]> git.proxmox.com Git - qemu.git/blob - arch_init.c
Add migration accounting for normal and duplicate pages
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor.h"
33 #include "sysemu.h"
34 #include "arch_init.h"
35 #include "audio/audio.h"
36 #include "hw/pc.h"
37 #include "hw/pci.h"
38 #include "hw/audiodev.h"
39 #include "kvm.h"
40 #include "migration.h"
41 #include "net.h"
42 #include "gdbstub.h"
43 #include "hw/smbios.h"
44 #include "exec-memory.h"
45 #include "hw/pcspk.h"
46 #include "qemu/page_cache.h"
47
48 #ifdef DEBUG_ARCH_INIT
49 #define DPRINTF(fmt, ...) \
50 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
51 #else
52 #define DPRINTF(fmt, ...) \
53 do { } while (0)
54 #endif
55
56 #ifdef TARGET_SPARC
57 int graphic_width = 1024;
58 int graphic_height = 768;
59 int graphic_depth = 8;
60 #else
61 int graphic_width = 800;
62 int graphic_height = 600;
63 int graphic_depth = 15;
64 #endif
65
66
67 #if defined(TARGET_ALPHA)
68 #define QEMU_ARCH QEMU_ARCH_ALPHA
69 #elif defined(TARGET_ARM)
70 #define QEMU_ARCH QEMU_ARCH_ARM
71 #elif defined(TARGET_CRIS)
72 #define QEMU_ARCH QEMU_ARCH_CRIS
73 #elif defined(TARGET_I386)
74 #define QEMU_ARCH QEMU_ARCH_I386
75 #elif defined(TARGET_M68K)
76 #define QEMU_ARCH QEMU_ARCH_M68K
77 #elif defined(TARGET_LM32)
78 #define QEMU_ARCH QEMU_ARCH_LM32
79 #elif defined(TARGET_MICROBLAZE)
80 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
81 #elif defined(TARGET_MIPS)
82 #define QEMU_ARCH QEMU_ARCH_MIPS
83 #elif defined(TARGET_OPENRISC)
84 #define QEMU_ARCH QEMU_ARCH_OPENRISC
85 #elif defined(TARGET_PPC)
86 #define QEMU_ARCH QEMU_ARCH_PPC
87 #elif defined(TARGET_S390X)
88 #define QEMU_ARCH QEMU_ARCH_S390X
89 #elif defined(TARGET_SH4)
90 #define QEMU_ARCH QEMU_ARCH_SH4
91 #elif defined(TARGET_SPARC)
92 #define QEMU_ARCH QEMU_ARCH_SPARC
93 #elif defined(TARGET_XTENSA)
94 #define QEMU_ARCH QEMU_ARCH_XTENSA
95 #endif
96
97 const uint32_t arch_type = QEMU_ARCH;
98
99 /***********************************************************/
100 /* ram save/restore */
101
102 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
103 #define RAM_SAVE_FLAG_COMPRESS 0x02
104 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
105 #define RAM_SAVE_FLAG_PAGE 0x08
106 #define RAM_SAVE_FLAG_EOS 0x10
107 #define RAM_SAVE_FLAG_CONTINUE 0x20
108 #define RAM_SAVE_FLAG_XBZRLE 0x40
109
110 #ifdef __ALTIVEC__
111 #include <altivec.h>
112 #define VECTYPE vector unsigned char
113 #define SPLAT(p) vec_splat(vec_ld(0, p), 0)
114 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2)
115 /* altivec.h may redefine the bool macro as vector type.
116 * Reset it to POSIX semantics. */
117 #undef bool
118 #define bool _Bool
119 #elif defined __SSE2__
120 #include <emmintrin.h>
121 #define VECTYPE __m128i
122 #define SPLAT(p) _mm_set1_epi8(*(p))
123 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF)
124 #else
125 #define VECTYPE unsigned long
126 #define SPLAT(p) (*(p) * (~0UL / 255))
127 #define ALL_EQ(v1, v2) ((v1) == (v2))
128 #endif
129
130
131 static struct defconfig_file {
132 const char *filename;
133 /* Indicates it is an user config file (disabled by -no-user-config) */
134 bool userconfig;
135 } default_config_files[] = {
136 { CONFIG_QEMU_DATADIR "/cpus-" TARGET_ARCH ".conf", false },
137 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
138 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
139 { NULL }, /* end of list */
140 };
141
142
143 int qemu_read_default_config_files(bool userconfig)
144 {
145 int ret;
146 struct defconfig_file *f;
147
148 for (f = default_config_files; f->filename; f++) {
149 if (!userconfig && f->userconfig) {
150 continue;
151 }
152 ret = qemu_read_config_file(f->filename);
153 if (ret < 0 && ret != -ENOENT) {
154 return ret;
155 }
156 }
157
158 return 0;
159 }
160
161 static int is_dup_page(uint8_t *page)
162 {
163 VECTYPE *p = (VECTYPE *)page;
164 VECTYPE val = SPLAT(page);
165 int i;
166
167 for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) {
168 if (!ALL_EQ(val, p[i])) {
169 return 0;
170 }
171 }
172
173 return 1;
174 }
175
176 /* struct contains XBZRLE cache and a static page
177 used by the compression */
178 static struct {
179 /* buffer used for XBZRLE encoding */
180 uint8_t *encoded_buf;
181 /* buffer for storing page content */
182 uint8_t *current_buf;
183 /* buffer used for XBZRLE decoding */
184 uint8_t *decoded_buf;
185 /* Cache for XBZRLE */
186 PageCache *cache;
187 } XBZRLE = {
188 .encoded_buf = NULL,
189 .current_buf = NULL,
190 .decoded_buf = NULL,
191 .cache = NULL,
192 };
193
194
195 int64_t xbzrle_cache_resize(int64_t new_size)
196 {
197 if (XBZRLE.cache != NULL) {
198 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
199 TARGET_PAGE_SIZE;
200 }
201 return pow2floor(new_size);
202 }
203
204 /* accounting for migration statistics */
205 typedef struct AccountingInfo {
206 uint64_t dup_pages;
207 uint64_t norm_pages;
208 uint64_t iterations;
209 } AccountingInfo;
210
211 static AccountingInfo acct_info;
212
213 static void acct_clear(void)
214 {
215 memset(&acct_info, 0, sizeof(acct_info));
216 }
217
218 uint64_t dup_mig_bytes_transferred(void)
219 {
220 return acct_info.dup_pages * TARGET_PAGE_SIZE;
221 }
222
223 uint64_t dup_mig_pages_transferred(void)
224 {
225 return acct_info.dup_pages;
226 }
227
228 uint64_t norm_mig_bytes_transferred(void)
229 {
230 return acct_info.norm_pages * TARGET_PAGE_SIZE;
231 }
232
233 uint64_t norm_mig_pages_transferred(void)
234 {
235 return acct_info.norm_pages;
236 }
237
238 static void save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
239 int cont, int flag)
240 {
241 qemu_put_be64(f, offset | cont | flag);
242 if (!cont) {
243 qemu_put_byte(f, strlen(block->idstr));
244 qemu_put_buffer(f, (uint8_t *)block->idstr,
245 strlen(block->idstr));
246 }
247
248 }
249
250 #define ENCODING_FLAG_XBZRLE 0x1
251
252 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
253 ram_addr_t current_addr, RAMBlock *block,
254 ram_addr_t offset, int cont)
255 {
256 int encoded_len = 0, bytes_sent = -1;
257 uint8_t *prev_cached_page;
258
259 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
260 cache_insert(XBZRLE.cache, current_addr,
261 g_memdup(current_data, TARGET_PAGE_SIZE));
262 return -1;
263 }
264
265 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
266
267 /* save current buffer into memory */
268 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
269
270 /* XBZRLE encoding (if there is no overflow) */
271 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
272 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
273 TARGET_PAGE_SIZE);
274 if (encoded_len == 0) {
275 DPRINTF("Skipping unmodified page\n");
276 return 0;
277 } else if (encoded_len == -1) {
278 DPRINTF("Overflow\n");
279 /* update data in the cache */
280 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
281 return -1;
282 }
283
284 /* we need to update the data in the cache, in order to get the same data */
285 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
286
287 /* Send XBZRLE based compressed page */
288 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
289 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
290 qemu_put_be16(f, encoded_len);
291 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
292 bytes_sent = encoded_len + 1 + 2;
293
294 return bytes_sent;
295 }
296
297 static RAMBlock *last_block;
298 static ram_addr_t last_offset;
299
300 /*
301 * ram_save_block: Writes a page of memory to the stream f
302 *
303 * Returns: 0: if the page hasn't changed
304 * -1: if there are no more dirty pages
305 * n: the amount of bytes written in other case
306 */
307
308 static int ram_save_block(QEMUFile *f)
309 {
310 RAMBlock *block = last_block;
311 ram_addr_t offset = last_offset;
312 int bytes_sent = -1;
313 MemoryRegion *mr;
314 ram_addr_t current_addr;
315
316 if (!block)
317 block = QLIST_FIRST(&ram_list.blocks);
318
319 do {
320 mr = block->mr;
321 if (memory_region_get_dirty(mr, offset, TARGET_PAGE_SIZE,
322 DIRTY_MEMORY_MIGRATION)) {
323 uint8_t *p;
324 int cont = (block == last_block) ? RAM_SAVE_FLAG_CONTINUE : 0;
325
326 memory_region_reset_dirty(mr, offset, TARGET_PAGE_SIZE,
327 DIRTY_MEMORY_MIGRATION);
328
329 p = memory_region_get_ram_ptr(mr) + offset;
330
331 if (is_dup_page(p)) {
332 acct_info.dup_pages++;
333 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_COMPRESS);
334 qemu_put_byte(f, *p);
335 bytes_sent = 1;
336 } else if (migrate_use_xbzrle()) {
337 current_addr = block->offset + offset;
338 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
339 offset, cont);
340 p = get_cached_data(XBZRLE.cache, current_addr);
341 }
342
343 /* either we didn't send yet (we may have had XBZRLE overflow) */
344 if (bytes_sent == -1) {
345 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
346 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
347 bytes_sent = TARGET_PAGE_SIZE;
348 acct_info.norm_pages++;
349 }
350
351 /* if page is unmodified, continue to the next */
352 if (bytes_sent != 0) {
353 break;
354 }
355 }
356
357 offset += TARGET_PAGE_SIZE;
358 if (offset >= block->length) {
359 offset = 0;
360 block = QLIST_NEXT(block, next);
361 if (!block)
362 block = QLIST_FIRST(&ram_list.blocks);
363 }
364 } while (block != last_block || offset != last_offset);
365
366 last_block = block;
367 last_offset = offset;
368
369 return bytes_sent;
370 }
371
372 static uint64_t bytes_transferred;
373
374 static ram_addr_t ram_save_remaining(void)
375 {
376 return ram_list.dirty_pages;
377 }
378
379 uint64_t ram_bytes_remaining(void)
380 {
381 return ram_save_remaining() * TARGET_PAGE_SIZE;
382 }
383
384 uint64_t ram_bytes_transferred(void)
385 {
386 return bytes_transferred;
387 }
388
389 uint64_t ram_bytes_total(void)
390 {
391 RAMBlock *block;
392 uint64_t total = 0;
393
394 QLIST_FOREACH(block, &ram_list.blocks, next)
395 total += block->length;
396
397 return total;
398 }
399
400 static int block_compar(const void *a, const void *b)
401 {
402 RAMBlock * const *ablock = a;
403 RAMBlock * const *bblock = b;
404
405 return strcmp((*ablock)->idstr, (*bblock)->idstr);
406 }
407
408 static void sort_ram_list(void)
409 {
410 RAMBlock *block, *nblock, **blocks;
411 int n;
412 n = 0;
413 QLIST_FOREACH(block, &ram_list.blocks, next) {
414 ++n;
415 }
416 blocks = g_malloc(n * sizeof *blocks);
417 n = 0;
418 QLIST_FOREACH_SAFE(block, &ram_list.blocks, next, nblock) {
419 blocks[n++] = block;
420 QLIST_REMOVE(block, next);
421 }
422 qsort(blocks, n, sizeof *blocks, block_compar);
423 while (--n >= 0) {
424 QLIST_INSERT_HEAD(&ram_list.blocks, blocks[n], next);
425 }
426 g_free(blocks);
427 }
428
429 static void migration_end(void)
430 {
431 memory_global_dirty_log_stop();
432
433 if (migrate_use_xbzrle()) {
434 cache_fini(XBZRLE.cache);
435 g_free(XBZRLE.cache);
436 g_free(XBZRLE.encoded_buf);
437 g_free(XBZRLE.current_buf);
438 g_free(XBZRLE.decoded_buf);
439 XBZRLE.cache = NULL;
440 }
441 }
442
443 static void ram_migration_cancel(void *opaque)
444 {
445 migration_end();
446 }
447
448 #define MAX_WAIT 50 /* ms, half buffered_file limit */
449
450 static int ram_save_setup(QEMUFile *f, void *opaque)
451 {
452 ram_addr_t addr;
453 RAMBlock *block;
454
455 bytes_transferred = 0;
456 last_block = NULL;
457 last_offset = 0;
458 sort_ram_list();
459
460 if (migrate_use_xbzrle()) {
461 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
462 TARGET_PAGE_SIZE,
463 TARGET_PAGE_SIZE);
464 if (!XBZRLE.cache) {
465 DPRINTF("Error creating cache\n");
466 return -1;
467 }
468 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
469 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
470 acct_clear();
471 }
472
473 /* Make sure all dirty bits are set */
474 QLIST_FOREACH(block, &ram_list.blocks, next) {
475 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
476 if (!memory_region_get_dirty(block->mr, addr, TARGET_PAGE_SIZE,
477 DIRTY_MEMORY_MIGRATION)) {
478 memory_region_set_dirty(block->mr, addr, TARGET_PAGE_SIZE);
479 }
480 }
481 }
482
483 memory_global_dirty_log_start();
484
485 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
486
487 QLIST_FOREACH(block, &ram_list.blocks, next) {
488 qemu_put_byte(f, strlen(block->idstr));
489 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
490 qemu_put_be64(f, block->length);
491 }
492
493 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
494
495 return 0;
496 }
497
498 static int ram_save_iterate(QEMUFile *f, void *opaque)
499 {
500 uint64_t bytes_transferred_last;
501 double bwidth = 0;
502 int ret;
503 int i;
504 uint64_t expected_time;
505
506 bytes_transferred_last = bytes_transferred;
507 bwidth = qemu_get_clock_ns(rt_clock);
508
509 i = 0;
510 while ((ret = qemu_file_rate_limit(f)) == 0) {
511 int bytes_sent;
512
513 bytes_sent = ram_save_block(f);
514 /* no more blocks to sent */
515 if (bytes_sent < 0) {
516 break;
517 }
518 bytes_transferred += bytes_sent;
519 acct_info.iterations++;
520 /* we want to check in the 1st loop, just in case it was the 1st time
521 and we had to sync the dirty bitmap.
522 qemu_get_clock_ns() is a bit expensive, so we only check each some
523 iterations
524 */
525 if ((i & 63) == 0) {
526 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - bwidth) / 1000000;
527 if (t1 > MAX_WAIT) {
528 DPRINTF("big wait: " PRIu64 " milliseconds, %d iterations\n",
529 t1, i);
530 break;
531 }
532 }
533 i++;
534 }
535
536 if (ret < 0) {
537 return ret;
538 }
539
540 bwidth = qemu_get_clock_ns(rt_clock) - bwidth;
541 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
542
543 /* if we haven't transferred anything this round, force expected_time to a
544 * a very high value, but without crashing */
545 if (bwidth == 0) {
546 bwidth = 0.000001;
547 }
548
549 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
550
551 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
552
553 DPRINTF("ram_save_live: expected(" PRIu64 ") <= max(" PRIu64 ")?\n",
554 expected_time, migrate_max_downtime());
555
556 if (expected_time <= migrate_max_downtime()) {
557 memory_global_sync_dirty_bitmap(get_system_memory());
558 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
559
560 return expected_time <= migrate_max_downtime();
561 }
562 return 0;
563 }
564
565 static int ram_save_complete(QEMUFile *f, void *opaque)
566 {
567 memory_global_sync_dirty_bitmap(get_system_memory());
568
569 /* try transferring iterative blocks of memory */
570
571 /* flush all remaining blocks regardless of rate limiting */
572 while (true) {
573 int bytes_sent;
574
575 bytes_sent = ram_save_block(f);
576 /* no more blocks to sent */
577 if (bytes_sent < 0) {
578 break;
579 }
580 bytes_transferred += bytes_sent;
581 }
582 memory_global_dirty_log_stop();
583
584 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
585
586 return 0;
587 }
588
589 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
590 {
591 int ret, rc = 0;
592 unsigned int xh_len;
593 int xh_flags;
594
595 if (!XBZRLE.decoded_buf) {
596 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
597 }
598
599 /* extract RLE header */
600 xh_flags = qemu_get_byte(f);
601 xh_len = qemu_get_be16(f);
602
603 if (xh_flags != ENCODING_FLAG_XBZRLE) {
604 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
605 return -1;
606 }
607
608 if (xh_len > TARGET_PAGE_SIZE) {
609 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
610 return -1;
611 }
612 /* load data and decode */
613 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
614
615 /* decode RLE */
616 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
617 TARGET_PAGE_SIZE);
618 if (ret == -1) {
619 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
620 rc = -1;
621 } else if (ret > TARGET_PAGE_SIZE) {
622 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
623 ret, TARGET_PAGE_SIZE);
624 abort();
625 }
626
627 return rc;
628 }
629
630 static inline void *host_from_stream_offset(QEMUFile *f,
631 ram_addr_t offset,
632 int flags)
633 {
634 static RAMBlock *block = NULL;
635 char id[256];
636 uint8_t len;
637
638 if (flags & RAM_SAVE_FLAG_CONTINUE) {
639 if (!block) {
640 fprintf(stderr, "Ack, bad migration stream!\n");
641 return NULL;
642 }
643
644 return memory_region_get_ram_ptr(block->mr) + offset;
645 }
646
647 len = qemu_get_byte(f);
648 qemu_get_buffer(f, (uint8_t *)id, len);
649 id[len] = 0;
650
651 QLIST_FOREACH(block, &ram_list.blocks, next) {
652 if (!strncmp(id, block->idstr, sizeof(id)))
653 return memory_region_get_ram_ptr(block->mr) + offset;
654 }
655
656 fprintf(stderr, "Can't find block %s!\n", id);
657 return NULL;
658 }
659
660 static int ram_load(QEMUFile *f, void *opaque, int version_id)
661 {
662 ram_addr_t addr;
663 int flags, ret = 0;
664 int error;
665 static uint64_t seq_iter;
666
667 seq_iter++;
668
669 if (version_id < 4 || version_id > 4) {
670 return -EINVAL;
671 }
672
673 do {
674 addr = qemu_get_be64(f);
675
676 flags = addr & ~TARGET_PAGE_MASK;
677 addr &= TARGET_PAGE_MASK;
678
679 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
680 if (version_id == 4) {
681 /* Synchronize RAM block list */
682 char id[256];
683 ram_addr_t length;
684 ram_addr_t total_ram_bytes = addr;
685
686 while (total_ram_bytes) {
687 RAMBlock *block;
688 uint8_t len;
689
690 len = qemu_get_byte(f);
691 qemu_get_buffer(f, (uint8_t *)id, len);
692 id[len] = 0;
693 length = qemu_get_be64(f);
694
695 QLIST_FOREACH(block, &ram_list.blocks, next) {
696 if (!strncmp(id, block->idstr, sizeof(id))) {
697 if (block->length != length) {
698 ret = -EINVAL;
699 goto done;
700 }
701 break;
702 }
703 }
704
705 if (!block) {
706 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
707 "accept migration\n", id);
708 ret = -EINVAL;
709 goto done;
710 }
711
712 total_ram_bytes -= length;
713 }
714 }
715 }
716
717 if (flags & RAM_SAVE_FLAG_COMPRESS) {
718 void *host;
719 uint8_t ch;
720
721 host = host_from_stream_offset(f, addr, flags);
722 if (!host) {
723 return -EINVAL;
724 }
725
726 ch = qemu_get_byte(f);
727 memset(host, ch, TARGET_PAGE_SIZE);
728 #ifndef _WIN32
729 if (ch == 0 &&
730 (!kvm_enabled() || kvm_has_sync_mmu())) {
731 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
732 }
733 #endif
734 } else if (flags & RAM_SAVE_FLAG_PAGE) {
735 void *host;
736
737 host = host_from_stream_offset(f, addr, flags);
738 if (!host) {
739 return -EINVAL;
740 }
741
742 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
743 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
744 if (!migrate_use_xbzrle()) {
745 return -EINVAL;
746 }
747 void *host = host_from_stream_offset(f, addr, flags);
748 if (!host) {
749 return -EINVAL;
750 }
751
752 if (load_xbzrle(f, addr, host) < 0) {
753 ret = -EINVAL;
754 goto done;
755 }
756 }
757 error = qemu_file_get_error(f);
758 if (error) {
759 ret = error;
760 goto done;
761 }
762 } while (!(flags & RAM_SAVE_FLAG_EOS));
763
764 done:
765 DPRINTF("Completed load of VM with exit code %d seq iteration " PRIu64 "\n",
766 ret, seq_iter);
767 return ret;
768 }
769
770 SaveVMHandlers savevm_ram_handlers = {
771 .save_live_setup = ram_save_setup,
772 .save_live_iterate = ram_save_iterate,
773 .save_live_complete = ram_save_complete,
774 .load_state = ram_load,
775 .cancel = ram_migration_cancel,
776 };
777
778 #ifdef HAS_AUDIO
779 struct soundhw {
780 const char *name;
781 const char *descr;
782 int enabled;
783 int isa;
784 union {
785 int (*init_isa) (ISABus *bus);
786 int (*init_pci) (PCIBus *bus);
787 } init;
788 };
789
790 static struct soundhw soundhw[] = {
791 #ifdef HAS_AUDIO_CHOICE
792 #ifdef CONFIG_PCSPK
793 {
794 "pcspk",
795 "PC speaker",
796 0,
797 1,
798 { .init_isa = pcspk_audio_init }
799 },
800 #endif
801
802 #ifdef CONFIG_SB16
803 {
804 "sb16",
805 "Creative Sound Blaster 16",
806 0,
807 1,
808 { .init_isa = SB16_init }
809 },
810 #endif
811
812 #ifdef CONFIG_CS4231A
813 {
814 "cs4231a",
815 "CS4231A",
816 0,
817 1,
818 { .init_isa = cs4231a_init }
819 },
820 #endif
821
822 #ifdef CONFIG_ADLIB
823 {
824 "adlib",
825 #ifdef HAS_YMF262
826 "Yamaha YMF262 (OPL3)",
827 #else
828 "Yamaha YM3812 (OPL2)",
829 #endif
830 0,
831 1,
832 { .init_isa = Adlib_init }
833 },
834 #endif
835
836 #ifdef CONFIG_GUS
837 {
838 "gus",
839 "Gravis Ultrasound GF1",
840 0,
841 1,
842 { .init_isa = GUS_init }
843 },
844 #endif
845
846 #ifdef CONFIG_AC97
847 {
848 "ac97",
849 "Intel 82801AA AC97 Audio",
850 0,
851 0,
852 { .init_pci = ac97_init }
853 },
854 #endif
855
856 #ifdef CONFIG_ES1370
857 {
858 "es1370",
859 "ENSONIQ AudioPCI ES1370",
860 0,
861 0,
862 { .init_pci = es1370_init }
863 },
864 #endif
865
866 #ifdef CONFIG_HDA
867 {
868 "hda",
869 "Intel HD Audio",
870 0,
871 0,
872 { .init_pci = intel_hda_and_codec_init }
873 },
874 #endif
875
876 #endif /* HAS_AUDIO_CHOICE */
877
878 { NULL, NULL, 0, 0, { NULL } }
879 };
880
881 void select_soundhw(const char *optarg)
882 {
883 struct soundhw *c;
884
885 if (is_help_option(optarg)) {
886 show_valid_cards:
887
888 printf("Valid sound card names (comma separated):\n");
889 for (c = soundhw; c->name; ++c) {
890 printf ("%-11s %s\n", c->name, c->descr);
891 }
892 printf("\n-soundhw all will enable all of the above\n");
893 exit(!is_help_option(optarg));
894 }
895 else {
896 size_t l;
897 const char *p;
898 char *e;
899 int bad_card = 0;
900
901 if (!strcmp(optarg, "all")) {
902 for (c = soundhw; c->name; ++c) {
903 c->enabled = 1;
904 }
905 return;
906 }
907
908 p = optarg;
909 while (*p) {
910 e = strchr(p, ',');
911 l = !e ? strlen(p) : (size_t) (e - p);
912
913 for (c = soundhw; c->name; ++c) {
914 if (!strncmp(c->name, p, l) && !c->name[l]) {
915 c->enabled = 1;
916 break;
917 }
918 }
919
920 if (!c->name) {
921 if (l > 80) {
922 fprintf(stderr,
923 "Unknown sound card name (too big to show)\n");
924 }
925 else {
926 fprintf(stderr, "Unknown sound card name `%.*s'\n",
927 (int) l, p);
928 }
929 bad_card = 1;
930 }
931 p += l + (e != NULL);
932 }
933
934 if (bad_card) {
935 goto show_valid_cards;
936 }
937 }
938 }
939
940 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
941 {
942 struct soundhw *c;
943
944 for (c = soundhw; c->name; ++c) {
945 if (c->enabled) {
946 if (c->isa) {
947 if (isa_bus) {
948 c->init.init_isa(isa_bus);
949 }
950 } else {
951 if (pci_bus) {
952 c->init.init_pci(pci_bus);
953 }
954 }
955 }
956 }
957 }
958 #else
959 void select_soundhw(const char *optarg)
960 {
961 }
962 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
963 {
964 }
965 #endif
966
967 int qemu_uuid_parse(const char *str, uint8_t *uuid)
968 {
969 int ret;
970
971 if (strlen(str) != 36) {
972 return -1;
973 }
974
975 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
976 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
977 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
978 &uuid[15]);
979
980 if (ret != 16) {
981 return -1;
982 }
983 #ifdef TARGET_I386
984 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
985 #endif
986 return 0;
987 }
988
989 void do_acpitable_option(const char *optarg)
990 {
991 #ifdef TARGET_I386
992 if (acpi_table_add(optarg) < 0) {
993 fprintf(stderr, "Wrong acpi table provided\n");
994 exit(1);
995 }
996 #endif
997 }
998
999 void do_smbios_option(const char *optarg)
1000 {
1001 #ifdef TARGET_I386
1002 if (smbios_entry_add(optarg) < 0) {
1003 fprintf(stderr, "Wrong smbios provided\n");
1004 exit(1);
1005 }
1006 #endif
1007 }
1008
1009 void cpudef_init(void)
1010 {
1011 #if defined(cpudef_setup)
1012 cpudef_setup(); /* parse cpu definitions in target config file */
1013 #endif
1014 }
1015
1016 int audio_available(void)
1017 {
1018 #ifdef HAS_AUDIO
1019 return 1;
1020 #else
1021 return 0;
1022 #endif
1023 }
1024
1025 int tcg_available(void)
1026 {
1027 return 1;
1028 }
1029
1030 int kvm_available(void)
1031 {
1032 #ifdef CONFIG_KVM
1033 return 1;
1034 #else
1035 return 0;
1036 #endif
1037 }
1038
1039 int xen_available(void)
1040 {
1041 #ifdef CONFIG_XEN
1042 return 1;
1043 #else
1044 return 0;
1045 #endif
1046 }