]> git.proxmox.com Git - qemu.git/blob - arch_init.c
Separate migration bitmap
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor.h"
33 #include "sysemu.h"
34 #include "bitops.h"
35 #include "bitmap.h"
36 #include "arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/pc.h"
39 #include "hw/pci.h"
40 #include "hw/audiodev.h"
41 #include "kvm.h"
42 #include "migration.h"
43 #include "net.h"
44 #include "gdbstub.h"
45 #include "hw/smbios.h"
46 #include "exec-memory.h"
47 #include "hw/pcspk.h"
48 #include "qemu/page_cache.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51
52 #ifdef DEBUG_ARCH_INIT
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
59
60 #ifdef TARGET_SPARC
61 int graphic_width = 1024;
62 int graphic_height = 768;
63 int graphic_depth = 8;
64 #else
65 int graphic_width = 800;
66 int graphic_height = 600;
67 int graphic_depth = 15;
68 #endif
69
70
71 #if defined(TARGET_ALPHA)
72 #define QEMU_ARCH QEMU_ARCH_ALPHA
73 #elif defined(TARGET_ARM)
74 #define QEMU_ARCH QEMU_ARCH_ARM
75 #elif defined(TARGET_CRIS)
76 #define QEMU_ARCH QEMU_ARCH_CRIS
77 #elif defined(TARGET_I386)
78 #define QEMU_ARCH QEMU_ARCH_I386
79 #elif defined(TARGET_M68K)
80 #define QEMU_ARCH QEMU_ARCH_M68K
81 #elif defined(TARGET_LM32)
82 #define QEMU_ARCH QEMU_ARCH_LM32
83 #elif defined(TARGET_MICROBLAZE)
84 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
85 #elif defined(TARGET_MIPS)
86 #define QEMU_ARCH QEMU_ARCH_MIPS
87 #elif defined(TARGET_OPENRISC)
88 #define QEMU_ARCH QEMU_ARCH_OPENRISC
89 #elif defined(TARGET_PPC)
90 #define QEMU_ARCH QEMU_ARCH_PPC
91 #elif defined(TARGET_S390X)
92 #define QEMU_ARCH QEMU_ARCH_S390X
93 #elif defined(TARGET_SH4)
94 #define QEMU_ARCH QEMU_ARCH_SH4
95 #elif defined(TARGET_SPARC)
96 #define QEMU_ARCH QEMU_ARCH_SPARC
97 #elif defined(TARGET_XTENSA)
98 #define QEMU_ARCH QEMU_ARCH_XTENSA
99 #elif defined(TARGET_UNICORE32)
100 #define QEMU_ARCH QEMU_ARCH_UNICORE32
101 #endif
102
103 const uint32_t arch_type = QEMU_ARCH;
104
105 /***********************************************************/
106 /* ram save/restore */
107
108 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
109 #define RAM_SAVE_FLAG_COMPRESS 0x02
110 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
111 #define RAM_SAVE_FLAG_PAGE 0x08
112 #define RAM_SAVE_FLAG_EOS 0x10
113 #define RAM_SAVE_FLAG_CONTINUE 0x20
114 #define RAM_SAVE_FLAG_XBZRLE 0x40
115
116 #ifdef __ALTIVEC__
117 #include <altivec.h>
118 #define VECTYPE vector unsigned char
119 #define SPLAT(p) vec_splat(vec_ld(0, p), 0)
120 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2)
121 /* altivec.h may redefine the bool macro as vector type.
122 * Reset it to POSIX semantics. */
123 #undef bool
124 #define bool _Bool
125 #elif defined __SSE2__
126 #include <emmintrin.h>
127 #define VECTYPE __m128i
128 #define SPLAT(p) _mm_set1_epi8(*(p))
129 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF)
130 #else
131 #define VECTYPE unsigned long
132 #define SPLAT(p) (*(p) * (~0UL / 255))
133 #define ALL_EQ(v1, v2) ((v1) == (v2))
134 #endif
135
136
137 static struct defconfig_file {
138 const char *filename;
139 /* Indicates it is an user config file (disabled by -no-user-config) */
140 bool userconfig;
141 } default_config_files[] = {
142 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
143 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
144 { NULL }, /* end of list */
145 };
146
147
148 int qemu_read_default_config_files(bool userconfig)
149 {
150 int ret;
151 struct defconfig_file *f;
152
153 for (f = default_config_files; f->filename; f++) {
154 if (!userconfig && f->userconfig) {
155 continue;
156 }
157 ret = qemu_read_config_file(f->filename);
158 if (ret < 0 && ret != -ENOENT) {
159 return ret;
160 }
161 }
162
163 return 0;
164 }
165
166 static int is_dup_page(uint8_t *page)
167 {
168 VECTYPE *p = (VECTYPE *)page;
169 VECTYPE val = SPLAT(page);
170 int i;
171
172 for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) {
173 if (!ALL_EQ(val, p[i])) {
174 return 0;
175 }
176 }
177
178 return 1;
179 }
180
181 /* struct contains XBZRLE cache and a static page
182 used by the compression */
183 static struct {
184 /* buffer used for XBZRLE encoding */
185 uint8_t *encoded_buf;
186 /* buffer for storing page content */
187 uint8_t *current_buf;
188 /* buffer used for XBZRLE decoding */
189 uint8_t *decoded_buf;
190 /* Cache for XBZRLE */
191 PageCache *cache;
192 } XBZRLE = {
193 .encoded_buf = NULL,
194 .current_buf = NULL,
195 .decoded_buf = NULL,
196 .cache = NULL,
197 };
198
199
200 int64_t xbzrle_cache_resize(int64_t new_size)
201 {
202 if (XBZRLE.cache != NULL) {
203 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
204 TARGET_PAGE_SIZE;
205 }
206 return pow2floor(new_size);
207 }
208
209 /* accounting for migration statistics */
210 typedef struct AccountingInfo {
211 uint64_t dup_pages;
212 uint64_t norm_pages;
213 uint64_t iterations;
214 uint64_t xbzrle_bytes;
215 uint64_t xbzrle_pages;
216 uint64_t xbzrle_cache_miss;
217 uint64_t xbzrle_overflows;
218 } AccountingInfo;
219
220 static AccountingInfo acct_info;
221
222 static void acct_clear(void)
223 {
224 memset(&acct_info, 0, sizeof(acct_info));
225 }
226
227 uint64_t dup_mig_bytes_transferred(void)
228 {
229 return acct_info.dup_pages * TARGET_PAGE_SIZE;
230 }
231
232 uint64_t dup_mig_pages_transferred(void)
233 {
234 return acct_info.dup_pages;
235 }
236
237 uint64_t norm_mig_bytes_transferred(void)
238 {
239 return acct_info.norm_pages * TARGET_PAGE_SIZE;
240 }
241
242 uint64_t norm_mig_pages_transferred(void)
243 {
244 return acct_info.norm_pages;
245 }
246
247 uint64_t xbzrle_mig_bytes_transferred(void)
248 {
249 return acct_info.xbzrle_bytes;
250 }
251
252 uint64_t xbzrle_mig_pages_transferred(void)
253 {
254 return acct_info.xbzrle_pages;
255 }
256
257 uint64_t xbzrle_mig_pages_cache_miss(void)
258 {
259 return acct_info.xbzrle_cache_miss;
260 }
261
262 uint64_t xbzrle_mig_pages_overflow(void)
263 {
264 return acct_info.xbzrle_overflows;
265 }
266
267 static void save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
268 int cont, int flag)
269 {
270 qemu_put_be64(f, offset | cont | flag);
271 if (!cont) {
272 qemu_put_byte(f, strlen(block->idstr));
273 qemu_put_buffer(f, (uint8_t *)block->idstr,
274 strlen(block->idstr));
275 }
276
277 }
278
279 #define ENCODING_FLAG_XBZRLE 0x1
280
281 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
282 ram_addr_t current_addr, RAMBlock *block,
283 ram_addr_t offset, int cont, bool last_stage)
284 {
285 int encoded_len = 0, bytes_sent = -1;
286 uint8_t *prev_cached_page;
287
288 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
289 if (!last_stage) {
290 cache_insert(XBZRLE.cache, current_addr,
291 g_memdup(current_data, TARGET_PAGE_SIZE));
292 }
293 acct_info.xbzrle_cache_miss++;
294 return -1;
295 }
296
297 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
298
299 /* save current buffer into memory */
300 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
301
302 /* XBZRLE encoding (if there is no overflow) */
303 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
304 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
305 TARGET_PAGE_SIZE);
306 if (encoded_len == 0) {
307 DPRINTF("Skipping unmodified page\n");
308 return 0;
309 } else if (encoded_len == -1) {
310 DPRINTF("Overflow\n");
311 acct_info.xbzrle_overflows++;
312 /* update data in the cache */
313 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
314 return -1;
315 }
316
317 /* we need to update the data in the cache, in order to get the same data */
318 if (!last_stage) {
319 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
320 }
321
322 /* Send XBZRLE based compressed page */
323 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
324 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
325 qemu_put_be16(f, encoded_len);
326 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
327 bytes_sent = encoded_len + 1 + 2;
328 acct_info.xbzrle_pages++;
329 acct_info.xbzrle_bytes += bytes_sent;
330
331 return bytes_sent;
332 }
333
334 static RAMBlock *last_block;
335 static ram_addr_t last_offset;
336 static unsigned long *migration_bitmap;
337 static uint64_t migration_dirty_pages;
338
339 static inline bool migration_bitmap_test_and_reset_dirty(MemoryRegion *mr,
340 ram_addr_t offset)
341 {
342 bool ret;
343 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
344
345 ret = test_and_clear_bit(nr, migration_bitmap);
346
347 if (ret) {
348 migration_dirty_pages--;
349 }
350 return ret;
351 }
352
353 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
354 ram_addr_t offset)
355 {
356 bool ret;
357 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
358
359 ret = test_and_set_bit(nr, migration_bitmap);
360
361 if (!ret) {
362 migration_dirty_pages++;
363 }
364 return ret;
365 }
366
367 static void migration_bitmap_sync(void)
368 {
369 RAMBlock *block;
370 ram_addr_t addr;
371 uint64_t num_dirty_pages_init = migration_dirty_pages;
372
373 trace_migration_bitmap_sync_start();
374 memory_global_sync_dirty_bitmap(get_system_memory());
375
376 QLIST_FOREACH(block, &ram_list.blocks, next) {
377 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
378 if (memory_region_get_dirty(block->mr, addr, TARGET_PAGE_SIZE,
379 DIRTY_MEMORY_MIGRATION)) {
380 migration_bitmap_set_dirty(block->mr, addr);
381 }
382 }
383 memory_region_reset_dirty(block->mr, 0, block->length,
384 DIRTY_MEMORY_MIGRATION);
385 }
386 trace_migration_bitmap_sync_end(migration_dirty_pages
387 - num_dirty_pages_init);
388 }
389
390
391 /*
392 * ram_save_block: Writes a page of memory to the stream f
393 *
394 * Returns: 0: if the page hasn't changed
395 * -1: if there are no more dirty pages
396 * n: the amount of bytes written in other case
397 */
398
399 static int ram_save_block(QEMUFile *f, bool last_stage)
400 {
401 RAMBlock *block = last_block;
402 ram_addr_t offset = last_offset;
403 int bytes_sent = -1;
404 MemoryRegion *mr;
405 ram_addr_t current_addr;
406
407 if (!block)
408 block = QLIST_FIRST(&ram_list.blocks);
409
410 do {
411 mr = block->mr;
412 if (migration_bitmap_test_and_reset_dirty(mr, offset)) {
413 uint8_t *p;
414 int cont = (block == last_block) ? RAM_SAVE_FLAG_CONTINUE : 0;
415
416 p = memory_region_get_ram_ptr(mr) + offset;
417
418 if (is_dup_page(p)) {
419 acct_info.dup_pages++;
420 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_COMPRESS);
421 qemu_put_byte(f, *p);
422 bytes_sent = 1;
423 } else if (migrate_use_xbzrle()) {
424 current_addr = block->offset + offset;
425 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
426 offset, cont, last_stage);
427 if (!last_stage) {
428 p = get_cached_data(XBZRLE.cache, current_addr);
429 }
430 }
431
432 /* either we didn't send yet (we may have had XBZRLE overflow) */
433 if (bytes_sent == -1) {
434 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
435 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
436 bytes_sent = TARGET_PAGE_SIZE;
437 acct_info.norm_pages++;
438 }
439
440 /* if page is unmodified, continue to the next */
441 if (bytes_sent != 0) {
442 break;
443 }
444 }
445
446 offset += TARGET_PAGE_SIZE;
447 if (offset >= block->length) {
448 offset = 0;
449 block = QLIST_NEXT(block, next);
450 if (!block)
451 block = QLIST_FIRST(&ram_list.blocks);
452 }
453 } while (block != last_block || offset != last_offset);
454
455 last_block = block;
456 last_offset = offset;
457
458 return bytes_sent;
459 }
460
461 static uint64_t bytes_transferred;
462
463 static ram_addr_t ram_save_remaining(void)
464 {
465 return migration_dirty_pages;
466 }
467
468 uint64_t ram_bytes_remaining(void)
469 {
470 return ram_save_remaining() * TARGET_PAGE_SIZE;
471 }
472
473 uint64_t ram_bytes_transferred(void)
474 {
475 return bytes_transferred;
476 }
477
478 uint64_t ram_bytes_total(void)
479 {
480 RAMBlock *block;
481 uint64_t total = 0;
482
483 QLIST_FOREACH(block, &ram_list.blocks, next)
484 total += block->length;
485
486 return total;
487 }
488
489 static int block_compar(const void *a, const void *b)
490 {
491 RAMBlock * const *ablock = a;
492 RAMBlock * const *bblock = b;
493
494 return strcmp((*ablock)->idstr, (*bblock)->idstr);
495 }
496
497 static void sort_ram_list(void)
498 {
499 RAMBlock *block, *nblock, **blocks;
500 int n;
501 n = 0;
502 QLIST_FOREACH(block, &ram_list.blocks, next) {
503 ++n;
504 }
505 blocks = g_malloc(n * sizeof *blocks);
506 n = 0;
507 QLIST_FOREACH_SAFE(block, &ram_list.blocks, next, nblock) {
508 blocks[n++] = block;
509 QLIST_REMOVE(block, next);
510 }
511 qsort(blocks, n, sizeof *blocks, block_compar);
512 while (--n >= 0) {
513 QLIST_INSERT_HEAD(&ram_list.blocks, blocks[n], next);
514 }
515 g_free(blocks);
516 }
517
518 static void migration_end(void)
519 {
520 memory_global_dirty_log_stop();
521
522 if (migrate_use_xbzrle()) {
523 cache_fini(XBZRLE.cache);
524 g_free(XBZRLE.cache);
525 g_free(XBZRLE.encoded_buf);
526 g_free(XBZRLE.current_buf);
527 g_free(XBZRLE.decoded_buf);
528 XBZRLE.cache = NULL;
529 }
530 }
531
532 static void ram_migration_cancel(void *opaque)
533 {
534 migration_end();
535 }
536
537
538 static void reset_ram_globals(void)
539 {
540 last_block = NULL;
541 last_offset = 0;
542 sort_ram_list();
543 }
544
545 #define MAX_WAIT 50 /* ms, half buffered_file limit */
546
547 static int ram_save_setup(QEMUFile *f, void *opaque)
548 {
549 RAMBlock *block;
550 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
551
552 migration_bitmap = bitmap_new(ram_pages);
553 bitmap_set(migration_bitmap, 1, ram_pages);
554 migration_dirty_pages = ram_pages;
555
556 bytes_transferred = 0;
557 reset_ram_globals();
558
559 if (migrate_use_xbzrle()) {
560 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
561 TARGET_PAGE_SIZE,
562 TARGET_PAGE_SIZE);
563 if (!XBZRLE.cache) {
564 DPRINTF("Error creating cache\n");
565 return -1;
566 }
567 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
568 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
569 acct_clear();
570 }
571
572 memory_global_dirty_log_start();
573 migration_bitmap_sync();
574
575 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
576
577 QLIST_FOREACH(block, &ram_list.blocks, next) {
578 qemu_put_byte(f, strlen(block->idstr));
579 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
580 qemu_put_be64(f, block->length);
581 }
582
583 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
584
585 return 0;
586 }
587
588 static int ram_save_iterate(QEMUFile *f, void *opaque)
589 {
590 uint64_t bytes_transferred_last;
591 double bwidth = 0;
592 int ret;
593 int i;
594 uint64_t expected_downtime;
595 MigrationState *s = migrate_get_current();
596
597 bytes_transferred_last = bytes_transferred;
598 bwidth = qemu_get_clock_ns(rt_clock);
599
600 i = 0;
601 while ((ret = qemu_file_rate_limit(f)) == 0) {
602 int bytes_sent;
603
604 bytes_sent = ram_save_block(f, false);
605 /* no more blocks to sent */
606 if (bytes_sent < 0) {
607 break;
608 }
609 bytes_transferred += bytes_sent;
610 acct_info.iterations++;
611 /* we want to check in the 1st loop, just in case it was the 1st time
612 and we had to sync the dirty bitmap.
613 qemu_get_clock_ns() is a bit expensive, so we only check each some
614 iterations
615 */
616 if ((i & 63) == 0) {
617 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - bwidth) / 1000000;
618 if (t1 > MAX_WAIT) {
619 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
620 t1, i);
621 break;
622 }
623 }
624 i++;
625 }
626
627 if (ret < 0) {
628 return ret;
629 }
630
631 bwidth = qemu_get_clock_ns(rt_clock) - bwidth;
632 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
633
634 /* if we haven't transferred anything this round, force
635 * expected_downtime to a very high value, but without
636 * crashing */
637 if (bwidth == 0) {
638 bwidth = 0.000001;
639 }
640
641 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
642
643 expected_downtime = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
644 DPRINTF("ram_save_live: expected(%" PRIu64 ") <= max(" PRIu64 ")?\n",
645 expected_downtime, migrate_max_downtime());
646
647 if (expected_downtime <= migrate_max_downtime()) {
648 migration_bitmap_sync();
649 expected_downtime = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
650 s->expected_downtime = expected_downtime / 1000000; /* ns -> ms */
651
652 return expected_downtime <= migrate_max_downtime();
653 }
654 return 0;
655 }
656
657 static int ram_save_complete(QEMUFile *f, void *opaque)
658 {
659 migration_bitmap_sync();
660
661 /* try transferring iterative blocks of memory */
662
663 /* flush all remaining blocks regardless of rate limiting */
664 while (true) {
665 int bytes_sent;
666
667 bytes_sent = ram_save_block(f, true);
668 /* no more blocks to sent */
669 if (bytes_sent < 0) {
670 break;
671 }
672 bytes_transferred += bytes_sent;
673 }
674 memory_global_dirty_log_stop();
675
676 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
677
678 g_free(migration_bitmap);
679 migration_bitmap = NULL;
680
681 return 0;
682 }
683
684 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
685 {
686 int ret, rc = 0;
687 unsigned int xh_len;
688 int xh_flags;
689
690 if (!XBZRLE.decoded_buf) {
691 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
692 }
693
694 /* extract RLE header */
695 xh_flags = qemu_get_byte(f);
696 xh_len = qemu_get_be16(f);
697
698 if (xh_flags != ENCODING_FLAG_XBZRLE) {
699 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
700 return -1;
701 }
702
703 if (xh_len > TARGET_PAGE_SIZE) {
704 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
705 return -1;
706 }
707 /* load data and decode */
708 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
709
710 /* decode RLE */
711 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
712 TARGET_PAGE_SIZE);
713 if (ret == -1) {
714 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
715 rc = -1;
716 } else if (ret > TARGET_PAGE_SIZE) {
717 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
718 ret, TARGET_PAGE_SIZE);
719 abort();
720 }
721
722 return rc;
723 }
724
725 static inline void *host_from_stream_offset(QEMUFile *f,
726 ram_addr_t offset,
727 int flags)
728 {
729 static RAMBlock *block = NULL;
730 char id[256];
731 uint8_t len;
732
733 if (flags & RAM_SAVE_FLAG_CONTINUE) {
734 if (!block) {
735 fprintf(stderr, "Ack, bad migration stream!\n");
736 return NULL;
737 }
738
739 return memory_region_get_ram_ptr(block->mr) + offset;
740 }
741
742 len = qemu_get_byte(f);
743 qemu_get_buffer(f, (uint8_t *)id, len);
744 id[len] = 0;
745
746 QLIST_FOREACH(block, &ram_list.blocks, next) {
747 if (!strncmp(id, block->idstr, sizeof(id)))
748 return memory_region_get_ram_ptr(block->mr) + offset;
749 }
750
751 fprintf(stderr, "Can't find block %s!\n", id);
752 return NULL;
753 }
754
755 static int ram_load(QEMUFile *f, void *opaque, int version_id)
756 {
757 ram_addr_t addr;
758 int flags, ret = 0;
759 int error;
760 static uint64_t seq_iter;
761
762 seq_iter++;
763
764 if (version_id < 4 || version_id > 4) {
765 return -EINVAL;
766 }
767
768 do {
769 addr = qemu_get_be64(f);
770
771 flags = addr & ~TARGET_PAGE_MASK;
772 addr &= TARGET_PAGE_MASK;
773
774 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
775 if (version_id == 4) {
776 /* Synchronize RAM block list */
777 char id[256];
778 ram_addr_t length;
779 ram_addr_t total_ram_bytes = addr;
780
781 while (total_ram_bytes) {
782 RAMBlock *block;
783 uint8_t len;
784
785 len = qemu_get_byte(f);
786 qemu_get_buffer(f, (uint8_t *)id, len);
787 id[len] = 0;
788 length = qemu_get_be64(f);
789
790 QLIST_FOREACH(block, &ram_list.blocks, next) {
791 if (!strncmp(id, block->idstr, sizeof(id))) {
792 if (block->length != length) {
793 ret = -EINVAL;
794 goto done;
795 }
796 break;
797 }
798 }
799
800 if (!block) {
801 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
802 "accept migration\n", id);
803 ret = -EINVAL;
804 goto done;
805 }
806
807 total_ram_bytes -= length;
808 }
809 }
810 }
811
812 if (flags & RAM_SAVE_FLAG_COMPRESS) {
813 void *host;
814 uint8_t ch;
815
816 host = host_from_stream_offset(f, addr, flags);
817 if (!host) {
818 return -EINVAL;
819 }
820
821 ch = qemu_get_byte(f);
822 memset(host, ch, TARGET_PAGE_SIZE);
823 #ifndef _WIN32
824 if (ch == 0 &&
825 (!kvm_enabled() || kvm_has_sync_mmu())) {
826 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
827 }
828 #endif
829 } else if (flags & RAM_SAVE_FLAG_PAGE) {
830 void *host;
831
832 host = host_from_stream_offset(f, addr, flags);
833 if (!host) {
834 return -EINVAL;
835 }
836
837 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
838 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
839 if (!migrate_use_xbzrle()) {
840 return -EINVAL;
841 }
842 void *host = host_from_stream_offset(f, addr, flags);
843 if (!host) {
844 return -EINVAL;
845 }
846
847 if (load_xbzrle(f, addr, host) < 0) {
848 ret = -EINVAL;
849 goto done;
850 }
851 }
852 error = qemu_file_get_error(f);
853 if (error) {
854 ret = error;
855 goto done;
856 }
857 } while (!(flags & RAM_SAVE_FLAG_EOS));
858
859 done:
860 DPRINTF("Completed load of VM with exit code %d seq iteration "
861 "%" PRIu64 "\n", ret, seq_iter);
862 return ret;
863 }
864
865 SaveVMHandlers savevm_ram_handlers = {
866 .save_live_setup = ram_save_setup,
867 .save_live_iterate = ram_save_iterate,
868 .save_live_complete = ram_save_complete,
869 .load_state = ram_load,
870 .cancel = ram_migration_cancel,
871 };
872
873 #ifdef HAS_AUDIO
874 struct soundhw {
875 const char *name;
876 const char *descr;
877 int enabled;
878 int isa;
879 union {
880 int (*init_isa) (ISABus *bus);
881 int (*init_pci) (PCIBus *bus);
882 } init;
883 };
884
885 static struct soundhw soundhw[] = {
886 #ifdef HAS_AUDIO_CHOICE
887 #ifdef CONFIG_PCSPK
888 {
889 "pcspk",
890 "PC speaker",
891 0,
892 1,
893 { .init_isa = pcspk_audio_init }
894 },
895 #endif
896
897 #ifdef CONFIG_SB16
898 {
899 "sb16",
900 "Creative Sound Blaster 16",
901 0,
902 1,
903 { .init_isa = SB16_init }
904 },
905 #endif
906
907 #ifdef CONFIG_CS4231A
908 {
909 "cs4231a",
910 "CS4231A",
911 0,
912 1,
913 { .init_isa = cs4231a_init }
914 },
915 #endif
916
917 #ifdef CONFIG_ADLIB
918 {
919 "adlib",
920 #ifdef HAS_YMF262
921 "Yamaha YMF262 (OPL3)",
922 #else
923 "Yamaha YM3812 (OPL2)",
924 #endif
925 0,
926 1,
927 { .init_isa = Adlib_init }
928 },
929 #endif
930
931 #ifdef CONFIG_GUS
932 {
933 "gus",
934 "Gravis Ultrasound GF1",
935 0,
936 1,
937 { .init_isa = GUS_init }
938 },
939 #endif
940
941 #ifdef CONFIG_AC97
942 {
943 "ac97",
944 "Intel 82801AA AC97 Audio",
945 0,
946 0,
947 { .init_pci = ac97_init }
948 },
949 #endif
950
951 #ifdef CONFIG_ES1370
952 {
953 "es1370",
954 "ENSONIQ AudioPCI ES1370",
955 0,
956 0,
957 { .init_pci = es1370_init }
958 },
959 #endif
960
961 #ifdef CONFIG_HDA
962 {
963 "hda",
964 "Intel HD Audio",
965 0,
966 0,
967 { .init_pci = intel_hda_and_codec_init }
968 },
969 #endif
970
971 #endif /* HAS_AUDIO_CHOICE */
972
973 { NULL, NULL, 0, 0, { NULL } }
974 };
975
976 void select_soundhw(const char *optarg)
977 {
978 struct soundhw *c;
979
980 if (is_help_option(optarg)) {
981 show_valid_cards:
982
983 #ifdef HAS_AUDIO_CHOICE
984 printf("Valid sound card names (comma separated):\n");
985 for (c = soundhw; c->name; ++c) {
986 printf ("%-11s %s\n", c->name, c->descr);
987 }
988 printf("\n-soundhw all will enable all of the above\n");
989 #else
990 printf("Machine has no user-selectable audio hardware "
991 "(it may or may not have always-present audio hardware).\n");
992 #endif
993 exit(!is_help_option(optarg));
994 }
995 else {
996 size_t l;
997 const char *p;
998 char *e;
999 int bad_card = 0;
1000
1001 if (!strcmp(optarg, "all")) {
1002 for (c = soundhw; c->name; ++c) {
1003 c->enabled = 1;
1004 }
1005 return;
1006 }
1007
1008 p = optarg;
1009 while (*p) {
1010 e = strchr(p, ',');
1011 l = !e ? strlen(p) : (size_t) (e - p);
1012
1013 for (c = soundhw; c->name; ++c) {
1014 if (!strncmp(c->name, p, l) && !c->name[l]) {
1015 c->enabled = 1;
1016 break;
1017 }
1018 }
1019
1020 if (!c->name) {
1021 if (l > 80) {
1022 fprintf(stderr,
1023 "Unknown sound card name (too big to show)\n");
1024 }
1025 else {
1026 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1027 (int) l, p);
1028 }
1029 bad_card = 1;
1030 }
1031 p += l + (e != NULL);
1032 }
1033
1034 if (bad_card) {
1035 goto show_valid_cards;
1036 }
1037 }
1038 }
1039
1040 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1041 {
1042 struct soundhw *c;
1043
1044 for (c = soundhw; c->name; ++c) {
1045 if (c->enabled) {
1046 if (c->isa) {
1047 if (isa_bus) {
1048 c->init.init_isa(isa_bus);
1049 }
1050 } else {
1051 if (pci_bus) {
1052 c->init.init_pci(pci_bus);
1053 }
1054 }
1055 }
1056 }
1057 }
1058 #else
1059 void select_soundhw(const char *optarg)
1060 {
1061 }
1062 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1063 {
1064 }
1065 #endif
1066
1067 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1068 {
1069 int ret;
1070
1071 if (strlen(str) != 36) {
1072 return -1;
1073 }
1074
1075 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1076 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1077 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1078 &uuid[15]);
1079
1080 if (ret != 16) {
1081 return -1;
1082 }
1083 #ifdef TARGET_I386
1084 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
1085 #endif
1086 return 0;
1087 }
1088
1089 void do_acpitable_option(const char *optarg)
1090 {
1091 #ifdef TARGET_I386
1092 if (acpi_table_add(optarg) < 0) {
1093 fprintf(stderr, "Wrong acpi table provided\n");
1094 exit(1);
1095 }
1096 #endif
1097 }
1098
1099 void do_smbios_option(const char *optarg)
1100 {
1101 #ifdef TARGET_I386
1102 if (smbios_entry_add(optarg) < 0) {
1103 fprintf(stderr, "Wrong smbios provided\n");
1104 exit(1);
1105 }
1106 #endif
1107 }
1108
1109 void cpudef_init(void)
1110 {
1111 #if defined(cpudef_setup)
1112 cpudef_setup(); /* parse cpu definitions in target config file */
1113 #endif
1114 }
1115
1116 int audio_available(void)
1117 {
1118 #ifdef HAS_AUDIO
1119 return 1;
1120 #else
1121 return 0;
1122 #endif
1123 }
1124
1125 int tcg_available(void)
1126 {
1127 return 1;
1128 }
1129
1130 int kvm_available(void)
1131 {
1132 #ifdef CONFIG_KVM
1133 return 1;
1134 #else
1135 return 0;
1136 #endif
1137 }
1138
1139 int xen_available(void)
1140 {
1141 #ifdef CONFIG_XEN
1142 return 1;
1143 #else
1144 return 0;
1145 #endif
1146 }
1147
1148
1149 TargetInfo *qmp_query_target(Error **errp)
1150 {
1151 TargetInfo *info = g_malloc0(sizeof(*info));
1152
1153 info->arch = TARGET_TYPE;
1154
1155 return info;
1156 }