]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: blk_delay_queue() should use kblockd workqueue
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
55782138
LZ
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/block.h>
1da177e4 34
8324aa91
JA
35#include "blk.h"
36
d07335e5 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 40
165125e1 41static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
42
43/*
44 * For the allocated request tables
45 */
5ece6c52 46static struct kmem_cache *request_cachep;
1da177e4
LT
47
48/*
49 * For queue allocation
50 */
6728cb0e 51struct kmem_cache *blk_requestq_cachep;
1da177e4 52
1da177e4
LT
53/*
54 * Controlling structure to kblockd
55 */
ff856bad 56static struct workqueue_struct *kblockd_workqueue;
1da177e4 57
26b8256e
JA
58static void drive_stat_acct(struct request *rq, int new_io)
59{
28f13702 60 struct hd_struct *part;
26b8256e 61 int rw = rq_data_dir(rq);
c9959059 62 int cpu;
26b8256e 63
c2553b58 64 if (!blk_do_io_stat(rq))
26b8256e
JA
65 return;
66
074a7aca 67 cpu = part_stat_lock();
c9959059 68
09e099d4
JM
69 if (!new_io) {
70 part = rq->part;
074a7aca 71 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
72 } else {
73 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 74 if (!hd_struct_try_get(part)) {
09e099d4
JM
75 /*
76 * The partition is already being removed,
77 * the request will be accounted on the disk only
78 *
79 * We take a reference on disk->part0 although that
80 * partition will never be deleted, so we can treat
81 * it as any other partition.
82 */
83 part = &rq->rq_disk->part0;
6c23a968 84 hd_struct_get(part);
09e099d4 85 }
074a7aca 86 part_round_stats(cpu, part);
316d315b 87 part_inc_in_flight(part, rw);
09e099d4 88 rq->part = part;
26b8256e 89 }
e71bf0d0 90
074a7aca 91 part_stat_unlock();
26b8256e
JA
92}
93
8324aa91 94void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
95{
96 int nr;
97
98 nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 if (nr > q->nr_requests)
100 nr = q->nr_requests;
101 q->nr_congestion_on = nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 if (nr < 1)
105 nr = 1;
106 q->nr_congestion_off = nr;
107}
108
1da177e4
LT
109/**
110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
111 * @bdev: device
112 *
113 * Locates the passed device's request queue and returns the address of its
114 * backing_dev_info
115 *
116 * Will return NULL if the request queue cannot be located.
117 */
118struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
119{
120 struct backing_dev_info *ret = NULL;
165125e1 121 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
122
123 if (q)
124 ret = &q->backing_dev_info;
125 return ret;
126}
1da177e4
LT
127EXPORT_SYMBOL(blk_get_backing_dev_info);
128
2a4aa30c 129void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 130{
1afb20f3
FT
131 memset(rq, 0, sizeof(*rq));
132
1da177e4 133 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 134 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 135 rq->cpu = -1;
63a71386 136 rq->q = q;
a2dec7b3 137 rq->__sector = (sector_t) -1;
2e662b65
JA
138 INIT_HLIST_NODE(&rq->hash);
139 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 140 rq->cmd = rq->__cmd;
e2494e1b 141 rq->cmd_len = BLK_MAX_CDB;
63a71386 142 rq->tag = -1;
1da177e4 143 rq->ref_count = 1;
b243ddcb 144 rq->start_time = jiffies;
9195291e 145 set_start_time_ns(rq);
09e099d4 146 rq->part = NULL;
1da177e4 147}
2a4aa30c 148EXPORT_SYMBOL(blk_rq_init);
1da177e4 149
5bb23a68
N
150static void req_bio_endio(struct request *rq, struct bio *bio,
151 unsigned int nbytes, int error)
1da177e4 152{
143a87f4
TH
153 if (error)
154 clear_bit(BIO_UPTODATE, &bio->bi_flags);
155 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
156 error = -EIO;
797e7dbb 157
143a87f4
TH
158 if (unlikely(nbytes > bio->bi_size)) {
159 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
160 __func__, nbytes, bio->bi_size);
161 nbytes = bio->bi_size;
5bb23a68 162 }
797e7dbb 163
143a87f4
TH
164 if (unlikely(rq->cmd_flags & REQ_QUIET))
165 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 166
143a87f4
TH
167 bio->bi_size -= nbytes;
168 bio->bi_sector += (nbytes >> 9);
7ba1ba12 169
143a87f4
TH
170 if (bio_integrity(bio))
171 bio_integrity_advance(bio, nbytes);
7ba1ba12 172
143a87f4
TH
173 /* don't actually finish bio if it's part of flush sequence */
174 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
175 bio_endio(bio, error);
1da177e4 176}
1da177e4 177
1da177e4
LT
178void blk_dump_rq_flags(struct request *rq, char *msg)
179{
180 int bit;
181
6728cb0e 182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 rq->cmd_flags);
1da177e4 185
83096ebf
TH
186 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
187 (unsigned long long)blk_rq_pos(rq),
188 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 190 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 191
33659ebb 192 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 193 printk(KERN_INFO " cdb: ");
d34c87e4 194 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
195 printk("%02x ", rq->cmd[bit]);
196 printk("\n");
197 }
198}
1da177e4
LT
199EXPORT_SYMBOL(blk_dump_rq_flags);
200
3cca6dc1 201static void blk_delay_work(struct work_struct *work)
1da177e4 202{
3cca6dc1 203 struct request_queue *q;
1da177e4 204
3cca6dc1
JA
205 q = container_of(work, struct request_queue, delay_work.work);
206 spin_lock_irq(q->queue_lock);
4c63f564 207 __blk_run_queue(q, false);
3cca6dc1 208 spin_unlock_irq(q->queue_lock);
1da177e4 209}
1da177e4
LT
210
211/**
3cca6dc1
JA
212 * blk_delay_queue - restart queueing after defined interval
213 * @q: The &struct request_queue in question
214 * @msecs: Delay in msecs
1da177e4
LT
215 *
216 * Description:
3cca6dc1
JA
217 * Sometimes queueing needs to be postponed for a little while, to allow
218 * resources to come back. This function will make sure that queueing is
219 * restarted around the specified time.
220 */
221void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 222{
4521cc4e
JA
223 queue_delayed_work(kblockd_workqueue, &q->delay_work,
224 msecs_to_jiffies(msecs));
2ad8b1ef 225}
3cca6dc1 226EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 227
1da177e4
LT
228/**
229 * blk_start_queue - restart a previously stopped queue
165125e1 230 * @q: The &struct request_queue in question
1da177e4
LT
231 *
232 * Description:
233 * blk_start_queue() will clear the stop flag on the queue, and call
234 * the request_fn for the queue if it was in a stopped state when
235 * entered. Also see blk_stop_queue(). Queue lock must be held.
236 **/
165125e1 237void blk_start_queue(struct request_queue *q)
1da177e4 238{
a038e253
PBG
239 WARN_ON(!irqs_disabled());
240
75ad23bc 241 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
1654e741 242 __blk_run_queue(q, false);
1da177e4 243}
1da177e4
LT
244EXPORT_SYMBOL(blk_start_queue);
245
246/**
247 * blk_stop_queue - stop a queue
165125e1 248 * @q: The &struct request_queue in question
1da177e4
LT
249 *
250 * Description:
251 * The Linux block layer assumes that a block driver will consume all
252 * entries on the request queue when the request_fn strategy is called.
253 * Often this will not happen, because of hardware limitations (queue
254 * depth settings). If a device driver gets a 'queue full' response,
255 * or if it simply chooses not to queue more I/O at one point, it can
256 * call this function to prevent the request_fn from being called until
257 * the driver has signalled it's ready to go again. This happens by calling
258 * blk_start_queue() to restart queue operations. Queue lock must be held.
259 **/
165125e1 260void blk_stop_queue(struct request_queue *q)
1da177e4 261{
ad3d9d7e 262 __cancel_delayed_work(&q->delay_work);
75ad23bc 263 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
264}
265EXPORT_SYMBOL(blk_stop_queue);
266
267/**
268 * blk_sync_queue - cancel any pending callbacks on a queue
269 * @q: the queue
270 *
271 * Description:
272 * The block layer may perform asynchronous callback activity
273 * on a queue, such as calling the unplug function after a timeout.
274 * A block device may call blk_sync_queue to ensure that any
275 * such activity is cancelled, thus allowing it to release resources
59c51591 276 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
277 * that its ->make_request_fn will not re-add plugging prior to calling
278 * this function.
279 *
da527770
VG
280 * This function does not cancel any asynchronous activity arising
281 * out of elevator or throttling code. That would require elevaotor_exit()
282 * and blk_throtl_exit() to be called with queue lock initialized.
283 *
1da177e4
LT
284 */
285void blk_sync_queue(struct request_queue *q)
286{
70ed28b9 287 del_timer_sync(&q->timeout);
3cca6dc1 288 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
289}
290EXPORT_SYMBOL(blk_sync_queue);
291
292/**
80a4b58e 293 * __blk_run_queue - run a single device queue
1da177e4 294 * @q: The queue to run
1654e741 295 * @force_kblockd: Don't run @q->request_fn directly. Use kblockd.
80a4b58e
JA
296 *
297 * Description:
298 * See @blk_run_queue. This variant must be called with the queue lock
99e22598
JA
299 * held and interrupts disabled. If force_kblockd is true, then it is
300 * safe to call this without holding the queue lock.
80a4b58e 301 *
1da177e4 302 */
1654e741 303void __blk_run_queue(struct request_queue *q, bool force_kblockd)
1da177e4 304{
a538cd03
TH
305 if (unlikely(blk_queue_stopped(q)))
306 return;
307
dac07ec1
JA
308 /*
309 * Only recurse once to avoid overrunning the stack, let the unplug
310 * handling reinvoke the handler shortly if we already got there.
311 */
1654e741 312 if (!force_kblockd && !queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
a538cd03
TH
313 q->request_fn(q);
314 queue_flag_clear(QUEUE_FLAG_REENTER, q);
7eaceacc
JA
315 } else
316 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
75ad23bc
NP
317}
318EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 319
75ad23bc
NP
320/**
321 * blk_run_queue - run a single device queue
322 * @q: The queue to run
80a4b58e
JA
323 *
324 * Description:
325 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 326 * May be used to restart queueing when a request has completed.
75ad23bc
NP
327 */
328void blk_run_queue(struct request_queue *q)
329{
330 unsigned long flags;
331
332 spin_lock_irqsave(q->queue_lock, flags);
1654e741 333 __blk_run_queue(q, false);
1da177e4
LT
334 spin_unlock_irqrestore(q->queue_lock, flags);
335}
336EXPORT_SYMBOL(blk_run_queue);
337
165125e1 338void blk_put_queue(struct request_queue *q)
483f4afc
AV
339{
340 kobject_put(&q->kobj);
341}
483f4afc 342
c94a96ac
VG
343/*
344 * Note: If a driver supplied the queue lock, it should not zap that lock
345 * unexpectedly as some queue cleanup components like elevator_exit() and
346 * blk_throtl_exit() need queue lock.
347 */
6728cb0e 348void blk_cleanup_queue(struct request_queue *q)
483f4afc 349{
e3335de9
JA
350 /*
351 * We know we have process context here, so we can be a little
352 * cautious and ensure that pending block actions on this device
353 * are done before moving on. Going into this function, we should
354 * not have processes doing IO to this device.
355 */
356 blk_sync_queue(q);
357
31373d09 358 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 359 mutex_lock(&q->sysfs_lock);
75ad23bc 360 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
361 mutex_unlock(&q->sysfs_lock);
362
363 if (q->elevator)
364 elevator_exit(q->elevator);
365
da527770
VG
366 blk_throtl_exit(q);
367
483f4afc
AV
368 blk_put_queue(q);
369}
1da177e4
LT
370EXPORT_SYMBOL(blk_cleanup_queue);
371
165125e1 372static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
373{
374 struct request_list *rl = &q->rq;
375
1abec4fd
MS
376 if (unlikely(rl->rq_pool))
377 return 0;
378
1faa16d2
JA
379 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
380 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 381 rl->elvpriv = 0;
1faa16d2
JA
382 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
383 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 384
1946089a
CL
385 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
386 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
387
388 if (!rl->rq_pool)
389 return -ENOMEM;
390
391 return 0;
392}
393
165125e1 394struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 395{
1946089a
CL
396 return blk_alloc_queue_node(gfp_mask, -1);
397}
398EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 399
165125e1 400struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 401{
165125e1 402 struct request_queue *q;
e0bf68dd 403 int err;
1946089a 404
8324aa91 405 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 406 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
407 if (!q)
408 return NULL;
409
0989a025
JA
410 q->backing_dev_info.ra_pages =
411 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
412 q->backing_dev_info.state = 0;
413 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 414 q->backing_dev_info.name = "block";
0989a025 415
e0bf68dd
PZ
416 err = bdi_init(&q->backing_dev_info);
417 if (err) {
8324aa91 418 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
419 return NULL;
420 }
421
e43473b7
VG
422 if (blk_throtl_init(q)) {
423 kmem_cache_free(blk_requestq_cachep, q);
424 return NULL;
425 }
426
31373d09
MG
427 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
428 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb
JA
429 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
430 INIT_LIST_HEAD(&q->timeout_list);
ae1b1539
TH
431 INIT_LIST_HEAD(&q->flush_queue[0]);
432 INIT_LIST_HEAD(&q->flush_queue[1]);
433 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 434 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 435
8324aa91 436 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 437
483f4afc 438 mutex_init(&q->sysfs_lock);
e7e72bf6 439 spin_lock_init(&q->__queue_lock);
483f4afc 440
c94a96ac
VG
441 /*
442 * By default initialize queue_lock to internal lock and driver can
443 * override it later if need be.
444 */
445 q->queue_lock = &q->__queue_lock;
446
1da177e4
LT
447 return q;
448}
1946089a 449EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
450
451/**
452 * blk_init_queue - prepare a request queue for use with a block device
453 * @rfn: The function to be called to process requests that have been
454 * placed on the queue.
455 * @lock: Request queue spin lock
456 *
457 * Description:
458 * If a block device wishes to use the standard request handling procedures,
459 * which sorts requests and coalesces adjacent requests, then it must
460 * call blk_init_queue(). The function @rfn will be called when there
461 * are requests on the queue that need to be processed. If the device
462 * supports plugging, then @rfn may not be called immediately when requests
463 * are available on the queue, but may be called at some time later instead.
464 * Plugged queues are generally unplugged when a buffer belonging to one
465 * of the requests on the queue is needed, or due to memory pressure.
466 *
467 * @rfn is not required, or even expected, to remove all requests off the
468 * queue, but only as many as it can handle at a time. If it does leave
469 * requests on the queue, it is responsible for arranging that the requests
470 * get dealt with eventually.
471 *
472 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
473 * request queue; this lock will be taken also from interrupt context, so irq
474 * disabling is needed for it.
1da177e4 475 *
710027a4 476 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
477 * it didn't succeed.
478 *
479 * Note:
480 * blk_init_queue() must be paired with a blk_cleanup_queue() call
481 * when the block device is deactivated (such as at module unload).
482 **/
1946089a 483
165125e1 484struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 485{
1946089a
CL
486 return blk_init_queue_node(rfn, lock, -1);
487}
488EXPORT_SYMBOL(blk_init_queue);
489
165125e1 490struct request_queue *
1946089a
CL
491blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
492{
c86d1b8a 493 struct request_queue *uninit_q, *q;
1da177e4 494
c86d1b8a
MS
495 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
496 if (!uninit_q)
497 return NULL;
498
499 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
500 if (!q)
501 blk_cleanup_queue(uninit_q);
502
503 return q;
01effb0d
MS
504}
505EXPORT_SYMBOL(blk_init_queue_node);
506
507struct request_queue *
508blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
509 spinlock_t *lock)
510{
511 return blk_init_allocated_queue_node(q, rfn, lock, -1);
512}
513EXPORT_SYMBOL(blk_init_allocated_queue);
514
515struct request_queue *
516blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
517 spinlock_t *lock, int node_id)
518{
1da177e4
LT
519 if (!q)
520 return NULL;
521
1946089a 522 q->node = node_id;
c86d1b8a 523 if (blk_init_free_list(q))
8669aafd 524 return NULL;
1da177e4
LT
525
526 q->request_fn = rfn;
1da177e4 527 q->prep_rq_fn = NULL;
28018c24 528 q->unprep_rq_fn = NULL;
bc58ba94 529 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
530
531 /* Override internal queue lock with supplied lock pointer */
532 if (lock)
533 q->queue_lock = lock;
1da177e4 534
f3b144aa
JA
535 /*
536 * This also sets hw/phys segments, boundary and size
537 */
1da177e4 538 blk_queue_make_request(q, __make_request);
1da177e4 539
44ec9542
AS
540 q->sg_reserved_size = INT_MAX;
541
1da177e4
LT
542 /*
543 * all done
544 */
545 if (!elevator_init(q, NULL)) {
546 blk_queue_congestion_threshold(q);
547 return q;
548 }
549
1da177e4
LT
550 return NULL;
551}
01effb0d 552EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 553
165125e1 554int blk_get_queue(struct request_queue *q)
1da177e4 555{
fde6ad22 556 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 557 kobject_get(&q->kobj);
1da177e4
LT
558 return 0;
559 }
560
561 return 1;
562}
1da177e4 563
165125e1 564static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 565{
73c10101
JA
566 BUG_ON(rq->cmd_flags & REQ_ON_PLUG);
567
4aff5e23 568 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 569 elv_put_request(q, rq);
1da177e4
LT
570 mempool_free(rq, q->rq.rq_pool);
571}
572
1ea25ecb 573static struct request *
42dad764 574blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
575{
576 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
577
578 if (!rq)
579 return NULL;
580
2a4aa30c 581 blk_rq_init(q, rq);
1afb20f3 582
42dad764 583 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 584
cb98fc8b 585 if (priv) {
cb78b285 586 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
587 mempool_free(rq, q->rq.rq_pool);
588 return NULL;
589 }
4aff5e23 590 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 591 }
1da177e4 592
cb98fc8b 593 return rq;
1da177e4
LT
594}
595
596/*
597 * ioc_batching returns true if the ioc is a valid batching request and
598 * should be given priority access to a request.
599 */
165125e1 600static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
601{
602 if (!ioc)
603 return 0;
604
605 /*
606 * Make sure the process is able to allocate at least 1 request
607 * even if the batch times out, otherwise we could theoretically
608 * lose wakeups.
609 */
610 return ioc->nr_batch_requests == q->nr_batching ||
611 (ioc->nr_batch_requests > 0
612 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
613}
614
615/*
616 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
617 * will cause the process to be a "batcher" on all queues in the system. This
618 * is the behaviour we want though - once it gets a wakeup it should be given
619 * a nice run.
620 */
165125e1 621static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
622{
623 if (!ioc || ioc_batching(q, ioc))
624 return;
625
626 ioc->nr_batch_requests = q->nr_batching;
627 ioc->last_waited = jiffies;
628}
629
1faa16d2 630static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
631{
632 struct request_list *rl = &q->rq;
633
1faa16d2
JA
634 if (rl->count[sync] < queue_congestion_off_threshold(q))
635 blk_clear_queue_congested(q, sync);
1da177e4 636
1faa16d2
JA
637 if (rl->count[sync] + 1 <= q->nr_requests) {
638 if (waitqueue_active(&rl->wait[sync]))
639 wake_up(&rl->wait[sync]);
1da177e4 640
1faa16d2 641 blk_clear_queue_full(q, sync);
1da177e4
LT
642 }
643}
644
645/*
646 * A request has just been released. Account for it, update the full and
647 * congestion status, wake up any waiters. Called under q->queue_lock.
648 */
1faa16d2 649static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
650{
651 struct request_list *rl = &q->rq;
652
1faa16d2 653 rl->count[sync]--;
cb98fc8b
TH
654 if (priv)
655 rl->elvpriv--;
1da177e4 656
1faa16d2 657 __freed_request(q, sync);
1da177e4 658
1faa16d2
JA
659 if (unlikely(rl->starved[sync ^ 1]))
660 __freed_request(q, sync ^ 1);
1da177e4
LT
661}
662
9d5a4e94
MS
663/*
664 * Determine if elevator data should be initialized when allocating the
665 * request associated with @bio.
666 */
667static bool blk_rq_should_init_elevator(struct bio *bio)
668{
669 if (!bio)
670 return true;
671
672 /*
673 * Flush requests do not use the elevator so skip initialization.
674 * This allows a request to share the flush and elevator data.
675 */
676 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
677 return false;
678
679 return true;
680}
681
1da177e4 682/*
d6344532
NP
683 * Get a free request, queue_lock must be held.
684 * Returns NULL on failure, with queue_lock held.
685 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 686 */
165125e1 687static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 688 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
689{
690 struct request *rq = NULL;
691 struct request_list *rl = &q->rq;
88ee5ef1 692 struct io_context *ioc = NULL;
1faa16d2 693 const bool is_sync = rw_is_sync(rw_flags) != 0;
9d5a4e94 694 int may_queue, priv = 0;
88ee5ef1 695
7749a8d4 696 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
697 if (may_queue == ELV_MQUEUE_NO)
698 goto rq_starved;
699
1faa16d2
JA
700 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
701 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 702 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
703 /*
704 * The queue will fill after this allocation, so set
705 * it as full, and mark this process as "batching".
706 * This process will be allowed to complete a batch of
707 * requests, others will be blocked.
708 */
1faa16d2 709 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 710 ioc_set_batching(q, ioc);
1faa16d2 711 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
712 } else {
713 if (may_queue != ELV_MQUEUE_MUST
714 && !ioc_batching(q, ioc)) {
715 /*
716 * The queue is full and the allocating
717 * process is not a "batcher", and not
718 * exempted by the IO scheduler
719 */
720 goto out;
721 }
722 }
1da177e4 723 }
1faa16d2 724 blk_set_queue_congested(q, is_sync);
1da177e4
LT
725 }
726
082cf69e
JA
727 /*
728 * Only allow batching queuers to allocate up to 50% over the defined
729 * limit of requests, otherwise we could have thousands of requests
730 * allocated with any setting of ->nr_requests
731 */
1faa16d2 732 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 733 goto out;
fd782a4a 734
1faa16d2
JA
735 rl->count[is_sync]++;
736 rl->starved[is_sync] = 0;
cb98fc8b 737
9d5a4e94
MS
738 if (blk_rq_should_init_elevator(bio)) {
739 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
740 if (priv)
741 rl->elvpriv++;
742 }
cb98fc8b 743
f253b86b
JA
744 if (blk_queue_io_stat(q))
745 rw_flags |= REQ_IO_STAT;
1da177e4
LT
746 spin_unlock_irq(q->queue_lock);
747
7749a8d4 748 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 749 if (unlikely(!rq)) {
1da177e4
LT
750 /*
751 * Allocation failed presumably due to memory. Undo anything
752 * we might have messed up.
753 *
754 * Allocating task should really be put onto the front of the
755 * wait queue, but this is pretty rare.
756 */
757 spin_lock_irq(q->queue_lock);
1faa16d2 758 freed_request(q, is_sync, priv);
1da177e4
LT
759
760 /*
761 * in the very unlikely event that allocation failed and no
762 * requests for this direction was pending, mark us starved
763 * so that freeing of a request in the other direction will
764 * notice us. another possible fix would be to split the
765 * rq mempool into READ and WRITE
766 */
767rq_starved:
1faa16d2
JA
768 if (unlikely(rl->count[is_sync] == 0))
769 rl->starved[is_sync] = 1;
1da177e4 770
1da177e4
LT
771 goto out;
772 }
773
88ee5ef1
JA
774 /*
775 * ioc may be NULL here, and ioc_batching will be false. That's
776 * OK, if the queue is under the request limit then requests need
777 * not count toward the nr_batch_requests limit. There will always
778 * be some limit enforced by BLK_BATCH_TIME.
779 */
1da177e4
LT
780 if (ioc_batching(q, ioc))
781 ioc->nr_batch_requests--;
6728cb0e 782
1faa16d2 783 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 784out:
1da177e4
LT
785 return rq;
786}
787
788/*
7eaceacc
JA
789 * No available requests for this queue, wait for some requests to become
790 * available.
d6344532
NP
791 *
792 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 793 */
165125e1 794static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 795 struct bio *bio)
1da177e4 796{
1faa16d2 797 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
798 struct request *rq;
799
7749a8d4 800 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
801 while (!rq) {
802 DEFINE_WAIT(wait);
05caf8db 803 struct io_context *ioc;
1da177e4
LT
804 struct request_list *rl = &q->rq;
805
1faa16d2 806 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
807 TASK_UNINTERRUPTIBLE);
808
1faa16d2 809 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 810
05caf8db
ZY
811 spin_unlock_irq(q->queue_lock);
812 io_schedule();
1da177e4 813
05caf8db
ZY
814 /*
815 * After sleeping, we become a "batching" process and
816 * will be able to allocate at least one request, and
817 * up to a big batch of them for a small period time.
818 * See ioc_batching, ioc_set_batching
819 */
820 ioc = current_io_context(GFP_NOIO, q->node);
821 ioc_set_batching(q, ioc);
d6344532 822
05caf8db 823 spin_lock_irq(q->queue_lock);
1faa16d2 824 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
825
826 rq = get_request(q, rw_flags, bio, GFP_NOIO);
827 };
1da177e4
LT
828
829 return rq;
830}
831
165125e1 832struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
833{
834 struct request *rq;
835
836 BUG_ON(rw != READ && rw != WRITE);
837
d6344532
NP
838 spin_lock_irq(q->queue_lock);
839 if (gfp_mask & __GFP_WAIT) {
22e2c507 840 rq = get_request_wait(q, rw, NULL);
d6344532 841 } else {
22e2c507 842 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
843 if (!rq)
844 spin_unlock_irq(q->queue_lock);
845 }
846 /* q->queue_lock is unlocked at this point */
1da177e4
LT
847
848 return rq;
849}
1da177e4
LT
850EXPORT_SYMBOL(blk_get_request);
851
dc72ef4a 852/**
79eb63e9 853 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 854 * @q: target request queue
79eb63e9
BH
855 * @bio: The bio describing the memory mappings that will be submitted for IO.
856 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 857 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 858 *
79eb63e9
BH
859 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
860 * type commands. Where the struct request needs to be farther initialized by
861 * the caller. It is passed a &struct bio, which describes the memory info of
862 * the I/O transfer.
dc72ef4a 863 *
79eb63e9
BH
864 * The caller of blk_make_request must make sure that bi_io_vec
865 * are set to describe the memory buffers. That bio_data_dir() will return
866 * the needed direction of the request. (And all bio's in the passed bio-chain
867 * are properly set accordingly)
868 *
869 * If called under none-sleepable conditions, mapped bio buffers must not
870 * need bouncing, by calling the appropriate masked or flagged allocator,
871 * suitable for the target device. Otherwise the call to blk_queue_bounce will
872 * BUG.
53674ac5
JA
873 *
874 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
875 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
876 * anything but the first bio in the chain. Otherwise you risk waiting for IO
877 * completion of a bio that hasn't been submitted yet, thus resulting in a
878 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
879 * of bio_alloc(), as that avoids the mempool deadlock.
880 * If possible a big IO should be split into smaller parts when allocation
881 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 882 */
79eb63e9
BH
883struct request *blk_make_request(struct request_queue *q, struct bio *bio,
884 gfp_t gfp_mask)
dc72ef4a 885{
79eb63e9
BH
886 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
887
888 if (unlikely(!rq))
889 return ERR_PTR(-ENOMEM);
890
891 for_each_bio(bio) {
892 struct bio *bounce_bio = bio;
893 int ret;
894
895 blk_queue_bounce(q, &bounce_bio);
896 ret = blk_rq_append_bio(q, rq, bounce_bio);
897 if (unlikely(ret)) {
898 blk_put_request(rq);
899 return ERR_PTR(ret);
900 }
901 }
902
903 return rq;
dc72ef4a 904}
79eb63e9 905EXPORT_SYMBOL(blk_make_request);
dc72ef4a 906
1da177e4
LT
907/**
908 * blk_requeue_request - put a request back on queue
909 * @q: request queue where request should be inserted
910 * @rq: request to be inserted
911 *
912 * Description:
913 * Drivers often keep queueing requests until the hardware cannot accept
914 * more, when that condition happens we need to put the request back
915 * on the queue. Must be called with queue lock held.
916 */
165125e1 917void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 918{
242f9dcb
JA
919 blk_delete_timer(rq);
920 blk_clear_rq_complete(rq);
5f3ea37c 921 trace_block_rq_requeue(q, rq);
2056a782 922
1da177e4
LT
923 if (blk_rq_tagged(rq))
924 blk_queue_end_tag(q, rq);
925
ba396a6c
JB
926 BUG_ON(blk_queued_rq(rq));
927
1da177e4
LT
928 elv_requeue_request(q, rq);
929}
1da177e4
LT
930EXPORT_SYMBOL(blk_requeue_request);
931
73c10101
JA
932static void add_acct_request(struct request_queue *q, struct request *rq,
933 int where)
934{
935 drive_stat_acct(rq, 1);
7eaceacc 936 __elv_add_request(q, rq, where);
73c10101
JA
937}
938
1da177e4 939/**
710027a4 940 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
941 * @q: request queue where request should be inserted
942 * @rq: request to be inserted
943 * @at_head: insert request at head or tail of queue
944 * @data: private data
1da177e4
LT
945 *
946 * Description:
947 * Many block devices need to execute commands asynchronously, so they don't
948 * block the whole kernel from preemption during request execution. This is
949 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
950 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
951 * be scheduled for actual execution by the request queue.
1da177e4
LT
952 *
953 * We have the option of inserting the head or the tail of the queue.
954 * Typically we use the tail for new ioctls and so forth. We use the head
955 * of the queue for things like a QUEUE_FULL message from a device, or a
956 * host that is unable to accept a particular command.
957 */
165125e1 958void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 959 int at_head, void *data)
1da177e4 960{
867d1191 961 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
962 unsigned long flags;
963
964 /*
965 * tell I/O scheduler that this isn't a regular read/write (ie it
966 * must not attempt merges on this) and that it acts as a soft
967 * barrier
968 */
4aff5e23 969 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
970
971 rq->special = data;
972
973 spin_lock_irqsave(q->queue_lock, flags);
974
975 /*
976 * If command is tagged, release the tag
977 */
867d1191
TH
978 if (blk_rq_tagged(rq))
979 blk_queue_end_tag(q, rq);
1da177e4 980
73c10101 981 add_acct_request(q, rq, where);
1654e741 982 __blk_run_queue(q, false);
1da177e4
LT
983 spin_unlock_irqrestore(q->queue_lock, flags);
984}
1da177e4
LT
985EXPORT_SYMBOL(blk_insert_request);
986
074a7aca
TH
987static void part_round_stats_single(int cpu, struct hd_struct *part,
988 unsigned long now)
989{
990 if (now == part->stamp)
991 return;
992
316d315b 993 if (part_in_flight(part)) {
074a7aca 994 __part_stat_add(cpu, part, time_in_queue,
316d315b 995 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
996 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
997 }
998 part->stamp = now;
999}
1000
1001/**
496aa8a9
RD
1002 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1003 * @cpu: cpu number for stats access
1004 * @part: target partition
1da177e4
LT
1005 *
1006 * The average IO queue length and utilisation statistics are maintained
1007 * by observing the current state of the queue length and the amount of
1008 * time it has been in this state for.
1009 *
1010 * Normally, that accounting is done on IO completion, but that can result
1011 * in more than a second's worth of IO being accounted for within any one
1012 * second, leading to >100% utilisation. To deal with that, we call this
1013 * function to do a round-off before returning the results when reading
1014 * /proc/diskstats. This accounts immediately for all queue usage up to
1015 * the current jiffies and restarts the counters again.
1016 */
c9959059 1017void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1018{
1019 unsigned long now = jiffies;
1020
074a7aca
TH
1021 if (part->partno)
1022 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1023 part_round_stats_single(cpu, part, now);
6f2576af 1024}
074a7aca 1025EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1026
1da177e4
LT
1027/*
1028 * queue lock must be held
1029 */
165125e1 1030void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1031{
1da177e4
LT
1032 if (unlikely(!q))
1033 return;
1034 if (unlikely(--req->ref_count))
1035 return;
1036
8922e16c
TH
1037 elv_completed_request(q, req);
1038
1cd96c24
BH
1039 /* this is a bio leak */
1040 WARN_ON(req->bio != NULL);
1041
1da177e4
LT
1042 /*
1043 * Request may not have originated from ll_rw_blk. if not,
1044 * it didn't come out of our reserved rq pools
1045 */
49171e5c 1046 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1047 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1048 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1049
1da177e4 1050 BUG_ON(!list_empty(&req->queuelist));
9817064b 1051 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1052
1053 blk_free_request(q, req);
1faa16d2 1054 freed_request(q, is_sync, priv);
1da177e4
LT
1055 }
1056}
6e39b69e
MC
1057EXPORT_SYMBOL_GPL(__blk_put_request);
1058
1da177e4
LT
1059void blk_put_request(struct request *req)
1060{
8922e16c 1061 unsigned long flags;
165125e1 1062 struct request_queue *q = req->q;
8922e16c 1063
52a93ba8
FT
1064 spin_lock_irqsave(q->queue_lock, flags);
1065 __blk_put_request(q, req);
1066 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1067}
1da177e4
LT
1068EXPORT_SYMBOL(blk_put_request);
1069
66ac0280
CH
1070/**
1071 * blk_add_request_payload - add a payload to a request
1072 * @rq: request to update
1073 * @page: page backing the payload
1074 * @len: length of the payload.
1075 *
1076 * This allows to later add a payload to an already submitted request by
1077 * a block driver. The driver needs to take care of freeing the payload
1078 * itself.
1079 *
1080 * Note that this is a quite horrible hack and nothing but handling of
1081 * discard requests should ever use it.
1082 */
1083void blk_add_request_payload(struct request *rq, struct page *page,
1084 unsigned int len)
1085{
1086 struct bio *bio = rq->bio;
1087
1088 bio->bi_io_vec->bv_page = page;
1089 bio->bi_io_vec->bv_offset = 0;
1090 bio->bi_io_vec->bv_len = len;
1091
1092 bio->bi_size = len;
1093 bio->bi_vcnt = 1;
1094 bio->bi_phys_segments = 1;
1095
1096 rq->__data_len = rq->resid_len = len;
1097 rq->nr_phys_segments = 1;
1098 rq->buffer = bio_data(bio);
1099}
1100EXPORT_SYMBOL_GPL(blk_add_request_payload);
1101
73c10101
JA
1102static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1103 struct bio *bio)
1104{
1105 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1106
1107 /*
1108 * Debug stuff, kill later
1109 */
1110 if (!rq_mergeable(req)) {
1111 blk_dump_rq_flags(req, "back");
1112 return false;
1113 }
1114
1115 if (!ll_back_merge_fn(q, req, bio))
1116 return false;
1117
1118 trace_block_bio_backmerge(q, bio);
1119
1120 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1121 blk_rq_set_mixed_merge(req);
1122
1123 req->biotail->bi_next = bio;
1124 req->biotail = bio;
1125 req->__data_len += bio->bi_size;
1126 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1127
1128 drive_stat_acct(req, 0);
1129 return true;
1130}
1131
1132static bool bio_attempt_front_merge(struct request_queue *q,
1133 struct request *req, struct bio *bio)
1134{
1135 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1136 sector_t sector;
1137
1138 /*
1139 * Debug stuff, kill later
1140 */
1141 if (!rq_mergeable(req)) {
1142 blk_dump_rq_flags(req, "front");
1143 return false;
1144 }
1145
1146 if (!ll_front_merge_fn(q, req, bio))
1147 return false;
1148
1149 trace_block_bio_frontmerge(q, bio);
1150
1151 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1152 blk_rq_set_mixed_merge(req);
1153
1154 sector = bio->bi_sector;
1155
1156 bio->bi_next = req->bio;
1157 req->bio = bio;
1158
1159 /*
1160 * may not be valid. if the low level driver said
1161 * it didn't need a bounce buffer then it better
1162 * not touch req->buffer either...
1163 */
1164 req->buffer = bio_data(bio);
1165 req->__sector = bio->bi_sector;
1166 req->__data_len += bio->bi_size;
1167 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1168
1169 drive_stat_acct(req, 0);
1170 return true;
1171}
1172
1173/*
1174 * Attempts to merge with the plugged list in the current process. Returns
25985edc 1175 * true if merge was successful, otherwise false.
73c10101
JA
1176 */
1177static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1178 struct bio *bio)
1179{
1180 struct blk_plug *plug;
1181 struct request *rq;
1182 bool ret = false;
1183
1184 plug = tsk->plug;
1185 if (!plug)
1186 goto out;
1187
1188 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1189 int el_ret;
1190
1191 if (rq->q != q)
1192 continue;
1193
1194 el_ret = elv_try_merge(rq, bio);
1195 if (el_ret == ELEVATOR_BACK_MERGE) {
1196 ret = bio_attempt_back_merge(q, rq, bio);
1197 if (ret)
1198 break;
1199 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1200 ret = bio_attempt_front_merge(q, rq, bio);
1201 if (ret)
1202 break;
1203 }
1204 }
1205out:
1206 return ret;
1207}
1208
86db1e29 1209void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1210{
c7c22e4d 1211 req->cpu = bio->bi_comp_cpu;
4aff5e23 1212 req->cmd_type = REQ_TYPE_FS;
52d9e675 1213
7b6d91da
CH
1214 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1215 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1216 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1217
52d9e675 1218 req->errors = 0;
a2dec7b3 1219 req->__sector = bio->bi_sector;
52d9e675 1220 req->ioprio = bio_prio(bio);
bc1c56fd 1221 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1222}
1223
165125e1 1224static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1225{
5e00d1b5 1226 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1227 struct blk_plug *plug;
1228 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1229 struct request *req;
1da177e4 1230
1da177e4
LT
1231 /*
1232 * low level driver can indicate that it wants pages above a
1233 * certain limit bounced to low memory (ie for highmem, or even
1234 * ISA dma in theory)
1235 */
1236 blk_queue_bounce(q, &bio);
1237
4fed947c 1238 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1239 spin_lock_irq(q->queue_lock);
ae1b1539 1240 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1241 goto get_rq;
1242 }
1243
73c10101
JA
1244 /*
1245 * Check if we can merge with the plugged list before grabbing
1246 * any locks.
1247 */
1248 if (attempt_plug_merge(current, q, bio))
6728cb0e 1249 goto out;
1da177e4 1250
73c10101 1251 spin_lock_irq(q->queue_lock);
2056a782 1252
73c10101
JA
1253 el_ret = elv_merge(q, &req, bio);
1254 if (el_ret == ELEVATOR_BACK_MERGE) {
1255 BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1256 if (bio_attempt_back_merge(q, req, bio)) {
1257 if (!attempt_back_merge(q, req))
1258 elv_merged_request(q, req, el_ret);
1259 goto out_unlock;
1260 }
1261 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1262 BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1263 if (bio_attempt_front_merge(q, req, bio)) {
1264 if (!attempt_front_merge(q, req))
1265 elv_merged_request(q, req, el_ret);
1266 goto out_unlock;
80a761fd 1267 }
1da177e4
LT
1268 }
1269
450991bc 1270get_rq:
7749a8d4
JA
1271 /*
1272 * This sync check and mask will be re-done in init_request_from_bio(),
1273 * but we need to set it earlier to expose the sync flag to the
1274 * rq allocator and io schedulers.
1275 */
1276 rw_flags = bio_data_dir(bio);
1277 if (sync)
7b6d91da 1278 rw_flags |= REQ_SYNC;
7749a8d4 1279
1da177e4 1280 /*
450991bc 1281 * Grab a free request. This is might sleep but can not fail.
d6344532 1282 * Returns with the queue unlocked.
450991bc 1283 */
7749a8d4 1284 req = get_request_wait(q, rw_flags, bio);
d6344532 1285
450991bc
NP
1286 /*
1287 * After dropping the lock and possibly sleeping here, our request
1288 * may now be mergeable after it had proven unmergeable (above).
1289 * We don't worry about that case for efficiency. It won't happen
1290 * often, and the elevators are able to handle it.
1da177e4 1291 */
52d9e675 1292 init_request_from_bio(req, bio);
1da177e4 1293
c7c22e4d 1294 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
73c10101
JA
1295 bio_flagged(bio, BIO_CPU_AFFINE)) {
1296 req->cpu = blk_cpu_to_group(get_cpu());
1297 put_cpu();
1298 }
1299
1300 plug = current->plug;
721a9602 1301 if (plug) {
dc6d36c9
JA
1302 /*
1303 * If this is the first request added after a plug, fire
1304 * of a plug trace. If others have been added before, check
1305 * if we have multiple devices in this plug. If so, make a
1306 * note to sort the list before dispatch.
1307 */
1308 if (list_empty(&plug->list))
1309 trace_block_plug(q);
1310 else if (!plug->should_sort) {
73c10101
JA
1311 struct request *__rq;
1312
1313 __rq = list_entry_rq(plug->list.prev);
1314 if (__rq->q != q)
1315 plug->should_sort = 1;
1316 }
1317 /*
1318 * Debug flag, kill later
1319 */
1320 req->cmd_flags |= REQ_ON_PLUG;
1321 list_add_tail(&req->queuelist, &plug->list);
1322 drive_stat_acct(req, 1);
1323 } else {
1324 spin_lock_irq(q->queue_lock);
1325 add_acct_request(q, req, where);
4c63f564 1326 __blk_run_queue(q, false);
73c10101
JA
1327out_unlock:
1328 spin_unlock_irq(q->queue_lock);
1329 }
1da177e4 1330out:
1da177e4 1331 return 0;
1da177e4
LT
1332}
1333
1334/*
1335 * If bio->bi_dev is a partition, remap the location
1336 */
1337static inline void blk_partition_remap(struct bio *bio)
1338{
1339 struct block_device *bdev = bio->bi_bdev;
1340
bf2de6f5 1341 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1342 struct hd_struct *p = bdev->bd_part;
1343
1da177e4
LT
1344 bio->bi_sector += p->start_sect;
1345 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1346
d07335e5
MS
1347 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1348 bdev->bd_dev,
1349 bio->bi_sector - p->start_sect);
1da177e4
LT
1350 }
1351}
1352
1da177e4
LT
1353static void handle_bad_sector(struct bio *bio)
1354{
1355 char b[BDEVNAME_SIZE];
1356
1357 printk(KERN_INFO "attempt to access beyond end of device\n");
1358 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1359 bdevname(bio->bi_bdev, b),
1360 bio->bi_rw,
1361 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1362 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1363
1364 set_bit(BIO_EOF, &bio->bi_flags);
1365}
1366
c17bb495
AM
1367#ifdef CONFIG_FAIL_MAKE_REQUEST
1368
1369static DECLARE_FAULT_ATTR(fail_make_request);
1370
1371static int __init setup_fail_make_request(char *str)
1372{
1373 return setup_fault_attr(&fail_make_request, str);
1374}
1375__setup("fail_make_request=", setup_fail_make_request);
1376
1377static int should_fail_request(struct bio *bio)
1378{
eddb2e26
TH
1379 struct hd_struct *part = bio->bi_bdev->bd_part;
1380
1381 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1382 return should_fail(&fail_make_request, bio->bi_size);
1383
1384 return 0;
1385}
1386
1387static int __init fail_make_request_debugfs(void)
1388{
1389 return init_fault_attr_dentries(&fail_make_request,
1390 "fail_make_request");
1391}
1392
1393late_initcall(fail_make_request_debugfs);
1394
1395#else /* CONFIG_FAIL_MAKE_REQUEST */
1396
1397static inline int should_fail_request(struct bio *bio)
1398{
1399 return 0;
1400}
1401
1402#endif /* CONFIG_FAIL_MAKE_REQUEST */
1403
c07e2b41
JA
1404/*
1405 * Check whether this bio extends beyond the end of the device.
1406 */
1407static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1408{
1409 sector_t maxsector;
1410
1411 if (!nr_sectors)
1412 return 0;
1413
1414 /* Test device or partition size, when known. */
77304d2a 1415 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1416 if (maxsector) {
1417 sector_t sector = bio->bi_sector;
1418
1419 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1420 /*
1421 * This may well happen - the kernel calls bread()
1422 * without checking the size of the device, e.g., when
1423 * mounting a device.
1424 */
1425 handle_bad_sector(bio);
1426 return 1;
1427 }
1428 }
1429
1430 return 0;
1431}
1432
1da177e4 1433/**
710027a4 1434 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1435 * @bio: The bio describing the location in memory and on the device.
1436 *
1437 * generic_make_request() is used to make I/O requests of block
1438 * devices. It is passed a &struct bio, which describes the I/O that needs
1439 * to be done.
1440 *
1441 * generic_make_request() does not return any status. The
1442 * success/failure status of the request, along with notification of
1443 * completion, is delivered asynchronously through the bio->bi_end_io
1444 * function described (one day) else where.
1445 *
1446 * The caller of generic_make_request must make sure that bi_io_vec
1447 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1448 * set to describe the device address, and the
1449 * bi_end_io and optionally bi_private are set to describe how
1450 * completion notification should be signaled.
1451 *
1452 * generic_make_request and the drivers it calls may use bi_next if this
1453 * bio happens to be merged with someone else, and may change bi_dev and
1454 * bi_sector for remaps as it sees fit. So the values of these fields
1455 * should NOT be depended on after the call to generic_make_request.
1456 */
d89d8796 1457static inline void __generic_make_request(struct bio *bio)
1da177e4 1458{
165125e1 1459 struct request_queue *q;
5ddfe969 1460 sector_t old_sector;
1da177e4 1461 int ret, nr_sectors = bio_sectors(bio);
2056a782 1462 dev_t old_dev;
51fd77bd 1463 int err = -EIO;
1da177e4
LT
1464
1465 might_sleep();
1da177e4 1466
c07e2b41
JA
1467 if (bio_check_eod(bio, nr_sectors))
1468 goto end_io;
1da177e4
LT
1469
1470 /*
1471 * Resolve the mapping until finished. (drivers are
1472 * still free to implement/resolve their own stacking
1473 * by explicitly returning 0)
1474 *
1475 * NOTE: we don't repeat the blk_size check for each new device.
1476 * Stacking drivers are expected to know what they are doing.
1477 */
5ddfe969 1478 old_sector = -1;
2056a782 1479 old_dev = 0;
1da177e4
LT
1480 do {
1481 char b[BDEVNAME_SIZE];
1482
1483 q = bdev_get_queue(bio->bi_bdev);
a7384677 1484 if (unlikely(!q)) {
1da177e4
LT
1485 printk(KERN_ERR
1486 "generic_make_request: Trying to access "
1487 "nonexistent block-device %s (%Lu)\n",
1488 bdevname(bio->bi_bdev, b),
1489 (long long) bio->bi_sector);
a7384677 1490 goto end_io;
1da177e4
LT
1491 }
1492
7b6d91da 1493 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1494 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1495 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1496 bdevname(bio->bi_bdev, b),
1497 bio_sectors(bio),
1498 queue_max_hw_sectors(q));
1da177e4
LT
1499 goto end_io;
1500 }
1501
fde6ad22 1502 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1503 goto end_io;
1504
c17bb495
AM
1505 if (should_fail_request(bio))
1506 goto end_io;
1507
1da177e4
LT
1508 /*
1509 * If this device has partitions, remap block n
1510 * of partition p to block n+start(p) of the disk.
1511 */
1512 blk_partition_remap(bio);
1513
7ba1ba12
MP
1514 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1515 goto end_io;
1516
5ddfe969 1517 if (old_sector != -1)
d07335e5 1518 trace_block_bio_remap(q, bio, old_dev, old_sector);
2056a782 1519
5ddfe969 1520 old_sector = bio->bi_sector;
2056a782
JA
1521 old_dev = bio->bi_bdev->bd_dev;
1522
c07e2b41
JA
1523 if (bio_check_eod(bio, nr_sectors))
1524 goto end_io;
a7384677 1525
1e87901e
TH
1526 /*
1527 * Filter flush bio's early so that make_request based
1528 * drivers without flush support don't have to worry
1529 * about them.
1530 */
1531 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1532 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1533 if (!nr_sectors) {
1534 err = 0;
1535 goto end_io;
1536 }
1537 }
1538
8d57a98c
AH
1539 if ((bio->bi_rw & REQ_DISCARD) &&
1540 (!blk_queue_discard(q) ||
1541 ((bio->bi_rw & REQ_SECURE) &&
1542 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1543 err = -EOPNOTSUPP;
1544 goto end_io;
1545 }
5ddfe969 1546
e43473b7
VG
1547 blk_throtl_bio(q, &bio);
1548
1549 /*
1550 * If bio = NULL, bio has been throttled and will be submitted
1551 * later.
1552 */
1553 if (!bio)
1554 break;
1555
01edede4
MK
1556 trace_block_bio_queue(q, bio);
1557
1da177e4
LT
1558 ret = q->make_request_fn(q, bio);
1559 } while (ret);
a7384677
TH
1560
1561 return;
1562
1563end_io:
1564 bio_endio(bio, err);
1da177e4
LT
1565}
1566
d89d8796
NB
1567/*
1568 * We only want one ->make_request_fn to be active at a time,
1569 * else stack usage with stacked devices could be a problem.
bddd87c7 1570 * So use current->bio_list to keep a list of requests
d89d8796 1571 * submited by a make_request_fn function.
bddd87c7 1572 * current->bio_list is also used as a flag to say if
d89d8796
NB
1573 * generic_make_request is currently active in this task or not.
1574 * If it is NULL, then no make_request is active. If it is non-NULL,
1575 * then a make_request is active, and new requests should be added
1576 * at the tail
1577 */
1578void generic_make_request(struct bio *bio)
1579{
bddd87c7
AM
1580 struct bio_list bio_list_on_stack;
1581
1582 if (current->bio_list) {
d89d8796 1583 /* make_request is active */
bddd87c7 1584 bio_list_add(current->bio_list, bio);
d89d8796
NB
1585 return;
1586 }
1587 /* following loop may be a bit non-obvious, and so deserves some
1588 * explanation.
1589 * Before entering the loop, bio->bi_next is NULL (as all callers
1590 * ensure that) so we have a list with a single bio.
1591 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1592 * we assign bio_list to a pointer to the bio_list_on_stack,
1593 * thus initialising the bio_list of new bios to be
d89d8796
NB
1594 * added. __generic_make_request may indeed add some more bios
1595 * through a recursive call to generic_make_request. If it
1596 * did, we find a non-NULL value in bio_list and re-enter the loop
1597 * from the top. In this case we really did just take the bio
bddd87c7
AM
1598 * of the top of the list (no pretending) and so remove it from
1599 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1600 *
1601 * The loop was structured like this to make only one call to
1602 * __generic_make_request (which is important as it is large and
1603 * inlined) and to keep the structure simple.
1604 */
1605 BUG_ON(bio->bi_next);
bddd87c7
AM
1606 bio_list_init(&bio_list_on_stack);
1607 current->bio_list = &bio_list_on_stack;
d89d8796 1608 do {
d89d8796 1609 __generic_make_request(bio);
bddd87c7 1610 bio = bio_list_pop(current->bio_list);
d89d8796 1611 } while (bio);
bddd87c7 1612 current->bio_list = NULL; /* deactivate */
d89d8796 1613}
1da177e4
LT
1614EXPORT_SYMBOL(generic_make_request);
1615
1616/**
710027a4 1617 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1618 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1619 * @bio: The &struct bio which describes the I/O
1620 *
1621 * submit_bio() is very similar in purpose to generic_make_request(), and
1622 * uses that function to do most of the work. Both are fairly rough
710027a4 1623 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1624 *
1625 */
1626void submit_bio(int rw, struct bio *bio)
1627{
1628 int count = bio_sectors(bio);
1629
22e2c507 1630 bio->bi_rw |= rw;
1da177e4 1631
bf2de6f5
JA
1632 /*
1633 * If it's a regular read/write or a barrier with data attached,
1634 * go through the normal accounting stuff before submission.
1635 */
3ffb52e7 1636 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1637 if (rw & WRITE) {
1638 count_vm_events(PGPGOUT, count);
1639 } else {
1640 task_io_account_read(bio->bi_size);
1641 count_vm_events(PGPGIN, count);
1642 }
1643
1644 if (unlikely(block_dump)) {
1645 char b[BDEVNAME_SIZE];
8dcbdc74 1646 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1647 current->comm, task_pid_nr(current),
bf2de6f5
JA
1648 (rw & WRITE) ? "WRITE" : "READ",
1649 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1650 bdevname(bio->bi_bdev, b),
1651 count);
bf2de6f5 1652 }
1da177e4
LT
1653 }
1654
1655 generic_make_request(bio);
1656}
1da177e4
LT
1657EXPORT_SYMBOL(submit_bio);
1658
82124d60
KU
1659/**
1660 * blk_rq_check_limits - Helper function to check a request for the queue limit
1661 * @q: the queue
1662 * @rq: the request being checked
1663 *
1664 * Description:
1665 * @rq may have been made based on weaker limitations of upper-level queues
1666 * in request stacking drivers, and it may violate the limitation of @q.
1667 * Since the block layer and the underlying device driver trust @rq
1668 * after it is inserted to @q, it should be checked against @q before
1669 * the insertion using this generic function.
1670 *
1671 * This function should also be useful for request stacking drivers
eef35c2d 1672 * in some cases below, so export this function.
82124d60
KU
1673 * Request stacking drivers like request-based dm may change the queue
1674 * limits while requests are in the queue (e.g. dm's table swapping).
1675 * Such request stacking drivers should check those requests agaist
1676 * the new queue limits again when they dispatch those requests,
1677 * although such checkings are also done against the old queue limits
1678 * when submitting requests.
1679 */
1680int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1681{
3383977f
S
1682 if (rq->cmd_flags & REQ_DISCARD)
1683 return 0;
1684
ae03bf63
MP
1685 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1686 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1687 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1688 return -EIO;
1689 }
1690
1691 /*
1692 * queue's settings related to segment counting like q->bounce_pfn
1693 * may differ from that of other stacking queues.
1694 * Recalculate it to check the request correctly on this queue's
1695 * limitation.
1696 */
1697 blk_recalc_rq_segments(rq);
8a78362c 1698 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1699 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1700 return -EIO;
1701 }
1702
1703 return 0;
1704}
1705EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1706
1707/**
1708 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1709 * @q: the queue to submit the request
1710 * @rq: the request being queued
1711 */
1712int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1713{
1714 unsigned long flags;
1715
1716 if (blk_rq_check_limits(q, rq))
1717 return -EIO;
1718
1719#ifdef CONFIG_FAIL_MAKE_REQUEST
1720 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1721 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1722 return -EIO;
1723#endif
1724
1725 spin_lock_irqsave(q->queue_lock, flags);
1726
1727 /*
1728 * Submitting request must be dequeued before calling this function
1729 * because it will be linked to another request_queue
1730 */
1731 BUG_ON(blk_queued_rq(rq));
1732
73c10101 1733 add_acct_request(q, rq, ELEVATOR_INSERT_BACK);
82124d60
KU
1734 spin_unlock_irqrestore(q->queue_lock, flags);
1735
1736 return 0;
1737}
1738EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1739
80a761fd
TH
1740/**
1741 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1742 * @rq: request to examine
1743 *
1744 * Description:
1745 * A request could be merge of IOs which require different failure
1746 * handling. This function determines the number of bytes which
1747 * can be failed from the beginning of the request without
1748 * crossing into area which need to be retried further.
1749 *
1750 * Return:
1751 * The number of bytes to fail.
1752 *
1753 * Context:
1754 * queue_lock must be held.
1755 */
1756unsigned int blk_rq_err_bytes(const struct request *rq)
1757{
1758 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1759 unsigned int bytes = 0;
1760 struct bio *bio;
1761
1762 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1763 return blk_rq_bytes(rq);
1764
1765 /*
1766 * Currently the only 'mixing' which can happen is between
1767 * different fastfail types. We can safely fail portions
1768 * which have all the failfast bits that the first one has -
1769 * the ones which are at least as eager to fail as the first
1770 * one.
1771 */
1772 for (bio = rq->bio; bio; bio = bio->bi_next) {
1773 if ((bio->bi_rw & ff) != ff)
1774 break;
1775 bytes += bio->bi_size;
1776 }
1777
1778 /* this could lead to infinite loop */
1779 BUG_ON(blk_rq_bytes(rq) && !bytes);
1780 return bytes;
1781}
1782EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1783
bc58ba94
JA
1784static void blk_account_io_completion(struct request *req, unsigned int bytes)
1785{
c2553b58 1786 if (blk_do_io_stat(req)) {
bc58ba94
JA
1787 const int rw = rq_data_dir(req);
1788 struct hd_struct *part;
1789 int cpu;
1790
1791 cpu = part_stat_lock();
09e099d4 1792 part = req->part;
bc58ba94
JA
1793 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1794 part_stat_unlock();
1795 }
1796}
1797
1798static void blk_account_io_done(struct request *req)
1799{
bc58ba94 1800 /*
dd4c133f
TH
1801 * Account IO completion. flush_rq isn't accounted as a
1802 * normal IO on queueing nor completion. Accounting the
1803 * containing request is enough.
bc58ba94 1804 */
414b4ff5 1805 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1806 unsigned long duration = jiffies - req->start_time;
1807 const int rw = rq_data_dir(req);
1808 struct hd_struct *part;
1809 int cpu;
1810
1811 cpu = part_stat_lock();
09e099d4 1812 part = req->part;
bc58ba94
JA
1813
1814 part_stat_inc(cpu, part, ios[rw]);
1815 part_stat_add(cpu, part, ticks[rw], duration);
1816 part_round_stats(cpu, part);
316d315b 1817 part_dec_in_flight(part, rw);
bc58ba94 1818
6c23a968 1819 hd_struct_put(part);
bc58ba94
JA
1820 part_stat_unlock();
1821 }
1822}
1823
3bcddeac 1824/**
9934c8c0
TH
1825 * blk_peek_request - peek at the top of a request queue
1826 * @q: request queue to peek at
1827 *
1828 * Description:
1829 * Return the request at the top of @q. The returned request
1830 * should be started using blk_start_request() before LLD starts
1831 * processing it.
1832 *
1833 * Return:
1834 * Pointer to the request at the top of @q if available. Null
1835 * otherwise.
1836 *
1837 * Context:
1838 * queue_lock must be held.
1839 */
1840struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1841{
1842 struct request *rq;
1843 int ret;
1844
1845 while ((rq = __elv_next_request(q)) != NULL) {
1846 if (!(rq->cmd_flags & REQ_STARTED)) {
1847 /*
1848 * This is the first time the device driver
1849 * sees this request (possibly after
1850 * requeueing). Notify IO scheduler.
1851 */
33659ebb 1852 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1853 elv_activate_rq(q, rq);
1854
1855 /*
1856 * just mark as started even if we don't start
1857 * it, a request that has been delayed should
1858 * not be passed by new incoming requests
1859 */
1860 rq->cmd_flags |= REQ_STARTED;
1861 trace_block_rq_issue(q, rq);
1862 }
1863
1864 if (!q->boundary_rq || q->boundary_rq == rq) {
1865 q->end_sector = rq_end_sector(rq);
1866 q->boundary_rq = NULL;
1867 }
1868
1869 if (rq->cmd_flags & REQ_DONTPREP)
1870 break;
1871
2e46e8b2 1872 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1873 /*
1874 * make sure space for the drain appears we
1875 * know we can do this because max_hw_segments
1876 * has been adjusted to be one fewer than the
1877 * device can handle
1878 */
1879 rq->nr_phys_segments++;
1880 }
1881
1882 if (!q->prep_rq_fn)
1883 break;
1884
1885 ret = q->prep_rq_fn(q, rq);
1886 if (ret == BLKPREP_OK) {
1887 break;
1888 } else if (ret == BLKPREP_DEFER) {
1889 /*
1890 * the request may have been (partially) prepped.
1891 * we need to keep this request in the front to
1892 * avoid resource deadlock. REQ_STARTED will
1893 * prevent other fs requests from passing this one.
1894 */
2e46e8b2 1895 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1896 !(rq->cmd_flags & REQ_DONTPREP)) {
1897 /*
1898 * remove the space for the drain we added
1899 * so that we don't add it again
1900 */
1901 --rq->nr_phys_segments;
1902 }
1903
1904 rq = NULL;
1905 break;
1906 } else if (ret == BLKPREP_KILL) {
1907 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1908 /*
1909 * Mark this request as started so we don't trigger
1910 * any debug logic in the end I/O path.
1911 */
1912 blk_start_request(rq);
40cbbb78 1913 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1914 } else {
1915 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1916 break;
1917 }
1918 }
1919
1920 return rq;
1921}
9934c8c0 1922EXPORT_SYMBOL(blk_peek_request);
158dbda0 1923
9934c8c0 1924void blk_dequeue_request(struct request *rq)
158dbda0 1925{
9934c8c0
TH
1926 struct request_queue *q = rq->q;
1927
158dbda0
TH
1928 BUG_ON(list_empty(&rq->queuelist));
1929 BUG_ON(ELV_ON_HASH(rq));
1930
1931 list_del_init(&rq->queuelist);
1932
1933 /*
1934 * the time frame between a request being removed from the lists
1935 * and to it is freed is accounted as io that is in progress at
1936 * the driver side.
1937 */
9195291e 1938 if (blk_account_rq(rq)) {
0a7ae2ff 1939 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1940 set_io_start_time_ns(rq);
1941 }
158dbda0
TH
1942}
1943
9934c8c0
TH
1944/**
1945 * blk_start_request - start request processing on the driver
1946 * @req: request to dequeue
1947 *
1948 * Description:
1949 * Dequeue @req and start timeout timer on it. This hands off the
1950 * request to the driver.
1951 *
1952 * Block internal functions which don't want to start timer should
1953 * call blk_dequeue_request().
1954 *
1955 * Context:
1956 * queue_lock must be held.
1957 */
1958void blk_start_request(struct request *req)
1959{
1960 blk_dequeue_request(req);
1961
1962 /*
5f49f631
TH
1963 * We are now handing the request to the hardware, initialize
1964 * resid_len to full count and add the timeout handler.
9934c8c0 1965 */
5f49f631 1966 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1967 if (unlikely(blk_bidi_rq(req)))
1968 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1969
9934c8c0
TH
1970 blk_add_timer(req);
1971}
1972EXPORT_SYMBOL(blk_start_request);
1973
1974/**
1975 * blk_fetch_request - fetch a request from a request queue
1976 * @q: request queue to fetch a request from
1977 *
1978 * Description:
1979 * Return the request at the top of @q. The request is started on
1980 * return and LLD can start processing it immediately.
1981 *
1982 * Return:
1983 * Pointer to the request at the top of @q if available. Null
1984 * otherwise.
1985 *
1986 * Context:
1987 * queue_lock must be held.
1988 */
1989struct request *blk_fetch_request(struct request_queue *q)
1990{
1991 struct request *rq;
1992
1993 rq = blk_peek_request(q);
1994 if (rq)
1995 blk_start_request(rq);
1996 return rq;
1997}
1998EXPORT_SYMBOL(blk_fetch_request);
1999
3bcddeac 2000/**
2e60e022 2001 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2002 * @req: the request being processed
710027a4 2003 * @error: %0 for success, < %0 for error
8ebf9756 2004 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2005 *
2006 * Description:
8ebf9756
RD
2007 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2008 * the request structure even if @req doesn't have leftover.
2009 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2010 *
2011 * This special helper function is only for request stacking drivers
2012 * (e.g. request-based dm) so that they can handle partial completion.
2013 * Actual device drivers should use blk_end_request instead.
2014 *
2015 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2016 * %false return from this function.
3bcddeac
KU
2017 *
2018 * Return:
2e60e022
TH
2019 * %false - this request doesn't have any more data
2020 * %true - this request has more data
3bcddeac 2021 **/
2e60e022 2022bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2023{
5450d3e1 2024 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2025 struct bio *bio;
2026
2e60e022
TH
2027 if (!req->bio)
2028 return false;
2029
5f3ea37c 2030 trace_block_rq_complete(req->q, req);
2056a782 2031
1da177e4 2032 /*
6f41469c
TH
2033 * For fs requests, rq is just carrier of independent bio's
2034 * and each partial completion should be handled separately.
2035 * Reset per-request error on each partial completion.
2036 *
2037 * TODO: tj: This is too subtle. It would be better to let
2038 * low level drivers do what they see fit.
1da177e4 2039 */
33659ebb 2040 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2041 req->errors = 0;
2042
33659ebb
CH
2043 if (error && req->cmd_type == REQ_TYPE_FS &&
2044 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2045 char *error_type;
2046
2047 switch (error) {
2048 case -ENOLINK:
2049 error_type = "recoverable transport";
2050 break;
2051 case -EREMOTEIO:
2052 error_type = "critical target";
2053 break;
2054 case -EBADE:
2055 error_type = "critical nexus";
2056 break;
2057 case -EIO:
2058 default:
2059 error_type = "I/O";
2060 break;
2061 }
2062 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2063 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2064 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2065 }
2066
bc58ba94 2067 blk_account_io_completion(req, nr_bytes);
d72d904a 2068
1da177e4
LT
2069 total_bytes = bio_nbytes = 0;
2070 while ((bio = req->bio) != NULL) {
2071 int nbytes;
2072
2073 if (nr_bytes >= bio->bi_size) {
2074 req->bio = bio->bi_next;
2075 nbytes = bio->bi_size;
5bb23a68 2076 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2077 next_idx = 0;
2078 bio_nbytes = 0;
2079 } else {
2080 int idx = bio->bi_idx + next_idx;
2081
af498d7f 2082 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2083 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2084 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2085 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2086 break;
2087 }
2088
2089 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2090 BIO_BUG_ON(nbytes > bio->bi_size);
2091
2092 /*
2093 * not a complete bvec done
2094 */
2095 if (unlikely(nbytes > nr_bytes)) {
2096 bio_nbytes += nr_bytes;
2097 total_bytes += nr_bytes;
2098 break;
2099 }
2100
2101 /*
2102 * advance to the next vector
2103 */
2104 next_idx++;
2105 bio_nbytes += nbytes;
2106 }
2107
2108 total_bytes += nbytes;
2109 nr_bytes -= nbytes;
2110
6728cb0e
JA
2111 bio = req->bio;
2112 if (bio) {
1da177e4
LT
2113 /*
2114 * end more in this run, or just return 'not-done'
2115 */
2116 if (unlikely(nr_bytes <= 0))
2117 break;
2118 }
2119 }
2120
2121 /*
2122 * completely done
2123 */
2e60e022
TH
2124 if (!req->bio) {
2125 /*
2126 * Reset counters so that the request stacking driver
2127 * can find how many bytes remain in the request
2128 * later.
2129 */
a2dec7b3 2130 req->__data_len = 0;
2e60e022
TH
2131 return false;
2132 }
1da177e4
LT
2133
2134 /*
2135 * if the request wasn't completed, update state
2136 */
2137 if (bio_nbytes) {
5bb23a68 2138 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2139 bio->bi_idx += next_idx;
2140 bio_iovec(bio)->bv_offset += nr_bytes;
2141 bio_iovec(bio)->bv_len -= nr_bytes;
2142 }
2143
a2dec7b3 2144 req->__data_len -= total_bytes;
2e46e8b2
TH
2145 req->buffer = bio_data(req->bio);
2146
2147 /* update sector only for requests with clear definition of sector */
33659ebb 2148 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2149 req->__sector += total_bytes >> 9;
2e46e8b2 2150
80a761fd
TH
2151 /* mixed attributes always follow the first bio */
2152 if (req->cmd_flags & REQ_MIXED_MERGE) {
2153 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2154 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2155 }
2156
2e46e8b2
TH
2157 /*
2158 * If total number of sectors is less than the first segment
2159 * size, something has gone terribly wrong.
2160 */
2161 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2162 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2163 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2164 }
2165
2166 /* recalculate the number of segments */
1da177e4 2167 blk_recalc_rq_segments(req);
2e46e8b2 2168
2e60e022 2169 return true;
1da177e4 2170}
2e60e022 2171EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2172
2e60e022
TH
2173static bool blk_update_bidi_request(struct request *rq, int error,
2174 unsigned int nr_bytes,
2175 unsigned int bidi_bytes)
5efccd17 2176{
2e60e022
TH
2177 if (blk_update_request(rq, error, nr_bytes))
2178 return true;
5efccd17 2179
2e60e022
TH
2180 /* Bidi request must be completed as a whole */
2181 if (unlikely(blk_bidi_rq(rq)) &&
2182 blk_update_request(rq->next_rq, error, bidi_bytes))
2183 return true;
5efccd17 2184
e2e1a148
JA
2185 if (blk_queue_add_random(rq->q))
2186 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2187
2188 return false;
1da177e4
LT
2189}
2190
28018c24
JB
2191/**
2192 * blk_unprep_request - unprepare a request
2193 * @req: the request
2194 *
2195 * This function makes a request ready for complete resubmission (or
2196 * completion). It happens only after all error handling is complete,
2197 * so represents the appropriate moment to deallocate any resources
2198 * that were allocated to the request in the prep_rq_fn. The queue
2199 * lock is held when calling this.
2200 */
2201void blk_unprep_request(struct request *req)
2202{
2203 struct request_queue *q = req->q;
2204
2205 req->cmd_flags &= ~REQ_DONTPREP;
2206 if (q->unprep_rq_fn)
2207 q->unprep_rq_fn(q, req);
2208}
2209EXPORT_SYMBOL_GPL(blk_unprep_request);
2210
1da177e4
LT
2211/*
2212 * queue lock must be held
2213 */
2e60e022 2214static void blk_finish_request(struct request *req, int error)
1da177e4 2215{
b8286239
KU
2216 if (blk_rq_tagged(req))
2217 blk_queue_end_tag(req->q, req);
2218
ba396a6c 2219 BUG_ON(blk_queued_rq(req));
1da177e4 2220
33659ebb 2221 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2222 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2223
e78042e5
MA
2224 blk_delete_timer(req);
2225
28018c24
JB
2226 if (req->cmd_flags & REQ_DONTPREP)
2227 blk_unprep_request(req);
2228
2229
bc58ba94 2230 blk_account_io_done(req);
b8286239 2231
1da177e4 2232 if (req->end_io)
8ffdc655 2233 req->end_io(req, error);
b8286239
KU
2234 else {
2235 if (blk_bidi_rq(req))
2236 __blk_put_request(req->next_rq->q, req->next_rq);
2237
1da177e4 2238 __blk_put_request(req->q, req);
b8286239 2239 }
1da177e4
LT
2240}
2241
3b11313a 2242/**
2e60e022
TH
2243 * blk_end_bidi_request - Complete a bidi request
2244 * @rq: the request to complete
2245 * @error: %0 for success, < %0 for error
2246 * @nr_bytes: number of bytes to complete @rq
2247 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2248 *
2249 * Description:
e3a04fe3 2250 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2251 * Drivers that supports bidi can safely call this member for any
2252 * type of request, bidi or uni. In the later case @bidi_bytes is
2253 * just ignored.
336cdb40
KU
2254 *
2255 * Return:
2e60e022
TH
2256 * %false - we are done with this request
2257 * %true - still buffers pending for this request
a0cd1285 2258 **/
b1f74493 2259static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2260 unsigned int nr_bytes, unsigned int bidi_bytes)
2261{
336cdb40 2262 struct request_queue *q = rq->q;
2e60e022 2263 unsigned long flags;
32fab448 2264
2e60e022
TH
2265 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2266 return true;
32fab448 2267
336cdb40 2268 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2269 blk_finish_request(rq, error);
336cdb40
KU
2270 spin_unlock_irqrestore(q->queue_lock, flags);
2271
2e60e022 2272 return false;
32fab448
KU
2273}
2274
336cdb40 2275/**
2e60e022
TH
2276 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2277 * @rq: the request to complete
710027a4 2278 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2279 * @nr_bytes: number of bytes to complete @rq
2280 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2281 *
2282 * Description:
2e60e022
TH
2283 * Identical to blk_end_bidi_request() except that queue lock is
2284 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2285 *
2286 * Return:
2e60e022
TH
2287 * %false - we are done with this request
2288 * %true - still buffers pending for this request
336cdb40 2289 **/
b1f74493
FT
2290static bool __blk_end_bidi_request(struct request *rq, int error,
2291 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2292{
2e60e022
TH
2293 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2294 return true;
336cdb40 2295
2e60e022 2296 blk_finish_request(rq, error);
336cdb40 2297
2e60e022 2298 return false;
336cdb40 2299}
e19a3ab0
KU
2300
2301/**
2302 * blk_end_request - Helper function for drivers to complete the request.
2303 * @rq: the request being processed
710027a4 2304 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2305 * @nr_bytes: number of bytes to complete
2306 *
2307 * Description:
2308 * Ends I/O on a number of bytes attached to @rq.
2309 * If @rq has leftover, sets it up for the next range of segments.
2310 *
2311 * Return:
b1f74493
FT
2312 * %false - we are done with this request
2313 * %true - still buffers pending for this request
e19a3ab0 2314 **/
b1f74493 2315bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2316{
b1f74493 2317 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2318}
56ad1740 2319EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2320
2321/**
b1f74493
FT
2322 * blk_end_request_all - Helper function for drives to finish the request.
2323 * @rq: the request to finish
8ebf9756 2324 * @error: %0 for success, < %0 for error
336cdb40
KU
2325 *
2326 * Description:
b1f74493
FT
2327 * Completely finish @rq.
2328 */
2329void blk_end_request_all(struct request *rq, int error)
336cdb40 2330{
b1f74493
FT
2331 bool pending;
2332 unsigned int bidi_bytes = 0;
336cdb40 2333
b1f74493
FT
2334 if (unlikely(blk_bidi_rq(rq)))
2335 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2336
b1f74493
FT
2337 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2338 BUG_ON(pending);
2339}
56ad1740 2340EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2341
b1f74493
FT
2342/**
2343 * blk_end_request_cur - Helper function to finish the current request chunk.
2344 * @rq: the request to finish the current chunk for
8ebf9756 2345 * @error: %0 for success, < %0 for error
b1f74493
FT
2346 *
2347 * Description:
2348 * Complete the current consecutively mapped chunk from @rq.
2349 *
2350 * Return:
2351 * %false - we are done with this request
2352 * %true - still buffers pending for this request
2353 */
2354bool blk_end_request_cur(struct request *rq, int error)
2355{
2356 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2357}
56ad1740 2358EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2359
80a761fd
TH
2360/**
2361 * blk_end_request_err - Finish a request till the next failure boundary.
2362 * @rq: the request to finish till the next failure boundary for
2363 * @error: must be negative errno
2364 *
2365 * Description:
2366 * Complete @rq till the next failure boundary.
2367 *
2368 * Return:
2369 * %false - we are done with this request
2370 * %true - still buffers pending for this request
2371 */
2372bool blk_end_request_err(struct request *rq, int error)
2373{
2374 WARN_ON(error >= 0);
2375 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2376}
2377EXPORT_SYMBOL_GPL(blk_end_request_err);
2378
e3a04fe3 2379/**
b1f74493
FT
2380 * __blk_end_request - Helper function for drivers to complete the request.
2381 * @rq: the request being processed
2382 * @error: %0 for success, < %0 for error
2383 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2384 *
2385 * Description:
b1f74493 2386 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2387 *
2388 * Return:
b1f74493
FT
2389 * %false - we are done with this request
2390 * %true - still buffers pending for this request
e3a04fe3 2391 **/
b1f74493 2392bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2393{
b1f74493 2394 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2395}
56ad1740 2396EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2397
32fab448 2398/**
b1f74493
FT
2399 * __blk_end_request_all - Helper function for drives to finish the request.
2400 * @rq: the request to finish
8ebf9756 2401 * @error: %0 for success, < %0 for error
32fab448
KU
2402 *
2403 * Description:
b1f74493 2404 * Completely finish @rq. Must be called with queue lock held.
32fab448 2405 */
b1f74493 2406void __blk_end_request_all(struct request *rq, int error)
32fab448 2407{
b1f74493
FT
2408 bool pending;
2409 unsigned int bidi_bytes = 0;
2410
2411 if (unlikely(blk_bidi_rq(rq)))
2412 bidi_bytes = blk_rq_bytes(rq->next_rq);
2413
2414 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2415 BUG_ON(pending);
32fab448 2416}
56ad1740 2417EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2418
e19a3ab0 2419/**
b1f74493
FT
2420 * __blk_end_request_cur - Helper function to finish the current request chunk.
2421 * @rq: the request to finish the current chunk for
8ebf9756 2422 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2423 *
2424 * Description:
b1f74493
FT
2425 * Complete the current consecutively mapped chunk from @rq. Must
2426 * be called with queue lock held.
e19a3ab0
KU
2427 *
2428 * Return:
b1f74493
FT
2429 * %false - we are done with this request
2430 * %true - still buffers pending for this request
2431 */
2432bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2433{
b1f74493 2434 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2435}
56ad1740 2436EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2437
80a761fd
TH
2438/**
2439 * __blk_end_request_err - Finish a request till the next failure boundary.
2440 * @rq: the request to finish till the next failure boundary for
2441 * @error: must be negative errno
2442 *
2443 * Description:
2444 * Complete @rq till the next failure boundary. Must be called
2445 * with queue lock held.
2446 *
2447 * Return:
2448 * %false - we are done with this request
2449 * %true - still buffers pending for this request
2450 */
2451bool __blk_end_request_err(struct request *rq, int error)
2452{
2453 WARN_ON(error >= 0);
2454 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2455}
2456EXPORT_SYMBOL_GPL(__blk_end_request_err);
2457
86db1e29
JA
2458void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2459 struct bio *bio)
1da177e4 2460{
a82afdfc 2461 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2462 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2463
fb2dce86
DW
2464 if (bio_has_data(bio)) {
2465 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2466 rq->buffer = bio_data(bio);
2467 }
a2dec7b3 2468 rq->__data_len = bio->bi_size;
1da177e4 2469 rq->bio = rq->biotail = bio;
1da177e4 2470
66846572
N
2471 if (bio->bi_bdev)
2472 rq->rq_disk = bio->bi_bdev->bd_disk;
2473}
1da177e4 2474
2d4dc890
IL
2475#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2476/**
2477 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2478 * @rq: the request to be flushed
2479 *
2480 * Description:
2481 * Flush all pages in @rq.
2482 */
2483void rq_flush_dcache_pages(struct request *rq)
2484{
2485 struct req_iterator iter;
2486 struct bio_vec *bvec;
2487
2488 rq_for_each_segment(bvec, rq, iter)
2489 flush_dcache_page(bvec->bv_page);
2490}
2491EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2492#endif
2493
ef9e3fac
KU
2494/**
2495 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2496 * @q : the queue of the device being checked
2497 *
2498 * Description:
2499 * Check if underlying low-level drivers of a device are busy.
2500 * If the drivers want to export their busy state, they must set own
2501 * exporting function using blk_queue_lld_busy() first.
2502 *
2503 * Basically, this function is used only by request stacking drivers
2504 * to stop dispatching requests to underlying devices when underlying
2505 * devices are busy. This behavior helps more I/O merging on the queue
2506 * of the request stacking driver and prevents I/O throughput regression
2507 * on burst I/O load.
2508 *
2509 * Return:
2510 * 0 - Not busy (The request stacking driver should dispatch request)
2511 * 1 - Busy (The request stacking driver should stop dispatching request)
2512 */
2513int blk_lld_busy(struct request_queue *q)
2514{
2515 if (q->lld_busy_fn)
2516 return q->lld_busy_fn(q);
2517
2518 return 0;
2519}
2520EXPORT_SYMBOL_GPL(blk_lld_busy);
2521
b0fd271d
KU
2522/**
2523 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2524 * @rq: the clone request to be cleaned up
2525 *
2526 * Description:
2527 * Free all bios in @rq for a cloned request.
2528 */
2529void blk_rq_unprep_clone(struct request *rq)
2530{
2531 struct bio *bio;
2532
2533 while ((bio = rq->bio) != NULL) {
2534 rq->bio = bio->bi_next;
2535
2536 bio_put(bio);
2537 }
2538}
2539EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2540
2541/*
2542 * Copy attributes of the original request to the clone request.
2543 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2544 */
2545static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2546{
2547 dst->cpu = src->cpu;
3a2edd0d 2548 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2549 dst->cmd_type = src->cmd_type;
2550 dst->__sector = blk_rq_pos(src);
2551 dst->__data_len = blk_rq_bytes(src);
2552 dst->nr_phys_segments = src->nr_phys_segments;
2553 dst->ioprio = src->ioprio;
2554 dst->extra_len = src->extra_len;
2555}
2556
2557/**
2558 * blk_rq_prep_clone - Helper function to setup clone request
2559 * @rq: the request to be setup
2560 * @rq_src: original request to be cloned
2561 * @bs: bio_set that bios for clone are allocated from
2562 * @gfp_mask: memory allocation mask for bio
2563 * @bio_ctr: setup function to be called for each clone bio.
2564 * Returns %0 for success, non %0 for failure.
2565 * @data: private data to be passed to @bio_ctr
2566 *
2567 * Description:
2568 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2569 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2570 * are not copied, and copying such parts is the caller's responsibility.
2571 * Also, pages which the original bios are pointing to are not copied
2572 * and the cloned bios just point same pages.
2573 * So cloned bios must be completed before original bios, which means
2574 * the caller must complete @rq before @rq_src.
2575 */
2576int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2577 struct bio_set *bs, gfp_t gfp_mask,
2578 int (*bio_ctr)(struct bio *, struct bio *, void *),
2579 void *data)
2580{
2581 struct bio *bio, *bio_src;
2582
2583 if (!bs)
2584 bs = fs_bio_set;
2585
2586 blk_rq_init(NULL, rq);
2587
2588 __rq_for_each_bio(bio_src, rq_src) {
2589 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2590 if (!bio)
2591 goto free_and_out;
2592
2593 __bio_clone(bio, bio_src);
2594
2595 if (bio_integrity(bio_src) &&
7878cba9 2596 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2597 goto free_and_out;
2598
2599 if (bio_ctr && bio_ctr(bio, bio_src, data))
2600 goto free_and_out;
2601
2602 if (rq->bio) {
2603 rq->biotail->bi_next = bio;
2604 rq->biotail = bio;
2605 } else
2606 rq->bio = rq->biotail = bio;
2607 }
2608
2609 __blk_rq_prep_clone(rq, rq_src);
2610
2611 return 0;
2612
2613free_and_out:
2614 if (bio)
2615 bio_free(bio, bs);
2616 blk_rq_unprep_clone(rq);
2617
2618 return -ENOMEM;
2619}
2620EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2621
18887ad9 2622int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2623{
2624 return queue_work(kblockd_workqueue, work);
2625}
1da177e4
LT
2626EXPORT_SYMBOL(kblockd_schedule_work);
2627
e43473b7
VG
2628int kblockd_schedule_delayed_work(struct request_queue *q,
2629 struct delayed_work *dwork, unsigned long delay)
2630{
2631 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2632}
2633EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2634
73c10101
JA
2635#define PLUG_MAGIC 0x91827364
2636
2637void blk_start_plug(struct blk_plug *plug)
2638{
2639 struct task_struct *tsk = current;
2640
2641 plug->magic = PLUG_MAGIC;
2642 INIT_LIST_HEAD(&plug->list);
048c9374 2643 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2644 plug->should_sort = 0;
2645
2646 /*
2647 * If this is a nested plug, don't actually assign it. It will be
2648 * flushed on its own.
2649 */
2650 if (!tsk->plug) {
2651 /*
2652 * Store ordering should not be needed here, since a potential
2653 * preempt will imply a full memory barrier
2654 */
2655 tsk->plug = plug;
2656 }
2657}
2658EXPORT_SYMBOL(blk_start_plug);
2659
2660static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2661{
2662 struct request *rqa = container_of(a, struct request, queuelist);
2663 struct request *rqb = container_of(b, struct request, queuelist);
2664
f83e8261 2665 return !(rqa->q <= rqb->q);
73c10101
JA
2666}
2667
49cac01e
JA
2668/*
2669 * If 'from_schedule' is true, then postpone the dispatch of requests
2670 * until a safe kblockd context. We due this to avoid accidental big
2671 * additional stack usage in driver dispatch, in places where the originally
2672 * plugger did not intend it.
2673 */
f6603783 2674static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2675 bool from_schedule)
99e22598 2676 __releases(q->queue_lock)
94b5eb28 2677{
49cac01e 2678 trace_block_unplug(q, depth, !from_schedule);
99e22598
JA
2679
2680 /*
2681 * If we are punting this to kblockd, then we can safely drop
2682 * the queue_lock before waking kblockd (which needs to take
2683 * this lock).
2684 */
2685 if (from_schedule) {
2686 spin_unlock(q->queue_lock);
2687 __blk_run_queue(q, true);
2688 } else {
2689 __blk_run_queue(q, false);
2690 spin_unlock(q->queue_lock);
2691 }
2692
94b5eb28
JA
2693}
2694
048c9374
N
2695static void flush_plug_callbacks(struct blk_plug *plug)
2696{
2697 LIST_HEAD(callbacks);
2698
2699 if (list_empty(&plug->cb_list))
2700 return;
2701
2702 list_splice_init(&plug->cb_list, &callbacks);
2703
2704 while (!list_empty(&callbacks)) {
2705 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2706 struct blk_plug_cb,
2707 list);
2708 list_del(&cb->list);
2709 cb->callback(cb);
2710 }
2711}
2712
49cac01e 2713void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2714{
2715 struct request_queue *q;
2716 unsigned long flags;
2717 struct request *rq;
109b8129 2718 LIST_HEAD(list);
94b5eb28 2719 unsigned int depth;
73c10101
JA
2720
2721 BUG_ON(plug->magic != PLUG_MAGIC);
2722
048c9374 2723 flush_plug_callbacks(plug);
73c10101
JA
2724 if (list_empty(&plug->list))
2725 return;
2726
109b8129
N
2727 list_splice_init(&plug->list, &list);
2728
2729 if (plug->should_sort) {
2730 list_sort(NULL, &list, plug_rq_cmp);
2731 plug->should_sort = 0;
2732 }
73c10101
JA
2733
2734 q = NULL;
94b5eb28 2735 depth = 0;
18811272
JA
2736
2737 /*
2738 * Save and disable interrupts here, to avoid doing it for every
2739 * queue lock we have to take.
2740 */
73c10101 2741 local_irq_save(flags);
109b8129
N
2742 while (!list_empty(&list)) {
2743 rq = list_entry_rq(list.next);
73c10101
JA
2744 list_del_init(&rq->queuelist);
2745 BUG_ON(!(rq->cmd_flags & REQ_ON_PLUG));
2746 BUG_ON(!rq->q);
2747 if (rq->q != q) {
99e22598
JA
2748 /*
2749 * This drops the queue lock
2750 */
2751 if (q)
49cac01e 2752 queue_unplugged(q, depth, from_schedule);
73c10101 2753 q = rq->q;
94b5eb28 2754 depth = 0;
73c10101
JA
2755 spin_lock(q->queue_lock);
2756 }
2757 rq->cmd_flags &= ~REQ_ON_PLUG;
2758
2759 /*
2760 * rq is already accounted, so use raw insert
2761 */
401a18e9
JA
2762 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2763 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2764 else
2765 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2766
2767 depth++;
73c10101
JA
2768 }
2769
99e22598
JA
2770 /*
2771 * This drops the queue lock
2772 */
2773 if (q)
49cac01e 2774 queue_unplugged(q, depth, from_schedule);
73c10101 2775
73c10101
JA
2776 local_irq_restore(flags);
2777}
88b996cd 2778EXPORT_SYMBOL(blk_flush_plug_list);
73c10101
JA
2779
2780void blk_finish_plug(struct blk_plug *plug)
2781{
f6603783 2782 blk_flush_plug_list(plug, false);
73c10101 2783
88b996cd
CH
2784 if (plug == current->plug)
2785 current->plug = NULL;
73c10101 2786}
88b996cd 2787EXPORT_SYMBOL(blk_finish_plug);
73c10101 2788
1da177e4
LT
2789int __init blk_dev_init(void)
2790{
9eb55b03
NK
2791 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2792 sizeof(((struct request *)0)->cmd_flags));
2793
89b90be2
TH
2794 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2795 kblockd_workqueue = alloc_workqueue("kblockd",
2796 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2797 if (!kblockd_workqueue)
2798 panic("Failed to create kblockd\n");
2799
2800 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2801 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2802
8324aa91 2803 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2804 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2805
d38ecf93 2806 return 0;
1da177e4 2807}