]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/x86.c
KVM: MMU: Add 5 level EPT & Shadow page table support.
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77
78 #define emul_to_vcpu(ctxt) \
79 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
80
81 /* EFER defaults:
82 * - enable syscall per default because its emulated by KVM
83 * - enable LME and LMA per default on 64 bit KVM
84 */
85 #ifdef CONFIG_X86_64
86 static
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 #else
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
90 #endif
91
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32 __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64 __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
136
137 #define KVM_NR_SHARED_MSRS 16
138
139 struct kvm_shared_msrs_global {
140 int nr;
141 u32 msrs[KVM_NR_SHARED_MSRS];
142 };
143
144 struct kvm_shared_msrs {
145 struct user_return_notifier urn;
146 bool registered;
147 struct kvm_shared_msr_values {
148 u64 host;
149 u64 curr;
150 } values[KVM_NR_SHARED_MSRS];
151 };
152
153 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
154 static struct kvm_shared_msrs __percpu *shared_msrs;
155
156 struct kvm_stats_debugfs_item debugfs_entries[] = {
157 { "pf_fixed", VCPU_STAT(pf_fixed) },
158 { "pf_guest", VCPU_STAT(pf_guest) },
159 { "tlb_flush", VCPU_STAT(tlb_flush) },
160 { "invlpg", VCPU_STAT(invlpg) },
161 { "exits", VCPU_STAT(exits) },
162 { "io_exits", VCPU_STAT(io_exits) },
163 { "mmio_exits", VCPU_STAT(mmio_exits) },
164 { "signal_exits", VCPU_STAT(signal_exits) },
165 { "irq_window", VCPU_STAT(irq_window_exits) },
166 { "nmi_window", VCPU_STAT(nmi_window_exits) },
167 { "halt_exits", VCPU_STAT(halt_exits) },
168 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
169 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
170 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
171 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
172 { "hypercalls", VCPU_STAT(hypercalls) },
173 { "request_irq", VCPU_STAT(request_irq_exits) },
174 { "irq_exits", VCPU_STAT(irq_exits) },
175 { "host_state_reload", VCPU_STAT(host_state_reload) },
176 { "efer_reload", VCPU_STAT(efer_reload) },
177 { "fpu_reload", VCPU_STAT(fpu_reload) },
178 { "insn_emulation", VCPU_STAT(insn_emulation) },
179 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
180 { "irq_injections", VCPU_STAT(irq_injections) },
181 { "nmi_injections", VCPU_STAT(nmi_injections) },
182 { "req_event", VCPU_STAT(req_event) },
183 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187 { "mmu_flooded", VM_STAT(mmu_flooded) },
188 { "mmu_recycled", VM_STAT(mmu_recycled) },
189 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190 { "mmu_unsync", VM_STAT(mmu_unsync) },
191 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192 { "largepages", VM_STAT(lpages) },
193 { "max_mmu_page_hash_collisions",
194 VM_STAT(max_mmu_page_hash_collisions) },
195 { NULL }
196 };
197
198 u64 __read_mostly host_xcr0;
199
200 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
201
202 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
203 {
204 int i;
205 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
206 vcpu->arch.apf.gfns[i] = ~0;
207 }
208
209 static void kvm_on_user_return(struct user_return_notifier *urn)
210 {
211 unsigned slot;
212 struct kvm_shared_msrs *locals
213 = container_of(urn, struct kvm_shared_msrs, urn);
214 struct kvm_shared_msr_values *values;
215 unsigned long flags;
216
217 /*
218 * Disabling irqs at this point since the following code could be
219 * interrupted and executed through kvm_arch_hardware_disable()
220 */
221 local_irq_save(flags);
222 if (locals->registered) {
223 locals->registered = false;
224 user_return_notifier_unregister(urn);
225 }
226 local_irq_restore(flags);
227 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
228 values = &locals->values[slot];
229 if (values->host != values->curr) {
230 wrmsrl(shared_msrs_global.msrs[slot], values->host);
231 values->curr = values->host;
232 }
233 }
234 }
235
236 static void shared_msr_update(unsigned slot, u32 msr)
237 {
238 u64 value;
239 unsigned int cpu = smp_processor_id();
240 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
241
242 /* only read, and nobody should modify it at this time,
243 * so don't need lock */
244 if (slot >= shared_msrs_global.nr) {
245 printk(KERN_ERR "kvm: invalid MSR slot!");
246 return;
247 }
248 rdmsrl_safe(msr, &value);
249 smsr->values[slot].host = value;
250 smsr->values[slot].curr = value;
251 }
252
253 void kvm_define_shared_msr(unsigned slot, u32 msr)
254 {
255 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
256 shared_msrs_global.msrs[slot] = msr;
257 if (slot >= shared_msrs_global.nr)
258 shared_msrs_global.nr = slot + 1;
259 }
260 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
261
262 static void kvm_shared_msr_cpu_online(void)
263 {
264 unsigned i;
265
266 for (i = 0; i < shared_msrs_global.nr; ++i)
267 shared_msr_update(i, shared_msrs_global.msrs[i]);
268 }
269
270 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
271 {
272 unsigned int cpu = smp_processor_id();
273 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274 int err;
275
276 if (((value ^ smsr->values[slot].curr) & mask) == 0)
277 return 0;
278 smsr->values[slot].curr = value;
279 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
280 if (err)
281 return 1;
282
283 if (!smsr->registered) {
284 smsr->urn.on_user_return = kvm_on_user_return;
285 user_return_notifier_register(&smsr->urn);
286 smsr->registered = true;
287 }
288 return 0;
289 }
290 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
291
292 static void drop_user_return_notifiers(void)
293 {
294 unsigned int cpu = smp_processor_id();
295 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
296
297 if (smsr->registered)
298 kvm_on_user_return(&smsr->urn);
299 }
300
301 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
302 {
303 return vcpu->arch.apic_base;
304 }
305 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
306
307 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
308 {
309 u64 old_state = vcpu->arch.apic_base &
310 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311 u64 new_state = msr_info->data &
312 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
314 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
315
316 if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
317 return 1;
318 if (!msr_info->host_initiated &&
319 ((new_state == MSR_IA32_APICBASE_ENABLE &&
320 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
321 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
322 old_state == 0)))
323 return 1;
324
325 kvm_lapic_set_base(vcpu, msr_info->data);
326 return 0;
327 }
328 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
329
330 asmlinkage __visible void kvm_spurious_fault(void)
331 {
332 /* Fault while not rebooting. We want the trace. */
333 BUG();
334 }
335 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
336
337 #define EXCPT_BENIGN 0
338 #define EXCPT_CONTRIBUTORY 1
339 #define EXCPT_PF 2
340
341 static int exception_class(int vector)
342 {
343 switch (vector) {
344 case PF_VECTOR:
345 return EXCPT_PF;
346 case DE_VECTOR:
347 case TS_VECTOR:
348 case NP_VECTOR:
349 case SS_VECTOR:
350 case GP_VECTOR:
351 return EXCPT_CONTRIBUTORY;
352 default:
353 break;
354 }
355 return EXCPT_BENIGN;
356 }
357
358 #define EXCPT_FAULT 0
359 #define EXCPT_TRAP 1
360 #define EXCPT_ABORT 2
361 #define EXCPT_INTERRUPT 3
362
363 static int exception_type(int vector)
364 {
365 unsigned int mask;
366
367 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
368 return EXCPT_INTERRUPT;
369
370 mask = 1 << vector;
371
372 /* #DB is trap, as instruction watchpoints are handled elsewhere */
373 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
374 return EXCPT_TRAP;
375
376 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
377 return EXCPT_ABORT;
378
379 /* Reserved exceptions will result in fault */
380 return EXCPT_FAULT;
381 }
382
383 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
384 unsigned nr, bool has_error, u32 error_code,
385 bool reinject)
386 {
387 u32 prev_nr;
388 int class1, class2;
389
390 kvm_make_request(KVM_REQ_EVENT, vcpu);
391
392 if (!vcpu->arch.exception.pending) {
393 queue:
394 if (has_error && !is_protmode(vcpu))
395 has_error = false;
396 vcpu->arch.exception.pending = true;
397 vcpu->arch.exception.has_error_code = has_error;
398 vcpu->arch.exception.nr = nr;
399 vcpu->arch.exception.error_code = error_code;
400 vcpu->arch.exception.reinject = reinject;
401 return;
402 }
403
404 /* to check exception */
405 prev_nr = vcpu->arch.exception.nr;
406 if (prev_nr == DF_VECTOR) {
407 /* triple fault -> shutdown */
408 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
409 return;
410 }
411 class1 = exception_class(prev_nr);
412 class2 = exception_class(nr);
413 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
414 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
415 /* generate double fault per SDM Table 5-5 */
416 vcpu->arch.exception.pending = true;
417 vcpu->arch.exception.has_error_code = true;
418 vcpu->arch.exception.nr = DF_VECTOR;
419 vcpu->arch.exception.error_code = 0;
420 } else
421 /* replace previous exception with a new one in a hope
422 that instruction re-execution will regenerate lost
423 exception */
424 goto queue;
425 }
426
427 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
428 {
429 kvm_multiple_exception(vcpu, nr, false, 0, false);
430 }
431 EXPORT_SYMBOL_GPL(kvm_queue_exception);
432
433 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
434 {
435 kvm_multiple_exception(vcpu, nr, false, 0, true);
436 }
437 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
438
439 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
440 {
441 if (err)
442 kvm_inject_gp(vcpu, 0);
443 else
444 return kvm_skip_emulated_instruction(vcpu);
445
446 return 1;
447 }
448 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
449
450 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
451 {
452 ++vcpu->stat.pf_guest;
453 vcpu->arch.exception.nested_apf =
454 is_guest_mode(vcpu) && fault->async_page_fault;
455 if (vcpu->arch.exception.nested_apf)
456 vcpu->arch.apf.nested_apf_token = fault->address;
457 else
458 vcpu->arch.cr2 = fault->address;
459 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
460 }
461 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
462
463 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
464 {
465 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
466 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
467 else
468 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
469
470 return fault->nested_page_fault;
471 }
472
473 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
474 {
475 atomic_inc(&vcpu->arch.nmi_queued);
476 kvm_make_request(KVM_REQ_NMI, vcpu);
477 }
478 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
479
480 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
481 {
482 kvm_multiple_exception(vcpu, nr, true, error_code, false);
483 }
484 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
485
486 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
487 {
488 kvm_multiple_exception(vcpu, nr, true, error_code, true);
489 }
490 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
491
492 /*
493 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
494 * a #GP and return false.
495 */
496 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
497 {
498 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
499 return true;
500 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
501 return false;
502 }
503 EXPORT_SYMBOL_GPL(kvm_require_cpl);
504
505 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
506 {
507 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
508 return true;
509
510 kvm_queue_exception(vcpu, UD_VECTOR);
511 return false;
512 }
513 EXPORT_SYMBOL_GPL(kvm_require_dr);
514
515 /*
516 * This function will be used to read from the physical memory of the currently
517 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
518 * can read from guest physical or from the guest's guest physical memory.
519 */
520 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
521 gfn_t ngfn, void *data, int offset, int len,
522 u32 access)
523 {
524 struct x86_exception exception;
525 gfn_t real_gfn;
526 gpa_t ngpa;
527
528 ngpa = gfn_to_gpa(ngfn);
529 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
530 if (real_gfn == UNMAPPED_GVA)
531 return -EFAULT;
532
533 real_gfn = gpa_to_gfn(real_gfn);
534
535 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
536 }
537 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
538
539 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
540 void *data, int offset, int len, u32 access)
541 {
542 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
543 data, offset, len, access);
544 }
545
546 /*
547 * Load the pae pdptrs. Return true is they are all valid.
548 */
549 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
550 {
551 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
552 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
553 int i;
554 int ret;
555 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
556
557 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
558 offset * sizeof(u64), sizeof(pdpte),
559 PFERR_USER_MASK|PFERR_WRITE_MASK);
560 if (ret < 0) {
561 ret = 0;
562 goto out;
563 }
564 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
565 if ((pdpte[i] & PT_PRESENT_MASK) &&
566 (pdpte[i] &
567 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
568 ret = 0;
569 goto out;
570 }
571 }
572 ret = 1;
573
574 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
575 __set_bit(VCPU_EXREG_PDPTR,
576 (unsigned long *)&vcpu->arch.regs_avail);
577 __set_bit(VCPU_EXREG_PDPTR,
578 (unsigned long *)&vcpu->arch.regs_dirty);
579 out:
580
581 return ret;
582 }
583 EXPORT_SYMBOL_GPL(load_pdptrs);
584
585 bool pdptrs_changed(struct kvm_vcpu *vcpu)
586 {
587 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
588 bool changed = true;
589 int offset;
590 gfn_t gfn;
591 int r;
592
593 if (is_long_mode(vcpu) || !is_pae(vcpu))
594 return false;
595
596 if (!test_bit(VCPU_EXREG_PDPTR,
597 (unsigned long *)&vcpu->arch.regs_avail))
598 return true;
599
600 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
601 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
602 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
603 PFERR_USER_MASK | PFERR_WRITE_MASK);
604 if (r < 0)
605 goto out;
606 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
607 out:
608
609 return changed;
610 }
611 EXPORT_SYMBOL_GPL(pdptrs_changed);
612
613 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
614 {
615 unsigned long old_cr0 = kvm_read_cr0(vcpu);
616 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
617
618 cr0 |= X86_CR0_ET;
619
620 #ifdef CONFIG_X86_64
621 if (cr0 & 0xffffffff00000000UL)
622 return 1;
623 #endif
624
625 cr0 &= ~CR0_RESERVED_BITS;
626
627 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
628 return 1;
629
630 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
631 return 1;
632
633 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
634 #ifdef CONFIG_X86_64
635 if ((vcpu->arch.efer & EFER_LME)) {
636 int cs_db, cs_l;
637
638 if (!is_pae(vcpu))
639 return 1;
640 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
641 if (cs_l)
642 return 1;
643 } else
644 #endif
645 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
646 kvm_read_cr3(vcpu)))
647 return 1;
648 }
649
650 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
651 return 1;
652
653 kvm_x86_ops->set_cr0(vcpu, cr0);
654
655 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
656 kvm_clear_async_pf_completion_queue(vcpu);
657 kvm_async_pf_hash_reset(vcpu);
658 }
659
660 if ((cr0 ^ old_cr0) & update_bits)
661 kvm_mmu_reset_context(vcpu);
662
663 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
664 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
665 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
666 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
667
668 return 0;
669 }
670 EXPORT_SYMBOL_GPL(kvm_set_cr0);
671
672 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
673 {
674 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
675 }
676 EXPORT_SYMBOL_GPL(kvm_lmsw);
677
678 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
679 {
680 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
681 !vcpu->guest_xcr0_loaded) {
682 /* kvm_set_xcr() also depends on this */
683 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
684 vcpu->guest_xcr0_loaded = 1;
685 }
686 }
687
688 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
689 {
690 if (vcpu->guest_xcr0_loaded) {
691 if (vcpu->arch.xcr0 != host_xcr0)
692 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
693 vcpu->guest_xcr0_loaded = 0;
694 }
695 }
696
697 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
698 {
699 u64 xcr0 = xcr;
700 u64 old_xcr0 = vcpu->arch.xcr0;
701 u64 valid_bits;
702
703 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
704 if (index != XCR_XFEATURE_ENABLED_MASK)
705 return 1;
706 if (!(xcr0 & XFEATURE_MASK_FP))
707 return 1;
708 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
709 return 1;
710
711 /*
712 * Do not allow the guest to set bits that we do not support
713 * saving. However, xcr0 bit 0 is always set, even if the
714 * emulated CPU does not support XSAVE (see fx_init).
715 */
716 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
717 if (xcr0 & ~valid_bits)
718 return 1;
719
720 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
721 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
722 return 1;
723
724 if (xcr0 & XFEATURE_MASK_AVX512) {
725 if (!(xcr0 & XFEATURE_MASK_YMM))
726 return 1;
727 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
728 return 1;
729 }
730 vcpu->arch.xcr0 = xcr0;
731
732 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
733 kvm_update_cpuid(vcpu);
734 return 0;
735 }
736
737 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
738 {
739 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
740 __kvm_set_xcr(vcpu, index, xcr)) {
741 kvm_inject_gp(vcpu, 0);
742 return 1;
743 }
744 return 0;
745 }
746 EXPORT_SYMBOL_GPL(kvm_set_xcr);
747
748 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
749 {
750 unsigned long old_cr4 = kvm_read_cr4(vcpu);
751 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
752 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
753
754 if (cr4 & CR4_RESERVED_BITS)
755 return 1;
756
757 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
758 return 1;
759
760 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
761 return 1;
762
763 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
764 return 1;
765
766 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
767 return 1;
768
769 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
770 return 1;
771
772 if (is_long_mode(vcpu)) {
773 if (!(cr4 & X86_CR4_PAE))
774 return 1;
775 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
776 && ((cr4 ^ old_cr4) & pdptr_bits)
777 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
778 kvm_read_cr3(vcpu)))
779 return 1;
780
781 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
782 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
783 return 1;
784
785 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
786 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
787 return 1;
788 }
789
790 if (kvm_x86_ops->set_cr4(vcpu, cr4))
791 return 1;
792
793 if (((cr4 ^ old_cr4) & pdptr_bits) ||
794 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
795 kvm_mmu_reset_context(vcpu);
796
797 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
798 kvm_update_cpuid(vcpu);
799
800 return 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_set_cr4);
803
804 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
805 {
806 #ifdef CONFIG_X86_64
807 cr3 &= ~CR3_PCID_INVD;
808 #endif
809
810 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
811 kvm_mmu_sync_roots(vcpu);
812 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
813 return 0;
814 }
815
816 if (is_long_mode(vcpu) &&
817 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
818 return 1;
819 else if (is_pae(vcpu) && is_paging(vcpu) &&
820 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
821 return 1;
822
823 vcpu->arch.cr3 = cr3;
824 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
825 kvm_mmu_new_cr3(vcpu);
826 return 0;
827 }
828 EXPORT_SYMBOL_GPL(kvm_set_cr3);
829
830 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
831 {
832 if (cr8 & CR8_RESERVED_BITS)
833 return 1;
834 if (lapic_in_kernel(vcpu))
835 kvm_lapic_set_tpr(vcpu, cr8);
836 else
837 vcpu->arch.cr8 = cr8;
838 return 0;
839 }
840 EXPORT_SYMBOL_GPL(kvm_set_cr8);
841
842 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
843 {
844 if (lapic_in_kernel(vcpu))
845 return kvm_lapic_get_cr8(vcpu);
846 else
847 return vcpu->arch.cr8;
848 }
849 EXPORT_SYMBOL_GPL(kvm_get_cr8);
850
851 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
852 {
853 int i;
854
855 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
856 for (i = 0; i < KVM_NR_DB_REGS; i++)
857 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
858 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
859 }
860 }
861
862 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
863 {
864 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
865 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
866 }
867
868 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
869 {
870 unsigned long dr7;
871
872 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
873 dr7 = vcpu->arch.guest_debug_dr7;
874 else
875 dr7 = vcpu->arch.dr7;
876 kvm_x86_ops->set_dr7(vcpu, dr7);
877 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
878 if (dr7 & DR7_BP_EN_MASK)
879 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
880 }
881
882 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
883 {
884 u64 fixed = DR6_FIXED_1;
885
886 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
887 fixed |= DR6_RTM;
888 return fixed;
889 }
890
891 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
892 {
893 switch (dr) {
894 case 0 ... 3:
895 vcpu->arch.db[dr] = val;
896 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
897 vcpu->arch.eff_db[dr] = val;
898 break;
899 case 4:
900 /* fall through */
901 case 6:
902 if (val & 0xffffffff00000000ULL)
903 return -1; /* #GP */
904 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
905 kvm_update_dr6(vcpu);
906 break;
907 case 5:
908 /* fall through */
909 default: /* 7 */
910 if (val & 0xffffffff00000000ULL)
911 return -1; /* #GP */
912 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
913 kvm_update_dr7(vcpu);
914 break;
915 }
916
917 return 0;
918 }
919
920 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
921 {
922 if (__kvm_set_dr(vcpu, dr, val)) {
923 kvm_inject_gp(vcpu, 0);
924 return 1;
925 }
926 return 0;
927 }
928 EXPORT_SYMBOL_GPL(kvm_set_dr);
929
930 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
931 {
932 switch (dr) {
933 case 0 ... 3:
934 *val = vcpu->arch.db[dr];
935 break;
936 case 4:
937 /* fall through */
938 case 6:
939 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
940 *val = vcpu->arch.dr6;
941 else
942 *val = kvm_x86_ops->get_dr6(vcpu);
943 break;
944 case 5:
945 /* fall through */
946 default: /* 7 */
947 *val = vcpu->arch.dr7;
948 break;
949 }
950 return 0;
951 }
952 EXPORT_SYMBOL_GPL(kvm_get_dr);
953
954 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
955 {
956 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
957 u64 data;
958 int err;
959
960 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
961 if (err)
962 return err;
963 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
964 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
965 return err;
966 }
967 EXPORT_SYMBOL_GPL(kvm_rdpmc);
968
969 /*
970 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
971 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
972 *
973 * This list is modified at module load time to reflect the
974 * capabilities of the host cpu. This capabilities test skips MSRs that are
975 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
976 * may depend on host virtualization features rather than host cpu features.
977 */
978
979 static u32 msrs_to_save[] = {
980 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
981 MSR_STAR,
982 #ifdef CONFIG_X86_64
983 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
984 #endif
985 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
986 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
987 };
988
989 static unsigned num_msrs_to_save;
990
991 static u32 emulated_msrs[] = {
992 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
993 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
994 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
995 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
996 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
997 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
998 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
999 HV_X64_MSR_RESET,
1000 HV_X64_MSR_VP_INDEX,
1001 HV_X64_MSR_VP_RUNTIME,
1002 HV_X64_MSR_SCONTROL,
1003 HV_X64_MSR_STIMER0_CONFIG,
1004 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1005 MSR_KVM_PV_EOI_EN,
1006
1007 MSR_IA32_TSC_ADJUST,
1008 MSR_IA32_TSCDEADLINE,
1009 MSR_IA32_MISC_ENABLE,
1010 MSR_IA32_MCG_STATUS,
1011 MSR_IA32_MCG_CTL,
1012 MSR_IA32_MCG_EXT_CTL,
1013 MSR_IA32_SMBASE,
1014 MSR_PLATFORM_INFO,
1015 MSR_MISC_FEATURES_ENABLES,
1016 };
1017
1018 static unsigned num_emulated_msrs;
1019
1020 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1021 {
1022 if (efer & efer_reserved_bits)
1023 return false;
1024
1025 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1026 return false;
1027
1028 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1029 return false;
1030
1031 return true;
1032 }
1033 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1034
1035 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1036 {
1037 u64 old_efer = vcpu->arch.efer;
1038
1039 if (!kvm_valid_efer(vcpu, efer))
1040 return 1;
1041
1042 if (is_paging(vcpu)
1043 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1044 return 1;
1045
1046 efer &= ~EFER_LMA;
1047 efer |= vcpu->arch.efer & EFER_LMA;
1048
1049 kvm_x86_ops->set_efer(vcpu, efer);
1050
1051 /* Update reserved bits */
1052 if ((efer ^ old_efer) & EFER_NX)
1053 kvm_mmu_reset_context(vcpu);
1054
1055 return 0;
1056 }
1057
1058 void kvm_enable_efer_bits(u64 mask)
1059 {
1060 efer_reserved_bits &= ~mask;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1063
1064 /*
1065 * Writes msr value into into the appropriate "register".
1066 * Returns 0 on success, non-0 otherwise.
1067 * Assumes vcpu_load() was already called.
1068 */
1069 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1070 {
1071 switch (msr->index) {
1072 case MSR_FS_BASE:
1073 case MSR_GS_BASE:
1074 case MSR_KERNEL_GS_BASE:
1075 case MSR_CSTAR:
1076 case MSR_LSTAR:
1077 if (is_noncanonical_address(msr->data))
1078 return 1;
1079 break;
1080 case MSR_IA32_SYSENTER_EIP:
1081 case MSR_IA32_SYSENTER_ESP:
1082 /*
1083 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1084 * non-canonical address is written on Intel but not on
1085 * AMD (which ignores the top 32-bits, because it does
1086 * not implement 64-bit SYSENTER).
1087 *
1088 * 64-bit code should hence be able to write a non-canonical
1089 * value on AMD. Making the address canonical ensures that
1090 * vmentry does not fail on Intel after writing a non-canonical
1091 * value, and that something deterministic happens if the guest
1092 * invokes 64-bit SYSENTER.
1093 */
1094 msr->data = get_canonical(msr->data);
1095 }
1096 return kvm_x86_ops->set_msr(vcpu, msr);
1097 }
1098 EXPORT_SYMBOL_GPL(kvm_set_msr);
1099
1100 /*
1101 * Adapt set_msr() to msr_io()'s calling convention
1102 */
1103 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1104 {
1105 struct msr_data msr;
1106 int r;
1107
1108 msr.index = index;
1109 msr.host_initiated = true;
1110 r = kvm_get_msr(vcpu, &msr);
1111 if (r)
1112 return r;
1113
1114 *data = msr.data;
1115 return 0;
1116 }
1117
1118 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1119 {
1120 struct msr_data msr;
1121
1122 msr.data = *data;
1123 msr.index = index;
1124 msr.host_initiated = true;
1125 return kvm_set_msr(vcpu, &msr);
1126 }
1127
1128 #ifdef CONFIG_X86_64
1129 struct pvclock_gtod_data {
1130 seqcount_t seq;
1131
1132 struct { /* extract of a clocksource struct */
1133 int vclock_mode;
1134 u64 cycle_last;
1135 u64 mask;
1136 u32 mult;
1137 u32 shift;
1138 } clock;
1139
1140 u64 boot_ns;
1141 u64 nsec_base;
1142 u64 wall_time_sec;
1143 };
1144
1145 static struct pvclock_gtod_data pvclock_gtod_data;
1146
1147 static void update_pvclock_gtod(struct timekeeper *tk)
1148 {
1149 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1150 u64 boot_ns;
1151
1152 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1153
1154 write_seqcount_begin(&vdata->seq);
1155
1156 /* copy pvclock gtod data */
1157 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1158 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1159 vdata->clock.mask = tk->tkr_mono.mask;
1160 vdata->clock.mult = tk->tkr_mono.mult;
1161 vdata->clock.shift = tk->tkr_mono.shift;
1162
1163 vdata->boot_ns = boot_ns;
1164 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1165
1166 vdata->wall_time_sec = tk->xtime_sec;
1167
1168 write_seqcount_end(&vdata->seq);
1169 }
1170 #endif
1171
1172 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1173 {
1174 /*
1175 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1176 * vcpu_enter_guest. This function is only called from
1177 * the physical CPU that is running vcpu.
1178 */
1179 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1180 }
1181
1182 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1183 {
1184 int version;
1185 int r;
1186 struct pvclock_wall_clock wc;
1187 struct timespec64 boot;
1188
1189 if (!wall_clock)
1190 return;
1191
1192 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1193 if (r)
1194 return;
1195
1196 if (version & 1)
1197 ++version; /* first time write, random junk */
1198
1199 ++version;
1200
1201 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1202 return;
1203
1204 /*
1205 * The guest calculates current wall clock time by adding
1206 * system time (updated by kvm_guest_time_update below) to the
1207 * wall clock specified here. guest system time equals host
1208 * system time for us, thus we must fill in host boot time here.
1209 */
1210 getboottime64(&boot);
1211
1212 if (kvm->arch.kvmclock_offset) {
1213 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1214 boot = timespec64_sub(boot, ts);
1215 }
1216 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1217 wc.nsec = boot.tv_nsec;
1218 wc.version = version;
1219
1220 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1221
1222 version++;
1223 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1224 }
1225
1226 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1227 {
1228 do_shl32_div32(dividend, divisor);
1229 return dividend;
1230 }
1231
1232 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1233 s8 *pshift, u32 *pmultiplier)
1234 {
1235 uint64_t scaled64;
1236 int32_t shift = 0;
1237 uint64_t tps64;
1238 uint32_t tps32;
1239
1240 tps64 = base_hz;
1241 scaled64 = scaled_hz;
1242 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1243 tps64 >>= 1;
1244 shift--;
1245 }
1246
1247 tps32 = (uint32_t)tps64;
1248 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1249 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1250 scaled64 >>= 1;
1251 else
1252 tps32 <<= 1;
1253 shift++;
1254 }
1255
1256 *pshift = shift;
1257 *pmultiplier = div_frac(scaled64, tps32);
1258
1259 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1260 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1261 }
1262
1263 #ifdef CONFIG_X86_64
1264 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1265 #endif
1266
1267 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1268 static unsigned long max_tsc_khz;
1269
1270 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1271 {
1272 u64 v = (u64)khz * (1000000 + ppm);
1273 do_div(v, 1000000);
1274 return v;
1275 }
1276
1277 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1278 {
1279 u64 ratio;
1280
1281 /* Guest TSC same frequency as host TSC? */
1282 if (!scale) {
1283 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1284 return 0;
1285 }
1286
1287 /* TSC scaling supported? */
1288 if (!kvm_has_tsc_control) {
1289 if (user_tsc_khz > tsc_khz) {
1290 vcpu->arch.tsc_catchup = 1;
1291 vcpu->arch.tsc_always_catchup = 1;
1292 return 0;
1293 } else {
1294 WARN(1, "user requested TSC rate below hardware speed\n");
1295 return -1;
1296 }
1297 }
1298
1299 /* TSC scaling required - calculate ratio */
1300 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1301 user_tsc_khz, tsc_khz);
1302
1303 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1304 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1305 user_tsc_khz);
1306 return -1;
1307 }
1308
1309 vcpu->arch.tsc_scaling_ratio = ratio;
1310 return 0;
1311 }
1312
1313 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1314 {
1315 u32 thresh_lo, thresh_hi;
1316 int use_scaling = 0;
1317
1318 /* tsc_khz can be zero if TSC calibration fails */
1319 if (user_tsc_khz == 0) {
1320 /* set tsc_scaling_ratio to a safe value */
1321 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1322 return -1;
1323 }
1324
1325 /* Compute a scale to convert nanoseconds in TSC cycles */
1326 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1327 &vcpu->arch.virtual_tsc_shift,
1328 &vcpu->arch.virtual_tsc_mult);
1329 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1330
1331 /*
1332 * Compute the variation in TSC rate which is acceptable
1333 * within the range of tolerance and decide if the
1334 * rate being applied is within that bounds of the hardware
1335 * rate. If so, no scaling or compensation need be done.
1336 */
1337 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1338 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1339 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1340 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1341 use_scaling = 1;
1342 }
1343 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1344 }
1345
1346 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1347 {
1348 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1349 vcpu->arch.virtual_tsc_mult,
1350 vcpu->arch.virtual_tsc_shift);
1351 tsc += vcpu->arch.this_tsc_write;
1352 return tsc;
1353 }
1354
1355 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1356 {
1357 #ifdef CONFIG_X86_64
1358 bool vcpus_matched;
1359 struct kvm_arch *ka = &vcpu->kvm->arch;
1360 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1361
1362 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1363 atomic_read(&vcpu->kvm->online_vcpus));
1364
1365 /*
1366 * Once the masterclock is enabled, always perform request in
1367 * order to update it.
1368 *
1369 * In order to enable masterclock, the host clocksource must be TSC
1370 * and the vcpus need to have matched TSCs. When that happens,
1371 * perform request to enable masterclock.
1372 */
1373 if (ka->use_master_clock ||
1374 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1375 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1376
1377 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1378 atomic_read(&vcpu->kvm->online_vcpus),
1379 ka->use_master_clock, gtod->clock.vclock_mode);
1380 #endif
1381 }
1382
1383 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1384 {
1385 u64 curr_offset = vcpu->arch.tsc_offset;
1386 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1387 }
1388
1389 /*
1390 * Multiply tsc by a fixed point number represented by ratio.
1391 *
1392 * The most significant 64-N bits (mult) of ratio represent the
1393 * integral part of the fixed point number; the remaining N bits
1394 * (frac) represent the fractional part, ie. ratio represents a fixed
1395 * point number (mult + frac * 2^(-N)).
1396 *
1397 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1398 */
1399 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1400 {
1401 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1402 }
1403
1404 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1405 {
1406 u64 _tsc = tsc;
1407 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1408
1409 if (ratio != kvm_default_tsc_scaling_ratio)
1410 _tsc = __scale_tsc(ratio, tsc);
1411
1412 return _tsc;
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1415
1416 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1417 {
1418 u64 tsc;
1419
1420 tsc = kvm_scale_tsc(vcpu, rdtsc());
1421
1422 return target_tsc - tsc;
1423 }
1424
1425 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1426 {
1427 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1428 }
1429 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1430
1431 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1432 {
1433 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1434 vcpu->arch.tsc_offset = offset;
1435 }
1436
1437 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1438 {
1439 struct kvm *kvm = vcpu->kvm;
1440 u64 offset, ns, elapsed;
1441 unsigned long flags;
1442 bool matched;
1443 bool already_matched;
1444 u64 data = msr->data;
1445 bool synchronizing = false;
1446
1447 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1448 offset = kvm_compute_tsc_offset(vcpu, data);
1449 ns = ktime_get_boot_ns();
1450 elapsed = ns - kvm->arch.last_tsc_nsec;
1451
1452 if (vcpu->arch.virtual_tsc_khz) {
1453 if (data == 0 && msr->host_initiated) {
1454 /*
1455 * detection of vcpu initialization -- need to sync
1456 * with other vCPUs. This particularly helps to keep
1457 * kvm_clock stable after CPU hotplug
1458 */
1459 synchronizing = true;
1460 } else {
1461 u64 tsc_exp = kvm->arch.last_tsc_write +
1462 nsec_to_cycles(vcpu, elapsed);
1463 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1464 /*
1465 * Special case: TSC write with a small delta (1 second)
1466 * of virtual cycle time against real time is
1467 * interpreted as an attempt to synchronize the CPU.
1468 */
1469 synchronizing = data < tsc_exp + tsc_hz &&
1470 data + tsc_hz > tsc_exp;
1471 }
1472 }
1473
1474 /*
1475 * For a reliable TSC, we can match TSC offsets, and for an unstable
1476 * TSC, we add elapsed time in this computation. We could let the
1477 * compensation code attempt to catch up if we fall behind, but
1478 * it's better to try to match offsets from the beginning.
1479 */
1480 if (synchronizing &&
1481 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1482 if (!check_tsc_unstable()) {
1483 offset = kvm->arch.cur_tsc_offset;
1484 pr_debug("kvm: matched tsc offset for %llu\n", data);
1485 } else {
1486 u64 delta = nsec_to_cycles(vcpu, elapsed);
1487 data += delta;
1488 offset = kvm_compute_tsc_offset(vcpu, data);
1489 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1490 }
1491 matched = true;
1492 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1493 } else {
1494 /*
1495 * We split periods of matched TSC writes into generations.
1496 * For each generation, we track the original measured
1497 * nanosecond time, offset, and write, so if TSCs are in
1498 * sync, we can match exact offset, and if not, we can match
1499 * exact software computation in compute_guest_tsc()
1500 *
1501 * These values are tracked in kvm->arch.cur_xxx variables.
1502 */
1503 kvm->arch.cur_tsc_generation++;
1504 kvm->arch.cur_tsc_nsec = ns;
1505 kvm->arch.cur_tsc_write = data;
1506 kvm->arch.cur_tsc_offset = offset;
1507 matched = false;
1508 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1509 kvm->arch.cur_tsc_generation, data);
1510 }
1511
1512 /*
1513 * We also track th most recent recorded KHZ, write and time to
1514 * allow the matching interval to be extended at each write.
1515 */
1516 kvm->arch.last_tsc_nsec = ns;
1517 kvm->arch.last_tsc_write = data;
1518 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1519
1520 vcpu->arch.last_guest_tsc = data;
1521
1522 /* Keep track of which generation this VCPU has synchronized to */
1523 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1524 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1525 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1526
1527 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1528 update_ia32_tsc_adjust_msr(vcpu, offset);
1529
1530 kvm_vcpu_write_tsc_offset(vcpu, offset);
1531 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1532
1533 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1534 if (!matched) {
1535 kvm->arch.nr_vcpus_matched_tsc = 0;
1536 } else if (!already_matched) {
1537 kvm->arch.nr_vcpus_matched_tsc++;
1538 }
1539
1540 kvm_track_tsc_matching(vcpu);
1541 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1542 }
1543
1544 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1545
1546 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1547 s64 adjustment)
1548 {
1549 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1550 }
1551
1552 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1553 {
1554 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1555 WARN_ON(adjustment < 0);
1556 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1557 adjust_tsc_offset_guest(vcpu, adjustment);
1558 }
1559
1560 #ifdef CONFIG_X86_64
1561
1562 static u64 read_tsc(void)
1563 {
1564 u64 ret = (u64)rdtsc_ordered();
1565 u64 last = pvclock_gtod_data.clock.cycle_last;
1566
1567 if (likely(ret >= last))
1568 return ret;
1569
1570 /*
1571 * GCC likes to generate cmov here, but this branch is extremely
1572 * predictable (it's just a function of time and the likely is
1573 * very likely) and there's a data dependence, so force GCC
1574 * to generate a branch instead. I don't barrier() because
1575 * we don't actually need a barrier, and if this function
1576 * ever gets inlined it will generate worse code.
1577 */
1578 asm volatile ("");
1579 return last;
1580 }
1581
1582 static inline u64 vgettsc(u64 *cycle_now)
1583 {
1584 long v;
1585 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1586
1587 *cycle_now = read_tsc();
1588
1589 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1590 return v * gtod->clock.mult;
1591 }
1592
1593 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1594 {
1595 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1596 unsigned long seq;
1597 int mode;
1598 u64 ns;
1599
1600 do {
1601 seq = read_seqcount_begin(&gtod->seq);
1602 mode = gtod->clock.vclock_mode;
1603 ns = gtod->nsec_base;
1604 ns += vgettsc(cycle_now);
1605 ns >>= gtod->clock.shift;
1606 ns += gtod->boot_ns;
1607 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1608 *t = ns;
1609
1610 return mode;
1611 }
1612
1613 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1614 {
1615 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1616 unsigned long seq;
1617 int mode;
1618 u64 ns;
1619
1620 do {
1621 seq = read_seqcount_begin(&gtod->seq);
1622 mode = gtod->clock.vclock_mode;
1623 ts->tv_sec = gtod->wall_time_sec;
1624 ns = gtod->nsec_base;
1625 ns += vgettsc(cycle_now);
1626 ns >>= gtod->clock.shift;
1627 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1628
1629 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1630 ts->tv_nsec = ns;
1631
1632 return mode;
1633 }
1634
1635 /* returns true if host is using tsc clocksource */
1636 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1637 {
1638 /* checked again under seqlock below */
1639 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1640 return false;
1641
1642 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1643 }
1644
1645 /* returns true if host is using tsc clocksource */
1646 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1647 u64 *cycle_now)
1648 {
1649 /* checked again under seqlock below */
1650 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1651 return false;
1652
1653 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1654 }
1655 #endif
1656
1657 /*
1658 *
1659 * Assuming a stable TSC across physical CPUS, and a stable TSC
1660 * across virtual CPUs, the following condition is possible.
1661 * Each numbered line represents an event visible to both
1662 * CPUs at the next numbered event.
1663 *
1664 * "timespecX" represents host monotonic time. "tscX" represents
1665 * RDTSC value.
1666 *
1667 * VCPU0 on CPU0 | VCPU1 on CPU1
1668 *
1669 * 1. read timespec0,tsc0
1670 * 2. | timespec1 = timespec0 + N
1671 * | tsc1 = tsc0 + M
1672 * 3. transition to guest | transition to guest
1673 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1674 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1675 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1676 *
1677 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1678 *
1679 * - ret0 < ret1
1680 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1681 * ...
1682 * - 0 < N - M => M < N
1683 *
1684 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1685 * always the case (the difference between two distinct xtime instances
1686 * might be smaller then the difference between corresponding TSC reads,
1687 * when updating guest vcpus pvclock areas).
1688 *
1689 * To avoid that problem, do not allow visibility of distinct
1690 * system_timestamp/tsc_timestamp values simultaneously: use a master
1691 * copy of host monotonic time values. Update that master copy
1692 * in lockstep.
1693 *
1694 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1695 *
1696 */
1697
1698 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1699 {
1700 #ifdef CONFIG_X86_64
1701 struct kvm_arch *ka = &kvm->arch;
1702 int vclock_mode;
1703 bool host_tsc_clocksource, vcpus_matched;
1704
1705 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1706 atomic_read(&kvm->online_vcpus));
1707
1708 /*
1709 * If the host uses TSC clock, then passthrough TSC as stable
1710 * to the guest.
1711 */
1712 host_tsc_clocksource = kvm_get_time_and_clockread(
1713 &ka->master_kernel_ns,
1714 &ka->master_cycle_now);
1715
1716 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1717 && !ka->backwards_tsc_observed
1718 && !ka->boot_vcpu_runs_old_kvmclock;
1719
1720 if (ka->use_master_clock)
1721 atomic_set(&kvm_guest_has_master_clock, 1);
1722
1723 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1724 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1725 vcpus_matched);
1726 #endif
1727 }
1728
1729 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1730 {
1731 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1732 }
1733
1734 static void kvm_gen_update_masterclock(struct kvm *kvm)
1735 {
1736 #ifdef CONFIG_X86_64
1737 int i;
1738 struct kvm_vcpu *vcpu;
1739 struct kvm_arch *ka = &kvm->arch;
1740
1741 spin_lock(&ka->pvclock_gtod_sync_lock);
1742 kvm_make_mclock_inprogress_request(kvm);
1743 /* no guest entries from this point */
1744 pvclock_update_vm_gtod_copy(kvm);
1745
1746 kvm_for_each_vcpu(i, vcpu, kvm)
1747 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1748
1749 /* guest entries allowed */
1750 kvm_for_each_vcpu(i, vcpu, kvm)
1751 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1752
1753 spin_unlock(&ka->pvclock_gtod_sync_lock);
1754 #endif
1755 }
1756
1757 u64 get_kvmclock_ns(struct kvm *kvm)
1758 {
1759 struct kvm_arch *ka = &kvm->arch;
1760 struct pvclock_vcpu_time_info hv_clock;
1761 u64 ret;
1762
1763 spin_lock(&ka->pvclock_gtod_sync_lock);
1764 if (!ka->use_master_clock) {
1765 spin_unlock(&ka->pvclock_gtod_sync_lock);
1766 return ktime_get_boot_ns() + ka->kvmclock_offset;
1767 }
1768
1769 hv_clock.tsc_timestamp = ka->master_cycle_now;
1770 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1771 spin_unlock(&ka->pvclock_gtod_sync_lock);
1772
1773 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1774 get_cpu();
1775
1776 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1777 &hv_clock.tsc_shift,
1778 &hv_clock.tsc_to_system_mul);
1779 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1780
1781 put_cpu();
1782
1783 return ret;
1784 }
1785
1786 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1787 {
1788 struct kvm_vcpu_arch *vcpu = &v->arch;
1789 struct pvclock_vcpu_time_info guest_hv_clock;
1790
1791 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1792 &guest_hv_clock, sizeof(guest_hv_clock))))
1793 return;
1794
1795 /* This VCPU is paused, but it's legal for a guest to read another
1796 * VCPU's kvmclock, so we really have to follow the specification where
1797 * it says that version is odd if data is being modified, and even after
1798 * it is consistent.
1799 *
1800 * Version field updates must be kept separate. This is because
1801 * kvm_write_guest_cached might use a "rep movs" instruction, and
1802 * writes within a string instruction are weakly ordered. So there
1803 * are three writes overall.
1804 *
1805 * As a small optimization, only write the version field in the first
1806 * and third write. The vcpu->pv_time cache is still valid, because the
1807 * version field is the first in the struct.
1808 */
1809 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1810
1811 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1812 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1813 &vcpu->hv_clock,
1814 sizeof(vcpu->hv_clock.version));
1815
1816 smp_wmb();
1817
1818 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1819 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1820
1821 if (vcpu->pvclock_set_guest_stopped_request) {
1822 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1823 vcpu->pvclock_set_guest_stopped_request = false;
1824 }
1825
1826 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1827
1828 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1829 &vcpu->hv_clock,
1830 sizeof(vcpu->hv_clock));
1831
1832 smp_wmb();
1833
1834 vcpu->hv_clock.version++;
1835 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1836 &vcpu->hv_clock,
1837 sizeof(vcpu->hv_clock.version));
1838 }
1839
1840 static int kvm_guest_time_update(struct kvm_vcpu *v)
1841 {
1842 unsigned long flags, tgt_tsc_khz;
1843 struct kvm_vcpu_arch *vcpu = &v->arch;
1844 struct kvm_arch *ka = &v->kvm->arch;
1845 s64 kernel_ns;
1846 u64 tsc_timestamp, host_tsc;
1847 u8 pvclock_flags;
1848 bool use_master_clock;
1849
1850 kernel_ns = 0;
1851 host_tsc = 0;
1852
1853 /*
1854 * If the host uses TSC clock, then passthrough TSC as stable
1855 * to the guest.
1856 */
1857 spin_lock(&ka->pvclock_gtod_sync_lock);
1858 use_master_clock = ka->use_master_clock;
1859 if (use_master_clock) {
1860 host_tsc = ka->master_cycle_now;
1861 kernel_ns = ka->master_kernel_ns;
1862 }
1863 spin_unlock(&ka->pvclock_gtod_sync_lock);
1864
1865 /* Keep irq disabled to prevent changes to the clock */
1866 local_irq_save(flags);
1867 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1868 if (unlikely(tgt_tsc_khz == 0)) {
1869 local_irq_restore(flags);
1870 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1871 return 1;
1872 }
1873 if (!use_master_clock) {
1874 host_tsc = rdtsc();
1875 kernel_ns = ktime_get_boot_ns();
1876 }
1877
1878 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1879
1880 /*
1881 * We may have to catch up the TSC to match elapsed wall clock
1882 * time for two reasons, even if kvmclock is used.
1883 * 1) CPU could have been running below the maximum TSC rate
1884 * 2) Broken TSC compensation resets the base at each VCPU
1885 * entry to avoid unknown leaps of TSC even when running
1886 * again on the same CPU. This may cause apparent elapsed
1887 * time to disappear, and the guest to stand still or run
1888 * very slowly.
1889 */
1890 if (vcpu->tsc_catchup) {
1891 u64 tsc = compute_guest_tsc(v, kernel_ns);
1892 if (tsc > tsc_timestamp) {
1893 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1894 tsc_timestamp = tsc;
1895 }
1896 }
1897
1898 local_irq_restore(flags);
1899
1900 /* With all the info we got, fill in the values */
1901
1902 if (kvm_has_tsc_control)
1903 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1904
1905 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1906 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1907 &vcpu->hv_clock.tsc_shift,
1908 &vcpu->hv_clock.tsc_to_system_mul);
1909 vcpu->hw_tsc_khz = tgt_tsc_khz;
1910 }
1911
1912 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1913 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1914 vcpu->last_guest_tsc = tsc_timestamp;
1915
1916 /* If the host uses TSC clocksource, then it is stable */
1917 pvclock_flags = 0;
1918 if (use_master_clock)
1919 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1920
1921 vcpu->hv_clock.flags = pvclock_flags;
1922
1923 if (vcpu->pv_time_enabled)
1924 kvm_setup_pvclock_page(v);
1925 if (v == kvm_get_vcpu(v->kvm, 0))
1926 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1927 return 0;
1928 }
1929
1930 /*
1931 * kvmclock updates which are isolated to a given vcpu, such as
1932 * vcpu->cpu migration, should not allow system_timestamp from
1933 * the rest of the vcpus to remain static. Otherwise ntp frequency
1934 * correction applies to one vcpu's system_timestamp but not
1935 * the others.
1936 *
1937 * So in those cases, request a kvmclock update for all vcpus.
1938 * We need to rate-limit these requests though, as they can
1939 * considerably slow guests that have a large number of vcpus.
1940 * The time for a remote vcpu to update its kvmclock is bound
1941 * by the delay we use to rate-limit the updates.
1942 */
1943
1944 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1945
1946 static void kvmclock_update_fn(struct work_struct *work)
1947 {
1948 int i;
1949 struct delayed_work *dwork = to_delayed_work(work);
1950 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1951 kvmclock_update_work);
1952 struct kvm *kvm = container_of(ka, struct kvm, arch);
1953 struct kvm_vcpu *vcpu;
1954
1955 kvm_for_each_vcpu(i, vcpu, kvm) {
1956 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1957 kvm_vcpu_kick(vcpu);
1958 }
1959 }
1960
1961 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1962 {
1963 struct kvm *kvm = v->kvm;
1964
1965 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1966 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1967 KVMCLOCK_UPDATE_DELAY);
1968 }
1969
1970 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1971
1972 static void kvmclock_sync_fn(struct work_struct *work)
1973 {
1974 struct delayed_work *dwork = to_delayed_work(work);
1975 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1976 kvmclock_sync_work);
1977 struct kvm *kvm = container_of(ka, struct kvm, arch);
1978
1979 if (!kvmclock_periodic_sync)
1980 return;
1981
1982 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1983 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1984 KVMCLOCK_SYNC_PERIOD);
1985 }
1986
1987 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1988 {
1989 u64 mcg_cap = vcpu->arch.mcg_cap;
1990 unsigned bank_num = mcg_cap & 0xff;
1991
1992 switch (msr) {
1993 case MSR_IA32_MCG_STATUS:
1994 vcpu->arch.mcg_status = data;
1995 break;
1996 case MSR_IA32_MCG_CTL:
1997 if (!(mcg_cap & MCG_CTL_P))
1998 return 1;
1999 if (data != 0 && data != ~(u64)0)
2000 return -1;
2001 vcpu->arch.mcg_ctl = data;
2002 break;
2003 default:
2004 if (msr >= MSR_IA32_MC0_CTL &&
2005 msr < MSR_IA32_MCx_CTL(bank_num)) {
2006 u32 offset = msr - MSR_IA32_MC0_CTL;
2007 /* only 0 or all 1s can be written to IA32_MCi_CTL
2008 * some Linux kernels though clear bit 10 in bank 4 to
2009 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2010 * this to avoid an uncatched #GP in the guest
2011 */
2012 if ((offset & 0x3) == 0 &&
2013 data != 0 && (data | (1 << 10)) != ~(u64)0)
2014 return -1;
2015 vcpu->arch.mce_banks[offset] = data;
2016 break;
2017 }
2018 return 1;
2019 }
2020 return 0;
2021 }
2022
2023 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2024 {
2025 struct kvm *kvm = vcpu->kvm;
2026 int lm = is_long_mode(vcpu);
2027 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2028 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2029 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2030 : kvm->arch.xen_hvm_config.blob_size_32;
2031 u32 page_num = data & ~PAGE_MASK;
2032 u64 page_addr = data & PAGE_MASK;
2033 u8 *page;
2034 int r;
2035
2036 r = -E2BIG;
2037 if (page_num >= blob_size)
2038 goto out;
2039 r = -ENOMEM;
2040 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2041 if (IS_ERR(page)) {
2042 r = PTR_ERR(page);
2043 goto out;
2044 }
2045 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2046 goto out_free;
2047 r = 0;
2048 out_free:
2049 kfree(page);
2050 out:
2051 return r;
2052 }
2053
2054 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2055 {
2056 gpa_t gpa = data & ~0x3f;
2057
2058 /* Bits 3:5 are reserved, Should be zero */
2059 if (data & 0x38)
2060 return 1;
2061
2062 vcpu->arch.apf.msr_val = data;
2063
2064 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2065 kvm_clear_async_pf_completion_queue(vcpu);
2066 kvm_async_pf_hash_reset(vcpu);
2067 return 0;
2068 }
2069
2070 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2071 sizeof(u32)))
2072 return 1;
2073
2074 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2075 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2076 kvm_async_pf_wakeup_all(vcpu);
2077 return 0;
2078 }
2079
2080 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2081 {
2082 vcpu->arch.pv_time_enabled = false;
2083 }
2084
2085 static void record_steal_time(struct kvm_vcpu *vcpu)
2086 {
2087 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2088 return;
2089
2090 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2091 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2092 return;
2093
2094 vcpu->arch.st.steal.preempted = 0;
2095
2096 if (vcpu->arch.st.steal.version & 1)
2097 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2098
2099 vcpu->arch.st.steal.version += 1;
2100
2101 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2102 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2103
2104 smp_wmb();
2105
2106 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2107 vcpu->arch.st.last_steal;
2108 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2109
2110 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2111 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2112
2113 smp_wmb();
2114
2115 vcpu->arch.st.steal.version += 1;
2116
2117 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2118 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2119 }
2120
2121 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2122 {
2123 bool pr = false;
2124 u32 msr = msr_info->index;
2125 u64 data = msr_info->data;
2126
2127 switch (msr) {
2128 case MSR_AMD64_NB_CFG:
2129 case MSR_IA32_UCODE_REV:
2130 case MSR_IA32_UCODE_WRITE:
2131 case MSR_VM_HSAVE_PA:
2132 case MSR_AMD64_PATCH_LOADER:
2133 case MSR_AMD64_BU_CFG2:
2134 case MSR_AMD64_DC_CFG:
2135 break;
2136
2137 case MSR_EFER:
2138 return set_efer(vcpu, data);
2139 case MSR_K7_HWCR:
2140 data &= ~(u64)0x40; /* ignore flush filter disable */
2141 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2142 data &= ~(u64)0x8; /* ignore TLB cache disable */
2143 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2144 if (data != 0) {
2145 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2146 data);
2147 return 1;
2148 }
2149 break;
2150 case MSR_FAM10H_MMIO_CONF_BASE:
2151 if (data != 0) {
2152 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2153 "0x%llx\n", data);
2154 return 1;
2155 }
2156 break;
2157 case MSR_IA32_DEBUGCTLMSR:
2158 if (!data) {
2159 /* We support the non-activated case already */
2160 break;
2161 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2162 /* Values other than LBR and BTF are vendor-specific,
2163 thus reserved and should throw a #GP */
2164 return 1;
2165 }
2166 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2167 __func__, data);
2168 break;
2169 case 0x200 ... 0x2ff:
2170 return kvm_mtrr_set_msr(vcpu, msr, data);
2171 case MSR_IA32_APICBASE:
2172 return kvm_set_apic_base(vcpu, msr_info);
2173 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2174 return kvm_x2apic_msr_write(vcpu, msr, data);
2175 case MSR_IA32_TSCDEADLINE:
2176 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2177 break;
2178 case MSR_IA32_TSC_ADJUST:
2179 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2180 if (!msr_info->host_initiated) {
2181 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2182 adjust_tsc_offset_guest(vcpu, adj);
2183 }
2184 vcpu->arch.ia32_tsc_adjust_msr = data;
2185 }
2186 break;
2187 case MSR_IA32_MISC_ENABLE:
2188 vcpu->arch.ia32_misc_enable_msr = data;
2189 break;
2190 case MSR_IA32_SMBASE:
2191 if (!msr_info->host_initiated)
2192 return 1;
2193 vcpu->arch.smbase = data;
2194 break;
2195 case MSR_KVM_WALL_CLOCK_NEW:
2196 case MSR_KVM_WALL_CLOCK:
2197 vcpu->kvm->arch.wall_clock = data;
2198 kvm_write_wall_clock(vcpu->kvm, data);
2199 break;
2200 case MSR_KVM_SYSTEM_TIME_NEW:
2201 case MSR_KVM_SYSTEM_TIME: {
2202 struct kvm_arch *ka = &vcpu->kvm->arch;
2203
2204 kvmclock_reset(vcpu);
2205
2206 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2207 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2208
2209 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2210 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2211
2212 ka->boot_vcpu_runs_old_kvmclock = tmp;
2213 }
2214
2215 vcpu->arch.time = data;
2216 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2217
2218 /* we verify if the enable bit is set... */
2219 if (!(data & 1))
2220 break;
2221
2222 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2223 &vcpu->arch.pv_time, data & ~1ULL,
2224 sizeof(struct pvclock_vcpu_time_info)))
2225 vcpu->arch.pv_time_enabled = false;
2226 else
2227 vcpu->arch.pv_time_enabled = true;
2228
2229 break;
2230 }
2231 case MSR_KVM_ASYNC_PF_EN:
2232 if (kvm_pv_enable_async_pf(vcpu, data))
2233 return 1;
2234 break;
2235 case MSR_KVM_STEAL_TIME:
2236
2237 if (unlikely(!sched_info_on()))
2238 return 1;
2239
2240 if (data & KVM_STEAL_RESERVED_MASK)
2241 return 1;
2242
2243 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2244 data & KVM_STEAL_VALID_BITS,
2245 sizeof(struct kvm_steal_time)))
2246 return 1;
2247
2248 vcpu->arch.st.msr_val = data;
2249
2250 if (!(data & KVM_MSR_ENABLED))
2251 break;
2252
2253 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2254
2255 break;
2256 case MSR_KVM_PV_EOI_EN:
2257 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2258 return 1;
2259 break;
2260
2261 case MSR_IA32_MCG_CTL:
2262 case MSR_IA32_MCG_STATUS:
2263 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2264 return set_msr_mce(vcpu, msr, data);
2265
2266 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2267 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2268 pr = true; /* fall through */
2269 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2270 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2271 if (kvm_pmu_is_valid_msr(vcpu, msr))
2272 return kvm_pmu_set_msr(vcpu, msr_info);
2273
2274 if (pr || data != 0)
2275 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2276 "0x%x data 0x%llx\n", msr, data);
2277 break;
2278 case MSR_K7_CLK_CTL:
2279 /*
2280 * Ignore all writes to this no longer documented MSR.
2281 * Writes are only relevant for old K7 processors,
2282 * all pre-dating SVM, but a recommended workaround from
2283 * AMD for these chips. It is possible to specify the
2284 * affected processor models on the command line, hence
2285 * the need to ignore the workaround.
2286 */
2287 break;
2288 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2289 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2290 case HV_X64_MSR_CRASH_CTL:
2291 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2292 return kvm_hv_set_msr_common(vcpu, msr, data,
2293 msr_info->host_initiated);
2294 case MSR_IA32_BBL_CR_CTL3:
2295 /* Drop writes to this legacy MSR -- see rdmsr
2296 * counterpart for further detail.
2297 */
2298 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2299 break;
2300 case MSR_AMD64_OSVW_ID_LENGTH:
2301 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2302 return 1;
2303 vcpu->arch.osvw.length = data;
2304 break;
2305 case MSR_AMD64_OSVW_STATUS:
2306 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2307 return 1;
2308 vcpu->arch.osvw.status = data;
2309 break;
2310 case MSR_PLATFORM_INFO:
2311 if (!msr_info->host_initiated ||
2312 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2313 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2314 cpuid_fault_enabled(vcpu)))
2315 return 1;
2316 vcpu->arch.msr_platform_info = data;
2317 break;
2318 case MSR_MISC_FEATURES_ENABLES:
2319 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2320 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2321 !supports_cpuid_fault(vcpu)))
2322 return 1;
2323 vcpu->arch.msr_misc_features_enables = data;
2324 break;
2325 default:
2326 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2327 return xen_hvm_config(vcpu, data);
2328 if (kvm_pmu_is_valid_msr(vcpu, msr))
2329 return kvm_pmu_set_msr(vcpu, msr_info);
2330 if (!ignore_msrs) {
2331 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2332 msr, data);
2333 return 1;
2334 } else {
2335 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2336 msr, data);
2337 break;
2338 }
2339 }
2340 return 0;
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2343
2344
2345 /*
2346 * Reads an msr value (of 'msr_index') into 'pdata'.
2347 * Returns 0 on success, non-0 otherwise.
2348 * Assumes vcpu_load() was already called.
2349 */
2350 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2351 {
2352 return kvm_x86_ops->get_msr(vcpu, msr);
2353 }
2354 EXPORT_SYMBOL_GPL(kvm_get_msr);
2355
2356 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2357 {
2358 u64 data;
2359 u64 mcg_cap = vcpu->arch.mcg_cap;
2360 unsigned bank_num = mcg_cap & 0xff;
2361
2362 switch (msr) {
2363 case MSR_IA32_P5_MC_ADDR:
2364 case MSR_IA32_P5_MC_TYPE:
2365 data = 0;
2366 break;
2367 case MSR_IA32_MCG_CAP:
2368 data = vcpu->arch.mcg_cap;
2369 break;
2370 case MSR_IA32_MCG_CTL:
2371 if (!(mcg_cap & MCG_CTL_P))
2372 return 1;
2373 data = vcpu->arch.mcg_ctl;
2374 break;
2375 case MSR_IA32_MCG_STATUS:
2376 data = vcpu->arch.mcg_status;
2377 break;
2378 default:
2379 if (msr >= MSR_IA32_MC0_CTL &&
2380 msr < MSR_IA32_MCx_CTL(bank_num)) {
2381 u32 offset = msr - MSR_IA32_MC0_CTL;
2382 data = vcpu->arch.mce_banks[offset];
2383 break;
2384 }
2385 return 1;
2386 }
2387 *pdata = data;
2388 return 0;
2389 }
2390
2391 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2392 {
2393 switch (msr_info->index) {
2394 case MSR_IA32_PLATFORM_ID:
2395 case MSR_IA32_EBL_CR_POWERON:
2396 case MSR_IA32_DEBUGCTLMSR:
2397 case MSR_IA32_LASTBRANCHFROMIP:
2398 case MSR_IA32_LASTBRANCHTOIP:
2399 case MSR_IA32_LASTINTFROMIP:
2400 case MSR_IA32_LASTINTTOIP:
2401 case MSR_K8_SYSCFG:
2402 case MSR_K8_TSEG_ADDR:
2403 case MSR_K8_TSEG_MASK:
2404 case MSR_K7_HWCR:
2405 case MSR_VM_HSAVE_PA:
2406 case MSR_K8_INT_PENDING_MSG:
2407 case MSR_AMD64_NB_CFG:
2408 case MSR_FAM10H_MMIO_CONF_BASE:
2409 case MSR_AMD64_BU_CFG2:
2410 case MSR_IA32_PERF_CTL:
2411 case MSR_AMD64_DC_CFG:
2412 msr_info->data = 0;
2413 break;
2414 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2415 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2416 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2417 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2418 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2419 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2420 msr_info->data = 0;
2421 break;
2422 case MSR_IA32_UCODE_REV:
2423 msr_info->data = 0x100000000ULL;
2424 break;
2425 case MSR_MTRRcap:
2426 case 0x200 ... 0x2ff:
2427 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2428 case 0xcd: /* fsb frequency */
2429 msr_info->data = 3;
2430 break;
2431 /*
2432 * MSR_EBC_FREQUENCY_ID
2433 * Conservative value valid for even the basic CPU models.
2434 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2435 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2436 * and 266MHz for model 3, or 4. Set Core Clock
2437 * Frequency to System Bus Frequency Ratio to 1 (bits
2438 * 31:24) even though these are only valid for CPU
2439 * models > 2, however guests may end up dividing or
2440 * multiplying by zero otherwise.
2441 */
2442 case MSR_EBC_FREQUENCY_ID:
2443 msr_info->data = 1 << 24;
2444 break;
2445 case MSR_IA32_APICBASE:
2446 msr_info->data = kvm_get_apic_base(vcpu);
2447 break;
2448 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2449 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2450 break;
2451 case MSR_IA32_TSCDEADLINE:
2452 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2453 break;
2454 case MSR_IA32_TSC_ADJUST:
2455 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2456 break;
2457 case MSR_IA32_MISC_ENABLE:
2458 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2459 break;
2460 case MSR_IA32_SMBASE:
2461 if (!msr_info->host_initiated)
2462 return 1;
2463 msr_info->data = vcpu->arch.smbase;
2464 break;
2465 case MSR_IA32_PERF_STATUS:
2466 /* TSC increment by tick */
2467 msr_info->data = 1000ULL;
2468 /* CPU multiplier */
2469 msr_info->data |= (((uint64_t)4ULL) << 40);
2470 break;
2471 case MSR_EFER:
2472 msr_info->data = vcpu->arch.efer;
2473 break;
2474 case MSR_KVM_WALL_CLOCK:
2475 case MSR_KVM_WALL_CLOCK_NEW:
2476 msr_info->data = vcpu->kvm->arch.wall_clock;
2477 break;
2478 case MSR_KVM_SYSTEM_TIME:
2479 case MSR_KVM_SYSTEM_TIME_NEW:
2480 msr_info->data = vcpu->arch.time;
2481 break;
2482 case MSR_KVM_ASYNC_PF_EN:
2483 msr_info->data = vcpu->arch.apf.msr_val;
2484 break;
2485 case MSR_KVM_STEAL_TIME:
2486 msr_info->data = vcpu->arch.st.msr_val;
2487 break;
2488 case MSR_KVM_PV_EOI_EN:
2489 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2490 break;
2491 case MSR_IA32_P5_MC_ADDR:
2492 case MSR_IA32_P5_MC_TYPE:
2493 case MSR_IA32_MCG_CAP:
2494 case MSR_IA32_MCG_CTL:
2495 case MSR_IA32_MCG_STATUS:
2496 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2497 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2498 case MSR_K7_CLK_CTL:
2499 /*
2500 * Provide expected ramp-up count for K7. All other
2501 * are set to zero, indicating minimum divisors for
2502 * every field.
2503 *
2504 * This prevents guest kernels on AMD host with CPU
2505 * type 6, model 8 and higher from exploding due to
2506 * the rdmsr failing.
2507 */
2508 msr_info->data = 0x20000000;
2509 break;
2510 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2511 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2512 case HV_X64_MSR_CRASH_CTL:
2513 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2514 return kvm_hv_get_msr_common(vcpu,
2515 msr_info->index, &msr_info->data);
2516 break;
2517 case MSR_IA32_BBL_CR_CTL3:
2518 /* This legacy MSR exists but isn't fully documented in current
2519 * silicon. It is however accessed by winxp in very narrow
2520 * scenarios where it sets bit #19, itself documented as
2521 * a "reserved" bit. Best effort attempt to source coherent
2522 * read data here should the balance of the register be
2523 * interpreted by the guest:
2524 *
2525 * L2 cache control register 3: 64GB range, 256KB size,
2526 * enabled, latency 0x1, configured
2527 */
2528 msr_info->data = 0xbe702111;
2529 break;
2530 case MSR_AMD64_OSVW_ID_LENGTH:
2531 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2532 return 1;
2533 msr_info->data = vcpu->arch.osvw.length;
2534 break;
2535 case MSR_AMD64_OSVW_STATUS:
2536 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2537 return 1;
2538 msr_info->data = vcpu->arch.osvw.status;
2539 break;
2540 case MSR_PLATFORM_INFO:
2541 msr_info->data = vcpu->arch.msr_platform_info;
2542 break;
2543 case MSR_MISC_FEATURES_ENABLES:
2544 msr_info->data = vcpu->arch.msr_misc_features_enables;
2545 break;
2546 default:
2547 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2548 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2549 if (!ignore_msrs) {
2550 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2551 msr_info->index);
2552 return 1;
2553 } else {
2554 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2555 msr_info->data = 0;
2556 }
2557 break;
2558 }
2559 return 0;
2560 }
2561 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2562
2563 /*
2564 * Read or write a bunch of msrs. All parameters are kernel addresses.
2565 *
2566 * @return number of msrs set successfully.
2567 */
2568 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2569 struct kvm_msr_entry *entries,
2570 int (*do_msr)(struct kvm_vcpu *vcpu,
2571 unsigned index, u64 *data))
2572 {
2573 int i, idx;
2574
2575 idx = srcu_read_lock(&vcpu->kvm->srcu);
2576 for (i = 0; i < msrs->nmsrs; ++i)
2577 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2578 break;
2579 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2580
2581 return i;
2582 }
2583
2584 /*
2585 * Read or write a bunch of msrs. Parameters are user addresses.
2586 *
2587 * @return number of msrs set successfully.
2588 */
2589 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2590 int (*do_msr)(struct kvm_vcpu *vcpu,
2591 unsigned index, u64 *data),
2592 int writeback)
2593 {
2594 struct kvm_msrs msrs;
2595 struct kvm_msr_entry *entries;
2596 int r, n;
2597 unsigned size;
2598
2599 r = -EFAULT;
2600 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2601 goto out;
2602
2603 r = -E2BIG;
2604 if (msrs.nmsrs >= MAX_IO_MSRS)
2605 goto out;
2606
2607 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2608 entries = memdup_user(user_msrs->entries, size);
2609 if (IS_ERR(entries)) {
2610 r = PTR_ERR(entries);
2611 goto out;
2612 }
2613
2614 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2615 if (r < 0)
2616 goto out_free;
2617
2618 r = -EFAULT;
2619 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2620 goto out_free;
2621
2622 r = n;
2623
2624 out_free:
2625 kfree(entries);
2626 out:
2627 return r;
2628 }
2629
2630 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2631 {
2632 int r;
2633
2634 switch (ext) {
2635 case KVM_CAP_IRQCHIP:
2636 case KVM_CAP_HLT:
2637 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2638 case KVM_CAP_SET_TSS_ADDR:
2639 case KVM_CAP_EXT_CPUID:
2640 case KVM_CAP_EXT_EMUL_CPUID:
2641 case KVM_CAP_CLOCKSOURCE:
2642 case KVM_CAP_PIT:
2643 case KVM_CAP_NOP_IO_DELAY:
2644 case KVM_CAP_MP_STATE:
2645 case KVM_CAP_SYNC_MMU:
2646 case KVM_CAP_USER_NMI:
2647 case KVM_CAP_REINJECT_CONTROL:
2648 case KVM_CAP_IRQ_INJECT_STATUS:
2649 case KVM_CAP_IOEVENTFD:
2650 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2651 case KVM_CAP_PIT2:
2652 case KVM_CAP_PIT_STATE2:
2653 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2654 case KVM_CAP_XEN_HVM:
2655 case KVM_CAP_VCPU_EVENTS:
2656 case KVM_CAP_HYPERV:
2657 case KVM_CAP_HYPERV_VAPIC:
2658 case KVM_CAP_HYPERV_SPIN:
2659 case KVM_CAP_HYPERV_SYNIC:
2660 case KVM_CAP_HYPERV_SYNIC2:
2661 case KVM_CAP_HYPERV_VP_INDEX:
2662 case KVM_CAP_PCI_SEGMENT:
2663 case KVM_CAP_DEBUGREGS:
2664 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2665 case KVM_CAP_XSAVE:
2666 case KVM_CAP_ASYNC_PF:
2667 case KVM_CAP_GET_TSC_KHZ:
2668 case KVM_CAP_KVMCLOCK_CTRL:
2669 case KVM_CAP_READONLY_MEM:
2670 case KVM_CAP_HYPERV_TIME:
2671 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2672 case KVM_CAP_TSC_DEADLINE_TIMER:
2673 case KVM_CAP_ENABLE_CAP_VM:
2674 case KVM_CAP_DISABLE_QUIRKS:
2675 case KVM_CAP_SET_BOOT_CPU_ID:
2676 case KVM_CAP_SPLIT_IRQCHIP:
2677 case KVM_CAP_IMMEDIATE_EXIT:
2678 r = 1;
2679 break;
2680 case KVM_CAP_ADJUST_CLOCK:
2681 r = KVM_CLOCK_TSC_STABLE;
2682 break;
2683 case KVM_CAP_X86_GUEST_MWAIT:
2684 r = kvm_mwait_in_guest();
2685 break;
2686 case KVM_CAP_X86_SMM:
2687 /* SMBASE is usually relocated above 1M on modern chipsets,
2688 * and SMM handlers might indeed rely on 4G segment limits,
2689 * so do not report SMM to be available if real mode is
2690 * emulated via vm86 mode. Still, do not go to great lengths
2691 * to avoid userspace's usage of the feature, because it is a
2692 * fringe case that is not enabled except via specific settings
2693 * of the module parameters.
2694 */
2695 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2696 break;
2697 case KVM_CAP_VAPIC:
2698 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2699 break;
2700 case KVM_CAP_NR_VCPUS:
2701 r = KVM_SOFT_MAX_VCPUS;
2702 break;
2703 case KVM_CAP_MAX_VCPUS:
2704 r = KVM_MAX_VCPUS;
2705 break;
2706 case KVM_CAP_NR_MEMSLOTS:
2707 r = KVM_USER_MEM_SLOTS;
2708 break;
2709 case KVM_CAP_PV_MMU: /* obsolete */
2710 r = 0;
2711 break;
2712 case KVM_CAP_MCE:
2713 r = KVM_MAX_MCE_BANKS;
2714 break;
2715 case KVM_CAP_XCRS:
2716 r = boot_cpu_has(X86_FEATURE_XSAVE);
2717 break;
2718 case KVM_CAP_TSC_CONTROL:
2719 r = kvm_has_tsc_control;
2720 break;
2721 case KVM_CAP_X2APIC_API:
2722 r = KVM_X2APIC_API_VALID_FLAGS;
2723 break;
2724 default:
2725 r = 0;
2726 break;
2727 }
2728 return r;
2729
2730 }
2731
2732 long kvm_arch_dev_ioctl(struct file *filp,
2733 unsigned int ioctl, unsigned long arg)
2734 {
2735 void __user *argp = (void __user *)arg;
2736 long r;
2737
2738 switch (ioctl) {
2739 case KVM_GET_MSR_INDEX_LIST: {
2740 struct kvm_msr_list __user *user_msr_list = argp;
2741 struct kvm_msr_list msr_list;
2742 unsigned n;
2743
2744 r = -EFAULT;
2745 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2746 goto out;
2747 n = msr_list.nmsrs;
2748 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2749 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2750 goto out;
2751 r = -E2BIG;
2752 if (n < msr_list.nmsrs)
2753 goto out;
2754 r = -EFAULT;
2755 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2756 num_msrs_to_save * sizeof(u32)))
2757 goto out;
2758 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2759 &emulated_msrs,
2760 num_emulated_msrs * sizeof(u32)))
2761 goto out;
2762 r = 0;
2763 break;
2764 }
2765 case KVM_GET_SUPPORTED_CPUID:
2766 case KVM_GET_EMULATED_CPUID: {
2767 struct kvm_cpuid2 __user *cpuid_arg = argp;
2768 struct kvm_cpuid2 cpuid;
2769
2770 r = -EFAULT;
2771 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2772 goto out;
2773
2774 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2775 ioctl);
2776 if (r)
2777 goto out;
2778
2779 r = -EFAULT;
2780 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2781 goto out;
2782 r = 0;
2783 break;
2784 }
2785 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2786 r = -EFAULT;
2787 if (copy_to_user(argp, &kvm_mce_cap_supported,
2788 sizeof(kvm_mce_cap_supported)))
2789 goto out;
2790 r = 0;
2791 break;
2792 }
2793 default:
2794 r = -EINVAL;
2795 }
2796 out:
2797 return r;
2798 }
2799
2800 static void wbinvd_ipi(void *garbage)
2801 {
2802 wbinvd();
2803 }
2804
2805 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2806 {
2807 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2808 }
2809
2810 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2811 {
2812 /* Address WBINVD may be executed by guest */
2813 if (need_emulate_wbinvd(vcpu)) {
2814 if (kvm_x86_ops->has_wbinvd_exit())
2815 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2816 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2817 smp_call_function_single(vcpu->cpu,
2818 wbinvd_ipi, NULL, 1);
2819 }
2820
2821 kvm_x86_ops->vcpu_load(vcpu, cpu);
2822
2823 /* Apply any externally detected TSC adjustments (due to suspend) */
2824 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2825 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2826 vcpu->arch.tsc_offset_adjustment = 0;
2827 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2828 }
2829
2830 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2831 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2832 rdtsc() - vcpu->arch.last_host_tsc;
2833 if (tsc_delta < 0)
2834 mark_tsc_unstable("KVM discovered backwards TSC");
2835
2836 if (check_tsc_unstable()) {
2837 u64 offset = kvm_compute_tsc_offset(vcpu,
2838 vcpu->arch.last_guest_tsc);
2839 kvm_vcpu_write_tsc_offset(vcpu, offset);
2840 vcpu->arch.tsc_catchup = 1;
2841 }
2842
2843 if (kvm_lapic_hv_timer_in_use(vcpu))
2844 kvm_lapic_restart_hv_timer(vcpu);
2845
2846 /*
2847 * On a host with synchronized TSC, there is no need to update
2848 * kvmclock on vcpu->cpu migration
2849 */
2850 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2851 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2852 if (vcpu->cpu != cpu)
2853 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2854 vcpu->cpu = cpu;
2855 }
2856
2857 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2858 }
2859
2860 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2861 {
2862 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2863 return;
2864
2865 vcpu->arch.st.steal.preempted = 1;
2866
2867 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2868 &vcpu->arch.st.steal.preempted,
2869 offsetof(struct kvm_steal_time, preempted),
2870 sizeof(vcpu->arch.st.steal.preempted));
2871 }
2872
2873 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2874 {
2875 int idx;
2876
2877 if (vcpu->preempted)
2878 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
2879
2880 /*
2881 * Disable page faults because we're in atomic context here.
2882 * kvm_write_guest_offset_cached() would call might_fault()
2883 * that relies on pagefault_disable() to tell if there's a
2884 * bug. NOTE: the write to guest memory may not go through if
2885 * during postcopy live migration or if there's heavy guest
2886 * paging.
2887 */
2888 pagefault_disable();
2889 /*
2890 * kvm_memslots() will be called by
2891 * kvm_write_guest_offset_cached() so take the srcu lock.
2892 */
2893 idx = srcu_read_lock(&vcpu->kvm->srcu);
2894 kvm_steal_time_set_preempted(vcpu);
2895 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2896 pagefault_enable();
2897 kvm_x86_ops->vcpu_put(vcpu);
2898 kvm_put_guest_fpu(vcpu);
2899 vcpu->arch.last_host_tsc = rdtsc();
2900 }
2901
2902 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2903 struct kvm_lapic_state *s)
2904 {
2905 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2906 kvm_x86_ops->sync_pir_to_irr(vcpu);
2907
2908 return kvm_apic_get_state(vcpu, s);
2909 }
2910
2911 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2912 struct kvm_lapic_state *s)
2913 {
2914 int r;
2915
2916 r = kvm_apic_set_state(vcpu, s);
2917 if (r)
2918 return r;
2919 update_cr8_intercept(vcpu);
2920
2921 return 0;
2922 }
2923
2924 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2925 {
2926 return (!lapic_in_kernel(vcpu) ||
2927 kvm_apic_accept_pic_intr(vcpu));
2928 }
2929
2930 /*
2931 * if userspace requested an interrupt window, check that the
2932 * interrupt window is open.
2933 *
2934 * No need to exit to userspace if we already have an interrupt queued.
2935 */
2936 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2937 {
2938 return kvm_arch_interrupt_allowed(vcpu) &&
2939 !kvm_cpu_has_interrupt(vcpu) &&
2940 !kvm_event_needs_reinjection(vcpu) &&
2941 kvm_cpu_accept_dm_intr(vcpu);
2942 }
2943
2944 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2945 struct kvm_interrupt *irq)
2946 {
2947 if (irq->irq >= KVM_NR_INTERRUPTS)
2948 return -EINVAL;
2949
2950 if (!irqchip_in_kernel(vcpu->kvm)) {
2951 kvm_queue_interrupt(vcpu, irq->irq, false);
2952 kvm_make_request(KVM_REQ_EVENT, vcpu);
2953 return 0;
2954 }
2955
2956 /*
2957 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2958 * fail for in-kernel 8259.
2959 */
2960 if (pic_in_kernel(vcpu->kvm))
2961 return -ENXIO;
2962
2963 if (vcpu->arch.pending_external_vector != -1)
2964 return -EEXIST;
2965
2966 vcpu->arch.pending_external_vector = irq->irq;
2967 kvm_make_request(KVM_REQ_EVENT, vcpu);
2968 return 0;
2969 }
2970
2971 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2972 {
2973 kvm_inject_nmi(vcpu);
2974
2975 return 0;
2976 }
2977
2978 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2979 {
2980 kvm_make_request(KVM_REQ_SMI, vcpu);
2981
2982 return 0;
2983 }
2984
2985 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2986 struct kvm_tpr_access_ctl *tac)
2987 {
2988 if (tac->flags)
2989 return -EINVAL;
2990 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2991 return 0;
2992 }
2993
2994 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2995 u64 mcg_cap)
2996 {
2997 int r;
2998 unsigned bank_num = mcg_cap & 0xff, bank;
2999
3000 r = -EINVAL;
3001 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3002 goto out;
3003 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3004 goto out;
3005 r = 0;
3006 vcpu->arch.mcg_cap = mcg_cap;
3007 /* Init IA32_MCG_CTL to all 1s */
3008 if (mcg_cap & MCG_CTL_P)
3009 vcpu->arch.mcg_ctl = ~(u64)0;
3010 /* Init IA32_MCi_CTL to all 1s */
3011 for (bank = 0; bank < bank_num; bank++)
3012 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3013
3014 if (kvm_x86_ops->setup_mce)
3015 kvm_x86_ops->setup_mce(vcpu);
3016 out:
3017 return r;
3018 }
3019
3020 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3021 struct kvm_x86_mce *mce)
3022 {
3023 u64 mcg_cap = vcpu->arch.mcg_cap;
3024 unsigned bank_num = mcg_cap & 0xff;
3025 u64 *banks = vcpu->arch.mce_banks;
3026
3027 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3028 return -EINVAL;
3029 /*
3030 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3031 * reporting is disabled
3032 */
3033 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3034 vcpu->arch.mcg_ctl != ~(u64)0)
3035 return 0;
3036 banks += 4 * mce->bank;
3037 /*
3038 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3039 * reporting is disabled for the bank
3040 */
3041 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3042 return 0;
3043 if (mce->status & MCI_STATUS_UC) {
3044 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3045 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3046 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3047 return 0;
3048 }
3049 if (banks[1] & MCI_STATUS_VAL)
3050 mce->status |= MCI_STATUS_OVER;
3051 banks[2] = mce->addr;
3052 banks[3] = mce->misc;
3053 vcpu->arch.mcg_status = mce->mcg_status;
3054 banks[1] = mce->status;
3055 kvm_queue_exception(vcpu, MC_VECTOR);
3056 } else if (!(banks[1] & MCI_STATUS_VAL)
3057 || !(banks[1] & MCI_STATUS_UC)) {
3058 if (banks[1] & MCI_STATUS_VAL)
3059 mce->status |= MCI_STATUS_OVER;
3060 banks[2] = mce->addr;
3061 banks[3] = mce->misc;
3062 banks[1] = mce->status;
3063 } else
3064 banks[1] |= MCI_STATUS_OVER;
3065 return 0;
3066 }
3067
3068 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3069 struct kvm_vcpu_events *events)
3070 {
3071 process_nmi(vcpu);
3072 events->exception.injected =
3073 vcpu->arch.exception.pending &&
3074 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3075 events->exception.nr = vcpu->arch.exception.nr;
3076 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3077 events->exception.pad = 0;
3078 events->exception.error_code = vcpu->arch.exception.error_code;
3079
3080 events->interrupt.injected =
3081 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3082 events->interrupt.nr = vcpu->arch.interrupt.nr;
3083 events->interrupt.soft = 0;
3084 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3085
3086 events->nmi.injected = vcpu->arch.nmi_injected;
3087 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3088 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3089 events->nmi.pad = 0;
3090
3091 events->sipi_vector = 0; /* never valid when reporting to user space */
3092
3093 events->smi.smm = is_smm(vcpu);
3094 events->smi.pending = vcpu->arch.smi_pending;
3095 events->smi.smm_inside_nmi =
3096 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3097 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3098
3099 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3100 | KVM_VCPUEVENT_VALID_SHADOW
3101 | KVM_VCPUEVENT_VALID_SMM);
3102 memset(&events->reserved, 0, sizeof(events->reserved));
3103 }
3104
3105 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3106
3107 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3108 struct kvm_vcpu_events *events)
3109 {
3110 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3111 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3112 | KVM_VCPUEVENT_VALID_SHADOW
3113 | KVM_VCPUEVENT_VALID_SMM))
3114 return -EINVAL;
3115
3116 if (events->exception.injected &&
3117 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3118 is_guest_mode(vcpu)))
3119 return -EINVAL;
3120
3121 /* INITs are latched while in SMM */
3122 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3123 (events->smi.smm || events->smi.pending) &&
3124 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3125 return -EINVAL;
3126
3127 process_nmi(vcpu);
3128 vcpu->arch.exception.pending = events->exception.injected;
3129 vcpu->arch.exception.nr = events->exception.nr;
3130 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3131 vcpu->arch.exception.error_code = events->exception.error_code;
3132
3133 vcpu->arch.interrupt.pending = events->interrupt.injected;
3134 vcpu->arch.interrupt.nr = events->interrupt.nr;
3135 vcpu->arch.interrupt.soft = events->interrupt.soft;
3136 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3137 kvm_x86_ops->set_interrupt_shadow(vcpu,
3138 events->interrupt.shadow);
3139
3140 vcpu->arch.nmi_injected = events->nmi.injected;
3141 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3142 vcpu->arch.nmi_pending = events->nmi.pending;
3143 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3144
3145 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3146 lapic_in_kernel(vcpu))
3147 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3148
3149 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3150 u32 hflags = vcpu->arch.hflags;
3151 if (events->smi.smm)
3152 hflags |= HF_SMM_MASK;
3153 else
3154 hflags &= ~HF_SMM_MASK;
3155 kvm_set_hflags(vcpu, hflags);
3156
3157 vcpu->arch.smi_pending = events->smi.pending;
3158
3159 if (events->smi.smm) {
3160 if (events->smi.smm_inside_nmi)
3161 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3162 else
3163 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3164 if (lapic_in_kernel(vcpu)) {
3165 if (events->smi.latched_init)
3166 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3167 else
3168 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3169 }
3170 }
3171 }
3172
3173 kvm_make_request(KVM_REQ_EVENT, vcpu);
3174
3175 return 0;
3176 }
3177
3178 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3179 struct kvm_debugregs *dbgregs)
3180 {
3181 unsigned long val;
3182
3183 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3184 kvm_get_dr(vcpu, 6, &val);
3185 dbgregs->dr6 = val;
3186 dbgregs->dr7 = vcpu->arch.dr7;
3187 dbgregs->flags = 0;
3188 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3189 }
3190
3191 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3192 struct kvm_debugregs *dbgregs)
3193 {
3194 if (dbgregs->flags)
3195 return -EINVAL;
3196
3197 if (dbgregs->dr6 & ~0xffffffffull)
3198 return -EINVAL;
3199 if (dbgregs->dr7 & ~0xffffffffull)
3200 return -EINVAL;
3201
3202 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3203 kvm_update_dr0123(vcpu);
3204 vcpu->arch.dr6 = dbgregs->dr6;
3205 kvm_update_dr6(vcpu);
3206 vcpu->arch.dr7 = dbgregs->dr7;
3207 kvm_update_dr7(vcpu);
3208
3209 return 0;
3210 }
3211
3212 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3213
3214 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3215 {
3216 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3217 u64 xstate_bv = xsave->header.xfeatures;
3218 u64 valid;
3219
3220 /*
3221 * Copy legacy XSAVE area, to avoid complications with CPUID
3222 * leaves 0 and 1 in the loop below.
3223 */
3224 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3225
3226 /* Set XSTATE_BV */
3227 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3228 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3229
3230 /*
3231 * Copy each region from the possibly compacted offset to the
3232 * non-compacted offset.
3233 */
3234 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3235 while (valid) {
3236 u64 feature = valid & -valid;
3237 int index = fls64(feature) - 1;
3238 void *src = get_xsave_addr(xsave, feature);
3239
3240 if (src) {
3241 u32 size, offset, ecx, edx;
3242 cpuid_count(XSTATE_CPUID, index,
3243 &size, &offset, &ecx, &edx);
3244 memcpy(dest + offset, src, size);
3245 }
3246
3247 valid -= feature;
3248 }
3249 }
3250
3251 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3252 {
3253 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3254 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3255 u64 valid;
3256
3257 /*
3258 * Copy legacy XSAVE area, to avoid complications with CPUID
3259 * leaves 0 and 1 in the loop below.
3260 */
3261 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3262
3263 /* Set XSTATE_BV and possibly XCOMP_BV. */
3264 xsave->header.xfeatures = xstate_bv;
3265 if (boot_cpu_has(X86_FEATURE_XSAVES))
3266 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3267
3268 /*
3269 * Copy each region from the non-compacted offset to the
3270 * possibly compacted offset.
3271 */
3272 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3273 while (valid) {
3274 u64 feature = valid & -valid;
3275 int index = fls64(feature) - 1;
3276 void *dest = get_xsave_addr(xsave, feature);
3277
3278 if (dest) {
3279 u32 size, offset, ecx, edx;
3280 cpuid_count(XSTATE_CPUID, index,
3281 &size, &offset, &ecx, &edx);
3282 memcpy(dest, src + offset, size);
3283 }
3284
3285 valid -= feature;
3286 }
3287 }
3288
3289 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3290 struct kvm_xsave *guest_xsave)
3291 {
3292 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3293 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3294 fill_xsave((u8 *) guest_xsave->region, vcpu);
3295 } else {
3296 memcpy(guest_xsave->region,
3297 &vcpu->arch.guest_fpu.state.fxsave,
3298 sizeof(struct fxregs_state));
3299 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3300 XFEATURE_MASK_FPSSE;
3301 }
3302 }
3303
3304 #define XSAVE_MXCSR_OFFSET 24
3305
3306 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3307 struct kvm_xsave *guest_xsave)
3308 {
3309 u64 xstate_bv =
3310 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3311 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3312
3313 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3314 /*
3315 * Here we allow setting states that are not present in
3316 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3317 * with old userspace.
3318 */
3319 if (xstate_bv & ~kvm_supported_xcr0() ||
3320 mxcsr & ~mxcsr_feature_mask)
3321 return -EINVAL;
3322 load_xsave(vcpu, (u8 *)guest_xsave->region);
3323 } else {
3324 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3325 mxcsr & ~mxcsr_feature_mask)
3326 return -EINVAL;
3327 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3328 guest_xsave->region, sizeof(struct fxregs_state));
3329 }
3330 return 0;
3331 }
3332
3333 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3334 struct kvm_xcrs *guest_xcrs)
3335 {
3336 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3337 guest_xcrs->nr_xcrs = 0;
3338 return;
3339 }
3340
3341 guest_xcrs->nr_xcrs = 1;
3342 guest_xcrs->flags = 0;
3343 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3344 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3345 }
3346
3347 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3348 struct kvm_xcrs *guest_xcrs)
3349 {
3350 int i, r = 0;
3351
3352 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3353 return -EINVAL;
3354
3355 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3356 return -EINVAL;
3357
3358 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3359 /* Only support XCR0 currently */
3360 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3361 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3362 guest_xcrs->xcrs[i].value);
3363 break;
3364 }
3365 if (r)
3366 r = -EINVAL;
3367 return r;
3368 }
3369
3370 /*
3371 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3372 * stopped by the hypervisor. This function will be called from the host only.
3373 * EINVAL is returned when the host attempts to set the flag for a guest that
3374 * does not support pv clocks.
3375 */
3376 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3377 {
3378 if (!vcpu->arch.pv_time_enabled)
3379 return -EINVAL;
3380 vcpu->arch.pvclock_set_guest_stopped_request = true;
3381 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3382 return 0;
3383 }
3384
3385 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3386 struct kvm_enable_cap *cap)
3387 {
3388 if (cap->flags)
3389 return -EINVAL;
3390
3391 switch (cap->cap) {
3392 case KVM_CAP_HYPERV_SYNIC2:
3393 if (cap->args[0])
3394 return -EINVAL;
3395 case KVM_CAP_HYPERV_SYNIC:
3396 if (!irqchip_in_kernel(vcpu->kvm))
3397 return -EINVAL;
3398 return kvm_hv_activate_synic(vcpu, cap->cap ==
3399 KVM_CAP_HYPERV_SYNIC2);
3400 default:
3401 return -EINVAL;
3402 }
3403 }
3404
3405 long kvm_arch_vcpu_ioctl(struct file *filp,
3406 unsigned int ioctl, unsigned long arg)
3407 {
3408 struct kvm_vcpu *vcpu = filp->private_data;
3409 void __user *argp = (void __user *)arg;
3410 int r;
3411 union {
3412 struct kvm_lapic_state *lapic;
3413 struct kvm_xsave *xsave;
3414 struct kvm_xcrs *xcrs;
3415 void *buffer;
3416 } u;
3417
3418 u.buffer = NULL;
3419 switch (ioctl) {
3420 case KVM_GET_LAPIC: {
3421 r = -EINVAL;
3422 if (!lapic_in_kernel(vcpu))
3423 goto out;
3424 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3425
3426 r = -ENOMEM;
3427 if (!u.lapic)
3428 goto out;
3429 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3430 if (r)
3431 goto out;
3432 r = -EFAULT;
3433 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3434 goto out;
3435 r = 0;
3436 break;
3437 }
3438 case KVM_SET_LAPIC: {
3439 r = -EINVAL;
3440 if (!lapic_in_kernel(vcpu))
3441 goto out;
3442 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3443 if (IS_ERR(u.lapic))
3444 return PTR_ERR(u.lapic);
3445
3446 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3447 break;
3448 }
3449 case KVM_INTERRUPT: {
3450 struct kvm_interrupt irq;
3451
3452 r = -EFAULT;
3453 if (copy_from_user(&irq, argp, sizeof irq))
3454 goto out;
3455 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3456 break;
3457 }
3458 case KVM_NMI: {
3459 r = kvm_vcpu_ioctl_nmi(vcpu);
3460 break;
3461 }
3462 case KVM_SMI: {
3463 r = kvm_vcpu_ioctl_smi(vcpu);
3464 break;
3465 }
3466 case KVM_SET_CPUID: {
3467 struct kvm_cpuid __user *cpuid_arg = argp;
3468 struct kvm_cpuid cpuid;
3469
3470 r = -EFAULT;
3471 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3472 goto out;
3473 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3474 break;
3475 }
3476 case KVM_SET_CPUID2: {
3477 struct kvm_cpuid2 __user *cpuid_arg = argp;
3478 struct kvm_cpuid2 cpuid;
3479
3480 r = -EFAULT;
3481 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3482 goto out;
3483 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3484 cpuid_arg->entries);
3485 break;
3486 }
3487 case KVM_GET_CPUID2: {
3488 struct kvm_cpuid2 __user *cpuid_arg = argp;
3489 struct kvm_cpuid2 cpuid;
3490
3491 r = -EFAULT;
3492 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3493 goto out;
3494 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3495 cpuid_arg->entries);
3496 if (r)
3497 goto out;
3498 r = -EFAULT;
3499 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3500 goto out;
3501 r = 0;
3502 break;
3503 }
3504 case KVM_GET_MSRS:
3505 r = msr_io(vcpu, argp, do_get_msr, 1);
3506 break;
3507 case KVM_SET_MSRS:
3508 r = msr_io(vcpu, argp, do_set_msr, 0);
3509 break;
3510 case KVM_TPR_ACCESS_REPORTING: {
3511 struct kvm_tpr_access_ctl tac;
3512
3513 r = -EFAULT;
3514 if (copy_from_user(&tac, argp, sizeof tac))
3515 goto out;
3516 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3517 if (r)
3518 goto out;
3519 r = -EFAULT;
3520 if (copy_to_user(argp, &tac, sizeof tac))
3521 goto out;
3522 r = 0;
3523 break;
3524 };
3525 case KVM_SET_VAPIC_ADDR: {
3526 struct kvm_vapic_addr va;
3527 int idx;
3528
3529 r = -EINVAL;
3530 if (!lapic_in_kernel(vcpu))
3531 goto out;
3532 r = -EFAULT;
3533 if (copy_from_user(&va, argp, sizeof va))
3534 goto out;
3535 idx = srcu_read_lock(&vcpu->kvm->srcu);
3536 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3537 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3538 break;
3539 }
3540 case KVM_X86_SETUP_MCE: {
3541 u64 mcg_cap;
3542
3543 r = -EFAULT;
3544 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3545 goto out;
3546 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3547 break;
3548 }
3549 case KVM_X86_SET_MCE: {
3550 struct kvm_x86_mce mce;
3551
3552 r = -EFAULT;
3553 if (copy_from_user(&mce, argp, sizeof mce))
3554 goto out;
3555 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3556 break;
3557 }
3558 case KVM_GET_VCPU_EVENTS: {
3559 struct kvm_vcpu_events events;
3560
3561 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3562
3563 r = -EFAULT;
3564 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3565 break;
3566 r = 0;
3567 break;
3568 }
3569 case KVM_SET_VCPU_EVENTS: {
3570 struct kvm_vcpu_events events;
3571
3572 r = -EFAULT;
3573 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3574 break;
3575
3576 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3577 break;
3578 }
3579 case KVM_GET_DEBUGREGS: {
3580 struct kvm_debugregs dbgregs;
3581
3582 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3583
3584 r = -EFAULT;
3585 if (copy_to_user(argp, &dbgregs,
3586 sizeof(struct kvm_debugregs)))
3587 break;
3588 r = 0;
3589 break;
3590 }
3591 case KVM_SET_DEBUGREGS: {
3592 struct kvm_debugregs dbgregs;
3593
3594 r = -EFAULT;
3595 if (copy_from_user(&dbgregs, argp,
3596 sizeof(struct kvm_debugregs)))
3597 break;
3598
3599 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3600 break;
3601 }
3602 case KVM_GET_XSAVE: {
3603 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3604 r = -ENOMEM;
3605 if (!u.xsave)
3606 break;
3607
3608 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3609
3610 r = -EFAULT;
3611 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3612 break;
3613 r = 0;
3614 break;
3615 }
3616 case KVM_SET_XSAVE: {
3617 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3618 if (IS_ERR(u.xsave))
3619 return PTR_ERR(u.xsave);
3620
3621 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3622 break;
3623 }
3624 case KVM_GET_XCRS: {
3625 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3626 r = -ENOMEM;
3627 if (!u.xcrs)
3628 break;
3629
3630 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3631
3632 r = -EFAULT;
3633 if (copy_to_user(argp, u.xcrs,
3634 sizeof(struct kvm_xcrs)))
3635 break;
3636 r = 0;
3637 break;
3638 }
3639 case KVM_SET_XCRS: {
3640 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3641 if (IS_ERR(u.xcrs))
3642 return PTR_ERR(u.xcrs);
3643
3644 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3645 break;
3646 }
3647 case KVM_SET_TSC_KHZ: {
3648 u32 user_tsc_khz;
3649
3650 r = -EINVAL;
3651 user_tsc_khz = (u32)arg;
3652
3653 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3654 goto out;
3655
3656 if (user_tsc_khz == 0)
3657 user_tsc_khz = tsc_khz;
3658
3659 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3660 r = 0;
3661
3662 goto out;
3663 }
3664 case KVM_GET_TSC_KHZ: {
3665 r = vcpu->arch.virtual_tsc_khz;
3666 goto out;
3667 }
3668 case KVM_KVMCLOCK_CTRL: {
3669 r = kvm_set_guest_paused(vcpu);
3670 goto out;
3671 }
3672 case KVM_ENABLE_CAP: {
3673 struct kvm_enable_cap cap;
3674
3675 r = -EFAULT;
3676 if (copy_from_user(&cap, argp, sizeof(cap)))
3677 goto out;
3678 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3679 break;
3680 }
3681 default:
3682 r = -EINVAL;
3683 }
3684 out:
3685 kfree(u.buffer);
3686 return r;
3687 }
3688
3689 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3690 {
3691 return VM_FAULT_SIGBUS;
3692 }
3693
3694 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3695 {
3696 int ret;
3697
3698 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3699 return -EINVAL;
3700 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3701 return ret;
3702 }
3703
3704 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3705 u64 ident_addr)
3706 {
3707 kvm->arch.ept_identity_map_addr = ident_addr;
3708 return 0;
3709 }
3710
3711 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3712 u32 kvm_nr_mmu_pages)
3713 {
3714 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3715 return -EINVAL;
3716
3717 mutex_lock(&kvm->slots_lock);
3718
3719 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3720 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3721
3722 mutex_unlock(&kvm->slots_lock);
3723 return 0;
3724 }
3725
3726 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3727 {
3728 return kvm->arch.n_max_mmu_pages;
3729 }
3730
3731 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3732 {
3733 struct kvm_pic *pic = kvm->arch.vpic;
3734 int r;
3735
3736 r = 0;
3737 switch (chip->chip_id) {
3738 case KVM_IRQCHIP_PIC_MASTER:
3739 memcpy(&chip->chip.pic, &pic->pics[0],
3740 sizeof(struct kvm_pic_state));
3741 break;
3742 case KVM_IRQCHIP_PIC_SLAVE:
3743 memcpy(&chip->chip.pic, &pic->pics[1],
3744 sizeof(struct kvm_pic_state));
3745 break;
3746 case KVM_IRQCHIP_IOAPIC:
3747 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3748 break;
3749 default:
3750 r = -EINVAL;
3751 break;
3752 }
3753 return r;
3754 }
3755
3756 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3757 {
3758 struct kvm_pic *pic = kvm->arch.vpic;
3759 int r;
3760
3761 r = 0;
3762 switch (chip->chip_id) {
3763 case KVM_IRQCHIP_PIC_MASTER:
3764 spin_lock(&pic->lock);
3765 memcpy(&pic->pics[0], &chip->chip.pic,
3766 sizeof(struct kvm_pic_state));
3767 spin_unlock(&pic->lock);
3768 break;
3769 case KVM_IRQCHIP_PIC_SLAVE:
3770 spin_lock(&pic->lock);
3771 memcpy(&pic->pics[1], &chip->chip.pic,
3772 sizeof(struct kvm_pic_state));
3773 spin_unlock(&pic->lock);
3774 break;
3775 case KVM_IRQCHIP_IOAPIC:
3776 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3777 break;
3778 default:
3779 r = -EINVAL;
3780 break;
3781 }
3782 kvm_pic_update_irq(pic);
3783 return r;
3784 }
3785
3786 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3787 {
3788 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3789
3790 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3791
3792 mutex_lock(&kps->lock);
3793 memcpy(ps, &kps->channels, sizeof(*ps));
3794 mutex_unlock(&kps->lock);
3795 return 0;
3796 }
3797
3798 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3799 {
3800 int i;
3801 struct kvm_pit *pit = kvm->arch.vpit;
3802
3803 mutex_lock(&pit->pit_state.lock);
3804 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3805 for (i = 0; i < 3; i++)
3806 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3807 mutex_unlock(&pit->pit_state.lock);
3808 return 0;
3809 }
3810
3811 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3812 {
3813 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3814 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3815 sizeof(ps->channels));
3816 ps->flags = kvm->arch.vpit->pit_state.flags;
3817 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3818 memset(&ps->reserved, 0, sizeof(ps->reserved));
3819 return 0;
3820 }
3821
3822 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3823 {
3824 int start = 0;
3825 int i;
3826 u32 prev_legacy, cur_legacy;
3827 struct kvm_pit *pit = kvm->arch.vpit;
3828
3829 mutex_lock(&pit->pit_state.lock);
3830 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3831 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3832 if (!prev_legacy && cur_legacy)
3833 start = 1;
3834 memcpy(&pit->pit_state.channels, &ps->channels,
3835 sizeof(pit->pit_state.channels));
3836 pit->pit_state.flags = ps->flags;
3837 for (i = 0; i < 3; i++)
3838 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3839 start && i == 0);
3840 mutex_unlock(&pit->pit_state.lock);
3841 return 0;
3842 }
3843
3844 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3845 struct kvm_reinject_control *control)
3846 {
3847 struct kvm_pit *pit = kvm->arch.vpit;
3848
3849 if (!pit)
3850 return -ENXIO;
3851
3852 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3853 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3854 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3855 */
3856 mutex_lock(&pit->pit_state.lock);
3857 kvm_pit_set_reinject(pit, control->pit_reinject);
3858 mutex_unlock(&pit->pit_state.lock);
3859
3860 return 0;
3861 }
3862
3863 /**
3864 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3865 * @kvm: kvm instance
3866 * @log: slot id and address to which we copy the log
3867 *
3868 * Steps 1-4 below provide general overview of dirty page logging. See
3869 * kvm_get_dirty_log_protect() function description for additional details.
3870 *
3871 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3872 * always flush the TLB (step 4) even if previous step failed and the dirty
3873 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3874 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3875 * writes will be marked dirty for next log read.
3876 *
3877 * 1. Take a snapshot of the bit and clear it if needed.
3878 * 2. Write protect the corresponding page.
3879 * 3. Copy the snapshot to the userspace.
3880 * 4. Flush TLB's if needed.
3881 */
3882 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3883 {
3884 bool is_dirty = false;
3885 int r;
3886
3887 mutex_lock(&kvm->slots_lock);
3888
3889 /*
3890 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3891 */
3892 if (kvm_x86_ops->flush_log_dirty)
3893 kvm_x86_ops->flush_log_dirty(kvm);
3894
3895 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3896
3897 /*
3898 * All the TLBs can be flushed out of mmu lock, see the comments in
3899 * kvm_mmu_slot_remove_write_access().
3900 */
3901 lockdep_assert_held(&kvm->slots_lock);
3902 if (is_dirty)
3903 kvm_flush_remote_tlbs(kvm);
3904
3905 mutex_unlock(&kvm->slots_lock);
3906 return r;
3907 }
3908
3909 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3910 bool line_status)
3911 {
3912 if (!irqchip_in_kernel(kvm))
3913 return -ENXIO;
3914
3915 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3916 irq_event->irq, irq_event->level,
3917 line_status);
3918 return 0;
3919 }
3920
3921 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3922 struct kvm_enable_cap *cap)
3923 {
3924 int r;
3925
3926 if (cap->flags)
3927 return -EINVAL;
3928
3929 switch (cap->cap) {
3930 case KVM_CAP_DISABLE_QUIRKS:
3931 kvm->arch.disabled_quirks = cap->args[0];
3932 r = 0;
3933 break;
3934 case KVM_CAP_SPLIT_IRQCHIP: {
3935 mutex_lock(&kvm->lock);
3936 r = -EINVAL;
3937 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3938 goto split_irqchip_unlock;
3939 r = -EEXIST;
3940 if (irqchip_in_kernel(kvm))
3941 goto split_irqchip_unlock;
3942 if (kvm->created_vcpus)
3943 goto split_irqchip_unlock;
3944 r = kvm_setup_empty_irq_routing(kvm);
3945 if (r)
3946 goto split_irqchip_unlock;
3947 /* Pairs with irqchip_in_kernel. */
3948 smp_wmb();
3949 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3950 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3951 r = 0;
3952 split_irqchip_unlock:
3953 mutex_unlock(&kvm->lock);
3954 break;
3955 }
3956 case KVM_CAP_X2APIC_API:
3957 r = -EINVAL;
3958 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3959 break;
3960
3961 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3962 kvm->arch.x2apic_format = true;
3963 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3964 kvm->arch.x2apic_broadcast_quirk_disabled = true;
3965
3966 r = 0;
3967 break;
3968 default:
3969 r = -EINVAL;
3970 break;
3971 }
3972 return r;
3973 }
3974
3975 long kvm_arch_vm_ioctl(struct file *filp,
3976 unsigned int ioctl, unsigned long arg)
3977 {
3978 struct kvm *kvm = filp->private_data;
3979 void __user *argp = (void __user *)arg;
3980 int r = -ENOTTY;
3981 /*
3982 * This union makes it completely explicit to gcc-3.x
3983 * that these two variables' stack usage should be
3984 * combined, not added together.
3985 */
3986 union {
3987 struct kvm_pit_state ps;
3988 struct kvm_pit_state2 ps2;
3989 struct kvm_pit_config pit_config;
3990 } u;
3991
3992 switch (ioctl) {
3993 case KVM_SET_TSS_ADDR:
3994 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3995 break;
3996 case KVM_SET_IDENTITY_MAP_ADDR: {
3997 u64 ident_addr;
3998
3999 r = -EFAULT;
4000 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4001 goto out;
4002 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4003 break;
4004 }
4005 case KVM_SET_NR_MMU_PAGES:
4006 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4007 break;
4008 case KVM_GET_NR_MMU_PAGES:
4009 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4010 break;
4011 case KVM_CREATE_IRQCHIP: {
4012 mutex_lock(&kvm->lock);
4013
4014 r = -EEXIST;
4015 if (irqchip_in_kernel(kvm))
4016 goto create_irqchip_unlock;
4017
4018 r = -EINVAL;
4019 if (kvm->created_vcpus)
4020 goto create_irqchip_unlock;
4021
4022 r = kvm_pic_init(kvm);
4023 if (r)
4024 goto create_irqchip_unlock;
4025
4026 r = kvm_ioapic_init(kvm);
4027 if (r) {
4028 kvm_pic_destroy(kvm);
4029 goto create_irqchip_unlock;
4030 }
4031
4032 r = kvm_setup_default_irq_routing(kvm);
4033 if (r) {
4034 kvm_ioapic_destroy(kvm);
4035 kvm_pic_destroy(kvm);
4036 goto create_irqchip_unlock;
4037 }
4038 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4039 smp_wmb();
4040 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4041 create_irqchip_unlock:
4042 mutex_unlock(&kvm->lock);
4043 break;
4044 }
4045 case KVM_CREATE_PIT:
4046 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4047 goto create_pit;
4048 case KVM_CREATE_PIT2:
4049 r = -EFAULT;
4050 if (copy_from_user(&u.pit_config, argp,
4051 sizeof(struct kvm_pit_config)))
4052 goto out;
4053 create_pit:
4054 mutex_lock(&kvm->lock);
4055 r = -EEXIST;
4056 if (kvm->arch.vpit)
4057 goto create_pit_unlock;
4058 r = -ENOMEM;
4059 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4060 if (kvm->arch.vpit)
4061 r = 0;
4062 create_pit_unlock:
4063 mutex_unlock(&kvm->lock);
4064 break;
4065 case KVM_GET_IRQCHIP: {
4066 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4067 struct kvm_irqchip *chip;
4068
4069 chip = memdup_user(argp, sizeof(*chip));
4070 if (IS_ERR(chip)) {
4071 r = PTR_ERR(chip);
4072 goto out;
4073 }
4074
4075 r = -ENXIO;
4076 if (!irqchip_kernel(kvm))
4077 goto get_irqchip_out;
4078 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4079 if (r)
4080 goto get_irqchip_out;
4081 r = -EFAULT;
4082 if (copy_to_user(argp, chip, sizeof *chip))
4083 goto get_irqchip_out;
4084 r = 0;
4085 get_irqchip_out:
4086 kfree(chip);
4087 break;
4088 }
4089 case KVM_SET_IRQCHIP: {
4090 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4091 struct kvm_irqchip *chip;
4092
4093 chip = memdup_user(argp, sizeof(*chip));
4094 if (IS_ERR(chip)) {
4095 r = PTR_ERR(chip);
4096 goto out;
4097 }
4098
4099 r = -ENXIO;
4100 if (!irqchip_kernel(kvm))
4101 goto set_irqchip_out;
4102 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4103 if (r)
4104 goto set_irqchip_out;
4105 r = 0;
4106 set_irqchip_out:
4107 kfree(chip);
4108 break;
4109 }
4110 case KVM_GET_PIT: {
4111 r = -EFAULT;
4112 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4113 goto out;
4114 r = -ENXIO;
4115 if (!kvm->arch.vpit)
4116 goto out;
4117 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4118 if (r)
4119 goto out;
4120 r = -EFAULT;
4121 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4122 goto out;
4123 r = 0;
4124 break;
4125 }
4126 case KVM_SET_PIT: {
4127 r = -EFAULT;
4128 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4129 goto out;
4130 r = -ENXIO;
4131 if (!kvm->arch.vpit)
4132 goto out;
4133 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4134 break;
4135 }
4136 case KVM_GET_PIT2: {
4137 r = -ENXIO;
4138 if (!kvm->arch.vpit)
4139 goto out;
4140 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4141 if (r)
4142 goto out;
4143 r = -EFAULT;
4144 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4145 goto out;
4146 r = 0;
4147 break;
4148 }
4149 case KVM_SET_PIT2: {
4150 r = -EFAULT;
4151 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4152 goto out;
4153 r = -ENXIO;
4154 if (!kvm->arch.vpit)
4155 goto out;
4156 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4157 break;
4158 }
4159 case KVM_REINJECT_CONTROL: {
4160 struct kvm_reinject_control control;
4161 r = -EFAULT;
4162 if (copy_from_user(&control, argp, sizeof(control)))
4163 goto out;
4164 r = kvm_vm_ioctl_reinject(kvm, &control);
4165 break;
4166 }
4167 case KVM_SET_BOOT_CPU_ID:
4168 r = 0;
4169 mutex_lock(&kvm->lock);
4170 if (kvm->created_vcpus)
4171 r = -EBUSY;
4172 else
4173 kvm->arch.bsp_vcpu_id = arg;
4174 mutex_unlock(&kvm->lock);
4175 break;
4176 case KVM_XEN_HVM_CONFIG: {
4177 r = -EFAULT;
4178 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4179 sizeof(struct kvm_xen_hvm_config)))
4180 goto out;
4181 r = -EINVAL;
4182 if (kvm->arch.xen_hvm_config.flags)
4183 goto out;
4184 r = 0;
4185 break;
4186 }
4187 case KVM_SET_CLOCK: {
4188 struct kvm_clock_data user_ns;
4189 u64 now_ns;
4190
4191 r = -EFAULT;
4192 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4193 goto out;
4194
4195 r = -EINVAL;
4196 if (user_ns.flags)
4197 goto out;
4198
4199 r = 0;
4200 /*
4201 * TODO: userspace has to take care of races with VCPU_RUN, so
4202 * kvm_gen_update_masterclock() can be cut down to locked
4203 * pvclock_update_vm_gtod_copy().
4204 */
4205 kvm_gen_update_masterclock(kvm);
4206 now_ns = get_kvmclock_ns(kvm);
4207 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4208 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4209 break;
4210 }
4211 case KVM_GET_CLOCK: {
4212 struct kvm_clock_data user_ns;
4213 u64 now_ns;
4214
4215 now_ns = get_kvmclock_ns(kvm);
4216 user_ns.clock = now_ns;
4217 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4218 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4219
4220 r = -EFAULT;
4221 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4222 goto out;
4223 r = 0;
4224 break;
4225 }
4226 case KVM_ENABLE_CAP: {
4227 struct kvm_enable_cap cap;
4228
4229 r = -EFAULT;
4230 if (copy_from_user(&cap, argp, sizeof(cap)))
4231 goto out;
4232 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4233 break;
4234 }
4235 default:
4236 r = -ENOTTY;
4237 }
4238 out:
4239 return r;
4240 }
4241
4242 static void kvm_init_msr_list(void)
4243 {
4244 u32 dummy[2];
4245 unsigned i, j;
4246
4247 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4248 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4249 continue;
4250
4251 /*
4252 * Even MSRs that are valid in the host may not be exposed
4253 * to the guests in some cases.
4254 */
4255 switch (msrs_to_save[i]) {
4256 case MSR_IA32_BNDCFGS:
4257 if (!kvm_x86_ops->mpx_supported())
4258 continue;
4259 break;
4260 case MSR_TSC_AUX:
4261 if (!kvm_x86_ops->rdtscp_supported())
4262 continue;
4263 break;
4264 default:
4265 break;
4266 }
4267
4268 if (j < i)
4269 msrs_to_save[j] = msrs_to_save[i];
4270 j++;
4271 }
4272 num_msrs_to_save = j;
4273
4274 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4275 switch (emulated_msrs[i]) {
4276 case MSR_IA32_SMBASE:
4277 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4278 continue;
4279 break;
4280 default:
4281 break;
4282 }
4283
4284 if (j < i)
4285 emulated_msrs[j] = emulated_msrs[i];
4286 j++;
4287 }
4288 num_emulated_msrs = j;
4289 }
4290
4291 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4292 const void *v)
4293 {
4294 int handled = 0;
4295 int n;
4296
4297 do {
4298 n = min(len, 8);
4299 if (!(lapic_in_kernel(vcpu) &&
4300 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4301 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4302 break;
4303 handled += n;
4304 addr += n;
4305 len -= n;
4306 v += n;
4307 } while (len);
4308
4309 return handled;
4310 }
4311
4312 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4313 {
4314 int handled = 0;
4315 int n;
4316
4317 do {
4318 n = min(len, 8);
4319 if (!(lapic_in_kernel(vcpu) &&
4320 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4321 addr, n, v))
4322 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4323 break;
4324 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4325 handled += n;
4326 addr += n;
4327 len -= n;
4328 v += n;
4329 } while (len);
4330
4331 return handled;
4332 }
4333
4334 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4335 struct kvm_segment *var, int seg)
4336 {
4337 kvm_x86_ops->set_segment(vcpu, var, seg);
4338 }
4339
4340 void kvm_get_segment(struct kvm_vcpu *vcpu,
4341 struct kvm_segment *var, int seg)
4342 {
4343 kvm_x86_ops->get_segment(vcpu, var, seg);
4344 }
4345
4346 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4347 struct x86_exception *exception)
4348 {
4349 gpa_t t_gpa;
4350
4351 BUG_ON(!mmu_is_nested(vcpu));
4352
4353 /* NPT walks are always user-walks */
4354 access |= PFERR_USER_MASK;
4355 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4356
4357 return t_gpa;
4358 }
4359
4360 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4361 struct x86_exception *exception)
4362 {
4363 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4364 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4365 }
4366
4367 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4368 struct x86_exception *exception)
4369 {
4370 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4371 access |= PFERR_FETCH_MASK;
4372 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4373 }
4374
4375 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4376 struct x86_exception *exception)
4377 {
4378 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4379 access |= PFERR_WRITE_MASK;
4380 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4381 }
4382
4383 /* uses this to access any guest's mapped memory without checking CPL */
4384 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4385 struct x86_exception *exception)
4386 {
4387 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4388 }
4389
4390 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4391 struct kvm_vcpu *vcpu, u32 access,
4392 struct x86_exception *exception)
4393 {
4394 void *data = val;
4395 int r = X86EMUL_CONTINUE;
4396
4397 while (bytes) {
4398 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4399 exception);
4400 unsigned offset = addr & (PAGE_SIZE-1);
4401 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4402 int ret;
4403
4404 if (gpa == UNMAPPED_GVA)
4405 return X86EMUL_PROPAGATE_FAULT;
4406 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4407 offset, toread);
4408 if (ret < 0) {
4409 r = X86EMUL_IO_NEEDED;
4410 goto out;
4411 }
4412
4413 bytes -= toread;
4414 data += toread;
4415 addr += toread;
4416 }
4417 out:
4418 return r;
4419 }
4420
4421 /* used for instruction fetching */
4422 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4423 gva_t addr, void *val, unsigned int bytes,
4424 struct x86_exception *exception)
4425 {
4426 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4427 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4428 unsigned offset;
4429 int ret;
4430
4431 /* Inline kvm_read_guest_virt_helper for speed. */
4432 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4433 exception);
4434 if (unlikely(gpa == UNMAPPED_GVA))
4435 return X86EMUL_PROPAGATE_FAULT;
4436
4437 offset = addr & (PAGE_SIZE-1);
4438 if (WARN_ON(offset + bytes > PAGE_SIZE))
4439 bytes = (unsigned)PAGE_SIZE - offset;
4440 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4441 offset, bytes);
4442 if (unlikely(ret < 0))
4443 return X86EMUL_IO_NEEDED;
4444
4445 return X86EMUL_CONTINUE;
4446 }
4447
4448 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4449 gva_t addr, void *val, unsigned int bytes,
4450 struct x86_exception *exception)
4451 {
4452 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4453 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4454
4455 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4456 exception);
4457 }
4458 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4459
4460 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4461 gva_t addr, void *val, unsigned int bytes,
4462 struct x86_exception *exception)
4463 {
4464 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4465 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4466 }
4467
4468 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4469 unsigned long addr, void *val, unsigned int bytes)
4470 {
4471 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4472 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4473
4474 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4475 }
4476
4477 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4478 gva_t addr, void *val,
4479 unsigned int bytes,
4480 struct x86_exception *exception)
4481 {
4482 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4483 void *data = val;
4484 int r = X86EMUL_CONTINUE;
4485
4486 while (bytes) {
4487 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4488 PFERR_WRITE_MASK,
4489 exception);
4490 unsigned offset = addr & (PAGE_SIZE-1);
4491 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4492 int ret;
4493
4494 if (gpa == UNMAPPED_GVA)
4495 return X86EMUL_PROPAGATE_FAULT;
4496 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4497 if (ret < 0) {
4498 r = X86EMUL_IO_NEEDED;
4499 goto out;
4500 }
4501
4502 bytes -= towrite;
4503 data += towrite;
4504 addr += towrite;
4505 }
4506 out:
4507 return r;
4508 }
4509 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4510
4511 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4512 gpa_t gpa, bool write)
4513 {
4514 /* For APIC access vmexit */
4515 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4516 return 1;
4517
4518 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4519 trace_vcpu_match_mmio(gva, gpa, write, true);
4520 return 1;
4521 }
4522
4523 return 0;
4524 }
4525
4526 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4527 gpa_t *gpa, struct x86_exception *exception,
4528 bool write)
4529 {
4530 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4531 | (write ? PFERR_WRITE_MASK : 0);
4532
4533 /*
4534 * currently PKRU is only applied to ept enabled guest so
4535 * there is no pkey in EPT page table for L1 guest or EPT
4536 * shadow page table for L2 guest.
4537 */
4538 if (vcpu_match_mmio_gva(vcpu, gva)
4539 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4540 vcpu->arch.access, 0, access)) {
4541 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4542 (gva & (PAGE_SIZE - 1));
4543 trace_vcpu_match_mmio(gva, *gpa, write, false);
4544 return 1;
4545 }
4546
4547 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4548
4549 if (*gpa == UNMAPPED_GVA)
4550 return -1;
4551
4552 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4553 }
4554
4555 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4556 const void *val, int bytes)
4557 {
4558 int ret;
4559
4560 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4561 if (ret < 0)
4562 return 0;
4563 kvm_page_track_write(vcpu, gpa, val, bytes);
4564 return 1;
4565 }
4566
4567 struct read_write_emulator_ops {
4568 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4569 int bytes);
4570 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4571 void *val, int bytes);
4572 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4573 int bytes, void *val);
4574 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4575 void *val, int bytes);
4576 bool write;
4577 };
4578
4579 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4580 {
4581 if (vcpu->mmio_read_completed) {
4582 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4583 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4584 vcpu->mmio_read_completed = 0;
4585 return 1;
4586 }
4587
4588 return 0;
4589 }
4590
4591 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4592 void *val, int bytes)
4593 {
4594 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4595 }
4596
4597 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4598 void *val, int bytes)
4599 {
4600 return emulator_write_phys(vcpu, gpa, val, bytes);
4601 }
4602
4603 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4604 {
4605 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4606 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4607 }
4608
4609 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4610 void *val, int bytes)
4611 {
4612 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4613 return X86EMUL_IO_NEEDED;
4614 }
4615
4616 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4617 void *val, int bytes)
4618 {
4619 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4620
4621 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4622 return X86EMUL_CONTINUE;
4623 }
4624
4625 static const struct read_write_emulator_ops read_emultor = {
4626 .read_write_prepare = read_prepare,
4627 .read_write_emulate = read_emulate,
4628 .read_write_mmio = vcpu_mmio_read,
4629 .read_write_exit_mmio = read_exit_mmio,
4630 };
4631
4632 static const struct read_write_emulator_ops write_emultor = {
4633 .read_write_emulate = write_emulate,
4634 .read_write_mmio = write_mmio,
4635 .read_write_exit_mmio = write_exit_mmio,
4636 .write = true,
4637 };
4638
4639 static int emulator_read_write_onepage(unsigned long addr, void *val,
4640 unsigned int bytes,
4641 struct x86_exception *exception,
4642 struct kvm_vcpu *vcpu,
4643 const struct read_write_emulator_ops *ops)
4644 {
4645 gpa_t gpa;
4646 int handled, ret;
4647 bool write = ops->write;
4648 struct kvm_mmio_fragment *frag;
4649 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4650
4651 /*
4652 * If the exit was due to a NPF we may already have a GPA.
4653 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4654 * Note, this cannot be used on string operations since string
4655 * operation using rep will only have the initial GPA from the NPF
4656 * occurred.
4657 */
4658 if (vcpu->arch.gpa_available &&
4659 emulator_can_use_gpa(ctxt) &&
4660 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4661 gpa = vcpu->arch.gpa_val;
4662 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4663 } else {
4664 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4665 if (ret < 0)
4666 return X86EMUL_PROPAGATE_FAULT;
4667 }
4668
4669 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4670 return X86EMUL_CONTINUE;
4671
4672 /*
4673 * Is this MMIO handled locally?
4674 */
4675 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4676 if (handled == bytes)
4677 return X86EMUL_CONTINUE;
4678
4679 gpa += handled;
4680 bytes -= handled;
4681 val += handled;
4682
4683 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4684 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4685 frag->gpa = gpa;
4686 frag->data = val;
4687 frag->len = bytes;
4688 return X86EMUL_CONTINUE;
4689 }
4690
4691 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4692 unsigned long addr,
4693 void *val, unsigned int bytes,
4694 struct x86_exception *exception,
4695 const struct read_write_emulator_ops *ops)
4696 {
4697 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4698 gpa_t gpa;
4699 int rc;
4700
4701 if (ops->read_write_prepare &&
4702 ops->read_write_prepare(vcpu, val, bytes))
4703 return X86EMUL_CONTINUE;
4704
4705 vcpu->mmio_nr_fragments = 0;
4706
4707 /* Crossing a page boundary? */
4708 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4709 int now;
4710
4711 now = -addr & ~PAGE_MASK;
4712 rc = emulator_read_write_onepage(addr, val, now, exception,
4713 vcpu, ops);
4714
4715 if (rc != X86EMUL_CONTINUE)
4716 return rc;
4717 addr += now;
4718 if (ctxt->mode != X86EMUL_MODE_PROT64)
4719 addr = (u32)addr;
4720 val += now;
4721 bytes -= now;
4722 }
4723
4724 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4725 vcpu, ops);
4726 if (rc != X86EMUL_CONTINUE)
4727 return rc;
4728
4729 if (!vcpu->mmio_nr_fragments)
4730 return rc;
4731
4732 gpa = vcpu->mmio_fragments[0].gpa;
4733
4734 vcpu->mmio_needed = 1;
4735 vcpu->mmio_cur_fragment = 0;
4736
4737 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4738 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4739 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4740 vcpu->run->mmio.phys_addr = gpa;
4741
4742 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4743 }
4744
4745 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4746 unsigned long addr,
4747 void *val,
4748 unsigned int bytes,
4749 struct x86_exception *exception)
4750 {
4751 return emulator_read_write(ctxt, addr, val, bytes,
4752 exception, &read_emultor);
4753 }
4754
4755 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4756 unsigned long addr,
4757 const void *val,
4758 unsigned int bytes,
4759 struct x86_exception *exception)
4760 {
4761 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4762 exception, &write_emultor);
4763 }
4764
4765 #define CMPXCHG_TYPE(t, ptr, old, new) \
4766 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4767
4768 #ifdef CONFIG_X86_64
4769 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4770 #else
4771 # define CMPXCHG64(ptr, old, new) \
4772 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4773 #endif
4774
4775 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4776 unsigned long addr,
4777 const void *old,
4778 const void *new,
4779 unsigned int bytes,
4780 struct x86_exception *exception)
4781 {
4782 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4783 gpa_t gpa;
4784 struct page *page;
4785 char *kaddr;
4786 bool exchanged;
4787
4788 /* guests cmpxchg8b have to be emulated atomically */
4789 if (bytes > 8 || (bytes & (bytes - 1)))
4790 goto emul_write;
4791
4792 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4793
4794 if (gpa == UNMAPPED_GVA ||
4795 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4796 goto emul_write;
4797
4798 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4799 goto emul_write;
4800
4801 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4802 if (is_error_page(page))
4803 goto emul_write;
4804
4805 kaddr = kmap_atomic(page);
4806 kaddr += offset_in_page(gpa);
4807 switch (bytes) {
4808 case 1:
4809 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4810 break;
4811 case 2:
4812 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4813 break;
4814 case 4:
4815 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4816 break;
4817 case 8:
4818 exchanged = CMPXCHG64(kaddr, old, new);
4819 break;
4820 default:
4821 BUG();
4822 }
4823 kunmap_atomic(kaddr);
4824 kvm_release_page_dirty(page);
4825
4826 if (!exchanged)
4827 return X86EMUL_CMPXCHG_FAILED;
4828
4829 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4830 kvm_page_track_write(vcpu, gpa, new, bytes);
4831
4832 return X86EMUL_CONTINUE;
4833
4834 emul_write:
4835 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4836
4837 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4838 }
4839
4840 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4841 {
4842 int r = 0, i;
4843
4844 for (i = 0; i < vcpu->arch.pio.count; i++) {
4845 if (vcpu->arch.pio.in)
4846 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4847 vcpu->arch.pio.size, pd);
4848 else
4849 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4850 vcpu->arch.pio.port, vcpu->arch.pio.size,
4851 pd);
4852 if (r)
4853 break;
4854 pd += vcpu->arch.pio.size;
4855 }
4856 return r;
4857 }
4858
4859 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4860 unsigned short port, void *val,
4861 unsigned int count, bool in)
4862 {
4863 vcpu->arch.pio.port = port;
4864 vcpu->arch.pio.in = in;
4865 vcpu->arch.pio.count = count;
4866 vcpu->arch.pio.size = size;
4867
4868 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4869 vcpu->arch.pio.count = 0;
4870 return 1;
4871 }
4872
4873 vcpu->run->exit_reason = KVM_EXIT_IO;
4874 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4875 vcpu->run->io.size = size;
4876 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4877 vcpu->run->io.count = count;
4878 vcpu->run->io.port = port;
4879
4880 return 0;
4881 }
4882
4883 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4884 int size, unsigned short port, void *val,
4885 unsigned int count)
4886 {
4887 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4888 int ret;
4889
4890 if (vcpu->arch.pio.count)
4891 goto data_avail;
4892
4893 memset(vcpu->arch.pio_data, 0, size * count);
4894
4895 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4896 if (ret) {
4897 data_avail:
4898 memcpy(val, vcpu->arch.pio_data, size * count);
4899 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4900 vcpu->arch.pio.count = 0;
4901 return 1;
4902 }
4903
4904 return 0;
4905 }
4906
4907 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4908 int size, unsigned short port,
4909 const void *val, unsigned int count)
4910 {
4911 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4912
4913 memcpy(vcpu->arch.pio_data, val, size * count);
4914 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4915 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4916 }
4917
4918 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4919 {
4920 return kvm_x86_ops->get_segment_base(vcpu, seg);
4921 }
4922
4923 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4924 {
4925 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4926 }
4927
4928 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4929 {
4930 if (!need_emulate_wbinvd(vcpu))
4931 return X86EMUL_CONTINUE;
4932
4933 if (kvm_x86_ops->has_wbinvd_exit()) {
4934 int cpu = get_cpu();
4935
4936 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4937 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4938 wbinvd_ipi, NULL, 1);
4939 put_cpu();
4940 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4941 } else
4942 wbinvd();
4943 return X86EMUL_CONTINUE;
4944 }
4945
4946 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4947 {
4948 kvm_emulate_wbinvd_noskip(vcpu);
4949 return kvm_skip_emulated_instruction(vcpu);
4950 }
4951 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4952
4953
4954
4955 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4956 {
4957 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4958 }
4959
4960 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4961 unsigned long *dest)
4962 {
4963 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4964 }
4965
4966 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4967 unsigned long value)
4968 {
4969
4970 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4971 }
4972
4973 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4974 {
4975 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4976 }
4977
4978 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4979 {
4980 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4981 unsigned long value;
4982
4983 switch (cr) {
4984 case 0:
4985 value = kvm_read_cr0(vcpu);
4986 break;
4987 case 2:
4988 value = vcpu->arch.cr2;
4989 break;
4990 case 3:
4991 value = kvm_read_cr3(vcpu);
4992 break;
4993 case 4:
4994 value = kvm_read_cr4(vcpu);
4995 break;
4996 case 8:
4997 value = kvm_get_cr8(vcpu);
4998 break;
4999 default:
5000 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5001 return 0;
5002 }
5003
5004 return value;
5005 }
5006
5007 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5008 {
5009 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5010 int res = 0;
5011
5012 switch (cr) {
5013 case 0:
5014 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5015 break;
5016 case 2:
5017 vcpu->arch.cr2 = val;
5018 break;
5019 case 3:
5020 res = kvm_set_cr3(vcpu, val);
5021 break;
5022 case 4:
5023 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5024 break;
5025 case 8:
5026 res = kvm_set_cr8(vcpu, val);
5027 break;
5028 default:
5029 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5030 res = -1;
5031 }
5032
5033 return res;
5034 }
5035
5036 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5037 {
5038 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5039 }
5040
5041 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5042 {
5043 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5044 }
5045
5046 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5047 {
5048 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5049 }
5050
5051 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5052 {
5053 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5054 }
5055
5056 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5057 {
5058 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5059 }
5060
5061 static unsigned long emulator_get_cached_segment_base(
5062 struct x86_emulate_ctxt *ctxt, int seg)
5063 {
5064 return get_segment_base(emul_to_vcpu(ctxt), seg);
5065 }
5066
5067 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5068 struct desc_struct *desc, u32 *base3,
5069 int seg)
5070 {
5071 struct kvm_segment var;
5072
5073 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5074 *selector = var.selector;
5075
5076 if (var.unusable) {
5077 memset(desc, 0, sizeof(*desc));
5078 if (base3)
5079 *base3 = 0;
5080 return false;
5081 }
5082
5083 if (var.g)
5084 var.limit >>= 12;
5085 set_desc_limit(desc, var.limit);
5086 set_desc_base(desc, (unsigned long)var.base);
5087 #ifdef CONFIG_X86_64
5088 if (base3)
5089 *base3 = var.base >> 32;
5090 #endif
5091 desc->type = var.type;
5092 desc->s = var.s;
5093 desc->dpl = var.dpl;
5094 desc->p = var.present;
5095 desc->avl = var.avl;
5096 desc->l = var.l;
5097 desc->d = var.db;
5098 desc->g = var.g;
5099
5100 return true;
5101 }
5102
5103 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5104 struct desc_struct *desc, u32 base3,
5105 int seg)
5106 {
5107 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5108 struct kvm_segment var;
5109
5110 var.selector = selector;
5111 var.base = get_desc_base(desc);
5112 #ifdef CONFIG_X86_64
5113 var.base |= ((u64)base3) << 32;
5114 #endif
5115 var.limit = get_desc_limit(desc);
5116 if (desc->g)
5117 var.limit = (var.limit << 12) | 0xfff;
5118 var.type = desc->type;
5119 var.dpl = desc->dpl;
5120 var.db = desc->d;
5121 var.s = desc->s;
5122 var.l = desc->l;
5123 var.g = desc->g;
5124 var.avl = desc->avl;
5125 var.present = desc->p;
5126 var.unusable = !var.present;
5127 var.padding = 0;
5128
5129 kvm_set_segment(vcpu, &var, seg);
5130 return;
5131 }
5132
5133 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5134 u32 msr_index, u64 *pdata)
5135 {
5136 struct msr_data msr;
5137 int r;
5138
5139 msr.index = msr_index;
5140 msr.host_initiated = false;
5141 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5142 if (r)
5143 return r;
5144
5145 *pdata = msr.data;
5146 return 0;
5147 }
5148
5149 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5150 u32 msr_index, u64 data)
5151 {
5152 struct msr_data msr;
5153
5154 msr.data = data;
5155 msr.index = msr_index;
5156 msr.host_initiated = false;
5157 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5158 }
5159
5160 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5161 {
5162 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5163
5164 return vcpu->arch.smbase;
5165 }
5166
5167 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5168 {
5169 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5170
5171 vcpu->arch.smbase = smbase;
5172 }
5173
5174 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5175 u32 pmc)
5176 {
5177 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5178 }
5179
5180 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5181 u32 pmc, u64 *pdata)
5182 {
5183 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5184 }
5185
5186 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5187 {
5188 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5189 }
5190
5191 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5192 {
5193 preempt_disable();
5194 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5195 }
5196
5197 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5198 {
5199 preempt_enable();
5200 }
5201
5202 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5203 struct x86_instruction_info *info,
5204 enum x86_intercept_stage stage)
5205 {
5206 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5207 }
5208
5209 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5210 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5211 {
5212 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5213 }
5214
5215 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5216 {
5217 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5218 }
5219
5220 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5221 {
5222 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5223 }
5224
5225 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5226 {
5227 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5228 }
5229
5230 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5231 {
5232 return emul_to_vcpu(ctxt)->arch.hflags;
5233 }
5234
5235 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5236 {
5237 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5238 }
5239
5240 static const struct x86_emulate_ops emulate_ops = {
5241 .read_gpr = emulator_read_gpr,
5242 .write_gpr = emulator_write_gpr,
5243 .read_std = kvm_read_guest_virt_system,
5244 .write_std = kvm_write_guest_virt_system,
5245 .read_phys = kvm_read_guest_phys_system,
5246 .fetch = kvm_fetch_guest_virt,
5247 .read_emulated = emulator_read_emulated,
5248 .write_emulated = emulator_write_emulated,
5249 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5250 .invlpg = emulator_invlpg,
5251 .pio_in_emulated = emulator_pio_in_emulated,
5252 .pio_out_emulated = emulator_pio_out_emulated,
5253 .get_segment = emulator_get_segment,
5254 .set_segment = emulator_set_segment,
5255 .get_cached_segment_base = emulator_get_cached_segment_base,
5256 .get_gdt = emulator_get_gdt,
5257 .get_idt = emulator_get_idt,
5258 .set_gdt = emulator_set_gdt,
5259 .set_idt = emulator_set_idt,
5260 .get_cr = emulator_get_cr,
5261 .set_cr = emulator_set_cr,
5262 .cpl = emulator_get_cpl,
5263 .get_dr = emulator_get_dr,
5264 .set_dr = emulator_set_dr,
5265 .get_smbase = emulator_get_smbase,
5266 .set_smbase = emulator_set_smbase,
5267 .set_msr = emulator_set_msr,
5268 .get_msr = emulator_get_msr,
5269 .check_pmc = emulator_check_pmc,
5270 .read_pmc = emulator_read_pmc,
5271 .halt = emulator_halt,
5272 .wbinvd = emulator_wbinvd,
5273 .fix_hypercall = emulator_fix_hypercall,
5274 .get_fpu = emulator_get_fpu,
5275 .put_fpu = emulator_put_fpu,
5276 .intercept = emulator_intercept,
5277 .get_cpuid = emulator_get_cpuid,
5278 .set_nmi_mask = emulator_set_nmi_mask,
5279 .get_hflags = emulator_get_hflags,
5280 .set_hflags = emulator_set_hflags,
5281 };
5282
5283 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5284 {
5285 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5286 /*
5287 * an sti; sti; sequence only disable interrupts for the first
5288 * instruction. So, if the last instruction, be it emulated or
5289 * not, left the system with the INT_STI flag enabled, it
5290 * means that the last instruction is an sti. We should not
5291 * leave the flag on in this case. The same goes for mov ss
5292 */
5293 if (int_shadow & mask)
5294 mask = 0;
5295 if (unlikely(int_shadow || mask)) {
5296 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5297 if (!mask)
5298 kvm_make_request(KVM_REQ_EVENT, vcpu);
5299 }
5300 }
5301
5302 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5303 {
5304 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5305 if (ctxt->exception.vector == PF_VECTOR)
5306 return kvm_propagate_fault(vcpu, &ctxt->exception);
5307
5308 if (ctxt->exception.error_code_valid)
5309 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5310 ctxt->exception.error_code);
5311 else
5312 kvm_queue_exception(vcpu, ctxt->exception.vector);
5313 return false;
5314 }
5315
5316 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5317 {
5318 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5319 int cs_db, cs_l;
5320
5321 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5322
5323 ctxt->eflags = kvm_get_rflags(vcpu);
5324 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5325
5326 ctxt->eip = kvm_rip_read(vcpu);
5327 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5328 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5329 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5330 cs_db ? X86EMUL_MODE_PROT32 :
5331 X86EMUL_MODE_PROT16;
5332 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5333 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5334 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5335
5336 init_decode_cache(ctxt);
5337 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5338 }
5339
5340 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5341 {
5342 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5343 int ret;
5344
5345 init_emulate_ctxt(vcpu);
5346
5347 ctxt->op_bytes = 2;
5348 ctxt->ad_bytes = 2;
5349 ctxt->_eip = ctxt->eip + inc_eip;
5350 ret = emulate_int_real(ctxt, irq);
5351
5352 if (ret != X86EMUL_CONTINUE)
5353 return EMULATE_FAIL;
5354
5355 ctxt->eip = ctxt->_eip;
5356 kvm_rip_write(vcpu, ctxt->eip);
5357 kvm_set_rflags(vcpu, ctxt->eflags);
5358
5359 if (irq == NMI_VECTOR)
5360 vcpu->arch.nmi_pending = 0;
5361 else
5362 vcpu->arch.interrupt.pending = false;
5363
5364 return EMULATE_DONE;
5365 }
5366 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5367
5368 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5369 {
5370 int r = EMULATE_DONE;
5371
5372 ++vcpu->stat.insn_emulation_fail;
5373 trace_kvm_emulate_insn_failed(vcpu);
5374 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5375 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5376 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5377 vcpu->run->internal.ndata = 0;
5378 r = EMULATE_FAIL;
5379 }
5380 kvm_queue_exception(vcpu, UD_VECTOR);
5381
5382 return r;
5383 }
5384
5385 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5386 bool write_fault_to_shadow_pgtable,
5387 int emulation_type)
5388 {
5389 gpa_t gpa = cr2;
5390 kvm_pfn_t pfn;
5391
5392 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5393 return false;
5394
5395 if (!vcpu->arch.mmu.direct_map) {
5396 /*
5397 * Write permission should be allowed since only
5398 * write access need to be emulated.
5399 */
5400 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5401
5402 /*
5403 * If the mapping is invalid in guest, let cpu retry
5404 * it to generate fault.
5405 */
5406 if (gpa == UNMAPPED_GVA)
5407 return true;
5408 }
5409
5410 /*
5411 * Do not retry the unhandleable instruction if it faults on the
5412 * readonly host memory, otherwise it will goto a infinite loop:
5413 * retry instruction -> write #PF -> emulation fail -> retry
5414 * instruction -> ...
5415 */
5416 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5417
5418 /*
5419 * If the instruction failed on the error pfn, it can not be fixed,
5420 * report the error to userspace.
5421 */
5422 if (is_error_noslot_pfn(pfn))
5423 return false;
5424
5425 kvm_release_pfn_clean(pfn);
5426
5427 /* The instructions are well-emulated on direct mmu. */
5428 if (vcpu->arch.mmu.direct_map) {
5429 unsigned int indirect_shadow_pages;
5430
5431 spin_lock(&vcpu->kvm->mmu_lock);
5432 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5433 spin_unlock(&vcpu->kvm->mmu_lock);
5434
5435 if (indirect_shadow_pages)
5436 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5437
5438 return true;
5439 }
5440
5441 /*
5442 * if emulation was due to access to shadowed page table
5443 * and it failed try to unshadow page and re-enter the
5444 * guest to let CPU execute the instruction.
5445 */
5446 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5447
5448 /*
5449 * If the access faults on its page table, it can not
5450 * be fixed by unprotecting shadow page and it should
5451 * be reported to userspace.
5452 */
5453 return !write_fault_to_shadow_pgtable;
5454 }
5455
5456 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5457 unsigned long cr2, int emulation_type)
5458 {
5459 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5460 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5461
5462 last_retry_eip = vcpu->arch.last_retry_eip;
5463 last_retry_addr = vcpu->arch.last_retry_addr;
5464
5465 /*
5466 * If the emulation is caused by #PF and it is non-page_table
5467 * writing instruction, it means the VM-EXIT is caused by shadow
5468 * page protected, we can zap the shadow page and retry this
5469 * instruction directly.
5470 *
5471 * Note: if the guest uses a non-page-table modifying instruction
5472 * on the PDE that points to the instruction, then we will unmap
5473 * the instruction and go to an infinite loop. So, we cache the
5474 * last retried eip and the last fault address, if we meet the eip
5475 * and the address again, we can break out of the potential infinite
5476 * loop.
5477 */
5478 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5479
5480 if (!(emulation_type & EMULTYPE_RETRY))
5481 return false;
5482
5483 if (x86_page_table_writing_insn(ctxt))
5484 return false;
5485
5486 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5487 return false;
5488
5489 vcpu->arch.last_retry_eip = ctxt->eip;
5490 vcpu->arch.last_retry_addr = cr2;
5491
5492 if (!vcpu->arch.mmu.direct_map)
5493 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5494
5495 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5496
5497 return true;
5498 }
5499
5500 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5501 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5502
5503 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5504 {
5505 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5506 /* This is a good place to trace that we are exiting SMM. */
5507 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5508
5509 /* Process a latched INIT or SMI, if any. */
5510 kvm_make_request(KVM_REQ_EVENT, vcpu);
5511 }
5512
5513 kvm_mmu_reset_context(vcpu);
5514 }
5515
5516 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5517 {
5518 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5519
5520 vcpu->arch.hflags = emul_flags;
5521
5522 if (changed & HF_SMM_MASK)
5523 kvm_smm_changed(vcpu);
5524 }
5525
5526 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5527 unsigned long *db)
5528 {
5529 u32 dr6 = 0;
5530 int i;
5531 u32 enable, rwlen;
5532
5533 enable = dr7;
5534 rwlen = dr7 >> 16;
5535 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5536 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5537 dr6 |= (1 << i);
5538 return dr6;
5539 }
5540
5541 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5542 {
5543 struct kvm_run *kvm_run = vcpu->run;
5544
5545 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5546 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5547 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5548 kvm_run->debug.arch.exception = DB_VECTOR;
5549 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5550 *r = EMULATE_USER_EXIT;
5551 } else {
5552 /*
5553 * "Certain debug exceptions may clear bit 0-3. The
5554 * remaining contents of the DR6 register are never
5555 * cleared by the processor".
5556 */
5557 vcpu->arch.dr6 &= ~15;
5558 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5559 kvm_queue_exception(vcpu, DB_VECTOR);
5560 }
5561 }
5562
5563 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5564 {
5565 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5566 int r = EMULATE_DONE;
5567
5568 kvm_x86_ops->skip_emulated_instruction(vcpu);
5569
5570 /*
5571 * rflags is the old, "raw" value of the flags. The new value has
5572 * not been saved yet.
5573 *
5574 * This is correct even for TF set by the guest, because "the
5575 * processor will not generate this exception after the instruction
5576 * that sets the TF flag".
5577 */
5578 if (unlikely(rflags & X86_EFLAGS_TF))
5579 kvm_vcpu_do_singlestep(vcpu, &r);
5580 return r == EMULATE_DONE;
5581 }
5582 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5583
5584 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5585 {
5586 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5587 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5588 struct kvm_run *kvm_run = vcpu->run;
5589 unsigned long eip = kvm_get_linear_rip(vcpu);
5590 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5591 vcpu->arch.guest_debug_dr7,
5592 vcpu->arch.eff_db);
5593
5594 if (dr6 != 0) {
5595 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5596 kvm_run->debug.arch.pc = eip;
5597 kvm_run->debug.arch.exception = DB_VECTOR;
5598 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5599 *r = EMULATE_USER_EXIT;
5600 return true;
5601 }
5602 }
5603
5604 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5605 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5606 unsigned long eip = kvm_get_linear_rip(vcpu);
5607 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5608 vcpu->arch.dr7,
5609 vcpu->arch.db);
5610
5611 if (dr6 != 0) {
5612 vcpu->arch.dr6 &= ~15;
5613 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5614 kvm_queue_exception(vcpu, DB_VECTOR);
5615 *r = EMULATE_DONE;
5616 return true;
5617 }
5618 }
5619
5620 return false;
5621 }
5622
5623 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5624 unsigned long cr2,
5625 int emulation_type,
5626 void *insn,
5627 int insn_len)
5628 {
5629 int r;
5630 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5631 bool writeback = true;
5632 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5633
5634 /*
5635 * Clear write_fault_to_shadow_pgtable here to ensure it is
5636 * never reused.
5637 */
5638 vcpu->arch.write_fault_to_shadow_pgtable = false;
5639 kvm_clear_exception_queue(vcpu);
5640
5641 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5642 init_emulate_ctxt(vcpu);
5643
5644 /*
5645 * We will reenter on the same instruction since
5646 * we do not set complete_userspace_io. This does not
5647 * handle watchpoints yet, those would be handled in
5648 * the emulate_ops.
5649 */
5650 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5651 return r;
5652
5653 ctxt->interruptibility = 0;
5654 ctxt->have_exception = false;
5655 ctxt->exception.vector = -1;
5656 ctxt->perm_ok = false;
5657
5658 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5659
5660 r = x86_decode_insn(ctxt, insn, insn_len);
5661
5662 trace_kvm_emulate_insn_start(vcpu);
5663 ++vcpu->stat.insn_emulation;
5664 if (r != EMULATION_OK) {
5665 if (emulation_type & EMULTYPE_TRAP_UD)
5666 return EMULATE_FAIL;
5667 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5668 emulation_type))
5669 return EMULATE_DONE;
5670 if (emulation_type & EMULTYPE_SKIP)
5671 return EMULATE_FAIL;
5672 return handle_emulation_failure(vcpu);
5673 }
5674 }
5675
5676 if (emulation_type & EMULTYPE_SKIP) {
5677 kvm_rip_write(vcpu, ctxt->_eip);
5678 if (ctxt->eflags & X86_EFLAGS_RF)
5679 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5680 return EMULATE_DONE;
5681 }
5682
5683 if (retry_instruction(ctxt, cr2, emulation_type))
5684 return EMULATE_DONE;
5685
5686 /* this is needed for vmware backdoor interface to work since it
5687 changes registers values during IO operation */
5688 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5689 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5690 emulator_invalidate_register_cache(ctxt);
5691 }
5692
5693 restart:
5694 /* Save the faulting GPA (cr2) in the address field */
5695 ctxt->exception.address = cr2;
5696
5697 r = x86_emulate_insn(ctxt);
5698
5699 if (r == EMULATION_INTERCEPTED)
5700 return EMULATE_DONE;
5701
5702 if (r == EMULATION_FAILED) {
5703 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5704 emulation_type))
5705 return EMULATE_DONE;
5706
5707 return handle_emulation_failure(vcpu);
5708 }
5709
5710 if (ctxt->have_exception) {
5711 r = EMULATE_DONE;
5712 if (inject_emulated_exception(vcpu))
5713 return r;
5714 } else if (vcpu->arch.pio.count) {
5715 if (!vcpu->arch.pio.in) {
5716 /* FIXME: return into emulator if single-stepping. */
5717 vcpu->arch.pio.count = 0;
5718 } else {
5719 writeback = false;
5720 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5721 }
5722 r = EMULATE_USER_EXIT;
5723 } else if (vcpu->mmio_needed) {
5724 if (!vcpu->mmio_is_write)
5725 writeback = false;
5726 r = EMULATE_USER_EXIT;
5727 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5728 } else if (r == EMULATION_RESTART)
5729 goto restart;
5730 else
5731 r = EMULATE_DONE;
5732
5733 if (writeback) {
5734 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5735 toggle_interruptibility(vcpu, ctxt->interruptibility);
5736 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5737 kvm_rip_write(vcpu, ctxt->eip);
5738 if (r == EMULATE_DONE &&
5739 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5740 kvm_vcpu_do_singlestep(vcpu, &r);
5741 if (!ctxt->have_exception ||
5742 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5743 __kvm_set_rflags(vcpu, ctxt->eflags);
5744
5745 /*
5746 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5747 * do nothing, and it will be requested again as soon as
5748 * the shadow expires. But we still need to check here,
5749 * because POPF has no interrupt shadow.
5750 */
5751 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5752 kvm_make_request(KVM_REQ_EVENT, vcpu);
5753 } else
5754 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5755
5756 return r;
5757 }
5758 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5759
5760 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5761 {
5762 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5763 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5764 size, port, &val, 1);
5765 /* do not return to emulator after return from userspace */
5766 vcpu->arch.pio.count = 0;
5767 return ret;
5768 }
5769 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5770
5771 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5772 {
5773 unsigned long val;
5774
5775 /* We should only ever be called with arch.pio.count equal to 1 */
5776 BUG_ON(vcpu->arch.pio.count != 1);
5777
5778 /* For size less than 4 we merge, else we zero extend */
5779 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5780 : 0;
5781
5782 /*
5783 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5784 * the copy and tracing
5785 */
5786 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5787 vcpu->arch.pio.port, &val, 1);
5788 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5789
5790 return 1;
5791 }
5792
5793 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5794 {
5795 unsigned long val;
5796 int ret;
5797
5798 /* For size less than 4 we merge, else we zero extend */
5799 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5800
5801 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5802 &val, 1);
5803 if (ret) {
5804 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5805 return ret;
5806 }
5807
5808 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5809
5810 return 0;
5811 }
5812 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5813
5814 static int kvmclock_cpu_down_prep(unsigned int cpu)
5815 {
5816 __this_cpu_write(cpu_tsc_khz, 0);
5817 return 0;
5818 }
5819
5820 static void tsc_khz_changed(void *data)
5821 {
5822 struct cpufreq_freqs *freq = data;
5823 unsigned long khz = 0;
5824
5825 if (data)
5826 khz = freq->new;
5827 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5828 khz = cpufreq_quick_get(raw_smp_processor_id());
5829 if (!khz)
5830 khz = tsc_khz;
5831 __this_cpu_write(cpu_tsc_khz, khz);
5832 }
5833
5834 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5835 void *data)
5836 {
5837 struct cpufreq_freqs *freq = data;
5838 struct kvm *kvm;
5839 struct kvm_vcpu *vcpu;
5840 int i, send_ipi = 0;
5841
5842 /*
5843 * We allow guests to temporarily run on slowing clocks,
5844 * provided we notify them after, or to run on accelerating
5845 * clocks, provided we notify them before. Thus time never
5846 * goes backwards.
5847 *
5848 * However, we have a problem. We can't atomically update
5849 * the frequency of a given CPU from this function; it is
5850 * merely a notifier, which can be called from any CPU.
5851 * Changing the TSC frequency at arbitrary points in time
5852 * requires a recomputation of local variables related to
5853 * the TSC for each VCPU. We must flag these local variables
5854 * to be updated and be sure the update takes place with the
5855 * new frequency before any guests proceed.
5856 *
5857 * Unfortunately, the combination of hotplug CPU and frequency
5858 * change creates an intractable locking scenario; the order
5859 * of when these callouts happen is undefined with respect to
5860 * CPU hotplug, and they can race with each other. As such,
5861 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5862 * undefined; you can actually have a CPU frequency change take
5863 * place in between the computation of X and the setting of the
5864 * variable. To protect against this problem, all updates of
5865 * the per_cpu tsc_khz variable are done in an interrupt
5866 * protected IPI, and all callers wishing to update the value
5867 * must wait for a synchronous IPI to complete (which is trivial
5868 * if the caller is on the CPU already). This establishes the
5869 * necessary total order on variable updates.
5870 *
5871 * Note that because a guest time update may take place
5872 * anytime after the setting of the VCPU's request bit, the
5873 * correct TSC value must be set before the request. However,
5874 * to ensure the update actually makes it to any guest which
5875 * starts running in hardware virtualization between the set
5876 * and the acquisition of the spinlock, we must also ping the
5877 * CPU after setting the request bit.
5878 *
5879 */
5880
5881 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5882 return 0;
5883 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5884 return 0;
5885
5886 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5887
5888 spin_lock(&kvm_lock);
5889 list_for_each_entry(kvm, &vm_list, vm_list) {
5890 kvm_for_each_vcpu(i, vcpu, kvm) {
5891 if (vcpu->cpu != freq->cpu)
5892 continue;
5893 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5894 if (vcpu->cpu != smp_processor_id())
5895 send_ipi = 1;
5896 }
5897 }
5898 spin_unlock(&kvm_lock);
5899
5900 if (freq->old < freq->new && send_ipi) {
5901 /*
5902 * We upscale the frequency. Must make the guest
5903 * doesn't see old kvmclock values while running with
5904 * the new frequency, otherwise we risk the guest sees
5905 * time go backwards.
5906 *
5907 * In case we update the frequency for another cpu
5908 * (which might be in guest context) send an interrupt
5909 * to kick the cpu out of guest context. Next time
5910 * guest context is entered kvmclock will be updated,
5911 * so the guest will not see stale values.
5912 */
5913 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5914 }
5915 return 0;
5916 }
5917
5918 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5919 .notifier_call = kvmclock_cpufreq_notifier
5920 };
5921
5922 static int kvmclock_cpu_online(unsigned int cpu)
5923 {
5924 tsc_khz_changed(NULL);
5925 return 0;
5926 }
5927
5928 static void kvm_timer_init(void)
5929 {
5930 max_tsc_khz = tsc_khz;
5931
5932 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5933 #ifdef CONFIG_CPU_FREQ
5934 struct cpufreq_policy policy;
5935 int cpu;
5936
5937 memset(&policy, 0, sizeof(policy));
5938 cpu = get_cpu();
5939 cpufreq_get_policy(&policy, cpu);
5940 if (policy.cpuinfo.max_freq)
5941 max_tsc_khz = policy.cpuinfo.max_freq;
5942 put_cpu();
5943 #endif
5944 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5945 CPUFREQ_TRANSITION_NOTIFIER);
5946 }
5947 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5948
5949 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5950 kvmclock_cpu_online, kvmclock_cpu_down_prep);
5951 }
5952
5953 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5954
5955 int kvm_is_in_guest(void)
5956 {
5957 return __this_cpu_read(current_vcpu) != NULL;
5958 }
5959
5960 static int kvm_is_user_mode(void)
5961 {
5962 int user_mode = 3;
5963
5964 if (__this_cpu_read(current_vcpu))
5965 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5966
5967 return user_mode != 0;
5968 }
5969
5970 static unsigned long kvm_get_guest_ip(void)
5971 {
5972 unsigned long ip = 0;
5973
5974 if (__this_cpu_read(current_vcpu))
5975 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5976
5977 return ip;
5978 }
5979
5980 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5981 .is_in_guest = kvm_is_in_guest,
5982 .is_user_mode = kvm_is_user_mode,
5983 .get_guest_ip = kvm_get_guest_ip,
5984 };
5985
5986 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5987 {
5988 __this_cpu_write(current_vcpu, vcpu);
5989 }
5990 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5991
5992 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5993 {
5994 __this_cpu_write(current_vcpu, NULL);
5995 }
5996 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5997
5998 static void kvm_set_mmio_spte_mask(void)
5999 {
6000 u64 mask;
6001 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6002
6003 /*
6004 * Set the reserved bits and the present bit of an paging-structure
6005 * entry to generate page fault with PFER.RSV = 1.
6006 */
6007 /* Mask the reserved physical address bits. */
6008 mask = rsvd_bits(maxphyaddr, 51);
6009
6010 /* Set the present bit. */
6011 mask |= 1ull;
6012
6013 #ifdef CONFIG_X86_64
6014 /*
6015 * If reserved bit is not supported, clear the present bit to disable
6016 * mmio page fault.
6017 */
6018 if (maxphyaddr == 52)
6019 mask &= ~1ull;
6020 #endif
6021
6022 kvm_mmu_set_mmio_spte_mask(mask, mask);
6023 }
6024
6025 #ifdef CONFIG_X86_64
6026 static void pvclock_gtod_update_fn(struct work_struct *work)
6027 {
6028 struct kvm *kvm;
6029
6030 struct kvm_vcpu *vcpu;
6031 int i;
6032
6033 spin_lock(&kvm_lock);
6034 list_for_each_entry(kvm, &vm_list, vm_list)
6035 kvm_for_each_vcpu(i, vcpu, kvm)
6036 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6037 atomic_set(&kvm_guest_has_master_clock, 0);
6038 spin_unlock(&kvm_lock);
6039 }
6040
6041 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6042
6043 /*
6044 * Notification about pvclock gtod data update.
6045 */
6046 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6047 void *priv)
6048 {
6049 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6050 struct timekeeper *tk = priv;
6051
6052 update_pvclock_gtod(tk);
6053
6054 /* disable master clock if host does not trust, or does not
6055 * use, TSC clocksource
6056 */
6057 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6058 atomic_read(&kvm_guest_has_master_clock) != 0)
6059 queue_work(system_long_wq, &pvclock_gtod_work);
6060
6061 return 0;
6062 }
6063
6064 static struct notifier_block pvclock_gtod_notifier = {
6065 .notifier_call = pvclock_gtod_notify,
6066 };
6067 #endif
6068
6069 int kvm_arch_init(void *opaque)
6070 {
6071 int r;
6072 struct kvm_x86_ops *ops = opaque;
6073
6074 if (kvm_x86_ops) {
6075 printk(KERN_ERR "kvm: already loaded the other module\n");
6076 r = -EEXIST;
6077 goto out;
6078 }
6079
6080 if (!ops->cpu_has_kvm_support()) {
6081 printk(KERN_ERR "kvm: no hardware support\n");
6082 r = -EOPNOTSUPP;
6083 goto out;
6084 }
6085 if (ops->disabled_by_bios()) {
6086 printk(KERN_ERR "kvm: disabled by bios\n");
6087 r = -EOPNOTSUPP;
6088 goto out;
6089 }
6090
6091 r = -ENOMEM;
6092 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6093 if (!shared_msrs) {
6094 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6095 goto out;
6096 }
6097
6098 r = kvm_mmu_module_init();
6099 if (r)
6100 goto out_free_percpu;
6101
6102 kvm_set_mmio_spte_mask();
6103
6104 kvm_x86_ops = ops;
6105
6106 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6107 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6108 PT_PRESENT_MASK, 0);
6109 kvm_timer_init();
6110
6111 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6112
6113 if (boot_cpu_has(X86_FEATURE_XSAVE))
6114 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6115
6116 kvm_lapic_init();
6117 #ifdef CONFIG_X86_64
6118 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6119 #endif
6120
6121 return 0;
6122
6123 out_free_percpu:
6124 free_percpu(shared_msrs);
6125 out:
6126 return r;
6127 }
6128
6129 void kvm_arch_exit(void)
6130 {
6131 kvm_lapic_exit();
6132 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6133
6134 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6135 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6136 CPUFREQ_TRANSITION_NOTIFIER);
6137 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6138 #ifdef CONFIG_X86_64
6139 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6140 #endif
6141 kvm_x86_ops = NULL;
6142 kvm_mmu_module_exit();
6143 free_percpu(shared_msrs);
6144 }
6145
6146 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6147 {
6148 ++vcpu->stat.halt_exits;
6149 if (lapic_in_kernel(vcpu)) {
6150 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6151 return 1;
6152 } else {
6153 vcpu->run->exit_reason = KVM_EXIT_HLT;
6154 return 0;
6155 }
6156 }
6157 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6158
6159 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6160 {
6161 int ret = kvm_skip_emulated_instruction(vcpu);
6162 /*
6163 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6164 * KVM_EXIT_DEBUG here.
6165 */
6166 return kvm_vcpu_halt(vcpu) && ret;
6167 }
6168 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6169
6170 #ifdef CONFIG_X86_64
6171 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6172 unsigned long clock_type)
6173 {
6174 struct kvm_clock_pairing clock_pairing;
6175 struct timespec ts;
6176 u64 cycle;
6177 int ret;
6178
6179 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6180 return -KVM_EOPNOTSUPP;
6181
6182 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6183 return -KVM_EOPNOTSUPP;
6184
6185 clock_pairing.sec = ts.tv_sec;
6186 clock_pairing.nsec = ts.tv_nsec;
6187 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6188 clock_pairing.flags = 0;
6189
6190 ret = 0;
6191 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6192 sizeof(struct kvm_clock_pairing)))
6193 ret = -KVM_EFAULT;
6194
6195 return ret;
6196 }
6197 #endif
6198
6199 /*
6200 * kvm_pv_kick_cpu_op: Kick a vcpu.
6201 *
6202 * @apicid - apicid of vcpu to be kicked.
6203 */
6204 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6205 {
6206 struct kvm_lapic_irq lapic_irq;
6207
6208 lapic_irq.shorthand = 0;
6209 lapic_irq.dest_mode = 0;
6210 lapic_irq.level = 0;
6211 lapic_irq.dest_id = apicid;
6212 lapic_irq.msi_redir_hint = false;
6213
6214 lapic_irq.delivery_mode = APIC_DM_REMRD;
6215 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6216 }
6217
6218 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6219 {
6220 vcpu->arch.apicv_active = false;
6221 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6222 }
6223
6224 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6225 {
6226 unsigned long nr, a0, a1, a2, a3, ret;
6227 int op_64_bit, r;
6228
6229 r = kvm_skip_emulated_instruction(vcpu);
6230
6231 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6232 return kvm_hv_hypercall(vcpu);
6233
6234 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6235 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6236 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6237 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6238 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6239
6240 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6241
6242 op_64_bit = is_64_bit_mode(vcpu);
6243 if (!op_64_bit) {
6244 nr &= 0xFFFFFFFF;
6245 a0 &= 0xFFFFFFFF;
6246 a1 &= 0xFFFFFFFF;
6247 a2 &= 0xFFFFFFFF;
6248 a3 &= 0xFFFFFFFF;
6249 }
6250
6251 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6252 ret = -KVM_EPERM;
6253 goto out;
6254 }
6255
6256 switch (nr) {
6257 case KVM_HC_VAPIC_POLL_IRQ:
6258 ret = 0;
6259 break;
6260 case KVM_HC_KICK_CPU:
6261 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6262 ret = 0;
6263 break;
6264 #ifdef CONFIG_X86_64
6265 case KVM_HC_CLOCK_PAIRING:
6266 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6267 break;
6268 #endif
6269 default:
6270 ret = -KVM_ENOSYS;
6271 break;
6272 }
6273 out:
6274 if (!op_64_bit)
6275 ret = (u32)ret;
6276 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6277 ++vcpu->stat.hypercalls;
6278 return r;
6279 }
6280 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6281
6282 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6283 {
6284 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6285 char instruction[3];
6286 unsigned long rip = kvm_rip_read(vcpu);
6287
6288 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6289
6290 return emulator_write_emulated(ctxt, rip, instruction, 3,
6291 &ctxt->exception);
6292 }
6293
6294 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6295 {
6296 return vcpu->run->request_interrupt_window &&
6297 likely(!pic_in_kernel(vcpu->kvm));
6298 }
6299
6300 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6301 {
6302 struct kvm_run *kvm_run = vcpu->run;
6303
6304 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6305 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6306 kvm_run->cr8 = kvm_get_cr8(vcpu);
6307 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6308 kvm_run->ready_for_interrupt_injection =
6309 pic_in_kernel(vcpu->kvm) ||
6310 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6311 }
6312
6313 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6314 {
6315 int max_irr, tpr;
6316
6317 if (!kvm_x86_ops->update_cr8_intercept)
6318 return;
6319
6320 if (!lapic_in_kernel(vcpu))
6321 return;
6322
6323 if (vcpu->arch.apicv_active)
6324 return;
6325
6326 if (!vcpu->arch.apic->vapic_addr)
6327 max_irr = kvm_lapic_find_highest_irr(vcpu);
6328 else
6329 max_irr = -1;
6330
6331 if (max_irr != -1)
6332 max_irr >>= 4;
6333
6334 tpr = kvm_lapic_get_cr8(vcpu);
6335
6336 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6337 }
6338
6339 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6340 {
6341 int r;
6342
6343 /* try to reinject previous events if any */
6344 if (vcpu->arch.exception.pending) {
6345 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6346 vcpu->arch.exception.has_error_code,
6347 vcpu->arch.exception.error_code);
6348
6349 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6350 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6351 X86_EFLAGS_RF);
6352
6353 if (vcpu->arch.exception.nr == DB_VECTOR &&
6354 (vcpu->arch.dr7 & DR7_GD)) {
6355 vcpu->arch.dr7 &= ~DR7_GD;
6356 kvm_update_dr7(vcpu);
6357 }
6358
6359 kvm_x86_ops->queue_exception(vcpu);
6360 return 0;
6361 }
6362
6363 if (vcpu->arch.nmi_injected) {
6364 kvm_x86_ops->set_nmi(vcpu);
6365 return 0;
6366 }
6367
6368 if (vcpu->arch.interrupt.pending) {
6369 kvm_x86_ops->set_irq(vcpu);
6370 return 0;
6371 }
6372
6373 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6374 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6375 if (r != 0)
6376 return r;
6377 }
6378
6379 /* try to inject new event if pending */
6380 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6381 vcpu->arch.smi_pending = false;
6382 enter_smm(vcpu);
6383 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6384 --vcpu->arch.nmi_pending;
6385 vcpu->arch.nmi_injected = true;
6386 kvm_x86_ops->set_nmi(vcpu);
6387 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6388 /*
6389 * Because interrupts can be injected asynchronously, we are
6390 * calling check_nested_events again here to avoid a race condition.
6391 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6392 * proposal and current concerns. Perhaps we should be setting
6393 * KVM_REQ_EVENT only on certain events and not unconditionally?
6394 */
6395 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6396 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6397 if (r != 0)
6398 return r;
6399 }
6400 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6401 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6402 false);
6403 kvm_x86_ops->set_irq(vcpu);
6404 }
6405 }
6406
6407 return 0;
6408 }
6409
6410 static void process_nmi(struct kvm_vcpu *vcpu)
6411 {
6412 unsigned limit = 2;
6413
6414 /*
6415 * x86 is limited to one NMI running, and one NMI pending after it.
6416 * If an NMI is already in progress, limit further NMIs to just one.
6417 * Otherwise, allow two (and we'll inject the first one immediately).
6418 */
6419 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6420 limit = 1;
6421
6422 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6423 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6424 kvm_make_request(KVM_REQ_EVENT, vcpu);
6425 }
6426
6427 #define put_smstate(type, buf, offset, val) \
6428 *(type *)((buf) + (offset) - 0x7e00) = val
6429
6430 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6431 {
6432 u32 flags = 0;
6433 flags |= seg->g << 23;
6434 flags |= seg->db << 22;
6435 flags |= seg->l << 21;
6436 flags |= seg->avl << 20;
6437 flags |= seg->present << 15;
6438 flags |= seg->dpl << 13;
6439 flags |= seg->s << 12;
6440 flags |= seg->type << 8;
6441 return flags;
6442 }
6443
6444 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6445 {
6446 struct kvm_segment seg;
6447 int offset;
6448
6449 kvm_get_segment(vcpu, &seg, n);
6450 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6451
6452 if (n < 3)
6453 offset = 0x7f84 + n * 12;
6454 else
6455 offset = 0x7f2c + (n - 3) * 12;
6456
6457 put_smstate(u32, buf, offset + 8, seg.base);
6458 put_smstate(u32, buf, offset + 4, seg.limit);
6459 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6460 }
6461
6462 #ifdef CONFIG_X86_64
6463 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6464 {
6465 struct kvm_segment seg;
6466 int offset;
6467 u16 flags;
6468
6469 kvm_get_segment(vcpu, &seg, n);
6470 offset = 0x7e00 + n * 16;
6471
6472 flags = enter_smm_get_segment_flags(&seg) >> 8;
6473 put_smstate(u16, buf, offset, seg.selector);
6474 put_smstate(u16, buf, offset + 2, flags);
6475 put_smstate(u32, buf, offset + 4, seg.limit);
6476 put_smstate(u64, buf, offset + 8, seg.base);
6477 }
6478 #endif
6479
6480 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6481 {
6482 struct desc_ptr dt;
6483 struct kvm_segment seg;
6484 unsigned long val;
6485 int i;
6486
6487 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6488 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6489 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6490 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6491
6492 for (i = 0; i < 8; i++)
6493 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6494
6495 kvm_get_dr(vcpu, 6, &val);
6496 put_smstate(u32, buf, 0x7fcc, (u32)val);
6497 kvm_get_dr(vcpu, 7, &val);
6498 put_smstate(u32, buf, 0x7fc8, (u32)val);
6499
6500 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6501 put_smstate(u32, buf, 0x7fc4, seg.selector);
6502 put_smstate(u32, buf, 0x7f64, seg.base);
6503 put_smstate(u32, buf, 0x7f60, seg.limit);
6504 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6505
6506 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6507 put_smstate(u32, buf, 0x7fc0, seg.selector);
6508 put_smstate(u32, buf, 0x7f80, seg.base);
6509 put_smstate(u32, buf, 0x7f7c, seg.limit);
6510 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6511
6512 kvm_x86_ops->get_gdt(vcpu, &dt);
6513 put_smstate(u32, buf, 0x7f74, dt.address);
6514 put_smstate(u32, buf, 0x7f70, dt.size);
6515
6516 kvm_x86_ops->get_idt(vcpu, &dt);
6517 put_smstate(u32, buf, 0x7f58, dt.address);
6518 put_smstate(u32, buf, 0x7f54, dt.size);
6519
6520 for (i = 0; i < 6; i++)
6521 enter_smm_save_seg_32(vcpu, buf, i);
6522
6523 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6524
6525 /* revision id */
6526 put_smstate(u32, buf, 0x7efc, 0x00020000);
6527 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6528 }
6529
6530 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6531 {
6532 #ifdef CONFIG_X86_64
6533 struct desc_ptr dt;
6534 struct kvm_segment seg;
6535 unsigned long val;
6536 int i;
6537
6538 for (i = 0; i < 16; i++)
6539 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6540
6541 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6542 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6543
6544 kvm_get_dr(vcpu, 6, &val);
6545 put_smstate(u64, buf, 0x7f68, val);
6546 kvm_get_dr(vcpu, 7, &val);
6547 put_smstate(u64, buf, 0x7f60, val);
6548
6549 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6550 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6551 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6552
6553 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6554
6555 /* revision id */
6556 put_smstate(u32, buf, 0x7efc, 0x00020064);
6557
6558 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6559
6560 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6561 put_smstate(u16, buf, 0x7e90, seg.selector);
6562 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6563 put_smstate(u32, buf, 0x7e94, seg.limit);
6564 put_smstate(u64, buf, 0x7e98, seg.base);
6565
6566 kvm_x86_ops->get_idt(vcpu, &dt);
6567 put_smstate(u32, buf, 0x7e84, dt.size);
6568 put_smstate(u64, buf, 0x7e88, dt.address);
6569
6570 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6571 put_smstate(u16, buf, 0x7e70, seg.selector);
6572 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6573 put_smstate(u32, buf, 0x7e74, seg.limit);
6574 put_smstate(u64, buf, 0x7e78, seg.base);
6575
6576 kvm_x86_ops->get_gdt(vcpu, &dt);
6577 put_smstate(u32, buf, 0x7e64, dt.size);
6578 put_smstate(u64, buf, 0x7e68, dt.address);
6579
6580 for (i = 0; i < 6; i++)
6581 enter_smm_save_seg_64(vcpu, buf, i);
6582 #else
6583 WARN_ON_ONCE(1);
6584 #endif
6585 }
6586
6587 static void enter_smm(struct kvm_vcpu *vcpu)
6588 {
6589 struct kvm_segment cs, ds;
6590 struct desc_ptr dt;
6591 char buf[512];
6592 u32 cr0;
6593
6594 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6595 vcpu->arch.hflags |= HF_SMM_MASK;
6596 memset(buf, 0, 512);
6597 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6598 enter_smm_save_state_64(vcpu, buf);
6599 else
6600 enter_smm_save_state_32(vcpu, buf);
6601
6602 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6603
6604 if (kvm_x86_ops->get_nmi_mask(vcpu))
6605 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6606 else
6607 kvm_x86_ops->set_nmi_mask(vcpu, true);
6608
6609 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6610 kvm_rip_write(vcpu, 0x8000);
6611
6612 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6613 kvm_x86_ops->set_cr0(vcpu, cr0);
6614 vcpu->arch.cr0 = cr0;
6615
6616 kvm_x86_ops->set_cr4(vcpu, 0);
6617
6618 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6619 dt.address = dt.size = 0;
6620 kvm_x86_ops->set_idt(vcpu, &dt);
6621
6622 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6623
6624 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6625 cs.base = vcpu->arch.smbase;
6626
6627 ds.selector = 0;
6628 ds.base = 0;
6629
6630 cs.limit = ds.limit = 0xffffffff;
6631 cs.type = ds.type = 0x3;
6632 cs.dpl = ds.dpl = 0;
6633 cs.db = ds.db = 0;
6634 cs.s = ds.s = 1;
6635 cs.l = ds.l = 0;
6636 cs.g = ds.g = 1;
6637 cs.avl = ds.avl = 0;
6638 cs.present = ds.present = 1;
6639 cs.unusable = ds.unusable = 0;
6640 cs.padding = ds.padding = 0;
6641
6642 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6643 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6644 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6645 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6646 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6647 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6648
6649 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6650 kvm_x86_ops->set_efer(vcpu, 0);
6651
6652 kvm_update_cpuid(vcpu);
6653 kvm_mmu_reset_context(vcpu);
6654 }
6655
6656 static void process_smi(struct kvm_vcpu *vcpu)
6657 {
6658 vcpu->arch.smi_pending = true;
6659 kvm_make_request(KVM_REQ_EVENT, vcpu);
6660 }
6661
6662 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6663 {
6664 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6665 }
6666
6667 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6668 {
6669 u64 eoi_exit_bitmap[4];
6670
6671 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6672 return;
6673
6674 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6675
6676 if (irqchip_split(vcpu->kvm))
6677 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6678 else {
6679 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6680 kvm_x86_ops->sync_pir_to_irr(vcpu);
6681 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6682 }
6683 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6684 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6685 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6686 }
6687
6688 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6689 {
6690 ++vcpu->stat.tlb_flush;
6691 kvm_x86_ops->tlb_flush(vcpu);
6692 }
6693
6694 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6695 {
6696 struct page *page = NULL;
6697
6698 if (!lapic_in_kernel(vcpu))
6699 return;
6700
6701 if (!kvm_x86_ops->set_apic_access_page_addr)
6702 return;
6703
6704 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6705 if (is_error_page(page))
6706 return;
6707 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6708
6709 /*
6710 * Do not pin apic access page in memory, the MMU notifier
6711 * will call us again if it is migrated or swapped out.
6712 */
6713 put_page(page);
6714 }
6715 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6716
6717 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6718 unsigned long address)
6719 {
6720 /*
6721 * The physical address of apic access page is stored in the VMCS.
6722 * Update it when it becomes invalid.
6723 */
6724 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6725 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6726 }
6727
6728 /*
6729 * Returns 1 to let vcpu_run() continue the guest execution loop without
6730 * exiting to the userspace. Otherwise, the value will be returned to the
6731 * userspace.
6732 */
6733 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6734 {
6735 int r;
6736 bool req_int_win =
6737 dm_request_for_irq_injection(vcpu) &&
6738 kvm_cpu_accept_dm_intr(vcpu);
6739
6740 bool req_immediate_exit = false;
6741
6742 if (kvm_request_pending(vcpu)) {
6743 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6744 kvm_mmu_unload(vcpu);
6745 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6746 __kvm_migrate_timers(vcpu);
6747 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6748 kvm_gen_update_masterclock(vcpu->kvm);
6749 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6750 kvm_gen_kvmclock_update(vcpu);
6751 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6752 r = kvm_guest_time_update(vcpu);
6753 if (unlikely(r))
6754 goto out;
6755 }
6756 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6757 kvm_mmu_sync_roots(vcpu);
6758 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6759 kvm_vcpu_flush_tlb(vcpu);
6760 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6761 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6762 r = 0;
6763 goto out;
6764 }
6765 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6766 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6767 vcpu->mmio_needed = 0;
6768 r = 0;
6769 goto out;
6770 }
6771 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6772 /* Page is swapped out. Do synthetic halt */
6773 vcpu->arch.apf.halted = true;
6774 r = 1;
6775 goto out;
6776 }
6777 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6778 record_steal_time(vcpu);
6779 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6780 process_smi(vcpu);
6781 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6782 process_nmi(vcpu);
6783 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6784 kvm_pmu_handle_event(vcpu);
6785 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6786 kvm_pmu_deliver_pmi(vcpu);
6787 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6788 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6789 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6790 vcpu->arch.ioapic_handled_vectors)) {
6791 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6792 vcpu->run->eoi.vector =
6793 vcpu->arch.pending_ioapic_eoi;
6794 r = 0;
6795 goto out;
6796 }
6797 }
6798 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6799 vcpu_scan_ioapic(vcpu);
6800 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6801 kvm_vcpu_reload_apic_access_page(vcpu);
6802 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6803 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6804 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6805 r = 0;
6806 goto out;
6807 }
6808 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6809 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6810 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6811 r = 0;
6812 goto out;
6813 }
6814 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6815 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6816 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6817 r = 0;
6818 goto out;
6819 }
6820
6821 /*
6822 * KVM_REQ_HV_STIMER has to be processed after
6823 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6824 * depend on the guest clock being up-to-date
6825 */
6826 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6827 kvm_hv_process_stimers(vcpu);
6828 }
6829
6830 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6831 ++vcpu->stat.req_event;
6832 kvm_apic_accept_events(vcpu);
6833 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6834 r = 1;
6835 goto out;
6836 }
6837
6838 if (inject_pending_event(vcpu, req_int_win) != 0)
6839 req_immediate_exit = true;
6840 else {
6841 /* Enable NMI/IRQ window open exits if needed.
6842 *
6843 * SMIs have two cases: 1) they can be nested, and
6844 * then there is nothing to do here because RSM will
6845 * cause a vmexit anyway; 2) or the SMI can be pending
6846 * because inject_pending_event has completed the
6847 * injection of an IRQ or NMI from the previous vmexit,
6848 * and then we request an immediate exit to inject the SMI.
6849 */
6850 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6851 req_immediate_exit = true;
6852 if (vcpu->arch.nmi_pending)
6853 kvm_x86_ops->enable_nmi_window(vcpu);
6854 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6855 kvm_x86_ops->enable_irq_window(vcpu);
6856 }
6857
6858 if (kvm_lapic_enabled(vcpu)) {
6859 update_cr8_intercept(vcpu);
6860 kvm_lapic_sync_to_vapic(vcpu);
6861 }
6862 }
6863
6864 r = kvm_mmu_reload(vcpu);
6865 if (unlikely(r)) {
6866 goto cancel_injection;
6867 }
6868
6869 preempt_disable();
6870
6871 kvm_x86_ops->prepare_guest_switch(vcpu);
6872 kvm_load_guest_fpu(vcpu);
6873
6874 /*
6875 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
6876 * IPI are then delayed after guest entry, which ensures that they
6877 * result in virtual interrupt delivery.
6878 */
6879 local_irq_disable();
6880 vcpu->mode = IN_GUEST_MODE;
6881
6882 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6883
6884 /*
6885 * 1) We should set ->mode before checking ->requests. Please see
6886 * the comment in kvm_vcpu_exiting_guest_mode().
6887 *
6888 * 2) For APICv, we should set ->mode before checking PIR.ON. This
6889 * pairs with the memory barrier implicit in pi_test_and_set_on
6890 * (see vmx_deliver_posted_interrupt).
6891 *
6892 * 3) This also orders the write to mode from any reads to the page
6893 * tables done while the VCPU is running. Please see the comment
6894 * in kvm_flush_remote_tlbs.
6895 */
6896 smp_mb__after_srcu_read_unlock();
6897
6898 /*
6899 * This handles the case where a posted interrupt was
6900 * notified with kvm_vcpu_kick.
6901 */
6902 if (kvm_lapic_enabled(vcpu)) {
6903 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6904 kvm_x86_ops->sync_pir_to_irr(vcpu);
6905 }
6906
6907 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6908 || need_resched() || signal_pending(current)) {
6909 vcpu->mode = OUTSIDE_GUEST_MODE;
6910 smp_wmb();
6911 local_irq_enable();
6912 preempt_enable();
6913 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6914 r = 1;
6915 goto cancel_injection;
6916 }
6917
6918 kvm_load_guest_xcr0(vcpu);
6919
6920 if (req_immediate_exit) {
6921 kvm_make_request(KVM_REQ_EVENT, vcpu);
6922 smp_send_reschedule(vcpu->cpu);
6923 }
6924
6925 trace_kvm_entry(vcpu->vcpu_id);
6926 wait_lapic_expire(vcpu);
6927 guest_enter_irqoff();
6928
6929 if (unlikely(vcpu->arch.switch_db_regs)) {
6930 set_debugreg(0, 7);
6931 set_debugreg(vcpu->arch.eff_db[0], 0);
6932 set_debugreg(vcpu->arch.eff_db[1], 1);
6933 set_debugreg(vcpu->arch.eff_db[2], 2);
6934 set_debugreg(vcpu->arch.eff_db[3], 3);
6935 set_debugreg(vcpu->arch.dr6, 6);
6936 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6937 }
6938
6939 kvm_x86_ops->run(vcpu);
6940
6941 /*
6942 * Do this here before restoring debug registers on the host. And
6943 * since we do this before handling the vmexit, a DR access vmexit
6944 * can (a) read the correct value of the debug registers, (b) set
6945 * KVM_DEBUGREG_WONT_EXIT again.
6946 */
6947 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6948 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6949 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6950 kvm_update_dr0123(vcpu);
6951 kvm_update_dr6(vcpu);
6952 kvm_update_dr7(vcpu);
6953 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6954 }
6955
6956 /*
6957 * If the guest has used debug registers, at least dr7
6958 * will be disabled while returning to the host.
6959 * If we don't have active breakpoints in the host, we don't
6960 * care about the messed up debug address registers. But if
6961 * we have some of them active, restore the old state.
6962 */
6963 if (hw_breakpoint_active())
6964 hw_breakpoint_restore();
6965
6966 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6967
6968 vcpu->mode = OUTSIDE_GUEST_MODE;
6969 smp_wmb();
6970
6971 kvm_put_guest_xcr0(vcpu);
6972
6973 kvm_x86_ops->handle_external_intr(vcpu);
6974
6975 ++vcpu->stat.exits;
6976
6977 guest_exit_irqoff();
6978
6979 local_irq_enable();
6980 preempt_enable();
6981
6982 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6983
6984 /*
6985 * Profile KVM exit RIPs:
6986 */
6987 if (unlikely(prof_on == KVM_PROFILING)) {
6988 unsigned long rip = kvm_rip_read(vcpu);
6989 profile_hit(KVM_PROFILING, (void *)rip);
6990 }
6991
6992 if (unlikely(vcpu->arch.tsc_always_catchup))
6993 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6994
6995 if (vcpu->arch.apic_attention)
6996 kvm_lapic_sync_from_vapic(vcpu);
6997
6998 vcpu->arch.gpa_available = false;
6999 r = kvm_x86_ops->handle_exit(vcpu);
7000 return r;
7001
7002 cancel_injection:
7003 kvm_x86_ops->cancel_injection(vcpu);
7004 if (unlikely(vcpu->arch.apic_attention))
7005 kvm_lapic_sync_from_vapic(vcpu);
7006 out:
7007 return r;
7008 }
7009
7010 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7011 {
7012 if (!kvm_arch_vcpu_runnable(vcpu) &&
7013 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7014 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7015 kvm_vcpu_block(vcpu);
7016 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7017
7018 if (kvm_x86_ops->post_block)
7019 kvm_x86_ops->post_block(vcpu);
7020
7021 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7022 return 1;
7023 }
7024
7025 kvm_apic_accept_events(vcpu);
7026 switch(vcpu->arch.mp_state) {
7027 case KVM_MP_STATE_HALTED:
7028 vcpu->arch.pv.pv_unhalted = false;
7029 vcpu->arch.mp_state =
7030 KVM_MP_STATE_RUNNABLE;
7031 case KVM_MP_STATE_RUNNABLE:
7032 vcpu->arch.apf.halted = false;
7033 break;
7034 case KVM_MP_STATE_INIT_RECEIVED:
7035 break;
7036 default:
7037 return -EINTR;
7038 break;
7039 }
7040 return 1;
7041 }
7042
7043 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7044 {
7045 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7046 kvm_x86_ops->check_nested_events(vcpu, false);
7047
7048 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7049 !vcpu->arch.apf.halted);
7050 }
7051
7052 static int vcpu_run(struct kvm_vcpu *vcpu)
7053 {
7054 int r;
7055 struct kvm *kvm = vcpu->kvm;
7056
7057 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7058
7059 for (;;) {
7060 if (kvm_vcpu_running(vcpu)) {
7061 r = vcpu_enter_guest(vcpu);
7062 } else {
7063 r = vcpu_block(kvm, vcpu);
7064 }
7065
7066 if (r <= 0)
7067 break;
7068
7069 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7070 if (kvm_cpu_has_pending_timer(vcpu))
7071 kvm_inject_pending_timer_irqs(vcpu);
7072
7073 if (dm_request_for_irq_injection(vcpu) &&
7074 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7075 r = 0;
7076 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7077 ++vcpu->stat.request_irq_exits;
7078 break;
7079 }
7080
7081 kvm_check_async_pf_completion(vcpu);
7082
7083 if (signal_pending(current)) {
7084 r = -EINTR;
7085 vcpu->run->exit_reason = KVM_EXIT_INTR;
7086 ++vcpu->stat.signal_exits;
7087 break;
7088 }
7089 if (need_resched()) {
7090 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7091 cond_resched();
7092 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7093 }
7094 }
7095
7096 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7097
7098 return r;
7099 }
7100
7101 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7102 {
7103 int r;
7104 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7105 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7106 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7107 if (r != EMULATE_DONE)
7108 return 0;
7109 return 1;
7110 }
7111
7112 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7113 {
7114 BUG_ON(!vcpu->arch.pio.count);
7115
7116 return complete_emulated_io(vcpu);
7117 }
7118
7119 /*
7120 * Implements the following, as a state machine:
7121 *
7122 * read:
7123 * for each fragment
7124 * for each mmio piece in the fragment
7125 * write gpa, len
7126 * exit
7127 * copy data
7128 * execute insn
7129 *
7130 * write:
7131 * for each fragment
7132 * for each mmio piece in the fragment
7133 * write gpa, len
7134 * copy data
7135 * exit
7136 */
7137 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7138 {
7139 struct kvm_run *run = vcpu->run;
7140 struct kvm_mmio_fragment *frag;
7141 unsigned len;
7142
7143 BUG_ON(!vcpu->mmio_needed);
7144
7145 /* Complete previous fragment */
7146 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7147 len = min(8u, frag->len);
7148 if (!vcpu->mmio_is_write)
7149 memcpy(frag->data, run->mmio.data, len);
7150
7151 if (frag->len <= 8) {
7152 /* Switch to the next fragment. */
7153 frag++;
7154 vcpu->mmio_cur_fragment++;
7155 } else {
7156 /* Go forward to the next mmio piece. */
7157 frag->data += len;
7158 frag->gpa += len;
7159 frag->len -= len;
7160 }
7161
7162 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7163 vcpu->mmio_needed = 0;
7164
7165 /* FIXME: return into emulator if single-stepping. */
7166 if (vcpu->mmio_is_write)
7167 return 1;
7168 vcpu->mmio_read_completed = 1;
7169 return complete_emulated_io(vcpu);
7170 }
7171
7172 run->exit_reason = KVM_EXIT_MMIO;
7173 run->mmio.phys_addr = frag->gpa;
7174 if (vcpu->mmio_is_write)
7175 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7176 run->mmio.len = min(8u, frag->len);
7177 run->mmio.is_write = vcpu->mmio_is_write;
7178 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7179 return 0;
7180 }
7181
7182
7183 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7184 {
7185 struct fpu *fpu = &current->thread.fpu;
7186 int r;
7187 sigset_t sigsaved;
7188
7189 fpu__activate_curr(fpu);
7190
7191 if (vcpu->sigset_active)
7192 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7193
7194 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7195 kvm_vcpu_block(vcpu);
7196 kvm_apic_accept_events(vcpu);
7197 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7198 r = -EAGAIN;
7199 goto out;
7200 }
7201
7202 /* re-sync apic's tpr */
7203 if (!lapic_in_kernel(vcpu)) {
7204 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7205 r = -EINVAL;
7206 goto out;
7207 }
7208 }
7209
7210 if (unlikely(vcpu->arch.complete_userspace_io)) {
7211 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7212 vcpu->arch.complete_userspace_io = NULL;
7213 r = cui(vcpu);
7214 if (r <= 0)
7215 goto out;
7216 } else
7217 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7218
7219 if (kvm_run->immediate_exit)
7220 r = -EINTR;
7221 else
7222 r = vcpu_run(vcpu);
7223
7224 out:
7225 post_kvm_run_save(vcpu);
7226 if (vcpu->sigset_active)
7227 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7228
7229 return r;
7230 }
7231
7232 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7233 {
7234 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7235 /*
7236 * We are here if userspace calls get_regs() in the middle of
7237 * instruction emulation. Registers state needs to be copied
7238 * back from emulation context to vcpu. Userspace shouldn't do
7239 * that usually, but some bad designed PV devices (vmware
7240 * backdoor interface) need this to work
7241 */
7242 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7243 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7244 }
7245 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7246 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7247 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7248 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7249 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7250 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7251 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7252 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7253 #ifdef CONFIG_X86_64
7254 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7255 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7256 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7257 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7258 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7259 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7260 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7261 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7262 #endif
7263
7264 regs->rip = kvm_rip_read(vcpu);
7265 regs->rflags = kvm_get_rflags(vcpu);
7266
7267 return 0;
7268 }
7269
7270 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7271 {
7272 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7273 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7274
7275 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7276 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7277 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7278 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7279 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7280 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7281 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7282 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7283 #ifdef CONFIG_X86_64
7284 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7285 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7286 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7287 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7288 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7289 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7290 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7291 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7292 #endif
7293
7294 kvm_rip_write(vcpu, regs->rip);
7295 kvm_set_rflags(vcpu, regs->rflags);
7296
7297 vcpu->arch.exception.pending = false;
7298
7299 kvm_make_request(KVM_REQ_EVENT, vcpu);
7300
7301 return 0;
7302 }
7303
7304 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7305 {
7306 struct kvm_segment cs;
7307
7308 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7309 *db = cs.db;
7310 *l = cs.l;
7311 }
7312 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7313
7314 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7315 struct kvm_sregs *sregs)
7316 {
7317 struct desc_ptr dt;
7318
7319 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7320 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7321 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7322 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7323 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7324 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7325
7326 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7327 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7328
7329 kvm_x86_ops->get_idt(vcpu, &dt);
7330 sregs->idt.limit = dt.size;
7331 sregs->idt.base = dt.address;
7332 kvm_x86_ops->get_gdt(vcpu, &dt);
7333 sregs->gdt.limit = dt.size;
7334 sregs->gdt.base = dt.address;
7335
7336 sregs->cr0 = kvm_read_cr0(vcpu);
7337 sregs->cr2 = vcpu->arch.cr2;
7338 sregs->cr3 = kvm_read_cr3(vcpu);
7339 sregs->cr4 = kvm_read_cr4(vcpu);
7340 sregs->cr8 = kvm_get_cr8(vcpu);
7341 sregs->efer = vcpu->arch.efer;
7342 sregs->apic_base = kvm_get_apic_base(vcpu);
7343
7344 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7345
7346 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7347 set_bit(vcpu->arch.interrupt.nr,
7348 (unsigned long *)sregs->interrupt_bitmap);
7349
7350 return 0;
7351 }
7352
7353 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7354 struct kvm_mp_state *mp_state)
7355 {
7356 kvm_apic_accept_events(vcpu);
7357 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7358 vcpu->arch.pv.pv_unhalted)
7359 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7360 else
7361 mp_state->mp_state = vcpu->arch.mp_state;
7362
7363 return 0;
7364 }
7365
7366 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7367 struct kvm_mp_state *mp_state)
7368 {
7369 if (!lapic_in_kernel(vcpu) &&
7370 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7371 return -EINVAL;
7372
7373 /* INITs are latched while in SMM */
7374 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7375 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7376 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7377 return -EINVAL;
7378
7379 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7380 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7381 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7382 } else
7383 vcpu->arch.mp_state = mp_state->mp_state;
7384 kvm_make_request(KVM_REQ_EVENT, vcpu);
7385 return 0;
7386 }
7387
7388 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7389 int reason, bool has_error_code, u32 error_code)
7390 {
7391 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7392 int ret;
7393
7394 init_emulate_ctxt(vcpu);
7395
7396 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7397 has_error_code, error_code);
7398
7399 if (ret)
7400 return EMULATE_FAIL;
7401
7402 kvm_rip_write(vcpu, ctxt->eip);
7403 kvm_set_rflags(vcpu, ctxt->eflags);
7404 kvm_make_request(KVM_REQ_EVENT, vcpu);
7405 return EMULATE_DONE;
7406 }
7407 EXPORT_SYMBOL_GPL(kvm_task_switch);
7408
7409 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7410 struct kvm_sregs *sregs)
7411 {
7412 struct msr_data apic_base_msr;
7413 int mmu_reset_needed = 0;
7414 int pending_vec, max_bits, idx;
7415 struct desc_ptr dt;
7416
7417 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7418 (sregs->cr4 & X86_CR4_OSXSAVE))
7419 return -EINVAL;
7420
7421 apic_base_msr.data = sregs->apic_base;
7422 apic_base_msr.host_initiated = true;
7423 if (kvm_set_apic_base(vcpu, &apic_base_msr))
7424 return -EINVAL;
7425
7426 dt.size = sregs->idt.limit;
7427 dt.address = sregs->idt.base;
7428 kvm_x86_ops->set_idt(vcpu, &dt);
7429 dt.size = sregs->gdt.limit;
7430 dt.address = sregs->gdt.base;
7431 kvm_x86_ops->set_gdt(vcpu, &dt);
7432
7433 vcpu->arch.cr2 = sregs->cr2;
7434 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7435 vcpu->arch.cr3 = sregs->cr3;
7436 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7437
7438 kvm_set_cr8(vcpu, sregs->cr8);
7439
7440 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7441 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7442
7443 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7444 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7445 vcpu->arch.cr0 = sregs->cr0;
7446
7447 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7448 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7449 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7450 kvm_update_cpuid(vcpu);
7451
7452 idx = srcu_read_lock(&vcpu->kvm->srcu);
7453 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7454 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7455 mmu_reset_needed = 1;
7456 }
7457 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7458
7459 if (mmu_reset_needed)
7460 kvm_mmu_reset_context(vcpu);
7461
7462 max_bits = KVM_NR_INTERRUPTS;
7463 pending_vec = find_first_bit(
7464 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7465 if (pending_vec < max_bits) {
7466 kvm_queue_interrupt(vcpu, pending_vec, false);
7467 pr_debug("Set back pending irq %d\n", pending_vec);
7468 }
7469
7470 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7471 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7472 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7473 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7474 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7475 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7476
7477 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7478 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7479
7480 update_cr8_intercept(vcpu);
7481
7482 /* Older userspace won't unhalt the vcpu on reset. */
7483 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7484 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7485 !is_protmode(vcpu))
7486 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7487
7488 kvm_make_request(KVM_REQ_EVENT, vcpu);
7489
7490 return 0;
7491 }
7492
7493 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7494 struct kvm_guest_debug *dbg)
7495 {
7496 unsigned long rflags;
7497 int i, r;
7498
7499 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7500 r = -EBUSY;
7501 if (vcpu->arch.exception.pending)
7502 goto out;
7503 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7504 kvm_queue_exception(vcpu, DB_VECTOR);
7505 else
7506 kvm_queue_exception(vcpu, BP_VECTOR);
7507 }
7508
7509 /*
7510 * Read rflags as long as potentially injected trace flags are still
7511 * filtered out.
7512 */
7513 rflags = kvm_get_rflags(vcpu);
7514
7515 vcpu->guest_debug = dbg->control;
7516 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7517 vcpu->guest_debug = 0;
7518
7519 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7520 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7521 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7522 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7523 } else {
7524 for (i = 0; i < KVM_NR_DB_REGS; i++)
7525 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7526 }
7527 kvm_update_dr7(vcpu);
7528
7529 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7530 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7531 get_segment_base(vcpu, VCPU_SREG_CS);
7532
7533 /*
7534 * Trigger an rflags update that will inject or remove the trace
7535 * flags.
7536 */
7537 kvm_set_rflags(vcpu, rflags);
7538
7539 kvm_x86_ops->update_bp_intercept(vcpu);
7540
7541 r = 0;
7542
7543 out:
7544
7545 return r;
7546 }
7547
7548 /*
7549 * Translate a guest virtual address to a guest physical address.
7550 */
7551 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7552 struct kvm_translation *tr)
7553 {
7554 unsigned long vaddr = tr->linear_address;
7555 gpa_t gpa;
7556 int idx;
7557
7558 idx = srcu_read_lock(&vcpu->kvm->srcu);
7559 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7560 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7561 tr->physical_address = gpa;
7562 tr->valid = gpa != UNMAPPED_GVA;
7563 tr->writeable = 1;
7564 tr->usermode = 0;
7565
7566 return 0;
7567 }
7568
7569 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7570 {
7571 struct fxregs_state *fxsave =
7572 &vcpu->arch.guest_fpu.state.fxsave;
7573
7574 memcpy(fpu->fpr, fxsave->st_space, 128);
7575 fpu->fcw = fxsave->cwd;
7576 fpu->fsw = fxsave->swd;
7577 fpu->ftwx = fxsave->twd;
7578 fpu->last_opcode = fxsave->fop;
7579 fpu->last_ip = fxsave->rip;
7580 fpu->last_dp = fxsave->rdp;
7581 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7582
7583 return 0;
7584 }
7585
7586 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7587 {
7588 struct fxregs_state *fxsave =
7589 &vcpu->arch.guest_fpu.state.fxsave;
7590
7591 memcpy(fxsave->st_space, fpu->fpr, 128);
7592 fxsave->cwd = fpu->fcw;
7593 fxsave->swd = fpu->fsw;
7594 fxsave->twd = fpu->ftwx;
7595 fxsave->fop = fpu->last_opcode;
7596 fxsave->rip = fpu->last_ip;
7597 fxsave->rdp = fpu->last_dp;
7598 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7599
7600 return 0;
7601 }
7602
7603 static void fx_init(struct kvm_vcpu *vcpu)
7604 {
7605 fpstate_init(&vcpu->arch.guest_fpu.state);
7606 if (boot_cpu_has(X86_FEATURE_XSAVES))
7607 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7608 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7609
7610 /*
7611 * Ensure guest xcr0 is valid for loading
7612 */
7613 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7614
7615 vcpu->arch.cr0 |= X86_CR0_ET;
7616 }
7617
7618 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7619 {
7620 if (vcpu->guest_fpu_loaded)
7621 return;
7622
7623 /*
7624 * Restore all possible states in the guest,
7625 * and assume host would use all available bits.
7626 * Guest xcr0 would be loaded later.
7627 */
7628 vcpu->guest_fpu_loaded = 1;
7629 __kernel_fpu_begin();
7630 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7631 trace_kvm_fpu(1);
7632 }
7633
7634 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7635 {
7636 if (!vcpu->guest_fpu_loaded)
7637 return;
7638
7639 vcpu->guest_fpu_loaded = 0;
7640 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7641 __kernel_fpu_end();
7642 ++vcpu->stat.fpu_reload;
7643 trace_kvm_fpu(0);
7644 }
7645
7646 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7647 {
7648 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7649
7650 kvmclock_reset(vcpu);
7651
7652 kvm_x86_ops->vcpu_free(vcpu);
7653 free_cpumask_var(wbinvd_dirty_mask);
7654 }
7655
7656 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7657 unsigned int id)
7658 {
7659 struct kvm_vcpu *vcpu;
7660
7661 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7662 printk_once(KERN_WARNING
7663 "kvm: SMP vm created on host with unstable TSC; "
7664 "guest TSC will not be reliable\n");
7665
7666 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7667
7668 return vcpu;
7669 }
7670
7671 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7672 {
7673 int r;
7674
7675 kvm_vcpu_mtrr_init(vcpu);
7676 r = vcpu_load(vcpu);
7677 if (r)
7678 return r;
7679 kvm_vcpu_reset(vcpu, false);
7680 kvm_mmu_setup(vcpu);
7681 vcpu_put(vcpu);
7682 return r;
7683 }
7684
7685 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7686 {
7687 struct msr_data msr;
7688 struct kvm *kvm = vcpu->kvm;
7689
7690 kvm_hv_vcpu_postcreate(vcpu);
7691
7692 if (vcpu_load(vcpu))
7693 return;
7694 msr.data = 0x0;
7695 msr.index = MSR_IA32_TSC;
7696 msr.host_initiated = true;
7697 kvm_write_tsc(vcpu, &msr);
7698 vcpu_put(vcpu);
7699
7700 if (!kvmclock_periodic_sync)
7701 return;
7702
7703 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7704 KVMCLOCK_SYNC_PERIOD);
7705 }
7706
7707 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7708 {
7709 int r;
7710 vcpu->arch.apf.msr_val = 0;
7711
7712 r = vcpu_load(vcpu);
7713 BUG_ON(r);
7714 kvm_mmu_unload(vcpu);
7715 vcpu_put(vcpu);
7716
7717 kvm_x86_ops->vcpu_free(vcpu);
7718 }
7719
7720 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7721 {
7722 vcpu->arch.hflags = 0;
7723
7724 vcpu->arch.smi_pending = 0;
7725 atomic_set(&vcpu->arch.nmi_queued, 0);
7726 vcpu->arch.nmi_pending = 0;
7727 vcpu->arch.nmi_injected = false;
7728 kvm_clear_interrupt_queue(vcpu);
7729 kvm_clear_exception_queue(vcpu);
7730
7731 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7732 kvm_update_dr0123(vcpu);
7733 vcpu->arch.dr6 = DR6_INIT;
7734 kvm_update_dr6(vcpu);
7735 vcpu->arch.dr7 = DR7_FIXED_1;
7736 kvm_update_dr7(vcpu);
7737
7738 vcpu->arch.cr2 = 0;
7739
7740 kvm_make_request(KVM_REQ_EVENT, vcpu);
7741 vcpu->arch.apf.msr_val = 0;
7742 vcpu->arch.st.msr_val = 0;
7743
7744 kvmclock_reset(vcpu);
7745
7746 kvm_clear_async_pf_completion_queue(vcpu);
7747 kvm_async_pf_hash_reset(vcpu);
7748 vcpu->arch.apf.halted = false;
7749
7750 if (!init_event) {
7751 kvm_pmu_reset(vcpu);
7752 vcpu->arch.smbase = 0x30000;
7753
7754 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7755 vcpu->arch.msr_misc_features_enables = 0;
7756 }
7757
7758 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7759 vcpu->arch.regs_avail = ~0;
7760 vcpu->arch.regs_dirty = ~0;
7761
7762 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7763 }
7764
7765 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7766 {
7767 struct kvm_segment cs;
7768
7769 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7770 cs.selector = vector << 8;
7771 cs.base = vector << 12;
7772 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7773 kvm_rip_write(vcpu, 0);
7774 }
7775
7776 int kvm_arch_hardware_enable(void)
7777 {
7778 struct kvm *kvm;
7779 struct kvm_vcpu *vcpu;
7780 int i;
7781 int ret;
7782 u64 local_tsc;
7783 u64 max_tsc = 0;
7784 bool stable, backwards_tsc = false;
7785
7786 kvm_shared_msr_cpu_online();
7787 ret = kvm_x86_ops->hardware_enable();
7788 if (ret != 0)
7789 return ret;
7790
7791 local_tsc = rdtsc();
7792 stable = !check_tsc_unstable();
7793 list_for_each_entry(kvm, &vm_list, vm_list) {
7794 kvm_for_each_vcpu(i, vcpu, kvm) {
7795 if (!stable && vcpu->cpu == smp_processor_id())
7796 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7797 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7798 backwards_tsc = true;
7799 if (vcpu->arch.last_host_tsc > max_tsc)
7800 max_tsc = vcpu->arch.last_host_tsc;
7801 }
7802 }
7803 }
7804
7805 /*
7806 * Sometimes, even reliable TSCs go backwards. This happens on
7807 * platforms that reset TSC during suspend or hibernate actions, but
7808 * maintain synchronization. We must compensate. Fortunately, we can
7809 * detect that condition here, which happens early in CPU bringup,
7810 * before any KVM threads can be running. Unfortunately, we can't
7811 * bring the TSCs fully up to date with real time, as we aren't yet far
7812 * enough into CPU bringup that we know how much real time has actually
7813 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7814 * variables that haven't been updated yet.
7815 *
7816 * So we simply find the maximum observed TSC above, then record the
7817 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7818 * the adjustment will be applied. Note that we accumulate
7819 * adjustments, in case multiple suspend cycles happen before some VCPU
7820 * gets a chance to run again. In the event that no KVM threads get a
7821 * chance to run, we will miss the entire elapsed period, as we'll have
7822 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7823 * loose cycle time. This isn't too big a deal, since the loss will be
7824 * uniform across all VCPUs (not to mention the scenario is extremely
7825 * unlikely). It is possible that a second hibernate recovery happens
7826 * much faster than a first, causing the observed TSC here to be
7827 * smaller; this would require additional padding adjustment, which is
7828 * why we set last_host_tsc to the local tsc observed here.
7829 *
7830 * N.B. - this code below runs only on platforms with reliable TSC,
7831 * as that is the only way backwards_tsc is set above. Also note
7832 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7833 * have the same delta_cyc adjustment applied if backwards_tsc
7834 * is detected. Note further, this adjustment is only done once,
7835 * as we reset last_host_tsc on all VCPUs to stop this from being
7836 * called multiple times (one for each physical CPU bringup).
7837 *
7838 * Platforms with unreliable TSCs don't have to deal with this, they
7839 * will be compensated by the logic in vcpu_load, which sets the TSC to
7840 * catchup mode. This will catchup all VCPUs to real time, but cannot
7841 * guarantee that they stay in perfect synchronization.
7842 */
7843 if (backwards_tsc) {
7844 u64 delta_cyc = max_tsc - local_tsc;
7845 list_for_each_entry(kvm, &vm_list, vm_list) {
7846 kvm->arch.backwards_tsc_observed = true;
7847 kvm_for_each_vcpu(i, vcpu, kvm) {
7848 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7849 vcpu->arch.last_host_tsc = local_tsc;
7850 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7851 }
7852
7853 /*
7854 * We have to disable TSC offset matching.. if you were
7855 * booting a VM while issuing an S4 host suspend....
7856 * you may have some problem. Solving this issue is
7857 * left as an exercise to the reader.
7858 */
7859 kvm->arch.last_tsc_nsec = 0;
7860 kvm->arch.last_tsc_write = 0;
7861 }
7862
7863 }
7864 return 0;
7865 }
7866
7867 void kvm_arch_hardware_disable(void)
7868 {
7869 kvm_x86_ops->hardware_disable();
7870 drop_user_return_notifiers();
7871 }
7872
7873 int kvm_arch_hardware_setup(void)
7874 {
7875 int r;
7876
7877 r = kvm_x86_ops->hardware_setup();
7878 if (r != 0)
7879 return r;
7880
7881 if (kvm_has_tsc_control) {
7882 /*
7883 * Make sure the user can only configure tsc_khz values that
7884 * fit into a signed integer.
7885 * A min value is not calculated needed because it will always
7886 * be 1 on all machines.
7887 */
7888 u64 max = min(0x7fffffffULL,
7889 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7890 kvm_max_guest_tsc_khz = max;
7891
7892 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7893 }
7894
7895 kvm_init_msr_list();
7896 return 0;
7897 }
7898
7899 void kvm_arch_hardware_unsetup(void)
7900 {
7901 kvm_x86_ops->hardware_unsetup();
7902 }
7903
7904 void kvm_arch_check_processor_compat(void *rtn)
7905 {
7906 kvm_x86_ops->check_processor_compatibility(rtn);
7907 }
7908
7909 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7910 {
7911 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7912 }
7913 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7914
7915 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7916 {
7917 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7918 }
7919
7920 struct static_key kvm_no_apic_vcpu __read_mostly;
7921 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7922
7923 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7924 {
7925 struct page *page;
7926 struct kvm *kvm;
7927 int r;
7928
7929 BUG_ON(vcpu->kvm == NULL);
7930 kvm = vcpu->kvm;
7931
7932 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7933 vcpu->arch.pv.pv_unhalted = false;
7934 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7935 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7936 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7937 else
7938 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7939
7940 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7941 if (!page) {
7942 r = -ENOMEM;
7943 goto fail;
7944 }
7945 vcpu->arch.pio_data = page_address(page);
7946
7947 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7948
7949 r = kvm_mmu_create(vcpu);
7950 if (r < 0)
7951 goto fail_free_pio_data;
7952
7953 if (irqchip_in_kernel(kvm)) {
7954 r = kvm_create_lapic(vcpu);
7955 if (r < 0)
7956 goto fail_mmu_destroy;
7957 } else
7958 static_key_slow_inc(&kvm_no_apic_vcpu);
7959
7960 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7961 GFP_KERNEL);
7962 if (!vcpu->arch.mce_banks) {
7963 r = -ENOMEM;
7964 goto fail_free_lapic;
7965 }
7966 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7967
7968 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7969 r = -ENOMEM;
7970 goto fail_free_mce_banks;
7971 }
7972
7973 fx_init(vcpu);
7974
7975 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7976 vcpu->arch.pv_time_enabled = false;
7977
7978 vcpu->arch.guest_supported_xcr0 = 0;
7979 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7980
7981 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7982
7983 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7984
7985 kvm_async_pf_hash_reset(vcpu);
7986 kvm_pmu_init(vcpu);
7987
7988 vcpu->arch.pending_external_vector = -1;
7989 vcpu->arch.preempted_in_kernel = false;
7990
7991 kvm_hv_vcpu_init(vcpu);
7992
7993 return 0;
7994
7995 fail_free_mce_banks:
7996 kfree(vcpu->arch.mce_banks);
7997 fail_free_lapic:
7998 kvm_free_lapic(vcpu);
7999 fail_mmu_destroy:
8000 kvm_mmu_destroy(vcpu);
8001 fail_free_pio_data:
8002 free_page((unsigned long)vcpu->arch.pio_data);
8003 fail:
8004 return r;
8005 }
8006
8007 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8008 {
8009 int idx;
8010
8011 kvm_hv_vcpu_uninit(vcpu);
8012 kvm_pmu_destroy(vcpu);
8013 kfree(vcpu->arch.mce_banks);
8014 kvm_free_lapic(vcpu);
8015 idx = srcu_read_lock(&vcpu->kvm->srcu);
8016 kvm_mmu_destroy(vcpu);
8017 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8018 free_page((unsigned long)vcpu->arch.pio_data);
8019 if (!lapic_in_kernel(vcpu))
8020 static_key_slow_dec(&kvm_no_apic_vcpu);
8021 }
8022
8023 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8024 {
8025 kvm_x86_ops->sched_in(vcpu, cpu);
8026 }
8027
8028 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8029 {
8030 if (type)
8031 return -EINVAL;
8032
8033 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8034 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8035 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8036 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8037 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8038
8039 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8040 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8041 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8042 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8043 &kvm->arch.irq_sources_bitmap);
8044
8045 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8046 mutex_init(&kvm->arch.apic_map_lock);
8047 mutex_init(&kvm->arch.hyperv.hv_lock);
8048 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8049
8050 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8051 pvclock_update_vm_gtod_copy(kvm);
8052
8053 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8054 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8055
8056 kvm_page_track_init(kvm);
8057 kvm_mmu_init_vm(kvm);
8058
8059 if (kvm_x86_ops->vm_init)
8060 return kvm_x86_ops->vm_init(kvm);
8061
8062 return 0;
8063 }
8064
8065 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8066 {
8067 int r;
8068 r = vcpu_load(vcpu);
8069 BUG_ON(r);
8070 kvm_mmu_unload(vcpu);
8071 vcpu_put(vcpu);
8072 }
8073
8074 static void kvm_free_vcpus(struct kvm *kvm)
8075 {
8076 unsigned int i;
8077 struct kvm_vcpu *vcpu;
8078
8079 /*
8080 * Unpin any mmu pages first.
8081 */
8082 kvm_for_each_vcpu(i, vcpu, kvm) {
8083 kvm_clear_async_pf_completion_queue(vcpu);
8084 kvm_unload_vcpu_mmu(vcpu);
8085 }
8086 kvm_for_each_vcpu(i, vcpu, kvm)
8087 kvm_arch_vcpu_free(vcpu);
8088
8089 mutex_lock(&kvm->lock);
8090 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8091 kvm->vcpus[i] = NULL;
8092
8093 atomic_set(&kvm->online_vcpus, 0);
8094 mutex_unlock(&kvm->lock);
8095 }
8096
8097 void kvm_arch_sync_events(struct kvm *kvm)
8098 {
8099 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8100 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8101 kvm_free_pit(kvm);
8102 }
8103
8104 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8105 {
8106 int i, r;
8107 unsigned long hva;
8108 struct kvm_memslots *slots = kvm_memslots(kvm);
8109 struct kvm_memory_slot *slot, old;
8110
8111 /* Called with kvm->slots_lock held. */
8112 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8113 return -EINVAL;
8114
8115 slot = id_to_memslot(slots, id);
8116 if (size) {
8117 if (slot->npages)
8118 return -EEXIST;
8119
8120 /*
8121 * MAP_SHARED to prevent internal slot pages from being moved
8122 * by fork()/COW.
8123 */
8124 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8125 MAP_SHARED | MAP_ANONYMOUS, 0);
8126 if (IS_ERR((void *)hva))
8127 return PTR_ERR((void *)hva);
8128 } else {
8129 if (!slot->npages)
8130 return 0;
8131
8132 hva = 0;
8133 }
8134
8135 old = *slot;
8136 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8137 struct kvm_userspace_memory_region m;
8138
8139 m.slot = id | (i << 16);
8140 m.flags = 0;
8141 m.guest_phys_addr = gpa;
8142 m.userspace_addr = hva;
8143 m.memory_size = size;
8144 r = __kvm_set_memory_region(kvm, &m);
8145 if (r < 0)
8146 return r;
8147 }
8148
8149 if (!size) {
8150 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8151 WARN_ON(r < 0);
8152 }
8153
8154 return 0;
8155 }
8156 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8157
8158 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8159 {
8160 int r;
8161
8162 mutex_lock(&kvm->slots_lock);
8163 r = __x86_set_memory_region(kvm, id, gpa, size);
8164 mutex_unlock(&kvm->slots_lock);
8165
8166 return r;
8167 }
8168 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8169
8170 void kvm_arch_destroy_vm(struct kvm *kvm)
8171 {
8172 if (current->mm == kvm->mm) {
8173 /*
8174 * Free memory regions allocated on behalf of userspace,
8175 * unless the the memory map has changed due to process exit
8176 * or fd copying.
8177 */
8178 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8179 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8180 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8181 }
8182 if (kvm_x86_ops->vm_destroy)
8183 kvm_x86_ops->vm_destroy(kvm);
8184 kvm_pic_destroy(kvm);
8185 kvm_ioapic_destroy(kvm);
8186 kvm_free_vcpus(kvm);
8187 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8188 kvm_mmu_uninit_vm(kvm);
8189 kvm_page_track_cleanup(kvm);
8190 }
8191
8192 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8193 struct kvm_memory_slot *dont)
8194 {
8195 int i;
8196
8197 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8198 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8199 kvfree(free->arch.rmap[i]);
8200 free->arch.rmap[i] = NULL;
8201 }
8202 if (i == 0)
8203 continue;
8204
8205 if (!dont || free->arch.lpage_info[i - 1] !=
8206 dont->arch.lpage_info[i - 1]) {
8207 kvfree(free->arch.lpage_info[i - 1]);
8208 free->arch.lpage_info[i - 1] = NULL;
8209 }
8210 }
8211
8212 kvm_page_track_free_memslot(free, dont);
8213 }
8214
8215 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8216 unsigned long npages)
8217 {
8218 int i;
8219
8220 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8221 struct kvm_lpage_info *linfo;
8222 unsigned long ugfn;
8223 int lpages;
8224 int level = i + 1;
8225
8226 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8227 slot->base_gfn, level) + 1;
8228
8229 slot->arch.rmap[i] =
8230 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8231 if (!slot->arch.rmap[i])
8232 goto out_free;
8233 if (i == 0)
8234 continue;
8235
8236 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8237 if (!linfo)
8238 goto out_free;
8239
8240 slot->arch.lpage_info[i - 1] = linfo;
8241
8242 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8243 linfo[0].disallow_lpage = 1;
8244 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8245 linfo[lpages - 1].disallow_lpage = 1;
8246 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8247 /*
8248 * If the gfn and userspace address are not aligned wrt each
8249 * other, or if explicitly asked to, disable large page
8250 * support for this slot
8251 */
8252 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8253 !kvm_largepages_enabled()) {
8254 unsigned long j;
8255
8256 for (j = 0; j < lpages; ++j)
8257 linfo[j].disallow_lpage = 1;
8258 }
8259 }
8260
8261 if (kvm_page_track_create_memslot(slot, npages))
8262 goto out_free;
8263
8264 return 0;
8265
8266 out_free:
8267 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8268 kvfree(slot->arch.rmap[i]);
8269 slot->arch.rmap[i] = NULL;
8270 if (i == 0)
8271 continue;
8272
8273 kvfree(slot->arch.lpage_info[i - 1]);
8274 slot->arch.lpage_info[i - 1] = NULL;
8275 }
8276 return -ENOMEM;
8277 }
8278
8279 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8280 {
8281 /*
8282 * memslots->generation has been incremented.
8283 * mmio generation may have reached its maximum value.
8284 */
8285 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8286 }
8287
8288 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8289 struct kvm_memory_slot *memslot,
8290 const struct kvm_userspace_memory_region *mem,
8291 enum kvm_mr_change change)
8292 {
8293 return 0;
8294 }
8295
8296 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8297 struct kvm_memory_slot *new)
8298 {
8299 /* Still write protect RO slot */
8300 if (new->flags & KVM_MEM_READONLY) {
8301 kvm_mmu_slot_remove_write_access(kvm, new);
8302 return;
8303 }
8304
8305 /*
8306 * Call kvm_x86_ops dirty logging hooks when they are valid.
8307 *
8308 * kvm_x86_ops->slot_disable_log_dirty is called when:
8309 *
8310 * - KVM_MR_CREATE with dirty logging is disabled
8311 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8312 *
8313 * The reason is, in case of PML, we need to set D-bit for any slots
8314 * with dirty logging disabled in order to eliminate unnecessary GPA
8315 * logging in PML buffer (and potential PML buffer full VMEXT). This
8316 * guarantees leaving PML enabled during guest's lifetime won't have
8317 * any additonal overhead from PML when guest is running with dirty
8318 * logging disabled for memory slots.
8319 *
8320 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8321 * to dirty logging mode.
8322 *
8323 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8324 *
8325 * In case of write protect:
8326 *
8327 * Write protect all pages for dirty logging.
8328 *
8329 * All the sptes including the large sptes which point to this
8330 * slot are set to readonly. We can not create any new large
8331 * spte on this slot until the end of the logging.
8332 *
8333 * See the comments in fast_page_fault().
8334 */
8335 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8336 if (kvm_x86_ops->slot_enable_log_dirty)
8337 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8338 else
8339 kvm_mmu_slot_remove_write_access(kvm, new);
8340 } else {
8341 if (kvm_x86_ops->slot_disable_log_dirty)
8342 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8343 }
8344 }
8345
8346 void kvm_arch_commit_memory_region(struct kvm *kvm,
8347 const struct kvm_userspace_memory_region *mem,
8348 const struct kvm_memory_slot *old,
8349 const struct kvm_memory_slot *new,
8350 enum kvm_mr_change change)
8351 {
8352 int nr_mmu_pages = 0;
8353
8354 if (!kvm->arch.n_requested_mmu_pages)
8355 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8356
8357 if (nr_mmu_pages)
8358 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8359
8360 /*
8361 * Dirty logging tracks sptes in 4k granularity, meaning that large
8362 * sptes have to be split. If live migration is successful, the guest
8363 * in the source machine will be destroyed and large sptes will be
8364 * created in the destination. However, if the guest continues to run
8365 * in the source machine (for example if live migration fails), small
8366 * sptes will remain around and cause bad performance.
8367 *
8368 * Scan sptes if dirty logging has been stopped, dropping those
8369 * which can be collapsed into a single large-page spte. Later
8370 * page faults will create the large-page sptes.
8371 */
8372 if ((change != KVM_MR_DELETE) &&
8373 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8374 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8375 kvm_mmu_zap_collapsible_sptes(kvm, new);
8376
8377 /*
8378 * Set up write protection and/or dirty logging for the new slot.
8379 *
8380 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8381 * been zapped so no dirty logging staff is needed for old slot. For
8382 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8383 * new and it's also covered when dealing with the new slot.
8384 *
8385 * FIXME: const-ify all uses of struct kvm_memory_slot.
8386 */
8387 if (change != KVM_MR_DELETE)
8388 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8389 }
8390
8391 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8392 {
8393 kvm_mmu_invalidate_zap_all_pages(kvm);
8394 }
8395
8396 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8397 struct kvm_memory_slot *slot)
8398 {
8399 kvm_page_track_flush_slot(kvm, slot);
8400 }
8401
8402 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8403 {
8404 if (!list_empty_careful(&vcpu->async_pf.done))
8405 return true;
8406
8407 if (kvm_apic_has_events(vcpu))
8408 return true;
8409
8410 if (vcpu->arch.pv.pv_unhalted)
8411 return true;
8412
8413 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8414 (vcpu->arch.nmi_pending &&
8415 kvm_x86_ops->nmi_allowed(vcpu)))
8416 return true;
8417
8418 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8419 (vcpu->arch.smi_pending && !is_smm(vcpu)))
8420 return true;
8421
8422 if (kvm_arch_interrupt_allowed(vcpu) &&
8423 kvm_cpu_has_interrupt(vcpu))
8424 return true;
8425
8426 if (kvm_hv_has_stimer_pending(vcpu))
8427 return true;
8428
8429 return false;
8430 }
8431
8432 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8433 {
8434 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8435 }
8436
8437 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8438 {
8439 return vcpu->arch.preempted_in_kernel;
8440 }
8441
8442 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8443 {
8444 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8445 }
8446
8447 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8448 {
8449 return kvm_x86_ops->interrupt_allowed(vcpu);
8450 }
8451
8452 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8453 {
8454 if (is_64_bit_mode(vcpu))
8455 return kvm_rip_read(vcpu);
8456 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8457 kvm_rip_read(vcpu));
8458 }
8459 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8460
8461 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8462 {
8463 return kvm_get_linear_rip(vcpu) == linear_rip;
8464 }
8465 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8466
8467 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8468 {
8469 unsigned long rflags;
8470
8471 rflags = kvm_x86_ops->get_rflags(vcpu);
8472 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8473 rflags &= ~X86_EFLAGS_TF;
8474 return rflags;
8475 }
8476 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8477
8478 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8479 {
8480 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8481 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8482 rflags |= X86_EFLAGS_TF;
8483 kvm_x86_ops->set_rflags(vcpu, rflags);
8484 }
8485
8486 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8487 {
8488 __kvm_set_rflags(vcpu, rflags);
8489 kvm_make_request(KVM_REQ_EVENT, vcpu);
8490 }
8491 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8492
8493 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8494 {
8495 int r;
8496
8497 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8498 work->wakeup_all)
8499 return;
8500
8501 r = kvm_mmu_reload(vcpu);
8502 if (unlikely(r))
8503 return;
8504
8505 if (!vcpu->arch.mmu.direct_map &&
8506 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8507 return;
8508
8509 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8510 }
8511
8512 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8513 {
8514 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8515 }
8516
8517 static inline u32 kvm_async_pf_next_probe(u32 key)
8518 {
8519 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8520 }
8521
8522 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8523 {
8524 u32 key = kvm_async_pf_hash_fn(gfn);
8525
8526 while (vcpu->arch.apf.gfns[key] != ~0)
8527 key = kvm_async_pf_next_probe(key);
8528
8529 vcpu->arch.apf.gfns[key] = gfn;
8530 }
8531
8532 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8533 {
8534 int i;
8535 u32 key = kvm_async_pf_hash_fn(gfn);
8536
8537 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8538 (vcpu->arch.apf.gfns[key] != gfn &&
8539 vcpu->arch.apf.gfns[key] != ~0); i++)
8540 key = kvm_async_pf_next_probe(key);
8541
8542 return key;
8543 }
8544
8545 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8546 {
8547 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8548 }
8549
8550 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8551 {
8552 u32 i, j, k;
8553
8554 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8555 while (true) {
8556 vcpu->arch.apf.gfns[i] = ~0;
8557 do {
8558 j = kvm_async_pf_next_probe(j);
8559 if (vcpu->arch.apf.gfns[j] == ~0)
8560 return;
8561 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8562 /*
8563 * k lies cyclically in ]i,j]
8564 * | i.k.j |
8565 * |....j i.k.| or |.k..j i...|
8566 */
8567 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8568 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8569 i = j;
8570 }
8571 }
8572
8573 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8574 {
8575
8576 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8577 sizeof(val));
8578 }
8579
8580 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8581 struct kvm_async_pf *work)
8582 {
8583 struct x86_exception fault;
8584
8585 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8586 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8587
8588 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8589 (vcpu->arch.apf.send_user_only &&
8590 kvm_x86_ops->get_cpl(vcpu) == 0))
8591 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8592 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8593 fault.vector = PF_VECTOR;
8594 fault.error_code_valid = true;
8595 fault.error_code = 0;
8596 fault.nested_page_fault = false;
8597 fault.address = work->arch.token;
8598 fault.async_page_fault = true;
8599 kvm_inject_page_fault(vcpu, &fault);
8600 }
8601 }
8602
8603 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8604 struct kvm_async_pf *work)
8605 {
8606 struct x86_exception fault;
8607
8608 if (work->wakeup_all)
8609 work->arch.token = ~0; /* broadcast wakeup */
8610 else
8611 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8612 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8613
8614 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8615 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8616 fault.vector = PF_VECTOR;
8617 fault.error_code_valid = true;
8618 fault.error_code = 0;
8619 fault.nested_page_fault = false;
8620 fault.address = work->arch.token;
8621 fault.async_page_fault = true;
8622 kvm_inject_page_fault(vcpu, &fault);
8623 }
8624 vcpu->arch.apf.halted = false;
8625 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8626 }
8627
8628 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8629 {
8630 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8631 return true;
8632 else
8633 return kvm_can_do_async_pf(vcpu);
8634 }
8635
8636 void kvm_arch_start_assignment(struct kvm *kvm)
8637 {
8638 atomic_inc(&kvm->arch.assigned_device_count);
8639 }
8640 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8641
8642 void kvm_arch_end_assignment(struct kvm *kvm)
8643 {
8644 atomic_dec(&kvm->arch.assigned_device_count);
8645 }
8646 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8647
8648 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8649 {
8650 return atomic_read(&kvm->arch.assigned_device_count);
8651 }
8652 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8653
8654 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8655 {
8656 atomic_inc(&kvm->arch.noncoherent_dma_count);
8657 }
8658 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8659
8660 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8661 {
8662 atomic_dec(&kvm->arch.noncoherent_dma_count);
8663 }
8664 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8665
8666 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8667 {
8668 return atomic_read(&kvm->arch.noncoherent_dma_count);
8669 }
8670 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8671
8672 bool kvm_arch_has_irq_bypass(void)
8673 {
8674 return kvm_x86_ops->update_pi_irte != NULL;
8675 }
8676
8677 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8678 struct irq_bypass_producer *prod)
8679 {
8680 struct kvm_kernel_irqfd *irqfd =
8681 container_of(cons, struct kvm_kernel_irqfd, consumer);
8682
8683 irqfd->producer = prod;
8684
8685 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8686 prod->irq, irqfd->gsi, 1);
8687 }
8688
8689 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8690 struct irq_bypass_producer *prod)
8691 {
8692 int ret;
8693 struct kvm_kernel_irqfd *irqfd =
8694 container_of(cons, struct kvm_kernel_irqfd, consumer);
8695
8696 WARN_ON(irqfd->producer != prod);
8697 irqfd->producer = NULL;
8698
8699 /*
8700 * When producer of consumer is unregistered, we change back to
8701 * remapped mode, so we can re-use the current implementation
8702 * when the irq is masked/disabled or the consumer side (KVM
8703 * int this case doesn't want to receive the interrupts.
8704 */
8705 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8706 if (ret)
8707 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8708 " fails: %d\n", irqfd->consumer.token, ret);
8709 }
8710
8711 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8712 uint32_t guest_irq, bool set)
8713 {
8714 if (!kvm_x86_ops->update_pi_irte)
8715 return -EINVAL;
8716
8717 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8718 }
8719
8720 bool kvm_vector_hashing_enabled(void)
8721 {
8722 return vector_hashing;
8723 }
8724 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8725
8726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8742 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8743 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8744 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);