]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: Unhash block device inodes on gendisk destruction
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
55782138
LZ
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/block.h>
1da177e4 39
8324aa91 40#include "blk.h"
43a5e4e2 41#include "blk-mq.h"
bd166ef1 42#include "blk-mq-sched.h"
87760e5e 43#include "blk-wbt.h"
8324aa91 44
d07335e5 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 48EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 49EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 50
a73f730d
TH
51DEFINE_IDA(blk_queue_ida);
52
1da177e4
LT
53/*
54 * For the allocated request tables
55 */
d674d414 56struct kmem_cache *request_cachep;
1da177e4
LT
57
58/*
59 * For queue allocation
60 */
6728cb0e 61struct kmem_cache *blk_requestq_cachep;
1da177e4 62
1da177e4
LT
63/*
64 * Controlling structure to kblockd
65 */
ff856bad 66static struct workqueue_struct *kblockd_workqueue;
1da177e4 67
d40f75a0
TH
68static void blk_clear_congested(struct request_list *rl, int sync)
69{
d40f75a0
TH
70#ifdef CONFIG_CGROUP_WRITEBACK
71 clear_wb_congested(rl->blkg->wb_congested, sync);
72#else
482cf79c
TH
73 /*
74 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
75 * flip its congestion state for events on other blkcgs.
76 */
77 if (rl == &rl->q->root_rl)
78 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
79#endif
80}
81
82static void blk_set_congested(struct request_list *rl, int sync)
83{
d40f75a0
TH
84#ifdef CONFIG_CGROUP_WRITEBACK
85 set_wb_congested(rl->blkg->wb_congested, sync);
86#else
482cf79c
TH
87 /* see blk_clear_congested() */
88 if (rl == &rl->q->root_rl)
89 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
90#endif
91}
92
8324aa91 93void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
94{
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106}
107
1da177e4
LT
108/**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
113 * backing_dev_info. This function can only be called if @bdev is opened
114 * and the return value is never NULL.
1da177e4
LT
115 */
116struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
117{
165125e1 118 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 119
ff9ea323 120 return &q->backing_dev_info;
1da177e4 121}
1da177e4
LT
122EXPORT_SYMBOL(blk_get_backing_dev_info);
123
2a4aa30c 124void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 125{
1afb20f3
FT
126 memset(rq, 0, sizeof(*rq));
127
1da177e4 128 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 129 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 130 rq->cpu = -1;
63a71386 131 rq->q = q;
a2dec7b3 132 rq->__sector = (sector_t) -1;
2e662b65
JA
133 INIT_HLIST_NODE(&rq->hash);
134 RB_CLEAR_NODE(&rq->rb_node);
63a71386 135 rq->tag = -1;
bd166ef1 136 rq->internal_tag = -1;
b243ddcb 137 rq->start_time = jiffies;
9195291e 138 set_start_time_ns(rq);
09e099d4 139 rq->part = NULL;
1da177e4 140}
2a4aa30c 141EXPORT_SYMBOL(blk_rq_init);
1da177e4 142
5bb23a68
N
143static void req_bio_endio(struct request *rq, struct bio *bio,
144 unsigned int nbytes, int error)
1da177e4 145{
78d8e58a 146 if (error)
4246a0b6 147 bio->bi_error = error;
797e7dbb 148
e8064021 149 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 150 bio_set_flag(bio, BIO_QUIET);
08bafc03 151
f79ea416 152 bio_advance(bio, nbytes);
7ba1ba12 153
143a87f4 154 /* don't actually finish bio if it's part of flush sequence */
e8064021 155 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 156 bio_endio(bio);
1da177e4 157}
1da177e4 158
1da177e4
LT
159void blk_dump_rq_flags(struct request *rq, char *msg)
160{
aebf526b
CH
161 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
162 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 163 (unsigned long long) rq->cmd_flags);
1da177e4 164
83096ebf
TH
165 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
166 (unsigned long long)blk_rq_pos(rq),
167 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
168 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
169 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 170}
1da177e4
LT
171EXPORT_SYMBOL(blk_dump_rq_flags);
172
3cca6dc1 173static void blk_delay_work(struct work_struct *work)
1da177e4 174{
3cca6dc1 175 struct request_queue *q;
1da177e4 176
3cca6dc1
JA
177 q = container_of(work, struct request_queue, delay_work.work);
178 spin_lock_irq(q->queue_lock);
24ecfbe2 179 __blk_run_queue(q);
3cca6dc1 180 spin_unlock_irq(q->queue_lock);
1da177e4 181}
1da177e4
LT
182
183/**
3cca6dc1
JA
184 * blk_delay_queue - restart queueing after defined interval
185 * @q: The &struct request_queue in question
186 * @msecs: Delay in msecs
1da177e4
LT
187 *
188 * Description:
3cca6dc1
JA
189 * Sometimes queueing needs to be postponed for a little while, to allow
190 * resources to come back. This function will make sure that queueing is
70460571 191 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
192 */
193void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 194{
70460571
BVA
195 if (likely(!blk_queue_dead(q)))
196 queue_delayed_work(kblockd_workqueue, &q->delay_work,
197 msecs_to_jiffies(msecs));
2ad8b1ef 198}
3cca6dc1 199EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 200
21491412
JA
201/**
202 * blk_start_queue_async - asynchronously restart a previously stopped queue
203 * @q: The &struct request_queue in question
204 *
205 * Description:
206 * blk_start_queue_async() will clear the stop flag on the queue, and
207 * ensure that the request_fn for the queue is run from an async
208 * context.
209 **/
210void blk_start_queue_async(struct request_queue *q)
211{
212 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
213 blk_run_queue_async(q);
214}
215EXPORT_SYMBOL(blk_start_queue_async);
216
1da177e4
LT
217/**
218 * blk_start_queue - restart a previously stopped queue
165125e1 219 * @q: The &struct request_queue in question
1da177e4
LT
220 *
221 * Description:
222 * blk_start_queue() will clear the stop flag on the queue, and call
223 * the request_fn for the queue if it was in a stopped state when
224 * entered. Also see blk_stop_queue(). Queue lock must be held.
225 **/
165125e1 226void blk_start_queue(struct request_queue *q)
1da177e4 227{
a038e253
PBG
228 WARN_ON(!irqs_disabled());
229
75ad23bc 230 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 231 __blk_run_queue(q);
1da177e4 232}
1da177e4
LT
233EXPORT_SYMBOL(blk_start_queue);
234
235/**
236 * blk_stop_queue - stop a queue
165125e1 237 * @q: The &struct request_queue in question
1da177e4
LT
238 *
239 * Description:
240 * The Linux block layer assumes that a block driver will consume all
241 * entries on the request queue when the request_fn strategy is called.
242 * Often this will not happen, because of hardware limitations (queue
243 * depth settings). If a device driver gets a 'queue full' response,
244 * or if it simply chooses not to queue more I/O at one point, it can
245 * call this function to prevent the request_fn from being called until
246 * the driver has signalled it's ready to go again. This happens by calling
247 * blk_start_queue() to restart queue operations. Queue lock must be held.
248 **/
165125e1 249void blk_stop_queue(struct request_queue *q)
1da177e4 250{
136b5721 251 cancel_delayed_work(&q->delay_work);
75ad23bc 252 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
253}
254EXPORT_SYMBOL(blk_stop_queue);
255
256/**
257 * blk_sync_queue - cancel any pending callbacks on a queue
258 * @q: the queue
259 *
260 * Description:
261 * The block layer may perform asynchronous callback activity
262 * on a queue, such as calling the unplug function after a timeout.
263 * A block device may call blk_sync_queue to ensure that any
264 * such activity is cancelled, thus allowing it to release resources
59c51591 265 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
266 * that its ->make_request_fn will not re-add plugging prior to calling
267 * this function.
268 *
da527770 269 * This function does not cancel any asynchronous activity arising
da3dae54 270 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 271 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 272 *
1da177e4
LT
273 */
274void blk_sync_queue(struct request_queue *q)
275{
70ed28b9 276 del_timer_sync(&q->timeout);
f04c1fe7
ML
277
278 if (q->mq_ops) {
279 struct blk_mq_hw_ctx *hctx;
280 int i;
281
70f4db63 282 queue_for_each_hw_ctx(q, hctx, i) {
27489a3c 283 cancel_work_sync(&hctx->run_work);
70f4db63
CH
284 cancel_delayed_work_sync(&hctx->delay_work);
285 }
f04c1fe7
ML
286 } else {
287 cancel_delayed_work_sync(&q->delay_work);
288 }
1da177e4
LT
289}
290EXPORT_SYMBOL(blk_sync_queue);
291
c246e80d
BVA
292/**
293 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
294 * @q: The queue to run
295 *
296 * Description:
297 * Invoke request handling on a queue if there are any pending requests.
298 * May be used to restart request handling after a request has completed.
299 * This variant runs the queue whether or not the queue has been
300 * stopped. Must be called with the queue lock held and interrupts
301 * disabled. See also @blk_run_queue.
302 */
303inline void __blk_run_queue_uncond(struct request_queue *q)
304{
305 if (unlikely(blk_queue_dead(q)))
306 return;
307
24faf6f6
BVA
308 /*
309 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
310 * the queue lock internally. As a result multiple threads may be
311 * running such a request function concurrently. Keep track of the
312 * number of active request_fn invocations such that blk_drain_queue()
313 * can wait until all these request_fn calls have finished.
314 */
315 q->request_fn_active++;
c246e80d 316 q->request_fn(q);
24faf6f6 317 q->request_fn_active--;
c246e80d 318}
a7928c15 319EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 320
1da177e4 321/**
80a4b58e 322 * __blk_run_queue - run a single device queue
1da177e4 323 * @q: The queue to run
80a4b58e
JA
324 *
325 * Description:
326 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 327 * held and interrupts disabled.
1da177e4 328 */
24ecfbe2 329void __blk_run_queue(struct request_queue *q)
1da177e4 330{
a538cd03
TH
331 if (unlikely(blk_queue_stopped(q)))
332 return;
333
c246e80d 334 __blk_run_queue_uncond(q);
75ad23bc
NP
335}
336EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 337
24ecfbe2
CH
338/**
339 * blk_run_queue_async - run a single device queue in workqueue context
340 * @q: The queue to run
341 *
342 * Description:
343 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 344 * of us. The caller must hold the queue lock.
24ecfbe2
CH
345 */
346void blk_run_queue_async(struct request_queue *q)
347{
70460571 348 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 349 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 350}
c21e6beb 351EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 352
75ad23bc
NP
353/**
354 * blk_run_queue - run a single device queue
355 * @q: The queue to run
80a4b58e
JA
356 *
357 * Description:
358 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 359 * May be used to restart queueing when a request has completed.
75ad23bc
NP
360 */
361void blk_run_queue(struct request_queue *q)
362{
363 unsigned long flags;
364
365 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 366 __blk_run_queue(q);
1da177e4
LT
367 spin_unlock_irqrestore(q->queue_lock, flags);
368}
369EXPORT_SYMBOL(blk_run_queue);
370
165125e1 371void blk_put_queue(struct request_queue *q)
483f4afc
AV
372{
373 kobject_put(&q->kobj);
374}
d86e0e83 375EXPORT_SYMBOL(blk_put_queue);
483f4afc 376
e3c78ca5 377/**
807592a4 378 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 379 * @q: queue to drain
c9a929dd 380 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 381 *
c9a929dd
TH
382 * Drain requests from @q. If @drain_all is set, all requests are drained.
383 * If not, only ELVPRIV requests are drained. The caller is responsible
384 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 385 */
807592a4
BVA
386static void __blk_drain_queue(struct request_queue *q, bool drain_all)
387 __releases(q->queue_lock)
388 __acquires(q->queue_lock)
e3c78ca5 389{
458f27a9
AH
390 int i;
391
807592a4
BVA
392 lockdep_assert_held(q->queue_lock);
393
e3c78ca5 394 while (true) {
481a7d64 395 bool drain = false;
e3c78ca5 396
b855b04a
TH
397 /*
398 * The caller might be trying to drain @q before its
399 * elevator is initialized.
400 */
401 if (q->elevator)
402 elv_drain_elevator(q);
403
5efd6113 404 blkcg_drain_queue(q);
e3c78ca5 405
4eabc941
TH
406 /*
407 * This function might be called on a queue which failed
b855b04a
TH
408 * driver init after queue creation or is not yet fully
409 * active yet. Some drivers (e.g. fd and loop) get unhappy
410 * in such cases. Kick queue iff dispatch queue has
411 * something on it and @q has request_fn set.
4eabc941 412 */
b855b04a 413 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 414 __blk_run_queue(q);
c9a929dd 415
8a5ecdd4 416 drain |= q->nr_rqs_elvpriv;
24faf6f6 417 drain |= q->request_fn_active;
481a7d64
TH
418
419 /*
420 * Unfortunately, requests are queued at and tracked from
421 * multiple places and there's no single counter which can
422 * be drained. Check all the queues and counters.
423 */
424 if (drain_all) {
e97c293c 425 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
426 drain |= !list_empty(&q->queue_head);
427 for (i = 0; i < 2; i++) {
8a5ecdd4 428 drain |= q->nr_rqs[i];
481a7d64 429 drain |= q->in_flight[i];
7c94e1c1
ML
430 if (fq)
431 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
432 }
433 }
e3c78ca5 434
481a7d64 435 if (!drain)
e3c78ca5 436 break;
807592a4
BVA
437
438 spin_unlock_irq(q->queue_lock);
439
e3c78ca5 440 msleep(10);
807592a4
BVA
441
442 spin_lock_irq(q->queue_lock);
e3c78ca5 443 }
458f27a9
AH
444
445 /*
446 * With queue marked dead, any woken up waiter will fail the
447 * allocation path, so the wakeup chaining is lost and we're
448 * left with hung waiters. We need to wake up those waiters.
449 */
450 if (q->request_fn) {
a051661c
TH
451 struct request_list *rl;
452
a051661c
TH
453 blk_queue_for_each_rl(rl, q)
454 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
455 wake_up_all(&rl->wait[i]);
458f27a9 456 }
e3c78ca5
TH
457}
458
d732580b
TH
459/**
460 * blk_queue_bypass_start - enter queue bypass mode
461 * @q: queue of interest
462 *
463 * In bypass mode, only the dispatch FIFO queue of @q is used. This
464 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 465 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
466 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
467 * inside queue or RCU read lock.
d732580b
TH
468 */
469void blk_queue_bypass_start(struct request_queue *q)
470{
471 spin_lock_irq(q->queue_lock);
776687bc 472 q->bypass_depth++;
d732580b
TH
473 queue_flag_set(QUEUE_FLAG_BYPASS, q);
474 spin_unlock_irq(q->queue_lock);
475
776687bc
TH
476 /*
477 * Queues start drained. Skip actual draining till init is
478 * complete. This avoids lenghty delays during queue init which
479 * can happen many times during boot.
480 */
481 if (blk_queue_init_done(q)) {
807592a4
BVA
482 spin_lock_irq(q->queue_lock);
483 __blk_drain_queue(q, false);
484 spin_unlock_irq(q->queue_lock);
485
b82d4b19
TH
486 /* ensure blk_queue_bypass() is %true inside RCU read lock */
487 synchronize_rcu();
488 }
d732580b
TH
489}
490EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
491
492/**
493 * blk_queue_bypass_end - leave queue bypass mode
494 * @q: queue of interest
495 *
496 * Leave bypass mode and restore the normal queueing behavior.
497 */
498void blk_queue_bypass_end(struct request_queue *q)
499{
500 spin_lock_irq(q->queue_lock);
501 if (!--q->bypass_depth)
502 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
503 WARN_ON_ONCE(q->bypass_depth < 0);
504 spin_unlock_irq(q->queue_lock);
505}
506EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
507
aed3ea94
JA
508void blk_set_queue_dying(struct request_queue *q)
509{
1b856086
BVA
510 spin_lock_irq(q->queue_lock);
511 queue_flag_set(QUEUE_FLAG_DYING, q);
512 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
513
514 if (q->mq_ops)
515 blk_mq_wake_waiters(q);
516 else {
517 struct request_list *rl;
518
519 blk_queue_for_each_rl(rl, q) {
520 if (rl->rq_pool) {
521 wake_up(&rl->wait[BLK_RW_SYNC]);
522 wake_up(&rl->wait[BLK_RW_ASYNC]);
523 }
524 }
525 }
526}
527EXPORT_SYMBOL_GPL(blk_set_queue_dying);
528
c9a929dd
TH
529/**
530 * blk_cleanup_queue - shutdown a request queue
531 * @q: request queue to shutdown
532 *
c246e80d
BVA
533 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
534 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 535 */
6728cb0e 536void blk_cleanup_queue(struct request_queue *q)
483f4afc 537{
c9a929dd 538 spinlock_t *lock = q->queue_lock;
e3335de9 539
3f3299d5 540 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 541 mutex_lock(&q->sysfs_lock);
aed3ea94 542 blk_set_queue_dying(q);
c9a929dd 543 spin_lock_irq(lock);
6ecf23af 544
80fd9979 545 /*
3f3299d5 546 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
547 * that, unlike blk_queue_bypass_start(), we aren't performing
548 * synchronize_rcu() after entering bypass mode to avoid the delay
549 * as some drivers create and destroy a lot of queues while
550 * probing. This is still safe because blk_release_queue() will be
551 * called only after the queue refcnt drops to zero and nothing,
552 * RCU or not, would be traversing the queue by then.
553 */
6ecf23af
TH
554 q->bypass_depth++;
555 queue_flag_set(QUEUE_FLAG_BYPASS, q);
556
c9a929dd
TH
557 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
558 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 559 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
560 spin_unlock_irq(lock);
561 mutex_unlock(&q->sysfs_lock);
562
c246e80d
BVA
563 /*
564 * Drain all requests queued before DYING marking. Set DEAD flag to
565 * prevent that q->request_fn() gets invoked after draining finished.
566 */
3ef28e83
DW
567 blk_freeze_queue(q);
568 spin_lock_irq(lock);
569 if (!q->mq_ops)
43a5e4e2 570 __blk_drain_queue(q, true);
c246e80d 571 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 572 spin_unlock_irq(lock);
c9a929dd 573
5a48fc14
DW
574 /* for synchronous bio-based driver finish in-flight integrity i/o */
575 blk_flush_integrity();
576
c9a929dd
TH
577 /* @q won't process any more request, flush async actions */
578 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
579 blk_sync_queue(q);
580
45a9c9d9
BVA
581 if (q->mq_ops)
582 blk_mq_free_queue(q);
3ef28e83 583 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 584
5e5cfac0
AH
585 spin_lock_irq(lock);
586 if (q->queue_lock != &q->__queue_lock)
587 q->queue_lock = &q->__queue_lock;
588 spin_unlock_irq(lock);
589
b02176f3 590 bdi_unregister(&q->backing_dev_info);
6cd18e71 591
c9a929dd 592 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
593 blk_put_queue(q);
594}
1da177e4
LT
595EXPORT_SYMBOL(blk_cleanup_queue);
596
271508db 597/* Allocate memory local to the request queue */
6d247d7f 598static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 599{
6d247d7f
CH
600 struct request_queue *q = data;
601
602 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
603}
604
6d247d7f 605static void free_request_simple(void *element, void *data)
271508db
DR
606{
607 kmem_cache_free(request_cachep, element);
608}
609
6d247d7f
CH
610static void *alloc_request_size(gfp_t gfp_mask, void *data)
611{
612 struct request_queue *q = data;
613 struct request *rq;
614
615 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
616 q->node);
617 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
618 kfree(rq);
619 rq = NULL;
620 }
621 return rq;
622}
623
624static void free_request_size(void *element, void *data)
625{
626 struct request_queue *q = data;
627
628 if (q->exit_rq_fn)
629 q->exit_rq_fn(q, element);
630 kfree(element);
631}
632
5b788ce3
TH
633int blk_init_rl(struct request_list *rl, struct request_queue *q,
634 gfp_t gfp_mask)
1da177e4 635{
1abec4fd
MS
636 if (unlikely(rl->rq_pool))
637 return 0;
638
5b788ce3 639 rl->q = q;
1faa16d2
JA
640 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
641 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
642 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
643 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 644
6d247d7f
CH
645 if (q->cmd_size) {
646 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
647 alloc_request_size, free_request_size,
648 q, gfp_mask, q->node);
649 } else {
650 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
651 alloc_request_simple, free_request_simple,
652 q, gfp_mask, q->node);
653 }
1da177e4
LT
654 if (!rl->rq_pool)
655 return -ENOMEM;
656
657 return 0;
658}
659
5b788ce3
TH
660void blk_exit_rl(struct request_list *rl)
661{
662 if (rl->rq_pool)
663 mempool_destroy(rl->rq_pool);
664}
665
165125e1 666struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 667{
c304a51b 668 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
669}
670EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 671
6f3b0e8b 672int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
673{
674 while (true) {
675 int ret;
676
677 if (percpu_ref_tryget_live(&q->q_usage_counter))
678 return 0;
679
6f3b0e8b 680 if (nowait)
3ef28e83
DW
681 return -EBUSY;
682
683 ret = wait_event_interruptible(q->mq_freeze_wq,
684 !atomic_read(&q->mq_freeze_depth) ||
685 blk_queue_dying(q));
686 if (blk_queue_dying(q))
687 return -ENODEV;
688 if (ret)
689 return ret;
690 }
691}
692
693void blk_queue_exit(struct request_queue *q)
694{
695 percpu_ref_put(&q->q_usage_counter);
696}
697
698static void blk_queue_usage_counter_release(struct percpu_ref *ref)
699{
700 struct request_queue *q =
701 container_of(ref, struct request_queue, q_usage_counter);
702
703 wake_up_all(&q->mq_freeze_wq);
704}
705
287922eb
CH
706static void blk_rq_timed_out_timer(unsigned long data)
707{
708 struct request_queue *q = (struct request_queue *)data;
709
710 kblockd_schedule_work(&q->timeout_work);
711}
712
165125e1 713struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 714{
165125e1 715 struct request_queue *q;
e0bf68dd 716 int err;
1946089a 717
8324aa91 718 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 719 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
720 if (!q)
721 return NULL;
722
00380a40 723 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 724 if (q->id < 0)
3d2936f4 725 goto fail_q;
a73f730d 726
54efd50b
KO
727 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
728 if (!q->bio_split)
729 goto fail_id;
730
0989a025 731 q->backing_dev_info.ra_pages =
09cbfeaf 732 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
89e9b9e0 733 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
d993831f 734 q->backing_dev_info.name = "block";
5151412d 735 q->node = node_id;
0989a025 736
e0bf68dd 737 err = bdi_init(&q->backing_dev_info);
a73f730d 738 if (err)
54efd50b 739 goto fail_split;
e0bf68dd 740
31373d09
MG
741 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
742 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 743 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 744 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 745 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 746 INIT_LIST_HEAD(&q->icq_list);
4eef3049 747#ifdef CONFIG_BLK_CGROUP
e8989fae 748 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 749#endif
3cca6dc1 750 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 751
8324aa91 752 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 753
483f4afc 754 mutex_init(&q->sysfs_lock);
e7e72bf6 755 spin_lock_init(&q->__queue_lock);
483f4afc 756
c94a96ac
VG
757 /*
758 * By default initialize queue_lock to internal lock and driver can
759 * override it later if need be.
760 */
761 q->queue_lock = &q->__queue_lock;
762
b82d4b19
TH
763 /*
764 * A queue starts its life with bypass turned on to avoid
765 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
766 * init. The initial bypass will be finished when the queue is
767 * registered by blk_register_queue().
b82d4b19
TH
768 */
769 q->bypass_depth = 1;
770 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
771
320ae51f
JA
772 init_waitqueue_head(&q->mq_freeze_wq);
773
3ef28e83
DW
774 /*
775 * Init percpu_ref in atomic mode so that it's faster to shutdown.
776 * See blk_register_queue() for details.
777 */
778 if (percpu_ref_init(&q->q_usage_counter,
779 blk_queue_usage_counter_release,
780 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 781 goto fail_bdi;
f51b802c 782
3ef28e83
DW
783 if (blkcg_init_queue(q))
784 goto fail_ref;
785
1da177e4 786 return q;
a73f730d 787
3ef28e83
DW
788fail_ref:
789 percpu_ref_exit(&q->q_usage_counter);
fff4996b
MP
790fail_bdi:
791 bdi_destroy(&q->backing_dev_info);
54efd50b
KO
792fail_split:
793 bioset_free(q->bio_split);
a73f730d
TH
794fail_id:
795 ida_simple_remove(&blk_queue_ida, q->id);
796fail_q:
797 kmem_cache_free(blk_requestq_cachep, q);
798 return NULL;
1da177e4 799}
1946089a 800EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
801
802/**
803 * blk_init_queue - prepare a request queue for use with a block device
804 * @rfn: The function to be called to process requests that have been
805 * placed on the queue.
806 * @lock: Request queue spin lock
807 *
808 * Description:
809 * If a block device wishes to use the standard request handling procedures,
810 * which sorts requests and coalesces adjacent requests, then it must
811 * call blk_init_queue(). The function @rfn will be called when there
812 * are requests on the queue that need to be processed. If the device
813 * supports plugging, then @rfn may not be called immediately when requests
814 * are available on the queue, but may be called at some time later instead.
815 * Plugged queues are generally unplugged when a buffer belonging to one
816 * of the requests on the queue is needed, or due to memory pressure.
817 *
818 * @rfn is not required, or even expected, to remove all requests off the
819 * queue, but only as many as it can handle at a time. If it does leave
820 * requests on the queue, it is responsible for arranging that the requests
821 * get dealt with eventually.
822 *
823 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
824 * request queue; this lock will be taken also from interrupt context, so irq
825 * disabling is needed for it.
1da177e4 826 *
710027a4 827 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
828 * it didn't succeed.
829 *
830 * Note:
831 * blk_init_queue() must be paired with a blk_cleanup_queue() call
832 * when the block device is deactivated (such as at module unload).
833 **/
1946089a 834
165125e1 835struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 836{
c304a51b 837 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
838}
839EXPORT_SYMBOL(blk_init_queue);
840
165125e1 841struct request_queue *
1946089a
CL
842blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
843{
5ea708d1 844 struct request_queue *q;
1da177e4 845
5ea708d1
CH
846 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
847 if (!q)
c86d1b8a
MS
848 return NULL;
849
5ea708d1
CH
850 q->request_fn = rfn;
851 if (lock)
852 q->queue_lock = lock;
853 if (blk_init_allocated_queue(q) < 0) {
854 blk_cleanup_queue(q);
855 return NULL;
856 }
18741986 857
7982e90c 858 return q;
01effb0d
MS
859}
860EXPORT_SYMBOL(blk_init_queue_node);
861
dece1635 862static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 863
1da177e4 864
5ea708d1
CH
865int blk_init_allocated_queue(struct request_queue *q)
866{
6d247d7f 867 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 868 if (!q->fq)
5ea708d1 869 return -ENOMEM;
7982e90c 870
6d247d7f
CH
871 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
872 goto out_free_flush_queue;
873
a051661c 874 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 875 goto out_exit_flush_rq;
1da177e4 876
287922eb 877 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 878 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 879
f3b144aa
JA
880 /*
881 * This also sets hw/phys segments, boundary and size
882 */
c20e8de2 883 blk_queue_make_request(q, blk_queue_bio);
1da177e4 884
44ec9542
AS
885 q->sg_reserved_size = INT_MAX;
886
eb1c160b
TS
887 /* Protect q->elevator from elevator_change */
888 mutex_lock(&q->sysfs_lock);
889
b82d4b19 890 /* init elevator */
eb1c160b
TS
891 if (elevator_init(q, NULL)) {
892 mutex_unlock(&q->sysfs_lock);
6d247d7f 893 goto out_exit_flush_rq;
eb1c160b
TS
894 }
895
896 mutex_unlock(&q->sysfs_lock);
5ea708d1 897 return 0;
708f04d2 898
6d247d7f
CH
899out_exit_flush_rq:
900 if (q->exit_rq_fn)
901 q->exit_rq_fn(q, q->fq->flush_rq);
902out_free_flush_queue:
ba483388 903 blk_free_flush_queue(q->fq);
87760e5e 904 wbt_exit(q);
5ea708d1 905 return -ENOMEM;
1da177e4 906}
5151412d 907EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 908
09ac46c4 909bool blk_get_queue(struct request_queue *q)
1da177e4 910{
3f3299d5 911 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
912 __blk_get_queue(q);
913 return true;
1da177e4
LT
914 }
915
09ac46c4 916 return false;
1da177e4 917}
d86e0e83 918EXPORT_SYMBOL(blk_get_queue);
1da177e4 919
5b788ce3 920static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 921{
e8064021 922 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 923 elv_put_request(rl->q, rq);
f1f8cc94 924 if (rq->elv.icq)
11a3122f 925 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
926 }
927
5b788ce3 928 mempool_free(rq, rl->rq_pool);
1da177e4
LT
929}
930
1da177e4
LT
931/*
932 * ioc_batching returns true if the ioc is a valid batching request and
933 * should be given priority access to a request.
934 */
165125e1 935static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
936{
937 if (!ioc)
938 return 0;
939
940 /*
941 * Make sure the process is able to allocate at least 1 request
942 * even if the batch times out, otherwise we could theoretically
943 * lose wakeups.
944 */
945 return ioc->nr_batch_requests == q->nr_batching ||
946 (ioc->nr_batch_requests > 0
947 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
948}
949
950/*
951 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
952 * will cause the process to be a "batcher" on all queues in the system. This
953 * is the behaviour we want though - once it gets a wakeup it should be given
954 * a nice run.
955 */
165125e1 956static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
957{
958 if (!ioc || ioc_batching(q, ioc))
959 return;
960
961 ioc->nr_batch_requests = q->nr_batching;
962 ioc->last_waited = jiffies;
963}
964
5b788ce3 965static void __freed_request(struct request_list *rl, int sync)
1da177e4 966{
5b788ce3 967 struct request_queue *q = rl->q;
1da177e4 968
d40f75a0
TH
969 if (rl->count[sync] < queue_congestion_off_threshold(q))
970 blk_clear_congested(rl, sync);
1da177e4 971
1faa16d2
JA
972 if (rl->count[sync] + 1 <= q->nr_requests) {
973 if (waitqueue_active(&rl->wait[sync]))
974 wake_up(&rl->wait[sync]);
1da177e4 975
5b788ce3 976 blk_clear_rl_full(rl, sync);
1da177e4
LT
977 }
978}
979
980/*
981 * A request has just been released. Account for it, update the full and
982 * congestion status, wake up any waiters. Called under q->queue_lock.
983 */
e8064021
CH
984static void freed_request(struct request_list *rl, bool sync,
985 req_flags_t rq_flags)
1da177e4 986{
5b788ce3 987 struct request_queue *q = rl->q;
1da177e4 988
8a5ecdd4 989 q->nr_rqs[sync]--;
1faa16d2 990 rl->count[sync]--;
e8064021 991 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 992 q->nr_rqs_elvpriv--;
1da177e4 993
5b788ce3 994 __freed_request(rl, sync);
1da177e4 995
1faa16d2 996 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 997 __freed_request(rl, sync ^ 1);
1da177e4
LT
998}
999
e3a2b3f9
JA
1000int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1001{
1002 struct request_list *rl;
d40f75a0 1003 int on_thresh, off_thresh;
e3a2b3f9
JA
1004
1005 spin_lock_irq(q->queue_lock);
1006 q->nr_requests = nr;
1007 blk_queue_congestion_threshold(q);
d40f75a0
TH
1008 on_thresh = queue_congestion_on_threshold(q);
1009 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1010
d40f75a0
TH
1011 blk_queue_for_each_rl(rl, q) {
1012 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1013 blk_set_congested(rl, BLK_RW_SYNC);
1014 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1015 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1016
d40f75a0
TH
1017 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1018 blk_set_congested(rl, BLK_RW_ASYNC);
1019 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1020 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1021
e3a2b3f9
JA
1022 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1023 blk_set_rl_full(rl, BLK_RW_SYNC);
1024 } else {
1025 blk_clear_rl_full(rl, BLK_RW_SYNC);
1026 wake_up(&rl->wait[BLK_RW_SYNC]);
1027 }
1028
1029 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1030 blk_set_rl_full(rl, BLK_RW_ASYNC);
1031 } else {
1032 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1033 wake_up(&rl->wait[BLK_RW_ASYNC]);
1034 }
1035 }
1036
1037 spin_unlock_irq(q->queue_lock);
1038 return 0;
1039}
1040
da8303c6 1041/**
a06e05e6 1042 * __get_request - get a free request
5b788ce3 1043 * @rl: request list to allocate from
ef295ecf 1044 * @op: operation and flags
da8303c6
TH
1045 * @bio: bio to allocate request for (can be %NULL)
1046 * @gfp_mask: allocation mask
1047 *
1048 * Get a free request from @q. This function may fail under memory
1049 * pressure or if @q is dead.
1050 *
da3dae54 1051 * Must be called with @q->queue_lock held and,
a492f075
JL
1052 * Returns ERR_PTR on failure, with @q->queue_lock held.
1053 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1054 */
ef295ecf
CH
1055static struct request *__get_request(struct request_list *rl, unsigned int op,
1056 struct bio *bio, gfp_t gfp_mask)
1da177e4 1057{
5b788ce3 1058 struct request_queue *q = rl->q;
b679281a 1059 struct request *rq;
7f4b35d1
TH
1060 struct elevator_type *et = q->elevator->type;
1061 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1062 struct io_cq *icq = NULL;
ef295ecf 1063 const bool is_sync = op_is_sync(op);
75eb6c37 1064 int may_queue;
e8064021 1065 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1066
3f3299d5 1067 if (unlikely(blk_queue_dying(q)))
a492f075 1068 return ERR_PTR(-ENODEV);
da8303c6 1069
ef295ecf 1070 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1071 if (may_queue == ELV_MQUEUE_NO)
1072 goto rq_starved;
1073
1faa16d2
JA
1074 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1075 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1076 /*
1077 * The queue will fill after this allocation, so set
1078 * it as full, and mark this process as "batching".
1079 * This process will be allowed to complete a batch of
1080 * requests, others will be blocked.
1081 */
5b788ce3 1082 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1083 ioc_set_batching(q, ioc);
5b788ce3 1084 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1085 } else {
1086 if (may_queue != ELV_MQUEUE_MUST
1087 && !ioc_batching(q, ioc)) {
1088 /*
1089 * The queue is full and the allocating
1090 * process is not a "batcher", and not
1091 * exempted by the IO scheduler
1092 */
a492f075 1093 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1094 }
1095 }
1da177e4 1096 }
d40f75a0 1097 blk_set_congested(rl, is_sync);
1da177e4
LT
1098 }
1099
082cf69e
JA
1100 /*
1101 * Only allow batching queuers to allocate up to 50% over the defined
1102 * limit of requests, otherwise we could have thousands of requests
1103 * allocated with any setting of ->nr_requests
1104 */
1faa16d2 1105 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1106 return ERR_PTR(-ENOMEM);
fd782a4a 1107
8a5ecdd4 1108 q->nr_rqs[is_sync]++;
1faa16d2
JA
1109 rl->count[is_sync]++;
1110 rl->starved[is_sync] = 0;
cb98fc8b 1111
f1f8cc94
TH
1112 /*
1113 * Decide whether the new request will be managed by elevator. If
e8064021 1114 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1115 * prevent the current elevator from being destroyed until the new
1116 * request is freed. This guarantees icq's won't be destroyed and
1117 * makes creating new ones safe.
1118 *
e6f7f93d
CH
1119 * Flush requests do not use the elevator so skip initialization.
1120 * This allows a request to share the flush and elevator data.
1121 *
f1f8cc94
TH
1122 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1123 * it will be created after releasing queue_lock.
1124 */
e6f7f93d 1125 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1126 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1127 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1128 if (et->icq_cache && ioc)
1129 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1130 }
cb98fc8b 1131
f253b86b 1132 if (blk_queue_io_stat(q))
e8064021 1133 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1134 spin_unlock_irq(q->queue_lock);
1135
29e2b09a 1136 /* allocate and init request */
5b788ce3 1137 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1138 if (!rq)
b679281a 1139 goto fail_alloc;
1da177e4 1140
29e2b09a 1141 blk_rq_init(q, rq);
a051661c 1142 blk_rq_set_rl(rq, rl);
5dc8b362 1143 blk_rq_set_prio(rq, ioc);
ef295ecf 1144 rq->cmd_flags = op;
e8064021 1145 rq->rq_flags = rq_flags;
29e2b09a 1146
aaf7c680 1147 /* init elvpriv */
e8064021 1148 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1149 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1150 if (ioc)
1151 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1152 if (!icq)
1153 goto fail_elvpriv;
29e2b09a 1154 }
aaf7c680
TH
1155
1156 rq->elv.icq = icq;
1157 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1158 goto fail_elvpriv;
1159
1160 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1161 if (icq)
1162 get_io_context(icq->ioc);
1163 }
aaf7c680 1164out:
88ee5ef1
JA
1165 /*
1166 * ioc may be NULL here, and ioc_batching will be false. That's
1167 * OK, if the queue is under the request limit then requests need
1168 * not count toward the nr_batch_requests limit. There will always
1169 * be some limit enforced by BLK_BATCH_TIME.
1170 */
1da177e4
LT
1171 if (ioc_batching(q, ioc))
1172 ioc->nr_batch_requests--;
6728cb0e 1173
e6a40b09 1174 trace_block_getrq(q, bio, op);
1da177e4 1175 return rq;
b679281a 1176
aaf7c680
TH
1177fail_elvpriv:
1178 /*
1179 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1180 * and may fail indefinitely under memory pressure and thus
1181 * shouldn't stall IO. Treat this request as !elvpriv. This will
1182 * disturb iosched and blkcg but weird is bettern than dead.
1183 */
7b2b10e0
RE
1184 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1185 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680 1186
e8064021 1187 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1188 rq->elv.icq = NULL;
1189
1190 spin_lock_irq(q->queue_lock);
8a5ecdd4 1191 q->nr_rqs_elvpriv--;
aaf7c680
TH
1192 spin_unlock_irq(q->queue_lock);
1193 goto out;
1194
b679281a
TH
1195fail_alloc:
1196 /*
1197 * Allocation failed presumably due to memory. Undo anything we
1198 * might have messed up.
1199 *
1200 * Allocating task should really be put onto the front of the wait
1201 * queue, but this is pretty rare.
1202 */
1203 spin_lock_irq(q->queue_lock);
e8064021 1204 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1205
1206 /*
1207 * in the very unlikely event that allocation failed and no
1208 * requests for this direction was pending, mark us starved so that
1209 * freeing of a request in the other direction will notice
1210 * us. another possible fix would be to split the rq mempool into
1211 * READ and WRITE
1212 */
1213rq_starved:
1214 if (unlikely(rl->count[is_sync] == 0))
1215 rl->starved[is_sync] = 1;
a492f075 1216 return ERR_PTR(-ENOMEM);
1da177e4
LT
1217}
1218
da8303c6 1219/**
a06e05e6 1220 * get_request - get a free request
da8303c6 1221 * @q: request_queue to allocate request from
ef295ecf 1222 * @op: operation and flags
da8303c6 1223 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1224 * @gfp_mask: allocation mask
da8303c6 1225 *
d0164adc
MG
1226 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1227 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1228 *
da3dae54 1229 * Must be called with @q->queue_lock held and,
a492f075
JL
1230 * Returns ERR_PTR on failure, with @q->queue_lock held.
1231 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1232 */
ef295ecf
CH
1233static struct request *get_request(struct request_queue *q, unsigned int op,
1234 struct bio *bio, gfp_t gfp_mask)
1da177e4 1235{
ef295ecf 1236 const bool is_sync = op_is_sync(op);
a06e05e6 1237 DEFINE_WAIT(wait);
a051661c 1238 struct request_list *rl;
1da177e4 1239 struct request *rq;
a051661c
TH
1240
1241 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1242retry:
ef295ecf 1243 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1244 if (!IS_ERR(rq))
a06e05e6 1245 return rq;
1da177e4 1246
d0164adc 1247 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1248 blk_put_rl(rl);
a492f075 1249 return rq;
a051661c 1250 }
1da177e4 1251
a06e05e6
TH
1252 /* wait on @rl and retry */
1253 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1254 TASK_UNINTERRUPTIBLE);
1da177e4 1255
e6a40b09 1256 trace_block_sleeprq(q, bio, op);
1da177e4 1257
a06e05e6
TH
1258 spin_unlock_irq(q->queue_lock);
1259 io_schedule();
d6344532 1260
a06e05e6
TH
1261 /*
1262 * After sleeping, we become a "batching" process and will be able
1263 * to allocate at least one request, and up to a big batch of them
1264 * for a small period time. See ioc_batching, ioc_set_batching
1265 */
a06e05e6 1266 ioc_set_batching(q, current->io_context);
05caf8db 1267
a06e05e6
TH
1268 spin_lock_irq(q->queue_lock);
1269 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1270
a06e05e6 1271 goto retry;
1da177e4
LT
1272}
1273
320ae51f
JA
1274static struct request *blk_old_get_request(struct request_queue *q, int rw,
1275 gfp_t gfp_mask)
1da177e4
LT
1276{
1277 struct request *rq;
1278
7f4b35d1
TH
1279 /* create ioc upfront */
1280 create_io_context(gfp_mask, q->node);
1281
d6344532 1282 spin_lock_irq(q->queue_lock);
ef295ecf 1283 rq = get_request(q, rw, NULL, gfp_mask);
0c4de0f3 1284 if (IS_ERR(rq)) {
da8303c6 1285 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1286 return rq;
1287 }
1da177e4 1288
0c4de0f3
CH
1289 /* q->queue_lock is unlocked at this point */
1290 rq->__data_len = 0;
1291 rq->__sector = (sector_t) -1;
1292 rq->bio = rq->biotail = NULL;
1da177e4
LT
1293 return rq;
1294}
320ae51f
JA
1295
1296struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1297{
1298 if (q->mq_ops)
6f3b0e8b
CH
1299 return blk_mq_alloc_request(q, rw,
1300 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1301 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1302 else
1303 return blk_old_get_request(q, rw, gfp_mask);
1304}
1da177e4
LT
1305EXPORT_SYMBOL(blk_get_request);
1306
1307/**
1308 * blk_requeue_request - put a request back on queue
1309 * @q: request queue where request should be inserted
1310 * @rq: request to be inserted
1311 *
1312 * Description:
1313 * Drivers often keep queueing requests until the hardware cannot accept
1314 * more, when that condition happens we need to put the request back
1315 * on the queue. Must be called with queue lock held.
1316 */
165125e1 1317void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1318{
242f9dcb
JA
1319 blk_delete_timer(rq);
1320 blk_clear_rq_complete(rq);
5f3ea37c 1321 trace_block_rq_requeue(q, rq);
87760e5e 1322 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1323
e8064021 1324 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1325 blk_queue_end_tag(q, rq);
1326
ba396a6c
JB
1327 BUG_ON(blk_queued_rq(rq));
1328
1da177e4
LT
1329 elv_requeue_request(q, rq);
1330}
1da177e4
LT
1331EXPORT_SYMBOL(blk_requeue_request);
1332
73c10101
JA
1333static void add_acct_request(struct request_queue *q, struct request *rq,
1334 int where)
1335{
320ae51f 1336 blk_account_io_start(rq, true);
7eaceacc 1337 __elv_add_request(q, rq, where);
73c10101
JA
1338}
1339
074a7aca
TH
1340static void part_round_stats_single(int cpu, struct hd_struct *part,
1341 unsigned long now)
1342{
7276d02e
JA
1343 int inflight;
1344
074a7aca
TH
1345 if (now == part->stamp)
1346 return;
1347
7276d02e
JA
1348 inflight = part_in_flight(part);
1349 if (inflight) {
074a7aca 1350 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1351 inflight * (now - part->stamp));
074a7aca
TH
1352 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1353 }
1354 part->stamp = now;
1355}
1356
1357/**
496aa8a9
RD
1358 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1359 * @cpu: cpu number for stats access
1360 * @part: target partition
1da177e4
LT
1361 *
1362 * The average IO queue length and utilisation statistics are maintained
1363 * by observing the current state of the queue length and the amount of
1364 * time it has been in this state for.
1365 *
1366 * Normally, that accounting is done on IO completion, but that can result
1367 * in more than a second's worth of IO being accounted for within any one
1368 * second, leading to >100% utilisation. To deal with that, we call this
1369 * function to do a round-off before returning the results when reading
1370 * /proc/diskstats. This accounts immediately for all queue usage up to
1371 * the current jiffies and restarts the counters again.
1372 */
c9959059 1373void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1374{
1375 unsigned long now = jiffies;
1376
074a7aca
TH
1377 if (part->partno)
1378 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1379 part_round_stats_single(cpu, part, now);
6f2576af 1380}
074a7aca 1381EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1382
47fafbc7 1383#ifdef CONFIG_PM
c8158819
LM
1384static void blk_pm_put_request(struct request *rq)
1385{
e8064021 1386 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1387 pm_runtime_mark_last_busy(rq->q->dev);
1388}
1389#else
1390static inline void blk_pm_put_request(struct request *rq) {}
1391#endif
1392
1da177e4
LT
1393/*
1394 * queue lock must be held
1395 */
165125e1 1396void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1397{
e8064021
CH
1398 req_flags_t rq_flags = req->rq_flags;
1399
1da177e4
LT
1400 if (unlikely(!q))
1401 return;
1da177e4 1402
6f5ba581
CH
1403 if (q->mq_ops) {
1404 blk_mq_free_request(req);
1405 return;
1406 }
1407
c8158819
LM
1408 blk_pm_put_request(req);
1409
8922e16c
TH
1410 elv_completed_request(q, req);
1411
1cd96c24
BH
1412 /* this is a bio leak */
1413 WARN_ON(req->bio != NULL);
1414
87760e5e
JA
1415 wbt_done(q->rq_wb, &req->issue_stat);
1416
1da177e4
LT
1417 /*
1418 * Request may not have originated from ll_rw_blk. if not,
1419 * it didn't come out of our reserved rq pools
1420 */
e8064021 1421 if (rq_flags & RQF_ALLOCED) {
a051661c 1422 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1423 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1424
1da177e4 1425 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1426 BUG_ON(ELV_ON_HASH(req));
1da177e4 1427
a051661c 1428 blk_free_request(rl, req);
e8064021 1429 freed_request(rl, sync, rq_flags);
a051661c 1430 blk_put_rl(rl);
1da177e4
LT
1431 }
1432}
6e39b69e
MC
1433EXPORT_SYMBOL_GPL(__blk_put_request);
1434
1da177e4
LT
1435void blk_put_request(struct request *req)
1436{
165125e1 1437 struct request_queue *q = req->q;
8922e16c 1438
320ae51f
JA
1439 if (q->mq_ops)
1440 blk_mq_free_request(req);
1441 else {
1442 unsigned long flags;
1443
1444 spin_lock_irqsave(q->queue_lock, flags);
1445 __blk_put_request(q, req);
1446 spin_unlock_irqrestore(q->queue_lock, flags);
1447 }
1da177e4 1448}
1da177e4
LT
1449EXPORT_SYMBOL(blk_put_request);
1450
320ae51f
JA
1451bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1452 struct bio *bio)
73c10101 1453{
1eff9d32 1454 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1455
73c10101
JA
1456 if (!ll_back_merge_fn(q, req, bio))
1457 return false;
1458
8c1cf6bb 1459 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1460
1461 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1462 blk_rq_set_mixed_merge(req);
1463
1464 req->biotail->bi_next = bio;
1465 req->biotail = bio;
4f024f37 1466 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1467 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1468
320ae51f 1469 blk_account_io_start(req, false);
73c10101
JA
1470 return true;
1471}
1472
320ae51f
JA
1473bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1474 struct bio *bio)
73c10101 1475{
1eff9d32 1476 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1477
73c10101
JA
1478 if (!ll_front_merge_fn(q, req, bio))
1479 return false;
1480
8c1cf6bb 1481 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1482
1483 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1484 blk_rq_set_mixed_merge(req);
1485
73c10101
JA
1486 bio->bi_next = req->bio;
1487 req->bio = bio;
1488
4f024f37
KO
1489 req->__sector = bio->bi_iter.bi_sector;
1490 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1491 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1492
320ae51f 1493 blk_account_io_start(req, false);
73c10101
JA
1494 return true;
1495}
1496
bd87b589 1497/**
320ae51f 1498 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1499 * @q: request_queue new bio is being queued at
1500 * @bio: new bio being queued
1501 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1502 * @same_queue_rq: pointer to &struct request that gets filled in when
1503 * another request associated with @q is found on the plug list
1504 * (optional, may be %NULL)
bd87b589
TH
1505 *
1506 * Determine whether @bio being queued on @q can be merged with a request
1507 * on %current's plugged list. Returns %true if merge was successful,
1508 * otherwise %false.
1509 *
07c2bd37
TH
1510 * Plugging coalesces IOs from the same issuer for the same purpose without
1511 * going through @q->queue_lock. As such it's more of an issuing mechanism
1512 * than scheduling, and the request, while may have elvpriv data, is not
1513 * added on the elevator at this point. In addition, we don't have
1514 * reliable access to the elevator outside queue lock. Only check basic
1515 * merging parameters without querying the elevator.
da41a589
RE
1516 *
1517 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1518 */
320ae51f 1519bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1520 unsigned int *request_count,
1521 struct request **same_queue_rq)
73c10101
JA
1522{
1523 struct blk_plug *plug;
1524 struct request *rq;
1525 bool ret = false;
92f399c7 1526 struct list_head *plug_list;
73c10101 1527
bd87b589 1528 plug = current->plug;
73c10101
JA
1529 if (!plug)
1530 goto out;
56ebdaf2 1531 *request_count = 0;
73c10101 1532
92f399c7
SL
1533 if (q->mq_ops)
1534 plug_list = &plug->mq_list;
1535 else
1536 plug_list = &plug->list;
1537
1538 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1539 int el_ret;
1540
5b3f341f 1541 if (rq->q == q) {
1b2e19f1 1542 (*request_count)++;
5b3f341f
SL
1543 /*
1544 * Only blk-mq multiple hardware queues case checks the
1545 * rq in the same queue, there should be only one such
1546 * rq in a queue
1547 **/
1548 if (same_queue_rq)
1549 *same_queue_rq = rq;
1550 }
56ebdaf2 1551
07c2bd37 1552 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1553 continue;
1554
050c8ea8 1555 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1556 if (el_ret == ELEVATOR_BACK_MERGE) {
1557 ret = bio_attempt_back_merge(q, rq, bio);
1558 if (ret)
1559 break;
1560 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1561 ret = bio_attempt_front_merge(q, rq, bio);
1562 if (ret)
1563 break;
1564 }
1565 }
1566out:
1567 return ret;
1568}
1569
0809e3ac
JM
1570unsigned int blk_plug_queued_count(struct request_queue *q)
1571{
1572 struct blk_plug *plug;
1573 struct request *rq;
1574 struct list_head *plug_list;
1575 unsigned int ret = 0;
1576
1577 plug = current->plug;
1578 if (!plug)
1579 goto out;
1580
1581 if (q->mq_ops)
1582 plug_list = &plug->mq_list;
1583 else
1584 plug_list = &plug->list;
1585
1586 list_for_each_entry(rq, plug_list, queuelist) {
1587 if (rq->q == q)
1588 ret++;
1589 }
1590out:
1591 return ret;
1592}
1593
86db1e29 1594void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1595{
1eff9d32 1596 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1597 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1598
52d9e675 1599 req->errors = 0;
4f024f37 1600 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1601 if (ioprio_valid(bio_prio(bio)))
1602 req->ioprio = bio_prio(bio);
bc1c56fd 1603 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1604}
1605
dece1635 1606static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1607{
73c10101 1608 struct blk_plug *plug;
ef295ecf 1609 int el_ret, where = ELEVATOR_INSERT_SORT;
73c10101 1610 struct request *req;
56ebdaf2 1611 unsigned int request_count = 0;
87760e5e 1612 unsigned int wb_acct;
1da177e4 1613
1da177e4
LT
1614 /*
1615 * low level driver can indicate that it wants pages above a
1616 * certain limit bounced to low memory (ie for highmem, or even
1617 * ISA dma in theory)
1618 */
1619 blk_queue_bounce(q, &bio);
1620
23688bf4
JN
1621 blk_queue_split(q, &bio, q->bio_split);
1622
ffecfd1a 1623 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1624 bio->bi_error = -EIO;
1625 bio_endio(bio);
dece1635 1626 return BLK_QC_T_NONE;
ffecfd1a
DW
1627 }
1628
f73f44eb 1629 if (op_is_flush(bio->bi_opf)) {
73c10101 1630 spin_lock_irq(q->queue_lock);
ae1b1539 1631 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1632 goto get_rq;
1633 }
1634
73c10101
JA
1635 /*
1636 * Check if we can merge with the plugged list before grabbing
1637 * any locks.
1638 */
0809e3ac
JM
1639 if (!blk_queue_nomerges(q)) {
1640 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1641 return BLK_QC_T_NONE;
0809e3ac
JM
1642 } else
1643 request_count = blk_plug_queued_count(q);
1da177e4 1644
73c10101 1645 spin_lock_irq(q->queue_lock);
2056a782 1646
73c10101
JA
1647 el_ret = elv_merge(q, &req, bio);
1648 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1649 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1650 elv_bio_merged(q, req, bio);
73c10101
JA
1651 if (!attempt_back_merge(q, req))
1652 elv_merged_request(q, req, el_ret);
1653 goto out_unlock;
1654 }
1655 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1656 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1657 elv_bio_merged(q, req, bio);
73c10101
JA
1658 if (!attempt_front_merge(q, req))
1659 elv_merged_request(q, req, el_ret);
1660 goto out_unlock;
80a761fd 1661 }
1da177e4
LT
1662 }
1663
450991bc 1664get_rq:
87760e5e
JA
1665 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1666
1da177e4 1667 /*
450991bc 1668 * Grab a free request. This is might sleep but can not fail.
d6344532 1669 * Returns with the queue unlocked.
450991bc 1670 */
ef295ecf 1671 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1672 if (IS_ERR(req)) {
87760e5e 1673 __wbt_done(q->rq_wb, wb_acct);
4246a0b6
CH
1674 bio->bi_error = PTR_ERR(req);
1675 bio_endio(bio);
da8303c6
TH
1676 goto out_unlock;
1677 }
d6344532 1678
87760e5e
JA
1679 wbt_track(&req->issue_stat, wb_acct);
1680
450991bc
NP
1681 /*
1682 * After dropping the lock and possibly sleeping here, our request
1683 * may now be mergeable after it had proven unmergeable (above).
1684 * We don't worry about that case for efficiency. It won't happen
1685 * often, and the elevators are able to handle it.
1da177e4 1686 */
52d9e675 1687 init_request_from_bio(req, bio);
1da177e4 1688
9562ad9a 1689 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1690 req->cpu = raw_smp_processor_id();
73c10101
JA
1691
1692 plug = current->plug;
721a9602 1693 if (plug) {
dc6d36c9
JA
1694 /*
1695 * If this is the first request added after a plug, fire
7aef2e78 1696 * of a plug trace.
0a6219a9
ML
1697 *
1698 * @request_count may become stale because of schedule
1699 * out, so check plug list again.
dc6d36c9 1700 */
0a6219a9 1701 if (!request_count || list_empty(&plug->list))
dc6d36c9 1702 trace_block_plug(q);
3540d5e8 1703 else {
50d24c34
SL
1704 struct request *last = list_entry_rq(plug->list.prev);
1705 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1706 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1707 blk_flush_plug_list(plug, false);
019ceb7d
SL
1708 trace_block_plug(q);
1709 }
73c10101 1710 }
73c10101 1711 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1712 blk_account_io_start(req, true);
73c10101
JA
1713 } else {
1714 spin_lock_irq(q->queue_lock);
1715 add_acct_request(q, req, where);
24ecfbe2 1716 __blk_run_queue(q);
73c10101
JA
1717out_unlock:
1718 spin_unlock_irq(q->queue_lock);
1719 }
dece1635
JA
1720
1721 return BLK_QC_T_NONE;
1da177e4
LT
1722}
1723
1724/*
1725 * If bio->bi_dev is a partition, remap the location
1726 */
1727static inline void blk_partition_remap(struct bio *bio)
1728{
1729 struct block_device *bdev = bio->bi_bdev;
1730
778889d8
ST
1731 /*
1732 * Zone reset does not include bi_size so bio_sectors() is always 0.
1733 * Include a test for the reset op code and perform the remap if needed.
1734 */
1735 if (bdev != bdev->bd_contains &&
1736 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1da177e4
LT
1737 struct hd_struct *p = bdev->bd_part;
1738
4f024f37 1739 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1740 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1741
d07335e5
MS
1742 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1743 bdev->bd_dev,
4f024f37 1744 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1745 }
1746}
1747
1da177e4
LT
1748static void handle_bad_sector(struct bio *bio)
1749{
1750 char b[BDEVNAME_SIZE];
1751
1752 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1753 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4 1754 bdevname(bio->bi_bdev, b),
1eff9d32 1755 bio->bi_opf,
f73a1c7d 1756 (unsigned long long)bio_end_sector(bio),
77304d2a 1757 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1758}
1759
c17bb495
AM
1760#ifdef CONFIG_FAIL_MAKE_REQUEST
1761
1762static DECLARE_FAULT_ATTR(fail_make_request);
1763
1764static int __init setup_fail_make_request(char *str)
1765{
1766 return setup_fault_attr(&fail_make_request, str);
1767}
1768__setup("fail_make_request=", setup_fail_make_request);
1769
b2c9cd37 1770static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1771{
b2c9cd37 1772 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1773}
1774
1775static int __init fail_make_request_debugfs(void)
1776{
dd48c085
AM
1777 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1778 NULL, &fail_make_request);
1779
21f9fcd8 1780 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1781}
1782
1783late_initcall(fail_make_request_debugfs);
1784
1785#else /* CONFIG_FAIL_MAKE_REQUEST */
1786
b2c9cd37
AM
1787static inline bool should_fail_request(struct hd_struct *part,
1788 unsigned int bytes)
c17bb495 1789{
b2c9cd37 1790 return false;
c17bb495
AM
1791}
1792
1793#endif /* CONFIG_FAIL_MAKE_REQUEST */
1794
c07e2b41
JA
1795/*
1796 * Check whether this bio extends beyond the end of the device.
1797 */
1798static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1799{
1800 sector_t maxsector;
1801
1802 if (!nr_sectors)
1803 return 0;
1804
1805 /* Test device or partition size, when known. */
77304d2a 1806 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1807 if (maxsector) {
4f024f37 1808 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1809
1810 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1811 /*
1812 * This may well happen - the kernel calls bread()
1813 * without checking the size of the device, e.g., when
1814 * mounting a device.
1815 */
1816 handle_bad_sector(bio);
1817 return 1;
1818 }
1819 }
1820
1821 return 0;
1822}
1823
27a84d54
CH
1824static noinline_for_stack bool
1825generic_make_request_checks(struct bio *bio)
1da177e4 1826{
165125e1 1827 struct request_queue *q;
5a7bbad2 1828 int nr_sectors = bio_sectors(bio);
51fd77bd 1829 int err = -EIO;
5a7bbad2
CH
1830 char b[BDEVNAME_SIZE];
1831 struct hd_struct *part;
1da177e4
LT
1832
1833 might_sleep();
1da177e4 1834
c07e2b41
JA
1835 if (bio_check_eod(bio, nr_sectors))
1836 goto end_io;
1da177e4 1837
5a7bbad2
CH
1838 q = bdev_get_queue(bio->bi_bdev);
1839 if (unlikely(!q)) {
1840 printk(KERN_ERR
1841 "generic_make_request: Trying to access "
1842 "nonexistent block-device %s (%Lu)\n",
1843 bdevname(bio->bi_bdev, b),
4f024f37 1844 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1845 goto end_io;
1846 }
c17bb495 1847
5a7bbad2 1848 part = bio->bi_bdev->bd_part;
4f024f37 1849 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1850 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1851 bio->bi_iter.bi_size))
5a7bbad2 1852 goto end_io;
2056a782 1853
5a7bbad2
CH
1854 /*
1855 * If this device has partitions, remap block n
1856 * of partition p to block n+start(p) of the disk.
1857 */
1858 blk_partition_remap(bio);
2056a782 1859
5a7bbad2
CH
1860 if (bio_check_eod(bio, nr_sectors))
1861 goto end_io;
1e87901e 1862
5a7bbad2
CH
1863 /*
1864 * Filter flush bio's early so that make_request based
1865 * drivers without flush support don't have to worry
1866 * about them.
1867 */
f3a8ab7d 1868 if (op_is_flush(bio->bi_opf) &&
c888a8f9 1869 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 1870 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2
CH
1871 if (!nr_sectors) {
1872 err = 0;
51fd77bd
JA
1873 goto end_io;
1874 }
5a7bbad2 1875 }
5ddfe969 1876
288dab8a
CH
1877 switch (bio_op(bio)) {
1878 case REQ_OP_DISCARD:
1879 if (!blk_queue_discard(q))
1880 goto not_supported;
1881 break;
1882 case REQ_OP_SECURE_ERASE:
1883 if (!blk_queue_secure_erase(q))
1884 goto not_supported;
1885 break;
1886 case REQ_OP_WRITE_SAME:
1887 if (!bdev_write_same(bio->bi_bdev))
1888 goto not_supported;
58886785 1889 break;
2d253440
ST
1890 case REQ_OP_ZONE_REPORT:
1891 case REQ_OP_ZONE_RESET:
1892 if (!bdev_is_zoned(bio->bi_bdev))
1893 goto not_supported;
288dab8a 1894 break;
a6f0788e
CK
1895 case REQ_OP_WRITE_ZEROES:
1896 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1897 goto not_supported;
1898 break;
288dab8a
CH
1899 default:
1900 break;
5a7bbad2 1901 }
01edede4 1902
7f4b35d1
TH
1903 /*
1904 * Various block parts want %current->io_context and lazy ioc
1905 * allocation ends up trading a lot of pain for a small amount of
1906 * memory. Just allocate it upfront. This may fail and block
1907 * layer knows how to live with it.
1908 */
1909 create_io_context(GFP_ATOMIC, q->node);
1910
ae118896
TH
1911 if (!blkcg_bio_issue_check(q, bio))
1912 return false;
27a84d54 1913
5a7bbad2 1914 trace_block_bio_queue(q, bio);
27a84d54 1915 return true;
a7384677 1916
288dab8a
CH
1917not_supported:
1918 err = -EOPNOTSUPP;
a7384677 1919end_io:
4246a0b6
CH
1920 bio->bi_error = err;
1921 bio_endio(bio);
27a84d54 1922 return false;
1da177e4
LT
1923}
1924
27a84d54
CH
1925/**
1926 * generic_make_request - hand a buffer to its device driver for I/O
1927 * @bio: The bio describing the location in memory and on the device.
1928 *
1929 * generic_make_request() is used to make I/O requests of block
1930 * devices. It is passed a &struct bio, which describes the I/O that needs
1931 * to be done.
1932 *
1933 * generic_make_request() does not return any status. The
1934 * success/failure status of the request, along with notification of
1935 * completion, is delivered asynchronously through the bio->bi_end_io
1936 * function described (one day) else where.
1937 *
1938 * The caller of generic_make_request must make sure that bi_io_vec
1939 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1940 * set to describe the device address, and the
1941 * bi_end_io and optionally bi_private are set to describe how
1942 * completion notification should be signaled.
1943 *
1944 * generic_make_request and the drivers it calls may use bi_next if this
1945 * bio happens to be merged with someone else, and may resubmit the bio to
1946 * a lower device by calling into generic_make_request recursively, which
1947 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 1948 */
dece1635 1949blk_qc_t generic_make_request(struct bio *bio)
d89d8796 1950{
bddd87c7 1951 struct bio_list bio_list_on_stack;
dece1635 1952 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 1953
27a84d54 1954 if (!generic_make_request_checks(bio))
dece1635 1955 goto out;
27a84d54
CH
1956
1957 /*
1958 * We only want one ->make_request_fn to be active at a time, else
1959 * stack usage with stacked devices could be a problem. So use
1960 * current->bio_list to keep a list of requests submited by a
1961 * make_request_fn function. current->bio_list is also used as a
1962 * flag to say if generic_make_request is currently active in this
1963 * task or not. If it is NULL, then no make_request is active. If
1964 * it is non-NULL, then a make_request is active, and new requests
1965 * should be added at the tail
1966 */
bddd87c7 1967 if (current->bio_list) {
bddd87c7 1968 bio_list_add(current->bio_list, bio);
dece1635 1969 goto out;
d89d8796 1970 }
27a84d54 1971
d89d8796
NB
1972 /* following loop may be a bit non-obvious, and so deserves some
1973 * explanation.
1974 * Before entering the loop, bio->bi_next is NULL (as all callers
1975 * ensure that) so we have a list with a single bio.
1976 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1977 * we assign bio_list to a pointer to the bio_list_on_stack,
1978 * thus initialising the bio_list of new bios to be
27a84d54 1979 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1980 * through a recursive call to generic_make_request. If it
1981 * did, we find a non-NULL value in bio_list and re-enter the loop
1982 * from the top. In this case we really did just take the bio
bddd87c7 1983 * of the top of the list (no pretending) and so remove it from
27a84d54 1984 * bio_list, and call into ->make_request() again.
d89d8796
NB
1985 */
1986 BUG_ON(bio->bi_next);
bddd87c7
AM
1987 bio_list_init(&bio_list_on_stack);
1988 current->bio_list = &bio_list_on_stack;
d89d8796 1989 do {
27a84d54
CH
1990 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1991
6f3b0e8b 1992 if (likely(blk_queue_enter(q, false) == 0)) {
dece1635 1993 ret = q->make_request_fn(q, bio);
3ef28e83
DW
1994
1995 blk_queue_exit(q);
27a84d54 1996
3ef28e83
DW
1997 bio = bio_list_pop(current->bio_list);
1998 } else {
1999 struct bio *bio_next = bio_list_pop(current->bio_list);
2000
2001 bio_io_error(bio);
2002 bio = bio_next;
2003 }
d89d8796 2004 } while (bio);
bddd87c7 2005 current->bio_list = NULL; /* deactivate */
dece1635
JA
2006
2007out:
2008 return ret;
d89d8796 2009}
1da177e4
LT
2010EXPORT_SYMBOL(generic_make_request);
2011
2012/**
710027a4 2013 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2014 * @bio: The &struct bio which describes the I/O
2015 *
2016 * submit_bio() is very similar in purpose to generic_make_request(), and
2017 * uses that function to do most of the work. Both are fairly rough
710027a4 2018 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2019 *
2020 */
4e49ea4a 2021blk_qc_t submit_bio(struct bio *bio)
1da177e4 2022{
bf2de6f5
JA
2023 /*
2024 * If it's a regular read/write or a barrier with data attached,
2025 * go through the normal accounting stuff before submission.
2026 */
e2a60da7 2027 if (bio_has_data(bio)) {
4363ac7c
MP
2028 unsigned int count;
2029
95fe6c1a 2030 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2031 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2032 else
2033 count = bio_sectors(bio);
2034
a8ebb056 2035 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2036 count_vm_events(PGPGOUT, count);
2037 } else {
4f024f37 2038 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2039 count_vm_events(PGPGIN, count);
2040 }
2041
2042 if (unlikely(block_dump)) {
2043 char b[BDEVNAME_SIZE];
8dcbdc74 2044 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2045 current->comm, task_pid_nr(current),
a8ebb056 2046 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2047 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2048 bdevname(bio->bi_bdev, b),
2049 count);
bf2de6f5 2050 }
1da177e4
LT
2051 }
2052
dece1635 2053 return generic_make_request(bio);
1da177e4 2054}
1da177e4
LT
2055EXPORT_SYMBOL(submit_bio);
2056
82124d60 2057/**
bf4e6b4e
HR
2058 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2059 * for new the queue limits
82124d60
KU
2060 * @q: the queue
2061 * @rq: the request being checked
2062 *
2063 * Description:
2064 * @rq may have been made based on weaker limitations of upper-level queues
2065 * in request stacking drivers, and it may violate the limitation of @q.
2066 * Since the block layer and the underlying device driver trust @rq
2067 * after it is inserted to @q, it should be checked against @q before
2068 * the insertion using this generic function.
2069 *
82124d60 2070 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2071 * limits when retrying requests on other queues. Those requests need
2072 * to be checked against the new queue limits again during dispatch.
82124d60 2073 */
bf4e6b4e
HR
2074static int blk_cloned_rq_check_limits(struct request_queue *q,
2075 struct request *rq)
82124d60 2076{
8fe0d473 2077 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2078 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2079 return -EIO;
2080 }
2081
2082 /*
2083 * queue's settings related to segment counting like q->bounce_pfn
2084 * may differ from that of other stacking queues.
2085 * Recalculate it to check the request correctly on this queue's
2086 * limitation.
2087 */
2088 blk_recalc_rq_segments(rq);
8a78362c 2089 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2090 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2091 return -EIO;
2092 }
2093
2094 return 0;
2095}
82124d60
KU
2096
2097/**
2098 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2099 * @q: the queue to submit the request
2100 * @rq: the request being queued
2101 */
2102int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2103{
2104 unsigned long flags;
4853abaa 2105 int where = ELEVATOR_INSERT_BACK;
82124d60 2106
bf4e6b4e 2107 if (blk_cloned_rq_check_limits(q, rq))
82124d60
KU
2108 return -EIO;
2109
b2c9cd37
AM
2110 if (rq->rq_disk &&
2111 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2112 return -EIO;
82124d60 2113
7fb4898e
KB
2114 if (q->mq_ops) {
2115 if (blk_queue_io_stat(q))
2116 blk_account_io_start(rq, true);
bd6737f1 2117 blk_mq_sched_insert_request(rq, false, true, false, false);
7fb4898e
KB
2118 return 0;
2119 }
2120
82124d60 2121 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2122 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2123 spin_unlock_irqrestore(q->queue_lock, flags);
2124 return -ENODEV;
2125 }
82124d60
KU
2126
2127 /*
2128 * Submitting request must be dequeued before calling this function
2129 * because it will be linked to another request_queue
2130 */
2131 BUG_ON(blk_queued_rq(rq));
2132
f73f44eb 2133 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2134 where = ELEVATOR_INSERT_FLUSH;
2135
2136 add_acct_request(q, rq, where);
e67b77c7
JM
2137 if (where == ELEVATOR_INSERT_FLUSH)
2138 __blk_run_queue(q);
82124d60
KU
2139 spin_unlock_irqrestore(q->queue_lock, flags);
2140
2141 return 0;
2142}
2143EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2144
80a761fd
TH
2145/**
2146 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2147 * @rq: request to examine
2148 *
2149 * Description:
2150 * A request could be merge of IOs which require different failure
2151 * handling. This function determines the number of bytes which
2152 * can be failed from the beginning of the request without
2153 * crossing into area which need to be retried further.
2154 *
2155 * Return:
2156 * The number of bytes to fail.
2157 *
2158 * Context:
2159 * queue_lock must be held.
2160 */
2161unsigned int blk_rq_err_bytes(const struct request *rq)
2162{
2163 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2164 unsigned int bytes = 0;
2165 struct bio *bio;
2166
e8064021 2167 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2168 return blk_rq_bytes(rq);
2169
2170 /*
2171 * Currently the only 'mixing' which can happen is between
2172 * different fastfail types. We can safely fail portions
2173 * which have all the failfast bits that the first one has -
2174 * the ones which are at least as eager to fail as the first
2175 * one.
2176 */
2177 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2178 if ((bio->bi_opf & ff) != ff)
80a761fd 2179 break;
4f024f37 2180 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2181 }
2182
2183 /* this could lead to infinite loop */
2184 BUG_ON(blk_rq_bytes(rq) && !bytes);
2185 return bytes;
2186}
2187EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2188
320ae51f 2189void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2190{
c2553b58 2191 if (blk_do_io_stat(req)) {
bc58ba94
JA
2192 const int rw = rq_data_dir(req);
2193 struct hd_struct *part;
2194 int cpu;
2195
2196 cpu = part_stat_lock();
09e099d4 2197 part = req->part;
bc58ba94
JA
2198 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2199 part_stat_unlock();
2200 }
2201}
2202
320ae51f 2203void blk_account_io_done(struct request *req)
bc58ba94 2204{
bc58ba94 2205 /*
dd4c133f
TH
2206 * Account IO completion. flush_rq isn't accounted as a
2207 * normal IO on queueing nor completion. Accounting the
2208 * containing request is enough.
bc58ba94 2209 */
e8064021 2210 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2211 unsigned long duration = jiffies - req->start_time;
2212 const int rw = rq_data_dir(req);
2213 struct hd_struct *part;
2214 int cpu;
2215
2216 cpu = part_stat_lock();
09e099d4 2217 part = req->part;
bc58ba94
JA
2218
2219 part_stat_inc(cpu, part, ios[rw]);
2220 part_stat_add(cpu, part, ticks[rw], duration);
2221 part_round_stats(cpu, part);
316d315b 2222 part_dec_in_flight(part, rw);
bc58ba94 2223
6c23a968 2224 hd_struct_put(part);
bc58ba94
JA
2225 part_stat_unlock();
2226 }
2227}
2228
47fafbc7 2229#ifdef CONFIG_PM
c8158819
LM
2230/*
2231 * Don't process normal requests when queue is suspended
2232 * or in the process of suspending/resuming
2233 */
2234static struct request *blk_pm_peek_request(struct request_queue *q,
2235 struct request *rq)
2236{
2237 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2238 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2239 return NULL;
2240 else
2241 return rq;
2242}
2243#else
2244static inline struct request *blk_pm_peek_request(struct request_queue *q,
2245 struct request *rq)
2246{
2247 return rq;
2248}
2249#endif
2250
320ae51f
JA
2251void blk_account_io_start(struct request *rq, bool new_io)
2252{
2253 struct hd_struct *part;
2254 int rw = rq_data_dir(rq);
2255 int cpu;
2256
2257 if (!blk_do_io_stat(rq))
2258 return;
2259
2260 cpu = part_stat_lock();
2261
2262 if (!new_io) {
2263 part = rq->part;
2264 part_stat_inc(cpu, part, merges[rw]);
2265 } else {
2266 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2267 if (!hd_struct_try_get(part)) {
2268 /*
2269 * The partition is already being removed,
2270 * the request will be accounted on the disk only
2271 *
2272 * We take a reference on disk->part0 although that
2273 * partition will never be deleted, so we can treat
2274 * it as any other partition.
2275 */
2276 part = &rq->rq_disk->part0;
2277 hd_struct_get(part);
2278 }
2279 part_round_stats(cpu, part);
2280 part_inc_in_flight(part, rw);
2281 rq->part = part;
2282 }
2283
2284 part_stat_unlock();
2285}
2286
3bcddeac 2287/**
9934c8c0
TH
2288 * blk_peek_request - peek at the top of a request queue
2289 * @q: request queue to peek at
2290 *
2291 * Description:
2292 * Return the request at the top of @q. The returned request
2293 * should be started using blk_start_request() before LLD starts
2294 * processing it.
2295 *
2296 * Return:
2297 * Pointer to the request at the top of @q if available. Null
2298 * otherwise.
2299 *
2300 * Context:
2301 * queue_lock must be held.
2302 */
2303struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2304{
2305 struct request *rq;
2306 int ret;
2307
2308 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2309
2310 rq = blk_pm_peek_request(q, rq);
2311 if (!rq)
2312 break;
2313
e8064021 2314 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2315 /*
2316 * This is the first time the device driver
2317 * sees this request (possibly after
2318 * requeueing). Notify IO scheduler.
2319 */
e8064021 2320 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2321 elv_activate_rq(q, rq);
2322
2323 /*
2324 * just mark as started even if we don't start
2325 * it, a request that has been delayed should
2326 * not be passed by new incoming requests
2327 */
e8064021 2328 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2329 trace_block_rq_issue(q, rq);
2330 }
2331
2332 if (!q->boundary_rq || q->boundary_rq == rq) {
2333 q->end_sector = rq_end_sector(rq);
2334 q->boundary_rq = NULL;
2335 }
2336
e8064021 2337 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2338 break;
2339
2e46e8b2 2340 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2341 /*
2342 * make sure space for the drain appears we
2343 * know we can do this because max_hw_segments
2344 * has been adjusted to be one fewer than the
2345 * device can handle
2346 */
2347 rq->nr_phys_segments++;
2348 }
2349
2350 if (!q->prep_rq_fn)
2351 break;
2352
2353 ret = q->prep_rq_fn(q, rq);
2354 if (ret == BLKPREP_OK) {
2355 break;
2356 } else if (ret == BLKPREP_DEFER) {
2357 /*
2358 * the request may have been (partially) prepped.
2359 * we need to keep this request in the front to
e8064021 2360 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2361 * prevent other fs requests from passing this one.
2362 */
2e46e8b2 2363 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2364 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2365 /*
2366 * remove the space for the drain we added
2367 * so that we don't add it again
2368 */
2369 --rq->nr_phys_segments;
2370 }
2371
2372 rq = NULL;
2373 break;
0fb5b1fb
MP
2374 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2375 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2376
e8064021 2377 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2378 /*
2379 * Mark this request as started so we don't trigger
2380 * any debug logic in the end I/O path.
2381 */
2382 blk_start_request(rq);
0fb5b1fb 2383 __blk_end_request_all(rq, err);
158dbda0
TH
2384 } else {
2385 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2386 break;
2387 }
2388 }
2389
2390 return rq;
2391}
9934c8c0 2392EXPORT_SYMBOL(blk_peek_request);
158dbda0 2393
9934c8c0 2394void blk_dequeue_request(struct request *rq)
158dbda0 2395{
9934c8c0
TH
2396 struct request_queue *q = rq->q;
2397
158dbda0
TH
2398 BUG_ON(list_empty(&rq->queuelist));
2399 BUG_ON(ELV_ON_HASH(rq));
2400
2401 list_del_init(&rq->queuelist);
2402
2403 /*
2404 * the time frame between a request being removed from the lists
2405 * and to it is freed is accounted as io that is in progress at
2406 * the driver side.
2407 */
9195291e 2408 if (blk_account_rq(rq)) {
0a7ae2ff 2409 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2410 set_io_start_time_ns(rq);
2411 }
158dbda0
TH
2412}
2413
9934c8c0
TH
2414/**
2415 * blk_start_request - start request processing on the driver
2416 * @req: request to dequeue
2417 *
2418 * Description:
2419 * Dequeue @req and start timeout timer on it. This hands off the
2420 * request to the driver.
2421 *
2422 * Block internal functions which don't want to start timer should
2423 * call blk_dequeue_request().
2424 *
2425 * Context:
2426 * queue_lock must be held.
2427 */
2428void blk_start_request(struct request *req)
2429{
2430 blk_dequeue_request(req);
2431
cf43e6be
JA
2432 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2433 blk_stat_set_issue_time(&req->issue_stat);
2434 req->rq_flags |= RQF_STATS;
87760e5e 2435 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2436 }
2437
4912aa6c 2438 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2439 blk_add_timer(req);
2440}
2441EXPORT_SYMBOL(blk_start_request);
2442
2443/**
2444 * blk_fetch_request - fetch a request from a request queue
2445 * @q: request queue to fetch a request from
2446 *
2447 * Description:
2448 * Return the request at the top of @q. The request is started on
2449 * return and LLD can start processing it immediately.
2450 *
2451 * Return:
2452 * Pointer to the request at the top of @q if available. Null
2453 * otherwise.
2454 *
2455 * Context:
2456 * queue_lock must be held.
2457 */
2458struct request *blk_fetch_request(struct request_queue *q)
2459{
2460 struct request *rq;
2461
2462 rq = blk_peek_request(q);
2463 if (rq)
2464 blk_start_request(rq);
2465 return rq;
2466}
2467EXPORT_SYMBOL(blk_fetch_request);
2468
3bcddeac 2469/**
2e60e022 2470 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2471 * @req: the request being processed
710027a4 2472 * @error: %0 for success, < %0 for error
8ebf9756 2473 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2474 *
2475 * Description:
8ebf9756
RD
2476 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2477 * the request structure even if @req doesn't have leftover.
2478 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2479 *
2480 * This special helper function is only for request stacking drivers
2481 * (e.g. request-based dm) so that they can handle partial completion.
2482 * Actual device drivers should use blk_end_request instead.
2483 *
2484 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2485 * %false return from this function.
3bcddeac
KU
2486 *
2487 * Return:
2e60e022
TH
2488 * %false - this request doesn't have any more data
2489 * %true - this request has more data
3bcddeac 2490 **/
2e60e022 2491bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2492{
f79ea416 2493 int total_bytes;
1da177e4 2494
4a0efdc9
HR
2495 trace_block_rq_complete(req->q, req, nr_bytes);
2496
2e60e022
TH
2497 if (!req->bio)
2498 return false;
2499
1da177e4 2500 /*
6f41469c
TH
2501 * For fs requests, rq is just carrier of independent bio's
2502 * and each partial completion should be handled separately.
2503 * Reset per-request error on each partial completion.
2504 *
2505 * TODO: tj: This is too subtle. It would be better to let
2506 * low level drivers do what they see fit.
1da177e4 2507 */
57292b58 2508 if (!blk_rq_is_passthrough(req))
1da177e4
LT
2509 req->errors = 0;
2510
57292b58 2511 if (error && !blk_rq_is_passthrough(req) &&
e8064021 2512 !(req->rq_flags & RQF_QUIET)) {
79775567
HR
2513 char *error_type;
2514
2515 switch (error) {
2516 case -ENOLINK:
2517 error_type = "recoverable transport";
2518 break;
2519 case -EREMOTEIO:
2520 error_type = "critical target";
2521 break;
2522 case -EBADE:
2523 error_type = "critical nexus";
2524 break;
d1ffc1f8
HR
2525 case -ETIMEDOUT:
2526 error_type = "timeout";
2527 break;
a9d6ceb8
HR
2528 case -ENOSPC:
2529 error_type = "critical space allocation";
2530 break;
7e782af5
HR
2531 case -ENODATA:
2532 error_type = "critical medium";
2533 break;
79775567
HR
2534 case -EIO:
2535 default:
2536 error_type = "I/O";
2537 break;
2538 }
ef3ecb66
RE
2539 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2540 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2541 req->rq_disk->disk_name : "?",
2542 (unsigned long long)blk_rq_pos(req));
2543
1da177e4
LT
2544 }
2545
bc58ba94 2546 blk_account_io_completion(req, nr_bytes);
d72d904a 2547
f79ea416
KO
2548 total_bytes = 0;
2549 while (req->bio) {
2550 struct bio *bio = req->bio;
4f024f37 2551 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2552
4f024f37 2553 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2554 req->bio = bio->bi_next;
1da177e4 2555
f79ea416 2556 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2557
f79ea416
KO
2558 total_bytes += bio_bytes;
2559 nr_bytes -= bio_bytes;
1da177e4 2560
f79ea416
KO
2561 if (!nr_bytes)
2562 break;
1da177e4
LT
2563 }
2564
2565 /*
2566 * completely done
2567 */
2e60e022
TH
2568 if (!req->bio) {
2569 /*
2570 * Reset counters so that the request stacking driver
2571 * can find how many bytes remain in the request
2572 * later.
2573 */
a2dec7b3 2574 req->__data_len = 0;
2e60e022
TH
2575 return false;
2576 }
1da177e4 2577
f9d03f96
CH
2578 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2579
a2dec7b3 2580 req->__data_len -= total_bytes;
2e46e8b2
TH
2581
2582 /* update sector only for requests with clear definition of sector */
57292b58 2583 if (!blk_rq_is_passthrough(req))
a2dec7b3 2584 req->__sector += total_bytes >> 9;
2e46e8b2 2585
80a761fd 2586 /* mixed attributes always follow the first bio */
e8064021 2587 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2588 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2589 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2590 }
2591
2e46e8b2
TH
2592 /*
2593 * If total number of sectors is less than the first segment
2594 * size, something has gone terribly wrong.
2595 */
2596 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2597 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2598 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2599 }
2600
2601 /* recalculate the number of segments */
1da177e4 2602 blk_recalc_rq_segments(req);
2e46e8b2 2603
2e60e022 2604 return true;
1da177e4 2605}
2e60e022 2606EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2607
2e60e022
TH
2608static bool blk_update_bidi_request(struct request *rq, int error,
2609 unsigned int nr_bytes,
2610 unsigned int bidi_bytes)
5efccd17 2611{
2e60e022
TH
2612 if (blk_update_request(rq, error, nr_bytes))
2613 return true;
5efccd17 2614
2e60e022
TH
2615 /* Bidi request must be completed as a whole */
2616 if (unlikely(blk_bidi_rq(rq)) &&
2617 blk_update_request(rq->next_rq, error, bidi_bytes))
2618 return true;
5efccd17 2619
e2e1a148
JA
2620 if (blk_queue_add_random(rq->q))
2621 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2622
2623 return false;
1da177e4
LT
2624}
2625
28018c24
JB
2626/**
2627 * blk_unprep_request - unprepare a request
2628 * @req: the request
2629 *
2630 * This function makes a request ready for complete resubmission (or
2631 * completion). It happens only after all error handling is complete,
2632 * so represents the appropriate moment to deallocate any resources
2633 * that were allocated to the request in the prep_rq_fn. The queue
2634 * lock is held when calling this.
2635 */
2636void blk_unprep_request(struct request *req)
2637{
2638 struct request_queue *q = req->q;
2639
e8064021 2640 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2641 if (q->unprep_rq_fn)
2642 q->unprep_rq_fn(q, req);
2643}
2644EXPORT_SYMBOL_GPL(blk_unprep_request);
2645
1da177e4
LT
2646/*
2647 * queue lock must be held
2648 */
12120077 2649void blk_finish_request(struct request *req, int error)
1da177e4 2650{
cf43e6be
JA
2651 struct request_queue *q = req->q;
2652
2653 if (req->rq_flags & RQF_STATS)
2654 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2655
e8064021 2656 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2657 blk_queue_end_tag(q, req);
b8286239 2658
ba396a6c 2659 BUG_ON(blk_queued_rq(req));
1da177e4 2660
57292b58 2661 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
31373d09 2662 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2663
e78042e5
MA
2664 blk_delete_timer(req);
2665
e8064021 2666 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2667 blk_unprep_request(req);
2668
bc58ba94 2669 blk_account_io_done(req);
b8286239 2670
87760e5e
JA
2671 if (req->end_io) {
2672 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2673 req->end_io(req, error);
87760e5e 2674 } else {
b8286239
KU
2675 if (blk_bidi_rq(req))
2676 __blk_put_request(req->next_rq->q, req->next_rq);
2677
cf43e6be 2678 __blk_put_request(q, req);
b8286239 2679 }
1da177e4 2680}
12120077 2681EXPORT_SYMBOL(blk_finish_request);
1da177e4 2682
3b11313a 2683/**
2e60e022
TH
2684 * blk_end_bidi_request - Complete a bidi request
2685 * @rq: the request to complete
2686 * @error: %0 for success, < %0 for error
2687 * @nr_bytes: number of bytes to complete @rq
2688 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2689 *
2690 * Description:
e3a04fe3 2691 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2692 * Drivers that supports bidi can safely call this member for any
2693 * type of request, bidi or uni. In the later case @bidi_bytes is
2694 * just ignored.
336cdb40
KU
2695 *
2696 * Return:
2e60e022
TH
2697 * %false - we are done with this request
2698 * %true - still buffers pending for this request
a0cd1285 2699 **/
b1f74493 2700static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2701 unsigned int nr_bytes, unsigned int bidi_bytes)
2702{
336cdb40 2703 struct request_queue *q = rq->q;
2e60e022 2704 unsigned long flags;
32fab448 2705
2e60e022
TH
2706 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2707 return true;
32fab448 2708
336cdb40 2709 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2710 blk_finish_request(rq, error);
336cdb40
KU
2711 spin_unlock_irqrestore(q->queue_lock, flags);
2712
2e60e022 2713 return false;
32fab448
KU
2714}
2715
336cdb40 2716/**
2e60e022
TH
2717 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2718 * @rq: the request to complete
710027a4 2719 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2720 * @nr_bytes: number of bytes to complete @rq
2721 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2722 *
2723 * Description:
2e60e022
TH
2724 * Identical to blk_end_bidi_request() except that queue lock is
2725 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2726 *
2727 * Return:
2e60e022
TH
2728 * %false - we are done with this request
2729 * %true - still buffers pending for this request
336cdb40 2730 **/
4853abaa 2731bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2732 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2733{
2e60e022
TH
2734 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2735 return true;
336cdb40 2736
2e60e022 2737 blk_finish_request(rq, error);
336cdb40 2738
2e60e022 2739 return false;
336cdb40 2740}
e19a3ab0
KU
2741
2742/**
2743 * blk_end_request - Helper function for drivers to complete the request.
2744 * @rq: the request being processed
710027a4 2745 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2746 * @nr_bytes: number of bytes to complete
2747 *
2748 * Description:
2749 * Ends I/O on a number of bytes attached to @rq.
2750 * If @rq has leftover, sets it up for the next range of segments.
2751 *
2752 * Return:
b1f74493
FT
2753 * %false - we are done with this request
2754 * %true - still buffers pending for this request
e19a3ab0 2755 **/
b1f74493 2756bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2757{
b1f74493 2758 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2759}
56ad1740 2760EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2761
2762/**
b1f74493
FT
2763 * blk_end_request_all - Helper function for drives to finish the request.
2764 * @rq: the request to finish
8ebf9756 2765 * @error: %0 for success, < %0 for error
336cdb40
KU
2766 *
2767 * Description:
b1f74493
FT
2768 * Completely finish @rq.
2769 */
2770void blk_end_request_all(struct request *rq, int error)
336cdb40 2771{
b1f74493
FT
2772 bool pending;
2773 unsigned int bidi_bytes = 0;
336cdb40 2774
b1f74493
FT
2775 if (unlikely(blk_bidi_rq(rq)))
2776 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2777
b1f74493
FT
2778 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2779 BUG_ON(pending);
2780}
56ad1740 2781EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2782
b1f74493
FT
2783/**
2784 * blk_end_request_cur - Helper function to finish the current request chunk.
2785 * @rq: the request to finish the current chunk for
8ebf9756 2786 * @error: %0 for success, < %0 for error
b1f74493
FT
2787 *
2788 * Description:
2789 * Complete the current consecutively mapped chunk from @rq.
2790 *
2791 * Return:
2792 * %false - we are done with this request
2793 * %true - still buffers pending for this request
2794 */
2795bool blk_end_request_cur(struct request *rq, int error)
2796{
2797 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2798}
56ad1740 2799EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2800
80a761fd
TH
2801/**
2802 * blk_end_request_err - Finish a request till the next failure boundary.
2803 * @rq: the request to finish till the next failure boundary for
2804 * @error: must be negative errno
2805 *
2806 * Description:
2807 * Complete @rq till the next failure boundary.
2808 *
2809 * Return:
2810 * %false - we are done with this request
2811 * %true - still buffers pending for this request
2812 */
2813bool blk_end_request_err(struct request *rq, int error)
2814{
2815 WARN_ON(error >= 0);
2816 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2817}
2818EXPORT_SYMBOL_GPL(blk_end_request_err);
2819
e3a04fe3 2820/**
b1f74493
FT
2821 * __blk_end_request - Helper function for drivers to complete the request.
2822 * @rq: the request being processed
2823 * @error: %0 for success, < %0 for error
2824 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2825 *
2826 * Description:
b1f74493 2827 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2828 *
2829 * Return:
b1f74493
FT
2830 * %false - we are done with this request
2831 * %true - still buffers pending for this request
e3a04fe3 2832 **/
b1f74493 2833bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2834{
b1f74493 2835 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2836}
56ad1740 2837EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2838
32fab448 2839/**
b1f74493
FT
2840 * __blk_end_request_all - Helper function for drives to finish the request.
2841 * @rq: the request to finish
8ebf9756 2842 * @error: %0 for success, < %0 for error
32fab448
KU
2843 *
2844 * Description:
b1f74493 2845 * Completely finish @rq. Must be called with queue lock held.
32fab448 2846 */
b1f74493 2847void __blk_end_request_all(struct request *rq, int error)
32fab448 2848{
b1f74493
FT
2849 bool pending;
2850 unsigned int bidi_bytes = 0;
2851
2852 if (unlikely(blk_bidi_rq(rq)))
2853 bidi_bytes = blk_rq_bytes(rq->next_rq);
2854
2855 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2856 BUG_ON(pending);
32fab448 2857}
56ad1740 2858EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2859
e19a3ab0 2860/**
b1f74493
FT
2861 * __blk_end_request_cur - Helper function to finish the current request chunk.
2862 * @rq: the request to finish the current chunk for
8ebf9756 2863 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2864 *
2865 * Description:
b1f74493
FT
2866 * Complete the current consecutively mapped chunk from @rq. Must
2867 * be called with queue lock held.
e19a3ab0
KU
2868 *
2869 * Return:
b1f74493
FT
2870 * %false - we are done with this request
2871 * %true - still buffers pending for this request
2872 */
2873bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2874{
b1f74493 2875 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2876}
56ad1740 2877EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2878
80a761fd
TH
2879/**
2880 * __blk_end_request_err - Finish a request till the next failure boundary.
2881 * @rq: the request to finish till the next failure boundary for
2882 * @error: must be negative errno
2883 *
2884 * Description:
2885 * Complete @rq till the next failure boundary. Must be called
2886 * with queue lock held.
2887 *
2888 * Return:
2889 * %false - we are done with this request
2890 * %true - still buffers pending for this request
2891 */
2892bool __blk_end_request_err(struct request *rq, int error)
2893{
2894 WARN_ON(error >= 0);
2895 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2896}
2897EXPORT_SYMBOL_GPL(__blk_end_request_err);
2898
86db1e29
JA
2899void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2900 struct bio *bio)
1da177e4 2901{
b4f42e28 2902 if (bio_has_data(bio))
fb2dce86 2903 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2904
4f024f37 2905 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2906 rq->bio = rq->biotail = bio;
1da177e4 2907
66846572
N
2908 if (bio->bi_bdev)
2909 rq->rq_disk = bio->bi_bdev->bd_disk;
2910}
1da177e4 2911
2d4dc890
IL
2912#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2913/**
2914 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2915 * @rq: the request to be flushed
2916 *
2917 * Description:
2918 * Flush all pages in @rq.
2919 */
2920void rq_flush_dcache_pages(struct request *rq)
2921{
2922 struct req_iterator iter;
7988613b 2923 struct bio_vec bvec;
2d4dc890
IL
2924
2925 rq_for_each_segment(bvec, rq, iter)
7988613b 2926 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2927}
2928EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2929#endif
2930
ef9e3fac
KU
2931/**
2932 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2933 * @q : the queue of the device being checked
2934 *
2935 * Description:
2936 * Check if underlying low-level drivers of a device are busy.
2937 * If the drivers want to export their busy state, they must set own
2938 * exporting function using blk_queue_lld_busy() first.
2939 *
2940 * Basically, this function is used only by request stacking drivers
2941 * to stop dispatching requests to underlying devices when underlying
2942 * devices are busy. This behavior helps more I/O merging on the queue
2943 * of the request stacking driver and prevents I/O throughput regression
2944 * on burst I/O load.
2945 *
2946 * Return:
2947 * 0 - Not busy (The request stacking driver should dispatch request)
2948 * 1 - Busy (The request stacking driver should stop dispatching request)
2949 */
2950int blk_lld_busy(struct request_queue *q)
2951{
2952 if (q->lld_busy_fn)
2953 return q->lld_busy_fn(q);
2954
2955 return 0;
2956}
2957EXPORT_SYMBOL_GPL(blk_lld_busy);
2958
78d8e58a
MS
2959/**
2960 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2961 * @rq: the clone request to be cleaned up
2962 *
2963 * Description:
2964 * Free all bios in @rq for a cloned request.
2965 */
2966void blk_rq_unprep_clone(struct request *rq)
2967{
2968 struct bio *bio;
2969
2970 while ((bio = rq->bio) != NULL) {
2971 rq->bio = bio->bi_next;
2972
2973 bio_put(bio);
2974 }
2975}
2976EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2977
2978/*
2979 * Copy attributes of the original request to the clone request.
2980 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2981 */
2982static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
2983{
2984 dst->cpu = src->cpu;
b0fd271d
KU
2985 dst->__sector = blk_rq_pos(src);
2986 dst->__data_len = blk_rq_bytes(src);
2987 dst->nr_phys_segments = src->nr_phys_segments;
2988 dst->ioprio = src->ioprio;
2989 dst->extra_len = src->extra_len;
78d8e58a
MS
2990}
2991
2992/**
2993 * blk_rq_prep_clone - Helper function to setup clone request
2994 * @rq: the request to be setup
2995 * @rq_src: original request to be cloned
2996 * @bs: bio_set that bios for clone are allocated from
2997 * @gfp_mask: memory allocation mask for bio
2998 * @bio_ctr: setup function to be called for each clone bio.
2999 * Returns %0 for success, non %0 for failure.
3000 * @data: private data to be passed to @bio_ctr
3001 *
3002 * Description:
3003 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3004 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3005 * are not copied, and copying such parts is the caller's responsibility.
3006 * Also, pages which the original bios are pointing to are not copied
3007 * and the cloned bios just point same pages.
3008 * So cloned bios must be completed before original bios, which means
3009 * the caller must complete @rq before @rq_src.
3010 */
3011int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3012 struct bio_set *bs, gfp_t gfp_mask,
3013 int (*bio_ctr)(struct bio *, struct bio *, void *),
3014 void *data)
3015{
3016 struct bio *bio, *bio_src;
3017
3018 if (!bs)
3019 bs = fs_bio_set;
3020
3021 __rq_for_each_bio(bio_src, rq_src) {
3022 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3023 if (!bio)
3024 goto free_and_out;
3025
3026 if (bio_ctr && bio_ctr(bio, bio_src, data))
3027 goto free_and_out;
3028
3029 if (rq->bio) {
3030 rq->biotail->bi_next = bio;
3031 rq->biotail = bio;
3032 } else
3033 rq->bio = rq->biotail = bio;
3034 }
3035
3036 __blk_rq_prep_clone(rq, rq_src);
3037
3038 return 0;
3039
3040free_and_out:
3041 if (bio)
3042 bio_put(bio);
3043 blk_rq_unprep_clone(rq);
3044
3045 return -ENOMEM;
b0fd271d
KU
3046}
3047EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3048
59c3d45e 3049int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3050{
3051 return queue_work(kblockd_workqueue, work);
3052}
1da177e4
LT
3053EXPORT_SYMBOL(kblockd_schedule_work);
3054
ee63cfa7
JA
3055int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3056{
3057 return queue_work_on(cpu, kblockd_workqueue, work);
3058}
3059EXPORT_SYMBOL(kblockd_schedule_work_on);
3060
59c3d45e
JA
3061int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3062 unsigned long delay)
e43473b7
VG
3063{
3064 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3065}
3066EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3067
8ab14595
JA
3068int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3069 unsigned long delay)
3070{
3071 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3072}
3073EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3074
75df7136
SJ
3075/**
3076 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3077 * @plug: The &struct blk_plug that needs to be initialized
3078 *
3079 * Description:
3080 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3081 * pending I/O should the task end up blocking between blk_start_plug() and
3082 * blk_finish_plug(). This is important from a performance perspective, but
3083 * also ensures that we don't deadlock. For instance, if the task is blocking
3084 * for a memory allocation, memory reclaim could end up wanting to free a
3085 * page belonging to that request that is currently residing in our private
3086 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3087 * this kind of deadlock.
3088 */
73c10101
JA
3089void blk_start_plug(struct blk_plug *plug)
3090{
3091 struct task_struct *tsk = current;
3092
dd6cf3e1
SL
3093 /*
3094 * If this is a nested plug, don't actually assign it.
3095 */
3096 if (tsk->plug)
3097 return;
3098
73c10101 3099 INIT_LIST_HEAD(&plug->list);
320ae51f 3100 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3101 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3102 /*
dd6cf3e1
SL
3103 * Store ordering should not be needed here, since a potential
3104 * preempt will imply a full memory barrier
73c10101 3105 */
dd6cf3e1 3106 tsk->plug = plug;
73c10101
JA
3107}
3108EXPORT_SYMBOL(blk_start_plug);
3109
3110static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3111{
3112 struct request *rqa = container_of(a, struct request, queuelist);
3113 struct request *rqb = container_of(b, struct request, queuelist);
3114
975927b9
JM
3115 return !(rqa->q < rqb->q ||
3116 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3117}
3118
49cac01e
JA
3119/*
3120 * If 'from_schedule' is true, then postpone the dispatch of requests
3121 * until a safe kblockd context. We due this to avoid accidental big
3122 * additional stack usage in driver dispatch, in places where the originally
3123 * plugger did not intend it.
3124 */
f6603783 3125static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3126 bool from_schedule)
99e22598 3127 __releases(q->queue_lock)
94b5eb28 3128{
49cac01e 3129 trace_block_unplug(q, depth, !from_schedule);
99e22598 3130
70460571 3131 if (from_schedule)
24ecfbe2 3132 blk_run_queue_async(q);
70460571 3133 else
24ecfbe2 3134 __blk_run_queue(q);
70460571 3135 spin_unlock(q->queue_lock);
94b5eb28
JA
3136}
3137
74018dc3 3138static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3139{
3140 LIST_HEAD(callbacks);
3141
2a7d5559
SL
3142 while (!list_empty(&plug->cb_list)) {
3143 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3144
2a7d5559
SL
3145 while (!list_empty(&callbacks)) {
3146 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3147 struct blk_plug_cb,
3148 list);
2a7d5559 3149 list_del(&cb->list);
74018dc3 3150 cb->callback(cb, from_schedule);
2a7d5559 3151 }
048c9374
N
3152 }
3153}
3154
9cbb1750
N
3155struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3156 int size)
3157{
3158 struct blk_plug *plug = current->plug;
3159 struct blk_plug_cb *cb;
3160
3161 if (!plug)
3162 return NULL;
3163
3164 list_for_each_entry(cb, &plug->cb_list, list)
3165 if (cb->callback == unplug && cb->data == data)
3166 return cb;
3167
3168 /* Not currently on the callback list */
3169 BUG_ON(size < sizeof(*cb));
3170 cb = kzalloc(size, GFP_ATOMIC);
3171 if (cb) {
3172 cb->data = data;
3173 cb->callback = unplug;
3174 list_add(&cb->list, &plug->cb_list);
3175 }
3176 return cb;
3177}
3178EXPORT_SYMBOL(blk_check_plugged);
3179
49cac01e 3180void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3181{
3182 struct request_queue *q;
3183 unsigned long flags;
3184 struct request *rq;
109b8129 3185 LIST_HEAD(list);
94b5eb28 3186 unsigned int depth;
73c10101 3187
74018dc3 3188 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3189
3190 if (!list_empty(&plug->mq_list))
3191 blk_mq_flush_plug_list(plug, from_schedule);
3192
73c10101
JA
3193 if (list_empty(&plug->list))
3194 return;
3195
109b8129
N
3196 list_splice_init(&plug->list, &list);
3197
422765c2 3198 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3199
3200 q = NULL;
94b5eb28 3201 depth = 0;
18811272
JA
3202
3203 /*
3204 * Save and disable interrupts here, to avoid doing it for every
3205 * queue lock we have to take.
3206 */
73c10101 3207 local_irq_save(flags);
109b8129
N
3208 while (!list_empty(&list)) {
3209 rq = list_entry_rq(list.next);
73c10101 3210 list_del_init(&rq->queuelist);
73c10101
JA
3211 BUG_ON(!rq->q);
3212 if (rq->q != q) {
99e22598
JA
3213 /*
3214 * This drops the queue lock
3215 */
3216 if (q)
49cac01e 3217 queue_unplugged(q, depth, from_schedule);
73c10101 3218 q = rq->q;
94b5eb28 3219 depth = 0;
73c10101
JA
3220 spin_lock(q->queue_lock);
3221 }
8ba61435
TH
3222
3223 /*
3224 * Short-circuit if @q is dead
3225 */
3f3299d5 3226 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3227 __blk_end_request_all(rq, -ENODEV);
3228 continue;
3229 }
3230
73c10101
JA
3231 /*
3232 * rq is already accounted, so use raw insert
3233 */
f73f44eb 3234 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3235 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3236 else
3237 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3238
3239 depth++;
73c10101
JA
3240 }
3241
99e22598
JA
3242 /*
3243 * This drops the queue lock
3244 */
3245 if (q)
49cac01e 3246 queue_unplugged(q, depth, from_schedule);
73c10101 3247
73c10101
JA
3248 local_irq_restore(flags);
3249}
73c10101
JA
3250
3251void blk_finish_plug(struct blk_plug *plug)
3252{
dd6cf3e1
SL
3253 if (plug != current->plug)
3254 return;
f6603783 3255 blk_flush_plug_list(plug, false);
73c10101 3256
dd6cf3e1 3257 current->plug = NULL;
73c10101 3258}
88b996cd 3259EXPORT_SYMBOL(blk_finish_plug);
73c10101 3260
47fafbc7 3261#ifdef CONFIG_PM
6c954667
LM
3262/**
3263 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3264 * @q: the queue of the device
3265 * @dev: the device the queue belongs to
3266 *
3267 * Description:
3268 * Initialize runtime-PM-related fields for @q and start auto suspend for
3269 * @dev. Drivers that want to take advantage of request-based runtime PM
3270 * should call this function after @dev has been initialized, and its
3271 * request queue @q has been allocated, and runtime PM for it can not happen
3272 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3273 * cases, driver should call this function before any I/O has taken place.
3274 *
3275 * This function takes care of setting up using auto suspend for the device,
3276 * the autosuspend delay is set to -1 to make runtime suspend impossible
3277 * until an updated value is either set by user or by driver. Drivers do
3278 * not need to touch other autosuspend settings.
3279 *
3280 * The block layer runtime PM is request based, so only works for drivers
3281 * that use request as their IO unit instead of those directly use bio's.
3282 */
3283void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3284{
3285 q->dev = dev;
3286 q->rpm_status = RPM_ACTIVE;
3287 pm_runtime_set_autosuspend_delay(q->dev, -1);
3288 pm_runtime_use_autosuspend(q->dev);
3289}
3290EXPORT_SYMBOL(blk_pm_runtime_init);
3291
3292/**
3293 * blk_pre_runtime_suspend - Pre runtime suspend check
3294 * @q: the queue of the device
3295 *
3296 * Description:
3297 * This function will check if runtime suspend is allowed for the device
3298 * by examining if there are any requests pending in the queue. If there
3299 * are requests pending, the device can not be runtime suspended; otherwise,
3300 * the queue's status will be updated to SUSPENDING and the driver can
3301 * proceed to suspend the device.
3302 *
3303 * For the not allowed case, we mark last busy for the device so that
3304 * runtime PM core will try to autosuspend it some time later.
3305 *
3306 * This function should be called near the start of the device's
3307 * runtime_suspend callback.
3308 *
3309 * Return:
3310 * 0 - OK to runtime suspend the device
3311 * -EBUSY - Device should not be runtime suspended
3312 */
3313int blk_pre_runtime_suspend(struct request_queue *q)
3314{
3315 int ret = 0;
3316
4fd41a85
KX
3317 if (!q->dev)
3318 return ret;
3319
6c954667
LM
3320 spin_lock_irq(q->queue_lock);
3321 if (q->nr_pending) {
3322 ret = -EBUSY;
3323 pm_runtime_mark_last_busy(q->dev);
3324 } else {
3325 q->rpm_status = RPM_SUSPENDING;
3326 }
3327 spin_unlock_irq(q->queue_lock);
3328 return ret;
3329}
3330EXPORT_SYMBOL(blk_pre_runtime_suspend);
3331
3332/**
3333 * blk_post_runtime_suspend - Post runtime suspend processing
3334 * @q: the queue of the device
3335 * @err: return value of the device's runtime_suspend function
3336 *
3337 * Description:
3338 * Update the queue's runtime status according to the return value of the
3339 * device's runtime suspend function and mark last busy for the device so
3340 * that PM core will try to auto suspend the device at a later time.
3341 *
3342 * This function should be called near the end of the device's
3343 * runtime_suspend callback.
3344 */
3345void blk_post_runtime_suspend(struct request_queue *q, int err)
3346{
4fd41a85
KX
3347 if (!q->dev)
3348 return;
3349
6c954667
LM
3350 spin_lock_irq(q->queue_lock);
3351 if (!err) {
3352 q->rpm_status = RPM_SUSPENDED;
3353 } else {
3354 q->rpm_status = RPM_ACTIVE;
3355 pm_runtime_mark_last_busy(q->dev);
3356 }
3357 spin_unlock_irq(q->queue_lock);
3358}
3359EXPORT_SYMBOL(blk_post_runtime_suspend);
3360
3361/**
3362 * blk_pre_runtime_resume - Pre runtime resume processing
3363 * @q: the queue of the device
3364 *
3365 * Description:
3366 * Update the queue's runtime status to RESUMING in preparation for the
3367 * runtime resume of the device.
3368 *
3369 * This function should be called near the start of the device's
3370 * runtime_resume callback.
3371 */
3372void blk_pre_runtime_resume(struct request_queue *q)
3373{
4fd41a85
KX
3374 if (!q->dev)
3375 return;
3376
6c954667
LM
3377 spin_lock_irq(q->queue_lock);
3378 q->rpm_status = RPM_RESUMING;
3379 spin_unlock_irq(q->queue_lock);
3380}
3381EXPORT_SYMBOL(blk_pre_runtime_resume);
3382
3383/**
3384 * blk_post_runtime_resume - Post runtime resume processing
3385 * @q: the queue of the device
3386 * @err: return value of the device's runtime_resume function
3387 *
3388 * Description:
3389 * Update the queue's runtime status according to the return value of the
3390 * device's runtime_resume function. If it is successfully resumed, process
3391 * the requests that are queued into the device's queue when it is resuming
3392 * and then mark last busy and initiate autosuspend for it.
3393 *
3394 * This function should be called near the end of the device's
3395 * runtime_resume callback.
3396 */
3397void blk_post_runtime_resume(struct request_queue *q, int err)
3398{
4fd41a85
KX
3399 if (!q->dev)
3400 return;
3401
6c954667
LM
3402 spin_lock_irq(q->queue_lock);
3403 if (!err) {
3404 q->rpm_status = RPM_ACTIVE;
3405 __blk_run_queue(q);
3406 pm_runtime_mark_last_busy(q->dev);
c60855cd 3407 pm_request_autosuspend(q->dev);
6c954667
LM
3408 } else {
3409 q->rpm_status = RPM_SUSPENDED;
3410 }
3411 spin_unlock_irq(q->queue_lock);
3412}
3413EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3414
3415/**
3416 * blk_set_runtime_active - Force runtime status of the queue to be active
3417 * @q: the queue of the device
3418 *
3419 * If the device is left runtime suspended during system suspend the resume
3420 * hook typically resumes the device and corrects runtime status
3421 * accordingly. However, that does not affect the queue runtime PM status
3422 * which is still "suspended". This prevents processing requests from the
3423 * queue.
3424 *
3425 * This function can be used in driver's resume hook to correct queue
3426 * runtime PM status and re-enable peeking requests from the queue. It
3427 * should be called before first request is added to the queue.
3428 */
3429void blk_set_runtime_active(struct request_queue *q)
3430{
3431 spin_lock_irq(q->queue_lock);
3432 q->rpm_status = RPM_ACTIVE;
3433 pm_runtime_mark_last_busy(q->dev);
3434 pm_request_autosuspend(q->dev);
3435 spin_unlock_irq(q->queue_lock);
3436}
3437EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3438#endif
3439
1da177e4
LT
3440int __init blk_dev_init(void)
3441{
ef295ecf
CH
3442 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3443 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3444 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3445 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3446 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3447
89b90be2
TH
3448 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3449 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3450 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3451 if (!kblockd_workqueue)
3452 panic("Failed to create kblockd\n");
3453
3454 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3455 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3456
c2789bd4 3457 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3458 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3459
d38ecf93 3460 return 0;
1da177e4 3461}