]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: rename blk-barrier.c to blk-flush.c
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
55782138
LZ
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
0bfc2455 36EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
b0da3f0d 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 39
165125e1 40static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
83096ebf 67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
c9959059 68
28f13702 69 if (!new_io)
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
28f13702 71 else {
074a7aca 72 part_round_stats(cpu, part);
316d315b 73 part_inc_in_flight(part, rw);
26b8256e 74 }
e71bf0d0 75
074a7aca 76 part_stat_unlock();
26b8256e
JA
77}
78
8324aa91 79void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
80{
81 int nr;
82
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
87
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
92}
93
1da177e4
LT
94/**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
97 *
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
100 *
101 * Will return NULL if the request queue cannot be located.
102 */
103struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104{
105 struct backing_dev_info *ret = NULL;
165125e1 106 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
107
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
111}
1da177e4
LT
112EXPORT_SYMBOL(blk_get_backing_dev_info);
113
2a4aa30c 114void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 115{
1afb20f3
FT
116 memset(rq, 0, sizeof(*rq));
117
1da177e4 118 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 119 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 120 rq->cpu = -1;
63a71386 121 rq->q = q;
a2dec7b3 122 rq->__sector = (sector_t) -1;
2e662b65
JA
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 125 rq->cmd = rq->__cmd;
e2494e1b 126 rq->cmd_len = BLK_MAX_CDB;
63a71386 127 rq->tag = -1;
1da177e4 128 rq->ref_count = 1;
b243ddcb 129 rq->start_time = jiffies;
9195291e 130 set_start_time_ns(rq);
1da177e4 131}
2a4aa30c 132EXPORT_SYMBOL(blk_rq_init);
1da177e4 133
5bb23a68
N
134static void req_bio_endio(struct request *rq, struct bio *bio,
135 unsigned int nbytes, int error)
1da177e4 136{
165125e1 137 struct request_queue *q = rq->q;
797e7dbb 138
5bb23a68
N
139 if (&q->bar_rq != rq) {
140 if (error)
141 clear_bit(BIO_UPTODATE, &bio->bi_flags);
142 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
143 error = -EIO;
797e7dbb 144
5bb23a68 145 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 146 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 147 __func__, nbytes, bio->bi_size);
5bb23a68
N
148 nbytes = bio->bi_size;
149 }
797e7dbb 150
08bafc03
KM
151 if (unlikely(rq->cmd_flags & REQ_QUIET))
152 set_bit(BIO_QUIET, &bio->bi_flags);
153
5bb23a68
N
154 bio->bi_size -= nbytes;
155 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
156
157 if (bio_integrity(bio))
158 bio_integrity_advance(bio, nbytes);
159
5bb23a68 160 if (bio->bi_size == 0)
6712ecf8 161 bio_endio(bio, error);
5bb23a68
N
162 } else {
163
164 /*
165 * Okay, this is the barrier request in progress, just
166 * record the error;
167 */
168 if (error && !q->orderr)
169 q->orderr = error;
170 }
1da177e4 171}
1da177e4 172
1da177e4
LT
173void blk_dump_rq_flags(struct request *rq, char *msg)
174{
175 int bit;
176
6728cb0e 177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
1da177e4 180
83096ebf
TH
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 186
33659ebb 187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 188 printk(KERN_INFO " cdb: ");
d34c87e4 189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193}
1da177e4
LT
194EXPORT_SYMBOL(blk_dump_rq_flags);
195
1da177e4
LT
196/*
197 * "plug" the device if there are no outstanding requests: this will
198 * force the transfer to start only after we have put all the requests
199 * on the list.
200 *
201 * This is called with interrupts off and no requests on the queue and
202 * with the queue lock held.
203 */
165125e1 204void blk_plug_device(struct request_queue *q)
1da177e4
LT
205{
206 WARN_ON(!irqs_disabled());
207
208 /*
209 * don't plug a stopped queue, it must be paired with blk_start_queue()
210 * which will restart the queueing
211 */
7daac490 212 if (blk_queue_stopped(q))
1da177e4
LT
213 return;
214
e48ec690 215 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 216 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 217 trace_block_plug(q);
2056a782 218 }
1da177e4 219}
1da177e4
LT
220EXPORT_SYMBOL(blk_plug_device);
221
6c5e0c4d
JA
222/**
223 * blk_plug_device_unlocked - plug a device without queue lock held
224 * @q: The &struct request_queue to plug
225 *
226 * Description:
227 * Like @blk_plug_device(), but grabs the queue lock and disables
228 * interrupts.
229 **/
230void blk_plug_device_unlocked(struct request_queue *q)
231{
232 unsigned long flags;
233
234 spin_lock_irqsave(q->queue_lock, flags);
235 blk_plug_device(q);
236 spin_unlock_irqrestore(q->queue_lock, flags);
237}
238EXPORT_SYMBOL(blk_plug_device_unlocked);
239
1da177e4
LT
240/*
241 * remove the queue from the plugged list, if present. called with
242 * queue lock held and interrupts disabled.
243 */
165125e1 244int blk_remove_plug(struct request_queue *q)
1da177e4
LT
245{
246 WARN_ON(!irqs_disabled());
247
e48ec690 248 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
249 return 0;
250
251 del_timer(&q->unplug_timer);
252 return 1;
253}
1da177e4
LT
254EXPORT_SYMBOL(blk_remove_plug);
255
256/*
257 * remove the plug and let it rip..
258 */
165125e1 259void __generic_unplug_device(struct request_queue *q)
1da177e4 260{
7daac490 261 if (unlikely(blk_queue_stopped(q)))
1da177e4 262 return;
a31a9738 263 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
264 return;
265
22e2c507 266 q->request_fn(q);
1da177e4 267}
1da177e4
LT
268
269/**
270 * generic_unplug_device - fire a request queue
165125e1 271 * @q: The &struct request_queue in question
1da177e4
LT
272 *
273 * Description:
274 * Linux uses plugging to build bigger requests queues before letting
275 * the device have at them. If a queue is plugged, the I/O scheduler
276 * is still adding and merging requests on the queue. Once the queue
277 * gets unplugged, the request_fn defined for the queue is invoked and
278 * transfers started.
279 **/
165125e1 280void generic_unplug_device(struct request_queue *q)
1da177e4 281{
dbaf2c00
JA
282 if (blk_queue_plugged(q)) {
283 spin_lock_irq(q->queue_lock);
284 __generic_unplug_device(q);
285 spin_unlock_irq(q->queue_lock);
286 }
1da177e4
LT
287}
288EXPORT_SYMBOL(generic_unplug_device);
289
290static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
291 struct page *page)
292{
165125e1 293 struct request_queue *q = bdi->unplug_io_data;
1da177e4 294
2ad8b1ef 295 blk_unplug(q);
1da177e4
LT
296}
297
86db1e29 298void blk_unplug_work(struct work_struct *work)
1da177e4 299{
165125e1
JA
300 struct request_queue *q =
301 container_of(work, struct request_queue, unplug_work);
1da177e4 302
5f3ea37c 303 trace_block_unplug_io(q);
1da177e4
LT
304 q->unplug_fn(q);
305}
306
86db1e29 307void blk_unplug_timeout(unsigned long data)
1da177e4 308{
165125e1 309 struct request_queue *q = (struct request_queue *)data;
1da177e4 310
5f3ea37c 311 trace_block_unplug_timer(q);
18887ad9 312 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
313}
314
2ad8b1ef
AB
315void blk_unplug(struct request_queue *q)
316{
317 /*
318 * devices don't necessarily have an ->unplug_fn defined
319 */
320 if (q->unplug_fn) {
5f3ea37c 321 trace_block_unplug_io(q);
2ad8b1ef
AB
322 q->unplug_fn(q);
323 }
324}
325EXPORT_SYMBOL(blk_unplug);
326
1da177e4
LT
327/**
328 * blk_start_queue - restart a previously stopped queue
165125e1 329 * @q: The &struct request_queue in question
1da177e4
LT
330 *
331 * Description:
332 * blk_start_queue() will clear the stop flag on the queue, and call
333 * the request_fn for the queue if it was in a stopped state when
334 * entered. Also see blk_stop_queue(). Queue lock must be held.
335 **/
165125e1 336void blk_start_queue(struct request_queue *q)
1da177e4 337{
a038e253
PBG
338 WARN_ON(!irqs_disabled());
339
75ad23bc 340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 341 __blk_run_queue(q);
1da177e4 342}
1da177e4
LT
343EXPORT_SYMBOL(blk_start_queue);
344
345/**
346 * blk_stop_queue - stop a queue
165125e1 347 * @q: The &struct request_queue in question
1da177e4
LT
348 *
349 * Description:
350 * The Linux block layer assumes that a block driver will consume all
351 * entries on the request queue when the request_fn strategy is called.
352 * Often this will not happen, because of hardware limitations (queue
353 * depth settings). If a device driver gets a 'queue full' response,
354 * or if it simply chooses not to queue more I/O at one point, it can
355 * call this function to prevent the request_fn from being called until
356 * the driver has signalled it's ready to go again. This happens by calling
357 * blk_start_queue() to restart queue operations. Queue lock must be held.
358 **/
165125e1 359void blk_stop_queue(struct request_queue *q)
1da177e4
LT
360{
361 blk_remove_plug(q);
75ad23bc 362 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
363}
364EXPORT_SYMBOL(blk_stop_queue);
365
366/**
367 * blk_sync_queue - cancel any pending callbacks on a queue
368 * @q: the queue
369 *
370 * Description:
371 * The block layer may perform asynchronous callback activity
372 * on a queue, such as calling the unplug function after a timeout.
373 * A block device may call blk_sync_queue to ensure that any
374 * such activity is cancelled, thus allowing it to release resources
59c51591 375 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
376 * that its ->make_request_fn will not re-add plugging prior to calling
377 * this function.
378 *
379 */
380void blk_sync_queue(struct request_queue *q)
381{
382 del_timer_sync(&q->unplug_timer);
70ed28b9 383 del_timer_sync(&q->timeout);
64d01dc9 384 cancel_work_sync(&q->unplug_work);
1da177e4
LT
385}
386EXPORT_SYMBOL(blk_sync_queue);
387
388/**
80a4b58e 389 * __blk_run_queue - run a single device queue
1da177e4 390 * @q: The queue to run
80a4b58e
JA
391 *
392 * Description:
393 * See @blk_run_queue. This variant must be called with the queue lock
394 * held and interrupts disabled.
395 *
1da177e4 396 */
75ad23bc 397void __blk_run_queue(struct request_queue *q)
1da177e4 398{
1da177e4 399 blk_remove_plug(q);
dac07ec1 400
a538cd03
TH
401 if (unlikely(blk_queue_stopped(q)))
402 return;
403
404 if (elv_queue_empty(q))
405 return;
406
dac07ec1
JA
407 /*
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
410 */
a538cd03
TH
411 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
412 q->request_fn(q);
413 queue_flag_clear(QUEUE_FLAG_REENTER, q);
414 } else {
415 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
416 kblockd_schedule_work(q, &q->unplug_work);
417 }
75ad23bc
NP
418}
419EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 420
75ad23bc
NP
421/**
422 * blk_run_queue - run a single device queue
423 * @q: The queue to run
80a4b58e
JA
424 *
425 * Description:
426 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 427 * May be used to restart queueing when a request has completed.
75ad23bc
NP
428 */
429void blk_run_queue(struct request_queue *q)
430{
431 unsigned long flags;
432
433 spin_lock_irqsave(q->queue_lock, flags);
434 __blk_run_queue(q);
1da177e4
LT
435 spin_unlock_irqrestore(q->queue_lock, flags);
436}
437EXPORT_SYMBOL(blk_run_queue);
438
165125e1 439void blk_put_queue(struct request_queue *q)
483f4afc
AV
440{
441 kobject_put(&q->kobj);
442}
483f4afc 443
6728cb0e 444void blk_cleanup_queue(struct request_queue *q)
483f4afc 445{
e3335de9
JA
446 /*
447 * We know we have process context here, so we can be a little
448 * cautious and ensure that pending block actions on this device
449 * are done before moving on. Going into this function, we should
450 * not have processes doing IO to this device.
451 */
452 blk_sync_queue(q);
453
31373d09 454 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 455 mutex_lock(&q->sysfs_lock);
75ad23bc 456 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
457 mutex_unlock(&q->sysfs_lock);
458
459 if (q->elevator)
460 elevator_exit(q->elevator);
461
462 blk_put_queue(q);
463}
1da177e4
LT
464EXPORT_SYMBOL(blk_cleanup_queue);
465
165125e1 466static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
467{
468 struct request_list *rl = &q->rq;
469
1abec4fd
MS
470 if (unlikely(rl->rq_pool))
471 return 0;
472
1faa16d2
JA
473 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
474 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 475 rl->elvpriv = 0;
1faa16d2
JA
476 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
477 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 478
1946089a
CL
479 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
480 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
481
482 if (!rl->rq_pool)
483 return -ENOMEM;
484
485 return 0;
486}
487
165125e1 488struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 489{
1946089a
CL
490 return blk_alloc_queue_node(gfp_mask, -1);
491}
492EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 493
165125e1 494struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 495{
165125e1 496 struct request_queue *q;
e0bf68dd 497 int err;
1946089a 498
8324aa91 499 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 500 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
501 if (!q)
502 return NULL;
503
e0bf68dd
PZ
504 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
505 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
506 q->backing_dev_info.ra_pages =
507 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
508 q->backing_dev_info.state = 0;
509 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 510 q->backing_dev_info.name = "block";
0989a025 511
e0bf68dd
PZ
512 err = bdi_init(&q->backing_dev_info);
513 if (err) {
8324aa91 514 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
515 return NULL;
516 }
517
31373d09
MG
518 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
519 laptop_mode_timer_fn, (unsigned long) q);
1da177e4 520 init_timer(&q->unplug_timer);
242f9dcb
JA
521 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
522 INIT_LIST_HEAD(&q->timeout_list);
28e7d184 523 INIT_LIST_HEAD(&q->pending_barriers);
713ada9b 524 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 525
8324aa91 526 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 527
483f4afc 528 mutex_init(&q->sysfs_lock);
e7e72bf6 529 spin_lock_init(&q->__queue_lock);
483f4afc 530
1da177e4
LT
531 return q;
532}
1946089a 533EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
534
535/**
536 * blk_init_queue - prepare a request queue for use with a block device
537 * @rfn: The function to be called to process requests that have been
538 * placed on the queue.
539 * @lock: Request queue spin lock
540 *
541 * Description:
542 * If a block device wishes to use the standard request handling procedures,
543 * which sorts requests and coalesces adjacent requests, then it must
544 * call blk_init_queue(). The function @rfn will be called when there
545 * are requests on the queue that need to be processed. If the device
546 * supports plugging, then @rfn may not be called immediately when requests
547 * are available on the queue, but may be called at some time later instead.
548 * Plugged queues are generally unplugged when a buffer belonging to one
549 * of the requests on the queue is needed, or due to memory pressure.
550 *
551 * @rfn is not required, or even expected, to remove all requests off the
552 * queue, but only as many as it can handle at a time. If it does leave
553 * requests on the queue, it is responsible for arranging that the requests
554 * get dealt with eventually.
555 *
556 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
557 * request queue; this lock will be taken also from interrupt context, so irq
558 * disabling is needed for it.
1da177e4 559 *
710027a4 560 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
561 * it didn't succeed.
562 *
563 * Note:
564 * blk_init_queue() must be paired with a blk_cleanup_queue() call
565 * when the block device is deactivated (such as at module unload).
566 **/
1946089a 567
165125e1 568struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 569{
1946089a
CL
570 return blk_init_queue_node(rfn, lock, -1);
571}
572EXPORT_SYMBOL(blk_init_queue);
573
165125e1 574struct request_queue *
1946089a
CL
575blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
576{
c86d1b8a 577 struct request_queue *uninit_q, *q;
1da177e4 578
c86d1b8a
MS
579 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
580 if (!uninit_q)
581 return NULL;
582
583 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
584 if (!q)
585 blk_cleanup_queue(uninit_q);
586
587 return q;
01effb0d
MS
588}
589EXPORT_SYMBOL(blk_init_queue_node);
590
591struct request_queue *
592blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
593 spinlock_t *lock)
594{
595 return blk_init_allocated_queue_node(q, rfn, lock, -1);
596}
597EXPORT_SYMBOL(blk_init_allocated_queue);
598
599struct request_queue *
600blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
601 spinlock_t *lock, int node_id)
602{
1da177e4
LT
603 if (!q)
604 return NULL;
605
1946089a 606 q->node = node_id;
c86d1b8a 607 if (blk_init_free_list(q))
8669aafd 608 return NULL;
1da177e4
LT
609
610 q->request_fn = rfn;
1da177e4 611 q->prep_rq_fn = NULL;
28018c24 612 q->unprep_rq_fn = NULL;
1da177e4 613 q->unplug_fn = generic_unplug_device;
bc58ba94 614 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
615 q->queue_lock = lock;
616
f3b144aa
JA
617 /*
618 * This also sets hw/phys segments, boundary and size
619 */
1da177e4 620 blk_queue_make_request(q, __make_request);
1da177e4 621
44ec9542
AS
622 q->sg_reserved_size = INT_MAX;
623
1da177e4
LT
624 /*
625 * all done
626 */
627 if (!elevator_init(q, NULL)) {
628 blk_queue_congestion_threshold(q);
629 return q;
630 }
631
1da177e4
LT
632 return NULL;
633}
01effb0d 634EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 635
165125e1 636int blk_get_queue(struct request_queue *q)
1da177e4 637{
fde6ad22 638 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 639 kobject_get(&q->kobj);
1da177e4
LT
640 return 0;
641 }
642
643 return 1;
644}
1da177e4 645
165125e1 646static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 647{
4aff5e23 648 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 649 elv_put_request(q, rq);
1da177e4
LT
650 mempool_free(rq, q->rq.rq_pool);
651}
652
1ea25ecb 653static struct request *
42dad764 654blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
655{
656 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
657
658 if (!rq)
659 return NULL;
660
2a4aa30c 661 blk_rq_init(q, rq);
1afb20f3 662
42dad764 663 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 664
cb98fc8b 665 if (priv) {
cb78b285 666 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
667 mempool_free(rq, q->rq.rq_pool);
668 return NULL;
669 }
4aff5e23 670 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 671 }
1da177e4 672
cb98fc8b 673 return rq;
1da177e4
LT
674}
675
676/*
677 * ioc_batching returns true if the ioc is a valid batching request and
678 * should be given priority access to a request.
679 */
165125e1 680static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
681{
682 if (!ioc)
683 return 0;
684
685 /*
686 * Make sure the process is able to allocate at least 1 request
687 * even if the batch times out, otherwise we could theoretically
688 * lose wakeups.
689 */
690 return ioc->nr_batch_requests == q->nr_batching ||
691 (ioc->nr_batch_requests > 0
692 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
693}
694
695/*
696 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
697 * will cause the process to be a "batcher" on all queues in the system. This
698 * is the behaviour we want though - once it gets a wakeup it should be given
699 * a nice run.
700 */
165125e1 701static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
702{
703 if (!ioc || ioc_batching(q, ioc))
704 return;
705
706 ioc->nr_batch_requests = q->nr_batching;
707 ioc->last_waited = jiffies;
708}
709
1faa16d2 710static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
711{
712 struct request_list *rl = &q->rq;
713
1faa16d2
JA
714 if (rl->count[sync] < queue_congestion_off_threshold(q))
715 blk_clear_queue_congested(q, sync);
1da177e4 716
1faa16d2
JA
717 if (rl->count[sync] + 1 <= q->nr_requests) {
718 if (waitqueue_active(&rl->wait[sync]))
719 wake_up(&rl->wait[sync]);
1da177e4 720
1faa16d2 721 blk_clear_queue_full(q, sync);
1da177e4
LT
722 }
723}
724
725/*
726 * A request has just been released. Account for it, update the full and
727 * congestion status, wake up any waiters. Called under q->queue_lock.
728 */
1faa16d2 729static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
730{
731 struct request_list *rl = &q->rq;
732
1faa16d2 733 rl->count[sync]--;
cb98fc8b
TH
734 if (priv)
735 rl->elvpriv--;
1da177e4 736
1faa16d2 737 __freed_request(q, sync);
1da177e4 738
1faa16d2
JA
739 if (unlikely(rl->starved[sync ^ 1]))
740 __freed_request(q, sync ^ 1);
1da177e4
LT
741}
742
1da177e4 743/*
d6344532
NP
744 * Get a free request, queue_lock must be held.
745 * Returns NULL on failure, with queue_lock held.
746 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 747 */
165125e1 748static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 749 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
750{
751 struct request *rq = NULL;
752 struct request_list *rl = &q->rq;
88ee5ef1 753 struct io_context *ioc = NULL;
1faa16d2 754 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
755 int may_queue, priv;
756
7749a8d4 757 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
758 if (may_queue == ELV_MQUEUE_NO)
759 goto rq_starved;
760
1faa16d2
JA
761 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
762 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 763 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
764 /*
765 * The queue will fill after this allocation, so set
766 * it as full, and mark this process as "batching".
767 * This process will be allowed to complete a batch of
768 * requests, others will be blocked.
769 */
1faa16d2 770 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 771 ioc_set_batching(q, ioc);
1faa16d2 772 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
773 } else {
774 if (may_queue != ELV_MQUEUE_MUST
775 && !ioc_batching(q, ioc)) {
776 /*
777 * The queue is full and the allocating
778 * process is not a "batcher", and not
779 * exempted by the IO scheduler
780 */
781 goto out;
782 }
783 }
1da177e4 784 }
1faa16d2 785 blk_set_queue_congested(q, is_sync);
1da177e4
LT
786 }
787
082cf69e
JA
788 /*
789 * Only allow batching queuers to allocate up to 50% over the defined
790 * limit of requests, otherwise we could have thousands of requests
791 * allocated with any setting of ->nr_requests
792 */
1faa16d2 793 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 794 goto out;
fd782a4a 795
1faa16d2
JA
796 rl->count[is_sync]++;
797 rl->starved[is_sync] = 0;
cb98fc8b 798
64521d1a 799 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
800 if (priv)
801 rl->elvpriv++;
802
42dad764
JM
803 if (blk_queue_io_stat(q))
804 rw_flags |= REQ_IO_STAT;
1da177e4
LT
805 spin_unlock_irq(q->queue_lock);
806
7749a8d4 807 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 808 if (unlikely(!rq)) {
1da177e4
LT
809 /*
810 * Allocation failed presumably due to memory. Undo anything
811 * we might have messed up.
812 *
813 * Allocating task should really be put onto the front of the
814 * wait queue, but this is pretty rare.
815 */
816 spin_lock_irq(q->queue_lock);
1faa16d2 817 freed_request(q, is_sync, priv);
1da177e4
LT
818
819 /*
820 * in the very unlikely event that allocation failed and no
821 * requests for this direction was pending, mark us starved
822 * so that freeing of a request in the other direction will
823 * notice us. another possible fix would be to split the
824 * rq mempool into READ and WRITE
825 */
826rq_starved:
1faa16d2
JA
827 if (unlikely(rl->count[is_sync] == 0))
828 rl->starved[is_sync] = 1;
1da177e4 829
1da177e4
LT
830 goto out;
831 }
832
88ee5ef1
JA
833 /*
834 * ioc may be NULL here, and ioc_batching will be false. That's
835 * OK, if the queue is under the request limit then requests need
836 * not count toward the nr_batch_requests limit. There will always
837 * be some limit enforced by BLK_BATCH_TIME.
838 */
1da177e4
LT
839 if (ioc_batching(q, ioc))
840 ioc->nr_batch_requests--;
6728cb0e 841
1faa16d2 842 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 843out:
1da177e4
LT
844 return rq;
845}
846
847/*
848 * No available requests for this queue, unplug the device and wait for some
849 * requests to become available.
d6344532
NP
850 *
851 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 852 */
165125e1 853static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 854 struct bio *bio)
1da177e4 855{
1faa16d2 856 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
857 struct request *rq;
858
7749a8d4 859 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
860 while (!rq) {
861 DEFINE_WAIT(wait);
05caf8db 862 struct io_context *ioc;
1da177e4
LT
863 struct request_list *rl = &q->rq;
864
1faa16d2 865 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
866 TASK_UNINTERRUPTIBLE);
867
1faa16d2 868 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 869
05caf8db
ZY
870 __generic_unplug_device(q);
871 spin_unlock_irq(q->queue_lock);
872 io_schedule();
1da177e4 873
05caf8db
ZY
874 /*
875 * After sleeping, we become a "batching" process and
876 * will be able to allocate at least one request, and
877 * up to a big batch of them for a small period time.
878 * See ioc_batching, ioc_set_batching
879 */
880 ioc = current_io_context(GFP_NOIO, q->node);
881 ioc_set_batching(q, ioc);
d6344532 882
05caf8db 883 spin_lock_irq(q->queue_lock);
1faa16d2 884 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
885
886 rq = get_request(q, rw_flags, bio, GFP_NOIO);
887 };
1da177e4
LT
888
889 return rq;
890}
891
165125e1 892struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
893{
894 struct request *rq;
895
896 BUG_ON(rw != READ && rw != WRITE);
897
d6344532
NP
898 spin_lock_irq(q->queue_lock);
899 if (gfp_mask & __GFP_WAIT) {
22e2c507 900 rq = get_request_wait(q, rw, NULL);
d6344532 901 } else {
22e2c507 902 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
903 if (!rq)
904 spin_unlock_irq(q->queue_lock);
905 }
906 /* q->queue_lock is unlocked at this point */
1da177e4
LT
907
908 return rq;
909}
1da177e4
LT
910EXPORT_SYMBOL(blk_get_request);
911
dc72ef4a 912/**
79eb63e9 913 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 914 * @q: target request queue
79eb63e9
BH
915 * @bio: The bio describing the memory mappings that will be submitted for IO.
916 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 917 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 918 *
79eb63e9
BH
919 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
920 * type commands. Where the struct request needs to be farther initialized by
921 * the caller. It is passed a &struct bio, which describes the memory info of
922 * the I/O transfer.
dc72ef4a 923 *
79eb63e9
BH
924 * The caller of blk_make_request must make sure that bi_io_vec
925 * are set to describe the memory buffers. That bio_data_dir() will return
926 * the needed direction of the request. (And all bio's in the passed bio-chain
927 * are properly set accordingly)
928 *
929 * If called under none-sleepable conditions, mapped bio buffers must not
930 * need bouncing, by calling the appropriate masked or flagged allocator,
931 * suitable for the target device. Otherwise the call to blk_queue_bounce will
932 * BUG.
53674ac5
JA
933 *
934 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
935 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
936 * anything but the first bio in the chain. Otherwise you risk waiting for IO
937 * completion of a bio that hasn't been submitted yet, thus resulting in a
938 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
939 * of bio_alloc(), as that avoids the mempool deadlock.
940 * If possible a big IO should be split into smaller parts when allocation
941 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 942 */
79eb63e9
BH
943struct request *blk_make_request(struct request_queue *q, struct bio *bio,
944 gfp_t gfp_mask)
dc72ef4a 945{
79eb63e9
BH
946 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
947
948 if (unlikely(!rq))
949 return ERR_PTR(-ENOMEM);
950
951 for_each_bio(bio) {
952 struct bio *bounce_bio = bio;
953 int ret;
954
955 blk_queue_bounce(q, &bounce_bio);
956 ret = blk_rq_append_bio(q, rq, bounce_bio);
957 if (unlikely(ret)) {
958 blk_put_request(rq);
959 return ERR_PTR(ret);
960 }
961 }
962
963 return rq;
dc72ef4a 964}
79eb63e9 965EXPORT_SYMBOL(blk_make_request);
dc72ef4a 966
1da177e4
LT
967/**
968 * blk_requeue_request - put a request back on queue
969 * @q: request queue where request should be inserted
970 * @rq: request to be inserted
971 *
972 * Description:
973 * Drivers often keep queueing requests until the hardware cannot accept
974 * more, when that condition happens we need to put the request back
975 * on the queue. Must be called with queue lock held.
976 */
165125e1 977void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 978{
242f9dcb
JA
979 blk_delete_timer(rq);
980 blk_clear_rq_complete(rq);
5f3ea37c 981 trace_block_rq_requeue(q, rq);
2056a782 982
1da177e4
LT
983 if (blk_rq_tagged(rq))
984 blk_queue_end_tag(q, rq);
985
ba396a6c
JB
986 BUG_ON(blk_queued_rq(rq));
987
1da177e4
LT
988 elv_requeue_request(q, rq);
989}
1da177e4
LT
990EXPORT_SYMBOL(blk_requeue_request);
991
992/**
710027a4 993 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
994 * @q: request queue where request should be inserted
995 * @rq: request to be inserted
996 * @at_head: insert request at head or tail of queue
997 * @data: private data
1da177e4
LT
998 *
999 * Description:
1000 * Many block devices need to execute commands asynchronously, so they don't
1001 * block the whole kernel from preemption during request execution. This is
1002 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
1003 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1004 * be scheduled for actual execution by the request queue.
1da177e4
LT
1005 *
1006 * We have the option of inserting the head or the tail of the queue.
1007 * Typically we use the tail for new ioctls and so forth. We use the head
1008 * of the queue for things like a QUEUE_FULL message from a device, or a
1009 * host that is unable to accept a particular command.
1010 */
165125e1 1011void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 1012 int at_head, void *data)
1da177e4 1013{
867d1191 1014 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
1015 unsigned long flags;
1016
1017 /*
1018 * tell I/O scheduler that this isn't a regular read/write (ie it
1019 * must not attempt merges on this) and that it acts as a soft
1020 * barrier
1021 */
4aff5e23 1022 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1023
1024 rq->special = data;
1025
1026 spin_lock_irqsave(q->queue_lock, flags);
1027
1028 /*
1029 * If command is tagged, release the tag
1030 */
867d1191
TH
1031 if (blk_rq_tagged(rq))
1032 blk_queue_end_tag(q, rq);
1da177e4 1033
b238b3d4 1034 drive_stat_acct(rq, 1);
867d1191 1035 __elv_add_request(q, rq, where, 0);
a7f55792 1036 __blk_run_queue(q);
1da177e4
LT
1037 spin_unlock_irqrestore(q->queue_lock, flags);
1038}
1da177e4
LT
1039EXPORT_SYMBOL(blk_insert_request);
1040
074a7aca
TH
1041static void part_round_stats_single(int cpu, struct hd_struct *part,
1042 unsigned long now)
1043{
1044 if (now == part->stamp)
1045 return;
1046
316d315b 1047 if (part_in_flight(part)) {
074a7aca 1048 __part_stat_add(cpu, part, time_in_queue,
316d315b 1049 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1050 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1051 }
1052 part->stamp = now;
1053}
1054
1055/**
496aa8a9
RD
1056 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1057 * @cpu: cpu number for stats access
1058 * @part: target partition
1da177e4
LT
1059 *
1060 * The average IO queue length and utilisation statistics are maintained
1061 * by observing the current state of the queue length and the amount of
1062 * time it has been in this state for.
1063 *
1064 * Normally, that accounting is done on IO completion, but that can result
1065 * in more than a second's worth of IO being accounted for within any one
1066 * second, leading to >100% utilisation. To deal with that, we call this
1067 * function to do a round-off before returning the results when reading
1068 * /proc/diskstats. This accounts immediately for all queue usage up to
1069 * the current jiffies and restarts the counters again.
1070 */
c9959059 1071void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1072{
1073 unsigned long now = jiffies;
1074
074a7aca
TH
1075 if (part->partno)
1076 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1077 part_round_stats_single(cpu, part, now);
6f2576af 1078}
074a7aca 1079EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1080
1da177e4
LT
1081/*
1082 * queue lock must be held
1083 */
165125e1 1084void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1085{
1da177e4
LT
1086 if (unlikely(!q))
1087 return;
1088 if (unlikely(--req->ref_count))
1089 return;
1090
8922e16c
TH
1091 elv_completed_request(q, req);
1092
1cd96c24
BH
1093 /* this is a bio leak */
1094 WARN_ON(req->bio != NULL);
1095
1da177e4
LT
1096 /*
1097 * Request may not have originated from ll_rw_blk. if not,
1098 * it didn't come out of our reserved rq pools
1099 */
49171e5c 1100 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1101 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1102 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1103
1da177e4 1104 BUG_ON(!list_empty(&req->queuelist));
9817064b 1105 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1106
1107 blk_free_request(q, req);
1faa16d2 1108 freed_request(q, is_sync, priv);
1da177e4
LT
1109 }
1110}
6e39b69e
MC
1111EXPORT_SYMBOL_GPL(__blk_put_request);
1112
1da177e4
LT
1113void blk_put_request(struct request *req)
1114{
8922e16c 1115 unsigned long flags;
165125e1 1116 struct request_queue *q = req->q;
8922e16c 1117
52a93ba8
FT
1118 spin_lock_irqsave(q->queue_lock, flags);
1119 __blk_put_request(q, req);
1120 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1121}
1da177e4
LT
1122EXPORT_SYMBOL(blk_put_request);
1123
66ac0280
CH
1124/**
1125 * blk_add_request_payload - add a payload to a request
1126 * @rq: request to update
1127 * @page: page backing the payload
1128 * @len: length of the payload.
1129 *
1130 * This allows to later add a payload to an already submitted request by
1131 * a block driver. The driver needs to take care of freeing the payload
1132 * itself.
1133 *
1134 * Note that this is a quite horrible hack and nothing but handling of
1135 * discard requests should ever use it.
1136 */
1137void blk_add_request_payload(struct request *rq, struct page *page,
1138 unsigned int len)
1139{
1140 struct bio *bio = rq->bio;
1141
1142 bio->bi_io_vec->bv_page = page;
1143 bio->bi_io_vec->bv_offset = 0;
1144 bio->bi_io_vec->bv_len = len;
1145
1146 bio->bi_size = len;
1147 bio->bi_vcnt = 1;
1148 bio->bi_phys_segments = 1;
1149
1150 rq->__data_len = rq->resid_len = len;
1151 rq->nr_phys_segments = 1;
1152 rq->buffer = bio_data(bio);
1153}
1154EXPORT_SYMBOL_GPL(blk_add_request_payload);
1155
86db1e29 1156void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1157{
c7c22e4d 1158 req->cpu = bio->bi_comp_cpu;
4aff5e23 1159 req->cmd_type = REQ_TYPE_FS;
52d9e675 1160
7b6d91da
CH
1161 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1162 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1163 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1164
52d9e675 1165 req->errors = 0;
a2dec7b3 1166 req->__sector = bio->bi_sector;
52d9e675 1167 req->ioprio = bio_prio(bio);
bc1c56fd 1168 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1169}
1170
644b2d99
JA
1171/*
1172 * Only disabling plugging for non-rotational devices if it does tagging
1173 * as well, otherwise we do need the proper merging
1174 */
1175static inline bool queue_should_plug(struct request_queue *q)
1176{
79da0644 1177 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
644b2d99
JA
1178}
1179
165125e1 1180static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1181{
450991bc 1182 struct request *req;
2e46e8b2
TH
1183 int el_ret;
1184 unsigned int bytes = bio->bi_size;
51da90fc 1185 const unsigned short prio = bio_prio(bio);
7b6d91da
CH
1186 const bool sync = (bio->bi_rw & REQ_SYNC);
1187 const bool unplug = (bio->bi_rw & REQ_UNPLUG);
80a761fd 1188 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
28e7d184 1189 int where = ELEVATOR_INSERT_SORT;
7749a8d4 1190 int rw_flags;
1da177e4 1191
4913efe4
TH
1192 /* REQ_HARDBARRIER is no more */
1193 if (WARN_ONCE(bio->bi_rw & REQ_HARDBARRIER,
1194 "block: HARDBARRIER is deprecated, use FLUSH/FUA instead\n")) {
db64f680
N
1195 bio_endio(bio, -EOPNOTSUPP);
1196 return 0;
1197 }
4913efe4 1198
1da177e4
LT
1199 /*
1200 * low level driver can indicate that it wants pages above a
1201 * certain limit bounced to low memory (ie for highmem, or even
1202 * ISA dma in theory)
1203 */
1204 blk_queue_bounce(q, &bio);
1205
1da177e4
LT
1206 spin_lock_irq(q->queue_lock);
1207
28e7d184
TH
1208 if (bio->bi_rw & REQ_HARDBARRIER) {
1209 where = ELEVATOR_INSERT_FRONT;
1210 goto get_rq;
1211 }
1212
1213 if (elv_queue_empty(q))
1da177e4
LT
1214 goto get_rq;
1215
1216 el_ret = elv_merge(q, &req, bio);
1217 switch (el_ret) {
6728cb0e
JA
1218 case ELEVATOR_BACK_MERGE:
1219 BUG_ON(!rq_mergeable(req));
1da177e4 1220
6728cb0e
JA
1221 if (!ll_back_merge_fn(q, req, bio))
1222 break;
1da177e4 1223
5f3ea37c 1224 trace_block_bio_backmerge(q, bio);
2056a782 1225
80a761fd
TH
1226 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1227 blk_rq_set_mixed_merge(req);
1228
6728cb0e
JA
1229 req->biotail->bi_next = bio;
1230 req->biotail = bio;
a2dec7b3 1231 req->__data_len += bytes;
6728cb0e 1232 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1233 if (!blk_rq_cpu_valid(req))
1234 req->cpu = bio->bi_comp_cpu;
6728cb0e 1235 drive_stat_acct(req, 0);
812d4026 1236 elv_bio_merged(q, req, bio);
6728cb0e
JA
1237 if (!attempt_back_merge(q, req))
1238 elv_merged_request(q, req, el_ret);
1239 goto out;
1da177e4 1240
6728cb0e
JA
1241 case ELEVATOR_FRONT_MERGE:
1242 BUG_ON(!rq_mergeable(req));
1da177e4 1243
6728cb0e
JA
1244 if (!ll_front_merge_fn(q, req, bio))
1245 break;
1da177e4 1246
5f3ea37c 1247 trace_block_bio_frontmerge(q, bio);
2056a782 1248
80a761fd
TH
1249 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1250 blk_rq_set_mixed_merge(req);
1251 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1252 req->cmd_flags |= ff;
1253 }
1254
6728cb0e
JA
1255 bio->bi_next = req->bio;
1256 req->bio = bio;
1da177e4 1257
6728cb0e
JA
1258 /*
1259 * may not be valid. if the low level driver said
1260 * it didn't need a bounce buffer then it better
1261 * not touch req->buffer either...
1262 */
1263 req->buffer = bio_data(bio);
a2dec7b3
TH
1264 req->__sector = bio->bi_sector;
1265 req->__data_len += bytes;
6728cb0e 1266 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1267 if (!blk_rq_cpu_valid(req))
1268 req->cpu = bio->bi_comp_cpu;
6728cb0e 1269 drive_stat_acct(req, 0);
812d4026 1270 elv_bio_merged(q, req, bio);
6728cb0e
JA
1271 if (!attempt_front_merge(q, req))
1272 elv_merged_request(q, req, el_ret);
1273 goto out;
1274
1275 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1276 default:
1277 ;
1da177e4
LT
1278 }
1279
450991bc 1280get_rq:
7749a8d4
JA
1281 /*
1282 * This sync check and mask will be re-done in init_request_from_bio(),
1283 * but we need to set it earlier to expose the sync flag to the
1284 * rq allocator and io schedulers.
1285 */
1286 rw_flags = bio_data_dir(bio);
1287 if (sync)
7b6d91da 1288 rw_flags |= REQ_SYNC;
7749a8d4 1289
1da177e4 1290 /*
450991bc 1291 * Grab a free request. This is might sleep but can not fail.
d6344532 1292 * Returns with the queue unlocked.
450991bc 1293 */
7749a8d4 1294 req = get_request_wait(q, rw_flags, bio);
d6344532 1295
450991bc
NP
1296 /*
1297 * After dropping the lock and possibly sleeping here, our request
1298 * may now be mergeable after it had proven unmergeable (above).
1299 * We don't worry about that case for efficiency. It won't happen
1300 * often, and the elevators are able to handle it.
1da177e4 1301 */
52d9e675 1302 init_request_from_bio(req, bio);
1da177e4 1303
450991bc 1304 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1305 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1306 bio_flagged(bio, BIO_CPU_AFFINE))
1307 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1308 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1309 blk_plug_device(q);
dd831006
TH
1310
1311 /* insert the request into the elevator */
1312 drive_stat_acct(req, 1);
28e7d184 1313 __elv_add_request(q, req, where, 0);
1da177e4 1314out:
644b2d99 1315 if (unplug || !queue_should_plug(q))
1da177e4 1316 __generic_unplug_device(q);
1da177e4
LT
1317 spin_unlock_irq(q->queue_lock);
1318 return 0;
1da177e4
LT
1319}
1320
1321/*
1322 * If bio->bi_dev is a partition, remap the location
1323 */
1324static inline void blk_partition_remap(struct bio *bio)
1325{
1326 struct block_device *bdev = bio->bi_bdev;
1327
bf2de6f5 1328 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1329 struct hd_struct *p = bdev->bd_part;
1330
1da177e4
LT
1331 bio->bi_sector += p->start_sect;
1332 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1333
5f3ea37c 1334 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
22a7c31a 1335 bdev->bd_dev,
c7149d6b 1336 bio->bi_sector - p->start_sect);
1da177e4
LT
1337 }
1338}
1339
1da177e4
LT
1340static void handle_bad_sector(struct bio *bio)
1341{
1342 char b[BDEVNAME_SIZE];
1343
1344 printk(KERN_INFO "attempt to access beyond end of device\n");
1345 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1346 bdevname(bio->bi_bdev, b),
1347 bio->bi_rw,
1348 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1349 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1350
1351 set_bit(BIO_EOF, &bio->bi_flags);
1352}
1353
c17bb495
AM
1354#ifdef CONFIG_FAIL_MAKE_REQUEST
1355
1356static DECLARE_FAULT_ATTR(fail_make_request);
1357
1358static int __init setup_fail_make_request(char *str)
1359{
1360 return setup_fault_attr(&fail_make_request, str);
1361}
1362__setup("fail_make_request=", setup_fail_make_request);
1363
1364static int should_fail_request(struct bio *bio)
1365{
eddb2e26
TH
1366 struct hd_struct *part = bio->bi_bdev->bd_part;
1367
1368 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1369 return should_fail(&fail_make_request, bio->bi_size);
1370
1371 return 0;
1372}
1373
1374static int __init fail_make_request_debugfs(void)
1375{
1376 return init_fault_attr_dentries(&fail_make_request,
1377 "fail_make_request");
1378}
1379
1380late_initcall(fail_make_request_debugfs);
1381
1382#else /* CONFIG_FAIL_MAKE_REQUEST */
1383
1384static inline int should_fail_request(struct bio *bio)
1385{
1386 return 0;
1387}
1388
1389#endif /* CONFIG_FAIL_MAKE_REQUEST */
1390
c07e2b41
JA
1391/*
1392 * Check whether this bio extends beyond the end of the device.
1393 */
1394static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1395{
1396 sector_t maxsector;
1397
1398 if (!nr_sectors)
1399 return 0;
1400
1401 /* Test device or partition size, when known. */
1402 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1403 if (maxsector) {
1404 sector_t sector = bio->bi_sector;
1405
1406 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1407 /*
1408 * This may well happen - the kernel calls bread()
1409 * without checking the size of the device, e.g., when
1410 * mounting a device.
1411 */
1412 handle_bad_sector(bio);
1413 return 1;
1414 }
1415 }
1416
1417 return 0;
1418}
1419
1da177e4 1420/**
710027a4 1421 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1422 * @bio: The bio describing the location in memory and on the device.
1423 *
1424 * generic_make_request() is used to make I/O requests of block
1425 * devices. It is passed a &struct bio, which describes the I/O that needs
1426 * to be done.
1427 *
1428 * generic_make_request() does not return any status. The
1429 * success/failure status of the request, along with notification of
1430 * completion, is delivered asynchronously through the bio->bi_end_io
1431 * function described (one day) else where.
1432 *
1433 * The caller of generic_make_request must make sure that bi_io_vec
1434 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1435 * set to describe the device address, and the
1436 * bi_end_io and optionally bi_private are set to describe how
1437 * completion notification should be signaled.
1438 *
1439 * generic_make_request and the drivers it calls may use bi_next if this
1440 * bio happens to be merged with someone else, and may change bi_dev and
1441 * bi_sector for remaps as it sees fit. So the values of these fields
1442 * should NOT be depended on after the call to generic_make_request.
1443 */
d89d8796 1444static inline void __generic_make_request(struct bio *bio)
1da177e4 1445{
165125e1 1446 struct request_queue *q;
5ddfe969 1447 sector_t old_sector;
1da177e4 1448 int ret, nr_sectors = bio_sectors(bio);
2056a782 1449 dev_t old_dev;
51fd77bd 1450 int err = -EIO;
1da177e4
LT
1451
1452 might_sleep();
1da177e4 1453
c07e2b41
JA
1454 if (bio_check_eod(bio, nr_sectors))
1455 goto end_io;
1da177e4
LT
1456
1457 /*
1458 * Resolve the mapping until finished. (drivers are
1459 * still free to implement/resolve their own stacking
1460 * by explicitly returning 0)
1461 *
1462 * NOTE: we don't repeat the blk_size check for each new device.
1463 * Stacking drivers are expected to know what they are doing.
1464 */
5ddfe969 1465 old_sector = -1;
2056a782 1466 old_dev = 0;
1da177e4
LT
1467 do {
1468 char b[BDEVNAME_SIZE];
1469
1470 q = bdev_get_queue(bio->bi_bdev);
a7384677 1471 if (unlikely(!q)) {
1da177e4
LT
1472 printk(KERN_ERR
1473 "generic_make_request: Trying to access "
1474 "nonexistent block-device %s (%Lu)\n",
1475 bdevname(bio->bi_bdev, b),
1476 (long long) bio->bi_sector);
a7384677 1477 goto end_io;
1da177e4
LT
1478 }
1479
7b6d91da 1480 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1481 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1482 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1483 bdevname(bio->bi_bdev, b),
1484 bio_sectors(bio),
1485 queue_max_hw_sectors(q));
1da177e4
LT
1486 goto end_io;
1487 }
1488
fde6ad22 1489 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1490 goto end_io;
1491
c17bb495
AM
1492 if (should_fail_request(bio))
1493 goto end_io;
1494
1da177e4
LT
1495 /*
1496 * If this device has partitions, remap block n
1497 * of partition p to block n+start(p) of the disk.
1498 */
1499 blk_partition_remap(bio);
1500
7ba1ba12
MP
1501 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1502 goto end_io;
1503
5ddfe969 1504 if (old_sector != -1)
22a7c31a 1505 trace_block_remap(q, bio, old_dev, old_sector);
2056a782 1506
5ddfe969 1507 old_sector = bio->bi_sector;
2056a782
JA
1508 old_dev = bio->bi_bdev->bd_dev;
1509
c07e2b41
JA
1510 if (bio_check_eod(bio, nr_sectors))
1511 goto end_io;
a7384677 1512
8d57a98c
AH
1513 if ((bio->bi_rw & REQ_DISCARD) &&
1514 (!blk_queue_discard(q) ||
1515 ((bio->bi_rw & REQ_SECURE) &&
1516 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1517 err = -EOPNOTSUPP;
1518 goto end_io;
1519 }
5ddfe969 1520
01edede4
MK
1521 trace_block_bio_queue(q, bio);
1522
1da177e4
LT
1523 ret = q->make_request_fn(q, bio);
1524 } while (ret);
a7384677
TH
1525
1526 return;
1527
1528end_io:
1529 bio_endio(bio, err);
1da177e4
LT
1530}
1531
d89d8796
NB
1532/*
1533 * We only want one ->make_request_fn to be active at a time,
1534 * else stack usage with stacked devices could be a problem.
bddd87c7 1535 * So use current->bio_list to keep a list of requests
d89d8796 1536 * submited by a make_request_fn function.
bddd87c7 1537 * current->bio_list is also used as a flag to say if
d89d8796
NB
1538 * generic_make_request is currently active in this task or not.
1539 * If it is NULL, then no make_request is active. If it is non-NULL,
1540 * then a make_request is active, and new requests should be added
1541 * at the tail
1542 */
1543void generic_make_request(struct bio *bio)
1544{
bddd87c7
AM
1545 struct bio_list bio_list_on_stack;
1546
1547 if (current->bio_list) {
d89d8796 1548 /* make_request is active */
bddd87c7 1549 bio_list_add(current->bio_list, bio);
d89d8796
NB
1550 return;
1551 }
1552 /* following loop may be a bit non-obvious, and so deserves some
1553 * explanation.
1554 * Before entering the loop, bio->bi_next is NULL (as all callers
1555 * ensure that) so we have a list with a single bio.
1556 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1557 * we assign bio_list to a pointer to the bio_list_on_stack,
1558 * thus initialising the bio_list of new bios to be
d89d8796
NB
1559 * added. __generic_make_request may indeed add some more bios
1560 * through a recursive call to generic_make_request. If it
1561 * did, we find a non-NULL value in bio_list and re-enter the loop
1562 * from the top. In this case we really did just take the bio
bddd87c7
AM
1563 * of the top of the list (no pretending) and so remove it from
1564 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1565 *
1566 * The loop was structured like this to make only one call to
1567 * __generic_make_request (which is important as it is large and
1568 * inlined) and to keep the structure simple.
1569 */
1570 BUG_ON(bio->bi_next);
bddd87c7
AM
1571 bio_list_init(&bio_list_on_stack);
1572 current->bio_list = &bio_list_on_stack;
d89d8796 1573 do {
d89d8796 1574 __generic_make_request(bio);
bddd87c7 1575 bio = bio_list_pop(current->bio_list);
d89d8796 1576 } while (bio);
bddd87c7 1577 current->bio_list = NULL; /* deactivate */
d89d8796 1578}
1da177e4
LT
1579EXPORT_SYMBOL(generic_make_request);
1580
1581/**
710027a4 1582 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1583 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1584 * @bio: The &struct bio which describes the I/O
1585 *
1586 * submit_bio() is very similar in purpose to generic_make_request(), and
1587 * uses that function to do most of the work. Both are fairly rough
710027a4 1588 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1589 *
1590 */
1591void submit_bio(int rw, struct bio *bio)
1592{
1593 int count = bio_sectors(bio);
1594
22e2c507 1595 bio->bi_rw |= rw;
1da177e4 1596
bf2de6f5
JA
1597 /*
1598 * If it's a regular read/write or a barrier with data attached,
1599 * go through the normal accounting stuff before submission.
1600 */
3ffb52e7 1601 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1602 if (rw & WRITE) {
1603 count_vm_events(PGPGOUT, count);
1604 } else {
1605 task_io_account_read(bio->bi_size);
1606 count_vm_events(PGPGIN, count);
1607 }
1608
1609 if (unlikely(block_dump)) {
1610 char b[BDEVNAME_SIZE];
1611 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1612 current->comm, task_pid_nr(current),
bf2de6f5
JA
1613 (rw & WRITE) ? "WRITE" : "READ",
1614 (unsigned long long)bio->bi_sector,
6728cb0e 1615 bdevname(bio->bi_bdev, b));
bf2de6f5 1616 }
1da177e4
LT
1617 }
1618
1619 generic_make_request(bio);
1620}
1da177e4
LT
1621EXPORT_SYMBOL(submit_bio);
1622
82124d60
KU
1623/**
1624 * blk_rq_check_limits - Helper function to check a request for the queue limit
1625 * @q: the queue
1626 * @rq: the request being checked
1627 *
1628 * Description:
1629 * @rq may have been made based on weaker limitations of upper-level queues
1630 * in request stacking drivers, and it may violate the limitation of @q.
1631 * Since the block layer and the underlying device driver trust @rq
1632 * after it is inserted to @q, it should be checked against @q before
1633 * the insertion using this generic function.
1634 *
1635 * This function should also be useful for request stacking drivers
1636 * in some cases below, so export this fuction.
1637 * Request stacking drivers like request-based dm may change the queue
1638 * limits while requests are in the queue (e.g. dm's table swapping).
1639 * Such request stacking drivers should check those requests agaist
1640 * the new queue limits again when they dispatch those requests,
1641 * although such checkings are also done against the old queue limits
1642 * when submitting requests.
1643 */
1644int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1645{
3383977f
S
1646 if (rq->cmd_flags & REQ_DISCARD)
1647 return 0;
1648
ae03bf63
MP
1649 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1650 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1651 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1652 return -EIO;
1653 }
1654
1655 /*
1656 * queue's settings related to segment counting like q->bounce_pfn
1657 * may differ from that of other stacking queues.
1658 * Recalculate it to check the request correctly on this queue's
1659 * limitation.
1660 */
1661 blk_recalc_rq_segments(rq);
8a78362c 1662 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1663 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1664 return -EIO;
1665 }
1666
1667 return 0;
1668}
1669EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1670
1671/**
1672 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1673 * @q: the queue to submit the request
1674 * @rq: the request being queued
1675 */
1676int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1677{
1678 unsigned long flags;
1679
1680 if (blk_rq_check_limits(q, rq))
1681 return -EIO;
1682
1683#ifdef CONFIG_FAIL_MAKE_REQUEST
1684 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1685 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1686 return -EIO;
1687#endif
1688
1689 spin_lock_irqsave(q->queue_lock, flags);
1690
1691 /*
1692 * Submitting request must be dequeued before calling this function
1693 * because it will be linked to another request_queue
1694 */
1695 BUG_ON(blk_queued_rq(rq));
1696
1697 drive_stat_acct(rq, 1);
1698 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1699
1700 spin_unlock_irqrestore(q->queue_lock, flags);
1701
1702 return 0;
1703}
1704EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1705
80a761fd
TH
1706/**
1707 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1708 * @rq: request to examine
1709 *
1710 * Description:
1711 * A request could be merge of IOs which require different failure
1712 * handling. This function determines the number of bytes which
1713 * can be failed from the beginning of the request without
1714 * crossing into area which need to be retried further.
1715 *
1716 * Return:
1717 * The number of bytes to fail.
1718 *
1719 * Context:
1720 * queue_lock must be held.
1721 */
1722unsigned int blk_rq_err_bytes(const struct request *rq)
1723{
1724 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1725 unsigned int bytes = 0;
1726 struct bio *bio;
1727
1728 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1729 return blk_rq_bytes(rq);
1730
1731 /*
1732 * Currently the only 'mixing' which can happen is between
1733 * different fastfail types. We can safely fail portions
1734 * which have all the failfast bits that the first one has -
1735 * the ones which are at least as eager to fail as the first
1736 * one.
1737 */
1738 for (bio = rq->bio; bio; bio = bio->bi_next) {
1739 if ((bio->bi_rw & ff) != ff)
1740 break;
1741 bytes += bio->bi_size;
1742 }
1743
1744 /* this could lead to infinite loop */
1745 BUG_ON(blk_rq_bytes(rq) && !bytes);
1746 return bytes;
1747}
1748EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1749
bc58ba94
JA
1750static void blk_account_io_completion(struct request *req, unsigned int bytes)
1751{
c2553b58 1752 if (blk_do_io_stat(req)) {
bc58ba94
JA
1753 const int rw = rq_data_dir(req);
1754 struct hd_struct *part;
1755 int cpu;
1756
1757 cpu = part_stat_lock();
83096ebf 1758 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1759 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1760 part_stat_unlock();
1761 }
1762}
1763
1764static void blk_account_io_done(struct request *req)
1765{
bc58ba94
JA
1766 /*
1767 * Account IO completion. bar_rq isn't accounted as a normal
1768 * IO on queueing nor completion. Accounting the containing
1769 * request is enough.
1770 */
c2553b58 1771 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
bc58ba94
JA
1772 unsigned long duration = jiffies - req->start_time;
1773 const int rw = rq_data_dir(req);
1774 struct hd_struct *part;
1775 int cpu;
1776
1777 cpu = part_stat_lock();
83096ebf 1778 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1779
1780 part_stat_inc(cpu, part, ios[rw]);
1781 part_stat_add(cpu, part, ticks[rw], duration);
1782 part_round_stats(cpu, part);
316d315b 1783 part_dec_in_flight(part, rw);
bc58ba94
JA
1784
1785 part_stat_unlock();
1786 }
1787}
1788
3bcddeac 1789/**
9934c8c0
TH
1790 * blk_peek_request - peek at the top of a request queue
1791 * @q: request queue to peek at
1792 *
1793 * Description:
1794 * Return the request at the top of @q. The returned request
1795 * should be started using blk_start_request() before LLD starts
1796 * processing it.
1797 *
1798 * Return:
1799 * Pointer to the request at the top of @q if available. Null
1800 * otherwise.
1801 *
1802 * Context:
1803 * queue_lock must be held.
1804 */
1805struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1806{
1807 struct request *rq;
1808 int ret;
1809
1810 while ((rq = __elv_next_request(q)) != NULL) {
1811 if (!(rq->cmd_flags & REQ_STARTED)) {
1812 /*
1813 * This is the first time the device driver
1814 * sees this request (possibly after
1815 * requeueing). Notify IO scheduler.
1816 */
33659ebb 1817 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1818 elv_activate_rq(q, rq);
1819
1820 /*
1821 * just mark as started even if we don't start
1822 * it, a request that has been delayed should
1823 * not be passed by new incoming requests
1824 */
1825 rq->cmd_flags |= REQ_STARTED;
1826 trace_block_rq_issue(q, rq);
1827 }
1828
1829 if (!q->boundary_rq || q->boundary_rq == rq) {
1830 q->end_sector = rq_end_sector(rq);
1831 q->boundary_rq = NULL;
1832 }
1833
1834 if (rq->cmd_flags & REQ_DONTPREP)
1835 break;
1836
2e46e8b2 1837 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1838 /*
1839 * make sure space for the drain appears we
1840 * know we can do this because max_hw_segments
1841 * has been adjusted to be one fewer than the
1842 * device can handle
1843 */
1844 rq->nr_phys_segments++;
1845 }
1846
1847 if (!q->prep_rq_fn)
1848 break;
1849
1850 ret = q->prep_rq_fn(q, rq);
1851 if (ret == BLKPREP_OK) {
1852 break;
1853 } else if (ret == BLKPREP_DEFER) {
1854 /*
1855 * the request may have been (partially) prepped.
1856 * we need to keep this request in the front to
1857 * avoid resource deadlock. REQ_STARTED will
1858 * prevent other fs requests from passing this one.
1859 */
2e46e8b2 1860 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1861 !(rq->cmd_flags & REQ_DONTPREP)) {
1862 /*
1863 * remove the space for the drain we added
1864 * so that we don't add it again
1865 */
1866 --rq->nr_phys_segments;
1867 }
1868
1869 rq = NULL;
1870 break;
1871 } else if (ret == BLKPREP_KILL) {
1872 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1873 /*
1874 * Mark this request as started so we don't trigger
1875 * any debug logic in the end I/O path.
1876 */
1877 blk_start_request(rq);
40cbbb78 1878 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1879 } else {
1880 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1881 break;
1882 }
1883 }
1884
1885 return rq;
1886}
9934c8c0 1887EXPORT_SYMBOL(blk_peek_request);
158dbda0 1888
9934c8c0 1889void blk_dequeue_request(struct request *rq)
158dbda0 1890{
9934c8c0
TH
1891 struct request_queue *q = rq->q;
1892
158dbda0
TH
1893 BUG_ON(list_empty(&rq->queuelist));
1894 BUG_ON(ELV_ON_HASH(rq));
1895
1896 list_del_init(&rq->queuelist);
1897
1898 /*
1899 * the time frame between a request being removed from the lists
1900 * and to it is freed is accounted as io that is in progress at
1901 * the driver side.
1902 */
9195291e 1903 if (blk_account_rq(rq)) {
0a7ae2ff 1904 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1905 set_io_start_time_ns(rq);
1906 }
158dbda0
TH
1907}
1908
9934c8c0
TH
1909/**
1910 * blk_start_request - start request processing on the driver
1911 * @req: request to dequeue
1912 *
1913 * Description:
1914 * Dequeue @req and start timeout timer on it. This hands off the
1915 * request to the driver.
1916 *
1917 * Block internal functions which don't want to start timer should
1918 * call blk_dequeue_request().
1919 *
1920 * Context:
1921 * queue_lock must be held.
1922 */
1923void blk_start_request(struct request *req)
1924{
1925 blk_dequeue_request(req);
1926
1927 /*
5f49f631
TH
1928 * We are now handing the request to the hardware, initialize
1929 * resid_len to full count and add the timeout handler.
9934c8c0 1930 */
5f49f631 1931 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1932 if (unlikely(blk_bidi_rq(req)))
1933 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1934
9934c8c0
TH
1935 blk_add_timer(req);
1936}
1937EXPORT_SYMBOL(blk_start_request);
1938
1939/**
1940 * blk_fetch_request - fetch a request from a request queue
1941 * @q: request queue to fetch a request from
1942 *
1943 * Description:
1944 * Return the request at the top of @q. The request is started on
1945 * return and LLD can start processing it immediately.
1946 *
1947 * Return:
1948 * Pointer to the request at the top of @q if available. Null
1949 * otherwise.
1950 *
1951 * Context:
1952 * queue_lock must be held.
1953 */
1954struct request *blk_fetch_request(struct request_queue *q)
1955{
1956 struct request *rq;
1957
1958 rq = blk_peek_request(q);
1959 if (rq)
1960 blk_start_request(rq);
1961 return rq;
1962}
1963EXPORT_SYMBOL(blk_fetch_request);
1964
3bcddeac 1965/**
2e60e022 1966 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1967 * @req: the request being processed
710027a4 1968 * @error: %0 for success, < %0 for error
8ebf9756 1969 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1970 *
1971 * Description:
8ebf9756
RD
1972 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1973 * the request structure even if @req doesn't have leftover.
1974 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1975 *
1976 * This special helper function is only for request stacking drivers
1977 * (e.g. request-based dm) so that they can handle partial completion.
1978 * Actual device drivers should use blk_end_request instead.
1979 *
1980 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1981 * %false return from this function.
3bcddeac
KU
1982 *
1983 * Return:
2e60e022
TH
1984 * %false - this request doesn't have any more data
1985 * %true - this request has more data
3bcddeac 1986 **/
2e60e022 1987bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 1988{
5450d3e1 1989 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1990 struct bio *bio;
1991
2e60e022
TH
1992 if (!req->bio)
1993 return false;
1994
5f3ea37c 1995 trace_block_rq_complete(req->q, req);
2056a782 1996
1da177e4 1997 /*
6f41469c
TH
1998 * For fs requests, rq is just carrier of independent bio's
1999 * and each partial completion should be handled separately.
2000 * Reset per-request error on each partial completion.
2001 *
2002 * TODO: tj: This is too subtle. It would be better to let
2003 * low level drivers do what they see fit.
1da177e4 2004 */
33659ebb 2005 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2006 req->errors = 0;
2007
33659ebb
CH
2008 if (error && req->cmd_type == REQ_TYPE_FS &&
2009 !(req->cmd_flags & REQ_QUIET)) {
6728cb0e 2010 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 2011 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 2012 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2013 }
2014
bc58ba94 2015 blk_account_io_completion(req, nr_bytes);
d72d904a 2016
1da177e4
LT
2017 total_bytes = bio_nbytes = 0;
2018 while ((bio = req->bio) != NULL) {
2019 int nbytes;
2020
2021 if (nr_bytes >= bio->bi_size) {
2022 req->bio = bio->bi_next;
2023 nbytes = bio->bi_size;
5bb23a68 2024 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2025 next_idx = 0;
2026 bio_nbytes = 0;
2027 } else {
2028 int idx = bio->bi_idx + next_idx;
2029
af498d7f 2030 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2031 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2032 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2033 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2034 break;
2035 }
2036
2037 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2038 BIO_BUG_ON(nbytes > bio->bi_size);
2039
2040 /*
2041 * not a complete bvec done
2042 */
2043 if (unlikely(nbytes > nr_bytes)) {
2044 bio_nbytes += nr_bytes;
2045 total_bytes += nr_bytes;
2046 break;
2047 }
2048
2049 /*
2050 * advance to the next vector
2051 */
2052 next_idx++;
2053 bio_nbytes += nbytes;
2054 }
2055
2056 total_bytes += nbytes;
2057 nr_bytes -= nbytes;
2058
6728cb0e
JA
2059 bio = req->bio;
2060 if (bio) {
1da177e4
LT
2061 /*
2062 * end more in this run, or just return 'not-done'
2063 */
2064 if (unlikely(nr_bytes <= 0))
2065 break;
2066 }
2067 }
2068
2069 /*
2070 * completely done
2071 */
2e60e022
TH
2072 if (!req->bio) {
2073 /*
2074 * Reset counters so that the request stacking driver
2075 * can find how many bytes remain in the request
2076 * later.
2077 */
a2dec7b3 2078 req->__data_len = 0;
2e60e022
TH
2079 return false;
2080 }
1da177e4
LT
2081
2082 /*
2083 * if the request wasn't completed, update state
2084 */
2085 if (bio_nbytes) {
5bb23a68 2086 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2087 bio->bi_idx += next_idx;
2088 bio_iovec(bio)->bv_offset += nr_bytes;
2089 bio_iovec(bio)->bv_len -= nr_bytes;
2090 }
2091
a2dec7b3 2092 req->__data_len -= total_bytes;
2e46e8b2
TH
2093 req->buffer = bio_data(req->bio);
2094
2095 /* update sector only for requests with clear definition of sector */
33659ebb 2096 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2097 req->__sector += total_bytes >> 9;
2e46e8b2 2098
80a761fd
TH
2099 /* mixed attributes always follow the first bio */
2100 if (req->cmd_flags & REQ_MIXED_MERGE) {
2101 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2102 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2103 }
2104
2e46e8b2
TH
2105 /*
2106 * If total number of sectors is less than the first segment
2107 * size, something has gone terribly wrong.
2108 */
2109 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2110 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2111 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2112 }
2113
2114 /* recalculate the number of segments */
1da177e4 2115 blk_recalc_rq_segments(req);
2e46e8b2 2116
2e60e022 2117 return true;
1da177e4 2118}
2e60e022 2119EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2120
2e60e022
TH
2121static bool blk_update_bidi_request(struct request *rq, int error,
2122 unsigned int nr_bytes,
2123 unsigned int bidi_bytes)
5efccd17 2124{
2e60e022
TH
2125 if (blk_update_request(rq, error, nr_bytes))
2126 return true;
5efccd17 2127
2e60e022
TH
2128 /* Bidi request must be completed as a whole */
2129 if (unlikely(blk_bidi_rq(rq)) &&
2130 blk_update_request(rq->next_rq, error, bidi_bytes))
2131 return true;
5efccd17 2132
e2e1a148
JA
2133 if (blk_queue_add_random(rq->q))
2134 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2135
2136 return false;
1da177e4
LT
2137}
2138
28018c24
JB
2139/**
2140 * blk_unprep_request - unprepare a request
2141 * @req: the request
2142 *
2143 * This function makes a request ready for complete resubmission (or
2144 * completion). It happens only after all error handling is complete,
2145 * so represents the appropriate moment to deallocate any resources
2146 * that were allocated to the request in the prep_rq_fn. The queue
2147 * lock is held when calling this.
2148 */
2149void blk_unprep_request(struct request *req)
2150{
2151 struct request_queue *q = req->q;
2152
2153 req->cmd_flags &= ~REQ_DONTPREP;
2154 if (q->unprep_rq_fn)
2155 q->unprep_rq_fn(q, req);
2156}
2157EXPORT_SYMBOL_GPL(blk_unprep_request);
2158
1da177e4
LT
2159/*
2160 * queue lock must be held
2161 */
2e60e022 2162static void blk_finish_request(struct request *req, int error)
1da177e4 2163{
b8286239
KU
2164 if (blk_rq_tagged(req))
2165 blk_queue_end_tag(req->q, req);
2166
ba396a6c 2167 BUG_ON(blk_queued_rq(req));
1da177e4 2168
33659ebb 2169 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2170 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2171
e78042e5
MA
2172 blk_delete_timer(req);
2173
28018c24
JB
2174 if (req->cmd_flags & REQ_DONTPREP)
2175 blk_unprep_request(req);
2176
2177
bc58ba94 2178 blk_account_io_done(req);
b8286239 2179
1da177e4 2180 if (req->end_io)
8ffdc655 2181 req->end_io(req, error);
b8286239
KU
2182 else {
2183 if (blk_bidi_rq(req))
2184 __blk_put_request(req->next_rq->q, req->next_rq);
2185
1da177e4 2186 __blk_put_request(req->q, req);
b8286239 2187 }
1da177e4
LT
2188}
2189
3b11313a 2190/**
2e60e022
TH
2191 * blk_end_bidi_request - Complete a bidi request
2192 * @rq: the request to complete
2193 * @error: %0 for success, < %0 for error
2194 * @nr_bytes: number of bytes to complete @rq
2195 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2196 *
2197 * Description:
e3a04fe3 2198 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2199 * Drivers that supports bidi can safely call this member for any
2200 * type of request, bidi or uni. In the later case @bidi_bytes is
2201 * just ignored.
336cdb40
KU
2202 *
2203 * Return:
2e60e022
TH
2204 * %false - we are done with this request
2205 * %true - still buffers pending for this request
a0cd1285 2206 **/
b1f74493 2207static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2208 unsigned int nr_bytes, unsigned int bidi_bytes)
2209{
336cdb40 2210 struct request_queue *q = rq->q;
2e60e022 2211 unsigned long flags;
32fab448 2212
2e60e022
TH
2213 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2214 return true;
32fab448 2215
336cdb40 2216 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2217 blk_finish_request(rq, error);
336cdb40
KU
2218 spin_unlock_irqrestore(q->queue_lock, flags);
2219
2e60e022 2220 return false;
32fab448
KU
2221}
2222
336cdb40 2223/**
2e60e022
TH
2224 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2225 * @rq: the request to complete
710027a4 2226 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2227 * @nr_bytes: number of bytes to complete @rq
2228 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2229 *
2230 * Description:
2e60e022
TH
2231 * Identical to blk_end_bidi_request() except that queue lock is
2232 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2233 *
2234 * Return:
2e60e022
TH
2235 * %false - we are done with this request
2236 * %true - still buffers pending for this request
336cdb40 2237 **/
b1f74493
FT
2238static bool __blk_end_bidi_request(struct request *rq, int error,
2239 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2240{
2e60e022
TH
2241 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2242 return true;
336cdb40 2243
2e60e022 2244 blk_finish_request(rq, error);
336cdb40 2245
2e60e022 2246 return false;
336cdb40 2247}
e19a3ab0
KU
2248
2249/**
2250 * blk_end_request - Helper function for drivers to complete the request.
2251 * @rq: the request being processed
710027a4 2252 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2253 * @nr_bytes: number of bytes to complete
2254 *
2255 * Description:
2256 * Ends I/O on a number of bytes attached to @rq.
2257 * If @rq has leftover, sets it up for the next range of segments.
2258 *
2259 * Return:
b1f74493
FT
2260 * %false - we are done with this request
2261 * %true - still buffers pending for this request
e19a3ab0 2262 **/
b1f74493 2263bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2264{
b1f74493 2265 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2266}
56ad1740 2267EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2268
2269/**
b1f74493
FT
2270 * blk_end_request_all - Helper function for drives to finish the request.
2271 * @rq: the request to finish
8ebf9756 2272 * @error: %0 for success, < %0 for error
336cdb40
KU
2273 *
2274 * Description:
b1f74493
FT
2275 * Completely finish @rq.
2276 */
2277void blk_end_request_all(struct request *rq, int error)
336cdb40 2278{
b1f74493
FT
2279 bool pending;
2280 unsigned int bidi_bytes = 0;
336cdb40 2281
b1f74493
FT
2282 if (unlikely(blk_bidi_rq(rq)))
2283 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2284
b1f74493
FT
2285 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2286 BUG_ON(pending);
2287}
56ad1740 2288EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2289
b1f74493
FT
2290/**
2291 * blk_end_request_cur - Helper function to finish the current request chunk.
2292 * @rq: the request to finish the current chunk for
8ebf9756 2293 * @error: %0 for success, < %0 for error
b1f74493
FT
2294 *
2295 * Description:
2296 * Complete the current consecutively mapped chunk from @rq.
2297 *
2298 * Return:
2299 * %false - we are done with this request
2300 * %true - still buffers pending for this request
2301 */
2302bool blk_end_request_cur(struct request *rq, int error)
2303{
2304 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2305}
56ad1740 2306EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2307
80a761fd
TH
2308/**
2309 * blk_end_request_err - Finish a request till the next failure boundary.
2310 * @rq: the request to finish till the next failure boundary for
2311 * @error: must be negative errno
2312 *
2313 * Description:
2314 * Complete @rq till the next failure boundary.
2315 *
2316 * Return:
2317 * %false - we are done with this request
2318 * %true - still buffers pending for this request
2319 */
2320bool blk_end_request_err(struct request *rq, int error)
2321{
2322 WARN_ON(error >= 0);
2323 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2324}
2325EXPORT_SYMBOL_GPL(blk_end_request_err);
2326
e3a04fe3 2327/**
b1f74493
FT
2328 * __blk_end_request - Helper function for drivers to complete the request.
2329 * @rq: the request being processed
2330 * @error: %0 for success, < %0 for error
2331 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2332 *
2333 * Description:
b1f74493 2334 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2335 *
2336 * Return:
b1f74493
FT
2337 * %false - we are done with this request
2338 * %true - still buffers pending for this request
e3a04fe3 2339 **/
b1f74493 2340bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2341{
b1f74493 2342 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2343}
56ad1740 2344EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2345
32fab448 2346/**
b1f74493
FT
2347 * __blk_end_request_all - Helper function for drives to finish the request.
2348 * @rq: the request to finish
8ebf9756 2349 * @error: %0 for success, < %0 for error
32fab448
KU
2350 *
2351 * Description:
b1f74493 2352 * Completely finish @rq. Must be called with queue lock held.
32fab448 2353 */
b1f74493 2354void __blk_end_request_all(struct request *rq, int error)
32fab448 2355{
b1f74493
FT
2356 bool pending;
2357 unsigned int bidi_bytes = 0;
2358
2359 if (unlikely(blk_bidi_rq(rq)))
2360 bidi_bytes = blk_rq_bytes(rq->next_rq);
2361
2362 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2363 BUG_ON(pending);
32fab448 2364}
56ad1740 2365EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2366
e19a3ab0 2367/**
b1f74493
FT
2368 * __blk_end_request_cur - Helper function to finish the current request chunk.
2369 * @rq: the request to finish the current chunk for
8ebf9756 2370 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2371 *
2372 * Description:
b1f74493
FT
2373 * Complete the current consecutively mapped chunk from @rq. Must
2374 * be called with queue lock held.
e19a3ab0
KU
2375 *
2376 * Return:
b1f74493
FT
2377 * %false - we are done with this request
2378 * %true - still buffers pending for this request
2379 */
2380bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2381{
b1f74493 2382 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2383}
56ad1740 2384EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2385
80a761fd
TH
2386/**
2387 * __blk_end_request_err - Finish a request till the next failure boundary.
2388 * @rq: the request to finish till the next failure boundary for
2389 * @error: must be negative errno
2390 *
2391 * Description:
2392 * Complete @rq till the next failure boundary. Must be called
2393 * with queue lock held.
2394 *
2395 * Return:
2396 * %false - we are done with this request
2397 * %true - still buffers pending for this request
2398 */
2399bool __blk_end_request_err(struct request *rq, int error)
2400{
2401 WARN_ON(error >= 0);
2402 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2403}
2404EXPORT_SYMBOL_GPL(__blk_end_request_err);
2405
86db1e29
JA
2406void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2407 struct bio *bio)
1da177e4 2408{
a82afdfc 2409 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2410 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2411
fb2dce86
DW
2412 if (bio_has_data(bio)) {
2413 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2414 rq->buffer = bio_data(bio);
2415 }
a2dec7b3 2416 rq->__data_len = bio->bi_size;
1da177e4 2417 rq->bio = rq->biotail = bio;
1da177e4 2418
66846572
N
2419 if (bio->bi_bdev)
2420 rq->rq_disk = bio->bi_bdev->bd_disk;
2421}
1da177e4 2422
2d4dc890
IL
2423#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2424/**
2425 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2426 * @rq: the request to be flushed
2427 *
2428 * Description:
2429 * Flush all pages in @rq.
2430 */
2431void rq_flush_dcache_pages(struct request *rq)
2432{
2433 struct req_iterator iter;
2434 struct bio_vec *bvec;
2435
2436 rq_for_each_segment(bvec, rq, iter)
2437 flush_dcache_page(bvec->bv_page);
2438}
2439EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2440#endif
2441
ef9e3fac
KU
2442/**
2443 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2444 * @q : the queue of the device being checked
2445 *
2446 * Description:
2447 * Check if underlying low-level drivers of a device are busy.
2448 * If the drivers want to export their busy state, they must set own
2449 * exporting function using blk_queue_lld_busy() first.
2450 *
2451 * Basically, this function is used only by request stacking drivers
2452 * to stop dispatching requests to underlying devices when underlying
2453 * devices are busy. This behavior helps more I/O merging on the queue
2454 * of the request stacking driver and prevents I/O throughput regression
2455 * on burst I/O load.
2456 *
2457 * Return:
2458 * 0 - Not busy (The request stacking driver should dispatch request)
2459 * 1 - Busy (The request stacking driver should stop dispatching request)
2460 */
2461int blk_lld_busy(struct request_queue *q)
2462{
2463 if (q->lld_busy_fn)
2464 return q->lld_busy_fn(q);
2465
2466 return 0;
2467}
2468EXPORT_SYMBOL_GPL(blk_lld_busy);
2469
b0fd271d
KU
2470/**
2471 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2472 * @rq: the clone request to be cleaned up
2473 *
2474 * Description:
2475 * Free all bios in @rq for a cloned request.
2476 */
2477void blk_rq_unprep_clone(struct request *rq)
2478{
2479 struct bio *bio;
2480
2481 while ((bio = rq->bio) != NULL) {
2482 rq->bio = bio->bi_next;
2483
2484 bio_put(bio);
2485 }
2486}
2487EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2488
2489/*
2490 * Copy attributes of the original request to the clone request.
2491 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2492 */
2493static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2494{
2495 dst->cpu = src->cpu;
2496 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
3383977f
S
2497 if (src->cmd_flags & REQ_DISCARD)
2498 dst->cmd_flags |= REQ_DISCARD;
b0fd271d
KU
2499 dst->cmd_type = src->cmd_type;
2500 dst->__sector = blk_rq_pos(src);
2501 dst->__data_len = blk_rq_bytes(src);
2502 dst->nr_phys_segments = src->nr_phys_segments;
2503 dst->ioprio = src->ioprio;
2504 dst->extra_len = src->extra_len;
2505}
2506
2507/**
2508 * blk_rq_prep_clone - Helper function to setup clone request
2509 * @rq: the request to be setup
2510 * @rq_src: original request to be cloned
2511 * @bs: bio_set that bios for clone are allocated from
2512 * @gfp_mask: memory allocation mask for bio
2513 * @bio_ctr: setup function to be called for each clone bio.
2514 * Returns %0 for success, non %0 for failure.
2515 * @data: private data to be passed to @bio_ctr
2516 *
2517 * Description:
2518 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2519 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2520 * are not copied, and copying such parts is the caller's responsibility.
2521 * Also, pages which the original bios are pointing to are not copied
2522 * and the cloned bios just point same pages.
2523 * So cloned bios must be completed before original bios, which means
2524 * the caller must complete @rq before @rq_src.
2525 */
2526int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2527 struct bio_set *bs, gfp_t gfp_mask,
2528 int (*bio_ctr)(struct bio *, struct bio *, void *),
2529 void *data)
2530{
2531 struct bio *bio, *bio_src;
2532
2533 if (!bs)
2534 bs = fs_bio_set;
2535
2536 blk_rq_init(NULL, rq);
2537
2538 __rq_for_each_bio(bio_src, rq_src) {
2539 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2540 if (!bio)
2541 goto free_and_out;
2542
2543 __bio_clone(bio, bio_src);
2544
2545 if (bio_integrity(bio_src) &&
7878cba9 2546 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2547 goto free_and_out;
2548
2549 if (bio_ctr && bio_ctr(bio, bio_src, data))
2550 goto free_and_out;
2551
2552 if (rq->bio) {
2553 rq->biotail->bi_next = bio;
2554 rq->biotail = bio;
2555 } else
2556 rq->bio = rq->biotail = bio;
2557 }
2558
2559 __blk_rq_prep_clone(rq, rq_src);
2560
2561 return 0;
2562
2563free_and_out:
2564 if (bio)
2565 bio_free(bio, bs);
2566 blk_rq_unprep_clone(rq);
2567
2568 return -ENOMEM;
2569}
2570EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2571
18887ad9 2572int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2573{
2574 return queue_work(kblockd_workqueue, work);
2575}
1da177e4
LT
2576EXPORT_SYMBOL(kblockd_schedule_work);
2577
1da177e4
LT
2578int __init blk_dev_init(void)
2579{
9eb55b03
NK
2580 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2581 sizeof(((struct request *)0)->cmd_flags));
2582
1da177e4
LT
2583 kblockd_workqueue = create_workqueue("kblockd");
2584 if (!kblockd_workqueue)
2585 panic("Failed to create kblockd\n");
2586
2587 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2588 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2589
8324aa91 2590 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2591 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2592
d38ecf93 2593 return 0;
1da177e4 2594}