]> git.proxmox.com Git - qemu.git/blob - arch_init.c
Add top level changes for moxie
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audiodev.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "exec/gdbstub.h"
44 #include "hw/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu/config-file.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52
53 #ifdef DEBUG_ARCH_INIT
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
60
61 #ifdef TARGET_SPARC
62 int graphic_width = 1024;
63 int graphic_height = 768;
64 int graphic_depth = 8;
65 #else
66 int graphic_width = 800;
67 int graphic_height = 600;
68 int graphic_depth = 15;
69 #endif
70
71
72 #if defined(TARGET_ALPHA)
73 #define QEMU_ARCH QEMU_ARCH_ALPHA
74 #elif defined(TARGET_ARM)
75 #define QEMU_ARCH QEMU_ARCH_ARM
76 #elif defined(TARGET_CRIS)
77 #define QEMU_ARCH QEMU_ARCH_CRIS
78 #elif defined(TARGET_I386)
79 #define QEMU_ARCH QEMU_ARCH_I386
80 #elif defined(TARGET_M68K)
81 #define QEMU_ARCH QEMU_ARCH_M68K
82 #elif defined(TARGET_LM32)
83 #define QEMU_ARCH QEMU_ARCH_LM32
84 #elif defined(TARGET_MICROBLAZE)
85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
86 #elif defined(TARGET_MIPS)
87 #define QEMU_ARCH QEMU_ARCH_MIPS
88 #elif defined(TARGET_MOXIE)
89 #define QEMU_ARCH QEMU_ARCH_MOXIE
90 #elif defined(TARGET_OPENRISC)
91 #define QEMU_ARCH QEMU_ARCH_OPENRISC
92 #elif defined(TARGET_PPC)
93 #define QEMU_ARCH QEMU_ARCH_PPC
94 #elif defined(TARGET_S390X)
95 #define QEMU_ARCH QEMU_ARCH_S390X
96 #elif defined(TARGET_SH4)
97 #define QEMU_ARCH QEMU_ARCH_SH4
98 #elif defined(TARGET_SPARC)
99 #define QEMU_ARCH QEMU_ARCH_SPARC
100 #elif defined(TARGET_XTENSA)
101 #define QEMU_ARCH QEMU_ARCH_XTENSA
102 #elif defined(TARGET_UNICORE32)
103 #define QEMU_ARCH QEMU_ARCH_UNICORE32
104 #endif
105
106 const uint32_t arch_type = QEMU_ARCH;
107
108 /***********************************************************/
109 /* ram save/restore */
110
111 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
112 #define RAM_SAVE_FLAG_COMPRESS 0x02
113 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
114 #define RAM_SAVE_FLAG_PAGE 0x08
115 #define RAM_SAVE_FLAG_EOS 0x10
116 #define RAM_SAVE_FLAG_CONTINUE 0x20
117 #define RAM_SAVE_FLAG_XBZRLE 0x40
118
119 #ifdef __ALTIVEC__
120 #include <altivec.h>
121 #define VECTYPE vector unsigned char
122 #define SPLAT(p) vec_splat(vec_ld(0, p), 0)
123 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2)
124 /* altivec.h may redefine the bool macro as vector type.
125 * Reset it to POSIX semantics. */
126 #undef bool
127 #define bool _Bool
128 #elif defined __SSE2__
129 #include <emmintrin.h>
130 #define VECTYPE __m128i
131 #define SPLAT(p) _mm_set1_epi8(*(p))
132 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF)
133 #else
134 #define VECTYPE unsigned long
135 #define SPLAT(p) (*(p) * (~0UL / 255))
136 #define ALL_EQ(v1, v2) ((v1) == (v2))
137 #endif
138
139
140 static struct defconfig_file {
141 const char *filename;
142 /* Indicates it is an user config file (disabled by -no-user-config) */
143 bool userconfig;
144 } default_config_files[] = {
145 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
146 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
147 { NULL }, /* end of list */
148 };
149
150
151 int qemu_read_default_config_files(bool userconfig)
152 {
153 int ret;
154 struct defconfig_file *f;
155
156 for (f = default_config_files; f->filename; f++) {
157 if (!userconfig && f->userconfig) {
158 continue;
159 }
160 ret = qemu_read_config_file(f->filename);
161 if (ret < 0 && ret != -ENOENT) {
162 return ret;
163 }
164 }
165
166 return 0;
167 }
168
169 static int is_dup_page(uint8_t *page)
170 {
171 VECTYPE *p = (VECTYPE *)page;
172 VECTYPE val = SPLAT(page);
173 int i;
174
175 for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) {
176 if (!ALL_EQ(val, p[i])) {
177 return 0;
178 }
179 }
180
181 return 1;
182 }
183
184 /* struct contains XBZRLE cache and a static page
185 used by the compression */
186 static struct {
187 /* buffer used for XBZRLE encoding */
188 uint8_t *encoded_buf;
189 /* buffer for storing page content */
190 uint8_t *current_buf;
191 /* buffer used for XBZRLE decoding */
192 uint8_t *decoded_buf;
193 /* Cache for XBZRLE */
194 PageCache *cache;
195 } XBZRLE = {
196 .encoded_buf = NULL,
197 .current_buf = NULL,
198 .decoded_buf = NULL,
199 .cache = NULL,
200 };
201
202
203 int64_t xbzrle_cache_resize(int64_t new_size)
204 {
205 if (XBZRLE.cache != NULL) {
206 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
207 TARGET_PAGE_SIZE;
208 }
209 return pow2floor(new_size);
210 }
211
212 /* accounting for migration statistics */
213 typedef struct AccountingInfo {
214 uint64_t dup_pages;
215 uint64_t norm_pages;
216 uint64_t iterations;
217 uint64_t xbzrle_bytes;
218 uint64_t xbzrle_pages;
219 uint64_t xbzrle_cache_miss;
220 uint64_t xbzrle_overflows;
221 } AccountingInfo;
222
223 static AccountingInfo acct_info;
224
225 static void acct_clear(void)
226 {
227 memset(&acct_info, 0, sizeof(acct_info));
228 }
229
230 uint64_t dup_mig_bytes_transferred(void)
231 {
232 return acct_info.dup_pages * TARGET_PAGE_SIZE;
233 }
234
235 uint64_t dup_mig_pages_transferred(void)
236 {
237 return acct_info.dup_pages;
238 }
239
240 uint64_t norm_mig_bytes_transferred(void)
241 {
242 return acct_info.norm_pages * TARGET_PAGE_SIZE;
243 }
244
245 uint64_t norm_mig_pages_transferred(void)
246 {
247 return acct_info.norm_pages;
248 }
249
250 uint64_t xbzrle_mig_bytes_transferred(void)
251 {
252 return acct_info.xbzrle_bytes;
253 }
254
255 uint64_t xbzrle_mig_pages_transferred(void)
256 {
257 return acct_info.xbzrle_pages;
258 }
259
260 uint64_t xbzrle_mig_pages_cache_miss(void)
261 {
262 return acct_info.xbzrle_cache_miss;
263 }
264
265 uint64_t xbzrle_mig_pages_overflow(void)
266 {
267 return acct_info.xbzrle_overflows;
268 }
269
270 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
271 int cont, int flag)
272 {
273 size_t size;
274
275 qemu_put_be64(f, offset | cont | flag);
276 size = 8;
277
278 if (!cont) {
279 qemu_put_byte(f, strlen(block->idstr));
280 qemu_put_buffer(f, (uint8_t *)block->idstr,
281 strlen(block->idstr));
282 size += 1 + strlen(block->idstr);
283 }
284 return size;
285 }
286
287 #define ENCODING_FLAG_XBZRLE 0x1
288
289 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
290 ram_addr_t current_addr, RAMBlock *block,
291 ram_addr_t offset, int cont, bool last_stage)
292 {
293 int encoded_len = 0, bytes_sent = -1;
294 uint8_t *prev_cached_page;
295
296 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
297 if (!last_stage) {
298 cache_insert(XBZRLE.cache, current_addr, current_data);
299 }
300 acct_info.xbzrle_cache_miss++;
301 return -1;
302 }
303
304 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
305
306 /* save current buffer into memory */
307 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
308
309 /* XBZRLE encoding (if there is no overflow) */
310 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
311 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
312 TARGET_PAGE_SIZE);
313 if (encoded_len == 0) {
314 DPRINTF("Skipping unmodified page\n");
315 return 0;
316 } else if (encoded_len == -1) {
317 DPRINTF("Overflow\n");
318 acct_info.xbzrle_overflows++;
319 /* update data in the cache */
320 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
321 return -1;
322 }
323
324 /* we need to update the data in the cache, in order to get the same data */
325 if (!last_stage) {
326 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
327 }
328
329 /* Send XBZRLE based compressed page */
330 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
331 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
332 qemu_put_be16(f, encoded_len);
333 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
334 bytes_sent += encoded_len + 1 + 2;
335 acct_info.xbzrle_pages++;
336 acct_info.xbzrle_bytes += bytes_sent;
337
338 return bytes_sent;
339 }
340
341
342 /* This is the last block that we have visited serching for dirty pages
343 */
344 static RAMBlock *last_seen_block;
345 /* This is the last block from where we have sent data */
346 static RAMBlock *last_sent_block;
347 static ram_addr_t last_offset;
348 static unsigned long *migration_bitmap;
349 static uint64_t migration_dirty_pages;
350 static uint32_t last_version;
351
352 static inline
353 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
354 ram_addr_t start)
355 {
356 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
357 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
358 unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS);
359
360 unsigned long next = find_next_bit(migration_bitmap, size, nr);
361
362 if (next < size) {
363 clear_bit(next, migration_bitmap);
364 migration_dirty_pages--;
365 }
366 return (next - base) << TARGET_PAGE_BITS;
367 }
368
369 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
370 ram_addr_t offset)
371 {
372 bool ret;
373 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
374
375 ret = test_and_set_bit(nr, migration_bitmap);
376
377 if (!ret) {
378 migration_dirty_pages++;
379 }
380 return ret;
381 }
382
383 /* Needs iothread lock! */
384
385 static void migration_bitmap_sync(void)
386 {
387 RAMBlock *block;
388 ram_addr_t addr;
389 uint64_t num_dirty_pages_init = migration_dirty_pages;
390 MigrationState *s = migrate_get_current();
391 static int64_t start_time;
392 static int64_t num_dirty_pages_period;
393 int64_t end_time;
394
395 if (!start_time) {
396 start_time = qemu_get_clock_ms(rt_clock);
397 }
398
399 trace_migration_bitmap_sync_start();
400 memory_global_sync_dirty_bitmap(get_system_memory());
401
402 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
403 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
404 if (memory_region_test_and_clear_dirty(block->mr,
405 addr, TARGET_PAGE_SIZE,
406 DIRTY_MEMORY_MIGRATION)) {
407 migration_bitmap_set_dirty(block->mr, addr);
408 }
409 }
410 }
411 trace_migration_bitmap_sync_end(migration_dirty_pages
412 - num_dirty_pages_init);
413 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
414 end_time = qemu_get_clock_ms(rt_clock);
415
416 /* more than 1 second = 1000 millisecons */
417 if (end_time > start_time + 1000) {
418 s->dirty_pages_rate = num_dirty_pages_period * 1000
419 / (end_time - start_time);
420 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
421 start_time = end_time;
422 num_dirty_pages_period = 0;
423 }
424 }
425
426 /*
427 * ram_save_block: Writes a page of memory to the stream f
428 *
429 * Returns: The number of bytes written.
430 * 0 means no dirty pages
431 */
432
433 static int ram_save_block(QEMUFile *f, bool last_stage)
434 {
435 RAMBlock *block = last_seen_block;
436 ram_addr_t offset = last_offset;
437 bool complete_round = false;
438 int bytes_sent = 0;
439 MemoryRegion *mr;
440 ram_addr_t current_addr;
441
442 if (!block)
443 block = QTAILQ_FIRST(&ram_list.blocks);
444
445 while (true) {
446 mr = block->mr;
447 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
448 if (complete_round && block == last_seen_block &&
449 offset >= last_offset) {
450 break;
451 }
452 if (offset >= block->length) {
453 offset = 0;
454 block = QTAILQ_NEXT(block, next);
455 if (!block) {
456 block = QTAILQ_FIRST(&ram_list.blocks);
457 complete_round = true;
458 }
459 } else {
460 uint8_t *p;
461 int cont = (block == last_sent_block) ?
462 RAM_SAVE_FLAG_CONTINUE : 0;
463
464 p = memory_region_get_ram_ptr(mr) + offset;
465
466 /* In doubt sent page as normal */
467 bytes_sent = -1;
468 if (is_dup_page(p)) {
469 acct_info.dup_pages++;
470 bytes_sent = save_block_hdr(f, block, offset, cont,
471 RAM_SAVE_FLAG_COMPRESS);
472 qemu_put_byte(f, *p);
473 bytes_sent += 1;
474 } else if (migrate_use_xbzrle()) {
475 current_addr = block->offset + offset;
476 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
477 offset, cont, last_stage);
478 if (!last_stage) {
479 p = get_cached_data(XBZRLE.cache, current_addr);
480 }
481 }
482
483 /* XBZRLE overflow or normal page */
484 if (bytes_sent == -1) {
485 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
486 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
487 bytes_sent += TARGET_PAGE_SIZE;
488 acct_info.norm_pages++;
489 }
490
491 /* if page is unmodified, continue to the next */
492 if (bytes_sent > 0) {
493 last_sent_block = block;
494 break;
495 }
496 }
497 }
498 last_seen_block = block;
499 last_offset = offset;
500
501 return bytes_sent;
502 }
503
504 static uint64_t bytes_transferred;
505
506 static ram_addr_t ram_save_remaining(void)
507 {
508 return migration_dirty_pages;
509 }
510
511 uint64_t ram_bytes_remaining(void)
512 {
513 return ram_save_remaining() * TARGET_PAGE_SIZE;
514 }
515
516 uint64_t ram_bytes_transferred(void)
517 {
518 return bytes_transferred;
519 }
520
521 uint64_t ram_bytes_total(void)
522 {
523 RAMBlock *block;
524 uint64_t total = 0;
525
526 QTAILQ_FOREACH(block, &ram_list.blocks, next)
527 total += block->length;
528
529 return total;
530 }
531
532 static void migration_end(void)
533 {
534 if (migration_bitmap) {
535 memory_global_dirty_log_stop();
536 g_free(migration_bitmap);
537 migration_bitmap = NULL;
538 }
539
540 if (XBZRLE.cache) {
541 cache_fini(XBZRLE.cache);
542 g_free(XBZRLE.cache);
543 g_free(XBZRLE.encoded_buf);
544 g_free(XBZRLE.current_buf);
545 g_free(XBZRLE.decoded_buf);
546 XBZRLE.cache = NULL;
547 }
548 }
549
550 static void ram_migration_cancel(void *opaque)
551 {
552 migration_end();
553 }
554
555 static void reset_ram_globals(void)
556 {
557 last_seen_block = NULL;
558 last_sent_block = NULL;
559 last_offset = 0;
560 last_version = ram_list.version;
561 }
562
563 #define MAX_WAIT 50 /* ms, half buffered_file limit */
564
565 static int ram_save_setup(QEMUFile *f, void *opaque)
566 {
567 RAMBlock *block;
568 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
569
570 migration_bitmap = bitmap_new(ram_pages);
571 bitmap_set(migration_bitmap, 0, ram_pages);
572 migration_dirty_pages = ram_pages;
573
574 if (migrate_use_xbzrle()) {
575 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
576 TARGET_PAGE_SIZE,
577 TARGET_PAGE_SIZE);
578 if (!XBZRLE.cache) {
579 DPRINTF("Error creating cache\n");
580 return -1;
581 }
582 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
583 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
584 acct_clear();
585 }
586
587 qemu_mutex_lock_iothread();
588 qemu_mutex_lock_ramlist();
589 bytes_transferred = 0;
590 reset_ram_globals();
591
592 memory_global_dirty_log_start();
593 migration_bitmap_sync();
594 qemu_mutex_unlock_iothread();
595
596 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
597
598 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
599 qemu_put_byte(f, strlen(block->idstr));
600 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
601 qemu_put_be64(f, block->length);
602 }
603
604 qemu_mutex_unlock_ramlist();
605 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
606
607 return 0;
608 }
609
610 static int ram_save_iterate(QEMUFile *f, void *opaque)
611 {
612 int ret;
613 int i;
614 int64_t t0;
615 int total_sent = 0;
616
617 qemu_mutex_lock_ramlist();
618
619 if (ram_list.version != last_version) {
620 reset_ram_globals();
621 }
622
623 t0 = qemu_get_clock_ns(rt_clock);
624 i = 0;
625 while ((ret = qemu_file_rate_limit(f)) == 0) {
626 int bytes_sent;
627
628 bytes_sent = ram_save_block(f, false);
629 /* no more blocks to sent */
630 if (bytes_sent == 0) {
631 break;
632 }
633 total_sent += bytes_sent;
634 acct_info.iterations++;
635 /* we want to check in the 1st loop, just in case it was the 1st time
636 and we had to sync the dirty bitmap.
637 qemu_get_clock_ns() is a bit expensive, so we only check each some
638 iterations
639 */
640 if ((i & 63) == 0) {
641 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000;
642 if (t1 > MAX_WAIT) {
643 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
644 t1, i);
645 break;
646 }
647 }
648 i++;
649 }
650
651 qemu_mutex_unlock_ramlist();
652
653 if (ret < 0) {
654 bytes_transferred += total_sent;
655 return ret;
656 }
657
658 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
659 total_sent += 8;
660 bytes_transferred += total_sent;
661
662 return total_sent;
663 }
664
665 static int ram_save_complete(QEMUFile *f, void *opaque)
666 {
667 qemu_mutex_lock_ramlist();
668 migration_bitmap_sync();
669
670 /* try transferring iterative blocks of memory */
671
672 /* flush all remaining blocks regardless of rate limiting */
673 while (true) {
674 int bytes_sent;
675
676 bytes_sent = ram_save_block(f, true);
677 /* no more blocks to sent */
678 if (bytes_sent == 0) {
679 break;
680 }
681 bytes_transferred += bytes_sent;
682 }
683 migration_end();
684
685 qemu_mutex_unlock_ramlist();
686 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
687
688 return 0;
689 }
690
691 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
692 {
693 uint64_t remaining_size;
694
695 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
696
697 if (remaining_size < max_size) {
698 qemu_mutex_lock_iothread();
699 migration_bitmap_sync();
700 qemu_mutex_unlock_iothread();
701 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
702 }
703 return remaining_size;
704 }
705
706 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
707 {
708 int ret, rc = 0;
709 unsigned int xh_len;
710 int xh_flags;
711
712 if (!XBZRLE.decoded_buf) {
713 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
714 }
715
716 /* extract RLE header */
717 xh_flags = qemu_get_byte(f);
718 xh_len = qemu_get_be16(f);
719
720 if (xh_flags != ENCODING_FLAG_XBZRLE) {
721 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
722 return -1;
723 }
724
725 if (xh_len > TARGET_PAGE_SIZE) {
726 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
727 return -1;
728 }
729 /* load data and decode */
730 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
731
732 /* decode RLE */
733 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
734 TARGET_PAGE_SIZE);
735 if (ret == -1) {
736 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
737 rc = -1;
738 } else if (ret > TARGET_PAGE_SIZE) {
739 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
740 ret, TARGET_PAGE_SIZE);
741 abort();
742 }
743
744 return rc;
745 }
746
747 static inline void *host_from_stream_offset(QEMUFile *f,
748 ram_addr_t offset,
749 int flags)
750 {
751 static RAMBlock *block = NULL;
752 char id[256];
753 uint8_t len;
754
755 if (flags & RAM_SAVE_FLAG_CONTINUE) {
756 if (!block) {
757 fprintf(stderr, "Ack, bad migration stream!\n");
758 return NULL;
759 }
760
761 return memory_region_get_ram_ptr(block->mr) + offset;
762 }
763
764 len = qemu_get_byte(f);
765 qemu_get_buffer(f, (uint8_t *)id, len);
766 id[len] = 0;
767
768 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
769 if (!strncmp(id, block->idstr, sizeof(id)))
770 return memory_region_get_ram_ptr(block->mr) + offset;
771 }
772
773 fprintf(stderr, "Can't find block %s!\n", id);
774 return NULL;
775 }
776
777 static int ram_load(QEMUFile *f, void *opaque, int version_id)
778 {
779 ram_addr_t addr;
780 int flags, ret = 0;
781 int error;
782 static uint64_t seq_iter;
783
784 seq_iter++;
785
786 if (version_id < 4 || version_id > 4) {
787 return -EINVAL;
788 }
789
790 do {
791 addr = qemu_get_be64(f);
792
793 flags = addr & ~TARGET_PAGE_MASK;
794 addr &= TARGET_PAGE_MASK;
795
796 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
797 if (version_id == 4) {
798 /* Synchronize RAM block list */
799 char id[256];
800 ram_addr_t length;
801 ram_addr_t total_ram_bytes = addr;
802
803 while (total_ram_bytes) {
804 RAMBlock *block;
805 uint8_t len;
806
807 len = qemu_get_byte(f);
808 qemu_get_buffer(f, (uint8_t *)id, len);
809 id[len] = 0;
810 length = qemu_get_be64(f);
811
812 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
813 if (!strncmp(id, block->idstr, sizeof(id))) {
814 if (block->length != length) {
815 ret = -EINVAL;
816 goto done;
817 }
818 break;
819 }
820 }
821
822 if (!block) {
823 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
824 "accept migration\n", id);
825 ret = -EINVAL;
826 goto done;
827 }
828
829 total_ram_bytes -= length;
830 }
831 }
832 }
833
834 if (flags & RAM_SAVE_FLAG_COMPRESS) {
835 void *host;
836 uint8_t ch;
837
838 host = host_from_stream_offset(f, addr, flags);
839 if (!host) {
840 return -EINVAL;
841 }
842
843 ch = qemu_get_byte(f);
844 memset(host, ch, TARGET_PAGE_SIZE);
845 #ifndef _WIN32
846 if (ch == 0 &&
847 (!kvm_enabled() || kvm_has_sync_mmu()) &&
848 getpagesize() <= TARGET_PAGE_SIZE) {
849 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
850 }
851 #endif
852 } else if (flags & RAM_SAVE_FLAG_PAGE) {
853 void *host;
854
855 host = host_from_stream_offset(f, addr, flags);
856 if (!host) {
857 return -EINVAL;
858 }
859
860 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
861 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
862 void *host = host_from_stream_offset(f, addr, flags);
863 if (!host) {
864 return -EINVAL;
865 }
866
867 if (load_xbzrle(f, addr, host) < 0) {
868 ret = -EINVAL;
869 goto done;
870 }
871 }
872 error = qemu_file_get_error(f);
873 if (error) {
874 ret = error;
875 goto done;
876 }
877 } while (!(flags & RAM_SAVE_FLAG_EOS));
878
879 done:
880 DPRINTF("Completed load of VM with exit code %d seq iteration "
881 "%" PRIu64 "\n", ret, seq_iter);
882 return ret;
883 }
884
885 SaveVMHandlers savevm_ram_handlers = {
886 .save_live_setup = ram_save_setup,
887 .save_live_iterate = ram_save_iterate,
888 .save_live_complete = ram_save_complete,
889 .save_live_pending = ram_save_pending,
890 .load_state = ram_load,
891 .cancel = ram_migration_cancel,
892 };
893
894 #ifdef HAS_AUDIO
895 struct soundhw {
896 const char *name;
897 const char *descr;
898 int enabled;
899 int isa;
900 union {
901 int (*init_isa) (ISABus *bus);
902 int (*init_pci) (PCIBus *bus);
903 } init;
904 };
905
906 static struct soundhw soundhw[] = {
907 #ifdef HAS_AUDIO_CHOICE
908 #ifdef CONFIG_PCSPK
909 {
910 "pcspk",
911 "PC speaker",
912 0,
913 1,
914 { .init_isa = pcspk_audio_init }
915 },
916 #endif
917
918 #ifdef CONFIG_SB16
919 {
920 "sb16",
921 "Creative Sound Blaster 16",
922 0,
923 1,
924 { .init_isa = SB16_init }
925 },
926 #endif
927
928 #ifdef CONFIG_CS4231A
929 {
930 "cs4231a",
931 "CS4231A",
932 0,
933 1,
934 { .init_isa = cs4231a_init }
935 },
936 #endif
937
938 #ifdef CONFIG_ADLIB
939 {
940 "adlib",
941 #ifdef HAS_YMF262
942 "Yamaha YMF262 (OPL3)",
943 #else
944 "Yamaha YM3812 (OPL2)",
945 #endif
946 0,
947 1,
948 { .init_isa = Adlib_init }
949 },
950 #endif
951
952 #ifdef CONFIG_GUS
953 {
954 "gus",
955 "Gravis Ultrasound GF1",
956 0,
957 1,
958 { .init_isa = GUS_init }
959 },
960 #endif
961
962 #ifdef CONFIG_AC97
963 {
964 "ac97",
965 "Intel 82801AA AC97 Audio",
966 0,
967 0,
968 { .init_pci = ac97_init }
969 },
970 #endif
971
972 #ifdef CONFIG_ES1370
973 {
974 "es1370",
975 "ENSONIQ AudioPCI ES1370",
976 0,
977 0,
978 { .init_pci = es1370_init }
979 },
980 #endif
981
982 #ifdef CONFIG_HDA
983 {
984 "hda",
985 "Intel HD Audio",
986 0,
987 0,
988 { .init_pci = intel_hda_and_codec_init }
989 },
990 #endif
991
992 #endif /* HAS_AUDIO_CHOICE */
993
994 { NULL, NULL, 0, 0, { NULL } }
995 };
996
997 void select_soundhw(const char *optarg)
998 {
999 struct soundhw *c;
1000
1001 if (is_help_option(optarg)) {
1002 show_valid_cards:
1003
1004 #ifdef HAS_AUDIO_CHOICE
1005 printf("Valid sound card names (comma separated):\n");
1006 for (c = soundhw; c->name; ++c) {
1007 printf ("%-11s %s\n", c->name, c->descr);
1008 }
1009 printf("\n-soundhw all will enable all of the above\n");
1010 #else
1011 printf("Machine has no user-selectable audio hardware "
1012 "(it may or may not have always-present audio hardware).\n");
1013 #endif
1014 exit(!is_help_option(optarg));
1015 }
1016 else {
1017 size_t l;
1018 const char *p;
1019 char *e;
1020 int bad_card = 0;
1021
1022 if (!strcmp(optarg, "all")) {
1023 for (c = soundhw; c->name; ++c) {
1024 c->enabled = 1;
1025 }
1026 return;
1027 }
1028
1029 p = optarg;
1030 while (*p) {
1031 e = strchr(p, ',');
1032 l = !e ? strlen(p) : (size_t) (e - p);
1033
1034 for (c = soundhw; c->name; ++c) {
1035 if (!strncmp(c->name, p, l) && !c->name[l]) {
1036 c->enabled = 1;
1037 break;
1038 }
1039 }
1040
1041 if (!c->name) {
1042 if (l > 80) {
1043 fprintf(stderr,
1044 "Unknown sound card name (too big to show)\n");
1045 }
1046 else {
1047 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1048 (int) l, p);
1049 }
1050 bad_card = 1;
1051 }
1052 p += l + (e != NULL);
1053 }
1054
1055 if (bad_card) {
1056 goto show_valid_cards;
1057 }
1058 }
1059 }
1060
1061 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1062 {
1063 struct soundhw *c;
1064
1065 for (c = soundhw; c->name; ++c) {
1066 if (c->enabled) {
1067 if (c->isa) {
1068 if (isa_bus) {
1069 c->init.init_isa(isa_bus);
1070 }
1071 } else {
1072 if (pci_bus) {
1073 c->init.init_pci(pci_bus);
1074 }
1075 }
1076 }
1077 }
1078 }
1079 #else
1080 void select_soundhw(const char *optarg)
1081 {
1082 }
1083 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1084 {
1085 }
1086 #endif
1087
1088 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1089 {
1090 int ret;
1091
1092 if (strlen(str) != 36) {
1093 return -1;
1094 }
1095
1096 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1097 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1098 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1099 &uuid[15]);
1100
1101 if (ret != 16) {
1102 return -1;
1103 }
1104 #ifdef TARGET_I386
1105 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
1106 #endif
1107 return 0;
1108 }
1109
1110 void do_acpitable_option(const char *optarg)
1111 {
1112 #ifdef TARGET_I386
1113 if (acpi_table_add(optarg) < 0) {
1114 fprintf(stderr, "Wrong acpi table provided\n");
1115 exit(1);
1116 }
1117 #endif
1118 }
1119
1120 void do_smbios_option(const char *optarg)
1121 {
1122 #ifdef TARGET_I386
1123 if (smbios_entry_add(optarg) < 0) {
1124 fprintf(stderr, "Wrong smbios provided\n");
1125 exit(1);
1126 }
1127 #endif
1128 }
1129
1130 void cpudef_init(void)
1131 {
1132 #if defined(cpudef_setup)
1133 cpudef_setup(); /* parse cpu definitions in target config file */
1134 #endif
1135 }
1136
1137 int audio_available(void)
1138 {
1139 #ifdef HAS_AUDIO
1140 return 1;
1141 #else
1142 return 0;
1143 #endif
1144 }
1145
1146 int tcg_available(void)
1147 {
1148 return 1;
1149 }
1150
1151 int kvm_available(void)
1152 {
1153 #ifdef CONFIG_KVM
1154 return 1;
1155 #else
1156 return 0;
1157 #endif
1158 }
1159
1160 int xen_available(void)
1161 {
1162 #ifdef CONFIG_XEN
1163 return 1;
1164 #else
1165 return 0;
1166 #endif
1167 }
1168
1169
1170 TargetInfo *qmp_query_target(Error **errp)
1171 {
1172 TargetInfo *info = g_malloc0(sizeof(*info));
1173
1174 info->arch = TARGET_TYPE;
1175
1176 return info;
1177 }