; sti; sequence only disable interrupts for the first
5003 * instruction. So, if the last instruction, be it emulated or
5004 * not, left the system with the INT_STI flag enabled, it
5005 * means that the last instruction is an sti. We should not
5006 * leave the flag on in this case. The same goes for mov ss
5007 */
5008 if (int_shadow & mask)
5009 mask = 0;
5010 if (unlikely(int_shadow || mask)) {
5011 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5012 if (!mask)
5013 kvm_make_request(KVM_REQ_EVENT, vcpu);
5014 }
5015 }
5016
5017 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5018 {
5019 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5020 if (ctxt->exception.vector == PF_VECTOR)
5021 return kvm_propagate_fault(vcpu, &ctxt->exception);
5022
5023 if (ctxt->exception.error_code_valid)
5024 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5025 ctxt->exception.error_code);
5026 else
5027 kvm_queue_exception(vcpu, ctxt->exception.vector);
5028 return false;
5029 }
5030
5031 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5032 {
5033 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5034 int cs_db, cs_l;
5035
5036 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5037
5038 ctxt->eflags = kvm_get_rflags(vcpu);
5039 ctxt->eip = kvm_rip_read(vcpu);
5040 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5041 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5042 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5043 cs_db ? X86EMUL_MODE_PROT32 :
5044 X86EMUL_MODE_PROT16;
5045 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5046 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5047 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5048 ctxt->emul_flags = vcpu->arch.hflags;
5049
5050 init_decode_cache(ctxt);
5051 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5052 }
5053
5054 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5055 {
5056 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5057 int ret;
5058
5059 init_emulate_ctxt(vcpu);
5060
5061 ctxt->op_bytes = 2;
5062 ctxt->ad_bytes = 2;
5063 ctxt->_eip = ctxt->eip + inc_eip;
5064 ret = emulate_int_real(ctxt, irq);
5065
5066 if (ret != X86EMUL_CONTINUE)
5067 return EMULATE_FAIL;
5068
5069 ctxt->eip = ctxt->_eip;
5070 kvm_rip_write(vcpu, ctxt->eip);
5071 kvm_set_rflags(vcpu, ctxt->eflags);
5072
5073 if (irq == NMI_VECTOR)
5074 vcpu->arch.nmi_pending = 0;
5075 else
5076 vcpu->arch.interrupt.pending = false;
5077
5078 return EMULATE_DONE;
5079 }
5080 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5081
5082 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5083 {
5084 int r = EMULATE_DONE;
5085
5086 ++vcpu->stat.insn_emulation_fail;
5087 trace_kvm_emulate_insn_failed(vcpu);
5088 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5089 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5090 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5091 vcpu->run->internal.ndata = 0;
5092 r = EMULATE_FAIL;
5093 }
5094 kvm_queue_exception(vcpu, UD_VECTOR);
5095
5096 return r;
5097 }
5098
5099 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5100 bool write_fault_to_shadow_pgtable,
5101 int emulation_type)
5102 {
5103 gpa_t gpa = cr2;
5104 pfn_t pfn;
5105
5106 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5107 return false;
5108
5109 if (!vcpu->arch.mmu.direct_map) {
5110 /*
5111 * Write permission should be allowed since only
5112 * write access need to be emulated.
5113 */
5114 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5115
5116 /*
5117 * If the mapping is invalid in guest, let cpu retry
5118 * it to generate fault.
5119 */
5120 if (gpa == UNMAPPED_GVA)
5121 return true;
5122 }
5123
5124 /*
5125 * Do not retry the unhandleable instruction if it faults on the
5126 * readonly host memory, otherwise it will goto a infinite loop:
5127 * retry instruction -> write #PF -> emulation fail -> retry
5128 * instruction -> ...
5129 */
5130 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5131
5132 /*
5133 * If the instruction failed on the error pfn, it can not be fixed,
5134 * report the error to userspace.
5135 */
5136 if (is_error_noslot_pfn(pfn))
5137 return false;
5138
5139 kvm_release_pfn_clean(pfn);
5140
5141 /* The instructions are well-emulated on direct mmu. */
5142 if (vcpu->arch.mmu.direct_map) {
5143 unsigned int indirect_shadow_pages;
5144
5145 spin_lock(&vcpu->kvm->mmu_lock);
5146 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5147 spin_unlock(&vcpu->kvm->mmu_lock);
5148
5149 if (indirect_shadow_pages)
5150 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5151
5152 return true;
5153 }
5154
5155 /*
5156 * if emulation was due to access to shadowed page table
5157 * and it failed try to unshadow page and re-enter the
5158 * guest to let CPU execute the instruction.
5159 */
5160 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5161
5162 /*
5163 * If the access faults on its page table, it can not
5164 * be fixed by unprotecting shadow page and it should
5165 * be reported to userspace.
5166 */
5167 return !write_fault_to_shadow_pgtable;
5168 }
5169
5170 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5171 unsigned long cr2, int emulation_type)
5172 {
5173 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5174 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5175
5176 last_retry_eip = vcpu->arch.last_retry_eip;
5177 last_retry_addr = vcpu->arch.last_retry_addr;
5178
5179 /*
5180 * If the emulation is caused by #PF and it is non-page_table
5181 * writing instruction, it means the VM-EXIT is caused by shadow
5182 * page protected, we can zap the shadow page and retry this
5183 * instruction directly.
5184 *
5185 * Note: if the guest uses a non-page-table modifying instruction
5186 * on the PDE that points to the instruction, then we will unmap
5187 * the instruction and go to an infinite loop. So, we cache the
5188 * last retried eip and the last fault address, if we meet the eip
5189 * and the address again, we can break out of the potential infinite
5190 * loop.
5191 */
5192 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5193
5194 if (!(emulation_type & EMULTYPE_RETRY))
5195 return false;
5196
5197 if (x86_page_table_writing_insn(ctxt))
5198 return false;
5199
5200 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5201 return false;
5202
5203 vcpu->arch.last_retry_eip = ctxt->eip;
5204 vcpu->arch.last_retry_addr = cr2;
5205
5206 if (!vcpu->arch.mmu.direct_map)
5207 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5208
5209 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5210
5211 return true;
5212 }
5213
5214 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5215 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5216
5217 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5218 {
5219 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5220 /* This is a good place to trace that we are exiting SMM. */
5221 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5222
5223 if (unlikely(vcpu->arch.smi_pending)) {
5224 kvm_make_request(KVM_REQ_SMI, vcpu);
5225 vcpu->arch.smi_pending = 0;
5226 } else {
5227 /* Process a latched INIT, if any. */
5228 kvm_make_request(KVM_REQ_EVENT, vcpu);
5229 }
5230 }
5231
5232 kvm_mmu_reset_context(vcpu);
5233 }
5234
5235 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5236 {
5237 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5238
5239 vcpu->arch.hflags = emul_flags;
5240
5241 if (changed & HF_SMM_MASK)
5242 kvm_smm_changed(vcpu);
5243 }
5244
5245 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5246 unsigned long *db)
5247 {
5248 u32 dr6 = 0;
5249 int i;
5250 u32 enable, rwlen;
5251
5252 enable = dr7;
5253 rwlen = dr7 >> 16;
5254 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5255 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5256 dr6 |= (1 << i);
5257 return dr6;
5258 }
5259
5260 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5261 {
5262 struct kvm_run *kvm_run = vcpu->run;
5263
5264 /*
5265 * rflags is the old, "raw" value of the flags. The new value has
5266 * not been saved yet.
5267 *
5268 * This is correct even for TF set by the guest, because "the
5269 * processor will not generate this exception after the instruction
5270 * that sets the TF flag".
5271 */
5272 if (unlikely(rflags & X86_EFLAGS_TF)) {
5273 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5274 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5275 DR6_RTM;
5276 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5277 kvm_run->debug.arch.exception = DB_VECTOR;
5278 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5279 *r = EMULATE_USER_EXIT;
5280 } else {
5281 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5282 /*
5283 * "Certain debug exceptions may clear bit 0-3. The
5284 * remaining contents of the DR6 register are never
5285 * cleared by the processor".
5286 */
5287 vcpu->arch.dr6 &= ~15;
5288 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5289 kvm_queue_exception(vcpu, DB_VECTOR);
5290 }
5291 }
5292 }
5293
5294 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5295 {
5296 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5297 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5298 struct kvm_run *kvm_run = vcpu->run;
5299 unsigned long eip = kvm_get_linear_rip(vcpu);
5300 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5301 vcpu->arch.guest_debug_dr7,
5302 vcpu->arch.eff_db);
5303
5304 if (dr6 != 0) {
5305 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5306 kvm_run->debug.arch.pc = eip;
5307 kvm_run->debug.arch.exception = DB_VECTOR;
5308 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5309 *r = EMULATE_USER_EXIT;
5310 return true;
5311 }
5312 }
5313
5314 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5315 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5316 unsigned long eip = kvm_get_linear_rip(vcpu);
5317 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5318 vcpu->arch.dr7,
5319 vcpu->arch.db);
5320
5321 if (dr6 != 0) {
5322 vcpu->arch.dr6 &= ~15;
5323 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5324 kvm_queue_exception(vcpu, DB_VECTOR);
5325 *r = EMULATE_DONE;
5326 return true;
5327 }
5328 }
5329
5330 return false;
5331 }
5332
5333 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5334 unsigned long cr2,
5335 int emulation_type,
5336 void *insn,
5337 int insn_len)
5338 {
5339 int r;
5340 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5341 bool writeback = true;
5342 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5343
5344 /*
5345 * Clear write_fault_to_shadow_pgtable here to ensure it is
5346 * never reused.
5347 */
5348 vcpu->arch.write_fault_to_shadow_pgtable = false;
5349 kvm_clear_exception_queue(vcpu);
5350
5351 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5352 init_emulate_ctxt(vcpu);
5353
5354 /*
5355 * We will reenter on the same instruction since
5356 * we do not set complete_userspace_io. This does not
5357 * handle watchpoints yet, those would be handled in
5358 * the emulate_ops.
5359 */
5360 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5361 return r;
5362
5363 ctxt->interruptibility = 0;
5364 ctxt->have_exception = false;
5365 ctxt->exception.vector = -1;
5366 ctxt->perm_ok = false;
5367
5368 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5369
5370 r = x86_decode_insn(ctxt, insn, insn_len);
5371
5372 trace_kvm_emulate_insn_start(vcpu);
5373 ++vcpu->stat.insn_emulation;
5374 if (r != EMULATION_OK) {
5375 if (emulation_type & EMULTYPE_TRAP_UD)
5376 return EMULATE_FAIL;
5377 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5378 emulation_type))
5379 return EMULATE_DONE;
5380 if (emulation_type & EMULTYPE_SKIP)
5381 return EMULATE_FAIL;
5382 return handle_emulation_failure(vcpu);
5383 }
5384 }
5385
5386 if (emulation_type & EMULTYPE_SKIP) {
5387 kvm_rip_write(vcpu, ctxt->_eip);
5388 if (ctxt->eflags & X86_EFLAGS_RF)
5389 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5390 return EMULATE_DONE;
5391 }
5392
5393 if (retry_instruction(ctxt, cr2, emulation_type))
5394 return EMULATE_DONE;
5395
5396 /* this is needed for vmware backdoor interface to work since it
5397 changes registers values during IO operation */
5398 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5399 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5400 emulator_invalidate_register_cache(ctxt);
5401 }
5402
5403 restart:
5404 r = x86_emulate_insn(ctxt);
5405
5406 if (r == EMULATION_INTERCEPTED)
5407 return EMULATE_DONE;
5408
5409 if (r == EMULATION_FAILED) {
5410 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5411 emulation_type))
5412 return EMULATE_DONE;
5413
5414 return handle_emulation_failure(vcpu);
5415 }
5416
5417 if (ctxt->have_exception) {
5418 r = EMULATE_DONE;
5419 if (inject_emulated_exception(vcpu))
5420 return r;
5421 } else if (vcpu->arch.pio.count) {
5422 if (!vcpu->arch.pio.in) {
5423 /* FIXME: return into emulator if single-stepping. */
5424 vcpu->arch.pio.count = 0;
5425 } else {
5426 writeback = false;
5427 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5428 }
5429 r = EMULATE_USER_EXIT;
5430 } else if (vcpu->mmio_needed) {
5431 if (!vcpu->mmio_is_write)
5432 writeback = false;
5433 r = EMULATE_USER_EXIT;
5434 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5435 } else if (r == EMULATION_RESTART)
5436 goto restart;
5437 else
5438 r = EMULATE_DONE;
5439
5440 if (writeback) {
5441 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5442 toggle_interruptibility(vcpu, ctxt->interruptibility);
5443 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5444 if (vcpu->arch.hflags != ctxt->emul_flags)
5445 kvm_set_hflags(vcpu, ctxt->emul_flags);
5446 kvm_rip_write(vcpu, ctxt->eip);
5447 if (r == EMULATE_DONE)
5448 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5449 if (!ctxt->have_exception ||
5450 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5451 __kvm_set_rflags(vcpu, ctxt->eflags);
5452
5453 /*
5454 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5455 * do nothing, and it will be requested again as soon as
5456 * the shadow expires. But we still need to check here,
5457 * because POPF has no interrupt shadow.
5458 */
5459 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5460 kvm_make_request(KVM_REQ_EVENT, vcpu);
5461 } else
5462 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5463
5464 return r;
5465 }
5466 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5467
5468 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5469 {
5470 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5471 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5472 size, port, &val, 1);
5473 /* do not return to emulator after return from userspace */
5474 vcpu->arch.pio.count = 0;
5475 return ret;
5476 }
5477 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5478
5479 static void tsc_bad(void *info)
5480 {
5481 __this_cpu_write(cpu_tsc_khz, 0);
5482 }
5483
5484 static void tsc_khz_changed(void *data)
5485 {
5486 struct cpufreq_freqs *freq = data;
5487 unsigned long khz = 0;
5488
5489 if (data)
5490 khz = freq->new;
5491 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5492 khz = cpufreq_quick_get(raw_smp_processor_id());
5493 if (!khz)
5494 khz = tsc_khz;
5495 __this_cpu_write(cpu_tsc_khz, khz);
5496 }
5497
5498 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5499 void *data)
5500 {
5501 struct cpufreq_freqs *freq = data;
5502 struct kvm *kvm;
5503 struct kvm_vcpu *vcpu;
5504 int i, send_ipi = 0;
5505
5506 /*
5507 * We allow guests to temporarily run on slowing clocks,
5508 * provided we notify them after, or to run on accelerating
5509 * clocks, provided we notify them before. Thus time never
5510 * goes backwards.
5511 *
5512 * However, we have a problem. We can't atomically update
5513 * the frequency of a given CPU from this function; it is
5514 * merely a notifier, which can be called from any CPU.
5515 * Changing the TSC frequency at arbitrary points in time
5516 * requires a recomputation of local variables related to
5517 * the TSC for each VCPU. We must flag these local variables
5518 * to be updated and be sure the update takes place with the
5519 * new frequency before any guests proceed.
5520 *
5521 * Unfortunately, the combination of hotplug CPU and frequency
5522 * change creates an intractable locking scenario; the order
5523 * of when these callouts happen is undefined with respect to
5524 * CPU hotplug, and they can race with each other. As such,
5525 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5526 * undefined; you can actually have a CPU frequency change take
5527 * place in between the computation of X and the setting of the
5528 * variable. To protect against this problem, all updates of
5529 * the per_cpu tsc_khz variable are done in an interrupt
5530 * protected IPI, and all callers wishing to update the value
5531 * must wait for a synchronous IPI to complete (which is trivial
5532 * if the caller is on the CPU already). This establishes the
5533 * necessary total order on variable updates.
5534 *
5535 * Note that because a guest time update may take place
5536 * anytime after the setting of the VCPU's request bit, the
5537 * correct TSC value must be set before the request. However,
5538 * to ensure the update actually makes it to any guest which
5539 * starts running in hardware virtualization between the set
5540 * and the acquisition of the spinlock, we must also ping the
5541 * CPU after setting the request bit.
5542 *
5543 */
5544
5545 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5546 return 0;
5547 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5548 return 0;
5549
5550 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5551
5552 spin_lock(&kvm_lock);
5553 list_for_each_entry(kvm, &vm_list, vm_list) {
5554 kvm_for_each_vcpu(i, vcpu, kvm) {
5555 if (vcpu->cpu != freq->cpu)
5556 continue;
5557 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5558 if (vcpu->cpu != smp_processor_id())
5559 send_ipi = 1;
5560 }
5561 }
5562 spin_unlock(&kvm_lock);
5563
5564 if (freq->old < freq->new && send_ipi) {
5565 /*
5566 * We upscale the frequency. Must make the guest
5567 * doesn't see old kvmclock values while running with
5568 * the new frequency, otherwise we risk the guest sees
5569 * time go backwards.
5570 *
5571 * In case we update the frequency for another cpu
5572 * (which might be in guest context) send an interrupt
5573 * to kick the cpu out of guest context. Next time
5574 * guest context is entered kvmclock will be updated,
5575 * so the guest will not see stale values.
5576 */
5577 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5578 }
5579 return 0;
5580 }
5581
5582 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5583 .notifier_call = kvmclock_cpufreq_notifier
5584 };
5585
5586 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5587 unsigned long action, void *hcpu)
5588 {
5589 unsigned int cpu = (unsigned long)hcpu;
5590
5591 switch (action) {
5592 case CPU_ONLINE:
5593 case CPU_DOWN_FAILED:
5594 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5595 break;
5596 case CPU_DOWN_PREPARE:
5597 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5598 break;
5599 }
5600 return NOTIFY_OK;
5601 }
5602
5603 static struct notifier_block kvmclock_cpu_notifier_block = {
5604 .notifier_call = kvmclock_cpu_notifier,
5605 .priority = -INT_MAX
5606 };
5607
5608 static void kvm_timer_init(void)
5609 {
5610 int cpu;
5611
5612 max_tsc_khz = tsc_khz;
5613
5614 cpu_notifier_register_begin();
5615 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5616 #ifdef CONFIG_CPU_FREQ
5617 struct cpufreq_policy policy;
5618 memset(&policy, 0, sizeof(policy));
5619 cpu = get_cpu();
5620 cpufreq_get_policy(&policy, cpu);
5621 if (policy.cpuinfo.max_freq)
5622 max_tsc_khz = policy.cpuinfo.max_freq;
5623 put_cpu();
5624 #endif
5625 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5626 CPUFREQ_TRANSITION_NOTIFIER);
5627 }
5628 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5629 for_each_online_cpu(cpu)
5630 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5631
5632 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5633 cpu_notifier_register_done();
5634
5635 }
5636
5637 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5638
5639 int kvm_is_in_guest(void)
5640 {
5641 return __this_cpu_read(current_vcpu) != NULL;
5642 }
5643
5644 static int kvm_is_user_mode(void)
5645 {
5646 int user_mode = 3;
5647
5648 if (__this_cpu_read(current_vcpu))
5649 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5650
5651 return user_mode != 0;
5652 }
5653
5654 static unsigned long kvm_get_guest_ip(void)
5655 {
5656 unsigned long ip = 0;
5657
5658 if (__this_cpu_read(current_vcpu))
5659 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5660
5661 return ip;
5662 }
5663
5664 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5665 .is_in_guest = kvm_is_in_guest,
5666 .is_user_mode = kvm_is_user_mode,
5667 .get_guest_ip = kvm_get_guest_ip,
5668 };
5669
5670 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5671 {
5672 __this_cpu_write(current_vcpu, vcpu);
5673 }
5674 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5675
5676 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5677 {
5678 __this_cpu_write(current_vcpu, NULL);
5679 }
5680 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5681
5682 static void kvm_set_mmio_spte_mask(void)
5683 {
5684 u64 mask;
5685 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5686
5687 /*
5688 * Set the reserved bits and the present bit of an paging-structure
5689 * entry to generate page fault with PFER.RSV = 1.
5690 */
5691 /* Mask the reserved physical address bits. */
5692 mask = rsvd_bits(maxphyaddr, 51);
5693
5694 /* Bit 62 is always reserved for 32bit host. */
5695 mask |= 0x3ull << 62;
5696
5697 /* Set the present bit. */
5698 mask |= 1ull;
5699
5700 #ifdef CONFIG_X86_64
5701 /*
5702 * If reserved bit is not supported, clear the present bit to disable
5703 * mmio page fault.
5704 */
5705 if (maxphyaddr == 52)
5706 mask &= ~1ull;
5707 #endif
5708
5709 kvm_mmu_set_mmio_spte_mask(mask);
5710 }
5711
5712 #ifdef CONFIG_X86_64
5713 static void pvclock_gtod_update_fn(struct work_struct *work)
5714 {
5715 struct kvm *kvm;
5716
5717 struct kvm_vcpu *vcpu;
5718 int i;
5719
5720 spin_lock(&kvm_lock);
5721 list_for_each_entry(kvm, &vm_list, vm_list)
5722 kvm_for_each_vcpu(i, vcpu, kvm)
5723 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5724 atomic_set(&kvm_guest_has_master_clock, 0);
5725 spin_unlock(&kvm_lock);
5726 }
5727
5728 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5729
5730 /*
5731 * Notification about pvclock gtod data update.
5732 */
5733 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5734 void *priv)
5735 {
5736 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5737 struct timekeeper *tk = priv;
5738
5739 update_pvclock_gtod(tk);
5740
5741 /* disable master clock if host does not trust, or does not
5742 * use, TSC clocksource
5743 */
5744 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5745 atomic_read(&kvm_guest_has_master_clock) != 0)
5746 queue_work(system_long_wq, &pvclock_gtod_work);
5747
5748 return 0;
5749 }
5750
5751 static struct notifier_block pvclock_gtod_notifier = {
5752 .notifier_call = pvclock_gtod_notify,
5753 };
5754 #endif
5755
5756 int kvm_arch_init(void *opaque)
5757 {
5758 int r;
5759 struct kvm_x86_ops *ops = opaque;
5760
5761 if (kvm_x86_ops) {
5762 printk(KERN_ERR "kvm: already loaded the other module\n");
5763 r = -EEXIST;
5764 goto out;
5765 }
5766
5767 if (!ops->cpu_has_kvm_support()) {
5768 printk(KERN_ERR "kvm: no hardware support\n");
5769 r = -EOPNOTSUPP;
5770 goto out;
5771 }
5772 if (ops->disabled_by_bios()) {
5773 printk(KERN_ERR "kvm: disabled by bios\n");
5774 r = -EOPNOTSUPP;
5775 goto out;
5776 }
5777
5778 r = -ENOMEM;
5779 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5780 if (!shared_msrs) {
5781 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5782 goto out;
5783 }
5784
5785 r = kvm_mmu_module_init();
5786 if (r)
5787 goto out_free_percpu;
5788
5789 kvm_set_mmio_spte_mask();
5790
5791 kvm_x86_ops = ops;
5792
5793 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5794 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5795
5796 kvm_timer_init();
5797
5798 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5799
5800 if (cpu_has_xsave)
5801 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5802
5803 kvm_lapic_init();
5804 #ifdef CONFIG_X86_64
5805 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5806 #endif
5807
5808 return 0;
5809
5810 out_free_percpu:
5811 free_percpu(shared_msrs);
5812 out:
5813 return r;
5814 }
5815
5816 void kvm_arch_exit(void)
5817 {
5818 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5819
5820 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5821 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5822 CPUFREQ_TRANSITION_NOTIFIER);
5823 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5824 #ifdef CONFIG_X86_64
5825 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5826 #endif
5827 kvm_x86_ops = NULL;
5828 kvm_mmu_module_exit();
5829 free_percpu(shared_msrs);
5830 }
5831
5832 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5833 {
5834 ++vcpu->stat.halt_exits;
5835 if (lapic_in_kernel(vcpu)) {
5836 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5837 return 1;
5838 } else {
5839 vcpu->run->exit_reason = KVM_EXIT_HLT;
5840 return 0;
5841 }
5842 }
5843 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5844
5845 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5846 {
5847 kvm_x86_ops->skip_emulated_instruction(vcpu);
5848 return kvm_vcpu_halt(vcpu);
5849 }
5850 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5851
5852 /*
5853 * kvm_pv_kick_cpu_op: Kick a vcpu.
5854 *
5855 * @apicid - apicid of vcpu to be kicked.
5856 */
5857 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5858 {
5859 struct kvm_lapic_irq lapic_irq;
5860
5861 lapic_irq.shorthand = 0;
5862 lapic_irq.dest_mode = 0;
5863 lapic_irq.dest_id = apicid;
5864 lapic_irq.msi_redir_hint = false;
5865
5866 lapic_irq.delivery_mode = APIC_DM_REMRD;
5867 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5868 }
5869
5870 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5871 {
5872 unsigned long nr, a0, a1, a2, a3, ret;
5873 int op_64_bit, r = 1;
5874
5875 kvm_x86_ops->skip_emulated_instruction(vcpu);
5876
5877 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5878 return kvm_hv_hypercall(vcpu);
5879
5880 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5881 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5882 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5883 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5884 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5885
5886 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5887
5888 op_64_bit = is_64_bit_mode(vcpu);
5889 if (!op_64_bit) {
5890 nr &= 0xFFFFFFFF;
5891 a0 &= 0xFFFFFFFF;
5892 a1 &= 0xFFFFFFFF;
5893 a2 &= 0xFFFFFFFF;
5894 a3 &= 0xFFFFFFFF;
5895 }
5896
5897 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5898 ret = -KVM_EPERM;
5899 goto out;
5900 }
5901
5902 switch (nr) {
5903 case KVM_HC_VAPIC_POLL_IRQ:
5904 ret = 0;
5905 break;
5906 case KVM_HC_KICK_CPU:
5907 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5908 ret = 0;
5909 break;
5910 default:
5911 ret = -KVM_ENOSYS;
5912 break;
5913 }
5914 out:
5915 if (!op_64_bit)
5916 ret = (u32)ret;
5917 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5918 ++vcpu->stat.hypercalls;
5919 return r;
5920 }
5921 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5922
5923 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5924 {
5925 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5926 char instruction[3];
5927 unsigned long rip = kvm_rip_read(vcpu);
5928
5929 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5930
5931 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5932 }
5933
5934 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5935 {
5936 return vcpu->run->request_interrupt_window &&
5937 likely(!pic_in_kernel(vcpu->kvm));
5938 }
5939
5940 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5941 {
5942 struct kvm_run *kvm_run = vcpu->run;
5943
5944 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5945 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5946 kvm_run->cr8 = kvm_get_cr8(vcpu);
5947 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5948 kvm_run->ready_for_interrupt_injection =
5949 pic_in_kernel(vcpu->kvm) ||
5950 kvm_vcpu_ready_for_interrupt_injection(vcpu);
5951 }
5952
5953 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5954 {
5955 int max_irr, tpr;
5956
5957 if (!kvm_x86_ops->update_cr8_intercept)
5958 return;
5959
5960 if (!vcpu->arch.apic)
5961 return;
5962
5963 if (!vcpu->arch.apic->vapic_addr)
5964 max_irr = kvm_lapic_find_highest_irr(vcpu);
5965 else
5966 max_irr = -1;
5967
5968 if (max_irr != -1)
5969 max_irr >>= 4;
5970
5971 tpr = kvm_lapic_get_cr8(vcpu);
5972
5973 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5974 }
5975
5976 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5977 {
5978 int r;
5979
5980 /* try to reinject previous events if any */
5981 if (vcpu->arch.exception.pending) {
5982 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5983 vcpu->arch.exception.has_error_code,
5984 vcpu->arch.exception.error_code);
5985
5986 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5987 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5988 X86_EFLAGS_RF);
5989
5990 if (vcpu->arch.exception.nr == DB_VECTOR &&
5991 (vcpu->arch.dr7 & DR7_GD)) {
5992 vcpu->arch.dr7 &= ~DR7_GD;
5993 kvm_update_dr7(vcpu);
5994 }
5995
5996 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5997 vcpu->arch.exception.has_error_code,
5998 vcpu->arch.exception.error_code,
5999 vcpu->arch.exception.reinject);
6000 return 0;
6001 }
6002
6003 if (vcpu->arch.nmi_injected) {
6004 kvm_x86_ops->set_nmi(vcpu);
6005 return 0;
6006 }
6007
6008 if (vcpu->arch.interrupt.pending) {
6009 kvm_x86_ops->set_irq(vcpu);
6010 return 0;
6011 }
6012
6013 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6014 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6015 if (r != 0)
6016 return r;
6017 }
6018
6019 /* try to inject new event if pending */
6020 if (vcpu->arch.nmi_pending) {
6021 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6022 --vcpu->arch.nmi_pending;
6023 vcpu->arch.nmi_injected = true;
6024 kvm_x86_ops->set_nmi(vcpu);
6025 }
6026 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6027 /*
6028 * Because interrupts can be injected asynchronously, we are
6029 * calling check_nested_events again here to avoid a race condition.
6030 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6031 * proposal and current concerns. Perhaps we should be setting
6032 * KVM_REQ_EVENT only on certain events and not unconditionally?
6033 */
6034 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6035 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6036 if (r != 0)
6037 return r;
6038 }
6039 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6040 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6041 false);
6042 kvm_x86_ops->set_irq(vcpu);
6043 }
6044 }
6045 return 0;
6046 }
6047
6048 static void process_nmi(struct kvm_vcpu *vcpu)
6049 {
6050 unsigned limit = 2;
6051
6052 /*
6053 * x86 is limited to one NMI running, and one NMI pending after it.
6054 * If an NMI is already in progress, limit further NMIs to just one.
6055 * Otherwise, allow two (and we'll inject the first one immediately).
6056 */
6057 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6058 limit = 1;
6059
6060 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6061 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6062 kvm_make_request(KVM_REQ_EVENT, vcpu);
6063 }
6064
6065 #define put_smstate(type, buf, offset, val) \
6066 *(type *)((buf) + (offset) - 0x7e00) = val
6067
6068 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6069 {
6070 u32 flags = 0;
6071 flags |= seg->g << 23;
6072 flags |= seg->db << 22;
6073 flags |= seg->l << 21;
6074 flags |= seg->avl << 20;
6075 flags |= seg->present << 15;
6076 flags |= seg->dpl << 13;
6077 flags |= seg->s << 12;
6078 flags |= seg->type << 8;
6079 return flags;
6080 }
6081
6082 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6083 {
6084 struct kvm_segment seg;
6085 int offset;
6086
6087 kvm_get_segment(vcpu, &seg, n);
6088 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6089
6090 if (n < 3)
6091 offset = 0x7f84 + n * 12;
6092 else
6093 offset = 0x7f2c + (n - 3) * 12;
6094
6095 put_smstate(u32, buf, offset + 8, seg.base);
6096 put_smstate(u32, buf, offset + 4, seg.limit);
6097 put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6098 }
6099
6100 #ifdef CONFIG_X86_64
6101 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6102 {
6103 struct kvm_segment seg;
6104 int offset;
6105 u16 flags;
6106
6107 kvm_get_segment(vcpu, &seg, n);
6108 offset = 0x7e00 + n * 16;
6109
6110 flags = process_smi_get_segment_flags(&seg) >> 8;
6111 put_smstate(u16, buf, offset, seg.selector);
6112 put_smstate(u16, buf, offset + 2, flags);
6113 put_smstate(u32, buf, offset + 4, seg.limit);
6114 put_smstate(u64, buf, offset + 8, seg.base);
6115 }
6116 #endif
6117
6118 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6119 {
6120 struct desc_ptr dt;
6121 struct kvm_segment seg;
6122 unsigned long val;
6123 int i;
6124
6125 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6126 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6127 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6128 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6129
6130 for (i = 0; i < 8; i++)
6131 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6132
6133 kvm_get_dr(vcpu, 6, &val);
6134 put_smstate(u32, buf, 0x7fcc, (u32)val);
6135 kvm_get_dr(vcpu, 7, &val);
6136 put_smstate(u32, buf, 0x7fc8, (u32)val);
6137
6138 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6139 put_smstate(u32, buf, 0x7fc4, seg.selector);
6140 put_smstate(u32, buf, 0x7f64, seg.base);
6141 put_smstate(u32, buf, 0x7f60, seg.limit);
6142 put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6143
6144 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6145 put_smstate(u32, buf, 0x7fc0, seg.selector);
6146 put_smstate(u32, buf, 0x7f80, seg.base);
6147 put_smstate(u32, buf, 0x7f7c, seg.limit);
6148 put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6149
6150 kvm_x86_ops->get_gdt(vcpu, &dt);
6151 put_smstate(u32, buf, 0x7f74, dt.address);
6152 put_smstate(u32, buf, 0x7f70, dt.size);
6153
6154 kvm_x86_ops->get_idt(vcpu, &dt);
6155 put_smstate(u32, buf, 0x7f58, dt.address);
6156 put_smstate(u32, buf, 0x7f54, dt.size);
6157
6158 for (i = 0; i < 6; i++)
6159 process_smi_save_seg_32(vcpu, buf, i);
6160
6161 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6162
6163 /* revision id */
6164 put_smstate(u32, buf, 0x7efc, 0x00020000);
6165 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6166 }
6167
6168 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6169 {
6170 #ifdef CONFIG_X86_64
6171 struct desc_ptr dt;
6172 struct kvm_segment seg;
6173 unsigned long val;
6174 int i;
6175
6176 for (i = 0; i < 16; i++)
6177 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6178
6179 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6180 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6181
6182 kvm_get_dr(vcpu, 6, &val);
6183 put_smstate(u64, buf, 0x7f68, val);
6184 kvm_get_dr(vcpu, 7, &val);
6185 put_smstate(u64, buf, 0x7f60, val);
6186
6187 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6188 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6189 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6190
6191 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6192
6193 /* revision id */
6194 put_smstate(u32, buf, 0x7efc, 0x00020064);
6195
6196 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6197
6198 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6199 put_smstate(u16, buf, 0x7e90, seg.selector);
6200 put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6201 put_smstate(u32, buf, 0x7e94, seg.limit);
6202 put_smstate(u64, buf, 0x7e98, seg.base);
6203
6204 kvm_x86_ops->get_idt(vcpu, &dt);
6205 put_smstate(u32, buf, 0x7e84, dt.size);
6206 put_smstate(u64, buf, 0x7e88, dt.address);
6207
6208 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6209 put_smstate(u16, buf, 0x7e70, seg.selector);
6210 put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6211 put_smstate(u32, buf, 0x7e74, seg.limit);
6212 put_smstate(u64, buf, 0x7e78, seg.base);
6213
6214 kvm_x86_ops->get_gdt(vcpu, &dt);
6215 put_smstate(u32, buf, 0x7e64, dt.size);
6216 put_smstate(u64, buf, 0x7e68, dt.address);
6217
6218 for (i = 0; i < 6; i++)
6219 process_smi_save_seg_64(vcpu, buf, i);
6220 #else
6221 WARN_ON_ONCE(1);
6222 #endif
6223 }
6224
6225 static void process_smi(struct kvm_vcpu *vcpu)
6226 {
6227 struct kvm_segment cs, ds;
6228 struct desc_ptr dt;
6229 char buf[512];
6230 u32 cr0;
6231
6232 if (is_smm(vcpu)) {
6233 vcpu->arch.smi_pending = true;
6234 return;
6235 }
6236
6237 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6238 vcpu->arch.hflags |= HF_SMM_MASK;
6239 memset(buf, 0, 512);
6240 if (guest_cpuid_has_longmode(vcpu))
6241 process_smi_save_state_64(vcpu, buf);
6242 else
6243 process_smi_save_state_32(vcpu, buf);
6244
6245 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6246
6247 if (kvm_x86_ops->get_nmi_mask(vcpu))
6248 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6249 else
6250 kvm_x86_ops->set_nmi_mask(vcpu, true);
6251
6252 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6253 kvm_rip_write(vcpu, 0x8000);
6254
6255 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6256 kvm_x86_ops->set_cr0(vcpu, cr0);
6257 vcpu->arch.cr0 = cr0;
6258
6259 kvm_x86_ops->set_cr4(vcpu, 0);
6260
6261 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6262 dt.address = dt.size = 0;
6263 kvm_x86_ops->set_idt(vcpu, &dt);
6264
6265 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6266
6267 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6268 cs.base = vcpu->arch.smbase;
6269
6270 ds.selector = 0;
6271 ds.base = 0;
6272
6273 cs.limit = ds.limit = 0xffffffff;
6274 cs.type = ds.type = 0x3;
6275 cs.dpl = ds.dpl = 0;
6276 cs.db = ds.db = 0;
6277 cs.s = ds.s = 1;
6278 cs.l = ds.l = 0;
6279 cs.g = ds.g = 1;
6280 cs.avl = ds.avl = 0;
6281 cs.present = ds.present = 1;
6282 cs.unusable = ds.unusable = 0;
6283 cs.padding = ds.padding = 0;
6284
6285 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6286 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6287 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6288 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6289 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6290 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6291
6292 if (guest_cpuid_has_longmode(vcpu))
6293 kvm_x86_ops->set_efer(vcpu, 0);
6294
6295 kvm_update_cpuid(vcpu);
6296 kvm_mmu_reset_context(vcpu);
6297 }
6298
6299 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6300 {
6301 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6302 return;
6303
6304 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6305
6306 if (irqchip_split(vcpu->kvm))
6307 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6308 else {
6309 kvm_x86_ops->sync_pir_to_irr(vcpu);
6310 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6311 }
6312 kvm_x86_ops->load_eoi_exitmap(vcpu,
6313 (u64 *)vcpu->arch.ioapic_handled_vectors);
6314 }
6315
6316 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6317 {
6318 ++vcpu->stat.tlb_flush;
6319 kvm_x86_ops->tlb_flush(vcpu);
6320 }
6321
6322 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6323 {
6324 struct page *page = NULL;
6325
6326 if (!lapic_in_kernel(vcpu))
6327 return;
6328
6329 if (!kvm_x86_ops->set_apic_access_page_addr)
6330 return;
6331
6332 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6333 if (is_error_page(page))
6334 return;
6335 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6336
6337 /*
6338 * Do not pin apic access page in memory, the MMU notifier
6339 * will call us again if it is migrated or swapped out.
6340 */
6341 put_page(page);
6342 }
6343 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6344
6345 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6346 unsigned long address)
6347 {
6348 /*
6349 * The physical address of apic access page is stored in the VMCS.
6350 * Update it when it becomes invalid.
6351 */
6352 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6353 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6354 }
6355
6356 /*
6357 * Returns 1 to let vcpu_run() continue the guest execution loop without
6358 * exiting to the userspace. Otherwise, the value will be returned to the
6359 * userspace.
6360 */
6361 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6362 {
6363 int r;
6364 bool req_int_win =
6365 dm_request_for_irq_injection(vcpu) &&
6366 kvm_cpu_accept_dm_intr(vcpu);
6367
6368 bool req_immediate_exit = false;
6369
6370 if (vcpu->requests) {
6371 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6372 kvm_mmu_unload(vcpu);
6373 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6374 __kvm_migrate_timers(vcpu);
6375 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6376 kvm_gen_update_masterclock(vcpu->kvm);
6377 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6378 kvm_gen_kvmclock_update(vcpu);
6379 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6380 r = kvm_guest_time_update(vcpu);
6381 if (unlikely(r))
6382 goto out;
6383 }
6384 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6385 kvm_mmu_sync_roots(vcpu);
6386 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6387 kvm_vcpu_flush_tlb(vcpu);
6388 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6389 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6390 r = 0;
6391 goto out;
6392 }
6393 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6394 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6395 r = 0;
6396 goto out;
6397 }
6398 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6399 vcpu->fpu_active = 0;
6400 kvm_x86_ops->fpu_deactivate(vcpu);
6401 }
6402 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6403 /* Page is swapped out. Do synthetic halt */
6404 vcpu->arch.apf.halted = true;
6405 r = 1;
6406 goto out;
6407 }
6408 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6409 record_steal_time(vcpu);
6410 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6411 process_smi(vcpu);
6412 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6413 process_nmi(vcpu);
6414 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6415 kvm_pmu_handle_event(vcpu);
6416 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6417 kvm_pmu_deliver_pmi(vcpu);
6418 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6419 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6420 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6421 vcpu->arch.ioapic_handled_vectors)) {
6422 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6423 vcpu->run->eoi.vector =
6424 vcpu->arch.pending_ioapic_eoi;
6425 r = 0;
6426 goto out;
6427 }
6428 }
6429 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6430 vcpu_scan_ioapic(vcpu);
6431 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6432 kvm_vcpu_reload_apic_access_page(vcpu);
6433 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6434 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6435 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6436 r = 0;
6437 goto out;
6438 }
6439 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6440 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6441 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6442 r = 0;
6443 goto out;
6444 }
6445 }
6446
6447 /*
6448 * KVM_REQ_EVENT is not set when posted interrupts are set by
6449 * VT-d hardware, so we have to update RVI unconditionally.
6450 */
6451 if (kvm_lapic_enabled(vcpu)) {
6452 /*
6453 * Update architecture specific hints for APIC
6454 * virtual interrupt delivery.
6455 */
6456 if (kvm_x86_ops->hwapic_irr_update)
6457 kvm_x86_ops->hwapic_irr_update(vcpu,
6458 kvm_lapic_find_highest_irr(vcpu));
6459 }
6460
6461 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6462 kvm_apic_accept_events(vcpu);
6463 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6464 r = 1;
6465 goto out;
6466 }
6467
6468 if (inject_pending_event(vcpu, req_int_win) != 0)
6469 req_immediate_exit = true;
6470 /* enable NMI/IRQ window open exits if needed */
6471 else if (vcpu->arch.nmi_pending)
6472 kvm_x86_ops->enable_nmi_window(vcpu);
6473 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6474 kvm_x86_ops->enable_irq_window(vcpu);
6475
6476 if (kvm_lapic_enabled(vcpu)) {
6477 update_cr8_intercept(vcpu);
6478 kvm_lapic_sync_to_vapic(vcpu);
6479 }
6480 }
6481
6482 r = kvm_mmu_reload(vcpu);
6483 if (unlikely(r)) {
6484 goto cancel_injection;
6485 }
6486
6487 preempt_disable();
6488
6489 kvm_x86_ops->prepare_guest_switch(vcpu);
6490 if (vcpu->fpu_active)
6491 kvm_load_guest_fpu(vcpu);
6492 kvm_load_guest_xcr0(vcpu);
6493
6494 vcpu->mode = IN_GUEST_MODE;
6495
6496 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6497
6498 /* We should set ->mode before check ->requests,
6499 * see the comment in make_all_cpus_request.
6500 */
6501 smp_mb__after_srcu_read_unlock();
6502
6503 local_irq_disable();
6504
6505 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6506 || need_resched() || signal_pending(current)) {
6507 vcpu->mode = OUTSIDE_GUEST_MODE;
6508 smp_wmb();
6509 local_irq_enable();
6510 preempt_enable();
6511 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6512 r = 1;
6513 goto cancel_injection;
6514 }
6515
6516 if (req_immediate_exit)
6517 smp_send_reschedule(vcpu->cpu);
6518
6519 __kvm_guest_enter();
6520
6521 if (unlikely(vcpu->arch.switch_db_regs)) {
6522 set_debugreg(0, 7);
6523 set_debugreg(vcpu->arch.eff_db[0], 0);
6524 set_debugreg(vcpu->arch.eff_db[1], 1);
6525 set_debugreg(vcpu->arch.eff_db[2], 2);
6526 set_debugreg(vcpu->arch.eff_db[3], 3);
6527 set_debugreg(vcpu->arch.dr6, 6);
6528 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6529 }
6530
6531 trace_kvm_entry(vcpu->vcpu_id);
6532 wait_lapic_expire(vcpu);
6533 kvm_x86_ops->run(vcpu);
6534
6535 /*
6536 * Do this here before restoring debug registers on the host. And
6537 * since we do this before handling the vmexit, a DR access vmexit
6538 * can (a) read the correct value of the debug registers, (b) set
6539 * KVM_DEBUGREG_WONT_EXIT again.
6540 */
6541 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6542 int i;
6543
6544 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6545 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6546 for (i = 0; i < KVM_NR_DB_REGS; i++)
6547 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6548 }
6549
6550 /*
6551 * If the guest has used debug registers, at least dr7
6552 * will be disabled while returning to the host.
6553 * If we don't have active breakpoints in the host, we don't
6554 * care about the messed up debug address registers. But if
6555 * we have some of them active, restore the old state.
6556 */
6557 if (hw_breakpoint_active())
6558 hw_breakpoint_restore();
6559
6560 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6561
6562 vcpu->mode = OUTSIDE_GUEST_MODE;
6563 smp_wmb();
6564
6565 /* Interrupt is enabled by handle_external_intr() */
6566 kvm_x86_ops->handle_external_intr(vcpu);
6567
6568 ++vcpu->stat.exits;
6569
6570 /*
6571 * We must have an instruction between local_irq_enable() and
6572 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6573 * the interrupt shadow. The stat.exits increment will do nicely.
6574 * But we need to prevent reordering, hence this barrier():
6575 */
6576 barrier();
6577
6578 kvm_guest_exit();
6579
6580 preempt_enable();
6581
6582 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6583
6584 /*
6585 * Profile KVM exit RIPs:
6586 */
6587 if (unlikely(prof_on == KVM_PROFILING)) {
6588 unsigned long rip = kvm_rip_read(vcpu);
6589 profile_hit(KVM_PROFILING, (void *)rip);
6590 }
6591
6592 if (unlikely(vcpu->arch.tsc_always_catchup))
6593 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6594
6595 if (vcpu->arch.apic_attention)
6596 kvm_lapic_sync_from_vapic(vcpu);
6597
6598 r = kvm_x86_ops->handle_exit(vcpu);
6599 return r;
6600
6601 cancel_injection:
6602 kvm_x86_ops->cancel_injection(vcpu);
6603 if (unlikely(vcpu->arch.apic_attention))
6604 kvm_lapic_sync_from_vapic(vcpu);
6605 out:
6606 return r;
6607 }
6608
6609 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6610 {
6611 if (!kvm_arch_vcpu_runnable(vcpu) &&
6612 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6613 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6614 kvm_vcpu_block(vcpu);
6615 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6616
6617 if (kvm_x86_ops->post_block)
6618 kvm_x86_ops->post_block(vcpu);
6619
6620 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6621 return 1;
6622 }
6623
6624 kvm_apic_accept_events(vcpu);
6625 switch(vcpu->arch.mp_state) {
6626 case KVM_MP_STATE_HALTED:
6627 vcpu->arch.pv.pv_unhalted = false;
6628 vcpu->arch.mp_state =
6629 KVM_MP_STATE_RUNNABLE;
6630 case KVM_MP_STATE_RUNNABLE:
6631 vcpu->arch.apf.halted = false;
6632 break;
6633 case KVM_MP_STATE_INIT_RECEIVED:
6634 break;
6635 default:
6636 return -EINTR;
6637 break;
6638 }
6639 return 1;
6640 }
6641
6642 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6643 {
6644 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6645 !vcpu->arch.apf.halted);
6646 }
6647
6648 static int vcpu_run(struct kvm_vcpu *vcpu)
6649 {
6650 int r;
6651 struct kvm *kvm = vcpu->kvm;
6652
6653 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6654
6655 for (;;) {
6656 if (kvm_vcpu_running(vcpu)) {
6657 r = vcpu_enter_guest(vcpu);
6658 } else {
6659 r = vcpu_block(kvm, vcpu);
6660 }
6661
6662 if (r <= 0)
6663 break;
6664
6665 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6666 if (kvm_cpu_has_pending_timer(vcpu))
6667 kvm_inject_pending_timer_irqs(vcpu);
6668
6669 if (dm_request_for_irq_injection(vcpu) &&
6670 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6671 r = 0;
6672 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6673 ++vcpu->stat.request_irq_exits;
6674 break;
6675 }
6676
6677 kvm_check_async_pf_completion(vcpu);
6678
6679 if (signal_pending(current)) {
6680 r = -EINTR;
6681 vcpu->run->exit_reason = KVM_EXIT_INTR;
6682 ++vcpu->stat.signal_exits;
6683 break;
6684 }
6685 if (need_resched()) {
6686 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6687 cond_resched();
6688 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6689 }
6690 }
6691
6692 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6693
6694 return r;
6695 }
6696
6697 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6698 {
6699 int r;
6700 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6701 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6702 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6703 if (r != EMULATE_DONE)
6704 return 0;
6705 return 1;
6706 }
6707
6708 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6709 {
6710 BUG_ON(!vcpu->arch.pio.count);
6711
6712 return complete_emulated_io(vcpu);
6713 }
6714
6715 /*
6716 * Implements the following, as a state machine:
6717 *
6718 * read:
6719 * for each fragment
6720 * for each mmio piece in the fragment
6721 * write gpa, len
6722 * exit
6723 * copy data
6724 * execute insn
6725 *
6726 * write:
6727 * for each fragment
6728 * for each mmio piece in the fragment
6729 * write gpa, len
6730 * copy data
6731 * exit
6732 */
6733 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6734 {
6735 struct kvm_run *run = vcpu->run;
6736 struct kvm_mmio_fragment *frag;
6737 unsigned len;
6738
6739 BUG_ON(!vcpu->mmio_needed);
6740
6741 /* Complete previous fragment */
6742 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6743 len = min(8u, frag->len);
6744 if (!vcpu->mmio_is_write)
6745 memcpy(frag->data, run->mmio.data, len);
6746
6747 if (frag->len <= 8) {
6748 /* Switch to the next fragment. */
6749 frag++;
6750 vcpu->mmio_cur_fragment++;
6751 } else {
6752 /* Go forward to the next mmio piece. */
6753 frag->data += len;
6754 frag->gpa += len;
6755 frag->len -= len;
6756 }
6757
6758 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6759 vcpu->mmio_needed = 0;
6760
6761 /* FIXME: return into emulator if single-stepping. */
6762 if (vcpu->mmio_is_write)
6763 return 1;
6764 vcpu->mmio_read_completed = 1;
6765 return complete_emulated_io(vcpu);
6766 }
6767
6768 run->exit_reason = KVM_EXIT_MMIO;
6769 run->mmio.phys_addr = frag->gpa;
6770 if (vcpu->mmio_is_write)
6771 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6772 run->mmio.len = min(8u, frag->len);
6773 run->mmio.is_write = vcpu->mmio_is_write;
6774 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6775 return 0;
6776 }
6777
6778
6779 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6780 {
6781 struct fpu *fpu = &current->thread.fpu;
6782 int r;
6783 sigset_t sigsaved;
6784
6785 fpu__activate_curr(fpu);
6786
6787 if (vcpu->sigset_active)
6788 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6789
6790 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6791 kvm_vcpu_block(vcpu);
6792 kvm_apic_accept_events(vcpu);
6793 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6794 r = -EAGAIN;
6795 goto out;
6796 }
6797
6798 /* re-sync apic's tpr */
6799 if (!lapic_in_kernel(vcpu)) {
6800 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6801 r = -EINVAL;
6802 goto out;
6803 }
6804 }
6805
6806 if (unlikely(vcpu->arch.complete_userspace_io)) {
6807 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6808 vcpu->arch.complete_userspace_io = NULL;
6809 r = cui(vcpu);
6810 if (r <= 0)
6811 goto out;
6812 } else
6813 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6814
6815 r = vcpu_run(vcpu);
6816
6817 out:
6818 post_kvm_run_save(vcpu);
6819 if (vcpu->sigset_active)
6820 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6821
6822 return r;
6823 }
6824
6825 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6826 {
6827 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6828 /*
6829 * We are here if userspace calls get_regs() in the middle of
6830 * instruction emulation. Registers state needs to be copied
6831 * back from emulation context to vcpu. Userspace shouldn't do
6832 * that usually, but some bad designed PV devices (vmware
6833 * backdoor interface) need this to work
6834 */
6835 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6836 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6837 }
6838 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6839 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6840 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6841 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6842 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6843 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6844 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6845 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6846 #ifdef CONFIG_X86_64
6847 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6848 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6849 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6850 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6851 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6852 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6853 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6854 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6855 #endif
6856
6857 regs->rip = kvm_rip_read(vcpu);
6858 regs->rflags = kvm_get_rflags(vcpu);
6859
6860 return 0;
6861 }
6862
6863 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6864 {
6865 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6866 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6867
6868 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6869 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6870 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6871 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6872 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6873 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6874 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6875 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6876 #ifdef CONFIG_X86_64
6877 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6878 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6879 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6880 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6881 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6882 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6883 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6884 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6885 #endif
6886
6887 kvm_rip_write(vcpu, regs->rip);
6888 kvm_set_rflags(vcpu, regs->rflags);
6889
6890 vcpu->arch.exception.pending = false;
6891
6892 kvm_make_request(KVM_REQ_EVENT, vcpu);
6893
6894 return 0;
6895 }
6896
6897 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6898 {
6899 struct kvm_segment cs;
6900
6901 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6902 *db = cs.db;
6903 *l = cs.l;
6904 }
6905 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6906
6907 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6908 struct kvm_sregs *sregs)
6909 {
6910 struct desc_ptr dt;
6911
6912 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6913 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6914 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6915 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6916 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6917 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6918
6919 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6920 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6921
6922 kvm_x86_ops->get_idt(vcpu, &dt);
6923 sregs->idt.limit = dt.size;
6924 sregs->idt.base = dt.address;
6925 kvm_x86_ops->get_gdt(vcpu, &dt);
6926 sregs->gdt.limit = dt.size;
6927 sregs->gdt.base = dt.address;
6928
6929 sregs->cr0 = kvm_read_cr0(vcpu);
6930 sregs->cr2 = vcpu->arch.cr2;
6931 sregs->cr3 = kvm_read_cr3(vcpu);
6932 sregs->cr4 = kvm_read_cr4(vcpu);
6933 sregs->cr8 = kvm_get_cr8(vcpu);
6934 sregs->efer = vcpu->arch.efer;
6935 sregs->apic_base = kvm_get_apic_base(vcpu);
6936
6937 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6938
6939 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6940 set_bit(vcpu->arch.interrupt.nr,
6941 (unsigned long *)sregs->interrupt_bitmap);
6942
6943 return 0;
6944 }
6945
6946 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6947 struct kvm_mp_state *mp_state)
6948 {
6949 kvm_apic_accept_events(vcpu);
6950 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6951 vcpu->arch.pv.pv_unhalted)
6952 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6953 else
6954 mp_state->mp_state = vcpu->arch.mp_state;
6955
6956 return 0;
6957 }
6958
6959 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6960 struct kvm_mp_state *mp_state)
6961 {
6962 if (!kvm_vcpu_has_lapic(vcpu) &&
6963 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6964 return -EINVAL;
6965
6966 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6967 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6968 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6969 } else
6970 vcpu->arch.mp_state = mp_state->mp_state;
6971 kvm_make_request(KVM_REQ_EVENT, vcpu);
6972 return 0;
6973 }
6974
6975 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6976 int reason, bool has_error_code, u32 error_code)
6977 {
6978 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6979 int ret;
6980
6981 init_emulate_ctxt(vcpu);
6982
6983 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6984 has_error_code, error_code);
6985
6986 if (ret)
6987 return EMULATE_FAIL;
6988
6989 kvm_rip_write(vcpu, ctxt->eip);
6990 kvm_set_rflags(vcpu, ctxt->eflags);
6991 kvm_make_request(KVM_REQ_EVENT, vcpu);
6992 return EMULATE_DONE;
6993 }
6994 EXPORT_SYMBOL_GPL(kvm_task_switch);
6995
6996 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6997 struct kvm_sregs *sregs)
6998 {
6999 struct msr_data apic_base_msr;
7000 int mmu_reset_needed = 0;
7001 int pending_vec, max_bits, idx;
7002 struct desc_ptr dt;
7003
7004 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7005 return -EINVAL;
7006
7007 dt.size = sregs->idt.limit;
7008 dt.address = sregs->idt.base;
7009 kvm_x86_ops->set_idt(vcpu, &dt);
7010 dt.size = sregs->gdt.limit;
7011 dt.address = sregs->gdt.base;
7012 kvm_x86_ops->set_gdt(vcpu, &dt);
7013
7014 vcpu->arch.cr2 = sregs->cr2;
7015 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7016 vcpu->arch.cr3 = sregs->cr3;
7017 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7018
7019 kvm_set_cr8(vcpu, sregs->cr8);
7020
7021 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7022 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7023 apic_base_msr.data = sregs->apic_base;
7024 apic_base_msr.host_initiated = true;
7025 kvm_set_apic_base(vcpu, &apic_base_msr);
7026
7027 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7028 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7029 vcpu->arch.cr0 = sregs->cr0;
7030
7031 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7032 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7033 if (sregs->cr4 & X86_CR4_OSXSAVE)
7034 kvm_update_cpuid(vcpu);
7035
7036 idx = srcu_read_lock(&vcpu->kvm->srcu);
7037 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7038 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7039 mmu_reset_needed = 1;
7040 }
7041 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7042
7043 if (mmu_reset_needed)
7044 kvm_mmu_reset_context(vcpu);
7045
7046 max_bits = KVM_NR_INTERRUPTS;
7047 pending_vec = find_first_bit(
7048 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7049 if (pending_vec < max_bits) {
7050 kvm_queue_interrupt(vcpu, pending_vec, false);
7051 pr_debug("Set back pending irq %d\n", pending_vec);
7052 }
7053
7054 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7055 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7056 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7057 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7058 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7059 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7060
7061 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7062 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7063
7064 update_cr8_intercept(vcpu);
7065
7066 /* Older userspace won't unhalt the vcpu on reset. */
7067 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7068 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7069 !is_protmode(vcpu))
7070 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7071
7072 kvm_make_request(KVM_REQ_EVENT, vcpu);
7073
7074 return 0;
7075 }
7076
7077 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7078 struct kvm_guest_debug *dbg)
7079 {
7080 unsigned long rflags;
7081 int i, r;
7082
7083 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7084 r = -EBUSY;
7085 if (vcpu->arch.exception.pending)
7086 goto out;
7087 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7088 kvm_queue_exception(vcpu, DB_VECTOR);
7089 else
7090 kvm_queue_exception(vcpu, BP_VECTOR);
7091 }
7092
7093 /*
7094 * Read rflags as long as potentially injected trace flags are still
7095 * filtered out.
7096 */
7097 rflags = kvm_get_rflags(vcpu);
7098
7099 vcpu->guest_debug = dbg->control;
7100 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7101 vcpu->guest_debug = 0;
7102
7103 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7104 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7105 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7106 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7107 } else {
7108 for (i = 0; i < KVM_NR_DB_REGS; i++)
7109 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7110 }
7111 kvm_update_dr7(vcpu);
7112
7113 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7114 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7115 get_segment_base(vcpu, VCPU_SREG_CS);
7116
7117 /*
7118 * Trigger an rflags update that will inject or remove the trace
7119 * flags.
7120 */
7121 kvm_set_rflags(vcpu, rflags);
7122
7123 kvm_x86_ops->update_bp_intercept(vcpu);
7124
7125 r = 0;
7126
7127 out:
7128
7129 return r;
7130 }
7131
7132 /*
7133 * Translate a guest virtual address to a guest physical address.
7134 */
7135 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7136 struct kvm_translation *tr)
7137 {
7138 unsigned long vaddr = tr->linear_address;
7139 gpa_t gpa;
7140 int idx;
7141
7142 idx = srcu_read_lock(&vcpu->kvm->srcu);
7143 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7144 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7145 tr->physical_address = gpa;
7146 tr->valid = gpa != UNMAPPED_GVA;
7147 tr->writeable = 1;
7148 tr->usermode = 0;
7149
7150 return 0;
7151 }
7152
7153 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7154 {
7155 struct fxregs_state *fxsave =
7156 &vcpu->arch.guest_fpu.state.fxsave;
7157
7158 memcpy(fpu->fpr, fxsave->st_space, 128);
7159 fpu->fcw = fxsave->cwd;
7160 fpu->fsw = fxsave->swd;
7161 fpu->ftwx = fxsave->twd;
7162 fpu->last_opcode = fxsave->fop;
7163 fpu->last_ip = fxsave->rip;
7164 fpu->last_dp = fxsave->rdp;
7165 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7166
7167 return 0;
7168 }
7169
7170 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7171 {
7172 struct fxregs_state *fxsave =
7173 &vcpu->arch.guest_fpu.state.fxsave;
7174
7175 memcpy(fxsave->st_space, fpu->fpr, 128);
7176 fxsave->cwd = fpu->fcw;
7177 fxsave->swd = fpu->fsw;
7178 fxsave->twd = fpu->ftwx;
7179 fxsave->fop = fpu->last_opcode;
7180 fxsave->rip = fpu->last_ip;
7181 fxsave->rdp = fpu->last_dp;
7182 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7183
7184 return 0;
7185 }
7186
7187 static void fx_init(struct kvm_vcpu *vcpu)
7188 {
7189 fpstate_init(&vcpu->arch.guest_fpu.state);
7190 if (cpu_has_xsaves)
7191 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7192 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7193
7194 /*
7195 * Ensure guest xcr0 is valid for loading
7196 */
7197 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7198
7199 vcpu->arch.cr0 |= X86_CR0_ET;
7200 }
7201
7202 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7203 {
7204 if (vcpu->guest_fpu_loaded)
7205 return;
7206
7207 /*
7208 * Restore all possible states in the guest,
7209 * and assume host would use all available bits.
7210 * Guest xcr0 would be loaded later.
7211 */
7212 kvm_put_guest_xcr0(vcpu);
7213 vcpu->guest_fpu_loaded = 1;
7214 __kernel_fpu_begin();
7215 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7216 trace_kvm_fpu(1);
7217 }
7218
7219 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7220 {
7221 kvm_put_guest_xcr0(vcpu);
7222
7223 if (!vcpu->guest_fpu_loaded) {
7224 vcpu->fpu_counter = 0;
7225 return;
7226 }
7227
7228 vcpu->guest_fpu_loaded = 0;
7229 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7230 __kernel_fpu_end();
7231 ++vcpu->stat.fpu_reload;
7232 /*
7233 * If using eager FPU mode, or if the guest is a frequent user
7234 * of the FPU, just leave the FPU active for next time.
7235 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7236 * the FPU in bursts will revert to loading it on demand.
7237 */
7238 if (!vcpu->arch.eager_fpu) {
7239 if (++vcpu->fpu_counter < 5)
7240 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7241 }
7242 trace_kvm_fpu(0);
7243 }
7244
7245 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7246 {
7247 kvmclock_reset(vcpu);
7248
7249 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7250 kvm_x86_ops->vcpu_free(vcpu);
7251 }
7252
7253 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7254 unsigned int id)
7255 {
7256 struct kvm_vcpu *vcpu;
7257
7258 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7259 printk_once(KERN_WARNING
7260 "kvm: SMP vm created on host with unstable TSC; "
7261 "guest TSC will not be reliable\n");
7262
7263 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7264
7265 return vcpu;
7266 }
7267
7268 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7269 {
7270 int r;
7271
7272 kvm_vcpu_mtrr_init(vcpu);
7273 r = vcpu_load(vcpu);
7274 if (r)
7275 return r;
7276 kvm_vcpu_reset(vcpu, false);
7277 kvm_mmu_setup(vcpu);
7278 vcpu_put(vcpu);
7279 return r;
7280 }
7281
7282 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7283 {
7284 struct msr_data msr;
7285 struct kvm *kvm = vcpu->kvm;
7286
7287 if (vcpu_load(vcpu))
7288 return;
7289 msr.data = 0x0;
7290 msr.index = MSR_IA32_TSC;
7291 msr.host_initiated = true;
7292 kvm_write_tsc(vcpu, &msr);
7293 vcpu_put(vcpu);
7294
7295 if (!kvmclock_periodic_sync)
7296 return;
7297
7298 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7299 KVMCLOCK_SYNC_PERIOD);
7300 }
7301
7302 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7303 {
7304 int r;
7305 vcpu->arch.apf.msr_val = 0;
7306
7307 r = vcpu_load(vcpu);
7308 BUG_ON(r);
7309 kvm_mmu_unload(vcpu);
7310 vcpu_put(vcpu);
7311
7312 kvm_x86_ops->vcpu_free(vcpu);
7313 }
7314
7315 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7316 {
7317 vcpu->arch.hflags = 0;
7318
7319 atomic_set(&vcpu->arch.nmi_queued, 0);
7320 vcpu->arch.nmi_pending = 0;
7321 vcpu->arch.nmi_injected = false;
7322 kvm_clear_interrupt_queue(vcpu);
7323 kvm_clear_exception_queue(vcpu);
7324
7325 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7326 kvm_update_dr0123(vcpu);
7327 vcpu->arch.dr6 = DR6_INIT;
7328 kvm_update_dr6(vcpu);
7329 vcpu->arch.dr7 = DR7_FIXED_1;
7330 kvm_update_dr7(vcpu);
7331
7332 vcpu->arch.cr2 = 0;
7333
7334 kvm_make_request(KVM_REQ_EVENT, vcpu);
7335 vcpu->arch.apf.msr_val = 0;
7336 vcpu->arch.st.msr_val = 0;
7337
7338 kvmclock_reset(vcpu);
7339
7340 kvm_clear_async_pf_completion_queue(vcpu);
7341 kvm_async_pf_hash_reset(vcpu);
7342 vcpu->arch.apf.halted = false;
7343
7344 if (!init_event) {
7345 kvm_pmu_reset(vcpu);
7346 vcpu->arch.smbase = 0x30000;
7347 }
7348
7349 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7350 vcpu->arch.regs_avail = ~0;
7351 vcpu->arch.regs_dirty = ~0;
7352
7353 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7354 }
7355
7356 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7357 {
7358 struct kvm_segment cs;
7359
7360 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7361 cs.selector = vector << 8;
7362 cs.base = vector << 12;
7363 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7364 kvm_rip_write(vcpu, 0);
7365 }
7366
7367 int kvm_arch_hardware_enable(void)
7368 {
7369 struct kvm *kvm;
7370 struct kvm_vcpu *vcpu;
7371 int i;
7372 int ret;
7373 u64 local_tsc;
7374 u64 max_tsc = 0;
7375 bool stable, backwards_tsc = false;
7376
7377 kvm_shared_msr_cpu_online();
7378 ret = kvm_x86_ops->hardware_enable();
7379 if (ret != 0)
7380 return ret;
7381
7382 local_tsc = rdtsc();
7383 stable = !check_tsc_unstable();
7384 list_for_each_entry(kvm, &vm_list, vm_list) {
7385 kvm_for_each_vcpu(i, vcpu, kvm) {
7386 if (!stable && vcpu->cpu == smp_processor_id())
7387 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7388 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7389 backwards_tsc = true;
7390 if (vcpu->arch.last_host_tsc > max_tsc)
7391 max_tsc = vcpu->arch.last_host_tsc;
7392 }
7393 }
7394 }
7395
7396 /*
7397 * Sometimes, even reliable TSCs go backwards. This happens on
7398 * platforms that reset TSC during suspend or hibernate actions, but
7399 * maintain synchronization. We must compensate. Fortunately, we can
7400 * detect that condition here, which happens early in CPU bringup,
7401 * before any KVM threads can be running. Unfortunately, we can't
7402 * bring the TSCs fully up to date with real time, as we aren't yet far
7403 * enough into CPU bringup that we know how much real time has actually
7404 * elapsed; our helper function, get_kernel_ns() will be using boot
7405 * variables that haven't been updated yet.
7406 *
7407 * So we simply find the maximum observed TSC above, then record the
7408 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7409 * the adjustment will be applied. Note that we accumulate
7410 * adjustments, in case multiple suspend cycles happen before some VCPU
7411 * gets a chance to run again. In the event that no KVM threads get a
7412 * chance to run, we will miss the entire elapsed period, as we'll have
7413 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7414 * loose cycle time. This isn't too big a deal, since the loss will be
7415 * uniform across all VCPUs (not to mention the scenario is extremely
7416 * unlikely). It is possible that a second hibernate recovery happens
7417 * much faster than a first, causing the observed TSC here to be
7418 * smaller; this would require additional padding adjustment, which is
7419 * why we set last_host_tsc to the local tsc observed here.
7420 *
7421 * N.B. - this code below runs only on platforms with reliable TSC,
7422 * as that is the only way backwards_tsc is set above. Also note
7423 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7424 * have the same delta_cyc adjustment applied if backwards_tsc
7425 * is detected. Note further, this adjustment is only done once,
7426 * as we reset last_host_tsc on all VCPUs to stop this from being
7427 * called multiple times (one for each physical CPU bringup).
7428 *
7429 * Platforms with unreliable TSCs don't have to deal with this, they
7430 * will be compensated by the logic in vcpu_load, which sets the TSC to
7431 * catchup mode. This will catchup all VCPUs to real time, but cannot
7432 * guarantee that they stay in perfect synchronization.
7433 */
7434 if (backwards_tsc) {
7435 u64 delta_cyc = max_tsc - local_tsc;
7436 backwards_tsc_observed = true;
7437 list_for_each_entry(kvm, &vm_list, vm_list) {
7438 kvm_for_each_vcpu(i, vcpu, kvm) {
7439 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7440 vcpu->arch.last_host_tsc = local_tsc;
7441 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7442 }
7443
7444 /*
7445 * We have to disable TSC offset matching.. if you were
7446 * booting a VM while issuing an S4 host suspend....
7447 * you may have some problem. Solving this issue is
7448 * left as an exercise to the reader.
7449 */
7450 kvm->arch.last_tsc_nsec = 0;
7451 kvm->arch.last_tsc_write = 0;
7452 }
7453
7454 }
7455 return 0;
7456 }
7457
7458 void kvm_arch_hardware_disable(void)
7459 {
7460 kvm_x86_ops->hardware_disable();
7461 drop_user_return_notifiers();
7462 }
7463
7464 int kvm_arch_hardware_setup(void)
7465 {
7466 int r;
7467
7468 r = kvm_x86_ops->hardware_setup();
7469 if (r != 0)
7470 return r;
7471
7472 if (kvm_has_tsc_control) {
7473 /*
7474 * Make sure the user can only configure tsc_khz values that
7475 * fit into a signed integer.
7476 * A min value is not calculated needed because it will always
7477 * be 1 on all machines.
7478 */
7479 u64 max = min(0x7fffffffULL,
7480 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7481 kvm_max_guest_tsc_khz = max;
7482
7483 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7484 }
7485
7486 kvm_init_msr_list();
7487 return 0;
7488 }
7489
7490 void kvm_arch_hardware_unsetup(void)
7491 {
7492 kvm_x86_ops->hardware_unsetup();
7493 }
7494
7495 void kvm_arch_check_processor_compat(void *rtn)
7496 {
7497 kvm_x86_ops->check_processor_compatibility(rtn);
7498 }
7499
7500 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7501 {
7502 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7503 }
7504 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7505
7506 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7507 {
7508 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7509 }
7510
7511 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7512 {
7513 return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7514 }
7515
7516 struct static_key kvm_no_apic_vcpu __read_mostly;
7517
7518 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7519 {
7520 struct page *page;
7521 struct kvm *kvm;
7522 int r;
7523
7524 BUG_ON(vcpu->kvm == NULL);
7525 kvm = vcpu->kvm;
7526
7527 vcpu->arch.pv.pv_unhalted = false;
7528 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7529 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7530 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7531 else
7532 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7533
7534 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7535 if (!page) {
7536 r = -ENOMEM;
7537 goto fail;
7538 }
7539 vcpu->arch.pio_data = page_address(page);
7540
7541 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7542
7543 r = kvm_mmu_create(vcpu);
7544 if (r < 0)
7545 goto fail_free_pio_data;
7546
7547 if (irqchip_in_kernel(kvm)) {
7548 r = kvm_create_lapic(vcpu);
7549 if (r < 0)
7550 goto fail_mmu_destroy;
7551 } else
7552 static_key_slow_inc(&kvm_no_apic_vcpu);
7553
7554 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7555 GFP_KERNEL);
7556 if (!vcpu->arch.mce_banks) {
7557 r = -ENOMEM;
7558 goto fail_free_lapic;
7559 }
7560 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7561
7562 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7563 r = -ENOMEM;
7564 goto fail_free_mce_banks;
7565 }
7566
7567 fx_init(vcpu);
7568
7569 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7570 vcpu->arch.pv_time_enabled = false;
7571
7572 vcpu->arch.guest_supported_xcr0 = 0;
7573 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7574
7575 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7576
7577 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7578
7579 kvm_async_pf_hash_reset(vcpu);
7580 kvm_pmu_init(vcpu);
7581
7582 vcpu->arch.pending_external_vector = -1;
7583
7584 return 0;
7585
7586 fail_free_mce_banks:
7587 kfree(vcpu->arch.mce_banks);
7588 fail_free_lapic:
7589 kvm_free_lapic(vcpu);
7590 fail_mmu_destroy:
7591 kvm_mmu_destroy(vcpu);
7592 fail_free_pio_data:
7593 free_page((unsigned long)vcpu->arch.pio_data);
7594 fail:
7595 return r;
7596 }
7597
7598 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7599 {
7600 int idx;
7601
7602 kvm_pmu_destroy(vcpu);
7603 kfree(vcpu->arch.mce_banks);
7604 kvm_free_lapic(vcpu);
7605 idx = srcu_read_lock(&vcpu->kvm->srcu);
7606 kvm_mmu_destroy(vcpu);
7607 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7608 free_page((unsigned long)vcpu->arch.pio_data);
7609 if (!lapic_in_kernel(vcpu))
7610 static_key_slow_dec(&kvm_no_apic_vcpu);
7611 }
7612
7613 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7614 {
7615 kvm_x86_ops->sched_in(vcpu, cpu);
7616 }
7617
7618 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7619 {
7620 if (type)
7621 return -EINVAL;
7622
7623 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7624 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7625 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7626 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7627 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7628
7629 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7630 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7631 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7632 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7633 &kvm->arch.irq_sources_bitmap);
7634
7635 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7636 mutex_init(&kvm->arch.apic_map_lock);
7637 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7638
7639 pvclock_update_vm_gtod_copy(kvm);
7640
7641 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7642 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7643
7644 return 0;
7645 }
7646
7647 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7648 {
7649 int r;
7650 r = vcpu_load(vcpu);
7651 BUG_ON(r);
7652 kvm_mmu_unload(vcpu);
7653 vcpu_put(vcpu);
7654 }
7655
7656 static void kvm_free_vcpus(struct kvm *kvm)
7657 {
7658 unsigned int i;
7659 struct kvm_vcpu *vcpu;
7660
7661 /*
7662 * Unpin any mmu pages first.
7663 */
7664 kvm_for_each_vcpu(i, vcpu, kvm) {
7665 kvm_clear_async_pf_completion_queue(vcpu);
7666 kvm_unload_vcpu_mmu(vcpu);
7667 }
7668 kvm_for_each_vcpu(i, vcpu, kvm)
7669 kvm_arch_vcpu_free(vcpu);
7670
7671 mutex_lock(&kvm->lock);
7672 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7673 kvm->vcpus[i] = NULL;
7674
7675 atomic_set(&kvm->online_vcpus, 0);
7676 mutex_unlock(&kvm->lock);
7677 }
7678
7679 void kvm_arch_sync_events(struct kvm *kvm)
7680 {
7681 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7682 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7683 kvm_free_all_assigned_devices(kvm);
7684 kvm_free_pit(kvm);
7685 }
7686
7687 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7688 {
7689 int i, r;
7690 unsigned long hva;
7691 struct kvm_memslots *slots = kvm_memslots(kvm);
7692 struct kvm_memory_slot *slot, old;
7693
7694 /* Called with kvm->slots_lock held. */
7695 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7696 return -EINVAL;
7697
7698 slot = id_to_memslot(slots, id);
7699 if (size) {
7700 if (WARN_ON(slot->npages))
7701 return -EEXIST;
7702
7703 /*
7704 * MAP_SHARED to prevent internal slot pages from being moved
7705 * by fork()/COW.
7706 */
7707 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7708 MAP_SHARED | MAP_ANONYMOUS, 0);
7709 if (IS_ERR((void *)hva))
7710 return PTR_ERR((void *)hva);
7711 } else {
7712 if (!slot->npages)
7713 return 0;
7714
7715 hva = 0;
7716 }
7717
7718 old = *slot;
7719 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7720 struct kvm_userspace_memory_region m;
7721
7722 m.slot = id | (i << 16);
7723 m.flags = 0;
7724 m.guest_phys_addr = gpa;
7725 m.userspace_addr = hva;
7726 m.memory_size = size;
7727 r = __kvm_set_memory_region(kvm, &m);
7728 if (r < 0)
7729 return r;
7730 }
7731
7732 if (!size) {
7733 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7734 WARN_ON(r < 0);
7735 }
7736
7737 return 0;
7738 }
7739 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7740
7741 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7742 {
7743 int r;
7744
7745 mutex_lock(&kvm->slots_lock);
7746 r = __x86_set_memory_region(kvm, id, gpa, size);
7747 mutex_unlock(&kvm->slots_lock);
7748
7749 return r;
7750 }
7751 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7752
7753 void kvm_arch_destroy_vm(struct kvm *kvm)
7754 {
7755 if (current->mm == kvm->mm) {
7756 /*
7757 * Free memory regions allocated on behalf of userspace,
7758 * unless the the memory map has changed due to process exit
7759 * or fd copying.
7760 */
7761 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7762 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7763 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7764 }
7765 kvm_iommu_unmap_guest(kvm);
7766 kfree(kvm->arch.vpic);
7767 kfree(kvm->arch.vioapic);
7768 kvm_free_vcpus(kvm);
7769 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7770 }
7771
7772 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7773 struct kvm_memory_slot *dont)
7774 {
7775 int i;
7776
7777 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7778 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7779 kvfree(free->arch.rmap[i]);
7780 free->arch.rmap[i] = NULL;
7781 }
7782 if (i == 0)
7783 continue;
7784
7785 if (!dont || free->arch.lpage_info[i - 1] !=
7786 dont->arch.lpage_info[i - 1]) {
7787 kvfree(free->arch.lpage_info[i - 1]);
7788 free->arch.lpage_info[i - 1] = NULL;
7789 }
7790 }
7791 }
7792
7793 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7794 unsigned long npages)
7795 {
7796 int i;
7797
7798 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7799 unsigned long ugfn;
7800 int lpages;
7801 int level = i + 1;
7802
7803 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7804 slot->base_gfn, level) + 1;
7805
7806 slot->arch.rmap[i] =
7807 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7808 if (!slot->arch.rmap[i])
7809 goto out_free;
7810 if (i == 0)
7811 continue;
7812
7813 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7814 sizeof(*slot->arch.lpage_info[i - 1]));
7815 if (!slot->arch.lpage_info[i - 1])
7816 goto out_free;
7817
7818 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7819 slot->arch.lpage_info[i - 1][0].write_count = 1;
7820 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7821 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7822 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7823 /*
7824 * If the gfn and userspace address are not aligned wrt each
7825 * other, or if explicitly asked to, disable large page
7826 * support for this slot
7827 */
7828 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7829 !kvm_largepages_enabled()) {
7830 unsigned long j;
7831
7832 for (j = 0; j < lpages; ++j)
7833 slot->arch.lpage_info[i - 1][j].write_count = 1;
7834 }
7835 }
7836
7837 return 0;
7838
7839 out_free:
7840 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7841 kvfree(slot->arch.rmap[i]);
7842 slot->arch.rmap[i] = NULL;
7843 if (i == 0)
7844 continue;
7845
7846 kvfree(slot->arch.lpage_info[i - 1]);
7847 slot->arch.lpage_info[i - 1] = NULL;
7848 }
7849 return -ENOMEM;
7850 }
7851
7852 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7853 {
7854 /*
7855 * memslots->generation has been incremented.
7856 * mmio generation may have reached its maximum value.
7857 */
7858 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7859 }
7860
7861 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7862 struct kvm_memory_slot *memslot,
7863 const struct kvm_userspace_memory_region *mem,
7864 enum kvm_mr_change change)
7865 {
7866 return 0;
7867 }
7868
7869 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7870 struct kvm_memory_slot *new)
7871 {
7872 /* Still write protect RO slot */
7873 if (new->flags & KVM_MEM_READONLY) {
7874 kvm_mmu_slot_remove_write_access(kvm, new);
7875 return;
7876 }
7877
7878 /*
7879 * Call kvm_x86_ops dirty logging hooks when they are valid.
7880 *
7881 * kvm_x86_ops->slot_disable_log_dirty is called when:
7882 *
7883 * - KVM_MR_CREATE with dirty logging is disabled
7884 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7885 *
7886 * The reason is, in case of PML, we need to set D-bit for any slots
7887 * with dirty logging disabled in order to eliminate unnecessary GPA
7888 * logging in PML buffer (and potential PML buffer full VMEXT). This
7889 * guarantees leaving PML enabled during guest's lifetime won't have
7890 * any additonal overhead from PML when guest is running with dirty
7891 * logging disabled for memory slots.
7892 *
7893 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7894 * to dirty logging mode.
7895 *
7896 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7897 *
7898 * In case of write protect:
7899 *
7900 * Write protect all pages for dirty logging.
7901 *
7902 * All the sptes including the large sptes which point to this
7903 * slot are set to readonly. We can not create any new large
7904 * spte on this slot until the end of the logging.
7905 *
7906 * See the comments in fast_page_fault().
7907 */
7908 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7909 if (kvm_x86_ops->slot_enable_log_dirty)
7910 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7911 else
7912 kvm_mmu_slot_remove_write_access(kvm, new);
7913 } else {
7914 if (kvm_x86_ops->slot_disable_log_dirty)
7915 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7916 }
7917 }
7918
7919 void kvm_arch_commit_memory_region(struct kvm *kvm,
7920 const struct kvm_userspace_memory_region *mem,
7921 const struct kvm_memory_slot *old,
7922 const struct kvm_memory_slot *new,
7923 enum kvm_mr_change change)
7924 {
7925 int nr_mmu_pages = 0;
7926
7927 if (!kvm->arch.n_requested_mmu_pages)
7928 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7929
7930 if (nr_mmu_pages)
7931 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7932
7933 /*
7934 * Dirty logging tracks sptes in 4k granularity, meaning that large
7935 * sptes have to be split. If live migration is successful, the guest
7936 * in the source machine will be destroyed and large sptes will be
7937 * created in the destination. However, if the guest continues to run
7938 * in the source machine (for example if live migration fails), small
7939 * sptes will remain around and cause bad performance.
7940 *
7941 * Scan sptes if dirty logging has been stopped, dropping those
7942 * which can be collapsed into a single large-page spte. Later
7943 * page faults will create the large-page sptes.
7944 */
7945 if ((change != KVM_MR_DELETE) &&
7946 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7947 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7948 kvm_mmu_zap_collapsible_sptes(kvm, new);
7949
7950 /*
7951 * Set up write protection and/or dirty logging for the new slot.
7952 *
7953 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7954 * been zapped so no dirty logging staff is needed for old slot. For
7955 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7956 * new and it's also covered when dealing with the new slot.
7957 *
7958 * FIXME: const-ify all uses of struct kvm_memory_slot.
7959 */
7960 if (change != KVM_MR_DELETE)
7961 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
7962 }
7963
7964 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7965 {
7966 kvm_mmu_invalidate_zap_all_pages(kvm);
7967 }
7968
7969 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7970 struct kvm_memory_slot *slot)
7971 {
7972 kvm_mmu_invalidate_zap_all_pages(kvm);
7973 }
7974
7975 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
7976 {
7977 if (!list_empty_careful(&vcpu->async_pf.done))
7978 return true;
7979
7980 if (kvm_apic_has_events(vcpu))
7981 return true;
7982
7983 if (vcpu->arch.pv.pv_unhalted)
7984 return true;
7985
7986 if (atomic_read(&vcpu->arch.nmi_queued))
7987 return true;
7988
7989 if (test_bit(KVM_REQ_SMI, &vcpu->requests))
7990 return true;
7991
7992 if (kvm_arch_interrupt_allowed(vcpu) &&
7993 kvm_cpu_has_interrupt(vcpu))
7994 return true;
7995
7996 return false;
7997 }
7998
7999 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8000 {
8001 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8002 kvm_x86_ops->check_nested_events(vcpu, false);
8003
8004 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8005 }
8006
8007 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8008 {
8009 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8010 }
8011
8012 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8013 {
8014 return kvm_x86_ops->interrupt_allowed(vcpu);
8015 }
8016
8017 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8018 {
8019 if (is_64_bit_mode(vcpu))
8020 return kvm_rip_read(vcpu);
8021 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8022 kvm_rip_read(vcpu));
8023 }
8024 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8025
8026 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8027 {
8028 return kvm_get_linear_rip(vcpu) == linear_rip;
8029 }
8030 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8031
8032 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8033 {
8034 unsigned long rflags;
8035
8036 rflags = kvm_x86_ops->get_rflags(vcpu);
8037 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8038 rflags &= ~X86_EFLAGS_TF;
8039 return rflags;
8040 }
8041 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8042
8043 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8044 {
8045 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8046 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8047 rflags |= X86_EFLAGS_TF;
8048 kvm_x86_ops->set_rflags(vcpu, rflags);
8049 }
8050
8051 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8052 {
8053 __kvm_set_rflags(vcpu, rflags);
8054 kvm_make_request(KVM_REQ_EVENT, vcpu);
8055 }
8056 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8057
8058 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8059 {
8060 int r;
8061
8062 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8063 work->wakeup_all)
8064 return;
8065
8066 r = kvm_mmu_reload(vcpu);
8067 if (unlikely(r))
8068 return;
8069
8070 if (!vcpu->arch.mmu.direct_map &&
8071 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8072 return;
8073
8074 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8075 }
8076
8077 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8078 {
8079 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8080 }
8081
8082 static inline u32 kvm_async_pf_next_probe(u32 key)
8083 {
8084 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8085 }
8086
8087 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8088 {
8089 u32 key = kvm_async_pf_hash_fn(gfn);
8090
8091 while (vcpu->arch.apf.gfns[key] != ~0)
8092 key = kvm_async_pf_next_probe(key);
8093
8094 vcpu->arch.apf.gfns[key] = gfn;
8095 }
8096
8097 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8098 {
8099 int i;
8100 u32 key = kvm_async_pf_hash_fn(gfn);
8101
8102 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8103 (vcpu->arch.apf.gfns[key] != gfn &&
8104 vcpu->arch.apf.gfns[key] != ~0); i++)
8105 key = kvm_async_pf_next_probe(key);
8106
8107 return key;
8108 }
8109
8110 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8111 {
8112 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8113 }
8114
8115 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8116 {
8117 u32 i, j, k;
8118
8119 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8120 while (true) {
8121 vcpu->arch.apf.gfns[i] = ~0;
8122 do {
8123 j = kvm_async_pf_next_probe(j);
8124 if (vcpu->arch.apf.gfns[j] == ~0)
8125 return;
8126 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8127 /*
8128 * k lies cyclically in ]i,j]
8129 * | i.k.j |
8130 * |....j i.k.| or |.k..j i...|
8131 */
8132 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8133 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8134 i = j;
8135 }
8136 }
8137
8138 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8139 {
8140
8141 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8142 sizeof(val));
8143 }
8144
8145 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8146 struct kvm_async_pf *work)
8147 {
8148 struct x86_exception fault;
8149
8150 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8151 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8152
8153 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8154 (vcpu->arch.apf.send_user_only &&
8155 kvm_x86_ops->get_cpl(vcpu) == 0))
8156 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8157 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8158 fault.vector = PF_VECTOR;
8159 fault.error_code_valid = true;
8160 fault.error_code = 0;
8161 fault.nested_page_fault = false;
8162 fault.address = work->arch.token;
8163 kvm_inject_page_fault(vcpu, &fault);
8164 }
8165 }
8166
8167 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8168 struct kvm_async_pf *work)
8169 {
8170 struct x86_exception fault;
8171
8172 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8173 if (work->wakeup_all)
8174 work->arch.token = ~0; /* broadcast wakeup */
8175 else
8176 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8177
8178 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8179 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8180 fault.vector = PF_VECTOR;
8181 fault.error_code_valid = true;
8182 fault.error_code = 0;
8183 fault.nested_page_fault = false;
8184 fault.address = work->arch.token;
8185 kvm_inject_page_fault(vcpu, &fault);
8186 }
8187 vcpu->arch.apf.halted = false;
8188 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8189 }
8190
8191 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8192 {
8193 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8194 return true;
8195 else
8196 return !kvm_event_needs_reinjection(vcpu) &&
8197 kvm_x86_ops->interrupt_allowed(vcpu);
8198 }
8199
8200 void kvm_arch_start_assignment(struct kvm *kvm)
8201 {
8202 atomic_inc(&kvm->arch.assigned_device_count);
8203 }
8204 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8205
8206 void kvm_arch_end_assignment(struct kvm *kvm)
8207 {
8208 atomic_dec(&kvm->arch.assigned_device_count);
8209 }
8210 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8211
8212 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8213 {
8214 return atomic_read(&kvm->arch.assigned_device_count);
8215 }
8216 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8217
8218 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8219 {
8220 atomic_inc(&kvm->arch.noncoherent_dma_count);
8221 }
8222 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8223
8224 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8225 {
8226 atomic_dec(&kvm->arch.noncoherent_dma_count);
8227 }
8228 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8229
8230 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8231 {
8232 return atomic_read(&kvm->arch.noncoherent_dma_count);
8233 }
8234 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8235
8236 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8237 struct irq_bypass_producer *prod)
8238 {
8239 struct kvm_kernel_irqfd *irqfd =
8240 container_of(cons, struct kvm_kernel_irqfd, consumer);
8241
8242 if (kvm_x86_ops->update_pi_irte) {
8243 irqfd->producer = prod;
8244 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8245 prod->irq, irqfd->gsi, 1);
8246 }
8247
8248 return -EINVAL;
8249 }
8250
8251 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8252 struct irq_bypass_producer *prod)
8253 {
8254 int ret;
8255 struct kvm_kernel_irqfd *irqfd =
8256 container_of(cons, struct kvm_kernel_irqfd, consumer);
8257
8258 if (!kvm_x86_ops->update_pi_irte) {
8259 WARN_ON(irqfd->producer != NULL);
8260 return;
8261 }
8262
8263 WARN_ON(irqfd->producer != prod);
8264 irqfd->producer = NULL;
8265
8266 /*
8267 * When producer of consumer is unregistered, we change back to
8268 * remapped mode, so we can re-use the current implementation
8269 * when the irq is masked/disabed or the consumer side (KVM
8270 * int this case doesn't want to receive the interrupts.
8271 */
8272 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8273 if (ret)
8274 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8275 " fails: %d\n", irqfd->consumer.token, ret);
8276 }
8277
8278 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8279 uint32_t guest_irq, bool set)
8280 {
8281 if (!kvm_x86_ops->update_pi_irte)
8282 return -EINVAL;
8283
8284 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8285 }
8286
8287 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8288 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8289 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8290 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8291 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8292 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8293 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8294 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8295 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8296 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8297 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);