]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: misc cleanups in barrier code
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
55782138
LZ
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
0bfc2455 36EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
b0da3f0d 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 39
165125e1 40static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
83096ebf 67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
c9959059 68
28f13702 69 if (!new_io)
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
28f13702 71 else {
074a7aca 72 part_round_stats(cpu, part);
316d315b 73 part_inc_in_flight(part, rw);
26b8256e 74 }
e71bf0d0 75
074a7aca 76 part_stat_unlock();
26b8256e
JA
77}
78
8324aa91 79void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
80{
81 int nr;
82
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
87
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
92}
93
1da177e4
LT
94/**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
97 *
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
100 *
101 * Will return NULL if the request queue cannot be located.
102 */
103struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104{
105 struct backing_dev_info *ret = NULL;
165125e1 106 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
107
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
111}
1da177e4
LT
112EXPORT_SYMBOL(blk_get_backing_dev_info);
113
2a4aa30c 114void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 115{
1afb20f3
FT
116 memset(rq, 0, sizeof(*rq));
117
1da177e4 118 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 119 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 120 rq->cpu = -1;
63a71386 121 rq->q = q;
a2dec7b3 122 rq->__sector = (sector_t) -1;
2e662b65
JA
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 125 rq->cmd = rq->__cmd;
e2494e1b 126 rq->cmd_len = BLK_MAX_CDB;
63a71386 127 rq->tag = -1;
1da177e4 128 rq->ref_count = 1;
b243ddcb 129 rq->start_time = jiffies;
9195291e 130 set_start_time_ns(rq);
1da177e4 131}
2a4aa30c 132EXPORT_SYMBOL(blk_rq_init);
1da177e4 133
5bb23a68
N
134static void req_bio_endio(struct request *rq, struct bio *bio,
135 unsigned int nbytes, int error)
1da177e4 136{
165125e1 137 struct request_queue *q = rq->q;
797e7dbb 138
5bb23a68
N
139 if (&q->bar_rq != rq) {
140 if (error)
141 clear_bit(BIO_UPTODATE, &bio->bi_flags);
142 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
143 error = -EIO;
797e7dbb 144
5bb23a68 145 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 146 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 147 __func__, nbytes, bio->bi_size);
5bb23a68
N
148 nbytes = bio->bi_size;
149 }
797e7dbb 150
08bafc03
KM
151 if (unlikely(rq->cmd_flags & REQ_QUIET))
152 set_bit(BIO_QUIET, &bio->bi_flags);
153
5bb23a68
N
154 bio->bi_size -= nbytes;
155 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
156
157 if (bio_integrity(bio))
158 bio_integrity_advance(bio, nbytes);
159
5bb23a68 160 if (bio->bi_size == 0)
6712ecf8 161 bio_endio(bio, error);
5bb23a68
N
162 } else {
163
164 /*
165 * Okay, this is the barrier request in progress, just
166 * record the error;
167 */
168 if (error && !q->orderr)
169 q->orderr = error;
170 }
1da177e4 171}
1da177e4 172
1da177e4
LT
173void blk_dump_rq_flags(struct request *rq, char *msg)
174{
175 int bit;
176
6728cb0e 177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
1da177e4 180
83096ebf
TH
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 186
33659ebb 187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 188 printk(KERN_INFO " cdb: ");
d34c87e4 189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193}
1da177e4
LT
194EXPORT_SYMBOL(blk_dump_rq_flags);
195
1da177e4
LT
196/*
197 * "plug" the device if there are no outstanding requests: this will
198 * force the transfer to start only after we have put all the requests
199 * on the list.
200 *
201 * This is called with interrupts off and no requests on the queue and
202 * with the queue lock held.
203 */
165125e1 204void blk_plug_device(struct request_queue *q)
1da177e4
LT
205{
206 WARN_ON(!irqs_disabled());
207
208 /*
209 * don't plug a stopped queue, it must be paired with blk_start_queue()
210 * which will restart the queueing
211 */
7daac490 212 if (blk_queue_stopped(q))
1da177e4
LT
213 return;
214
e48ec690 215 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 216 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 217 trace_block_plug(q);
2056a782 218 }
1da177e4 219}
1da177e4
LT
220EXPORT_SYMBOL(blk_plug_device);
221
6c5e0c4d
JA
222/**
223 * blk_plug_device_unlocked - plug a device without queue lock held
224 * @q: The &struct request_queue to plug
225 *
226 * Description:
227 * Like @blk_plug_device(), but grabs the queue lock and disables
228 * interrupts.
229 **/
230void blk_plug_device_unlocked(struct request_queue *q)
231{
232 unsigned long flags;
233
234 spin_lock_irqsave(q->queue_lock, flags);
235 blk_plug_device(q);
236 spin_unlock_irqrestore(q->queue_lock, flags);
237}
238EXPORT_SYMBOL(blk_plug_device_unlocked);
239
1da177e4
LT
240/*
241 * remove the queue from the plugged list, if present. called with
242 * queue lock held and interrupts disabled.
243 */
165125e1 244int blk_remove_plug(struct request_queue *q)
1da177e4
LT
245{
246 WARN_ON(!irqs_disabled());
247
e48ec690 248 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
249 return 0;
250
251 del_timer(&q->unplug_timer);
252 return 1;
253}
1da177e4
LT
254EXPORT_SYMBOL(blk_remove_plug);
255
256/*
257 * remove the plug and let it rip..
258 */
165125e1 259void __generic_unplug_device(struct request_queue *q)
1da177e4 260{
7daac490 261 if (unlikely(blk_queue_stopped(q)))
1da177e4 262 return;
a31a9738 263 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
264 return;
265
22e2c507 266 q->request_fn(q);
1da177e4 267}
1da177e4
LT
268
269/**
270 * generic_unplug_device - fire a request queue
165125e1 271 * @q: The &struct request_queue in question
1da177e4
LT
272 *
273 * Description:
274 * Linux uses plugging to build bigger requests queues before letting
275 * the device have at them. If a queue is plugged, the I/O scheduler
276 * is still adding and merging requests on the queue. Once the queue
277 * gets unplugged, the request_fn defined for the queue is invoked and
278 * transfers started.
279 **/
165125e1 280void generic_unplug_device(struct request_queue *q)
1da177e4 281{
dbaf2c00
JA
282 if (blk_queue_plugged(q)) {
283 spin_lock_irq(q->queue_lock);
284 __generic_unplug_device(q);
285 spin_unlock_irq(q->queue_lock);
286 }
1da177e4
LT
287}
288EXPORT_SYMBOL(generic_unplug_device);
289
290static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
291 struct page *page)
292{
165125e1 293 struct request_queue *q = bdi->unplug_io_data;
1da177e4 294
2ad8b1ef 295 blk_unplug(q);
1da177e4
LT
296}
297
86db1e29 298void blk_unplug_work(struct work_struct *work)
1da177e4 299{
165125e1
JA
300 struct request_queue *q =
301 container_of(work, struct request_queue, unplug_work);
1da177e4 302
5f3ea37c 303 trace_block_unplug_io(q);
1da177e4
LT
304 q->unplug_fn(q);
305}
306
86db1e29 307void blk_unplug_timeout(unsigned long data)
1da177e4 308{
165125e1 309 struct request_queue *q = (struct request_queue *)data;
1da177e4 310
5f3ea37c 311 trace_block_unplug_timer(q);
18887ad9 312 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
313}
314
2ad8b1ef
AB
315void blk_unplug(struct request_queue *q)
316{
317 /*
318 * devices don't necessarily have an ->unplug_fn defined
319 */
320 if (q->unplug_fn) {
5f3ea37c 321 trace_block_unplug_io(q);
2ad8b1ef
AB
322 q->unplug_fn(q);
323 }
324}
325EXPORT_SYMBOL(blk_unplug);
326
1da177e4
LT
327/**
328 * blk_start_queue - restart a previously stopped queue
165125e1 329 * @q: The &struct request_queue in question
1da177e4
LT
330 *
331 * Description:
332 * blk_start_queue() will clear the stop flag on the queue, and call
333 * the request_fn for the queue if it was in a stopped state when
334 * entered. Also see blk_stop_queue(). Queue lock must be held.
335 **/
165125e1 336void blk_start_queue(struct request_queue *q)
1da177e4 337{
a038e253
PBG
338 WARN_ON(!irqs_disabled());
339
75ad23bc 340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 341 __blk_run_queue(q);
1da177e4 342}
1da177e4
LT
343EXPORT_SYMBOL(blk_start_queue);
344
345/**
346 * blk_stop_queue - stop a queue
165125e1 347 * @q: The &struct request_queue in question
1da177e4
LT
348 *
349 * Description:
350 * The Linux block layer assumes that a block driver will consume all
351 * entries on the request queue when the request_fn strategy is called.
352 * Often this will not happen, because of hardware limitations (queue
353 * depth settings). If a device driver gets a 'queue full' response,
354 * or if it simply chooses not to queue more I/O at one point, it can
355 * call this function to prevent the request_fn from being called until
356 * the driver has signalled it's ready to go again. This happens by calling
357 * blk_start_queue() to restart queue operations. Queue lock must be held.
358 **/
165125e1 359void blk_stop_queue(struct request_queue *q)
1da177e4
LT
360{
361 blk_remove_plug(q);
75ad23bc 362 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
363}
364EXPORT_SYMBOL(blk_stop_queue);
365
366/**
367 * blk_sync_queue - cancel any pending callbacks on a queue
368 * @q: the queue
369 *
370 * Description:
371 * The block layer may perform asynchronous callback activity
372 * on a queue, such as calling the unplug function after a timeout.
373 * A block device may call blk_sync_queue to ensure that any
374 * such activity is cancelled, thus allowing it to release resources
59c51591 375 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
376 * that its ->make_request_fn will not re-add plugging prior to calling
377 * this function.
378 *
379 */
380void blk_sync_queue(struct request_queue *q)
381{
382 del_timer_sync(&q->unplug_timer);
70ed28b9 383 del_timer_sync(&q->timeout);
64d01dc9 384 cancel_work_sync(&q->unplug_work);
1da177e4
LT
385}
386EXPORT_SYMBOL(blk_sync_queue);
387
388/**
80a4b58e 389 * __blk_run_queue - run a single device queue
1da177e4 390 * @q: The queue to run
80a4b58e
JA
391 *
392 * Description:
393 * See @blk_run_queue. This variant must be called with the queue lock
394 * held and interrupts disabled.
395 *
1da177e4 396 */
75ad23bc 397void __blk_run_queue(struct request_queue *q)
1da177e4 398{
1da177e4 399 blk_remove_plug(q);
dac07ec1 400
a538cd03
TH
401 if (unlikely(blk_queue_stopped(q)))
402 return;
403
404 if (elv_queue_empty(q))
405 return;
406
dac07ec1
JA
407 /*
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
410 */
a538cd03
TH
411 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
412 q->request_fn(q);
413 queue_flag_clear(QUEUE_FLAG_REENTER, q);
414 } else {
415 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
416 kblockd_schedule_work(q, &q->unplug_work);
417 }
75ad23bc
NP
418}
419EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 420
75ad23bc
NP
421/**
422 * blk_run_queue - run a single device queue
423 * @q: The queue to run
80a4b58e
JA
424 *
425 * Description:
426 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 427 * May be used to restart queueing when a request has completed.
75ad23bc
NP
428 */
429void blk_run_queue(struct request_queue *q)
430{
431 unsigned long flags;
432
433 spin_lock_irqsave(q->queue_lock, flags);
434 __blk_run_queue(q);
1da177e4
LT
435 spin_unlock_irqrestore(q->queue_lock, flags);
436}
437EXPORT_SYMBOL(blk_run_queue);
438
165125e1 439void blk_put_queue(struct request_queue *q)
483f4afc
AV
440{
441 kobject_put(&q->kobj);
442}
483f4afc 443
6728cb0e 444void blk_cleanup_queue(struct request_queue *q)
483f4afc 445{
e3335de9
JA
446 /*
447 * We know we have process context here, so we can be a little
448 * cautious and ensure that pending block actions on this device
449 * are done before moving on. Going into this function, we should
450 * not have processes doing IO to this device.
451 */
452 blk_sync_queue(q);
453
31373d09 454 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 455 mutex_lock(&q->sysfs_lock);
75ad23bc 456 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
457 mutex_unlock(&q->sysfs_lock);
458
459 if (q->elevator)
460 elevator_exit(q->elevator);
461
462 blk_put_queue(q);
463}
1da177e4
LT
464EXPORT_SYMBOL(blk_cleanup_queue);
465
165125e1 466static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
467{
468 struct request_list *rl = &q->rq;
469
1abec4fd
MS
470 if (unlikely(rl->rq_pool))
471 return 0;
472
1faa16d2
JA
473 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
474 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 475 rl->elvpriv = 0;
1faa16d2
JA
476 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
477 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 478
1946089a
CL
479 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
480 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
481
482 if (!rl->rq_pool)
483 return -ENOMEM;
484
485 return 0;
486}
487
165125e1 488struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 489{
1946089a
CL
490 return blk_alloc_queue_node(gfp_mask, -1);
491}
492EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 493
165125e1 494struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 495{
165125e1 496 struct request_queue *q;
e0bf68dd 497 int err;
1946089a 498
8324aa91 499 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 500 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
501 if (!q)
502 return NULL;
503
e0bf68dd
PZ
504 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
505 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
506 q->backing_dev_info.ra_pages =
507 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
508 q->backing_dev_info.state = 0;
509 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 510 q->backing_dev_info.name = "block";
0989a025 511
e0bf68dd
PZ
512 err = bdi_init(&q->backing_dev_info);
513 if (err) {
8324aa91 514 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
515 return NULL;
516 }
517
31373d09
MG
518 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
519 laptop_mode_timer_fn, (unsigned long) q);
1da177e4 520 init_timer(&q->unplug_timer);
242f9dcb
JA
521 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
522 INIT_LIST_HEAD(&q->timeout_list);
713ada9b 523 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 524
8324aa91 525 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 526
483f4afc 527 mutex_init(&q->sysfs_lock);
e7e72bf6 528 spin_lock_init(&q->__queue_lock);
483f4afc 529
1da177e4
LT
530 return q;
531}
1946089a 532EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
533
534/**
535 * blk_init_queue - prepare a request queue for use with a block device
536 * @rfn: The function to be called to process requests that have been
537 * placed on the queue.
538 * @lock: Request queue spin lock
539 *
540 * Description:
541 * If a block device wishes to use the standard request handling procedures,
542 * which sorts requests and coalesces adjacent requests, then it must
543 * call blk_init_queue(). The function @rfn will be called when there
544 * are requests on the queue that need to be processed. If the device
545 * supports plugging, then @rfn may not be called immediately when requests
546 * are available on the queue, but may be called at some time later instead.
547 * Plugged queues are generally unplugged when a buffer belonging to one
548 * of the requests on the queue is needed, or due to memory pressure.
549 *
550 * @rfn is not required, or even expected, to remove all requests off the
551 * queue, but only as many as it can handle at a time. If it does leave
552 * requests on the queue, it is responsible for arranging that the requests
553 * get dealt with eventually.
554 *
555 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
556 * request queue; this lock will be taken also from interrupt context, so irq
557 * disabling is needed for it.
1da177e4 558 *
710027a4 559 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
560 * it didn't succeed.
561 *
562 * Note:
563 * blk_init_queue() must be paired with a blk_cleanup_queue() call
564 * when the block device is deactivated (such as at module unload).
565 **/
1946089a 566
165125e1 567struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 568{
1946089a
CL
569 return blk_init_queue_node(rfn, lock, -1);
570}
571EXPORT_SYMBOL(blk_init_queue);
572
165125e1 573struct request_queue *
1946089a
CL
574blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
575{
c86d1b8a 576 struct request_queue *uninit_q, *q;
1da177e4 577
c86d1b8a
MS
578 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
579 if (!uninit_q)
580 return NULL;
581
582 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
583 if (!q)
584 blk_cleanup_queue(uninit_q);
585
586 return q;
01effb0d
MS
587}
588EXPORT_SYMBOL(blk_init_queue_node);
589
590struct request_queue *
591blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
592 spinlock_t *lock)
593{
594 return blk_init_allocated_queue_node(q, rfn, lock, -1);
595}
596EXPORT_SYMBOL(blk_init_allocated_queue);
597
598struct request_queue *
599blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
600 spinlock_t *lock, int node_id)
601{
1da177e4
LT
602 if (!q)
603 return NULL;
604
1946089a 605 q->node = node_id;
c86d1b8a 606 if (blk_init_free_list(q))
8669aafd 607 return NULL;
1da177e4
LT
608
609 q->request_fn = rfn;
1da177e4 610 q->prep_rq_fn = NULL;
28018c24 611 q->unprep_rq_fn = NULL;
1da177e4 612 q->unplug_fn = generic_unplug_device;
bc58ba94 613 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
614 q->queue_lock = lock;
615
f3b144aa
JA
616 /*
617 * This also sets hw/phys segments, boundary and size
618 */
1da177e4 619 blk_queue_make_request(q, __make_request);
1da177e4 620
44ec9542
AS
621 q->sg_reserved_size = INT_MAX;
622
1da177e4
LT
623 /*
624 * all done
625 */
626 if (!elevator_init(q, NULL)) {
627 blk_queue_congestion_threshold(q);
628 return q;
629 }
630
1da177e4
LT
631 return NULL;
632}
01effb0d 633EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 634
165125e1 635int blk_get_queue(struct request_queue *q)
1da177e4 636{
fde6ad22 637 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 638 kobject_get(&q->kobj);
1da177e4
LT
639 return 0;
640 }
641
642 return 1;
643}
1da177e4 644
165125e1 645static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 646{
4aff5e23 647 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 648 elv_put_request(q, rq);
1da177e4
LT
649 mempool_free(rq, q->rq.rq_pool);
650}
651
1ea25ecb 652static struct request *
42dad764 653blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
654{
655 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
656
657 if (!rq)
658 return NULL;
659
2a4aa30c 660 blk_rq_init(q, rq);
1afb20f3 661
42dad764 662 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 663
cb98fc8b 664 if (priv) {
cb78b285 665 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
666 mempool_free(rq, q->rq.rq_pool);
667 return NULL;
668 }
4aff5e23 669 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 670 }
1da177e4 671
cb98fc8b 672 return rq;
1da177e4
LT
673}
674
675/*
676 * ioc_batching returns true if the ioc is a valid batching request and
677 * should be given priority access to a request.
678 */
165125e1 679static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
680{
681 if (!ioc)
682 return 0;
683
684 /*
685 * Make sure the process is able to allocate at least 1 request
686 * even if the batch times out, otherwise we could theoretically
687 * lose wakeups.
688 */
689 return ioc->nr_batch_requests == q->nr_batching ||
690 (ioc->nr_batch_requests > 0
691 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
692}
693
694/*
695 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
696 * will cause the process to be a "batcher" on all queues in the system. This
697 * is the behaviour we want though - once it gets a wakeup it should be given
698 * a nice run.
699 */
165125e1 700static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
701{
702 if (!ioc || ioc_batching(q, ioc))
703 return;
704
705 ioc->nr_batch_requests = q->nr_batching;
706 ioc->last_waited = jiffies;
707}
708
1faa16d2 709static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
710{
711 struct request_list *rl = &q->rq;
712
1faa16d2
JA
713 if (rl->count[sync] < queue_congestion_off_threshold(q))
714 blk_clear_queue_congested(q, sync);
1da177e4 715
1faa16d2
JA
716 if (rl->count[sync] + 1 <= q->nr_requests) {
717 if (waitqueue_active(&rl->wait[sync]))
718 wake_up(&rl->wait[sync]);
1da177e4 719
1faa16d2 720 blk_clear_queue_full(q, sync);
1da177e4
LT
721 }
722}
723
724/*
725 * A request has just been released. Account for it, update the full and
726 * congestion status, wake up any waiters. Called under q->queue_lock.
727 */
1faa16d2 728static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
729{
730 struct request_list *rl = &q->rq;
731
1faa16d2 732 rl->count[sync]--;
cb98fc8b
TH
733 if (priv)
734 rl->elvpriv--;
1da177e4 735
1faa16d2 736 __freed_request(q, sync);
1da177e4 737
1faa16d2
JA
738 if (unlikely(rl->starved[sync ^ 1]))
739 __freed_request(q, sync ^ 1);
1da177e4
LT
740}
741
1da177e4 742/*
d6344532
NP
743 * Get a free request, queue_lock must be held.
744 * Returns NULL on failure, with queue_lock held.
745 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 746 */
165125e1 747static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 748 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
749{
750 struct request *rq = NULL;
751 struct request_list *rl = &q->rq;
88ee5ef1 752 struct io_context *ioc = NULL;
1faa16d2 753 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
754 int may_queue, priv;
755
7749a8d4 756 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
757 if (may_queue == ELV_MQUEUE_NO)
758 goto rq_starved;
759
1faa16d2
JA
760 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
761 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 762 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
763 /*
764 * The queue will fill after this allocation, so set
765 * it as full, and mark this process as "batching".
766 * This process will be allowed to complete a batch of
767 * requests, others will be blocked.
768 */
1faa16d2 769 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 770 ioc_set_batching(q, ioc);
1faa16d2 771 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
772 } else {
773 if (may_queue != ELV_MQUEUE_MUST
774 && !ioc_batching(q, ioc)) {
775 /*
776 * The queue is full and the allocating
777 * process is not a "batcher", and not
778 * exempted by the IO scheduler
779 */
780 goto out;
781 }
782 }
1da177e4 783 }
1faa16d2 784 blk_set_queue_congested(q, is_sync);
1da177e4
LT
785 }
786
082cf69e
JA
787 /*
788 * Only allow batching queuers to allocate up to 50% over the defined
789 * limit of requests, otherwise we could have thousands of requests
790 * allocated with any setting of ->nr_requests
791 */
1faa16d2 792 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 793 goto out;
fd782a4a 794
1faa16d2
JA
795 rl->count[is_sync]++;
796 rl->starved[is_sync] = 0;
cb98fc8b 797
64521d1a 798 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
799 if (priv)
800 rl->elvpriv++;
801
42dad764
JM
802 if (blk_queue_io_stat(q))
803 rw_flags |= REQ_IO_STAT;
1da177e4
LT
804 spin_unlock_irq(q->queue_lock);
805
7749a8d4 806 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 807 if (unlikely(!rq)) {
1da177e4
LT
808 /*
809 * Allocation failed presumably due to memory. Undo anything
810 * we might have messed up.
811 *
812 * Allocating task should really be put onto the front of the
813 * wait queue, but this is pretty rare.
814 */
815 spin_lock_irq(q->queue_lock);
1faa16d2 816 freed_request(q, is_sync, priv);
1da177e4
LT
817
818 /*
819 * in the very unlikely event that allocation failed and no
820 * requests for this direction was pending, mark us starved
821 * so that freeing of a request in the other direction will
822 * notice us. another possible fix would be to split the
823 * rq mempool into READ and WRITE
824 */
825rq_starved:
1faa16d2
JA
826 if (unlikely(rl->count[is_sync] == 0))
827 rl->starved[is_sync] = 1;
1da177e4 828
1da177e4
LT
829 goto out;
830 }
831
88ee5ef1
JA
832 /*
833 * ioc may be NULL here, and ioc_batching will be false. That's
834 * OK, if the queue is under the request limit then requests need
835 * not count toward the nr_batch_requests limit. There will always
836 * be some limit enforced by BLK_BATCH_TIME.
837 */
1da177e4
LT
838 if (ioc_batching(q, ioc))
839 ioc->nr_batch_requests--;
6728cb0e 840
1faa16d2 841 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 842out:
1da177e4
LT
843 return rq;
844}
845
846/*
847 * No available requests for this queue, unplug the device and wait for some
848 * requests to become available.
d6344532
NP
849 *
850 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 851 */
165125e1 852static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 853 struct bio *bio)
1da177e4 854{
1faa16d2 855 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
856 struct request *rq;
857
7749a8d4 858 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
859 while (!rq) {
860 DEFINE_WAIT(wait);
05caf8db 861 struct io_context *ioc;
1da177e4
LT
862 struct request_list *rl = &q->rq;
863
1faa16d2 864 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
865 TASK_UNINTERRUPTIBLE);
866
1faa16d2 867 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 868
05caf8db
ZY
869 __generic_unplug_device(q);
870 spin_unlock_irq(q->queue_lock);
871 io_schedule();
1da177e4 872
05caf8db
ZY
873 /*
874 * After sleeping, we become a "batching" process and
875 * will be able to allocate at least one request, and
876 * up to a big batch of them for a small period time.
877 * See ioc_batching, ioc_set_batching
878 */
879 ioc = current_io_context(GFP_NOIO, q->node);
880 ioc_set_batching(q, ioc);
d6344532 881
05caf8db 882 spin_lock_irq(q->queue_lock);
1faa16d2 883 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
884
885 rq = get_request(q, rw_flags, bio, GFP_NOIO);
886 };
1da177e4
LT
887
888 return rq;
889}
890
165125e1 891struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
892{
893 struct request *rq;
894
895 BUG_ON(rw != READ && rw != WRITE);
896
d6344532
NP
897 spin_lock_irq(q->queue_lock);
898 if (gfp_mask & __GFP_WAIT) {
22e2c507 899 rq = get_request_wait(q, rw, NULL);
d6344532 900 } else {
22e2c507 901 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
902 if (!rq)
903 spin_unlock_irq(q->queue_lock);
904 }
905 /* q->queue_lock is unlocked at this point */
1da177e4
LT
906
907 return rq;
908}
1da177e4
LT
909EXPORT_SYMBOL(blk_get_request);
910
dc72ef4a 911/**
79eb63e9 912 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 913 * @q: target request queue
79eb63e9
BH
914 * @bio: The bio describing the memory mappings that will be submitted for IO.
915 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 916 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 917 *
79eb63e9
BH
918 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
919 * type commands. Where the struct request needs to be farther initialized by
920 * the caller. It is passed a &struct bio, which describes the memory info of
921 * the I/O transfer.
dc72ef4a 922 *
79eb63e9
BH
923 * The caller of blk_make_request must make sure that bi_io_vec
924 * are set to describe the memory buffers. That bio_data_dir() will return
925 * the needed direction of the request. (And all bio's in the passed bio-chain
926 * are properly set accordingly)
927 *
928 * If called under none-sleepable conditions, mapped bio buffers must not
929 * need bouncing, by calling the appropriate masked or flagged allocator,
930 * suitable for the target device. Otherwise the call to blk_queue_bounce will
931 * BUG.
53674ac5
JA
932 *
933 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
934 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
935 * anything but the first bio in the chain. Otherwise you risk waiting for IO
936 * completion of a bio that hasn't been submitted yet, thus resulting in a
937 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
938 * of bio_alloc(), as that avoids the mempool deadlock.
939 * If possible a big IO should be split into smaller parts when allocation
940 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 941 */
79eb63e9
BH
942struct request *blk_make_request(struct request_queue *q, struct bio *bio,
943 gfp_t gfp_mask)
dc72ef4a 944{
79eb63e9
BH
945 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
946
947 if (unlikely(!rq))
948 return ERR_PTR(-ENOMEM);
949
950 for_each_bio(bio) {
951 struct bio *bounce_bio = bio;
952 int ret;
953
954 blk_queue_bounce(q, &bounce_bio);
955 ret = blk_rq_append_bio(q, rq, bounce_bio);
956 if (unlikely(ret)) {
957 blk_put_request(rq);
958 return ERR_PTR(ret);
959 }
960 }
961
962 return rq;
dc72ef4a 963}
79eb63e9 964EXPORT_SYMBOL(blk_make_request);
dc72ef4a 965
1da177e4
LT
966/**
967 * blk_requeue_request - put a request back on queue
968 * @q: request queue where request should be inserted
969 * @rq: request to be inserted
970 *
971 * Description:
972 * Drivers often keep queueing requests until the hardware cannot accept
973 * more, when that condition happens we need to put the request back
974 * on the queue. Must be called with queue lock held.
975 */
165125e1 976void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 977{
242f9dcb
JA
978 blk_delete_timer(rq);
979 blk_clear_rq_complete(rq);
5f3ea37c 980 trace_block_rq_requeue(q, rq);
2056a782 981
1da177e4
LT
982 if (blk_rq_tagged(rq))
983 blk_queue_end_tag(q, rq);
984
ba396a6c
JB
985 BUG_ON(blk_queued_rq(rq));
986
1da177e4
LT
987 elv_requeue_request(q, rq);
988}
1da177e4
LT
989EXPORT_SYMBOL(blk_requeue_request);
990
991/**
710027a4 992 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
993 * @q: request queue where request should be inserted
994 * @rq: request to be inserted
995 * @at_head: insert request at head or tail of queue
996 * @data: private data
1da177e4
LT
997 *
998 * Description:
999 * Many block devices need to execute commands asynchronously, so they don't
1000 * block the whole kernel from preemption during request execution. This is
1001 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
1002 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1003 * be scheduled for actual execution by the request queue.
1da177e4
LT
1004 *
1005 * We have the option of inserting the head or the tail of the queue.
1006 * Typically we use the tail for new ioctls and so forth. We use the head
1007 * of the queue for things like a QUEUE_FULL message from a device, or a
1008 * host that is unable to accept a particular command.
1009 */
165125e1 1010void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 1011 int at_head, void *data)
1da177e4 1012{
867d1191 1013 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
1014 unsigned long flags;
1015
1016 /*
1017 * tell I/O scheduler that this isn't a regular read/write (ie it
1018 * must not attempt merges on this) and that it acts as a soft
1019 * barrier
1020 */
4aff5e23 1021 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1022
1023 rq->special = data;
1024
1025 spin_lock_irqsave(q->queue_lock, flags);
1026
1027 /*
1028 * If command is tagged, release the tag
1029 */
867d1191
TH
1030 if (blk_rq_tagged(rq))
1031 blk_queue_end_tag(q, rq);
1da177e4 1032
b238b3d4 1033 drive_stat_acct(rq, 1);
867d1191 1034 __elv_add_request(q, rq, where, 0);
a7f55792 1035 __blk_run_queue(q);
1da177e4
LT
1036 spin_unlock_irqrestore(q->queue_lock, flags);
1037}
1da177e4
LT
1038EXPORT_SYMBOL(blk_insert_request);
1039
074a7aca
TH
1040static void part_round_stats_single(int cpu, struct hd_struct *part,
1041 unsigned long now)
1042{
1043 if (now == part->stamp)
1044 return;
1045
316d315b 1046 if (part_in_flight(part)) {
074a7aca 1047 __part_stat_add(cpu, part, time_in_queue,
316d315b 1048 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1049 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1050 }
1051 part->stamp = now;
1052}
1053
1054/**
496aa8a9
RD
1055 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1056 * @cpu: cpu number for stats access
1057 * @part: target partition
1da177e4
LT
1058 *
1059 * The average IO queue length and utilisation statistics are maintained
1060 * by observing the current state of the queue length and the amount of
1061 * time it has been in this state for.
1062 *
1063 * Normally, that accounting is done on IO completion, but that can result
1064 * in more than a second's worth of IO being accounted for within any one
1065 * second, leading to >100% utilisation. To deal with that, we call this
1066 * function to do a round-off before returning the results when reading
1067 * /proc/diskstats. This accounts immediately for all queue usage up to
1068 * the current jiffies and restarts the counters again.
1069 */
c9959059 1070void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1071{
1072 unsigned long now = jiffies;
1073
074a7aca
TH
1074 if (part->partno)
1075 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1076 part_round_stats_single(cpu, part, now);
6f2576af 1077}
074a7aca 1078EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1079
1da177e4
LT
1080/*
1081 * queue lock must be held
1082 */
165125e1 1083void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1084{
1da177e4
LT
1085 if (unlikely(!q))
1086 return;
1087 if (unlikely(--req->ref_count))
1088 return;
1089
8922e16c
TH
1090 elv_completed_request(q, req);
1091
1cd96c24
BH
1092 /* this is a bio leak */
1093 WARN_ON(req->bio != NULL);
1094
1da177e4
LT
1095 /*
1096 * Request may not have originated from ll_rw_blk. if not,
1097 * it didn't come out of our reserved rq pools
1098 */
49171e5c 1099 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1100 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1101 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1102
1da177e4 1103 BUG_ON(!list_empty(&req->queuelist));
9817064b 1104 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1105
1106 blk_free_request(q, req);
1faa16d2 1107 freed_request(q, is_sync, priv);
1da177e4
LT
1108 }
1109}
6e39b69e
MC
1110EXPORT_SYMBOL_GPL(__blk_put_request);
1111
1da177e4
LT
1112void blk_put_request(struct request *req)
1113{
8922e16c 1114 unsigned long flags;
165125e1 1115 struct request_queue *q = req->q;
8922e16c 1116
52a93ba8
FT
1117 spin_lock_irqsave(q->queue_lock, flags);
1118 __blk_put_request(q, req);
1119 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1120}
1da177e4
LT
1121EXPORT_SYMBOL(blk_put_request);
1122
66ac0280
CH
1123/**
1124 * blk_add_request_payload - add a payload to a request
1125 * @rq: request to update
1126 * @page: page backing the payload
1127 * @len: length of the payload.
1128 *
1129 * This allows to later add a payload to an already submitted request by
1130 * a block driver. The driver needs to take care of freeing the payload
1131 * itself.
1132 *
1133 * Note that this is a quite horrible hack and nothing but handling of
1134 * discard requests should ever use it.
1135 */
1136void blk_add_request_payload(struct request *rq, struct page *page,
1137 unsigned int len)
1138{
1139 struct bio *bio = rq->bio;
1140
1141 bio->bi_io_vec->bv_page = page;
1142 bio->bi_io_vec->bv_offset = 0;
1143 bio->bi_io_vec->bv_len = len;
1144
1145 bio->bi_size = len;
1146 bio->bi_vcnt = 1;
1147 bio->bi_phys_segments = 1;
1148
1149 rq->__data_len = rq->resid_len = len;
1150 rq->nr_phys_segments = 1;
1151 rq->buffer = bio_data(bio);
1152}
1153EXPORT_SYMBOL_GPL(blk_add_request_payload);
1154
86db1e29 1155void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1156{
c7c22e4d 1157 req->cpu = bio->bi_comp_cpu;
4aff5e23 1158 req->cmd_type = REQ_TYPE_FS;
52d9e675 1159
7b6d91da
CH
1160 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1161 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1162 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1163
52d9e675 1164 req->errors = 0;
a2dec7b3 1165 req->__sector = bio->bi_sector;
52d9e675 1166 req->ioprio = bio_prio(bio);
bc1c56fd 1167 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1168}
1169
644b2d99
JA
1170/*
1171 * Only disabling plugging for non-rotational devices if it does tagging
1172 * as well, otherwise we do need the proper merging
1173 */
1174static inline bool queue_should_plug(struct request_queue *q)
1175{
79da0644 1176 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
644b2d99
JA
1177}
1178
165125e1 1179static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1180{
450991bc 1181 struct request *req;
2e46e8b2
TH
1182 int el_ret;
1183 unsigned int bytes = bio->bi_size;
51da90fc 1184 const unsigned short prio = bio_prio(bio);
7b6d91da
CH
1185 const bool sync = (bio->bi_rw & REQ_SYNC);
1186 const bool unplug = (bio->bi_rw & REQ_UNPLUG);
80a761fd 1187 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
7749a8d4 1188 int rw_flags;
1da177e4 1189
4913efe4
TH
1190 /* REQ_HARDBARRIER is no more */
1191 if (WARN_ONCE(bio->bi_rw & REQ_HARDBARRIER,
1192 "block: HARDBARRIER is deprecated, use FLUSH/FUA instead\n")) {
db64f680
N
1193 bio_endio(bio, -EOPNOTSUPP);
1194 return 0;
1195 }
4913efe4 1196
1da177e4
LT
1197 /*
1198 * low level driver can indicate that it wants pages above a
1199 * certain limit bounced to low memory (ie for highmem, or even
1200 * ISA dma in theory)
1201 */
1202 blk_queue_bounce(q, &bio);
1203
1da177e4
LT
1204 spin_lock_irq(q->queue_lock);
1205
7b6d91da 1206 if (unlikely((bio->bi_rw & REQ_HARDBARRIER)) || elv_queue_empty(q))
1da177e4
LT
1207 goto get_rq;
1208
1209 el_ret = elv_merge(q, &req, bio);
1210 switch (el_ret) {
6728cb0e
JA
1211 case ELEVATOR_BACK_MERGE:
1212 BUG_ON(!rq_mergeable(req));
1da177e4 1213
6728cb0e
JA
1214 if (!ll_back_merge_fn(q, req, bio))
1215 break;
1da177e4 1216
5f3ea37c 1217 trace_block_bio_backmerge(q, bio);
2056a782 1218
80a761fd
TH
1219 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1220 blk_rq_set_mixed_merge(req);
1221
6728cb0e
JA
1222 req->biotail->bi_next = bio;
1223 req->biotail = bio;
a2dec7b3 1224 req->__data_len += bytes;
6728cb0e 1225 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1226 if (!blk_rq_cpu_valid(req))
1227 req->cpu = bio->bi_comp_cpu;
6728cb0e 1228 drive_stat_acct(req, 0);
812d4026 1229 elv_bio_merged(q, req, bio);
6728cb0e
JA
1230 if (!attempt_back_merge(q, req))
1231 elv_merged_request(q, req, el_ret);
1232 goto out;
1da177e4 1233
6728cb0e
JA
1234 case ELEVATOR_FRONT_MERGE:
1235 BUG_ON(!rq_mergeable(req));
1da177e4 1236
6728cb0e
JA
1237 if (!ll_front_merge_fn(q, req, bio))
1238 break;
1da177e4 1239
5f3ea37c 1240 trace_block_bio_frontmerge(q, bio);
2056a782 1241
80a761fd
TH
1242 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1243 blk_rq_set_mixed_merge(req);
1244 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1245 req->cmd_flags |= ff;
1246 }
1247
6728cb0e
JA
1248 bio->bi_next = req->bio;
1249 req->bio = bio;
1da177e4 1250
6728cb0e
JA
1251 /*
1252 * may not be valid. if the low level driver said
1253 * it didn't need a bounce buffer then it better
1254 * not touch req->buffer either...
1255 */
1256 req->buffer = bio_data(bio);
a2dec7b3
TH
1257 req->__sector = bio->bi_sector;
1258 req->__data_len += bytes;
6728cb0e 1259 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1260 if (!blk_rq_cpu_valid(req))
1261 req->cpu = bio->bi_comp_cpu;
6728cb0e 1262 drive_stat_acct(req, 0);
812d4026 1263 elv_bio_merged(q, req, bio);
6728cb0e
JA
1264 if (!attempt_front_merge(q, req))
1265 elv_merged_request(q, req, el_ret);
1266 goto out;
1267
1268 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1269 default:
1270 ;
1da177e4
LT
1271 }
1272
450991bc 1273get_rq:
7749a8d4
JA
1274 /*
1275 * This sync check and mask will be re-done in init_request_from_bio(),
1276 * but we need to set it earlier to expose the sync flag to the
1277 * rq allocator and io schedulers.
1278 */
1279 rw_flags = bio_data_dir(bio);
1280 if (sync)
7b6d91da 1281 rw_flags |= REQ_SYNC;
7749a8d4 1282
1da177e4 1283 /*
450991bc 1284 * Grab a free request. This is might sleep but can not fail.
d6344532 1285 * Returns with the queue unlocked.
450991bc 1286 */
7749a8d4 1287 req = get_request_wait(q, rw_flags, bio);
d6344532 1288
450991bc
NP
1289 /*
1290 * After dropping the lock and possibly sleeping here, our request
1291 * may now be mergeable after it had proven unmergeable (above).
1292 * We don't worry about that case for efficiency. It won't happen
1293 * often, and the elevators are able to handle it.
1da177e4 1294 */
52d9e675 1295 init_request_from_bio(req, bio);
1da177e4 1296
450991bc 1297 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1298 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1299 bio_flagged(bio, BIO_CPU_AFFINE))
1300 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1301 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1302 blk_plug_device(q);
dd831006
TH
1303
1304 /* insert the request into the elevator */
1305 drive_stat_acct(req, 1);
1306 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1da177e4 1307out:
644b2d99 1308 if (unplug || !queue_should_plug(q))
1da177e4 1309 __generic_unplug_device(q);
1da177e4
LT
1310 spin_unlock_irq(q->queue_lock);
1311 return 0;
1da177e4
LT
1312}
1313
1314/*
1315 * If bio->bi_dev is a partition, remap the location
1316 */
1317static inline void blk_partition_remap(struct bio *bio)
1318{
1319 struct block_device *bdev = bio->bi_bdev;
1320
bf2de6f5 1321 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1322 struct hd_struct *p = bdev->bd_part;
1323
1da177e4
LT
1324 bio->bi_sector += p->start_sect;
1325 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1326
5f3ea37c 1327 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
22a7c31a 1328 bdev->bd_dev,
c7149d6b 1329 bio->bi_sector - p->start_sect);
1da177e4
LT
1330 }
1331}
1332
1da177e4
LT
1333static void handle_bad_sector(struct bio *bio)
1334{
1335 char b[BDEVNAME_SIZE];
1336
1337 printk(KERN_INFO "attempt to access beyond end of device\n");
1338 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1339 bdevname(bio->bi_bdev, b),
1340 bio->bi_rw,
1341 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1342 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1343
1344 set_bit(BIO_EOF, &bio->bi_flags);
1345}
1346
c17bb495
AM
1347#ifdef CONFIG_FAIL_MAKE_REQUEST
1348
1349static DECLARE_FAULT_ATTR(fail_make_request);
1350
1351static int __init setup_fail_make_request(char *str)
1352{
1353 return setup_fault_attr(&fail_make_request, str);
1354}
1355__setup("fail_make_request=", setup_fail_make_request);
1356
1357static int should_fail_request(struct bio *bio)
1358{
eddb2e26
TH
1359 struct hd_struct *part = bio->bi_bdev->bd_part;
1360
1361 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1362 return should_fail(&fail_make_request, bio->bi_size);
1363
1364 return 0;
1365}
1366
1367static int __init fail_make_request_debugfs(void)
1368{
1369 return init_fault_attr_dentries(&fail_make_request,
1370 "fail_make_request");
1371}
1372
1373late_initcall(fail_make_request_debugfs);
1374
1375#else /* CONFIG_FAIL_MAKE_REQUEST */
1376
1377static inline int should_fail_request(struct bio *bio)
1378{
1379 return 0;
1380}
1381
1382#endif /* CONFIG_FAIL_MAKE_REQUEST */
1383
c07e2b41
JA
1384/*
1385 * Check whether this bio extends beyond the end of the device.
1386 */
1387static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1388{
1389 sector_t maxsector;
1390
1391 if (!nr_sectors)
1392 return 0;
1393
1394 /* Test device or partition size, when known. */
1395 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1396 if (maxsector) {
1397 sector_t sector = bio->bi_sector;
1398
1399 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1400 /*
1401 * This may well happen - the kernel calls bread()
1402 * without checking the size of the device, e.g., when
1403 * mounting a device.
1404 */
1405 handle_bad_sector(bio);
1406 return 1;
1407 }
1408 }
1409
1410 return 0;
1411}
1412
1da177e4 1413/**
710027a4 1414 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1415 * @bio: The bio describing the location in memory and on the device.
1416 *
1417 * generic_make_request() is used to make I/O requests of block
1418 * devices. It is passed a &struct bio, which describes the I/O that needs
1419 * to be done.
1420 *
1421 * generic_make_request() does not return any status. The
1422 * success/failure status of the request, along with notification of
1423 * completion, is delivered asynchronously through the bio->bi_end_io
1424 * function described (one day) else where.
1425 *
1426 * The caller of generic_make_request must make sure that bi_io_vec
1427 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1428 * set to describe the device address, and the
1429 * bi_end_io and optionally bi_private are set to describe how
1430 * completion notification should be signaled.
1431 *
1432 * generic_make_request and the drivers it calls may use bi_next if this
1433 * bio happens to be merged with someone else, and may change bi_dev and
1434 * bi_sector for remaps as it sees fit. So the values of these fields
1435 * should NOT be depended on after the call to generic_make_request.
1436 */
d89d8796 1437static inline void __generic_make_request(struct bio *bio)
1da177e4 1438{
165125e1 1439 struct request_queue *q;
5ddfe969 1440 sector_t old_sector;
1da177e4 1441 int ret, nr_sectors = bio_sectors(bio);
2056a782 1442 dev_t old_dev;
51fd77bd 1443 int err = -EIO;
1da177e4
LT
1444
1445 might_sleep();
1da177e4 1446
c07e2b41
JA
1447 if (bio_check_eod(bio, nr_sectors))
1448 goto end_io;
1da177e4
LT
1449
1450 /*
1451 * Resolve the mapping until finished. (drivers are
1452 * still free to implement/resolve their own stacking
1453 * by explicitly returning 0)
1454 *
1455 * NOTE: we don't repeat the blk_size check for each new device.
1456 * Stacking drivers are expected to know what they are doing.
1457 */
5ddfe969 1458 old_sector = -1;
2056a782 1459 old_dev = 0;
1da177e4
LT
1460 do {
1461 char b[BDEVNAME_SIZE];
1462
1463 q = bdev_get_queue(bio->bi_bdev);
a7384677 1464 if (unlikely(!q)) {
1da177e4
LT
1465 printk(KERN_ERR
1466 "generic_make_request: Trying to access "
1467 "nonexistent block-device %s (%Lu)\n",
1468 bdevname(bio->bi_bdev, b),
1469 (long long) bio->bi_sector);
a7384677 1470 goto end_io;
1da177e4
LT
1471 }
1472
7b6d91da 1473 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1474 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1475 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1476 bdevname(bio->bi_bdev, b),
1477 bio_sectors(bio),
1478 queue_max_hw_sectors(q));
1da177e4
LT
1479 goto end_io;
1480 }
1481
fde6ad22 1482 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1483 goto end_io;
1484
c17bb495
AM
1485 if (should_fail_request(bio))
1486 goto end_io;
1487
1da177e4
LT
1488 /*
1489 * If this device has partitions, remap block n
1490 * of partition p to block n+start(p) of the disk.
1491 */
1492 blk_partition_remap(bio);
1493
7ba1ba12
MP
1494 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1495 goto end_io;
1496
5ddfe969 1497 if (old_sector != -1)
22a7c31a 1498 trace_block_remap(q, bio, old_dev, old_sector);
2056a782 1499
5ddfe969 1500 old_sector = bio->bi_sector;
2056a782
JA
1501 old_dev = bio->bi_bdev->bd_dev;
1502
c07e2b41
JA
1503 if (bio_check_eod(bio, nr_sectors))
1504 goto end_io;
a7384677 1505
8d57a98c
AH
1506 if ((bio->bi_rw & REQ_DISCARD) &&
1507 (!blk_queue_discard(q) ||
1508 ((bio->bi_rw & REQ_SECURE) &&
1509 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1510 err = -EOPNOTSUPP;
1511 goto end_io;
1512 }
5ddfe969 1513
01edede4
MK
1514 trace_block_bio_queue(q, bio);
1515
1da177e4
LT
1516 ret = q->make_request_fn(q, bio);
1517 } while (ret);
a7384677
TH
1518
1519 return;
1520
1521end_io:
1522 bio_endio(bio, err);
1da177e4
LT
1523}
1524
d89d8796
NB
1525/*
1526 * We only want one ->make_request_fn to be active at a time,
1527 * else stack usage with stacked devices could be a problem.
bddd87c7 1528 * So use current->bio_list to keep a list of requests
d89d8796 1529 * submited by a make_request_fn function.
bddd87c7 1530 * current->bio_list is also used as a flag to say if
d89d8796
NB
1531 * generic_make_request is currently active in this task or not.
1532 * If it is NULL, then no make_request is active. If it is non-NULL,
1533 * then a make_request is active, and new requests should be added
1534 * at the tail
1535 */
1536void generic_make_request(struct bio *bio)
1537{
bddd87c7
AM
1538 struct bio_list bio_list_on_stack;
1539
1540 if (current->bio_list) {
d89d8796 1541 /* make_request is active */
bddd87c7 1542 bio_list_add(current->bio_list, bio);
d89d8796
NB
1543 return;
1544 }
1545 /* following loop may be a bit non-obvious, and so deserves some
1546 * explanation.
1547 * Before entering the loop, bio->bi_next is NULL (as all callers
1548 * ensure that) so we have a list with a single bio.
1549 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1550 * we assign bio_list to a pointer to the bio_list_on_stack,
1551 * thus initialising the bio_list of new bios to be
d89d8796
NB
1552 * added. __generic_make_request may indeed add some more bios
1553 * through a recursive call to generic_make_request. If it
1554 * did, we find a non-NULL value in bio_list and re-enter the loop
1555 * from the top. In this case we really did just take the bio
bddd87c7
AM
1556 * of the top of the list (no pretending) and so remove it from
1557 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1558 *
1559 * The loop was structured like this to make only one call to
1560 * __generic_make_request (which is important as it is large and
1561 * inlined) and to keep the structure simple.
1562 */
1563 BUG_ON(bio->bi_next);
bddd87c7
AM
1564 bio_list_init(&bio_list_on_stack);
1565 current->bio_list = &bio_list_on_stack;
d89d8796 1566 do {
d89d8796 1567 __generic_make_request(bio);
bddd87c7 1568 bio = bio_list_pop(current->bio_list);
d89d8796 1569 } while (bio);
bddd87c7 1570 current->bio_list = NULL; /* deactivate */
d89d8796 1571}
1da177e4
LT
1572EXPORT_SYMBOL(generic_make_request);
1573
1574/**
710027a4 1575 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1576 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1577 * @bio: The &struct bio which describes the I/O
1578 *
1579 * submit_bio() is very similar in purpose to generic_make_request(), and
1580 * uses that function to do most of the work. Both are fairly rough
710027a4 1581 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1582 *
1583 */
1584void submit_bio(int rw, struct bio *bio)
1585{
1586 int count = bio_sectors(bio);
1587
22e2c507 1588 bio->bi_rw |= rw;
1da177e4 1589
bf2de6f5
JA
1590 /*
1591 * If it's a regular read/write or a barrier with data attached,
1592 * go through the normal accounting stuff before submission.
1593 */
3ffb52e7 1594 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1595 if (rw & WRITE) {
1596 count_vm_events(PGPGOUT, count);
1597 } else {
1598 task_io_account_read(bio->bi_size);
1599 count_vm_events(PGPGIN, count);
1600 }
1601
1602 if (unlikely(block_dump)) {
1603 char b[BDEVNAME_SIZE];
1604 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1605 current->comm, task_pid_nr(current),
bf2de6f5
JA
1606 (rw & WRITE) ? "WRITE" : "READ",
1607 (unsigned long long)bio->bi_sector,
6728cb0e 1608 bdevname(bio->bi_bdev, b));
bf2de6f5 1609 }
1da177e4
LT
1610 }
1611
1612 generic_make_request(bio);
1613}
1da177e4
LT
1614EXPORT_SYMBOL(submit_bio);
1615
82124d60
KU
1616/**
1617 * blk_rq_check_limits - Helper function to check a request for the queue limit
1618 * @q: the queue
1619 * @rq: the request being checked
1620 *
1621 * Description:
1622 * @rq may have been made based on weaker limitations of upper-level queues
1623 * in request stacking drivers, and it may violate the limitation of @q.
1624 * Since the block layer and the underlying device driver trust @rq
1625 * after it is inserted to @q, it should be checked against @q before
1626 * the insertion using this generic function.
1627 *
1628 * This function should also be useful for request stacking drivers
1629 * in some cases below, so export this fuction.
1630 * Request stacking drivers like request-based dm may change the queue
1631 * limits while requests are in the queue (e.g. dm's table swapping).
1632 * Such request stacking drivers should check those requests agaist
1633 * the new queue limits again when they dispatch those requests,
1634 * although such checkings are also done against the old queue limits
1635 * when submitting requests.
1636 */
1637int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1638{
3383977f
S
1639 if (rq->cmd_flags & REQ_DISCARD)
1640 return 0;
1641
ae03bf63
MP
1642 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1643 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1644 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1645 return -EIO;
1646 }
1647
1648 /*
1649 * queue's settings related to segment counting like q->bounce_pfn
1650 * may differ from that of other stacking queues.
1651 * Recalculate it to check the request correctly on this queue's
1652 * limitation.
1653 */
1654 blk_recalc_rq_segments(rq);
8a78362c 1655 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1656 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1657 return -EIO;
1658 }
1659
1660 return 0;
1661}
1662EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1663
1664/**
1665 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1666 * @q: the queue to submit the request
1667 * @rq: the request being queued
1668 */
1669int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1670{
1671 unsigned long flags;
1672
1673 if (blk_rq_check_limits(q, rq))
1674 return -EIO;
1675
1676#ifdef CONFIG_FAIL_MAKE_REQUEST
1677 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1678 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1679 return -EIO;
1680#endif
1681
1682 spin_lock_irqsave(q->queue_lock, flags);
1683
1684 /*
1685 * Submitting request must be dequeued before calling this function
1686 * because it will be linked to another request_queue
1687 */
1688 BUG_ON(blk_queued_rq(rq));
1689
1690 drive_stat_acct(rq, 1);
1691 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1692
1693 spin_unlock_irqrestore(q->queue_lock, flags);
1694
1695 return 0;
1696}
1697EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1698
80a761fd
TH
1699/**
1700 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1701 * @rq: request to examine
1702 *
1703 * Description:
1704 * A request could be merge of IOs which require different failure
1705 * handling. This function determines the number of bytes which
1706 * can be failed from the beginning of the request without
1707 * crossing into area which need to be retried further.
1708 *
1709 * Return:
1710 * The number of bytes to fail.
1711 *
1712 * Context:
1713 * queue_lock must be held.
1714 */
1715unsigned int blk_rq_err_bytes(const struct request *rq)
1716{
1717 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1718 unsigned int bytes = 0;
1719 struct bio *bio;
1720
1721 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1722 return blk_rq_bytes(rq);
1723
1724 /*
1725 * Currently the only 'mixing' which can happen is between
1726 * different fastfail types. We can safely fail portions
1727 * which have all the failfast bits that the first one has -
1728 * the ones which are at least as eager to fail as the first
1729 * one.
1730 */
1731 for (bio = rq->bio; bio; bio = bio->bi_next) {
1732 if ((bio->bi_rw & ff) != ff)
1733 break;
1734 bytes += bio->bi_size;
1735 }
1736
1737 /* this could lead to infinite loop */
1738 BUG_ON(blk_rq_bytes(rq) && !bytes);
1739 return bytes;
1740}
1741EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1742
bc58ba94
JA
1743static void blk_account_io_completion(struct request *req, unsigned int bytes)
1744{
c2553b58 1745 if (blk_do_io_stat(req)) {
bc58ba94
JA
1746 const int rw = rq_data_dir(req);
1747 struct hd_struct *part;
1748 int cpu;
1749
1750 cpu = part_stat_lock();
83096ebf 1751 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1752 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1753 part_stat_unlock();
1754 }
1755}
1756
1757static void blk_account_io_done(struct request *req)
1758{
bc58ba94
JA
1759 /*
1760 * Account IO completion. bar_rq isn't accounted as a normal
1761 * IO on queueing nor completion. Accounting the containing
1762 * request is enough.
1763 */
c2553b58 1764 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
bc58ba94
JA
1765 unsigned long duration = jiffies - req->start_time;
1766 const int rw = rq_data_dir(req);
1767 struct hd_struct *part;
1768 int cpu;
1769
1770 cpu = part_stat_lock();
83096ebf 1771 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1772
1773 part_stat_inc(cpu, part, ios[rw]);
1774 part_stat_add(cpu, part, ticks[rw], duration);
1775 part_round_stats(cpu, part);
316d315b 1776 part_dec_in_flight(part, rw);
bc58ba94
JA
1777
1778 part_stat_unlock();
1779 }
1780}
1781
3bcddeac 1782/**
9934c8c0
TH
1783 * blk_peek_request - peek at the top of a request queue
1784 * @q: request queue to peek at
1785 *
1786 * Description:
1787 * Return the request at the top of @q. The returned request
1788 * should be started using blk_start_request() before LLD starts
1789 * processing it.
1790 *
1791 * Return:
1792 * Pointer to the request at the top of @q if available. Null
1793 * otherwise.
1794 *
1795 * Context:
1796 * queue_lock must be held.
1797 */
1798struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1799{
1800 struct request *rq;
1801 int ret;
1802
1803 while ((rq = __elv_next_request(q)) != NULL) {
1804 if (!(rq->cmd_flags & REQ_STARTED)) {
1805 /*
1806 * This is the first time the device driver
1807 * sees this request (possibly after
1808 * requeueing). Notify IO scheduler.
1809 */
33659ebb 1810 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1811 elv_activate_rq(q, rq);
1812
1813 /*
1814 * just mark as started even if we don't start
1815 * it, a request that has been delayed should
1816 * not be passed by new incoming requests
1817 */
1818 rq->cmd_flags |= REQ_STARTED;
1819 trace_block_rq_issue(q, rq);
1820 }
1821
1822 if (!q->boundary_rq || q->boundary_rq == rq) {
1823 q->end_sector = rq_end_sector(rq);
1824 q->boundary_rq = NULL;
1825 }
1826
1827 if (rq->cmd_flags & REQ_DONTPREP)
1828 break;
1829
2e46e8b2 1830 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1831 /*
1832 * make sure space for the drain appears we
1833 * know we can do this because max_hw_segments
1834 * has been adjusted to be one fewer than the
1835 * device can handle
1836 */
1837 rq->nr_phys_segments++;
1838 }
1839
1840 if (!q->prep_rq_fn)
1841 break;
1842
1843 ret = q->prep_rq_fn(q, rq);
1844 if (ret == BLKPREP_OK) {
1845 break;
1846 } else if (ret == BLKPREP_DEFER) {
1847 /*
1848 * the request may have been (partially) prepped.
1849 * we need to keep this request in the front to
1850 * avoid resource deadlock. REQ_STARTED will
1851 * prevent other fs requests from passing this one.
1852 */
2e46e8b2 1853 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1854 !(rq->cmd_flags & REQ_DONTPREP)) {
1855 /*
1856 * remove the space for the drain we added
1857 * so that we don't add it again
1858 */
1859 --rq->nr_phys_segments;
1860 }
1861
1862 rq = NULL;
1863 break;
1864 } else if (ret == BLKPREP_KILL) {
1865 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1866 /*
1867 * Mark this request as started so we don't trigger
1868 * any debug logic in the end I/O path.
1869 */
1870 blk_start_request(rq);
40cbbb78 1871 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1872 } else {
1873 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1874 break;
1875 }
1876 }
1877
1878 return rq;
1879}
9934c8c0 1880EXPORT_SYMBOL(blk_peek_request);
158dbda0 1881
9934c8c0 1882void blk_dequeue_request(struct request *rq)
158dbda0 1883{
9934c8c0
TH
1884 struct request_queue *q = rq->q;
1885
158dbda0
TH
1886 BUG_ON(list_empty(&rq->queuelist));
1887 BUG_ON(ELV_ON_HASH(rq));
1888
1889 list_del_init(&rq->queuelist);
1890
1891 /*
1892 * the time frame between a request being removed from the lists
1893 * and to it is freed is accounted as io that is in progress at
1894 * the driver side.
1895 */
9195291e 1896 if (blk_account_rq(rq)) {
0a7ae2ff 1897 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1898 set_io_start_time_ns(rq);
1899 }
158dbda0
TH
1900}
1901
9934c8c0
TH
1902/**
1903 * blk_start_request - start request processing on the driver
1904 * @req: request to dequeue
1905 *
1906 * Description:
1907 * Dequeue @req and start timeout timer on it. This hands off the
1908 * request to the driver.
1909 *
1910 * Block internal functions which don't want to start timer should
1911 * call blk_dequeue_request().
1912 *
1913 * Context:
1914 * queue_lock must be held.
1915 */
1916void blk_start_request(struct request *req)
1917{
1918 blk_dequeue_request(req);
1919
1920 /*
5f49f631
TH
1921 * We are now handing the request to the hardware, initialize
1922 * resid_len to full count and add the timeout handler.
9934c8c0 1923 */
5f49f631 1924 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1925 if (unlikely(blk_bidi_rq(req)))
1926 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1927
9934c8c0
TH
1928 blk_add_timer(req);
1929}
1930EXPORT_SYMBOL(blk_start_request);
1931
1932/**
1933 * blk_fetch_request - fetch a request from a request queue
1934 * @q: request queue to fetch a request from
1935 *
1936 * Description:
1937 * Return the request at the top of @q. The request is started on
1938 * return and LLD can start processing it immediately.
1939 *
1940 * Return:
1941 * Pointer to the request at the top of @q if available. Null
1942 * otherwise.
1943 *
1944 * Context:
1945 * queue_lock must be held.
1946 */
1947struct request *blk_fetch_request(struct request_queue *q)
1948{
1949 struct request *rq;
1950
1951 rq = blk_peek_request(q);
1952 if (rq)
1953 blk_start_request(rq);
1954 return rq;
1955}
1956EXPORT_SYMBOL(blk_fetch_request);
1957
3bcddeac 1958/**
2e60e022 1959 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1960 * @req: the request being processed
710027a4 1961 * @error: %0 for success, < %0 for error
8ebf9756 1962 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1963 *
1964 * Description:
8ebf9756
RD
1965 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1966 * the request structure even if @req doesn't have leftover.
1967 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1968 *
1969 * This special helper function is only for request stacking drivers
1970 * (e.g. request-based dm) so that they can handle partial completion.
1971 * Actual device drivers should use blk_end_request instead.
1972 *
1973 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1974 * %false return from this function.
3bcddeac
KU
1975 *
1976 * Return:
2e60e022
TH
1977 * %false - this request doesn't have any more data
1978 * %true - this request has more data
3bcddeac 1979 **/
2e60e022 1980bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 1981{
5450d3e1 1982 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1983 struct bio *bio;
1984
2e60e022
TH
1985 if (!req->bio)
1986 return false;
1987
5f3ea37c 1988 trace_block_rq_complete(req->q, req);
2056a782 1989
1da177e4 1990 /*
6f41469c
TH
1991 * For fs requests, rq is just carrier of independent bio's
1992 * and each partial completion should be handled separately.
1993 * Reset per-request error on each partial completion.
1994 *
1995 * TODO: tj: This is too subtle. It would be better to let
1996 * low level drivers do what they see fit.
1da177e4 1997 */
33659ebb 1998 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
1999 req->errors = 0;
2000
33659ebb
CH
2001 if (error && req->cmd_type == REQ_TYPE_FS &&
2002 !(req->cmd_flags & REQ_QUIET)) {
6728cb0e 2003 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 2004 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 2005 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2006 }
2007
bc58ba94 2008 blk_account_io_completion(req, nr_bytes);
d72d904a 2009
1da177e4
LT
2010 total_bytes = bio_nbytes = 0;
2011 while ((bio = req->bio) != NULL) {
2012 int nbytes;
2013
2014 if (nr_bytes >= bio->bi_size) {
2015 req->bio = bio->bi_next;
2016 nbytes = bio->bi_size;
5bb23a68 2017 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2018 next_idx = 0;
2019 bio_nbytes = 0;
2020 } else {
2021 int idx = bio->bi_idx + next_idx;
2022
af498d7f 2023 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2024 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2025 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2026 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2027 break;
2028 }
2029
2030 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2031 BIO_BUG_ON(nbytes > bio->bi_size);
2032
2033 /*
2034 * not a complete bvec done
2035 */
2036 if (unlikely(nbytes > nr_bytes)) {
2037 bio_nbytes += nr_bytes;
2038 total_bytes += nr_bytes;
2039 break;
2040 }
2041
2042 /*
2043 * advance to the next vector
2044 */
2045 next_idx++;
2046 bio_nbytes += nbytes;
2047 }
2048
2049 total_bytes += nbytes;
2050 nr_bytes -= nbytes;
2051
6728cb0e
JA
2052 bio = req->bio;
2053 if (bio) {
1da177e4
LT
2054 /*
2055 * end more in this run, or just return 'not-done'
2056 */
2057 if (unlikely(nr_bytes <= 0))
2058 break;
2059 }
2060 }
2061
2062 /*
2063 * completely done
2064 */
2e60e022
TH
2065 if (!req->bio) {
2066 /*
2067 * Reset counters so that the request stacking driver
2068 * can find how many bytes remain in the request
2069 * later.
2070 */
a2dec7b3 2071 req->__data_len = 0;
2e60e022
TH
2072 return false;
2073 }
1da177e4
LT
2074
2075 /*
2076 * if the request wasn't completed, update state
2077 */
2078 if (bio_nbytes) {
5bb23a68 2079 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2080 bio->bi_idx += next_idx;
2081 bio_iovec(bio)->bv_offset += nr_bytes;
2082 bio_iovec(bio)->bv_len -= nr_bytes;
2083 }
2084
a2dec7b3 2085 req->__data_len -= total_bytes;
2e46e8b2
TH
2086 req->buffer = bio_data(req->bio);
2087
2088 /* update sector only for requests with clear definition of sector */
33659ebb 2089 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2090 req->__sector += total_bytes >> 9;
2e46e8b2 2091
80a761fd
TH
2092 /* mixed attributes always follow the first bio */
2093 if (req->cmd_flags & REQ_MIXED_MERGE) {
2094 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2095 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2096 }
2097
2e46e8b2
TH
2098 /*
2099 * If total number of sectors is less than the first segment
2100 * size, something has gone terribly wrong.
2101 */
2102 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2103 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2104 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2105 }
2106
2107 /* recalculate the number of segments */
1da177e4 2108 blk_recalc_rq_segments(req);
2e46e8b2 2109
2e60e022 2110 return true;
1da177e4 2111}
2e60e022 2112EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2113
2e60e022
TH
2114static bool blk_update_bidi_request(struct request *rq, int error,
2115 unsigned int nr_bytes,
2116 unsigned int bidi_bytes)
5efccd17 2117{
2e60e022
TH
2118 if (blk_update_request(rq, error, nr_bytes))
2119 return true;
5efccd17 2120
2e60e022
TH
2121 /* Bidi request must be completed as a whole */
2122 if (unlikely(blk_bidi_rq(rq)) &&
2123 blk_update_request(rq->next_rq, error, bidi_bytes))
2124 return true;
5efccd17 2125
e2e1a148
JA
2126 if (blk_queue_add_random(rq->q))
2127 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2128
2129 return false;
1da177e4
LT
2130}
2131
28018c24
JB
2132/**
2133 * blk_unprep_request - unprepare a request
2134 * @req: the request
2135 *
2136 * This function makes a request ready for complete resubmission (or
2137 * completion). It happens only after all error handling is complete,
2138 * so represents the appropriate moment to deallocate any resources
2139 * that were allocated to the request in the prep_rq_fn. The queue
2140 * lock is held when calling this.
2141 */
2142void blk_unprep_request(struct request *req)
2143{
2144 struct request_queue *q = req->q;
2145
2146 req->cmd_flags &= ~REQ_DONTPREP;
2147 if (q->unprep_rq_fn)
2148 q->unprep_rq_fn(q, req);
2149}
2150EXPORT_SYMBOL_GPL(blk_unprep_request);
2151
1da177e4
LT
2152/*
2153 * queue lock must be held
2154 */
2e60e022 2155static void blk_finish_request(struct request *req, int error)
1da177e4 2156{
b8286239
KU
2157 if (blk_rq_tagged(req))
2158 blk_queue_end_tag(req->q, req);
2159
ba396a6c 2160 BUG_ON(blk_queued_rq(req));
1da177e4 2161
33659ebb 2162 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2163 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2164
e78042e5
MA
2165 blk_delete_timer(req);
2166
28018c24
JB
2167 if (req->cmd_flags & REQ_DONTPREP)
2168 blk_unprep_request(req);
2169
2170
bc58ba94 2171 blk_account_io_done(req);
b8286239 2172
1da177e4 2173 if (req->end_io)
8ffdc655 2174 req->end_io(req, error);
b8286239
KU
2175 else {
2176 if (blk_bidi_rq(req))
2177 __blk_put_request(req->next_rq->q, req->next_rq);
2178
1da177e4 2179 __blk_put_request(req->q, req);
b8286239 2180 }
1da177e4
LT
2181}
2182
3b11313a 2183/**
2e60e022
TH
2184 * blk_end_bidi_request - Complete a bidi request
2185 * @rq: the request to complete
2186 * @error: %0 for success, < %0 for error
2187 * @nr_bytes: number of bytes to complete @rq
2188 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2189 *
2190 * Description:
e3a04fe3 2191 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2192 * Drivers that supports bidi can safely call this member for any
2193 * type of request, bidi or uni. In the later case @bidi_bytes is
2194 * just ignored.
336cdb40
KU
2195 *
2196 * Return:
2e60e022
TH
2197 * %false - we are done with this request
2198 * %true - still buffers pending for this request
a0cd1285 2199 **/
b1f74493 2200static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2201 unsigned int nr_bytes, unsigned int bidi_bytes)
2202{
336cdb40 2203 struct request_queue *q = rq->q;
2e60e022 2204 unsigned long flags;
32fab448 2205
2e60e022
TH
2206 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2207 return true;
32fab448 2208
336cdb40 2209 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2210 blk_finish_request(rq, error);
336cdb40
KU
2211 spin_unlock_irqrestore(q->queue_lock, flags);
2212
2e60e022 2213 return false;
32fab448
KU
2214}
2215
336cdb40 2216/**
2e60e022
TH
2217 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2218 * @rq: the request to complete
710027a4 2219 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2220 * @nr_bytes: number of bytes to complete @rq
2221 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2222 *
2223 * Description:
2e60e022
TH
2224 * Identical to blk_end_bidi_request() except that queue lock is
2225 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2226 *
2227 * Return:
2e60e022
TH
2228 * %false - we are done with this request
2229 * %true - still buffers pending for this request
336cdb40 2230 **/
b1f74493
FT
2231static bool __blk_end_bidi_request(struct request *rq, int error,
2232 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2233{
2e60e022
TH
2234 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2235 return true;
336cdb40 2236
2e60e022 2237 blk_finish_request(rq, error);
336cdb40 2238
2e60e022 2239 return false;
336cdb40 2240}
e19a3ab0
KU
2241
2242/**
2243 * blk_end_request - Helper function for drivers to complete the request.
2244 * @rq: the request being processed
710027a4 2245 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2246 * @nr_bytes: number of bytes to complete
2247 *
2248 * Description:
2249 * Ends I/O on a number of bytes attached to @rq.
2250 * If @rq has leftover, sets it up for the next range of segments.
2251 *
2252 * Return:
b1f74493
FT
2253 * %false - we are done with this request
2254 * %true - still buffers pending for this request
e19a3ab0 2255 **/
b1f74493 2256bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2257{
b1f74493 2258 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2259}
56ad1740 2260EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2261
2262/**
b1f74493
FT
2263 * blk_end_request_all - Helper function for drives to finish the request.
2264 * @rq: the request to finish
8ebf9756 2265 * @error: %0 for success, < %0 for error
336cdb40
KU
2266 *
2267 * Description:
b1f74493
FT
2268 * Completely finish @rq.
2269 */
2270void blk_end_request_all(struct request *rq, int error)
336cdb40 2271{
b1f74493
FT
2272 bool pending;
2273 unsigned int bidi_bytes = 0;
336cdb40 2274
b1f74493
FT
2275 if (unlikely(blk_bidi_rq(rq)))
2276 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2277
b1f74493
FT
2278 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2279 BUG_ON(pending);
2280}
56ad1740 2281EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2282
b1f74493
FT
2283/**
2284 * blk_end_request_cur - Helper function to finish the current request chunk.
2285 * @rq: the request to finish the current chunk for
8ebf9756 2286 * @error: %0 for success, < %0 for error
b1f74493
FT
2287 *
2288 * Description:
2289 * Complete the current consecutively mapped chunk from @rq.
2290 *
2291 * Return:
2292 * %false - we are done with this request
2293 * %true - still buffers pending for this request
2294 */
2295bool blk_end_request_cur(struct request *rq, int error)
2296{
2297 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2298}
56ad1740 2299EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2300
80a761fd
TH
2301/**
2302 * blk_end_request_err - Finish a request till the next failure boundary.
2303 * @rq: the request to finish till the next failure boundary for
2304 * @error: must be negative errno
2305 *
2306 * Description:
2307 * Complete @rq till the next failure boundary.
2308 *
2309 * Return:
2310 * %false - we are done with this request
2311 * %true - still buffers pending for this request
2312 */
2313bool blk_end_request_err(struct request *rq, int error)
2314{
2315 WARN_ON(error >= 0);
2316 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2317}
2318EXPORT_SYMBOL_GPL(blk_end_request_err);
2319
e3a04fe3 2320/**
b1f74493
FT
2321 * __blk_end_request - Helper function for drivers to complete the request.
2322 * @rq: the request being processed
2323 * @error: %0 for success, < %0 for error
2324 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2325 *
2326 * Description:
b1f74493 2327 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2328 *
2329 * Return:
b1f74493
FT
2330 * %false - we are done with this request
2331 * %true - still buffers pending for this request
e3a04fe3 2332 **/
b1f74493 2333bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2334{
b1f74493 2335 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2336}
56ad1740 2337EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2338
32fab448 2339/**
b1f74493
FT
2340 * __blk_end_request_all - Helper function for drives to finish the request.
2341 * @rq: the request to finish
8ebf9756 2342 * @error: %0 for success, < %0 for error
32fab448
KU
2343 *
2344 * Description:
b1f74493 2345 * Completely finish @rq. Must be called with queue lock held.
32fab448 2346 */
b1f74493 2347void __blk_end_request_all(struct request *rq, int error)
32fab448 2348{
b1f74493
FT
2349 bool pending;
2350 unsigned int bidi_bytes = 0;
2351
2352 if (unlikely(blk_bidi_rq(rq)))
2353 bidi_bytes = blk_rq_bytes(rq->next_rq);
2354
2355 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2356 BUG_ON(pending);
32fab448 2357}
56ad1740 2358EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2359
e19a3ab0 2360/**
b1f74493
FT
2361 * __blk_end_request_cur - Helper function to finish the current request chunk.
2362 * @rq: the request to finish the current chunk for
8ebf9756 2363 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2364 *
2365 * Description:
b1f74493
FT
2366 * Complete the current consecutively mapped chunk from @rq. Must
2367 * be called with queue lock held.
e19a3ab0
KU
2368 *
2369 * Return:
b1f74493
FT
2370 * %false - we are done with this request
2371 * %true - still buffers pending for this request
2372 */
2373bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2374{
b1f74493 2375 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2376}
56ad1740 2377EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2378
80a761fd
TH
2379/**
2380 * __blk_end_request_err - Finish a request till the next failure boundary.
2381 * @rq: the request to finish till the next failure boundary for
2382 * @error: must be negative errno
2383 *
2384 * Description:
2385 * Complete @rq till the next failure boundary. Must be called
2386 * with queue lock held.
2387 *
2388 * Return:
2389 * %false - we are done with this request
2390 * %true - still buffers pending for this request
2391 */
2392bool __blk_end_request_err(struct request *rq, int error)
2393{
2394 WARN_ON(error >= 0);
2395 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2396}
2397EXPORT_SYMBOL_GPL(__blk_end_request_err);
2398
86db1e29
JA
2399void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2400 struct bio *bio)
1da177e4 2401{
a82afdfc 2402 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2403 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2404
fb2dce86
DW
2405 if (bio_has_data(bio)) {
2406 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2407 rq->buffer = bio_data(bio);
2408 }
a2dec7b3 2409 rq->__data_len = bio->bi_size;
1da177e4 2410 rq->bio = rq->biotail = bio;
1da177e4 2411
66846572
N
2412 if (bio->bi_bdev)
2413 rq->rq_disk = bio->bi_bdev->bd_disk;
2414}
1da177e4 2415
2d4dc890
IL
2416#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2417/**
2418 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2419 * @rq: the request to be flushed
2420 *
2421 * Description:
2422 * Flush all pages in @rq.
2423 */
2424void rq_flush_dcache_pages(struct request *rq)
2425{
2426 struct req_iterator iter;
2427 struct bio_vec *bvec;
2428
2429 rq_for_each_segment(bvec, rq, iter)
2430 flush_dcache_page(bvec->bv_page);
2431}
2432EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2433#endif
2434
ef9e3fac
KU
2435/**
2436 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2437 * @q : the queue of the device being checked
2438 *
2439 * Description:
2440 * Check if underlying low-level drivers of a device are busy.
2441 * If the drivers want to export their busy state, they must set own
2442 * exporting function using blk_queue_lld_busy() first.
2443 *
2444 * Basically, this function is used only by request stacking drivers
2445 * to stop dispatching requests to underlying devices when underlying
2446 * devices are busy. This behavior helps more I/O merging on the queue
2447 * of the request stacking driver and prevents I/O throughput regression
2448 * on burst I/O load.
2449 *
2450 * Return:
2451 * 0 - Not busy (The request stacking driver should dispatch request)
2452 * 1 - Busy (The request stacking driver should stop dispatching request)
2453 */
2454int blk_lld_busy(struct request_queue *q)
2455{
2456 if (q->lld_busy_fn)
2457 return q->lld_busy_fn(q);
2458
2459 return 0;
2460}
2461EXPORT_SYMBOL_GPL(blk_lld_busy);
2462
b0fd271d
KU
2463/**
2464 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2465 * @rq: the clone request to be cleaned up
2466 *
2467 * Description:
2468 * Free all bios in @rq for a cloned request.
2469 */
2470void blk_rq_unprep_clone(struct request *rq)
2471{
2472 struct bio *bio;
2473
2474 while ((bio = rq->bio) != NULL) {
2475 rq->bio = bio->bi_next;
2476
2477 bio_put(bio);
2478 }
2479}
2480EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2481
2482/*
2483 * Copy attributes of the original request to the clone request.
2484 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2485 */
2486static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2487{
2488 dst->cpu = src->cpu;
2489 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
3383977f
S
2490 if (src->cmd_flags & REQ_DISCARD)
2491 dst->cmd_flags |= REQ_DISCARD;
b0fd271d
KU
2492 dst->cmd_type = src->cmd_type;
2493 dst->__sector = blk_rq_pos(src);
2494 dst->__data_len = blk_rq_bytes(src);
2495 dst->nr_phys_segments = src->nr_phys_segments;
2496 dst->ioprio = src->ioprio;
2497 dst->extra_len = src->extra_len;
2498}
2499
2500/**
2501 * blk_rq_prep_clone - Helper function to setup clone request
2502 * @rq: the request to be setup
2503 * @rq_src: original request to be cloned
2504 * @bs: bio_set that bios for clone are allocated from
2505 * @gfp_mask: memory allocation mask for bio
2506 * @bio_ctr: setup function to be called for each clone bio.
2507 * Returns %0 for success, non %0 for failure.
2508 * @data: private data to be passed to @bio_ctr
2509 *
2510 * Description:
2511 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2512 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2513 * are not copied, and copying such parts is the caller's responsibility.
2514 * Also, pages which the original bios are pointing to are not copied
2515 * and the cloned bios just point same pages.
2516 * So cloned bios must be completed before original bios, which means
2517 * the caller must complete @rq before @rq_src.
2518 */
2519int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2520 struct bio_set *bs, gfp_t gfp_mask,
2521 int (*bio_ctr)(struct bio *, struct bio *, void *),
2522 void *data)
2523{
2524 struct bio *bio, *bio_src;
2525
2526 if (!bs)
2527 bs = fs_bio_set;
2528
2529 blk_rq_init(NULL, rq);
2530
2531 __rq_for_each_bio(bio_src, rq_src) {
2532 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2533 if (!bio)
2534 goto free_and_out;
2535
2536 __bio_clone(bio, bio_src);
2537
2538 if (bio_integrity(bio_src) &&
7878cba9 2539 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2540 goto free_and_out;
2541
2542 if (bio_ctr && bio_ctr(bio, bio_src, data))
2543 goto free_and_out;
2544
2545 if (rq->bio) {
2546 rq->biotail->bi_next = bio;
2547 rq->biotail = bio;
2548 } else
2549 rq->bio = rq->biotail = bio;
2550 }
2551
2552 __blk_rq_prep_clone(rq, rq_src);
2553
2554 return 0;
2555
2556free_and_out:
2557 if (bio)
2558 bio_free(bio, bs);
2559 blk_rq_unprep_clone(rq);
2560
2561 return -ENOMEM;
2562}
2563EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2564
18887ad9 2565int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2566{
2567 return queue_work(kblockd_workqueue, work);
2568}
1da177e4
LT
2569EXPORT_SYMBOL(kblockd_schedule_work);
2570
1da177e4
LT
2571int __init blk_dev_init(void)
2572{
9eb55b03
NK
2573 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2574 sizeof(((struct request *)0)->cmd_flags));
2575
1da177e4
LT
2576 kblockd_workqueue = create_workqueue("kblockd");
2577 if (!kblockd_workqueue)
2578 panic("Failed to create kblockd\n");
2579
2580 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2581 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2582
8324aa91 2583 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2584 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2585
d38ecf93 2586 return 0;
1da177e4 2587}