]> git.proxmox.com Git - qemu.git/blob - arch_init.c
Merge branch 'linux-user.next' of git://git.linaro.org/people/pmaydell/qemu-arm
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor.h"
33 #include "sysemu.h"
34 #include "arch_init.h"
35 #include "audio/audio.h"
36 #include "hw/pc.h"
37 #include "hw/pci.h"
38 #include "hw/audiodev.h"
39 #include "kvm.h"
40 #include "migration.h"
41 #include "net.h"
42 #include "gdbstub.h"
43 #include "hw/smbios.h"
44 #include "exec-memory.h"
45 #include "hw/pcspk.h"
46 #include "qemu/page_cache.h"
47
48 #ifdef DEBUG_ARCH_INIT
49 #define DPRINTF(fmt, ...) \
50 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
51 #else
52 #define DPRINTF(fmt, ...) \
53 do { } while (0)
54 #endif
55
56 #ifdef TARGET_SPARC
57 int graphic_width = 1024;
58 int graphic_height = 768;
59 int graphic_depth = 8;
60 #else
61 int graphic_width = 800;
62 int graphic_height = 600;
63 int graphic_depth = 15;
64 #endif
65
66
67 #if defined(TARGET_ALPHA)
68 #define QEMU_ARCH QEMU_ARCH_ALPHA
69 #elif defined(TARGET_ARM)
70 #define QEMU_ARCH QEMU_ARCH_ARM
71 #elif defined(TARGET_CRIS)
72 #define QEMU_ARCH QEMU_ARCH_CRIS
73 #elif defined(TARGET_I386)
74 #define QEMU_ARCH QEMU_ARCH_I386
75 #elif defined(TARGET_M68K)
76 #define QEMU_ARCH QEMU_ARCH_M68K
77 #elif defined(TARGET_LM32)
78 #define QEMU_ARCH QEMU_ARCH_LM32
79 #elif defined(TARGET_MICROBLAZE)
80 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
81 #elif defined(TARGET_MIPS)
82 #define QEMU_ARCH QEMU_ARCH_MIPS
83 #elif defined(TARGET_OPENRISC)
84 #define QEMU_ARCH QEMU_ARCH_OPENRISC
85 #elif defined(TARGET_PPC)
86 #define QEMU_ARCH QEMU_ARCH_PPC
87 #elif defined(TARGET_S390X)
88 #define QEMU_ARCH QEMU_ARCH_S390X
89 #elif defined(TARGET_SH4)
90 #define QEMU_ARCH QEMU_ARCH_SH4
91 #elif defined(TARGET_SPARC)
92 #define QEMU_ARCH QEMU_ARCH_SPARC
93 #elif defined(TARGET_XTENSA)
94 #define QEMU_ARCH QEMU_ARCH_XTENSA
95 #elif defined(TARGET_UNICORE32)
96 #define QEMU_ARCH QEMU_ARCH_UNICORE32
97 #endif
98
99 const uint32_t arch_type = QEMU_ARCH;
100
101 /***********************************************************/
102 /* ram save/restore */
103
104 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
105 #define RAM_SAVE_FLAG_COMPRESS 0x02
106 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
107 #define RAM_SAVE_FLAG_PAGE 0x08
108 #define RAM_SAVE_FLAG_EOS 0x10
109 #define RAM_SAVE_FLAG_CONTINUE 0x20
110 #define RAM_SAVE_FLAG_XBZRLE 0x40
111
112 #ifdef __ALTIVEC__
113 #include <altivec.h>
114 #define VECTYPE vector unsigned char
115 #define SPLAT(p) vec_splat(vec_ld(0, p), 0)
116 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2)
117 /* altivec.h may redefine the bool macro as vector type.
118 * Reset it to POSIX semantics. */
119 #undef bool
120 #define bool _Bool
121 #elif defined __SSE2__
122 #include <emmintrin.h>
123 #define VECTYPE __m128i
124 #define SPLAT(p) _mm_set1_epi8(*(p))
125 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF)
126 #else
127 #define VECTYPE unsigned long
128 #define SPLAT(p) (*(p) * (~0UL / 255))
129 #define ALL_EQ(v1, v2) ((v1) == (v2))
130 #endif
131
132
133 static struct defconfig_file {
134 const char *filename;
135 /* Indicates it is an user config file (disabled by -no-user-config) */
136 bool userconfig;
137 } default_config_files[] = {
138 { CONFIG_QEMU_DATADIR "/cpus-" TARGET_ARCH ".conf", false },
139 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
140 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
141 { NULL }, /* end of list */
142 };
143
144
145 int qemu_read_default_config_files(bool userconfig)
146 {
147 int ret;
148 struct defconfig_file *f;
149
150 for (f = default_config_files; f->filename; f++) {
151 if (!userconfig && f->userconfig) {
152 continue;
153 }
154 ret = qemu_read_config_file(f->filename);
155 if (ret < 0 && ret != -ENOENT) {
156 return ret;
157 }
158 }
159
160 return 0;
161 }
162
163 static int is_dup_page(uint8_t *page)
164 {
165 VECTYPE *p = (VECTYPE *)page;
166 VECTYPE val = SPLAT(page);
167 int i;
168
169 for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) {
170 if (!ALL_EQ(val, p[i])) {
171 return 0;
172 }
173 }
174
175 return 1;
176 }
177
178 /* struct contains XBZRLE cache and a static page
179 used by the compression */
180 static struct {
181 /* buffer used for XBZRLE encoding */
182 uint8_t *encoded_buf;
183 /* buffer for storing page content */
184 uint8_t *current_buf;
185 /* buffer used for XBZRLE decoding */
186 uint8_t *decoded_buf;
187 /* Cache for XBZRLE */
188 PageCache *cache;
189 } XBZRLE = {
190 .encoded_buf = NULL,
191 .current_buf = NULL,
192 .decoded_buf = NULL,
193 .cache = NULL,
194 };
195
196
197 int64_t xbzrle_cache_resize(int64_t new_size)
198 {
199 if (XBZRLE.cache != NULL) {
200 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
201 TARGET_PAGE_SIZE;
202 }
203 return pow2floor(new_size);
204 }
205
206 /* accounting for migration statistics */
207 typedef struct AccountingInfo {
208 uint64_t dup_pages;
209 uint64_t norm_pages;
210 uint64_t iterations;
211 uint64_t xbzrle_bytes;
212 uint64_t xbzrle_pages;
213 uint64_t xbzrle_cache_miss;
214 uint64_t xbzrle_overflows;
215 } AccountingInfo;
216
217 static AccountingInfo acct_info;
218
219 static void acct_clear(void)
220 {
221 memset(&acct_info, 0, sizeof(acct_info));
222 }
223
224 uint64_t dup_mig_bytes_transferred(void)
225 {
226 return acct_info.dup_pages * TARGET_PAGE_SIZE;
227 }
228
229 uint64_t dup_mig_pages_transferred(void)
230 {
231 return acct_info.dup_pages;
232 }
233
234 uint64_t norm_mig_bytes_transferred(void)
235 {
236 return acct_info.norm_pages * TARGET_PAGE_SIZE;
237 }
238
239 uint64_t norm_mig_pages_transferred(void)
240 {
241 return acct_info.norm_pages;
242 }
243
244 uint64_t xbzrle_mig_bytes_transferred(void)
245 {
246 return acct_info.xbzrle_bytes;
247 }
248
249 uint64_t xbzrle_mig_pages_transferred(void)
250 {
251 return acct_info.xbzrle_pages;
252 }
253
254 uint64_t xbzrle_mig_pages_cache_miss(void)
255 {
256 return acct_info.xbzrle_cache_miss;
257 }
258
259 uint64_t xbzrle_mig_pages_overflow(void)
260 {
261 return acct_info.xbzrle_overflows;
262 }
263
264 static void save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
265 int cont, int flag)
266 {
267 qemu_put_be64(f, offset | cont | flag);
268 if (!cont) {
269 qemu_put_byte(f, strlen(block->idstr));
270 qemu_put_buffer(f, (uint8_t *)block->idstr,
271 strlen(block->idstr));
272 }
273
274 }
275
276 #define ENCODING_FLAG_XBZRLE 0x1
277
278 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
279 ram_addr_t current_addr, RAMBlock *block,
280 ram_addr_t offset, int cont, bool last_stage)
281 {
282 int encoded_len = 0, bytes_sent = -1;
283 uint8_t *prev_cached_page;
284
285 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
286 if (!last_stage) {
287 cache_insert(XBZRLE.cache, current_addr,
288 g_memdup(current_data, TARGET_PAGE_SIZE));
289 }
290 acct_info.xbzrle_cache_miss++;
291 return -1;
292 }
293
294 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
295
296 /* save current buffer into memory */
297 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
298
299 /* XBZRLE encoding (if there is no overflow) */
300 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
301 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
302 TARGET_PAGE_SIZE);
303 if (encoded_len == 0) {
304 DPRINTF("Skipping unmodified page\n");
305 return 0;
306 } else if (encoded_len == -1) {
307 DPRINTF("Overflow\n");
308 acct_info.xbzrle_overflows++;
309 /* update data in the cache */
310 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
311 return -1;
312 }
313
314 /* we need to update the data in the cache, in order to get the same data */
315 if (!last_stage) {
316 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
317 }
318
319 /* Send XBZRLE based compressed page */
320 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
321 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
322 qemu_put_be16(f, encoded_len);
323 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
324 bytes_sent = encoded_len + 1 + 2;
325 acct_info.xbzrle_pages++;
326 acct_info.xbzrle_bytes += bytes_sent;
327
328 return bytes_sent;
329 }
330
331 static RAMBlock *last_block;
332 static ram_addr_t last_offset;
333
334 /*
335 * ram_save_block: Writes a page of memory to the stream f
336 *
337 * Returns: 0: if the page hasn't changed
338 * -1: if there are no more dirty pages
339 * n: the amount of bytes written in other case
340 */
341
342 static int ram_save_block(QEMUFile *f, bool last_stage)
343 {
344 RAMBlock *block = last_block;
345 ram_addr_t offset = last_offset;
346 int bytes_sent = -1;
347 MemoryRegion *mr;
348 ram_addr_t current_addr;
349
350 if (!block)
351 block = QLIST_FIRST(&ram_list.blocks);
352
353 do {
354 mr = block->mr;
355 if (memory_region_get_dirty(mr, offset, TARGET_PAGE_SIZE,
356 DIRTY_MEMORY_MIGRATION)) {
357 uint8_t *p;
358 int cont = (block == last_block) ? RAM_SAVE_FLAG_CONTINUE : 0;
359
360 memory_region_reset_dirty(mr, offset, TARGET_PAGE_SIZE,
361 DIRTY_MEMORY_MIGRATION);
362
363 p = memory_region_get_ram_ptr(mr) + offset;
364
365 if (is_dup_page(p)) {
366 acct_info.dup_pages++;
367 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_COMPRESS);
368 qemu_put_byte(f, *p);
369 bytes_sent = 1;
370 } else if (migrate_use_xbzrle()) {
371 current_addr = block->offset + offset;
372 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
373 offset, cont, last_stage);
374 if (!last_stage) {
375 p = get_cached_data(XBZRLE.cache, current_addr);
376 }
377 }
378
379 /* either we didn't send yet (we may have had XBZRLE overflow) */
380 if (bytes_sent == -1) {
381 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
382 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
383 bytes_sent = TARGET_PAGE_SIZE;
384 acct_info.norm_pages++;
385 }
386
387 /* if page is unmodified, continue to the next */
388 if (bytes_sent != 0) {
389 break;
390 }
391 }
392
393 offset += TARGET_PAGE_SIZE;
394 if (offset >= block->length) {
395 offset = 0;
396 block = QLIST_NEXT(block, next);
397 if (!block)
398 block = QLIST_FIRST(&ram_list.blocks);
399 }
400 } while (block != last_block || offset != last_offset);
401
402 last_block = block;
403 last_offset = offset;
404
405 return bytes_sent;
406 }
407
408 static uint64_t bytes_transferred;
409
410 static ram_addr_t ram_save_remaining(void)
411 {
412 return ram_list.dirty_pages;
413 }
414
415 uint64_t ram_bytes_remaining(void)
416 {
417 return ram_save_remaining() * TARGET_PAGE_SIZE;
418 }
419
420 uint64_t ram_bytes_transferred(void)
421 {
422 return bytes_transferred;
423 }
424
425 uint64_t ram_bytes_total(void)
426 {
427 RAMBlock *block;
428 uint64_t total = 0;
429
430 QLIST_FOREACH(block, &ram_list.blocks, next)
431 total += block->length;
432
433 return total;
434 }
435
436 static int block_compar(const void *a, const void *b)
437 {
438 RAMBlock * const *ablock = a;
439 RAMBlock * const *bblock = b;
440
441 return strcmp((*ablock)->idstr, (*bblock)->idstr);
442 }
443
444 static void sort_ram_list(void)
445 {
446 RAMBlock *block, *nblock, **blocks;
447 int n;
448 n = 0;
449 QLIST_FOREACH(block, &ram_list.blocks, next) {
450 ++n;
451 }
452 blocks = g_malloc(n * sizeof *blocks);
453 n = 0;
454 QLIST_FOREACH_SAFE(block, &ram_list.blocks, next, nblock) {
455 blocks[n++] = block;
456 QLIST_REMOVE(block, next);
457 }
458 qsort(blocks, n, sizeof *blocks, block_compar);
459 while (--n >= 0) {
460 QLIST_INSERT_HEAD(&ram_list.blocks, blocks[n], next);
461 }
462 g_free(blocks);
463 }
464
465 static void migration_end(void)
466 {
467 memory_global_dirty_log_stop();
468
469 if (migrate_use_xbzrle()) {
470 cache_fini(XBZRLE.cache);
471 g_free(XBZRLE.cache);
472 g_free(XBZRLE.encoded_buf);
473 g_free(XBZRLE.current_buf);
474 g_free(XBZRLE.decoded_buf);
475 XBZRLE.cache = NULL;
476 }
477 }
478
479 static void ram_migration_cancel(void *opaque)
480 {
481 migration_end();
482 }
483
484 #define MAX_WAIT 50 /* ms, half buffered_file limit */
485
486 static int ram_save_setup(QEMUFile *f, void *opaque)
487 {
488 ram_addr_t addr;
489 RAMBlock *block;
490
491 bytes_transferred = 0;
492 last_block = NULL;
493 last_offset = 0;
494 sort_ram_list();
495
496 if (migrate_use_xbzrle()) {
497 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
498 TARGET_PAGE_SIZE,
499 TARGET_PAGE_SIZE);
500 if (!XBZRLE.cache) {
501 DPRINTF("Error creating cache\n");
502 return -1;
503 }
504 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
505 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
506 acct_clear();
507 }
508
509 /* Make sure all dirty bits are set */
510 QLIST_FOREACH(block, &ram_list.blocks, next) {
511 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
512 if (!memory_region_get_dirty(block->mr, addr, TARGET_PAGE_SIZE,
513 DIRTY_MEMORY_MIGRATION)) {
514 memory_region_set_dirty(block->mr, addr, TARGET_PAGE_SIZE);
515 }
516 }
517 }
518
519 memory_global_dirty_log_start();
520
521 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
522
523 QLIST_FOREACH(block, &ram_list.blocks, next) {
524 qemu_put_byte(f, strlen(block->idstr));
525 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
526 qemu_put_be64(f, block->length);
527 }
528
529 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
530
531 return 0;
532 }
533
534 static int ram_save_iterate(QEMUFile *f, void *opaque)
535 {
536 uint64_t bytes_transferred_last;
537 double bwidth = 0;
538 int ret;
539 int i;
540 uint64_t expected_time;
541
542 bytes_transferred_last = bytes_transferred;
543 bwidth = qemu_get_clock_ns(rt_clock);
544
545 i = 0;
546 while ((ret = qemu_file_rate_limit(f)) == 0) {
547 int bytes_sent;
548
549 bytes_sent = ram_save_block(f, false);
550 /* no more blocks to sent */
551 if (bytes_sent < 0) {
552 break;
553 }
554 bytes_transferred += bytes_sent;
555 acct_info.iterations++;
556 /* we want to check in the 1st loop, just in case it was the 1st time
557 and we had to sync the dirty bitmap.
558 qemu_get_clock_ns() is a bit expensive, so we only check each some
559 iterations
560 */
561 if ((i & 63) == 0) {
562 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - bwidth) / 1000000;
563 if (t1 > MAX_WAIT) {
564 DPRINTF("big wait: " PRIu64 " milliseconds, %d iterations\n",
565 t1, i);
566 break;
567 }
568 }
569 i++;
570 }
571
572 if (ret < 0) {
573 return ret;
574 }
575
576 bwidth = qemu_get_clock_ns(rt_clock) - bwidth;
577 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
578
579 /* if we haven't transferred anything this round, force expected_time to a
580 * a very high value, but without crashing */
581 if (bwidth == 0) {
582 bwidth = 0.000001;
583 }
584
585 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
586
587 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
588
589 DPRINTF("ram_save_live: expected(" PRIu64 ") <= max(" PRIu64 ")?\n",
590 expected_time, migrate_max_downtime());
591
592 if (expected_time <= migrate_max_downtime()) {
593 memory_global_sync_dirty_bitmap(get_system_memory());
594 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
595
596 return expected_time <= migrate_max_downtime();
597 }
598 return 0;
599 }
600
601 static int ram_save_complete(QEMUFile *f, void *opaque)
602 {
603 memory_global_sync_dirty_bitmap(get_system_memory());
604
605 /* try transferring iterative blocks of memory */
606
607 /* flush all remaining blocks regardless of rate limiting */
608 while (true) {
609 int bytes_sent;
610
611 bytes_sent = ram_save_block(f, true);
612 /* no more blocks to sent */
613 if (bytes_sent < 0) {
614 break;
615 }
616 bytes_transferred += bytes_sent;
617 }
618 memory_global_dirty_log_stop();
619
620 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
621
622 return 0;
623 }
624
625 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
626 {
627 int ret, rc = 0;
628 unsigned int xh_len;
629 int xh_flags;
630
631 if (!XBZRLE.decoded_buf) {
632 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
633 }
634
635 /* extract RLE header */
636 xh_flags = qemu_get_byte(f);
637 xh_len = qemu_get_be16(f);
638
639 if (xh_flags != ENCODING_FLAG_XBZRLE) {
640 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
641 return -1;
642 }
643
644 if (xh_len > TARGET_PAGE_SIZE) {
645 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
646 return -1;
647 }
648 /* load data and decode */
649 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
650
651 /* decode RLE */
652 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
653 TARGET_PAGE_SIZE);
654 if (ret == -1) {
655 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
656 rc = -1;
657 } else if (ret > TARGET_PAGE_SIZE) {
658 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
659 ret, TARGET_PAGE_SIZE);
660 abort();
661 }
662
663 return rc;
664 }
665
666 static inline void *host_from_stream_offset(QEMUFile *f,
667 ram_addr_t offset,
668 int flags)
669 {
670 static RAMBlock *block = NULL;
671 char id[256];
672 uint8_t len;
673
674 if (flags & RAM_SAVE_FLAG_CONTINUE) {
675 if (!block) {
676 fprintf(stderr, "Ack, bad migration stream!\n");
677 return NULL;
678 }
679
680 return memory_region_get_ram_ptr(block->mr) + offset;
681 }
682
683 len = qemu_get_byte(f);
684 qemu_get_buffer(f, (uint8_t *)id, len);
685 id[len] = 0;
686
687 QLIST_FOREACH(block, &ram_list.blocks, next) {
688 if (!strncmp(id, block->idstr, sizeof(id)))
689 return memory_region_get_ram_ptr(block->mr) + offset;
690 }
691
692 fprintf(stderr, "Can't find block %s!\n", id);
693 return NULL;
694 }
695
696 static int ram_load(QEMUFile *f, void *opaque, int version_id)
697 {
698 ram_addr_t addr;
699 int flags, ret = 0;
700 int error;
701 static uint64_t seq_iter;
702
703 seq_iter++;
704
705 if (version_id < 4 || version_id > 4) {
706 return -EINVAL;
707 }
708
709 do {
710 addr = qemu_get_be64(f);
711
712 flags = addr & ~TARGET_PAGE_MASK;
713 addr &= TARGET_PAGE_MASK;
714
715 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
716 if (version_id == 4) {
717 /* Synchronize RAM block list */
718 char id[256];
719 ram_addr_t length;
720 ram_addr_t total_ram_bytes = addr;
721
722 while (total_ram_bytes) {
723 RAMBlock *block;
724 uint8_t len;
725
726 len = qemu_get_byte(f);
727 qemu_get_buffer(f, (uint8_t *)id, len);
728 id[len] = 0;
729 length = qemu_get_be64(f);
730
731 QLIST_FOREACH(block, &ram_list.blocks, next) {
732 if (!strncmp(id, block->idstr, sizeof(id))) {
733 if (block->length != length) {
734 ret = -EINVAL;
735 goto done;
736 }
737 break;
738 }
739 }
740
741 if (!block) {
742 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
743 "accept migration\n", id);
744 ret = -EINVAL;
745 goto done;
746 }
747
748 total_ram_bytes -= length;
749 }
750 }
751 }
752
753 if (flags & RAM_SAVE_FLAG_COMPRESS) {
754 void *host;
755 uint8_t ch;
756
757 host = host_from_stream_offset(f, addr, flags);
758 if (!host) {
759 return -EINVAL;
760 }
761
762 ch = qemu_get_byte(f);
763 memset(host, ch, TARGET_PAGE_SIZE);
764 #ifndef _WIN32
765 if (ch == 0 &&
766 (!kvm_enabled() || kvm_has_sync_mmu())) {
767 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
768 }
769 #endif
770 } else if (flags & RAM_SAVE_FLAG_PAGE) {
771 void *host;
772
773 host = host_from_stream_offset(f, addr, flags);
774 if (!host) {
775 return -EINVAL;
776 }
777
778 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
779 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
780 if (!migrate_use_xbzrle()) {
781 return -EINVAL;
782 }
783 void *host = host_from_stream_offset(f, addr, flags);
784 if (!host) {
785 return -EINVAL;
786 }
787
788 if (load_xbzrle(f, addr, host) < 0) {
789 ret = -EINVAL;
790 goto done;
791 }
792 }
793 error = qemu_file_get_error(f);
794 if (error) {
795 ret = error;
796 goto done;
797 }
798 } while (!(flags & RAM_SAVE_FLAG_EOS));
799
800 done:
801 DPRINTF("Completed load of VM with exit code %d seq iteration " PRIu64 "\n",
802 ret, seq_iter);
803 return ret;
804 }
805
806 SaveVMHandlers savevm_ram_handlers = {
807 .save_live_setup = ram_save_setup,
808 .save_live_iterate = ram_save_iterate,
809 .save_live_complete = ram_save_complete,
810 .load_state = ram_load,
811 .cancel = ram_migration_cancel,
812 };
813
814 #ifdef HAS_AUDIO
815 struct soundhw {
816 const char *name;
817 const char *descr;
818 int enabled;
819 int isa;
820 union {
821 int (*init_isa) (ISABus *bus);
822 int (*init_pci) (PCIBus *bus);
823 } init;
824 };
825
826 static struct soundhw soundhw[] = {
827 #ifdef HAS_AUDIO_CHOICE
828 #ifdef CONFIG_PCSPK
829 {
830 "pcspk",
831 "PC speaker",
832 0,
833 1,
834 { .init_isa = pcspk_audio_init }
835 },
836 #endif
837
838 #ifdef CONFIG_SB16
839 {
840 "sb16",
841 "Creative Sound Blaster 16",
842 0,
843 1,
844 { .init_isa = SB16_init }
845 },
846 #endif
847
848 #ifdef CONFIG_CS4231A
849 {
850 "cs4231a",
851 "CS4231A",
852 0,
853 1,
854 { .init_isa = cs4231a_init }
855 },
856 #endif
857
858 #ifdef CONFIG_ADLIB
859 {
860 "adlib",
861 #ifdef HAS_YMF262
862 "Yamaha YMF262 (OPL3)",
863 #else
864 "Yamaha YM3812 (OPL2)",
865 #endif
866 0,
867 1,
868 { .init_isa = Adlib_init }
869 },
870 #endif
871
872 #ifdef CONFIG_GUS
873 {
874 "gus",
875 "Gravis Ultrasound GF1",
876 0,
877 1,
878 { .init_isa = GUS_init }
879 },
880 #endif
881
882 #ifdef CONFIG_AC97
883 {
884 "ac97",
885 "Intel 82801AA AC97 Audio",
886 0,
887 0,
888 { .init_pci = ac97_init }
889 },
890 #endif
891
892 #ifdef CONFIG_ES1370
893 {
894 "es1370",
895 "ENSONIQ AudioPCI ES1370",
896 0,
897 0,
898 { .init_pci = es1370_init }
899 },
900 #endif
901
902 #ifdef CONFIG_HDA
903 {
904 "hda",
905 "Intel HD Audio",
906 0,
907 0,
908 { .init_pci = intel_hda_and_codec_init }
909 },
910 #endif
911
912 #endif /* HAS_AUDIO_CHOICE */
913
914 { NULL, NULL, 0, 0, { NULL } }
915 };
916
917 void select_soundhw(const char *optarg)
918 {
919 struct soundhw *c;
920
921 if (is_help_option(optarg)) {
922 show_valid_cards:
923
924 printf("Valid sound card names (comma separated):\n");
925 for (c = soundhw; c->name; ++c) {
926 printf ("%-11s %s\n", c->name, c->descr);
927 }
928 printf("\n-soundhw all will enable all of the above\n");
929 exit(!is_help_option(optarg));
930 }
931 else {
932 size_t l;
933 const char *p;
934 char *e;
935 int bad_card = 0;
936
937 if (!strcmp(optarg, "all")) {
938 for (c = soundhw; c->name; ++c) {
939 c->enabled = 1;
940 }
941 return;
942 }
943
944 p = optarg;
945 while (*p) {
946 e = strchr(p, ',');
947 l = !e ? strlen(p) : (size_t) (e - p);
948
949 for (c = soundhw; c->name; ++c) {
950 if (!strncmp(c->name, p, l) && !c->name[l]) {
951 c->enabled = 1;
952 break;
953 }
954 }
955
956 if (!c->name) {
957 if (l > 80) {
958 fprintf(stderr,
959 "Unknown sound card name (too big to show)\n");
960 }
961 else {
962 fprintf(stderr, "Unknown sound card name `%.*s'\n",
963 (int) l, p);
964 }
965 bad_card = 1;
966 }
967 p += l + (e != NULL);
968 }
969
970 if (bad_card) {
971 goto show_valid_cards;
972 }
973 }
974 }
975
976 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
977 {
978 struct soundhw *c;
979
980 for (c = soundhw; c->name; ++c) {
981 if (c->enabled) {
982 if (c->isa) {
983 if (isa_bus) {
984 c->init.init_isa(isa_bus);
985 }
986 } else {
987 if (pci_bus) {
988 c->init.init_pci(pci_bus);
989 }
990 }
991 }
992 }
993 }
994 #else
995 void select_soundhw(const char *optarg)
996 {
997 }
998 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
999 {
1000 }
1001 #endif
1002
1003 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1004 {
1005 int ret;
1006
1007 if (strlen(str) != 36) {
1008 return -1;
1009 }
1010
1011 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1012 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1013 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1014 &uuid[15]);
1015
1016 if (ret != 16) {
1017 return -1;
1018 }
1019 #ifdef TARGET_I386
1020 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
1021 #endif
1022 return 0;
1023 }
1024
1025 void do_acpitable_option(const char *optarg)
1026 {
1027 #ifdef TARGET_I386
1028 if (acpi_table_add(optarg) < 0) {
1029 fprintf(stderr, "Wrong acpi table provided\n");
1030 exit(1);
1031 }
1032 #endif
1033 }
1034
1035 void do_smbios_option(const char *optarg)
1036 {
1037 #ifdef TARGET_I386
1038 if (smbios_entry_add(optarg) < 0) {
1039 fprintf(stderr, "Wrong smbios provided\n");
1040 exit(1);
1041 }
1042 #endif
1043 }
1044
1045 void cpudef_init(void)
1046 {
1047 #if defined(cpudef_setup)
1048 cpudef_setup(); /* parse cpu definitions in target config file */
1049 #endif
1050 }
1051
1052 int audio_available(void)
1053 {
1054 #ifdef HAS_AUDIO
1055 return 1;
1056 #else
1057 return 0;
1058 #endif
1059 }
1060
1061 int tcg_available(void)
1062 {
1063 return 1;
1064 }
1065
1066 int kvm_available(void)
1067 {
1068 #ifdef CONFIG_KVM
1069 return 1;
1070 #else
1071 return 0;
1072 #endif
1073 }
1074
1075 int xen_available(void)
1076 {
1077 #ifdef CONFIG_XEN
1078 return 1;
1079 #else
1080 return 0;
1081 #endif
1082 }