]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
block: Unhash block device inodes on gendisk destruction
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42 #include "blk-mq-sched.h"
43 #include "blk-wbt.h"
44
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
49 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
50
51 DEFINE_IDA(blk_queue_ida);
52
53 /*
54 * For the allocated request tables
55 */
56 struct kmem_cache *request_cachep;
57
58 /*
59 * For queue allocation
60 */
61 struct kmem_cache *blk_requestq_cachep;
62
63 /*
64 * Controlling structure to kblockd
65 */
66 static struct workqueue_struct *kblockd_workqueue;
67
68 static void blk_clear_congested(struct request_list *rl, int sync)
69 {
70 #ifdef CONFIG_CGROUP_WRITEBACK
71 clear_wb_congested(rl->blkg->wb_congested, sync);
72 #else
73 /*
74 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
75 * flip its congestion state for events on other blkcgs.
76 */
77 if (rl == &rl->q->root_rl)
78 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
79 #endif
80 }
81
82 static void blk_set_congested(struct request_list *rl, int sync)
83 {
84 #ifdef CONFIG_CGROUP_WRITEBACK
85 set_wb_congested(rl->blkg->wb_congested, sync);
86 #else
87 /* see blk_clear_congested() */
88 if (rl == &rl->q->root_rl)
89 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
90 #endif
91 }
92
93 void blk_queue_congestion_threshold(struct request_queue *q)
94 {
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106 }
107
108 /**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info. This function can only be called if @bdev is opened
114 * and the return value is never NULL.
115 */
116 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
117 {
118 struct request_queue *q = bdev_get_queue(bdev);
119
120 return &q->backing_dev_info;
121 }
122 EXPORT_SYMBOL(blk_get_backing_dev_info);
123
124 void blk_rq_init(struct request_queue *q, struct request *rq)
125 {
126 memset(rq, 0, sizeof(*rq));
127
128 INIT_LIST_HEAD(&rq->queuelist);
129 INIT_LIST_HEAD(&rq->timeout_list);
130 rq->cpu = -1;
131 rq->q = q;
132 rq->__sector = (sector_t) -1;
133 INIT_HLIST_NODE(&rq->hash);
134 RB_CLEAR_NODE(&rq->rb_node);
135 rq->tag = -1;
136 rq->internal_tag = -1;
137 rq->start_time = jiffies;
138 set_start_time_ns(rq);
139 rq->part = NULL;
140 }
141 EXPORT_SYMBOL(blk_rq_init);
142
143 static void req_bio_endio(struct request *rq, struct bio *bio,
144 unsigned int nbytes, int error)
145 {
146 if (error)
147 bio->bi_error = error;
148
149 if (unlikely(rq->rq_flags & RQF_QUIET))
150 bio_set_flag(bio, BIO_QUIET);
151
152 bio_advance(bio, nbytes);
153
154 /* don't actually finish bio if it's part of flush sequence */
155 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
156 bio_endio(bio);
157 }
158
159 void blk_dump_rq_flags(struct request *rq, char *msg)
160 {
161 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
162 rq->rq_disk ? rq->rq_disk->disk_name : "?",
163 (unsigned long long) rq->cmd_flags);
164
165 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
166 (unsigned long long)blk_rq_pos(rq),
167 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
168 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
169 rq->bio, rq->biotail, blk_rq_bytes(rq));
170 }
171 EXPORT_SYMBOL(blk_dump_rq_flags);
172
173 static void blk_delay_work(struct work_struct *work)
174 {
175 struct request_queue *q;
176
177 q = container_of(work, struct request_queue, delay_work.work);
178 spin_lock_irq(q->queue_lock);
179 __blk_run_queue(q);
180 spin_unlock_irq(q->queue_lock);
181 }
182
183 /**
184 * blk_delay_queue - restart queueing after defined interval
185 * @q: The &struct request_queue in question
186 * @msecs: Delay in msecs
187 *
188 * Description:
189 * Sometimes queueing needs to be postponed for a little while, to allow
190 * resources to come back. This function will make sure that queueing is
191 * restarted around the specified time. Queue lock must be held.
192 */
193 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
194 {
195 if (likely(!blk_queue_dead(q)))
196 queue_delayed_work(kblockd_workqueue, &q->delay_work,
197 msecs_to_jiffies(msecs));
198 }
199 EXPORT_SYMBOL(blk_delay_queue);
200
201 /**
202 * blk_start_queue_async - asynchronously restart a previously stopped queue
203 * @q: The &struct request_queue in question
204 *
205 * Description:
206 * blk_start_queue_async() will clear the stop flag on the queue, and
207 * ensure that the request_fn for the queue is run from an async
208 * context.
209 **/
210 void blk_start_queue_async(struct request_queue *q)
211 {
212 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
213 blk_run_queue_async(q);
214 }
215 EXPORT_SYMBOL(blk_start_queue_async);
216
217 /**
218 * blk_start_queue - restart a previously stopped queue
219 * @q: The &struct request_queue in question
220 *
221 * Description:
222 * blk_start_queue() will clear the stop flag on the queue, and call
223 * the request_fn for the queue if it was in a stopped state when
224 * entered. Also see blk_stop_queue(). Queue lock must be held.
225 **/
226 void blk_start_queue(struct request_queue *q)
227 {
228 WARN_ON(!irqs_disabled());
229
230 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
231 __blk_run_queue(q);
232 }
233 EXPORT_SYMBOL(blk_start_queue);
234
235 /**
236 * blk_stop_queue - stop a queue
237 * @q: The &struct request_queue in question
238 *
239 * Description:
240 * The Linux block layer assumes that a block driver will consume all
241 * entries on the request queue when the request_fn strategy is called.
242 * Often this will not happen, because of hardware limitations (queue
243 * depth settings). If a device driver gets a 'queue full' response,
244 * or if it simply chooses not to queue more I/O at one point, it can
245 * call this function to prevent the request_fn from being called until
246 * the driver has signalled it's ready to go again. This happens by calling
247 * blk_start_queue() to restart queue operations. Queue lock must be held.
248 **/
249 void blk_stop_queue(struct request_queue *q)
250 {
251 cancel_delayed_work(&q->delay_work);
252 queue_flag_set(QUEUE_FLAG_STOPPED, q);
253 }
254 EXPORT_SYMBOL(blk_stop_queue);
255
256 /**
257 * blk_sync_queue - cancel any pending callbacks on a queue
258 * @q: the queue
259 *
260 * Description:
261 * The block layer may perform asynchronous callback activity
262 * on a queue, such as calling the unplug function after a timeout.
263 * A block device may call blk_sync_queue to ensure that any
264 * such activity is cancelled, thus allowing it to release resources
265 * that the callbacks might use. The caller must already have made sure
266 * that its ->make_request_fn will not re-add plugging prior to calling
267 * this function.
268 *
269 * This function does not cancel any asynchronous activity arising
270 * out of elevator or throttling code. That would require elevator_exit()
271 * and blkcg_exit_queue() to be called with queue lock initialized.
272 *
273 */
274 void blk_sync_queue(struct request_queue *q)
275 {
276 del_timer_sync(&q->timeout);
277
278 if (q->mq_ops) {
279 struct blk_mq_hw_ctx *hctx;
280 int i;
281
282 queue_for_each_hw_ctx(q, hctx, i) {
283 cancel_work_sync(&hctx->run_work);
284 cancel_delayed_work_sync(&hctx->delay_work);
285 }
286 } else {
287 cancel_delayed_work_sync(&q->delay_work);
288 }
289 }
290 EXPORT_SYMBOL(blk_sync_queue);
291
292 /**
293 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
294 * @q: The queue to run
295 *
296 * Description:
297 * Invoke request handling on a queue if there are any pending requests.
298 * May be used to restart request handling after a request has completed.
299 * This variant runs the queue whether or not the queue has been
300 * stopped. Must be called with the queue lock held and interrupts
301 * disabled. See also @blk_run_queue.
302 */
303 inline void __blk_run_queue_uncond(struct request_queue *q)
304 {
305 if (unlikely(blk_queue_dead(q)))
306 return;
307
308 /*
309 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
310 * the queue lock internally. As a result multiple threads may be
311 * running such a request function concurrently. Keep track of the
312 * number of active request_fn invocations such that blk_drain_queue()
313 * can wait until all these request_fn calls have finished.
314 */
315 q->request_fn_active++;
316 q->request_fn(q);
317 q->request_fn_active--;
318 }
319 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
320
321 /**
322 * __blk_run_queue - run a single device queue
323 * @q: The queue to run
324 *
325 * Description:
326 * See @blk_run_queue. This variant must be called with the queue lock
327 * held and interrupts disabled.
328 */
329 void __blk_run_queue(struct request_queue *q)
330 {
331 if (unlikely(blk_queue_stopped(q)))
332 return;
333
334 __blk_run_queue_uncond(q);
335 }
336 EXPORT_SYMBOL(__blk_run_queue);
337
338 /**
339 * blk_run_queue_async - run a single device queue in workqueue context
340 * @q: The queue to run
341 *
342 * Description:
343 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
344 * of us. The caller must hold the queue lock.
345 */
346 void blk_run_queue_async(struct request_queue *q)
347 {
348 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
349 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
350 }
351 EXPORT_SYMBOL(blk_run_queue_async);
352
353 /**
354 * blk_run_queue - run a single device queue
355 * @q: The queue to run
356 *
357 * Description:
358 * Invoke request handling on this queue, if it has pending work to do.
359 * May be used to restart queueing when a request has completed.
360 */
361 void blk_run_queue(struct request_queue *q)
362 {
363 unsigned long flags;
364
365 spin_lock_irqsave(q->queue_lock, flags);
366 __blk_run_queue(q);
367 spin_unlock_irqrestore(q->queue_lock, flags);
368 }
369 EXPORT_SYMBOL(blk_run_queue);
370
371 void blk_put_queue(struct request_queue *q)
372 {
373 kobject_put(&q->kobj);
374 }
375 EXPORT_SYMBOL(blk_put_queue);
376
377 /**
378 * __blk_drain_queue - drain requests from request_queue
379 * @q: queue to drain
380 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
381 *
382 * Drain requests from @q. If @drain_all is set, all requests are drained.
383 * If not, only ELVPRIV requests are drained. The caller is responsible
384 * for ensuring that no new requests which need to be drained are queued.
385 */
386 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
387 __releases(q->queue_lock)
388 __acquires(q->queue_lock)
389 {
390 int i;
391
392 lockdep_assert_held(q->queue_lock);
393
394 while (true) {
395 bool drain = false;
396
397 /*
398 * The caller might be trying to drain @q before its
399 * elevator is initialized.
400 */
401 if (q->elevator)
402 elv_drain_elevator(q);
403
404 blkcg_drain_queue(q);
405
406 /*
407 * This function might be called on a queue which failed
408 * driver init after queue creation or is not yet fully
409 * active yet. Some drivers (e.g. fd and loop) get unhappy
410 * in such cases. Kick queue iff dispatch queue has
411 * something on it and @q has request_fn set.
412 */
413 if (!list_empty(&q->queue_head) && q->request_fn)
414 __blk_run_queue(q);
415
416 drain |= q->nr_rqs_elvpriv;
417 drain |= q->request_fn_active;
418
419 /*
420 * Unfortunately, requests are queued at and tracked from
421 * multiple places and there's no single counter which can
422 * be drained. Check all the queues and counters.
423 */
424 if (drain_all) {
425 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
426 drain |= !list_empty(&q->queue_head);
427 for (i = 0; i < 2; i++) {
428 drain |= q->nr_rqs[i];
429 drain |= q->in_flight[i];
430 if (fq)
431 drain |= !list_empty(&fq->flush_queue[i]);
432 }
433 }
434
435 if (!drain)
436 break;
437
438 spin_unlock_irq(q->queue_lock);
439
440 msleep(10);
441
442 spin_lock_irq(q->queue_lock);
443 }
444
445 /*
446 * With queue marked dead, any woken up waiter will fail the
447 * allocation path, so the wakeup chaining is lost and we're
448 * left with hung waiters. We need to wake up those waiters.
449 */
450 if (q->request_fn) {
451 struct request_list *rl;
452
453 blk_queue_for_each_rl(rl, q)
454 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
455 wake_up_all(&rl->wait[i]);
456 }
457 }
458
459 /**
460 * blk_queue_bypass_start - enter queue bypass mode
461 * @q: queue of interest
462 *
463 * In bypass mode, only the dispatch FIFO queue of @q is used. This
464 * function makes @q enter bypass mode and drains all requests which were
465 * throttled or issued before. On return, it's guaranteed that no request
466 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
467 * inside queue or RCU read lock.
468 */
469 void blk_queue_bypass_start(struct request_queue *q)
470 {
471 spin_lock_irq(q->queue_lock);
472 q->bypass_depth++;
473 queue_flag_set(QUEUE_FLAG_BYPASS, q);
474 spin_unlock_irq(q->queue_lock);
475
476 /*
477 * Queues start drained. Skip actual draining till init is
478 * complete. This avoids lenghty delays during queue init which
479 * can happen many times during boot.
480 */
481 if (blk_queue_init_done(q)) {
482 spin_lock_irq(q->queue_lock);
483 __blk_drain_queue(q, false);
484 spin_unlock_irq(q->queue_lock);
485
486 /* ensure blk_queue_bypass() is %true inside RCU read lock */
487 synchronize_rcu();
488 }
489 }
490 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
491
492 /**
493 * blk_queue_bypass_end - leave queue bypass mode
494 * @q: queue of interest
495 *
496 * Leave bypass mode and restore the normal queueing behavior.
497 */
498 void blk_queue_bypass_end(struct request_queue *q)
499 {
500 spin_lock_irq(q->queue_lock);
501 if (!--q->bypass_depth)
502 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
503 WARN_ON_ONCE(q->bypass_depth < 0);
504 spin_unlock_irq(q->queue_lock);
505 }
506 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
507
508 void blk_set_queue_dying(struct request_queue *q)
509 {
510 spin_lock_irq(q->queue_lock);
511 queue_flag_set(QUEUE_FLAG_DYING, q);
512 spin_unlock_irq(q->queue_lock);
513
514 if (q->mq_ops)
515 blk_mq_wake_waiters(q);
516 else {
517 struct request_list *rl;
518
519 blk_queue_for_each_rl(rl, q) {
520 if (rl->rq_pool) {
521 wake_up(&rl->wait[BLK_RW_SYNC]);
522 wake_up(&rl->wait[BLK_RW_ASYNC]);
523 }
524 }
525 }
526 }
527 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
528
529 /**
530 * blk_cleanup_queue - shutdown a request queue
531 * @q: request queue to shutdown
532 *
533 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
534 * put it. All future requests will be failed immediately with -ENODEV.
535 */
536 void blk_cleanup_queue(struct request_queue *q)
537 {
538 spinlock_t *lock = q->queue_lock;
539
540 /* mark @q DYING, no new request or merges will be allowed afterwards */
541 mutex_lock(&q->sysfs_lock);
542 blk_set_queue_dying(q);
543 spin_lock_irq(lock);
544
545 /*
546 * A dying queue is permanently in bypass mode till released. Note
547 * that, unlike blk_queue_bypass_start(), we aren't performing
548 * synchronize_rcu() after entering bypass mode to avoid the delay
549 * as some drivers create and destroy a lot of queues while
550 * probing. This is still safe because blk_release_queue() will be
551 * called only after the queue refcnt drops to zero and nothing,
552 * RCU or not, would be traversing the queue by then.
553 */
554 q->bypass_depth++;
555 queue_flag_set(QUEUE_FLAG_BYPASS, q);
556
557 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
558 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
559 queue_flag_set(QUEUE_FLAG_DYING, q);
560 spin_unlock_irq(lock);
561 mutex_unlock(&q->sysfs_lock);
562
563 /*
564 * Drain all requests queued before DYING marking. Set DEAD flag to
565 * prevent that q->request_fn() gets invoked after draining finished.
566 */
567 blk_freeze_queue(q);
568 spin_lock_irq(lock);
569 if (!q->mq_ops)
570 __blk_drain_queue(q, true);
571 queue_flag_set(QUEUE_FLAG_DEAD, q);
572 spin_unlock_irq(lock);
573
574 /* for synchronous bio-based driver finish in-flight integrity i/o */
575 blk_flush_integrity();
576
577 /* @q won't process any more request, flush async actions */
578 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
579 blk_sync_queue(q);
580
581 if (q->mq_ops)
582 blk_mq_free_queue(q);
583 percpu_ref_exit(&q->q_usage_counter);
584
585 spin_lock_irq(lock);
586 if (q->queue_lock != &q->__queue_lock)
587 q->queue_lock = &q->__queue_lock;
588 spin_unlock_irq(lock);
589
590 bdi_unregister(&q->backing_dev_info);
591
592 /* @q is and will stay empty, shutdown and put */
593 blk_put_queue(q);
594 }
595 EXPORT_SYMBOL(blk_cleanup_queue);
596
597 /* Allocate memory local to the request queue */
598 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
599 {
600 struct request_queue *q = data;
601
602 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
603 }
604
605 static void free_request_simple(void *element, void *data)
606 {
607 kmem_cache_free(request_cachep, element);
608 }
609
610 static void *alloc_request_size(gfp_t gfp_mask, void *data)
611 {
612 struct request_queue *q = data;
613 struct request *rq;
614
615 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
616 q->node);
617 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
618 kfree(rq);
619 rq = NULL;
620 }
621 return rq;
622 }
623
624 static void free_request_size(void *element, void *data)
625 {
626 struct request_queue *q = data;
627
628 if (q->exit_rq_fn)
629 q->exit_rq_fn(q, element);
630 kfree(element);
631 }
632
633 int blk_init_rl(struct request_list *rl, struct request_queue *q,
634 gfp_t gfp_mask)
635 {
636 if (unlikely(rl->rq_pool))
637 return 0;
638
639 rl->q = q;
640 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
641 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
642 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
643 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
644
645 if (q->cmd_size) {
646 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
647 alloc_request_size, free_request_size,
648 q, gfp_mask, q->node);
649 } else {
650 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
651 alloc_request_simple, free_request_simple,
652 q, gfp_mask, q->node);
653 }
654 if (!rl->rq_pool)
655 return -ENOMEM;
656
657 return 0;
658 }
659
660 void blk_exit_rl(struct request_list *rl)
661 {
662 if (rl->rq_pool)
663 mempool_destroy(rl->rq_pool);
664 }
665
666 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
667 {
668 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
669 }
670 EXPORT_SYMBOL(blk_alloc_queue);
671
672 int blk_queue_enter(struct request_queue *q, bool nowait)
673 {
674 while (true) {
675 int ret;
676
677 if (percpu_ref_tryget_live(&q->q_usage_counter))
678 return 0;
679
680 if (nowait)
681 return -EBUSY;
682
683 ret = wait_event_interruptible(q->mq_freeze_wq,
684 !atomic_read(&q->mq_freeze_depth) ||
685 blk_queue_dying(q));
686 if (blk_queue_dying(q))
687 return -ENODEV;
688 if (ret)
689 return ret;
690 }
691 }
692
693 void blk_queue_exit(struct request_queue *q)
694 {
695 percpu_ref_put(&q->q_usage_counter);
696 }
697
698 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
699 {
700 struct request_queue *q =
701 container_of(ref, struct request_queue, q_usage_counter);
702
703 wake_up_all(&q->mq_freeze_wq);
704 }
705
706 static void blk_rq_timed_out_timer(unsigned long data)
707 {
708 struct request_queue *q = (struct request_queue *)data;
709
710 kblockd_schedule_work(&q->timeout_work);
711 }
712
713 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
714 {
715 struct request_queue *q;
716 int err;
717
718 q = kmem_cache_alloc_node(blk_requestq_cachep,
719 gfp_mask | __GFP_ZERO, node_id);
720 if (!q)
721 return NULL;
722
723 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
724 if (q->id < 0)
725 goto fail_q;
726
727 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
728 if (!q->bio_split)
729 goto fail_id;
730
731 q->backing_dev_info.ra_pages =
732 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
733 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
734 q->backing_dev_info.name = "block";
735 q->node = node_id;
736
737 err = bdi_init(&q->backing_dev_info);
738 if (err)
739 goto fail_split;
740
741 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
742 laptop_mode_timer_fn, (unsigned long) q);
743 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
744 INIT_LIST_HEAD(&q->queue_head);
745 INIT_LIST_HEAD(&q->timeout_list);
746 INIT_LIST_HEAD(&q->icq_list);
747 #ifdef CONFIG_BLK_CGROUP
748 INIT_LIST_HEAD(&q->blkg_list);
749 #endif
750 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
751
752 kobject_init(&q->kobj, &blk_queue_ktype);
753
754 mutex_init(&q->sysfs_lock);
755 spin_lock_init(&q->__queue_lock);
756
757 /*
758 * By default initialize queue_lock to internal lock and driver can
759 * override it later if need be.
760 */
761 q->queue_lock = &q->__queue_lock;
762
763 /*
764 * A queue starts its life with bypass turned on to avoid
765 * unnecessary bypass on/off overhead and nasty surprises during
766 * init. The initial bypass will be finished when the queue is
767 * registered by blk_register_queue().
768 */
769 q->bypass_depth = 1;
770 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
771
772 init_waitqueue_head(&q->mq_freeze_wq);
773
774 /*
775 * Init percpu_ref in atomic mode so that it's faster to shutdown.
776 * See blk_register_queue() for details.
777 */
778 if (percpu_ref_init(&q->q_usage_counter,
779 blk_queue_usage_counter_release,
780 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
781 goto fail_bdi;
782
783 if (blkcg_init_queue(q))
784 goto fail_ref;
785
786 return q;
787
788 fail_ref:
789 percpu_ref_exit(&q->q_usage_counter);
790 fail_bdi:
791 bdi_destroy(&q->backing_dev_info);
792 fail_split:
793 bioset_free(q->bio_split);
794 fail_id:
795 ida_simple_remove(&blk_queue_ida, q->id);
796 fail_q:
797 kmem_cache_free(blk_requestq_cachep, q);
798 return NULL;
799 }
800 EXPORT_SYMBOL(blk_alloc_queue_node);
801
802 /**
803 * blk_init_queue - prepare a request queue for use with a block device
804 * @rfn: The function to be called to process requests that have been
805 * placed on the queue.
806 * @lock: Request queue spin lock
807 *
808 * Description:
809 * If a block device wishes to use the standard request handling procedures,
810 * which sorts requests and coalesces adjacent requests, then it must
811 * call blk_init_queue(). The function @rfn will be called when there
812 * are requests on the queue that need to be processed. If the device
813 * supports plugging, then @rfn may not be called immediately when requests
814 * are available on the queue, but may be called at some time later instead.
815 * Plugged queues are generally unplugged when a buffer belonging to one
816 * of the requests on the queue is needed, or due to memory pressure.
817 *
818 * @rfn is not required, or even expected, to remove all requests off the
819 * queue, but only as many as it can handle at a time. If it does leave
820 * requests on the queue, it is responsible for arranging that the requests
821 * get dealt with eventually.
822 *
823 * The queue spin lock must be held while manipulating the requests on the
824 * request queue; this lock will be taken also from interrupt context, so irq
825 * disabling is needed for it.
826 *
827 * Function returns a pointer to the initialized request queue, or %NULL if
828 * it didn't succeed.
829 *
830 * Note:
831 * blk_init_queue() must be paired with a blk_cleanup_queue() call
832 * when the block device is deactivated (such as at module unload).
833 **/
834
835 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
836 {
837 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
838 }
839 EXPORT_SYMBOL(blk_init_queue);
840
841 struct request_queue *
842 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
843 {
844 struct request_queue *q;
845
846 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
847 if (!q)
848 return NULL;
849
850 q->request_fn = rfn;
851 if (lock)
852 q->queue_lock = lock;
853 if (blk_init_allocated_queue(q) < 0) {
854 blk_cleanup_queue(q);
855 return NULL;
856 }
857
858 return q;
859 }
860 EXPORT_SYMBOL(blk_init_queue_node);
861
862 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
863
864
865 int blk_init_allocated_queue(struct request_queue *q)
866 {
867 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
868 if (!q->fq)
869 return -ENOMEM;
870
871 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
872 goto out_free_flush_queue;
873
874 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
875 goto out_exit_flush_rq;
876
877 INIT_WORK(&q->timeout_work, blk_timeout_work);
878 q->queue_flags |= QUEUE_FLAG_DEFAULT;
879
880 /*
881 * This also sets hw/phys segments, boundary and size
882 */
883 blk_queue_make_request(q, blk_queue_bio);
884
885 q->sg_reserved_size = INT_MAX;
886
887 /* Protect q->elevator from elevator_change */
888 mutex_lock(&q->sysfs_lock);
889
890 /* init elevator */
891 if (elevator_init(q, NULL)) {
892 mutex_unlock(&q->sysfs_lock);
893 goto out_exit_flush_rq;
894 }
895
896 mutex_unlock(&q->sysfs_lock);
897 return 0;
898
899 out_exit_flush_rq:
900 if (q->exit_rq_fn)
901 q->exit_rq_fn(q, q->fq->flush_rq);
902 out_free_flush_queue:
903 blk_free_flush_queue(q->fq);
904 wbt_exit(q);
905 return -ENOMEM;
906 }
907 EXPORT_SYMBOL(blk_init_allocated_queue);
908
909 bool blk_get_queue(struct request_queue *q)
910 {
911 if (likely(!blk_queue_dying(q))) {
912 __blk_get_queue(q);
913 return true;
914 }
915
916 return false;
917 }
918 EXPORT_SYMBOL(blk_get_queue);
919
920 static inline void blk_free_request(struct request_list *rl, struct request *rq)
921 {
922 if (rq->rq_flags & RQF_ELVPRIV) {
923 elv_put_request(rl->q, rq);
924 if (rq->elv.icq)
925 put_io_context(rq->elv.icq->ioc);
926 }
927
928 mempool_free(rq, rl->rq_pool);
929 }
930
931 /*
932 * ioc_batching returns true if the ioc is a valid batching request and
933 * should be given priority access to a request.
934 */
935 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
936 {
937 if (!ioc)
938 return 0;
939
940 /*
941 * Make sure the process is able to allocate at least 1 request
942 * even if the batch times out, otherwise we could theoretically
943 * lose wakeups.
944 */
945 return ioc->nr_batch_requests == q->nr_batching ||
946 (ioc->nr_batch_requests > 0
947 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
948 }
949
950 /*
951 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
952 * will cause the process to be a "batcher" on all queues in the system. This
953 * is the behaviour we want though - once it gets a wakeup it should be given
954 * a nice run.
955 */
956 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
957 {
958 if (!ioc || ioc_batching(q, ioc))
959 return;
960
961 ioc->nr_batch_requests = q->nr_batching;
962 ioc->last_waited = jiffies;
963 }
964
965 static void __freed_request(struct request_list *rl, int sync)
966 {
967 struct request_queue *q = rl->q;
968
969 if (rl->count[sync] < queue_congestion_off_threshold(q))
970 blk_clear_congested(rl, sync);
971
972 if (rl->count[sync] + 1 <= q->nr_requests) {
973 if (waitqueue_active(&rl->wait[sync]))
974 wake_up(&rl->wait[sync]);
975
976 blk_clear_rl_full(rl, sync);
977 }
978 }
979
980 /*
981 * A request has just been released. Account for it, update the full and
982 * congestion status, wake up any waiters. Called under q->queue_lock.
983 */
984 static void freed_request(struct request_list *rl, bool sync,
985 req_flags_t rq_flags)
986 {
987 struct request_queue *q = rl->q;
988
989 q->nr_rqs[sync]--;
990 rl->count[sync]--;
991 if (rq_flags & RQF_ELVPRIV)
992 q->nr_rqs_elvpriv--;
993
994 __freed_request(rl, sync);
995
996 if (unlikely(rl->starved[sync ^ 1]))
997 __freed_request(rl, sync ^ 1);
998 }
999
1000 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1001 {
1002 struct request_list *rl;
1003 int on_thresh, off_thresh;
1004
1005 spin_lock_irq(q->queue_lock);
1006 q->nr_requests = nr;
1007 blk_queue_congestion_threshold(q);
1008 on_thresh = queue_congestion_on_threshold(q);
1009 off_thresh = queue_congestion_off_threshold(q);
1010
1011 blk_queue_for_each_rl(rl, q) {
1012 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1013 blk_set_congested(rl, BLK_RW_SYNC);
1014 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1015 blk_clear_congested(rl, BLK_RW_SYNC);
1016
1017 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1018 blk_set_congested(rl, BLK_RW_ASYNC);
1019 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1020 blk_clear_congested(rl, BLK_RW_ASYNC);
1021
1022 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1023 blk_set_rl_full(rl, BLK_RW_SYNC);
1024 } else {
1025 blk_clear_rl_full(rl, BLK_RW_SYNC);
1026 wake_up(&rl->wait[BLK_RW_SYNC]);
1027 }
1028
1029 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1030 blk_set_rl_full(rl, BLK_RW_ASYNC);
1031 } else {
1032 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1033 wake_up(&rl->wait[BLK_RW_ASYNC]);
1034 }
1035 }
1036
1037 spin_unlock_irq(q->queue_lock);
1038 return 0;
1039 }
1040
1041 /**
1042 * __get_request - get a free request
1043 * @rl: request list to allocate from
1044 * @op: operation and flags
1045 * @bio: bio to allocate request for (can be %NULL)
1046 * @gfp_mask: allocation mask
1047 *
1048 * Get a free request from @q. This function may fail under memory
1049 * pressure or if @q is dead.
1050 *
1051 * Must be called with @q->queue_lock held and,
1052 * Returns ERR_PTR on failure, with @q->queue_lock held.
1053 * Returns request pointer on success, with @q->queue_lock *not held*.
1054 */
1055 static struct request *__get_request(struct request_list *rl, unsigned int op,
1056 struct bio *bio, gfp_t gfp_mask)
1057 {
1058 struct request_queue *q = rl->q;
1059 struct request *rq;
1060 struct elevator_type *et = q->elevator->type;
1061 struct io_context *ioc = rq_ioc(bio);
1062 struct io_cq *icq = NULL;
1063 const bool is_sync = op_is_sync(op);
1064 int may_queue;
1065 req_flags_t rq_flags = RQF_ALLOCED;
1066
1067 if (unlikely(blk_queue_dying(q)))
1068 return ERR_PTR(-ENODEV);
1069
1070 may_queue = elv_may_queue(q, op);
1071 if (may_queue == ELV_MQUEUE_NO)
1072 goto rq_starved;
1073
1074 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1075 if (rl->count[is_sync]+1 >= q->nr_requests) {
1076 /*
1077 * The queue will fill after this allocation, so set
1078 * it as full, and mark this process as "batching".
1079 * This process will be allowed to complete a batch of
1080 * requests, others will be blocked.
1081 */
1082 if (!blk_rl_full(rl, is_sync)) {
1083 ioc_set_batching(q, ioc);
1084 blk_set_rl_full(rl, is_sync);
1085 } else {
1086 if (may_queue != ELV_MQUEUE_MUST
1087 && !ioc_batching(q, ioc)) {
1088 /*
1089 * The queue is full and the allocating
1090 * process is not a "batcher", and not
1091 * exempted by the IO scheduler
1092 */
1093 return ERR_PTR(-ENOMEM);
1094 }
1095 }
1096 }
1097 blk_set_congested(rl, is_sync);
1098 }
1099
1100 /*
1101 * Only allow batching queuers to allocate up to 50% over the defined
1102 * limit of requests, otherwise we could have thousands of requests
1103 * allocated with any setting of ->nr_requests
1104 */
1105 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1106 return ERR_PTR(-ENOMEM);
1107
1108 q->nr_rqs[is_sync]++;
1109 rl->count[is_sync]++;
1110 rl->starved[is_sync] = 0;
1111
1112 /*
1113 * Decide whether the new request will be managed by elevator. If
1114 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1115 * prevent the current elevator from being destroyed until the new
1116 * request is freed. This guarantees icq's won't be destroyed and
1117 * makes creating new ones safe.
1118 *
1119 * Flush requests do not use the elevator so skip initialization.
1120 * This allows a request to share the flush and elevator data.
1121 *
1122 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1123 * it will be created after releasing queue_lock.
1124 */
1125 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1126 rq_flags |= RQF_ELVPRIV;
1127 q->nr_rqs_elvpriv++;
1128 if (et->icq_cache && ioc)
1129 icq = ioc_lookup_icq(ioc, q);
1130 }
1131
1132 if (blk_queue_io_stat(q))
1133 rq_flags |= RQF_IO_STAT;
1134 spin_unlock_irq(q->queue_lock);
1135
1136 /* allocate and init request */
1137 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1138 if (!rq)
1139 goto fail_alloc;
1140
1141 blk_rq_init(q, rq);
1142 blk_rq_set_rl(rq, rl);
1143 blk_rq_set_prio(rq, ioc);
1144 rq->cmd_flags = op;
1145 rq->rq_flags = rq_flags;
1146
1147 /* init elvpriv */
1148 if (rq_flags & RQF_ELVPRIV) {
1149 if (unlikely(et->icq_cache && !icq)) {
1150 if (ioc)
1151 icq = ioc_create_icq(ioc, q, gfp_mask);
1152 if (!icq)
1153 goto fail_elvpriv;
1154 }
1155
1156 rq->elv.icq = icq;
1157 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1158 goto fail_elvpriv;
1159
1160 /* @rq->elv.icq holds io_context until @rq is freed */
1161 if (icq)
1162 get_io_context(icq->ioc);
1163 }
1164 out:
1165 /*
1166 * ioc may be NULL here, and ioc_batching will be false. That's
1167 * OK, if the queue is under the request limit then requests need
1168 * not count toward the nr_batch_requests limit. There will always
1169 * be some limit enforced by BLK_BATCH_TIME.
1170 */
1171 if (ioc_batching(q, ioc))
1172 ioc->nr_batch_requests--;
1173
1174 trace_block_getrq(q, bio, op);
1175 return rq;
1176
1177 fail_elvpriv:
1178 /*
1179 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1180 * and may fail indefinitely under memory pressure and thus
1181 * shouldn't stall IO. Treat this request as !elvpriv. This will
1182 * disturb iosched and blkcg but weird is bettern than dead.
1183 */
1184 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1185 __func__, dev_name(q->backing_dev_info.dev));
1186
1187 rq->rq_flags &= ~RQF_ELVPRIV;
1188 rq->elv.icq = NULL;
1189
1190 spin_lock_irq(q->queue_lock);
1191 q->nr_rqs_elvpriv--;
1192 spin_unlock_irq(q->queue_lock);
1193 goto out;
1194
1195 fail_alloc:
1196 /*
1197 * Allocation failed presumably due to memory. Undo anything we
1198 * might have messed up.
1199 *
1200 * Allocating task should really be put onto the front of the wait
1201 * queue, but this is pretty rare.
1202 */
1203 spin_lock_irq(q->queue_lock);
1204 freed_request(rl, is_sync, rq_flags);
1205
1206 /*
1207 * in the very unlikely event that allocation failed and no
1208 * requests for this direction was pending, mark us starved so that
1209 * freeing of a request in the other direction will notice
1210 * us. another possible fix would be to split the rq mempool into
1211 * READ and WRITE
1212 */
1213 rq_starved:
1214 if (unlikely(rl->count[is_sync] == 0))
1215 rl->starved[is_sync] = 1;
1216 return ERR_PTR(-ENOMEM);
1217 }
1218
1219 /**
1220 * get_request - get a free request
1221 * @q: request_queue to allocate request from
1222 * @op: operation and flags
1223 * @bio: bio to allocate request for (can be %NULL)
1224 * @gfp_mask: allocation mask
1225 *
1226 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1227 * this function keeps retrying under memory pressure and fails iff @q is dead.
1228 *
1229 * Must be called with @q->queue_lock held and,
1230 * Returns ERR_PTR on failure, with @q->queue_lock held.
1231 * Returns request pointer on success, with @q->queue_lock *not held*.
1232 */
1233 static struct request *get_request(struct request_queue *q, unsigned int op,
1234 struct bio *bio, gfp_t gfp_mask)
1235 {
1236 const bool is_sync = op_is_sync(op);
1237 DEFINE_WAIT(wait);
1238 struct request_list *rl;
1239 struct request *rq;
1240
1241 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1242 retry:
1243 rq = __get_request(rl, op, bio, gfp_mask);
1244 if (!IS_ERR(rq))
1245 return rq;
1246
1247 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1248 blk_put_rl(rl);
1249 return rq;
1250 }
1251
1252 /* wait on @rl and retry */
1253 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1254 TASK_UNINTERRUPTIBLE);
1255
1256 trace_block_sleeprq(q, bio, op);
1257
1258 spin_unlock_irq(q->queue_lock);
1259 io_schedule();
1260
1261 /*
1262 * After sleeping, we become a "batching" process and will be able
1263 * to allocate at least one request, and up to a big batch of them
1264 * for a small period time. See ioc_batching, ioc_set_batching
1265 */
1266 ioc_set_batching(q, current->io_context);
1267
1268 spin_lock_irq(q->queue_lock);
1269 finish_wait(&rl->wait[is_sync], &wait);
1270
1271 goto retry;
1272 }
1273
1274 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1275 gfp_t gfp_mask)
1276 {
1277 struct request *rq;
1278
1279 /* create ioc upfront */
1280 create_io_context(gfp_mask, q->node);
1281
1282 spin_lock_irq(q->queue_lock);
1283 rq = get_request(q, rw, NULL, gfp_mask);
1284 if (IS_ERR(rq)) {
1285 spin_unlock_irq(q->queue_lock);
1286 return rq;
1287 }
1288
1289 /* q->queue_lock is unlocked at this point */
1290 rq->__data_len = 0;
1291 rq->__sector = (sector_t) -1;
1292 rq->bio = rq->biotail = NULL;
1293 return rq;
1294 }
1295
1296 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1297 {
1298 if (q->mq_ops)
1299 return blk_mq_alloc_request(q, rw,
1300 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1301 0 : BLK_MQ_REQ_NOWAIT);
1302 else
1303 return blk_old_get_request(q, rw, gfp_mask);
1304 }
1305 EXPORT_SYMBOL(blk_get_request);
1306
1307 /**
1308 * blk_requeue_request - put a request back on queue
1309 * @q: request queue where request should be inserted
1310 * @rq: request to be inserted
1311 *
1312 * Description:
1313 * Drivers often keep queueing requests until the hardware cannot accept
1314 * more, when that condition happens we need to put the request back
1315 * on the queue. Must be called with queue lock held.
1316 */
1317 void blk_requeue_request(struct request_queue *q, struct request *rq)
1318 {
1319 blk_delete_timer(rq);
1320 blk_clear_rq_complete(rq);
1321 trace_block_rq_requeue(q, rq);
1322 wbt_requeue(q->rq_wb, &rq->issue_stat);
1323
1324 if (rq->rq_flags & RQF_QUEUED)
1325 blk_queue_end_tag(q, rq);
1326
1327 BUG_ON(blk_queued_rq(rq));
1328
1329 elv_requeue_request(q, rq);
1330 }
1331 EXPORT_SYMBOL(blk_requeue_request);
1332
1333 static void add_acct_request(struct request_queue *q, struct request *rq,
1334 int where)
1335 {
1336 blk_account_io_start(rq, true);
1337 __elv_add_request(q, rq, where);
1338 }
1339
1340 static void part_round_stats_single(int cpu, struct hd_struct *part,
1341 unsigned long now)
1342 {
1343 int inflight;
1344
1345 if (now == part->stamp)
1346 return;
1347
1348 inflight = part_in_flight(part);
1349 if (inflight) {
1350 __part_stat_add(cpu, part, time_in_queue,
1351 inflight * (now - part->stamp));
1352 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1353 }
1354 part->stamp = now;
1355 }
1356
1357 /**
1358 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1359 * @cpu: cpu number for stats access
1360 * @part: target partition
1361 *
1362 * The average IO queue length and utilisation statistics are maintained
1363 * by observing the current state of the queue length and the amount of
1364 * time it has been in this state for.
1365 *
1366 * Normally, that accounting is done on IO completion, but that can result
1367 * in more than a second's worth of IO being accounted for within any one
1368 * second, leading to >100% utilisation. To deal with that, we call this
1369 * function to do a round-off before returning the results when reading
1370 * /proc/diskstats. This accounts immediately for all queue usage up to
1371 * the current jiffies and restarts the counters again.
1372 */
1373 void part_round_stats(int cpu, struct hd_struct *part)
1374 {
1375 unsigned long now = jiffies;
1376
1377 if (part->partno)
1378 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1379 part_round_stats_single(cpu, part, now);
1380 }
1381 EXPORT_SYMBOL_GPL(part_round_stats);
1382
1383 #ifdef CONFIG_PM
1384 static void blk_pm_put_request(struct request *rq)
1385 {
1386 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1387 pm_runtime_mark_last_busy(rq->q->dev);
1388 }
1389 #else
1390 static inline void blk_pm_put_request(struct request *rq) {}
1391 #endif
1392
1393 /*
1394 * queue lock must be held
1395 */
1396 void __blk_put_request(struct request_queue *q, struct request *req)
1397 {
1398 req_flags_t rq_flags = req->rq_flags;
1399
1400 if (unlikely(!q))
1401 return;
1402
1403 if (q->mq_ops) {
1404 blk_mq_free_request(req);
1405 return;
1406 }
1407
1408 blk_pm_put_request(req);
1409
1410 elv_completed_request(q, req);
1411
1412 /* this is a bio leak */
1413 WARN_ON(req->bio != NULL);
1414
1415 wbt_done(q->rq_wb, &req->issue_stat);
1416
1417 /*
1418 * Request may not have originated from ll_rw_blk. if not,
1419 * it didn't come out of our reserved rq pools
1420 */
1421 if (rq_flags & RQF_ALLOCED) {
1422 struct request_list *rl = blk_rq_rl(req);
1423 bool sync = op_is_sync(req->cmd_flags);
1424
1425 BUG_ON(!list_empty(&req->queuelist));
1426 BUG_ON(ELV_ON_HASH(req));
1427
1428 blk_free_request(rl, req);
1429 freed_request(rl, sync, rq_flags);
1430 blk_put_rl(rl);
1431 }
1432 }
1433 EXPORT_SYMBOL_GPL(__blk_put_request);
1434
1435 void blk_put_request(struct request *req)
1436 {
1437 struct request_queue *q = req->q;
1438
1439 if (q->mq_ops)
1440 blk_mq_free_request(req);
1441 else {
1442 unsigned long flags;
1443
1444 spin_lock_irqsave(q->queue_lock, flags);
1445 __blk_put_request(q, req);
1446 spin_unlock_irqrestore(q->queue_lock, flags);
1447 }
1448 }
1449 EXPORT_SYMBOL(blk_put_request);
1450
1451 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1452 struct bio *bio)
1453 {
1454 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1455
1456 if (!ll_back_merge_fn(q, req, bio))
1457 return false;
1458
1459 trace_block_bio_backmerge(q, req, bio);
1460
1461 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1462 blk_rq_set_mixed_merge(req);
1463
1464 req->biotail->bi_next = bio;
1465 req->biotail = bio;
1466 req->__data_len += bio->bi_iter.bi_size;
1467 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1468
1469 blk_account_io_start(req, false);
1470 return true;
1471 }
1472
1473 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1474 struct bio *bio)
1475 {
1476 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1477
1478 if (!ll_front_merge_fn(q, req, bio))
1479 return false;
1480
1481 trace_block_bio_frontmerge(q, req, bio);
1482
1483 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1484 blk_rq_set_mixed_merge(req);
1485
1486 bio->bi_next = req->bio;
1487 req->bio = bio;
1488
1489 req->__sector = bio->bi_iter.bi_sector;
1490 req->__data_len += bio->bi_iter.bi_size;
1491 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1492
1493 blk_account_io_start(req, false);
1494 return true;
1495 }
1496
1497 /**
1498 * blk_attempt_plug_merge - try to merge with %current's plugged list
1499 * @q: request_queue new bio is being queued at
1500 * @bio: new bio being queued
1501 * @request_count: out parameter for number of traversed plugged requests
1502 * @same_queue_rq: pointer to &struct request that gets filled in when
1503 * another request associated with @q is found on the plug list
1504 * (optional, may be %NULL)
1505 *
1506 * Determine whether @bio being queued on @q can be merged with a request
1507 * on %current's plugged list. Returns %true if merge was successful,
1508 * otherwise %false.
1509 *
1510 * Plugging coalesces IOs from the same issuer for the same purpose without
1511 * going through @q->queue_lock. As such it's more of an issuing mechanism
1512 * than scheduling, and the request, while may have elvpriv data, is not
1513 * added on the elevator at this point. In addition, we don't have
1514 * reliable access to the elevator outside queue lock. Only check basic
1515 * merging parameters without querying the elevator.
1516 *
1517 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1518 */
1519 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1520 unsigned int *request_count,
1521 struct request **same_queue_rq)
1522 {
1523 struct blk_plug *plug;
1524 struct request *rq;
1525 bool ret = false;
1526 struct list_head *plug_list;
1527
1528 plug = current->plug;
1529 if (!plug)
1530 goto out;
1531 *request_count = 0;
1532
1533 if (q->mq_ops)
1534 plug_list = &plug->mq_list;
1535 else
1536 plug_list = &plug->list;
1537
1538 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1539 int el_ret;
1540
1541 if (rq->q == q) {
1542 (*request_count)++;
1543 /*
1544 * Only blk-mq multiple hardware queues case checks the
1545 * rq in the same queue, there should be only one such
1546 * rq in a queue
1547 **/
1548 if (same_queue_rq)
1549 *same_queue_rq = rq;
1550 }
1551
1552 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1553 continue;
1554
1555 el_ret = blk_try_merge(rq, bio);
1556 if (el_ret == ELEVATOR_BACK_MERGE) {
1557 ret = bio_attempt_back_merge(q, rq, bio);
1558 if (ret)
1559 break;
1560 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1561 ret = bio_attempt_front_merge(q, rq, bio);
1562 if (ret)
1563 break;
1564 }
1565 }
1566 out:
1567 return ret;
1568 }
1569
1570 unsigned int blk_plug_queued_count(struct request_queue *q)
1571 {
1572 struct blk_plug *plug;
1573 struct request *rq;
1574 struct list_head *plug_list;
1575 unsigned int ret = 0;
1576
1577 plug = current->plug;
1578 if (!plug)
1579 goto out;
1580
1581 if (q->mq_ops)
1582 plug_list = &plug->mq_list;
1583 else
1584 plug_list = &plug->list;
1585
1586 list_for_each_entry(rq, plug_list, queuelist) {
1587 if (rq->q == q)
1588 ret++;
1589 }
1590 out:
1591 return ret;
1592 }
1593
1594 void init_request_from_bio(struct request *req, struct bio *bio)
1595 {
1596 if (bio->bi_opf & REQ_RAHEAD)
1597 req->cmd_flags |= REQ_FAILFAST_MASK;
1598
1599 req->errors = 0;
1600 req->__sector = bio->bi_iter.bi_sector;
1601 if (ioprio_valid(bio_prio(bio)))
1602 req->ioprio = bio_prio(bio);
1603 blk_rq_bio_prep(req->q, req, bio);
1604 }
1605
1606 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1607 {
1608 struct blk_plug *plug;
1609 int el_ret, where = ELEVATOR_INSERT_SORT;
1610 struct request *req;
1611 unsigned int request_count = 0;
1612 unsigned int wb_acct;
1613
1614 /*
1615 * low level driver can indicate that it wants pages above a
1616 * certain limit bounced to low memory (ie for highmem, or even
1617 * ISA dma in theory)
1618 */
1619 blk_queue_bounce(q, &bio);
1620
1621 blk_queue_split(q, &bio, q->bio_split);
1622
1623 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1624 bio->bi_error = -EIO;
1625 bio_endio(bio);
1626 return BLK_QC_T_NONE;
1627 }
1628
1629 if (op_is_flush(bio->bi_opf)) {
1630 spin_lock_irq(q->queue_lock);
1631 where = ELEVATOR_INSERT_FLUSH;
1632 goto get_rq;
1633 }
1634
1635 /*
1636 * Check if we can merge with the plugged list before grabbing
1637 * any locks.
1638 */
1639 if (!blk_queue_nomerges(q)) {
1640 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1641 return BLK_QC_T_NONE;
1642 } else
1643 request_count = blk_plug_queued_count(q);
1644
1645 spin_lock_irq(q->queue_lock);
1646
1647 el_ret = elv_merge(q, &req, bio);
1648 if (el_ret == ELEVATOR_BACK_MERGE) {
1649 if (bio_attempt_back_merge(q, req, bio)) {
1650 elv_bio_merged(q, req, bio);
1651 if (!attempt_back_merge(q, req))
1652 elv_merged_request(q, req, el_ret);
1653 goto out_unlock;
1654 }
1655 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1656 if (bio_attempt_front_merge(q, req, bio)) {
1657 elv_bio_merged(q, req, bio);
1658 if (!attempt_front_merge(q, req))
1659 elv_merged_request(q, req, el_ret);
1660 goto out_unlock;
1661 }
1662 }
1663
1664 get_rq:
1665 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1666
1667 /*
1668 * Grab a free request. This is might sleep but can not fail.
1669 * Returns with the queue unlocked.
1670 */
1671 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1672 if (IS_ERR(req)) {
1673 __wbt_done(q->rq_wb, wb_acct);
1674 bio->bi_error = PTR_ERR(req);
1675 bio_endio(bio);
1676 goto out_unlock;
1677 }
1678
1679 wbt_track(&req->issue_stat, wb_acct);
1680
1681 /*
1682 * After dropping the lock and possibly sleeping here, our request
1683 * may now be mergeable after it had proven unmergeable (above).
1684 * We don't worry about that case for efficiency. It won't happen
1685 * often, and the elevators are able to handle it.
1686 */
1687 init_request_from_bio(req, bio);
1688
1689 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1690 req->cpu = raw_smp_processor_id();
1691
1692 plug = current->plug;
1693 if (plug) {
1694 /*
1695 * If this is the first request added after a plug, fire
1696 * of a plug trace.
1697 *
1698 * @request_count may become stale because of schedule
1699 * out, so check plug list again.
1700 */
1701 if (!request_count || list_empty(&plug->list))
1702 trace_block_plug(q);
1703 else {
1704 struct request *last = list_entry_rq(plug->list.prev);
1705 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1706 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1707 blk_flush_plug_list(plug, false);
1708 trace_block_plug(q);
1709 }
1710 }
1711 list_add_tail(&req->queuelist, &plug->list);
1712 blk_account_io_start(req, true);
1713 } else {
1714 spin_lock_irq(q->queue_lock);
1715 add_acct_request(q, req, where);
1716 __blk_run_queue(q);
1717 out_unlock:
1718 spin_unlock_irq(q->queue_lock);
1719 }
1720
1721 return BLK_QC_T_NONE;
1722 }
1723
1724 /*
1725 * If bio->bi_dev is a partition, remap the location
1726 */
1727 static inline void blk_partition_remap(struct bio *bio)
1728 {
1729 struct block_device *bdev = bio->bi_bdev;
1730
1731 /*
1732 * Zone reset does not include bi_size so bio_sectors() is always 0.
1733 * Include a test for the reset op code and perform the remap if needed.
1734 */
1735 if (bdev != bdev->bd_contains &&
1736 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1737 struct hd_struct *p = bdev->bd_part;
1738
1739 bio->bi_iter.bi_sector += p->start_sect;
1740 bio->bi_bdev = bdev->bd_contains;
1741
1742 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1743 bdev->bd_dev,
1744 bio->bi_iter.bi_sector - p->start_sect);
1745 }
1746 }
1747
1748 static void handle_bad_sector(struct bio *bio)
1749 {
1750 char b[BDEVNAME_SIZE];
1751
1752 printk(KERN_INFO "attempt to access beyond end of device\n");
1753 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1754 bdevname(bio->bi_bdev, b),
1755 bio->bi_opf,
1756 (unsigned long long)bio_end_sector(bio),
1757 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1758 }
1759
1760 #ifdef CONFIG_FAIL_MAKE_REQUEST
1761
1762 static DECLARE_FAULT_ATTR(fail_make_request);
1763
1764 static int __init setup_fail_make_request(char *str)
1765 {
1766 return setup_fault_attr(&fail_make_request, str);
1767 }
1768 __setup("fail_make_request=", setup_fail_make_request);
1769
1770 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1771 {
1772 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1773 }
1774
1775 static int __init fail_make_request_debugfs(void)
1776 {
1777 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1778 NULL, &fail_make_request);
1779
1780 return PTR_ERR_OR_ZERO(dir);
1781 }
1782
1783 late_initcall(fail_make_request_debugfs);
1784
1785 #else /* CONFIG_FAIL_MAKE_REQUEST */
1786
1787 static inline bool should_fail_request(struct hd_struct *part,
1788 unsigned int bytes)
1789 {
1790 return false;
1791 }
1792
1793 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1794
1795 /*
1796 * Check whether this bio extends beyond the end of the device.
1797 */
1798 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1799 {
1800 sector_t maxsector;
1801
1802 if (!nr_sectors)
1803 return 0;
1804
1805 /* Test device or partition size, when known. */
1806 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1807 if (maxsector) {
1808 sector_t sector = bio->bi_iter.bi_sector;
1809
1810 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1811 /*
1812 * This may well happen - the kernel calls bread()
1813 * without checking the size of the device, e.g., when
1814 * mounting a device.
1815 */
1816 handle_bad_sector(bio);
1817 return 1;
1818 }
1819 }
1820
1821 return 0;
1822 }
1823
1824 static noinline_for_stack bool
1825 generic_make_request_checks(struct bio *bio)
1826 {
1827 struct request_queue *q;
1828 int nr_sectors = bio_sectors(bio);
1829 int err = -EIO;
1830 char b[BDEVNAME_SIZE];
1831 struct hd_struct *part;
1832
1833 might_sleep();
1834
1835 if (bio_check_eod(bio, nr_sectors))
1836 goto end_io;
1837
1838 q = bdev_get_queue(bio->bi_bdev);
1839 if (unlikely(!q)) {
1840 printk(KERN_ERR
1841 "generic_make_request: Trying to access "
1842 "nonexistent block-device %s (%Lu)\n",
1843 bdevname(bio->bi_bdev, b),
1844 (long long) bio->bi_iter.bi_sector);
1845 goto end_io;
1846 }
1847
1848 part = bio->bi_bdev->bd_part;
1849 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1850 should_fail_request(&part_to_disk(part)->part0,
1851 bio->bi_iter.bi_size))
1852 goto end_io;
1853
1854 /*
1855 * If this device has partitions, remap block n
1856 * of partition p to block n+start(p) of the disk.
1857 */
1858 blk_partition_remap(bio);
1859
1860 if (bio_check_eod(bio, nr_sectors))
1861 goto end_io;
1862
1863 /*
1864 * Filter flush bio's early so that make_request based
1865 * drivers without flush support don't have to worry
1866 * about them.
1867 */
1868 if (op_is_flush(bio->bi_opf) &&
1869 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1870 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1871 if (!nr_sectors) {
1872 err = 0;
1873 goto end_io;
1874 }
1875 }
1876
1877 switch (bio_op(bio)) {
1878 case REQ_OP_DISCARD:
1879 if (!blk_queue_discard(q))
1880 goto not_supported;
1881 break;
1882 case REQ_OP_SECURE_ERASE:
1883 if (!blk_queue_secure_erase(q))
1884 goto not_supported;
1885 break;
1886 case REQ_OP_WRITE_SAME:
1887 if (!bdev_write_same(bio->bi_bdev))
1888 goto not_supported;
1889 break;
1890 case REQ_OP_ZONE_REPORT:
1891 case REQ_OP_ZONE_RESET:
1892 if (!bdev_is_zoned(bio->bi_bdev))
1893 goto not_supported;
1894 break;
1895 case REQ_OP_WRITE_ZEROES:
1896 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1897 goto not_supported;
1898 break;
1899 default:
1900 break;
1901 }
1902
1903 /*
1904 * Various block parts want %current->io_context and lazy ioc
1905 * allocation ends up trading a lot of pain for a small amount of
1906 * memory. Just allocate it upfront. This may fail and block
1907 * layer knows how to live with it.
1908 */
1909 create_io_context(GFP_ATOMIC, q->node);
1910
1911 if (!blkcg_bio_issue_check(q, bio))
1912 return false;
1913
1914 trace_block_bio_queue(q, bio);
1915 return true;
1916
1917 not_supported:
1918 err = -EOPNOTSUPP;
1919 end_io:
1920 bio->bi_error = err;
1921 bio_endio(bio);
1922 return false;
1923 }
1924
1925 /**
1926 * generic_make_request - hand a buffer to its device driver for I/O
1927 * @bio: The bio describing the location in memory and on the device.
1928 *
1929 * generic_make_request() is used to make I/O requests of block
1930 * devices. It is passed a &struct bio, which describes the I/O that needs
1931 * to be done.
1932 *
1933 * generic_make_request() does not return any status. The
1934 * success/failure status of the request, along with notification of
1935 * completion, is delivered asynchronously through the bio->bi_end_io
1936 * function described (one day) else where.
1937 *
1938 * The caller of generic_make_request must make sure that bi_io_vec
1939 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1940 * set to describe the device address, and the
1941 * bi_end_io and optionally bi_private are set to describe how
1942 * completion notification should be signaled.
1943 *
1944 * generic_make_request and the drivers it calls may use bi_next if this
1945 * bio happens to be merged with someone else, and may resubmit the bio to
1946 * a lower device by calling into generic_make_request recursively, which
1947 * means the bio should NOT be touched after the call to ->make_request_fn.
1948 */
1949 blk_qc_t generic_make_request(struct bio *bio)
1950 {
1951 struct bio_list bio_list_on_stack;
1952 blk_qc_t ret = BLK_QC_T_NONE;
1953
1954 if (!generic_make_request_checks(bio))
1955 goto out;
1956
1957 /*
1958 * We only want one ->make_request_fn to be active at a time, else
1959 * stack usage with stacked devices could be a problem. So use
1960 * current->bio_list to keep a list of requests submited by a
1961 * make_request_fn function. current->bio_list is also used as a
1962 * flag to say if generic_make_request is currently active in this
1963 * task or not. If it is NULL, then no make_request is active. If
1964 * it is non-NULL, then a make_request is active, and new requests
1965 * should be added at the tail
1966 */
1967 if (current->bio_list) {
1968 bio_list_add(current->bio_list, bio);
1969 goto out;
1970 }
1971
1972 /* following loop may be a bit non-obvious, and so deserves some
1973 * explanation.
1974 * Before entering the loop, bio->bi_next is NULL (as all callers
1975 * ensure that) so we have a list with a single bio.
1976 * We pretend that we have just taken it off a longer list, so
1977 * we assign bio_list to a pointer to the bio_list_on_stack,
1978 * thus initialising the bio_list of new bios to be
1979 * added. ->make_request() may indeed add some more bios
1980 * through a recursive call to generic_make_request. If it
1981 * did, we find a non-NULL value in bio_list and re-enter the loop
1982 * from the top. In this case we really did just take the bio
1983 * of the top of the list (no pretending) and so remove it from
1984 * bio_list, and call into ->make_request() again.
1985 */
1986 BUG_ON(bio->bi_next);
1987 bio_list_init(&bio_list_on_stack);
1988 current->bio_list = &bio_list_on_stack;
1989 do {
1990 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1991
1992 if (likely(blk_queue_enter(q, false) == 0)) {
1993 ret = q->make_request_fn(q, bio);
1994
1995 blk_queue_exit(q);
1996
1997 bio = bio_list_pop(current->bio_list);
1998 } else {
1999 struct bio *bio_next = bio_list_pop(current->bio_list);
2000
2001 bio_io_error(bio);
2002 bio = bio_next;
2003 }
2004 } while (bio);
2005 current->bio_list = NULL; /* deactivate */
2006
2007 out:
2008 return ret;
2009 }
2010 EXPORT_SYMBOL(generic_make_request);
2011
2012 /**
2013 * submit_bio - submit a bio to the block device layer for I/O
2014 * @bio: The &struct bio which describes the I/O
2015 *
2016 * submit_bio() is very similar in purpose to generic_make_request(), and
2017 * uses that function to do most of the work. Both are fairly rough
2018 * interfaces; @bio must be presetup and ready for I/O.
2019 *
2020 */
2021 blk_qc_t submit_bio(struct bio *bio)
2022 {
2023 /*
2024 * If it's a regular read/write or a barrier with data attached,
2025 * go through the normal accounting stuff before submission.
2026 */
2027 if (bio_has_data(bio)) {
2028 unsigned int count;
2029
2030 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2031 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2032 else
2033 count = bio_sectors(bio);
2034
2035 if (op_is_write(bio_op(bio))) {
2036 count_vm_events(PGPGOUT, count);
2037 } else {
2038 task_io_account_read(bio->bi_iter.bi_size);
2039 count_vm_events(PGPGIN, count);
2040 }
2041
2042 if (unlikely(block_dump)) {
2043 char b[BDEVNAME_SIZE];
2044 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2045 current->comm, task_pid_nr(current),
2046 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2047 (unsigned long long)bio->bi_iter.bi_sector,
2048 bdevname(bio->bi_bdev, b),
2049 count);
2050 }
2051 }
2052
2053 return generic_make_request(bio);
2054 }
2055 EXPORT_SYMBOL(submit_bio);
2056
2057 /**
2058 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2059 * for new the queue limits
2060 * @q: the queue
2061 * @rq: the request being checked
2062 *
2063 * Description:
2064 * @rq may have been made based on weaker limitations of upper-level queues
2065 * in request stacking drivers, and it may violate the limitation of @q.
2066 * Since the block layer and the underlying device driver trust @rq
2067 * after it is inserted to @q, it should be checked against @q before
2068 * the insertion using this generic function.
2069 *
2070 * Request stacking drivers like request-based dm may change the queue
2071 * limits when retrying requests on other queues. Those requests need
2072 * to be checked against the new queue limits again during dispatch.
2073 */
2074 static int blk_cloned_rq_check_limits(struct request_queue *q,
2075 struct request *rq)
2076 {
2077 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2078 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2079 return -EIO;
2080 }
2081
2082 /*
2083 * queue's settings related to segment counting like q->bounce_pfn
2084 * may differ from that of other stacking queues.
2085 * Recalculate it to check the request correctly on this queue's
2086 * limitation.
2087 */
2088 blk_recalc_rq_segments(rq);
2089 if (rq->nr_phys_segments > queue_max_segments(q)) {
2090 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2091 return -EIO;
2092 }
2093
2094 return 0;
2095 }
2096
2097 /**
2098 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2099 * @q: the queue to submit the request
2100 * @rq: the request being queued
2101 */
2102 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2103 {
2104 unsigned long flags;
2105 int where = ELEVATOR_INSERT_BACK;
2106
2107 if (blk_cloned_rq_check_limits(q, rq))
2108 return -EIO;
2109
2110 if (rq->rq_disk &&
2111 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2112 return -EIO;
2113
2114 if (q->mq_ops) {
2115 if (blk_queue_io_stat(q))
2116 blk_account_io_start(rq, true);
2117 blk_mq_sched_insert_request(rq, false, true, false, false);
2118 return 0;
2119 }
2120
2121 spin_lock_irqsave(q->queue_lock, flags);
2122 if (unlikely(blk_queue_dying(q))) {
2123 spin_unlock_irqrestore(q->queue_lock, flags);
2124 return -ENODEV;
2125 }
2126
2127 /*
2128 * Submitting request must be dequeued before calling this function
2129 * because it will be linked to another request_queue
2130 */
2131 BUG_ON(blk_queued_rq(rq));
2132
2133 if (op_is_flush(rq->cmd_flags))
2134 where = ELEVATOR_INSERT_FLUSH;
2135
2136 add_acct_request(q, rq, where);
2137 if (where == ELEVATOR_INSERT_FLUSH)
2138 __blk_run_queue(q);
2139 spin_unlock_irqrestore(q->queue_lock, flags);
2140
2141 return 0;
2142 }
2143 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2144
2145 /**
2146 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2147 * @rq: request to examine
2148 *
2149 * Description:
2150 * A request could be merge of IOs which require different failure
2151 * handling. This function determines the number of bytes which
2152 * can be failed from the beginning of the request without
2153 * crossing into area which need to be retried further.
2154 *
2155 * Return:
2156 * The number of bytes to fail.
2157 *
2158 * Context:
2159 * queue_lock must be held.
2160 */
2161 unsigned int blk_rq_err_bytes(const struct request *rq)
2162 {
2163 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2164 unsigned int bytes = 0;
2165 struct bio *bio;
2166
2167 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2168 return blk_rq_bytes(rq);
2169
2170 /*
2171 * Currently the only 'mixing' which can happen is between
2172 * different fastfail types. We can safely fail portions
2173 * which have all the failfast bits that the first one has -
2174 * the ones which are at least as eager to fail as the first
2175 * one.
2176 */
2177 for (bio = rq->bio; bio; bio = bio->bi_next) {
2178 if ((bio->bi_opf & ff) != ff)
2179 break;
2180 bytes += bio->bi_iter.bi_size;
2181 }
2182
2183 /* this could lead to infinite loop */
2184 BUG_ON(blk_rq_bytes(rq) && !bytes);
2185 return bytes;
2186 }
2187 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2188
2189 void blk_account_io_completion(struct request *req, unsigned int bytes)
2190 {
2191 if (blk_do_io_stat(req)) {
2192 const int rw = rq_data_dir(req);
2193 struct hd_struct *part;
2194 int cpu;
2195
2196 cpu = part_stat_lock();
2197 part = req->part;
2198 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2199 part_stat_unlock();
2200 }
2201 }
2202
2203 void blk_account_io_done(struct request *req)
2204 {
2205 /*
2206 * Account IO completion. flush_rq isn't accounted as a
2207 * normal IO on queueing nor completion. Accounting the
2208 * containing request is enough.
2209 */
2210 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2211 unsigned long duration = jiffies - req->start_time;
2212 const int rw = rq_data_dir(req);
2213 struct hd_struct *part;
2214 int cpu;
2215
2216 cpu = part_stat_lock();
2217 part = req->part;
2218
2219 part_stat_inc(cpu, part, ios[rw]);
2220 part_stat_add(cpu, part, ticks[rw], duration);
2221 part_round_stats(cpu, part);
2222 part_dec_in_flight(part, rw);
2223
2224 hd_struct_put(part);
2225 part_stat_unlock();
2226 }
2227 }
2228
2229 #ifdef CONFIG_PM
2230 /*
2231 * Don't process normal requests when queue is suspended
2232 * or in the process of suspending/resuming
2233 */
2234 static struct request *blk_pm_peek_request(struct request_queue *q,
2235 struct request *rq)
2236 {
2237 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2238 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2239 return NULL;
2240 else
2241 return rq;
2242 }
2243 #else
2244 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2245 struct request *rq)
2246 {
2247 return rq;
2248 }
2249 #endif
2250
2251 void blk_account_io_start(struct request *rq, bool new_io)
2252 {
2253 struct hd_struct *part;
2254 int rw = rq_data_dir(rq);
2255 int cpu;
2256
2257 if (!blk_do_io_stat(rq))
2258 return;
2259
2260 cpu = part_stat_lock();
2261
2262 if (!new_io) {
2263 part = rq->part;
2264 part_stat_inc(cpu, part, merges[rw]);
2265 } else {
2266 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2267 if (!hd_struct_try_get(part)) {
2268 /*
2269 * The partition is already being removed,
2270 * the request will be accounted on the disk only
2271 *
2272 * We take a reference on disk->part0 although that
2273 * partition will never be deleted, so we can treat
2274 * it as any other partition.
2275 */
2276 part = &rq->rq_disk->part0;
2277 hd_struct_get(part);
2278 }
2279 part_round_stats(cpu, part);
2280 part_inc_in_flight(part, rw);
2281 rq->part = part;
2282 }
2283
2284 part_stat_unlock();
2285 }
2286
2287 /**
2288 * blk_peek_request - peek at the top of a request queue
2289 * @q: request queue to peek at
2290 *
2291 * Description:
2292 * Return the request at the top of @q. The returned request
2293 * should be started using blk_start_request() before LLD starts
2294 * processing it.
2295 *
2296 * Return:
2297 * Pointer to the request at the top of @q if available. Null
2298 * otherwise.
2299 *
2300 * Context:
2301 * queue_lock must be held.
2302 */
2303 struct request *blk_peek_request(struct request_queue *q)
2304 {
2305 struct request *rq;
2306 int ret;
2307
2308 while ((rq = __elv_next_request(q)) != NULL) {
2309
2310 rq = blk_pm_peek_request(q, rq);
2311 if (!rq)
2312 break;
2313
2314 if (!(rq->rq_flags & RQF_STARTED)) {
2315 /*
2316 * This is the first time the device driver
2317 * sees this request (possibly after
2318 * requeueing). Notify IO scheduler.
2319 */
2320 if (rq->rq_flags & RQF_SORTED)
2321 elv_activate_rq(q, rq);
2322
2323 /*
2324 * just mark as started even if we don't start
2325 * it, a request that has been delayed should
2326 * not be passed by new incoming requests
2327 */
2328 rq->rq_flags |= RQF_STARTED;
2329 trace_block_rq_issue(q, rq);
2330 }
2331
2332 if (!q->boundary_rq || q->boundary_rq == rq) {
2333 q->end_sector = rq_end_sector(rq);
2334 q->boundary_rq = NULL;
2335 }
2336
2337 if (rq->rq_flags & RQF_DONTPREP)
2338 break;
2339
2340 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2341 /*
2342 * make sure space for the drain appears we
2343 * know we can do this because max_hw_segments
2344 * has been adjusted to be one fewer than the
2345 * device can handle
2346 */
2347 rq->nr_phys_segments++;
2348 }
2349
2350 if (!q->prep_rq_fn)
2351 break;
2352
2353 ret = q->prep_rq_fn(q, rq);
2354 if (ret == BLKPREP_OK) {
2355 break;
2356 } else if (ret == BLKPREP_DEFER) {
2357 /*
2358 * the request may have been (partially) prepped.
2359 * we need to keep this request in the front to
2360 * avoid resource deadlock. RQF_STARTED will
2361 * prevent other fs requests from passing this one.
2362 */
2363 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2364 !(rq->rq_flags & RQF_DONTPREP)) {
2365 /*
2366 * remove the space for the drain we added
2367 * so that we don't add it again
2368 */
2369 --rq->nr_phys_segments;
2370 }
2371
2372 rq = NULL;
2373 break;
2374 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2375 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2376
2377 rq->rq_flags |= RQF_QUIET;
2378 /*
2379 * Mark this request as started so we don't trigger
2380 * any debug logic in the end I/O path.
2381 */
2382 blk_start_request(rq);
2383 __blk_end_request_all(rq, err);
2384 } else {
2385 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2386 break;
2387 }
2388 }
2389
2390 return rq;
2391 }
2392 EXPORT_SYMBOL(blk_peek_request);
2393
2394 void blk_dequeue_request(struct request *rq)
2395 {
2396 struct request_queue *q = rq->q;
2397
2398 BUG_ON(list_empty(&rq->queuelist));
2399 BUG_ON(ELV_ON_HASH(rq));
2400
2401 list_del_init(&rq->queuelist);
2402
2403 /*
2404 * the time frame between a request being removed from the lists
2405 * and to it is freed is accounted as io that is in progress at
2406 * the driver side.
2407 */
2408 if (blk_account_rq(rq)) {
2409 q->in_flight[rq_is_sync(rq)]++;
2410 set_io_start_time_ns(rq);
2411 }
2412 }
2413
2414 /**
2415 * blk_start_request - start request processing on the driver
2416 * @req: request to dequeue
2417 *
2418 * Description:
2419 * Dequeue @req and start timeout timer on it. This hands off the
2420 * request to the driver.
2421 *
2422 * Block internal functions which don't want to start timer should
2423 * call blk_dequeue_request().
2424 *
2425 * Context:
2426 * queue_lock must be held.
2427 */
2428 void blk_start_request(struct request *req)
2429 {
2430 blk_dequeue_request(req);
2431
2432 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2433 blk_stat_set_issue_time(&req->issue_stat);
2434 req->rq_flags |= RQF_STATS;
2435 wbt_issue(req->q->rq_wb, &req->issue_stat);
2436 }
2437
2438 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2439 blk_add_timer(req);
2440 }
2441 EXPORT_SYMBOL(blk_start_request);
2442
2443 /**
2444 * blk_fetch_request - fetch a request from a request queue
2445 * @q: request queue to fetch a request from
2446 *
2447 * Description:
2448 * Return the request at the top of @q. The request is started on
2449 * return and LLD can start processing it immediately.
2450 *
2451 * Return:
2452 * Pointer to the request at the top of @q if available. Null
2453 * otherwise.
2454 *
2455 * Context:
2456 * queue_lock must be held.
2457 */
2458 struct request *blk_fetch_request(struct request_queue *q)
2459 {
2460 struct request *rq;
2461
2462 rq = blk_peek_request(q);
2463 if (rq)
2464 blk_start_request(rq);
2465 return rq;
2466 }
2467 EXPORT_SYMBOL(blk_fetch_request);
2468
2469 /**
2470 * blk_update_request - Special helper function for request stacking drivers
2471 * @req: the request being processed
2472 * @error: %0 for success, < %0 for error
2473 * @nr_bytes: number of bytes to complete @req
2474 *
2475 * Description:
2476 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2477 * the request structure even if @req doesn't have leftover.
2478 * If @req has leftover, sets it up for the next range of segments.
2479 *
2480 * This special helper function is only for request stacking drivers
2481 * (e.g. request-based dm) so that they can handle partial completion.
2482 * Actual device drivers should use blk_end_request instead.
2483 *
2484 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2485 * %false return from this function.
2486 *
2487 * Return:
2488 * %false - this request doesn't have any more data
2489 * %true - this request has more data
2490 **/
2491 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2492 {
2493 int total_bytes;
2494
2495 trace_block_rq_complete(req->q, req, nr_bytes);
2496
2497 if (!req->bio)
2498 return false;
2499
2500 /*
2501 * For fs requests, rq is just carrier of independent bio's
2502 * and each partial completion should be handled separately.
2503 * Reset per-request error on each partial completion.
2504 *
2505 * TODO: tj: This is too subtle. It would be better to let
2506 * low level drivers do what they see fit.
2507 */
2508 if (!blk_rq_is_passthrough(req))
2509 req->errors = 0;
2510
2511 if (error && !blk_rq_is_passthrough(req) &&
2512 !(req->rq_flags & RQF_QUIET)) {
2513 char *error_type;
2514
2515 switch (error) {
2516 case -ENOLINK:
2517 error_type = "recoverable transport";
2518 break;
2519 case -EREMOTEIO:
2520 error_type = "critical target";
2521 break;
2522 case -EBADE:
2523 error_type = "critical nexus";
2524 break;
2525 case -ETIMEDOUT:
2526 error_type = "timeout";
2527 break;
2528 case -ENOSPC:
2529 error_type = "critical space allocation";
2530 break;
2531 case -ENODATA:
2532 error_type = "critical medium";
2533 break;
2534 case -EIO:
2535 default:
2536 error_type = "I/O";
2537 break;
2538 }
2539 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2540 __func__, error_type, req->rq_disk ?
2541 req->rq_disk->disk_name : "?",
2542 (unsigned long long)blk_rq_pos(req));
2543
2544 }
2545
2546 blk_account_io_completion(req, nr_bytes);
2547
2548 total_bytes = 0;
2549 while (req->bio) {
2550 struct bio *bio = req->bio;
2551 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2552
2553 if (bio_bytes == bio->bi_iter.bi_size)
2554 req->bio = bio->bi_next;
2555
2556 req_bio_endio(req, bio, bio_bytes, error);
2557
2558 total_bytes += bio_bytes;
2559 nr_bytes -= bio_bytes;
2560
2561 if (!nr_bytes)
2562 break;
2563 }
2564
2565 /*
2566 * completely done
2567 */
2568 if (!req->bio) {
2569 /*
2570 * Reset counters so that the request stacking driver
2571 * can find how many bytes remain in the request
2572 * later.
2573 */
2574 req->__data_len = 0;
2575 return false;
2576 }
2577
2578 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2579
2580 req->__data_len -= total_bytes;
2581
2582 /* update sector only for requests with clear definition of sector */
2583 if (!blk_rq_is_passthrough(req))
2584 req->__sector += total_bytes >> 9;
2585
2586 /* mixed attributes always follow the first bio */
2587 if (req->rq_flags & RQF_MIXED_MERGE) {
2588 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2589 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2590 }
2591
2592 /*
2593 * If total number of sectors is less than the first segment
2594 * size, something has gone terribly wrong.
2595 */
2596 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2597 blk_dump_rq_flags(req, "request botched");
2598 req->__data_len = blk_rq_cur_bytes(req);
2599 }
2600
2601 /* recalculate the number of segments */
2602 blk_recalc_rq_segments(req);
2603
2604 return true;
2605 }
2606 EXPORT_SYMBOL_GPL(blk_update_request);
2607
2608 static bool blk_update_bidi_request(struct request *rq, int error,
2609 unsigned int nr_bytes,
2610 unsigned int bidi_bytes)
2611 {
2612 if (blk_update_request(rq, error, nr_bytes))
2613 return true;
2614
2615 /* Bidi request must be completed as a whole */
2616 if (unlikely(blk_bidi_rq(rq)) &&
2617 blk_update_request(rq->next_rq, error, bidi_bytes))
2618 return true;
2619
2620 if (blk_queue_add_random(rq->q))
2621 add_disk_randomness(rq->rq_disk);
2622
2623 return false;
2624 }
2625
2626 /**
2627 * blk_unprep_request - unprepare a request
2628 * @req: the request
2629 *
2630 * This function makes a request ready for complete resubmission (or
2631 * completion). It happens only after all error handling is complete,
2632 * so represents the appropriate moment to deallocate any resources
2633 * that were allocated to the request in the prep_rq_fn. The queue
2634 * lock is held when calling this.
2635 */
2636 void blk_unprep_request(struct request *req)
2637 {
2638 struct request_queue *q = req->q;
2639
2640 req->rq_flags &= ~RQF_DONTPREP;
2641 if (q->unprep_rq_fn)
2642 q->unprep_rq_fn(q, req);
2643 }
2644 EXPORT_SYMBOL_GPL(blk_unprep_request);
2645
2646 /*
2647 * queue lock must be held
2648 */
2649 void blk_finish_request(struct request *req, int error)
2650 {
2651 struct request_queue *q = req->q;
2652
2653 if (req->rq_flags & RQF_STATS)
2654 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2655
2656 if (req->rq_flags & RQF_QUEUED)
2657 blk_queue_end_tag(q, req);
2658
2659 BUG_ON(blk_queued_rq(req));
2660
2661 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2662 laptop_io_completion(&req->q->backing_dev_info);
2663
2664 blk_delete_timer(req);
2665
2666 if (req->rq_flags & RQF_DONTPREP)
2667 blk_unprep_request(req);
2668
2669 blk_account_io_done(req);
2670
2671 if (req->end_io) {
2672 wbt_done(req->q->rq_wb, &req->issue_stat);
2673 req->end_io(req, error);
2674 } else {
2675 if (blk_bidi_rq(req))
2676 __blk_put_request(req->next_rq->q, req->next_rq);
2677
2678 __blk_put_request(q, req);
2679 }
2680 }
2681 EXPORT_SYMBOL(blk_finish_request);
2682
2683 /**
2684 * blk_end_bidi_request - Complete a bidi request
2685 * @rq: the request to complete
2686 * @error: %0 for success, < %0 for error
2687 * @nr_bytes: number of bytes to complete @rq
2688 * @bidi_bytes: number of bytes to complete @rq->next_rq
2689 *
2690 * Description:
2691 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2692 * Drivers that supports bidi can safely call this member for any
2693 * type of request, bidi or uni. In the later case @bidi_bytes is
2694 * just ignored.
2695 *
2696 * Return:
2697 * %false - we are done with this request
2698 * %true - still buffers pending for this request
2699 **/
2700 static bool blk_end_bidi_request(struct request *rq, int error,
2701 unsigned int nr_bytes, unsigned int bidi_bytes)
2702 {
2703 struct request_queue *q = rq->q;
2704 unsigned long flags;
2705
2706 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2707 return true;
2708
2709 spin_lock_irqsave(q->queue_lock, flags);
2710 blk_finish_request(rq, error);
2711 spin_unlock_irqrestore(q->queue_lock, flags);
2712
2713 return false;
2714 }
2715
2716 /**
2717 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2718 * @rq: the request to complete
2719 * @error: %0 for success, < %0 for error
2720 * @nr_bytes: number of bytes to complete @rq
2721 * @bidi_bytes: number of bytes to complete @rq->next_rq
2722 *
2723 * Description:
2724 * Identical to blk_end_bidi_request() except that queue lock is
2725 * assumed to be locked on entry and remains so on return.
2726 *
2727 * Return:
2728 * %false - we are done with this request
2729 * %true - still buffers pending for this request
2730 **/
2731 bool __blk_end_bidi_request(struct request *rq, int error,
2732 unsigned int nr_bytes, unsigned int bidi_bytes)
2733 {
2734 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2735 return true;
2736
2737 blk_finish_request(rq, error);
2738
2739 return false;
2740 }
2741
2742 /**
2743 * blk_end_request - Helper function for drivers to complete the request.
2744 * @rq: the request being processed
2745 * @error: %0 for success, < %0 for error
2746 * @nr_bytes: number of bytes to complete
2747 *
2748 * Description:
2749 * Ends I/O on a number of bytes attached to @rq.
2750 * If @rq has leftover, sets it up for the next range of segments.
2751 *
2752 * Return:
2753 * %false - we are done with this request
2754 * %true - still buffers pending for this request
2755 **/
2756 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2757 {
2758 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2759 }
2760 EXPORT_SYMBOL(blk_end_request);
2761
2762 /**
2763 * blk_end_request_all - Helper function for drives to finish the request.
2764 * @rq: the request to finish
2765 * @error: %0 for success, < %0 for error
2766 *
2767 * Description:
2768 * Completely finish @rq.
2769 */
2770 void blk_end_request_all(struct request *rq, int error)
2771 {
2772 bool pending;
2773 unsigned int bidi_bytes = 0;
2774
2775 if (unlikely(blk_bidi_rq(rq)))
2776 bidi_bytes = blk_rq_bytes(rq->next_rq);
2777
2778 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2779 BUG_ON(pending);
2780 }
2781 EXPORT_SYMBOL(blk_end_request_all);
2782
2783 /**
2784 * blk_end_request_cur - Helper function to finish the current request chunk.
2785 * @rq: the request to finish the current chunk for
2786 * @error: %0 for success, < %0 for error
2787 *
2788 * Description:
2789 * Complete the current consecutively mapped chunk from @rq.
2790 *
2791 * Return:
2792 * %false - we are done with this request
2793 * %true - still buffers pending for this request
2794 */
2795 bool blk_end_request_cur(struct request *rq, int error)
2796 {
2797 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2798 }
2799 EXPORT_SYMBOL(blk_end_request_cur);
2800
2801 /**
2802 * blk_end_request_err - Finish a request till the next failure boundary.
2803 * @rq: the request to finish till the next failure boundary for
2804 * @error: must be negative errno
2805 *
2806 * Description:
2807 * Complete @rq till the next failure boundary.
2808 *
2809 * Return:
2810 * %false - we are done with this request
2811 * %true - still buffers pending for this request
2812 */
2813 bool blk_end_request_err(struct request *rq, int error)
2814 {
2815 WARN_ON(error >= 0);
2816 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2817 }
2818 EXPORT_SYMBOL_GPL(blk_end_request_err);
2819
2820 /**
2821 * __blk_end_request - Helper function for drivers to complete the request.
2822 * @rq: the request being processed
2823 * @error: %0 for success, < %0 for error
2824 * @nr_bytes: number of bytes to complete
2825 *
2826 * Description:
2827 * Must be called with queue lock held unlike blk_end_request().
2828 *
2829 * Return:
2830 * %false - we are done with this request
2831 * %true - still buffers pending for this request
2832 **/
2833 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2834 {
2835 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2836 }
2837 EXPORT_SYMBOL(__blk_end_request);
2838
2839 /**
2840 * __blk_end_request_all - Helper function for drives to finish the request.
2841 * @rq: the request to finish
2842 * @error: %0 for success, < %0 for error
2843 *
2844 * Description:
2845 * Completely finish @rq. Must be called with queue lock held.
2846 */
2847 void __blk_end_request_all(struct request *rq, int error)
2848 {
2849 bool pending;
2850 unsigned int bidi_bytes = 0;
2851
2852 if (unlikely(blk_bidi_rq(rq)))
2853 bidi_bytes = blk_rq_bytes(rq->next_rq);
2854
2855 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2856 BUG_ON(pending);
2857 }
2858 EXPORT_SYMBOL(__blk_end_request_all);
2859
2860 /**
2861 * __blk_end_request_cur - Helper function to finish the current request chunk.
2862 * @rq: the request to finish the current chunk for
2863 * @error: %0 for success, < %0 for error
2864 *
2865 * Description:
2866 * Complete the current consecutively mapped chunk from @rq. Must
2867 * be called with queue lock held.
2868 *
2869 * Return:
2870 * %false - we are done with this request
2871 * %true - still buffers pending for this request
2872 */
2873 bool __blk_end_request_cur(struct request *rq, int error)
2874 {
2875 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2876 }
2877 EXPORT_SYMBOL(__blk_end_request_cur);
2878
2879 /**
2880 * __blk_end_request_err - Finish a request till the next failure boundary.
2881 * @rq: the request to finish till the next failure boundary for
2882 * @error: must be negative errno
2883 *
2884 * Description:
2885 * Complete @rq till the next failure boundary. Must be called
2886 * with queue lock held.
2887 *
2888 * Return:
2889 * %false - we are done with this request
2890 * %true - still buffers pending for this request
2891 */
2892 bool __blk_end_request_err(struct request *rq, int error)
2893 {
2894 WARN_ON(error >= 0);
2895 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2896 }
2897 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2898
2899 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2900 struct bio *bio)
2901 {
2902 if (bio_has_data(bio))
2903 rq->nr_phys_segments = bio_phys_segments(q, bio);
2904
2905 rq->__data_len = bio->bi_iter.bi_size;
2906 rq->bio = rq->biotail = bio;
2907
2908 if (bio->bi_bdev)
2909 rq->rq_disk = bio->bi_bdev->bd_disk;
2910 }
2911
2912 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2913 /**
2914 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2915 * @rq: the request to be flushed
2916 *
2917 * Description:
2918 * Flush all pages in @rq.
2919 */
2920 void rq_flush_dcache_pages(struct request *rq)
2921 {
2922 struct req_iterator iter;
2923 struct bio_vec bvec;
2924
2925 rq_for_each_segment(bvec, rq, iter)
2926 flush_dcache_page(bvec.bv_page);
2927 }
2928 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2929 #endif
2930
2931 /**
2932 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2933 * @q : the queue of the device being checked
2934 *
2935 * Description:
2936 * Check if underlying low-level drivers of a device are busy.
2937 * If the drivers want to export their busy state, they must set own
2938 * exporting function using blk_queue_lld_busy() first.
2939 *
2940 * Basically, this function is used only by request stacking drivers
2941 * to stop dispatching requests to underlying devices when underlying
2942 * devices are busy. This behavior helps more I/O merging on the queue
2943 * of the request stacking driver and prevents I/O throughput regression
2944 * on burst I/O load.
2945 *
2946 * Return:
2947 * 0 - Not busy (The request stacking driver should dispatch request)
2948 * 1 - Busy (The request stacking driver should stop dispatching request)
2949 */
2950 int blk_lld_busy(struct request_queue *q)
2951 {
2952 if (q->lld_busy_fn)
2953 return q->lld_busy_fn(q);
2954
2955 return 0;
2956 }
2957 EXPORT_SYMBOL_GPL(blk_lld_busy);
2958
2959 /**
2960 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2961 * @rq: the clone request to be cleaned up
2962 *
2963 * Description:
2964 * Free all bios in @rq for a cloned request.
2965 */
2966 void blk_rq_unprep_clone(struct request *rq)
2967 {
2968 struct bio *bio;
2969
2970 while ((bio = rq->bio) != NULL) {
2971 rq->bio = bio->bi_next;
2972
2973 bio_put(bio);
2974 }
2975 }
2976 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2977
2978 /*
2979 * Copy attributes of the original request to the clone request.
2980 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2981 */
2982 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2983 {
2984 dst->cpu = src->cpu;
2985 dst->__sector = blk_rq_pos(src);
2986 dst->__data_len = blk_rq_bytes(src);
2987 dst->nr_phys_segments = src->nr_phys_segments;
2988 dst->ioprio = src->ioprio;
2989 dst->extra_len = src->extra_len;
2990 }
2991
2992 /**
2993 * blk_rq_prep_clone - Helper function to setup clone request
2994 * @rq: the request to be setup
2995 * @rq_src: original request to be cloned
2996 * @bs: bio_set that bios for clone are allocated from
2997 * @gfp_mask: memory allocation mask for bio
2998 * @bio_ctr: setup function to be called for each clone bio.
2999 * Returns %0 for success, non %0 for failure.
3000 * @data: private data to be passed to @bio_ctr
3001 *
3002 * Description:
3003 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3004 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3005 * are not copied, and copying such parts is the caller's responsibility.
3006 * Also, pages which the original bios are pointing to are not copied
3007 * and the cloned bios just point same pages.
3008 * So cloned bios must be completed before original bios, which means
3009 * the caller must complete @rq before @rq_src.
3010 */
3011 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3012 struct bio_set *bs, gfp_t gfp_mask,
3013 int (*bio_ctr)(struct bio *, struct bio *, void *),
3014 void *data)
3015 {
3016 struct bio *bio, *bio_src;
3017
3018 if (!bs)
3019 bs = fs_bio_set;
3020
3021 __rq_for_each_bio(bio_src, rq_src) {
3022 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3023 if (!bio)
3024 goto free_and_out;
3025
3026 if (bio_ctr && bio_ctr(bio, bio_src, data))
3027 goto free_and_out;
3028
3029 if (rq->bio) {
3030 rq->biotail->bi_next = bio;
3031 rq->biotail = bio;
3032 } else
3033 rq->bio = rq->biotail = bio;
3034 }
3035
3036 __blk_rq_prep_clone(rq, rq_src);
3037
3038 return 0;
3039
3040 free_and_out:
3041 if (bio)
3042 bio_put(bio);
3043 blk_rq_unprep_clone(rq);
3044
3045 return -ENOMEM;
3046 }
3047 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3048
3049 int kblockd_schedule_work(struct work_struct *work)
3050 {
3051 return queue_work(kblockd_workqueue, work);
3052 }
3053 EXPORT_SYMBOL(kblockd_schedule_work);
3054
3055 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3056 {
3057 return queue_work_on(cpu, kblockd_workqueue, work);
3058 }
3059 EXPORT_SYMBOL(kblockd_schedule_work_on);
3060
3061 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3062 unsigned long delay)
3063 {
3064 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3065 }
3066 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3067
3068 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3069 unsigned long delay)
3070 {
3071 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3072 }
3073 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3074
3075 /**
3076 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3077 * @plug: The &struct blk_plug that needs to be initialized
3078 *
3079 * Description:
3080 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3081 * pending I/O should the task end up blocking between blk_start_plug() and
3082 * blk_finish_plug(). This is important from a performance perspective, but
3083 * also ensures that we don't deadlock. For instance, if the task is blocking
3084 * for a memory allocation, memory reclaim could end up wanting to free a
3085 * page belonging to that request that is currently residing in our private
3086 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3087 * this kind of deadlock.
3088 */
3089 void blk_start_plug(struct blk_plug *plug)
3090 {
3091 struct task_struct *tsk = current;
3092
3093 /*
3094 * If this is a nested plug, don't actually assign it.
3095 */
3096 if (tsk->plug)
3097 return;
3098
3099 INIT_LIST_HEAD(&plug->list);
3100 INIT_LIST_HEAD(&plug->mq_list);
3101 INIT_LIST_HEAD(&plug->cb_list);
3102 /*
3103 * Store ordering should not be needed here, since a potential
3104 * preempt will imply a full memory barrier
3105 */
3106 tsk->plug = plug;
3107 }
3108 EXPORT_SYMBOL(blk_start_plug);
3109
3110 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3111 {
3112 struct request *rqa = container_of(a, struct request, queuelist);
3113 struct request *rqb = container_of(b, struct request, queuelist);
3114
3115 return !(rqa->q < rqb->q ||
3116 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3117 }
3118
3119 /*
3120 * If 'from_schedule' is true, then postpone the dispatch of requests
3121 * until a safe kblockd context. We due this to avoid accidental big
3122 * additional stack usage in driver dispatch, in places where the originally
3123 * plugger did not intend it.
3124 */
3125 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3126 bool from_schedule)
3127 __releases(q->queue_lock)
3128 {
3129 trace_block_unplug(q, depth, !from_schedule);
3130
3131 if (from_schedule)
3132 blk_run_queue_async(q);
3133 else
3134 __blk_run_queue(q);
3135 spin_unlock(q->queue_lock);
3136 }
3137
3138 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3139 {
3140 LIST_HEAD(callbacks);
3141
3142 while (!list_empty(&plug->cb_list)) {
3143 list_splice_init(&plug->cb_list, &callbacks);
3144
3145 while (!list_empty(&callbacks)) {
3146 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3147 struct blk_plug_cb,
3148 list);
3149 list_del(&cb->list);
3150 cb->callback(cb, from_schedule);
3151 }
3152 }
3153 }
3154
3155 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3156 int size)
3157 {
3158 struct blk_plug *plug = current->plug;
3159 struct blk_plug_cb *cb;
3160
3161 if (!plug)
3162 return NULL;
3163
3164 list_for_each_entry(cb, &plug->cb_list, list)
3165 if (cb->callback == unplug && cb->data == data)
3166 return cb;
3167
3168 /* Not currently on the callback list */
3169 BUG_ON(size < sizeof(*cb));
3170 cb = kzalloc(size, GFP_ATOMIC);
3171 if (cb) {
3172 cb->data = data;
3173 cb->callback = unplug;
3174 list_add(&cb->list, &plug->cb_list);
3175 }
3176 return cb;
3177 }
3178 EXPORT_SYMBOL(blk_check_plugged);
3179
3180 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3181 {
3182 struct request_queue *q;
3183 unsigned long flags;
3184 struct request *rq;
3185 LIST_HEAD(list);
3186 unsigned int depth;
3187
3188 flush_plug_callbacks(plug, from_schedule);
3189
3190 if (!list_empty(&plug->mq_list))
3191 blk_mq_flush_plug_list(plug, from_schedule);
3192
3193 if (list_empty(&plug->list))
3194 return;
3195
3196 list_splice_init(&plug->list, &list);
3197
3198 list_sort(NULL, &list, plug_rq_cmp);
3199
3200 q = NULL;
3201 depth = 0;
3202
3203 /*
3204 * Save and disable interrupts here, to avoid doing it for every
3205 * queue lock we have to take.
3206 */
3207 local_irq_save(flags);
3208 while (!list_empty(&list)) {
3209 rq = list_entry_rq(list.next);
3210 list_del_init(&rq->queuelist);
3211 BUG_ON(!rq->q);
3212 if (rq->q != q) {
3213 /*
3214 * This drops the queue lock
3215 */
3216 if (q)
3217 queue_unplugged(q, depth, from_schedule);
3218 q = rq->q;
3219 depth = 0;
3220 spin_lock(q->queue_lock);
3221 }
3222
3223 /*
3224 * Short-circuit if @q is dead
3225 */
3226 if (unlikely(blk_queue_dying(q))) {
3227 __blk_end_request_all(rq, -ENODEV);
3228 continue;
3229 }
3230
3231 /*
3232 * rq is already accounted, so use raw insert
3233 */
3234 if (op_is_flush(rq->cmd_flags))
3235 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3236 else
3237 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3238
3239 depth++;
3240 }
3241
3242 /*
3243 * This drops the queue lock
3244 */
3245 if (q)
3246 queue_unplugged(q, depth, from_schedule);
3247
3248 local_irq_restore(flags);
3249 }
3250
3251 void blk_finish_plug(struct blk_plug *plug)
3252 {
3253 if (plug != current->plug)
3254 return;
3255 blk_flush_plug_list(plug, false);
3256
3257 current->plug = NULL;
3258 }
3259 EXPORT_SYMBOL(blk_finish_plug);
3260
3261 #ifdef CONFIG_PM
3262 /**
3263 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3264 * @q: the queue of the device
3265 * @dev: the device the queue belongs to
3266 *
3267 * Description:
3268 * Initialize runtime-PM-related fields for @q and start auto suspend for
3269 * @dev. Drivers that want to take advantage of request-based runtime PM
3270 * should call this function after @dev has been initialized, and its
3271 * request queue @q has been allocated, and runtime PM for it can not happen
3272 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3273 * cases, driver should call this function before any I/O has taken place.
3274 *
3275 * This function takes care of setting up using auto suspend for the device,
3276 * the autosuspend delay is set to -1 to make runtime suspend impossible
3277 * until an updated value is either set by user or by driver. Drivers do
3278 * not need to touch other autosuspend settings.
3279 *
3280 * The block layer runtime PM is request based, so only works for drivers
3281 * that use request as their IO unit instead of those directly use bio's.
3282 */
3283 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3284 {
3285 q->dev = dev;
3286 q->rpm_status = RPM_ACTIVE;
3287 pm_runtime_set_autosuspend_delay(q->dev, -1);
3288 pm_runtime_use_autosuspend(q->dev);
3289 }
3290 EXPORT_SYMBOL(blk_pm_runtime_init);
3291
3292 /**
3293 * blk_pre_runtime_suspend - Pre runtime suspend check
3294 * @q: the queue of the device
3295 *
3296 * Description:
3297 * This function will check if runtime suspend is allowed for the device
3298 * by examining if there are any requests pending in the queue. If there
3299 * are requests pending, the device can not be runtime suspended; otherwise,
3300 * the queue's status will be updated to SUSPENDING and the driver can
3301 * proceed to suspend the device.
3302 *
3303 * For the not allowed case, we mark last busy for the device so that
3304 * runtime PM core will try to autosuspend it some time later.
3305 *
3306 * This function should be called near the start of the device's
3307 * runtime_suspend callback.
3308 *
3309 * Return:
3310 * 0 - OK to runtime suspend the device
3311 * -EBUSY - Device should not be runtime suspended
3312 */
3313 int blk_pre_runtime_suspend(struct request_queue *q)
3314 {
3315 int ret = 0;
3316
3317 if (!q->dev)
3318 return ret;
3319
3320 spin_lock_irq(q->queue_lock);
3321 if (q->nr_pending) {
3322 ret = -EBUSY;
3323 pm_runtime_mark_last_busy(q->dev);
3324 } else {
3325 q->rpm_status = RPM_SUSPENDING;
3326 }
3327 spin_unlock_irq(q->queue_lock);
3328 return ret;
3329 }
3330 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3331
3332 /**
3333 * blk_post_runtime_suspend - Post runtime suspend processing
3334 * @q: the queue of the device
3335 * @err: return value of the device's runtime_suspend function
3336 *
3337 * Description:
3338 * Update the queue's runtime status according to the return value of the
3339 * device's runtime suspend function and mark last busy for the device so
3340 * that PM core will try to auto suspend the device at a later time.
3341 *
3342 * This function should be called near the end of the device's
3343 * runtime_suspend callback.
3344 */
3345 void blk_post_runtime_suspend(struct request_queue *q, int err)
3346 {
3347 if (!q->dev)
3348 return;
3349
3350 spin_lock_irq(q->queue_lock);
3351 if (!err) {
3352 q->rpm_status = RPM_SUSPENDED;
3353 } else {
3354 q->rpm_status = RPM_ACTIVE;
3355 pm_runtime_mark_last_busy(q->dev);
3356 }
3357 spin_unlock_irq(q->queue_lock);
3358 }
3359 EXPORT_SYMBOL(blk_post_runtime_suspend);
3360
3361 /**
3362 * blk_pre_runtime_resume - Pre runtime resume processing
3363 * @q: the queue of the device
3364 *
3365 * Description:
3366 * Update the queue's runtime status to RESUMING in preparation for the
3367 * runtime resume of the device.
3368 *
3369 * This function should be called near the start of the device's
3370 * runtime_resume callback.
3371 */
3372 void blk_pre_runtime_resume(struct request_queue *q)
3373 {
3374 if (!q->dev)
3375 return;
3376
3377 spin_lock_irq(q->queue_lock);
3378 q->rpm_status = RPM_RESUMING;
3379 spin_unlock_irq(q->queue_lock);
3380 }
3381 EXPORT_SYMBOL(blk_pre_runtime_resume);
3382
3383 /**
3384 * blk_post_runtime_resume - Post runtime resume processing
3385 * @q: the queue of the device
3386 * @err: return value of the device's runtime_resume function
3387 *
3388 * Description:
3389 * Update the queue's runtime status according to the return value of the
3390 * device's runtime_resume function. If it is successfully resumed, process
3391 * the requests that are queued into the device's queue when it is resuming
3392 * and then mark last busy and initiate autosuspend for it.
3393 *
3394 * This function should be called near the end of the device's
3395 * runtime_resume callback.
3396 */
3397 void blk_post_runtime_resume(struct request_queue *q, int err)
3398 {
3399 if (!q->dev)
3400 return;
3401
3402 spin_lock_irq(q->queue_lock);
3403 if (!err) {
3404 q->rpm_status = RPM_ACTIVE;
3405 __blk_run_queue(q);
3406 pm_runtime_mark_last_busy(q->dev);
3407 pm_request_autosuspend(q->dev);
3408 } else {
3409 q->rpm_status = RPM_SUSPENDED;
3410 }
3411 spin_unlock_irq(q->queue_lock);
3412 }
3413 EXPORT_SYMBOL(blk_post_runtime_resume);
3414
3415 /**
3416 * blk_set_runtime_active - Force runtime status of the queue to be active
3417 * @q: the queue of the device
3418 *
3419 * If the device is left runtime suspended during system suspend the resume
3420 * hook typically resumes the device and corrects runtime status
3421 * accordingly. However, that does not affect the queue runtime PM status
3422 * which is still "suspended". This prevents processing requests from the
3423 * queue.
3424 *
3425 * This function can be used in driver's resume hook to correct queue
3426 * runtime PM status and re-enable peeking requests from the queue. It
3427 * should be called before first request is added to the queue.
3428 */
3429 void blk_set_runtime_active(struct request_queue *q)
3430 {
3431 spin_lock_irq(q->queue_lock);
3432 q->rpm_status = RPM_ACTIVE;
3433 pm_runtime_mark_last_busy(q->dev);
3434 pm_request_autosuspend(q->dev);
3435 spin_unlock_irq(q->queue_lock);
3436 }
3437 EXPORT_SYMBOL(blk_set_runtime_active);
3438 #endif
3439
3440 int __init blk_dev_init(void)
3441 {
3442 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3443 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3444 FIELD_SIZEOF(struct request, cmd_flags));
3445 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3446 FIELD_SIZEOF(struct bio, bi_opf));
3447
3448 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3449 kblockd_workqueue = alloc_workqueue("kblockd",
3450 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3451 if (!kblockd_workqueue)
3452 panic("Failed to create kblockd\n");
3453
3454 request_cachep = kmem_cache_create("blkdev_requests",
3455 sizeof(struct request), 0, SLAB_PANIC, NULL);
3456
3457 blk_requestq_cachep = kmem_cache_create("request_queue",
3458 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3459
3460 return 0;
3461 }