]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - arch/x86/platform/efi/efi_64.c
Merge remote-tracking branches 'asoc/topic/da7218', 'asoc/topic/dai-drv', 'asoc/topic...
[mirror_ubuntu-disco-kernel.git] / arch / x86 / platform / efi / efi_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * x86_64 specific EFI support functions
4 * Based on Extensible Firmware Interface Specification version 1.0
5 *
6 * Copyright (C) 2005-2008 Intel Co.
7 * Fenghua Yu <fenghua.yu@intel.com>
8 * Bibo Mao <bibo.mao@intel.com>
9 * Chandramouli Narayanan <mouli@linux.intel.com>
10 * Huang Ying <ying.huang@intel.com>
11 *
12 * Code to convert EFI to E820 map has been implemented in elilo bootloader
13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14 * is setup appropriately for EFI runtime code.
15 * - mouli 06/14/2007.
16 *
17 */
18
19 #define pr_fmt(fmt) "efi: " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/bootmem.h>
27 #include <linux/ioport.h>
28 #include <linux/init.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/efi.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37
38 #include <asm/setup.h>
39 #include <asm/page.h>
40 #include <asm/e820/api.h>
41 #include <asm/pgtable.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
44 #include <asm/efi.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
48 #include <asm/time.h>
49 #include <asm/pgalloc.h>
50
51 /*
52 * We allocate runtime services regions top-down, starting from -4G, i.e.
53 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
54 */
55 static u64 efi_va = EFI_VA_START;
56
57 struct efi_scratch efi_scratch;
58
59 static void __init early_code_mapping_set_exec(int executable)
60 {
61 efi_memory_desc_t *md;
62
63 if (!(__supported_pte_mask & _PAGE_NX))
64 return;
65
66 /* Make EFI service code area executable */
67 for_each_efi_memory_desc(md) {
68 if (md->type == EFI_RUNTIME_SERVICES_CODE ||
69 md->type == EFI_BOOT_SERVICES_CODE)
70 efi_set_executable(md, executable);
71 }
72 }
73
74 pgd_t * __init efi_call_phys_prolog(void)
75 {
76 unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
77 pgd_t *save_pgd, *pgd_k, *pgd_efi;
78 p4d_t *p4d, *p4d_k, *p4d_efi;
79 pud_t *pud;
80
81 int pgd;
82 int n_pgds, i, j;
83
84 if (!efi_enabled(EFI_OLD_MEMMAP)) {
85 save_pgd = (pgd_t *)__read_cr3();
86 write_cr3((unsigned long)efi_scratch.efi_pgt);
87 goto out;
88 }
89
90 early_code_mapping_set_exec(1);
91
92 n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
93 save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
94
95 /*
96 * Build 1:1 identity mapping for efi=old_map usage. Note that
97 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
98 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
99 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
100 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
101 * This means here we can only reuse the PMD tables of the direct mapping.
102 */
103 for (pgd = 0; pgd < n_pgds; pgd++) {
104 addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
105 vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
106 pgd_efi = pgd_offset_k(addr_pgd);
107 save_pgd[pgd] = *pgd_efi;
108
109 p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
110 if (!p4d) {
111 pr_err("Failed to allocate p4d table!\n");
112 goto out;
113 }
114
115 for (i = 0; i < PTRS_PER_P4D; i++) {
116 addr_p4d = addr_pgd + i * P4D_SIZE;
117 p4d_efi = p4d + p4d_index(addr_p4d);
118
119 pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
120 if (!pud) {
121 pr_err("Failed to allocate pud table!\n");
122 goto out;
123 }
124
125 for (j = 0; j < PTRS_PER_PUD; j++) {
126 addr_pud = addr_p4d + j * PUD_SIZE;
127
128 if (addr_pud > (max_pfn << PAGE_SHIFT))
129 break;
130
131 vaddr = (unsigned long)__va(addr_pud);
132
133 pgd_k = pgd_offset_k(vaddr);
134 p4d_k = p4d_offset(pgd_k, vaddr);
135 pud[j] = *pud_offset(p4d_k, vaddr);
136 }
137 }
138 }
139 out:
140 __flush_tlb_all();
141
142 return save_pgd;
143 }
144
145 void __init efi_call_phys_epilog(pgd_t *save_pgd)
146 {
147 /*
148 * After the lock is released, the original page table is restored.
149 */
150 int pgd_idx, i;
151 int nr_pgds;
152 pgd_t *pgd;
153 p4d_t *p4d;
154 pud_t *pud;
155
156 if (!efi_enabled(EFI_OLD_MEMMAP)) {
157 write_cr3((unsigned long)save_pgd);
158 __flush_tlb_all();
159 return;
160 }
161
162 nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
163
164 for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
165 pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
166 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
167
168 if (!(pgd_val(*pgd) & _PAGE_PRESENT))
169 continue;
170
171 for (i = 0; i < PTRS_PER_P4D; i++) {
172 p4d = p4d_offset(pgd,
173 pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
174
175 if (!(p4d_val(*p4d) & _PAGE_PRESENT))
176 continue;
177
178 pud = (pud_t *)p4d_page_vaddr(*p4d);
179 pud_free(&init_mm, pud);
180 }
181
182 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
183 p4d_free(&init_mm, p4d);
184 }
185
186 kfree(save_pgd);
187
188 __flush_tlb_all();
189 early_code_mapping_set_exec(0);
190 }
191
192 static pgd_t *efi_pgd;
193
194 /*
195 * We need our own copy of the higher levels of the page tables
196 * because we want to avoid inserting EFI region mappings (EFI_VA_END
197 * to EFI_VA_START) into the standard kernel page tables. Everything
198 * else can be shared, see efi_sync_low_kernel_mappings().
199 *
200 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
201 * allocation.
202 */
203 int __init efi_alloc_page_tables(void)
204 {
205 pgd_t *pgd;
206 p4d_t *p4d;
207 pud_t *pud;
208 gfp_t gfp_mask;
209
210 if (efi_enabled(EFI_OLD_MEMMAP))
211 return 0;
212
213 gfp_mask = GFP_KERNEL | __GFP_ZERO;
214 efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
215 if (!efi_pgd)
216 return -ENOMEM;
217
218 pgd = efi_pgd + pgd_index(EFI_VA_END);
219 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
220 if (!p4d) {
221 free_page((unsigned long)efi_pgd);
222 return -ENOMEM;
223 }
224
225 pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
226 if (!pud) {
227 if (CONFIG_PGTABLE_LEVELS > 4)
228 free_page((unsigned long) pgd_page_vaddr(*pgd));
229 free_page((unsigned long)efi_pgd);
230 return -ENOMEM;
231 }
232
233 return 0;
234 }
235
236 /*
237 * Add low kernel mappings for passing arguments to EFI functions.
238 */
239 void efi_sync_low_kernel_mappings(void)
240 {
241 unsigned num_entries;
242 pgd_t *pgd_k, *pgd_efi;
243 p4d_t *p4d_k, *p4d_efi;
244 pud_t *pud_k, *pud_efi;
245
246 if (efi_enabled(EFI_OLD_MEMMAP))
247 return;
248
249 /*
250 * We can share all PGD entries apart from the one entry that
251 * covers the EFI runtime mapping space.
252 *
253 * Make sure the EFI runtime region mappings are guaranteed to
254 * only span a single PGD entry and that the entry also maps
255 * other important kernel regions.
256 */
257 BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
258 BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
259 (EFI_VA_END & PGDIR_MASK));
260
261 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
262 pgd_k = pgd_offset_k(PAGE_OFFSET);
263
264 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
265 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
266
267 /*
268 * As with PGDs, we share all P4D entries apart from the one entry
269 * that covers the EFI runtime mapping space.
270 */
271 BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
272 BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
273
274 pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
275 pgd_k = pgd_offset_k(EFI_VA_END);
276 p4d_efi = p4d_offset(pgd_efi, 0);
277 p4d_k = p4d_offset(pgd_k, 0);
278
279 num_entries = p4d_index(EFI_VA_END);
280 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
281
282 /*
283 * We share all the PUD entries apart from those that map the
284 * EFI regions. Copy around them.
285 */
286 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
287 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
288
289 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
290 p4d_k = p4d_offset(pgd_k, EFI_VA_END);
291 pud_efi = pud_offset(p4d_efi, 0);
292 pud_k = pud_offset(p4d_k, 0);
293
294 num_entries = pud_index(EFI_VA_END);
295 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
296
297 pud_efi = pud_offset(p4d_efi, EFI_VA_START);
298 pud_k = pud_offset(p4d_k, EFI_VA_START);
299
300 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
301 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
302 }
303
304 /*
305 * Wrapper for slow_virt_to_phys() that handles NULL addresses.
306 */
307 static inline phys_addr_t
308 virt_to_phys_or_null_size(void *va, unsigned long size)
309 {
310 bool bad_size;
311
312 if (!va)
313 return 0;
314
315 if (virt_addr_valid(va))
316 return virt_to_phys(va);
317
318 /*
319 * A fully aligned variable on the stack is guaranteed not to
320 * cross a page bounary. Try to catch strings on the stack by
321 * checking that 'size' is a power of two.
322 */
323 bad_size = size > PAGE_SIZE || !is_power_of_2(size);
324
325 WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
326
327 return slow_virt_to_phys(va);
328 }
329
330 #define virt_to_phys_or_null(addr) \
331 virt_to_phys_or_null_size((addr), sizeof(*(addr)))
332
333 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
334 {
335 unsigned long pfn, text, pf;
336 struct page *page;
337 unsigned npages;
338 pgd_t *pgd;
339
340 if (efi_enabled(EFI_OLD_MEMMAP))
341 return 0;
342
343 /*
344 * Since the PGD is encrypted, set the encryption mask so that when
345 * this value is loaded into cr3 the PGD will be decrypted during
346 * the pagetable walk.
347 */
348 efi_scratch.efi_pgt = (pgd_t *)__sme_pa(efi_pgd);
349 pgd = efi_pgd;
350
351 /*
352 * It can happen that the physical address of new_memmap lands in memory
353 * which is not mapped in the EFI page table. Therefore we need to go
354 * and ident-map those pages containing the map before calling
355 * phys_efi_set_virtual_address_map().
356 */
357 pfn = pa_memmap >> PAGE_SHIFT;
358 pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
359 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
360 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
361 return 1;
362 }
363
364 efi_scratch.use_pgd = true;
365
366 /*
367 * Certain firmware versions are way too sentimential and still believe
368 * they are exclusive and unquestionable owners of the first physical page,
369 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
370 * (but then write-access it later during SetVirtualAddressMap()).
371 *
372 * Create a 1:1 mapping for this page, to avoid triple faults during early
373 * boot with such firmware. We are free to hand this page to the BIOS,
374 * as trim_bios_range() will reserve the first page and isolate it away
375 * from memory allocators anyway.
376 */
377 pf = _PAGE_RW;
378 if (sev_active())
379 pf |= _PAGE_ENC;
380
381 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
382 pr_err("Failed to create 1:1 mapping for the first page!\n");
383 return 1;
384 }
385
386 /*
387 * When making calls to the firmware everything needs to be 1:1
388 * mapped and addressable with 32-bit pointers. Map the kernel
389 * text and allocate a new stack because we can't rely on the
390 * stack pointer being < 4GB.
391 */
392 if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
393 return 0;
394
395 page = alloc_page(GFP_KERNEL|__GFP_DMA32);
396 if (!page)
397 panic("Unable to allocate EFI runtime stack < 4GB\n");
398
399 efi_scratch.phys_stack = virt_to_phys(page_address(page));
400 efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
401
402 npages = (_etext - _text) >> PAGE_SHIFT;
403 text = __pa(_text);
404 pfn = text >> PAGE_SHIFT;
405
406 pf = _PAGE_RW | _PAGE_ENC;
407 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
408 pr_err("Failed to map kernel text 1:1\n");
409 return 1;
410 }
411
412 return 0;
413 }
414
415 static void __init __map_region(efi_memory_desc_t *md, u64 va)
416 {
417 unsigned long flags = _PAGE_RW;
418 unsigned long pfn;
419 pgd_t *pgd = efi_pgd;
420
421 if (!(md->attribute & EFI_MEMORY_WB))
422 flags |= _PAGE_PCD;
423
424 if (sev_active())
425 flags |= _PAGE_ENC;
426
427 pfn = md->phys_addr >> PAGE_SHIFT;
428 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
429 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
430 md->phys_addr, va);
431 }
432
433 void __init efi_map_region(efi_memory_desc_t *md)
434 {
435 unsigned long size = md->num_pages << PAGE_SHIFT;
436 u64 pa = md->phys_addr;
437
438 if (efi_enabled(EFI_OLD_MEMMAP))
439 return old_map_region(md);
440
441 /*
442 * Make sure the 1:1 mappings are present as a catch-all for b0rked
443 * firmware which doesn't update all internal pointers after switching
444 * to virtual mode and would otherwise crap on us.
445 */
446 __map_region(md, md->phys_addr);
447
448 /*
449 * Enforce the 1:1 mapping as the default virtual address when
450 * booting in EFI mixed mode, because even though we may be
451 * running a 64-bit kernel, the firmware may only be 32-bit.
452 */
453 if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
454 md->virt_addr = md->phys_addr;
455 return;
456 }
457
458 efi_va -= size;
459
460 /* Is PA 2M-aligned? */
461 if (!(pa & (PMD_SIZE - 1))) {
462 efi_va &= PMD_MASK;
463 } else {
464 u64 pa_offset = pa & (PMD_SIZE - 1);
465 u64 prev_va = efi_va;
466
467 /* get us the same offset within this 2M page */
468 efi_va = (efi_va & PMD_MASK) + pa_offset;
469
470 if (efi_va > prev_va)
471 efi_va -= PMD_SIZE;
472 }
473
474 if (efi_va < EFI_VA_END) {
475 pr_warn(FW_WARN "VA address range overflow!\n");
476 return;
477 }
478
479 /* Do the VA map */
480 __map_region(md, efi_va);
481 md->virt_addr = efi_va;
482 }
483
484 /*
485 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
486 * md->virt_addr is the original virtual address which had been mapped in kexec
487 * 1st kernel.
488 */
489 void __init efi_map_region_fixed(efi_memory_desc_t *md)
490 {
491 __map_region(md, md->phys_addr);
492 __map_region(md, md->virt_addr);
493 }
494
495 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
496 u32 type, u64 attribute)
497 {
498 unsigned long last_map_pfn;
499
500 if (type == EFI_MEMORY_MAPPED_IO)
501 return ioremap(phys_addr, size);
502
503 last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
504 if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
505 unsigned long top = last_map_pfn << PAGE_SHIFT;
506 efi_ioremap(top, size - (top - phys_addr), type, attribute);
507 }
508
509 if (!(attribute & EFI_MEMORY_WB))
510 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
511
512 return (void __iomem *)__va(phys_addr);
513 }
514
515 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
516 {
517 efi_setup = phys_addr + sizeof(struct setup_data);
518 }
519
520 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
521 {
522 unsigned long pfn;
523 pgd_t *pgd = efi_pgd;
524 int err1, err2;
525
526 /* Update the 1:1 mapping */
527 pfn = md->phys_addr >> PAGE_SHIFT;
528 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
529 if (err1) {
530 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
531 md->phys_addr, md->virt_addr);
532 }
533
534 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
535 if (err2) {
536 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
537 md->phys_addr, md->virt_addr);
538 }
539
540 return err1 || err2;
541 }
542
543 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
544 {
545 unsigned long pf = 0;
546
547 if (md->attribute & EFI_MEMORY_XP)
548 pf |= _PAGE_NX;
549
550 if (!(md->attribute & EFI_MEMORY_RO))
551 pf |= _PAGE_RW;
552
553 if (sev_active())
554 pf |= _PAGE_ENC;
555
556 return efi_update_mappings(md, pf);
557 }
558
559 void __init efi_runtime_update_mappings(void)
560 {
561 efi_memory_desc_t *md;
562
563 if (efi_enabled(EFI_OLD_MEMMAP)) {
564 if (__supported_pte_mask & _PAGE_NX)
565 runtime_code_page_mkexec();
566 return;
567 }
568
569 /*
570 * Use the EFI Memory Attribute Table for mapping permissions if it
571 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
572 */
573 if (efi_enabled(EFI_MEM_ATTR)) {
574 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
575 return;
576 }
577
578 /*
579 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
580 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
581 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
582 * published by the firmware. Even if we find a buggy implementation of
583 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
584 * EFI_PROPERTIES_TABLE, because of the same reason.
585 */
586
587 if (!efi_enabled(EFI_NX_PE_DATA))
588 return;
589
590 for_each_efi_memory_desc(md) {
591 unsigned long pf = 0;
592
593 if (!(md->attribute & EFI_MEMORY_RUNTIME))
594 continue;
595
596 if (!(md->attribute & EFI_MEMORY_WB))
597 pf |= _PAGE_PCD;
598
599 if ((md->attribute & EFI_MEMORY_XP) ||
600 (md->type == EFI_RUNTIME_SERVICES_DATA))
601 pf |= _PAGE_NX;
602
603 if (!(md->attribute & EFI_MEMORY_RO) &&
604 (md->type != EFI_RUNTIME_SERVICES_CODE))
605 pf |= _PAGE_RW;
606
607 if (sev_active())
608 pf |= _PAGE_ENC;
609
610 efi_update_mappings(md, pf);
611 }
612 }
613
614 void __init efi_dump_pagetable(void)
615 {
616 #ifdef CONFIG_EFI_PGT_DUMP
617 if (efi_enabled(EFI_OLD_MEMMAP))
618 ptdump_walk_pgd_level(NULL, swapper_pg_dir);
619 else
620 ptdump_walk_pgd_level(NULL, efi_pgd);
621 #endif
622 }
623
624 #ifdef CONFIG_EFI_MIXED
625 extern efi_status_t efi64_thunk(u32, ...);
626
627 #define runtime_service32(func) \
628 ({ \
629 u32 table = (u32)(unsigned long)efi.systab; \
630 u32 *rt, *___f; \
631 \
632 rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \
633 ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
634 *___f; \
635 })
636
637 /*
638 * Switch to the EFI page tables early so that we can access the 1:1
639 * runtime services mappings which are not mapped in any other page
640 * tables. This function must be called before runtime_service32().
641 *
642 * Also, disable interrupts because the IDT points to 64-bit handlers,
643 * which aren't going to function correctly when we switch to 32-bit.
644 */
645 #define efi_thunk(f, ...) \
646 ({ \
647 efi_status_t __s; \
648 unsigned long __flags; \
649 u32 __func; \
650 \
651 local_irq_save(__flags); \
652 arch_efi_call_virt_setup(); \
653 \
654 __func = runtime_service32(f); \
655 __s = efi64_thunk(__func, __VA_ARGS__); \
656 \
657 arch_efi_call_virt_teardown(); \
658 local_irq_restore(__flags); \
659 \
660 __s; \
661 })
662
663 efi_status_t efi_thunk_set_virtual_address_map(
664 void *phys_set_virtual_address_map,
665 unsigned long memory_map_size,
666 unsigned long descriptor_size,
667 u32 descriptor_version,
668 efi_memory_desc_t *virtual_map)
669 {
670 efi_status_t status;
671 unsigned long flags;
672 u32 func;
673
674 efi_sync_low_kernel_mappings();
675 local_irq_save(flags);
676
677 efi_scratch.prev_cr3 = __read_cr3();
678 write_cr3((unsigned long)efi_scratch.efi_pgt);
679 __flush_tlb_all();
680
681 func = (u32)(unsigned long)phys_set_virtual_address_map;
682 status = efi64_thunk(func, memory_map_size, descriptor_size,
683 descriptor_version, virtual_map);
684
685 write_cr3(efi_scratch.prev_cr3);
686 __flush_tlb_all();
687 local_irq_restore(flags);
688
689 return status;
690 }
691
692 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
693 {
694 efi_status_t status;
695 u32 phys_tm, phys_tc;
696
697 spin_lock(&rtc_lock);
698
699 phys_tm = virt_to_phys_or_null(tm);
700 phys_tc = virt_to_phys_or_null(tc);
701
702 status = efi_thunk(get_time, phys_tm, phys_tc);
703
704 spin_unlock(&rtc_lock);
705
706 return status;
707 }
708
709 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
710 {
711 efi_status_t status;
712 u32 phys_tm;
713
714 spin_lock(&rtc_lock);
715
716 phys_tm = virt_to_phys_or_null(tm);
717
718 status = efi_thunk(set_time, phys_tm);
719
720 spin_unlock(&rtc_lock);
721
722 return status;
723 }
724
725 static efi_status_t
726 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
727 efi_time_t *tm)
728 {
729 efi_status_t status;
730 u32 phys_enabled, phys_pending, phys_tm;
731
732 spin_lock(&rtc_lock);
733
734 phys_enabled = virt_to_phys_or_null(enabled);
735 phys_pending = virt_to_phys_or_null(pending);
736 phys_tm = virt_to_phys_or_null(tm);
737
738 status = efi_thunk(get_wakeup_time, phys_enabled,
739 phys_pending, phys_tm);
740
741 spin_unlock(&rtc_lock);
742
743 return status;
744 }
745
746 static efi_status_t
747 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
748 {
749 efi_status_t status;
750 u32 phys_tm;
751
752 spin_lock(&rtc_lock);
753
754 phys_tm = virt_to_phys_or_null(tm);
755
756 status = efi_thunk(set_wakeup_time, enabled, phys_tm);
757
758 spin_unlock(&rtc_lock);
759
760 return status;
761 }
762
763 static unsigned long efi_name_size(efi_char16_t *name)
764 {
765 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
766 }
767
768 static efi_status_t
769 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
770 u32 *attr, unsigned long *data_size, void *data)
771 {
772 efi_status_t status;
773 u32 phys_name, phys_vendor, phys_attr;
774 u32 phys_data_size, phys_data;
775
776 phys_data_size = virt_to_phys_or_null(data_size);
777 phys_vendor = virt_to_phys_or_null(vendor);
778 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
779 phys_attr = virt_to_phys_or_null(attr);
780 phys_data = virt_to_phys_or_null_size(data, *data_size);
781
782 status = efi_thunk(get_variable, phys_name, phys_vendor,
783 phys_attr, phys_data_size, phys_data);
784
785 return status;
786 }
787
788 static efi_status_t
789 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
790 u32 attr, unsigned long data_size, void *data)
791 {
792 u32 phys_name, phys_vendor, phys_data;
793 efi_status_t status;
794
795 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
796 phys_vendor = virt_to_phys_or_null(vendor);
797 phys_data = virt_to_phys_or_null_size(data, data_size);
798
799 /* If data_size is > sizeof(u32) we've got problems */
800 status = efi_thunk(set_variable, phys_name, phys_vendor,
801 attr, data_size, phys_data);
802
803 return status;
804 }
805
806 static efi_status_t
807 efi_thunk_get_next_variable(unsigned long *name_size,
808 efi_char16_t *name,
809 efi_guid_t *vendor)
810 {
811 efi_status_t status;
812 u32 phys_name_size, phys_name, phys_vendor;
813
814 phys_name_size = virt_to_phys_or_null(name_size);
815 phys_vendor = virt_to_phys_or_null(vendor);
816 phys_name = virt_to_phys_or_null_size(name, *name_size);
817
818 status = efi_thunk(get_next_variable, phys_name_size,
819 phys_name, phys_vendor);
820
821 return status;
822 }
823
824 static efi_status_t
825 efi_thunk_get_next_high_mono_count(u32 *count)
826 {
827 efi_status_t status;
828 u32 phys_count;
829
830 phys_count = virt_to_phys_or_null(count);
831 status = efi_thunk(get_next_high_mono_count, phys_count);
832
833 return status;
834 }
835
836 static void
837 efi_thunk_reset_system(int reset_type, efi_status_t status,
838 unsigned long data_size, efi_char16_t *data)
839 {
840 u32 phys_data;
841
842 phys_data = virt_to_phys_or_null_size(data, data_size);
843
844 efi_thunk(reset_system, reset_type, status, data_size, phys_data);
845 }
846
847 static efi_status_t
848 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
849 unsigned long count, unsigned long sg_list)
850 {
851 /*
852 * To properly support this function we would need to repackage
853 * 'capsules' because the firmware doesn't understand 64-bit
854 * pointers.
855 */
856 return EFI_UNSUPPORTED;
857 }
858
859 static efi_status_t
860 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
861 u64 *remaining_space,
862 u64 *max_variable_size)
863 {
864 efi_status_t status;
865 u32 phys_storage, phys_remaining, phys_max;
866
867 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
868 return EFI_UNSUPPORTED;
869
870 phys_storage = virt_to_phys_or_null(storage_space);
871 phys_remaining = virt_to_phys_or_null(remaining_space);
872 phys_max = virt_to_phys_or_null(max_variable_size);
873
874 status = efi_thunk(query_variable_info, attr, phys_storage,
875 phys_remaining, phys_max);
876
877 return status;
878 }
879
880 static efi_status_t
881 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
882 unsigned long count, u64 *max_size,
883 int *reset_type)
884 {
885 /*
886 * To properly support this function we would need to repackage
887 * 'capsules' because the firmware doesn't understand 64-bit
888 * pointers.
889 */
890 return EFI_UNSUPPORTED;
891 }
892
893 void efi_thunk_runtime_setup(void)
894 {
895 efi.get_time = efi_thunk_get_time;
896 efi.set_time = efi_thunk_set_time;
897 efi.get_wakeup_time = efi_thunk_get_wakeup_time;
898 efi.set_wakeup_time = efi_thunk_set_wakeup_time;
899 efi.get_variable = efi_thunk_get_variable;
900 efi.get_next_variable = efi_thunk_get_next_variable;
901 efi.set_variable = efi_thunk_set_variable;
902 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
903 efi.reset_system = efi_thunk_reset_system;
904 efi.query_variable_info = efi_thunk_query_variable_info;
905 efi.update_capsule = efi_thunk_update_capsule;
906 efi.query_capsule_caps = efi_thunk_query_capsule_caps;
907 }
908 #endif /* CONFIG_EFI_MIXED */