]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
aio: remove request submission batching
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
55782138
LZ
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/block.h>
1da177e4 34
8324aa91
JA
35#include "blk.h"
36
d07335e5 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 40
165125e1 41static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
42
43/*
44 * For the allocated request tables
45 */
5ece6c52 46static struct kmem_cache *request_cachep;
1da177e4
LT
47
48/*
49 * For queue allocation
50 */
6728cb0e 51struct kmem_cache *blk_requestq_cachep;
1da177e4 52
1da177e4
LT
53/*
54 * Controlling structure to kblockd
55 */
ff856bad 56static struct workqueue_struct *kblockd_workqueue;
1da177e4 57
26b8256e
JA
58static void drive_stat_acct(struct request *rq, int new_io)
59{
28f13702 60 struct hd_struct *part;
26b8256e 61 int rw = rq_data_dir(rq);
c9959059 62 int cpu;
26b8256e 63
c2553b58 64 if (!blk_do_io_stat(rq))
26b8256e
JA
65 return;
66
074a7aca 67 cpu = part_stat_lock();
c9959059 68
09e099d4
JM
69 if (!new_io) {
70 part = rq->part;
074a7aca 71 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
72 } else {
73 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 74 if (!hd_struct_try_get(part)) {
09e099d4
JM
75 /*
76 * The partition is already being removed,
77 * the request will be accounted on the disk only
78 *
79 * We take a reference on disk->part0 although that
80 * partition will never be deleted, so we can treat
81 * it as any other partition.
82 */
83 part = &rq->rq_disk->part0;
6c23a968 84 hd_struct_get(part);
09e099d4 85 }
074a7aca 86 part_round_stats(cpu, part);
316d315b 87 part_inc_in_flight(part, rw);
09e099d4 88 rq->part = part;
26b8256e 89 }
e71bf0d0 90
074a7aca 91 part_stat_unlock();
26b8256e
JA
92}
93
8324aa91 94void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
95{
96 int nr;
97
98 nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 if (nr > q->nr_requests)
100 nr = q->nr_requests;
101 q->nr_congestion_on = nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 if (nr < 1)
105 nr = 1;
106 q->nr_congestion_off = nr;
107}
108
1da177e4
LT
109/**
110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
111 * @bdev: device
112 *
113 * Locates the passed device's request queue and returns the address of its
114 * backing_dev_info
115 *
116 * Will return NULL if the request queue cannot be located.
117 */
118struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
119{
120 struct backing_dev_info *ret = NULL;
165125e1 121 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
122
123 if (q)
124 ret = &q->backing_dev_info;
125 return ret;
126}
1da177e4
LT
127EXPORT_SYMBOL(blk_get_backing_dev_info);
128
2a4aa30c 129void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 130{
1afb20f3
FT
131 memset(rq, 0, sizeof(*rq));
132
1da177e4 133 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 134 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 135 rq->cpu = -1;
63a71386 136 rq->q = q;
a2dec7b3 137 rq->__sector = (sector_t) -1;
2e662b65
JA
138 INIT_HLIST_NODE(&rq->hash);
139 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 140 rq->cmd = rq->__cmd;
e2494e1b 141 rq->cmd_len = BLK_MAX_CDB;
63a71386 142 rq->tag = -1;
1da177e4 143 rq->ref_count = 1;
b243ddcb 144 rq->start_time = jiffies;
9195291e 145 set_start_time_ns(rq);
09e099d4 146 rq->part = NULL;
1da177e4 147}
2a4aa30c 148EXPORT_SYMBOL(blk_rq_init);
1da177e4 149
5bb23a68
N
150static void req_bio_endio(struct request *rq, struct bio *bio,
151 unsigned int nbytes, int error)
1da177e4 152{
143a87f4
TH
153 if (error)
154 clear_bit(BIO_UPTODATE, &bio->bi_flags);
155 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
156 error = -EIO;
157
158 if (unlikely(nbytes > bio->bi_size)) {
159 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
160 __func__, nbytes, bio->bi_size);
161 nbytes = bio->bi_size;
5bb23a68 162 }
143a87f4
TH
163
164 if (unlikely(rq->cmd_flags & REQ_QUIET))
165 set_bit(BIO_QUIET, &bio->bi_flags);
166
167 bio->bi_size -= nbytes;
168 bio->bi_sector += (nbytes >> 9);
169
170 if (bio_integrity(bio))
171 bio_integrity_advance(bio, nbytes);
172
173 /* don't actually finish bio if it's part of flush sequence */
174 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
175 bio_endio(bio, error);
1da177e4 176}
1da177e4 177
1da177e4
LT
178void blk_dump_rq_flags(struct request *rq, char *msg)
179{
180 int bit;
181
6728cb0e 182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 rq->cmd_flags);
1da177e4 185
83096ebf
TH
186 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
187 (unsigned long long)blk_rq_pos(rq),
188 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 190 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 191
33659ebb 192 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 193 printk(KERN_INFO " cdb: ");
d34c87e4 194 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
195 printk("%02x ", rq->cmd[bit]);
196 printk("\n");
197 }
198}
1da177e4
LT
199EXPORT_SYMBOL(blk_dump_rq_flags);
200
7eaceacc
JA
201/*
202 * Make sure that plugs that were pending when this function was entered,
203 * are now complete and requests pushed to the queue.
204*/
205static inline void queue_sync_plugs(struct request_queue *q)
206{
207 /*
208 * If the current process is plugged and has barriers submitted,
209 * we will livelock if we don't unplug first.
210 */
211 blk_flush_plug(current);
212}
213
3cca6dc1
JA
214static void blk_delay_work(struct work_struct *work)
215{
216 struct request_queue *q;
217
218 q = container_of(work, struct request_queue, delay_work.work);
219 spin_lock_irq(q->queue_lock);
73c10101 220 __blk_run_queue(q);
3cca6dc1
JA
221 spin_unlock_irq(q->queue_lock);
222}
223
224/**
225 * blk_delay_queue - restart queueing after defined interval
226 * @q: The &struct request_queue in question
227 * @msecs: Delay in msecs
228 *
229 * Description:
230 * Sometimes queueing needs to be postponed for a little while, to allow
231 * resources to come back. This function will make sure that queueing is
232 * restarted around the specified time.
233 */
234void blk_delay_queue(struct request_queue *q, unsigned long msecs)
235{
236 schedule_delayed_work(&q->delay_work, msecs_to_jiffies(msecs));
237}
238EXPORT_SYMBOL(blk_delay_queue);
239
1da177e4
LT
240/**
241 * blk_start_queue - restart a previously stopped queue
165125e1 242 * @q: The &struct request_queue in question
1da177e4
LT
243 *
244 * Description:
245 * blk_start_queue() will clear the stop flag on the queue, and call
246 * the request_fn for the queue if it was in a stopped state when
247 * entered. Also see blk_stop_queue(). Queue lock must be held.
248 **/
165125e1 249void blk_start_queue(struct request_queue *q)
1da177e4 250{
a038e253
PBG
251 WARN_ON(!irqs_disabled());
252
75ad23bc 253 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 254 __blk_run_queue(q);
1da177e4 255}
1da177e4
LT
256EXPORT_SYMBOL(blk_start_queue);
257
258/**
259 * blk_stop_queue - stop a queue
165125e1 260 * @q: The &struct request_queue in question
1da177e4
LT
261 *
262 * Description:
263 * The Linux block layer assumes that a block driver will consume all
264 * entries on the request queue when the request_fn strategy is called.
265 * Often this will not happen, because of hardware limitations (queue
266 * depth settings). If a device driver gets a 'queue full' response,
267 * or if it simply chooses not to queue more I/O at one point, it can
268 * call this function to prevent the request_fn from being called until
269 * the driver has signalled it's ready to go again. This happens by calling
270 * blk_start_queue() to restart queue operations. Queue lock must be held.
271 **/
165125e1 272void blk_stop_queue(struct request_queue *q)
1da177e4 273{
3cca6dc1 274 cancel_delayed_work(&q->delay_work);
75ad23bc 275 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
276}
277EXPORT_SYMBOL(blk_stop_queue);
278
279/**
280 * blk_sync_queue - cancel any pending callbacks on a queue
281 * @q: the queue
282 *
283 * Description:
284 * The block layer may perform asynchronous callback activity
285 * on a queue, such as calling the unplug function after a timeout.
286 * A block device may call blk_sync_queue to ensure that any
287 * such activity is cancelled, thus allowing it to release resources
59c51591 288 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
289 * that its ->make_request_fn will not re-add plugging prior to calling
290 * this function.
291 *
292 */
293void blk_sync_queue(struct request_queue *q)
294{
70ed28b9 295 del_timer_sync(&q->timeout);
e43473b7 296 throtl_shutdown_timer_wq(q);
3cca6dc1 297 cancel_delayed_work_sync(&q->delay_work);
7eaceacc 298 queue_sync_plugs(q);
1da177e4
LT
299}
300EXPORT_SYMBOL(blk_sync_queue);
301
302/**
80a4b58e 303 * __blk_run_queue - run a single device queue
1da177e4 304 * @q: The queue to run
80a4b58e
JA
305 *
306 * Description:
307 * See @blk_run_queue. This variant must be called with the queue lock
308 * held and interrupts disabled.
309 *
1da177e4 310 */
75ad23bc 311void __blk_run_queue(struct request_queue *q)
1da177e4 312{
a538cd03
TH
313 if (unlikely(blk_queue_stopped(q)))
314 return;
315
dac07ec1
JA
316 /*
317 * Only recurse once to avoid overrunning the stack, let the unplug
318 * handling reinvoke the handler shortly if we already got there.
319 */
a538cd03
TH
320 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
321 q->request_fn(q);
322 queue_flag_clear(QUEUE_FLAG_REENTER, q);
7eaceacc
JA
323 } else
324 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
75ad23bc
NP
325}
326EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 327
75ad23bc
NP
328/**
329 * blk_run_queue - run a single device queue
330 * @q: The queue to run
80a4b58e
JA
331 *
332 * Description:
333 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 334 * May be used to restart queueing when a request has completed.
75ad23bc
NP
335 */
336void blk_run_queue(struct request_queue *q)
337{
338 unsigned long flags;
339
340 spin_lock_irqsave(q->queue_lock, flags);
341 __blk_run_queue(q);
1da177e4
LT
342 spin_unlock_irqrestore(q->queue_lock, flags);
343}
344EXPORT_SYMBOL(blk_run_queue);
345
165125e1 346void blk_put_queue(struct request_queue *q)
483f4afc
AV
347{
348 kobject_put(&q->kobj);
349}
483f4afc 350
6728cb0e 351void blk_cleanup_queue(struct request_queue *q)
483f4afc 352{
e3335de9
JA
353 /*
354 * We know we have process context here, so we can be a little
355 * cautious and ensure that pending block actions on this device
356 * are done before moving on. Going into this function, we should
357 * not have processes doing IO to this device.
358 */
359 blk_sync_queue(q);
360
31373d09 361 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 362 mutex_lock(&q->sysfs_lock);
75ad23bc 363 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
364 mutex_unlock(&q->sysfs_lock);
365
366 if (q->elevator)
367 elevator_exit(q->elevator);
368
369 blk_put_queue(q);
370}
1da177e4
LT
371EXPORT_SYMBOL(blk_cleanup_queue);
372
165125e1 373static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
374{
375 struct request_list *rl = &q->rq;
376
1abec4fd
MS
377 if (unlikely(rl->rq_pool))
378 return 0;
379
1faa16d2
JA
380 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
381 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 382 rl->elvpriv = 0;
1faa16d2
JA
383 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
384 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 385
1946089a
CL
386 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
387 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
388
389 if (!rl->rq_pool)
390 return -ENOMEM;
391
392 return 0;
393}
394
165125e1 395struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 396{
1946089a
CL
397 return blk_alloc_queue_node(gfp_mask, -1);
398}
399EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 400
165125e1 401struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 402{
165125e1 403 struct request_queue *q;
e0bf68dd 404 int err;
1946089a 405
8324aa91 406 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 407 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
408 if (!q)
409 return NULL;
410
0989a025
JA
411 q->backing_dev_info.ra_pages =
412 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
413 q->backing_dev_info.state = 0;
414 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 415 q->backing_dev_info.name = "block";
0989a025 416
e0bf68dd
PZ
417 err = bdi_init(&q->backing_dev_info);
418 if (err) {
8324aa91 419 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
420 return NULL;
421 }
422
e43473b7
VG
423 if (blk_throtl_init(q)) {
424 kmem_cache_free(blk_requestq_cachep, q);
425 return NULL;
426 }
427
31373d09
MG
428 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
429 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb
JA
430 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
431 INIT_LIST_HEAD(&q->timeout_list);
ae1b1539
TH
432 INIT_LIST_HEAD(&q->flush_queue[0]);
433 INIT_LIST_HEAD(&q->flush_queue[1]);
434 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 435 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 436
8324aa91 437 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 438
483f4afc 439 mutex_init(&q->sysfs_lock);
e7e72bf6 440 spin_lock_init(&q->__queue_lock);
483f4afc 441
1da177e4
LT
442 return q;
443}
1946089a 444EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
445
446/**
447 * blk_init_queue - prepare a request queue for use with a block device
448 * @rfn: The function to be called to process requests that have been
449 * placed on the queue.
450 * @lock: Request queue spin lock
451 *
452 * Description:
453 * If a block device wishes to use the standard request handling procedures,
454 * which sorts requests and coalesces adjacent requests, then it must
455 * call blk_init_queue(). The function @rfn will be called when there
456 * are requests on the queue that need to be processed. If the device
457 * supports plugging, then @rfn may not be called immediately when requests
458 * are available on the queue, but may be called at some time later instead.
459 * Plugged queues are generally unplugged when a buffer belonging to one
460 * of the requests on the queue is needed, or due to memory pressure.
461 *
462 * @rfn is not required, or even expected, to remove all requests off the
463 * queue, but only as many as it can handle at a time. If it does leave
464 * requests on the queue, it is responsible for arranging that the requests
465 * get dealt with eventually.
466 *
467 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
468 * request queue; this lock will be taken also from interrupt context, so irq
469 * disabling is needed for it.
1da177e4 470 *
710027a4 471 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
472 * it didn't succeed.
473 *
474 * Note:
475 * blk_init_queue() must be paired with a blk_cleanup_queue() call
476 * when the block device is deactivated (such as at module unload).
477 **/
1946089a 478
165125e1 479struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 480{
1946089a
CL
481 return blk_init_queue_node(rfn, lock, -1);
482}
483EXPORT_SYMBOL(blk_init_queue);
484
165125e1 485struct request_queue *
1946089a
CL
486blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
487{
c86d1b8a 488 struct request_queue *uninit_q, *q;
1da177e4 489
c86d1b8a
MS
490 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
491 if (!uninit_q)
492 return NULL;
493
494 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
495 if (!q)
496 blk_cleanup_queue(uninit_q);
497
498 return q;
01effb0d
MS
499}
500EXPORT_SYMBOL(blk_init_queue_node);
501
502struct request_queue *
503blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
504 spinlock_t *lock)
505{
506 return blk_init_allocated_queue_node(q, rfn, lock, -1);
507}
508EXPORT_SYMBOL(blk_init_allocated_queue);
509
510struct request_queue *
511blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
512 spinlock_t *lock, int node_id)
513{
1da177e4
LT
514 if (!q)
515 return NULL;
516
1946089a 517 q->node = node_id;
c86d1b8a 518 if (blk_init_free_list(q))
8669aafd 519 return NULL;
1da177e4
LT
520
521 q->request_fn = rfn;
1da177e4 522 q->prep_rq_fn = NULL;
28018c24 523 q->unprep_rq_fn = NULL;
bc58ba94 524 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
525 q->queue_lock = lock;
526
f3b144aa
JA
527 /*
528 * This also sets hw/phys segments, boundary and size
529 */
1da177e4 530 blk_queue_make_request(q, __make_request);
1da177e4 531
44ec9542
AS
532 q->sg_reserved_size = INT_MAX;
533
1da177e4
LT
534 /*
535 * all done
536 */
537 if (!elevator_init(q, NULL)) {
538 blk_queue_congestion_threshold(q);
539 return q;
540 }
541
1da177e4
LT
542 return NULL;
543}
01effb0d 544EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 545
165125e1 546int blk_get_queue(struct request_queue *q)
1da177e4 547{
fde6ad22 548 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 549 kobject_get(&q->kobj);
1da177e4
LT
550 return 0;
551 }
552
553 return 1;
554}
1da177e4 555
165125e1 556static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 557{
73c10101
JA
558 BUG_ON(rq->cmd_flags & REQ_ON_PLUG);
559
4aff5e23 560 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 561 elv_put_request(q, rq);
1da177e4
LT
562 mempool_free(rq, q->rq.rq_pool);
563}
564
1ea25ecb 565static struct request *
42dad764 566blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
567{
568 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
569
570 if (!rq)
571 return NULL;
572
2a4aa30c 573 blk_rq_init(q, rq);
1afb20f3 574
42dad764 575 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 576
cb98fc8b 577 if (priv) {
cb78b285 578 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
579 mempool_free(rq, q->rq.rq_pool);
580 return NULL;
581 }
4aff5e23 582 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 583 }
1da177e4 584
cb98fc8b 585 return rq;
1da177e4
LT
586}
587
588/*
589 * ioc_batching returns true if the ioc is a valid batching request and
590 * should be given priority access to a request.
591 */
165125e1 592static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
593{
594 if (!ioc)
595 return 0;
596
597 /*
598 * Make sure the process is able to allocate at least 1 request
599 * even if the batch times out, otherwise we could theoretically
600 * lose wakeups.
601 */
602 return ioc->nr_batch_requests == q->nr_batching ||
603 (ioc->nr_batch_requests > 0
604 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
605}
606
607/*
608 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
609 * will cause the process to be a "batcher" on all queues in the system. This
610 * is the behaviour we want though - once it gets a wakeup it should be given
611 * a nice run.
612 */
165125e1 613static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
614{
615 if (!ioc || ioc_batching(q, ioc))
616 return;
617
618 ioc->nr_batch_requests = q->nr_batching;
619 ioc->last_waited = jiffies;
620}
621
1faa16d2 622static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
623{
624 struct request_list *rl = &q->rq;
625
1faa16d2
JA
626 if (rl->count[sync] < queue_congestion_off_threshold(q))
627 blk_clear_queue_congested(q, sync);
1da177e4 628
1faa16d2
JA
629 if (rl->count[sync] + 1 <= q->nr_requests) {
630 if (waitqueue_active(&rl->wait[sync]))
631 wake_up(&rl->wait[sync]);
1da177e4 632
1faa16d2 633 blk_clear_queue_full(q, sync);
1da177e4
LT
634 }
635}
636
637/*
638 * A request has just been released. Account for it, update the full and
639 * congestion status, wake up any waiters. Called under q->queue_lock.
640 */
1faa16d2 641static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
642{
643 struct request_list *rl = &q->rq;
644
1faa16d2 645 rl->count[sync]--;
cb98fc8b
TH
646 if (priv)
647 rl->elvpriv--;
1da177e4 648
1faa16d2 649 __freed_request(q, sync);
1da177e4 650
1faa16d2
JA
651 if (unlikely(rl->starved[sync ^ 1]))
652 __freed_request(q, sync ^ 1);
1da177e4
LT
653}
654
9d5a4e94
MS
655/*
656 * Determine if elevator data should be initialized when allocating the
657 * request associated with @bio.
658 */
659static bool blk_rq_should_init_elevator(struct bio *bio)
660{
661 if (!bio)
662 return true;
663
664 /*
665 * Flush requests do not use the elevator so skip initialization.
666 * This allows a request to share the flush and elevator data.
667 */
668 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
669 return false;
670
671 return true;
672}
673
1da177e4 674/*
d6344532
NP
675 * Get a free request, queue_lock must be held.
676 * Returns NULL on failure, with queue_lock held.
677 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 678 */
165125e1 679static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 680 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
681{
682 struct request *rq = NULL;
683 struct request_list *rl = &q->rq;
88ee5ef1 684 struct io_context *ioc = NULL;
1faa16d2 685 const bool is_sync = rw_is_sync(rw_flags) != 0;
9d5a4e94 686 int may_queue, priv = 0;
88ee5ef1 687
7749a8d4 688 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
689 if (may_queue == ELV_MQUEUE_NO)
690 goto rq_starved;
691
1faa16d2
JA
692 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
693 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 694 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
695 /*
696 * The queue will fill after this allocation, so set
697 * it as full, and mark this process as "batching".
698 * This process will be allowed to complete a batch of
699 * requests, others will be blocked.
700 */
1faa16d2 701 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 702 ioc_set_batching(q, ioc);
1faa16d2 703 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
704 } else {
705 if (may_queue != ELV_MQUEUE_MUST
706 && !ioc_batching(q, ioc)) {
707 /*
708 * The queue is full and the allocating
709 * process is not a "batcher", and not
710 * exempted by the IO scheduler
711 */
712 goto out;
713 }
714 }
1da177e4 715 }
1faa16d2 716 blk_set_queue_congested(q, is_sync);
1da177e4
LT
717 }
718
082cf69e
JA
719 /*
720 * Only allow batching queuers to allocate up to 50% over the defined
721 * limit of requests, otherwise we could have thousands of requests
722 * allocated with any setting of ->nr_requests
723 */
1faa16d2 724 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 725 goto out;
fd782a4a 726
1faa16d2
JA
727 rl->count[is_sync]++;
728 rl->starved[is_sync] = 0;
cb98fc8b 729
9d5a4e94
MS
730 if (blk_rq_should_init_elevator(bio)) {
731 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
732 if (priv)
733 rl->elvpriv++;
734 }
cb98fc8b 735
f253b86b
JA
736 if (blk_queue_io_stat(q))
737 rw_flags |= REQ_IO_STAT;
1da177e4
LT
738 spin_unlock_irq(q->queue_lock);
739
7749a8d4 740 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 741 if (unlikely(!rq)) {
1da177e4
LT
742 /*
743 * Allocation failed presumably due to memory. Undo anything
744 * we might have messed up.
745 *
746 * Allocating task should really be put onto the front of the
747 * wait queue, but this is pretty rare.
748 */
749 spin_lock_irq(q->queue_lock);
1faa16d2 750 freed_request(q, is_sync, priv);
1da177e4
LT
751
752 /*
753 * in the very unlikely event that allocation failed and no
754 * requests for this direction was pending, mark us starved
755 * so that freeing of a request in the other direction will
756 * notice us. another possible fix would be to split the
757 * rq mempool into READ and WRITE
758 */
759rq_starved:
1faa16d2
JA
760 if (unlikely(rl->count[is_sync] == 0))
761 rl->starved[is_sync] = 1;
1da177e4 762
1da177e4
LT
763 goto out;
764 }
765
88ee5ef1
JA
766 /*
767 * ioc may be NULL here, and ioc_batching will be false. That's
768 * OK, if the queue is under the request limit then requests need
769 * not count toward the nr_batch_requests limit. There will always
770 * be some limit enforced by BLK_BATCH_TIME.
771 */
1da177e4
LT
772 if (ioc_batching(q, ioc))
773 ioc->nr_batch_requests--;
6728cb0e 774
1faa16d2 775 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 776out:
1da177e4
LT
777 return rq;
778}
779
780/*
7eaceacc
JA
781 * No available requests for this queue, wait for some requests to become
782 * available.
d6344532
NP
783 *
784 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 785 */
165125e1 786static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 787 struct bio *bio)
1da177e4 788{
1faa16d2 789 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
790 struct request *rq;
791
7749a8d4 792 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
793 while (!rq) {
794 DEFINE_WAIT(wait);
05caf8db 795 struct io_context *ioc;
1da177e4
LT
796 struct request_list *rl = &q->rq;
797
1faa16d2 798 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
799 TASK_UNINTERRUPTIBLE);
800
1faa16d2 801 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 802
05caf8db
ZY
803 spin_unlock_irq(q->queue_lock);
804 io_schedule();
1da177e4 805
05caf8db
ZY
806 /*
807 * After sleeping, we become a "batching" process and
808 * will be able to allocate at least one request, and
809 * up to a big batch of them for a small period time.
810 * See ioc_batching, ioc_set_batching
811 */
812 ioc = current_io_context(GFP_NOIO, q->node);
813 ioc_set_batching(q, ioc);
d6344532 814
05caf8db 815 spin_lock_irq(q->queue_lock);
1faa16d2 816 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
817
818 rq = get_request(q, rw_flags, bio, GFP_NOIO);
819 };
1da177e4
LT
820
821 return rq;
822}
823
165125e1 824struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
825{
826 struct request *rq;
827
828 BUG_ON(rw != READ && rw != WRITE);
829
d6344532
NP
830 spin_lock_irq(q->queue_lock);
831 if (gfp_mask & __GFP_WAIT) {
22e2c507 832 rq = get_request_wait(q, rw, NULL);
d6344532 833 } else {
22e2c507 834 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
835 if (!rq)
836 spin_unlock_irq(q->queue_lock);
837 }
838 /* q->queue_lock is unlocked at this point */
1da177e4
LT
839
840 return rq;
841}
1da177e4
LT
842EXPORT_SYMBOL(blk_get_request);
843
dc72ef4a 844/**
79eb63e9 845 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 846 * @q: target request queue
79eb63e9
BH
847 * @bio: The bio describing the memory mappings that will be submitted for IO.
848 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 849 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 850 *
79eb63e9
BH
851 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
852 * type commands. Where the struct request needs to be farther initialized by
853 * the caller. It is passed a &struct bio, which describes the memory info of
854 * the I/O transfer.
dc72ef4a 855 *
79eb63e9
BH
856 * The caller of blk_make_request must make sure that bi_io_vec
857 * are set to describe the memory buffers. That bio_data_dir() will return
858 * the needed direction of the request. (And all bio's in the passed bio-chain
859 * are properly set accordingly)
860 *
861 * If called under none-sleepable conditions, mapped bio buffers must not
862 * need bouncing, by calling the appropriate masked or flagged allocator,
863 * suitable for the target device. Otherwise the call to blk_queue_bounce will
864 * BUG.
53674ac5
JA
865 *
866 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
867 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
868 * anything but the first bio in the chain. Otherwise you risk waiting for IO
869 * completion of a bio that hasn't been submitted yet, thus resulting in a
870 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
871 * of bio_alloc(), as that avoids the mempool deadlock.
872 * If possible a big IO should be split into smaller parts when allocation
873 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 874 */
79eb63e9
BH
875struct request *blk_make_request(struct request_queue *q, struct bio *bio,
876 gfp_t gfp_mask)
dc72ef4a 877{
79eb63e9
BH
878 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
879
880 if (unlikely(!rq))
881 return ERR_PTR(-ENOMEM);
882
883 for_each_bio(bio) {
884 struct bio *bounce_bio = bio;
885 int ret;
886
887 blk_queue_bounce(q, &bounce_bio);
888 ret = blk_rq_append_bio(q, rq, bounce_bio);
889 if (unlikely(ret)) {
890 blk_put_request(rq);
891 return ERR_PTR(ret);
892 }
893 }
894
895 return rq;
dc72ef4a 896}
79eb63e9 897EXPORT_SYMBOL(blk_make_request);
dc72ef4a 898
1da177e4
LT
899/**
900 * blk_requeue_request - put a request back on queue
901 * @q: request queue where request should be inserted
902 * @rq: request to be inserted
903 *
904 * Description:
905 * Drivers often keep queueing requests until the hardware cannot accept
906 * more, when that condition happens we need to put the request back
907 * on the queue. Must be called with queue lock held.
908 */
165125e1 909void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 910{
242f9dcb
JA
911 blk_delete_timer(rq);
912 blk_clear_rq_complete(rq);
5f3ea37c 913 trace_block_rq_requeue(q, rq);
2056a782 914
1da177e4
LT
915 if (blk_rq_tagged(rq))
916 blk_queue_end_tag(q, rq);
917
ba396a6c
JB
918 BUG_ON(blk_queued_rq(rq));
919
1da177e4
LT
920 elv_requeue_request(q, rq);
921}
1da177e4
LT
922EXPORT_SYMBOL(blk_requeue_request);
923
73c10101
JA
924static void add_acct_request(struct request_queue *q, struct request *rq,
925 int where)
926{
927 drive_stat_acct(rq, 1);
7eaceacc 928 __elv_add_request(q, rq, where);
73c10101
JA
929}
930
1da177e4 931/**
710027a4 932 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
933 * @q: request queue where request should be inserted
934 * @rq: request to be inserted
935 * @at_head: insert request at head or tail of queue
936 * @data: private data
1da177e4
LT
937 *
938 * Description:
939 * Many block devices need to execute commands asynchronously, so they don't
940 * block the whole kernel from preemption during request execution. This is
941 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
942 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
943 * be scheduled for actual execution by the request queue.
1da177e4
LT
944 *
945 * We have the option of inserting the head or the tail of the queue.
946 * Typically we use the tail for new ioctls and so forth. We use the head
947 * of the queue for things like a QUEUE_FULL message from a device, or a
948 * host that is unable to accept a particular command.
949 */
165125e1 950void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 951 int at_head, void *data)
1da177e4 952{
867d1191 953 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
954 unsigned long flags;
955
956 /*
957 * tell I/O scheduler that this isn't a regular read/write (ie it
958 * must not attempt merges on this) and that it acts as a soft
959 * barrier
960 */
4aff5e23 961 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
962
963 rq->special = data;
964
965 spin_lock_irqsave(q->queue_lock, flags);
966
967 /*
968 * If command is tagged, release the tag
969 */
867d1191
TH
970 if (blk_rq_tagged(rq))
971 blk_queue_end_tag(q, rq);
1da177e4 972
73c10101 973 add_acct_request(q, rq, where);
a7f55792 974 __blk_run_queue(q);
1da177e4
LT
975 spin_unlock_irqrestore(q->queue_lock, flags);
976}
1da177e4
LT
977EXPORT_SYMBOL(blk_insert_request);
978
074a7aca
TH
979static void part_round_stats_single(int cpu, struct hd_struct *part,
980 unsigned long now)
981{
982 if (now == part->stamp)
983 return;
984
316d315b 985 if (part_in_flight(part)) {
074a7aca 986 __part_stat_add(cpu, part, time_in_queue,
316d315b 987 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
988 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
989 }
990 part->stamp = now;
991}
992
993/**
496aa8a9
RD
994 * part_round_stats() - Round off the performance stats on a struct disk_stats.
995 * @cpu: cpu number for stats access
996 * @part: target partition
1da177e4
LT
997 *
998 * The average IO queue length and utilisation statistics are maintained
999 * by observing the current state of the queue length and the amount of
1000 * time it has been in this state for.
1001 *
1002 * Normally, that accounting is done on IO completion, but that can result
1003 * in more than a second's worth of IO being accounted for within any one
1004 * second, leading to >100% utilisation. To deal with that, we call this
1005 * function to do a round-off before returning the results when reading
1006 * /proc/diskstats. This accounts immediately for all queue usage up to
1007 * the current jiffies and restarts the counters again.
1008 */
c9959059 1009void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1010{
1011 unsigned long now = jiffies;
1012
074a7aca
TH
1013 if (part->partno)
1014 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1015 part_round_stats_single(cpu, part, now);
6f2576af 1016}
074a7aca 1017EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1018
1da177e4
LT
1019/*
1020 * queue lock must be held
1021 */
165125e1 1022void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1023{
1da177e4
LT
1024 if (unlikely(!q))
1025 return;
1026 if (unlikely(--req->ref_count))
1027 return;
1028
8922e16c
TH
1029 elv_completed_request(q, req);
1030
1cd96c24
BH
1031 /* this is a bio leak */
1032 WARN_ON(req->bio != NULL);
1033
1da177e4
LT
1034 /*
1035 * Request may not have originated from ll_rw_blk. if not,
1036 * it didn't come out of our reserved rq pools
1037 */
49171e5c 1038 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1039 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1040 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1041
1da177e4 1042 BUG_ON(!list_empty(&req->queuelist));
9817064b 1043 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1044
1045 blk_free_request(q, req);
1faa16d2 1046 freed_request(q, is_sync, priv);
1da177e4
LT
1047 }
1048}
6e39b69e
MC
1049EXPORT_SYMBOL_GPL(__blk_put_request);
1050
1da177e4
LT
1051void blk_put_request(struct request *req)
1052{
8922e16c 1053 unsigned long flags;
165125e1 1054 struct request_queue *q = req->q;
8922e16c 1055
52a93ba8
FT
1056 spin_lock_irqsave(q->queue_lock, flags);
1057 __blk_put_request(q, req);
1058 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1059}
1da177e4
LT
1060EXPORT_SYMBOL(blk_put_request);
1061
66ac0280
CH
1062/**
1063 * blk_add_request_payload - add a payload to a request
1064 * @rq: request to update
1065 * @page: page backing the payload
1066 * @len: length of the payload.
1067 *
1068 * This allows to later add a payload to an already submitted request by
1069 * a block driver. The driver needs to take care of freeing the payload
1070 * itself.
1071 *
1072 * Note that this is a quite horrible hack and nothing but handling of
1073 * discard requests should ever use it.
1074 */
1075void blk_add_request_payload(struct request *rq, struct page *page,
1076 unsigned int len)
1077{
1078 struct bio *bio = rq->bio;
1079
1080 bio->bi_io_vec->bv_page = page;
1081 bio->bi_io_vec->bv_offset = 0;
1082 bio->bi_io_vec->bv_len = len;
1083
1084 bio->bi_size = len;
1085 bio->bi_vcnt = 1;
1086 bio->bi_phys_segments = 1;
1087
1088 rq->__data_len = rq->resid_len = len;
1089 rq->nr_phys_segments = 1;
1090 rq->buffer = bio_data(bio);
1091}
1092EXPORT_SYMBOL_GPL(blk_add_request_payload);
1093
73c10101
JA
1094static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1095 struct bio *bio)
1096{
1097 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1098
1099 /*
1100 * Debug stuff, kill later
1101 */
1102 if (!rq_mergeable(req)) {
1103 blk_dump_rq_flags(req, "back");
1104 return false;
1105 }
1106
1107 if (!ll_back_merge_fn(q, req, bio))
1108 return false;
1109
1110 trace_block_bio_backmerge(q, bio);
1111
1112 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1113 blk_rq_set_mixed_merge(req);
1114
1115 req->biotail->bi_next = bio;
1116 req->biotail = bio;
1117 req->__data_len += bio->bi_size;
1118 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1119
1120 drive_stat_acct(req, 0);
1121 return true;
1122}
1123
1124static bool bio_attempt_front_merge(struct request_queue *q,
1125 struct request *req, struct bio *bio)
1126{
1127 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1128 sector_t sector;
1129
1130 /*
1131 * Debug stuff, kill later
1132 */
1133 if (!rq_mergeable(req)) {
1134 blk_dump_rq_flags(req, "front");
1135 return false;
1136 }
1137
1138 if (!ll_front_merge_fn(q, req, bio))
1139 return false;
1140
1141 trace_block_bio_frontmerge(q, bio);
1142
1143 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1144 blk_rq_set_mixed_merge(req);
1145
1146 sector = bio->bi_sector;
1147
1148 bio->bi_next = req->bio;
1149 req->bio = bio;
1150
1151 /*
1152 * may not be valid. if the low level driver said
1153 * it didn't need a bounce buffer then it better
1154 * not touch req->buffer either...
1155 */
1156 req->buffer = bio_data(bio);
1157 req->__sector = bio->bi_sector;
1158 req->__data_len += bio->bi_size;
1159 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1160
1161 drive_stat_acct(req, 0);
1162 return true;
1163}
1164
1165/*
1166 * Attempts to merge with the plugged list in the current process. Returns
1167 * true if merge was succesful, otherwise false.
1168 */
1169static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1170 struct bio *bio)
1171{
1172 struct blk_plug *plug;
1173 struct request *rq;
1174 bool ret = false;
1175
1176 plug = tsk->plug;
1177 if (!plug)
1178 goto out;
1179
1180 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1181 int el_ret;
1182
1183 if (rq->q != q)
1184 continue;
1185
1186 el_ret = elv_try_merge(rq, bio);
1187 if (el_ret == ELEVATOR_BACK_MERGE) {
1188 ret = bio_attempt_back_merge(q, rq, bio);
1189 if (ret)
1190 break;
1191 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1192 ret = bio_attempt_front_merge(q, rq, bio);
1193 if (ret)
1194 break;
1195 }
1196 }
1197out:
1198 return ret;
1199}
1200
86db1e29 1201void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1202{
c7c22e4d 1203 req->cpu = bio->bi_comp_cpu;
4aff5e23 1204 req->cmd_type = REQ_TYPE_FS;
52d9e675 1205
7b6d91da
CH
1206 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1207 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1208 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1209
52d9e675 1210 req->errors = 0;
a2dec7b3 1211 req->__sector = bio->bi_sector;
52d9e675 1212 req->ioprio = bio_prio(bio);
bc1c56fd 1213 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1214}
1215
165125e1 1216static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1217{
5e00d1b5 1218 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1219 struct blk_plug *plug;
1220 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1221 struct request *req;
1da177e4 1222
1da177e4
LT
1223 /*
1224 * low level driver can indicate that it wants pages above a
1225 * certain limit bounced to low memory (ie for highmem, or even
1226 * ISA dma in theory)
1227 */
1228 blk_queue_bounce(q, &bio);
1229
4fed947c 1230 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1231 spin_lock_irq(q->queue_lock);
ae1b1539 1232 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1233 goto get_rq;
1234 }
1235
73c10101
JA
1236 /*
1237 * Check if we can merge with the plugged list before grabbing
1238 * any locks.
1239 */
1240 if (attempt_plug_merge(current, q, bio))
6728cb0e 1241 goto out;
1da177e4 1242
73c10101 1243 spin_lock_irq(q->queue_lock);
2056a782 1244
73c10101
JA
1245 el_ret = elv_merge(q, &req, bio);
1246 if (el_ret == ELEVATOR_BACK_MERGE) {
1247 BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1248 if (bio_attempt_back_merge(q, req, bio)) {
1249 if (!attempt_back_merge(q, req))
1250 elv_merged_request(q, req, el_ret);
1251 goto out_unlock;
1252 }
1253 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1254 BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1255 if (bio_attempt_front_merge(q, req, bio)) {
1256 if (!attempt_front_merge(q, req))
1257 elv_merged_request(q, req, el_ret);
1258 goto out_unlock;
80a761fd 1259 }
1da177e4
LT
1260 }
1261
450991bc 1262get_rq:
7749a8d4
JA
1263 /*
1264 * This sync check and mask will be re-done in init_request_from_bio(),
1265 * but we need to set it earlier to expose the sync flag to the
1266 * rq allocator and io schedulers.
1267 */
1268 rw_flags = bio_data_dir(bio);
1269 if (sync)
7b6d91da 1270 rw_flags |= REQ_SYNC;
7749a8d4 1271
1da177e4 1272 /*
450991bc 1273 * Grab a free request. This is might sleep but can not fail.
d6344532 1274 * Returns with the queue unlocked.
450991bc 1275 */
7749a8d4 1276 req = get_request_wait(q, rw_flags, bio);
d6344532 1277
450991bc
NP
1278 /*
1279 * After dropping the lock and possibly sleeping here, our request
1280 * may now be mergeable after it had proven unmergeable (above).
1281 * We don't worry about that case for efficiency. It won't happen
1282 * often, and the elevators are able to handle it.
1da177e4 1283 */
52d9e675 1284 init_request_from_bio(req, bio);
1da177e4 1285
c7c22e4d 1286 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
73c10101
JA
1287 bio_flagged(bio, BIO_CPU_AFFINE)) {
1288 req->cpu = blk_cpu_to_group(get_cpu());
1289 put_cpu();
1290 }
1291
1292 plug = current->plug;
1293 if (plug && !sync) {
1294 if (!plug->should_sort && !list_empty(&plug->list)) {
1295 struct request *__rq;
1296
1297 __rq = list_entry_rq(plug->list.prev);
1298 if (__rq->q != q)
1299 plug->should_sort = 1;
1300 }
1301 /*
1302 * Debug flag, kill later
1303 */
1304 req->cmd_flags |= REQ_ON_PLUG;
1305 list_add_tail(&req->queuelist, &plug->list);
1306 drive_stat_acct(req, 1);
1307 } else {
1308 spin_lock_irq(q->queue_lock);
1309 add_acct_request(q, req, where);
1310 __blk_run_queue(q);
1311out_unlock:
1312 spin_unlock_irq(q->queue_lock);
1313 }
1da177e4 1314out:
1da177e4 1315 return 0;
1da177e4
LT
1316}
1317
1318/*
1319 * If bio->bi_dev is a partition, remap the location
1320 */
1321static inline void blk_partition_remap(struct bio *bio)
1322{
1323 struct block_device *bdev = bio->bi_bdev;
1324
bf2de6f5 1325 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1326 struct hd_struct *p = bdev->bd_part;
1327
1da177e4
LT
1328 bio->bi_sector += p->start_sect;
1329 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1330
d07335e5
MS
1331 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1332 bdev->bd_dev,
1333 bio->bi_sector - p->start_sect);
1da177e4
LT
1334 }
1335}
1336
1da177e4
LT
1337static void handle_bad_sector(struct bio *bio)
1338{
1339 char b[BDEVNAME_SIZE];
1340
1341 printk(KERN_INFO "attempt to access beyond end of device\n");
1342 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1343 bdevname(bio->bi_bdev, b),
1344 bio->bi_rw,
1345 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1346 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1347
1348 set_bit(BIO_EOF, &bio->bi_flags);
1349}
1350
c17bb495
AM
1351#ifdef CONFIG_FAIL_MAKE_REQUEST
1352
1353static DECLARE_FAULT_ATTR(fail_make_request);
1354
1355static int __init setup_fail_make_request(char *str)
1356{
1357 return setup_fault_attr(&fail_make_request, str);
1358}
1359__setup("fail_make_request=", setup_fail_make_request);
1360
1361static int should_fail_request(struct bio *bio)
1362{
eddb2e26
TH
1363 struct hd_struct *part = bio->bi_bdev->bd_part;
1364
1365 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1366 return should_fail(&fail_make_request, bio->bi_size);
1367
1368 return 0;
1369}
1370
1371static int __init fail_make_request_debugfs(void)
1372{
1373 return init_fault_attr_dentries(&fail_make_request,
1374 "fail_make_request");
1375}
1376
1377late_initcall(fail_make_request_debugfs);
1378
1379#else /* CONFIG_FAIL_MAKE_REQUEST */
1380
1381static inline int should_fail_request(struct bio *bio)
1382{
1383 return 0;
1384}
1385
1386#endif /* CONFIG_FAIL_MAKE_REQUEST */
1387
c07e2b41
JA
1388/*
1389 * Check whether this bio extends beyond the end of the device.
1390 */
1391static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1392{
1393 sector_t maxsector;
1394
1395 if (!nr_sectors)
1396 return 0;
1397
1398 /* Test device or partition size, when known. */
77304d2a 1399 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1400 if (maxsector) {
1401 sector_t sector = bio->bi_sector;
1402
1403 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1404 /*
1405 * This may well happen - the kernel calls bread()
1406 * without checking the size of the device, e.g., when
1407 * mounting a device.
1408 */
1409 handle_bad_sector(bio);
1410 return 1;
1411 }
1412 }
1413
1414 return 0;
1415}
1416
1da177e4 1417/**
710027a4 1418 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1419 * @bio: The bio describing the location in memory and on the device.
1420 *
1421 * generic_make_request() is used to make I/O requests of block
1422 * devices. It is passed a &struct bio, which describes the I/O that needs
1423 * to be done.
1424 *
1425 * generic_make_request() does not return any status. The
1426 * success/failure status of the request, along with notification of
1427 * completion, is delivered asynchronously through the bio->bi_end_io
1428 * function described (one day) else where.
1429 *
1430 * The caller of generic_make_request must make sure that bi_io_vec
1431 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1432 * set to describe the device address, and the
1433 * bi_end_io and optionally bi_private are set to describe how
1434 * completion notification should be signaled.
1435 *
1436 * generic_make_request and the drivers it calls may use bi_next if this
1437 * bio happens to be merged with someone else, and may change bi_dev and
1438 * bi_sector for remaps as it sees fit. So the values of these fields
1439 * should NOT be depended on after the call to generic_make_request.
1440 */
d89d8796 1441static inline void __generic_make_request(struct bio *bio)
1da177e4 1442{
165125e1 1443 struct request_queue *q;
5ddfe969 1444 sector_t old_sector;
1da177e4 1445 int ret, nr_sectors = bio_sectors(bio);
2056a782 1446 dev_t old_dev;
51fd77bd 1447 int err = -EIO;
1da177e4
LT
1448
1449 might_sleep();
1da177e4 1450
c07e2b41
JA
1451 if (bio_check_eod(bio, nr_sectors))
1452 goto end_io;
1da177e4
LT
1453
1454 /*
1455 * Resolve the mapping until finished. (drivers are
1456 * still free to implement/resolve their own stacking
1457 * by explicitly returning 0)
1458 *
1459 * NOTE: we don't repeat the blk_size check for each new device.
1460 * Stacking drivers are expected to know what they are doing.
1461 */
5ddfe969 1462 old_sector = -1;
2056a782 1463 old_dev = 0;
1da177e4
LT
1464 do {
1465 char b[BDEVNAME_SIZE];
1466
1467 q = bdev_get_queue(bio->bi_bdev);
a7384677 1468 if (unlikely(!q)) {
1da177e4
LT
1469 printk(KERN_ERR
1470 "generic_make_request: Trying to access "
1471 "nonexistent block-device %s (%Lu)\n",
1472 bdevname(bio->bi_bdev, b),
1473 (long long) bio->bi_sector);
a7384677 1474 goto end_io;
1da177e4
LT
1475 }
1476
7b6d91da 1477 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1478 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1479 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1480 bdevname(bio->bi_bdev, b),
1481 bio_sectors(bio),
1482 queue_max_hw_sectors(q));
1da177e4
LT
1483 goto end_io;
1484 }
1485
fde6ad22 1486 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1487 goto end_io;
1488
c17bb495
AM
1489 if (should_fail_request(bio))
1490 goto end_io;
1491
1da177e4
LT
1492 /*
1493 * If this device has partitions, remap block n
1494 * of partition p to block n+start(p) of the disk.
1495 */
1496 blk_partition_remap(bio);
1497
7ba1ba12
MP
1498 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1499 goto end_io;
1500
5ddfe969 1501 if (old_sector != -1)
d07335e5 1502 trace_block_bio_remap(q, bio, old_dev, old_sector);
2056a782 1503
5ddfe969 1504 old_sector = bio->bi_sector;
2056a782
JA
1505 old_dev = bio->bi_bdev->bd_dev;
1506
c07e2b41
JA
1507 if (bio_check_eod(bio, nr_sectors))
1508 goto end_io;
a7384677 1509
1e87901e
TH
1510 /*
1511 * Filter flush bio's early so that make_request based
1512 * drivers without flush support don't have to worry
1513 * about them.
1514 */
1515 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1516 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1517 if (!nr_sectors) {
1518 err = 0;
1519 goto end_io;
1520 }
1521 }
1522
8d57a98c
AH
1523 if ((bio->bi_rw & REQ_DISCARD) &&
1524 (!blk_queue_discard(q) ||
1525 ((bio->bi_rw & REQ_SECURE) &&
1526 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1527 err = -EOPNOTSUPP;
1528 goto end_io;
1529 }
5ddfe969 1530
e43473b7
VG
1531 blk_throtl_bio(q, &bio);
1532
1533 /*
1534 * If bio = NULL, bio has been throttled and will be submitted
1535 * later.
1536 */
1537 if (!bio)
1538 break;
1539
01edede4
MK
1540 trace_block_bio_queue(q, bio);
1541
1da177e4
LT
1542 ret = q->make_request_fn(q, bio);
1543 } while (ret);
a7384677
TH
1544
1545 return;
1546
1547end_io:
1548 bio_endio(bio, err);
1da177e4
LT
1549}
1550
d89d8796
NB
1551/*
1552 * We only want one ->make_request_fn to be active at a time,
1553 * else stack usage with stacked devices could be a problem.
bddd87c7 1554 * So use current->bio_list to keep a list of requests
d89d8796 1555 * submited by a make_request_fn function.
bddd87c7 1556 * current->bio_list is also used as a flag to say if
d89d8796
NB
1557 * generic_make_request is currently active in this task or not.
1558 * If it is NULL, then no make_request is active. If it is non-NULL,
1559 * then a make_request is active, and new requests should be added
1560 * at the tail
1561 */
1562void generic_make_request(struct bio *bio)
1563{
bddd87c7
AM
1564 struct bio_list bio_list_on_stack;
1565
1566 if (current->bio_list) {
d89d8796 1567 /* make_request is active */
bddd87c7 1568 bio_list_add(current->bio_list, bio);
d89d8796
NB
1569 return;
1570 }
1571 /* following loop may be a bit non-obvious, and so deserves some
1572 * explanation.
1573 * Before entering the loop, bio->bi_next is NULL (as all callers
1574 * ensure that) so we have a list with a single bio.
1575 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1576 * we assign bio_list to a pointer to the bio_list_on_stack,
1577 * thus initialising the bio_list of new bios to be
d89d8796
NB
1578 * added. __generic_make_request may indeed add some more bios
1579 * through a recursive call to generic_make_request. If it
1580 * did, we find a non-NULL value in bio_list and re-enter the loop
1581 * from the top. In this case we really did just take the bio
bddd87c7
AM
1582 * of the top of the list (no pretending) and so remove it from
1583 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1584 *
1585 * The loop was structured like this to make only one call to
1586 * __generic_make_request (which is important as it is large and
1587 * inlined) and to keep the structure simple.
1588 */
1589 BUG_ON(bio->bi_next);
bddd87c7
AM
1590 bio_list_init(&bio_list_on_stack);
1591 current->bio_list = &bio_list_on_stack;
d89d8796 1592 do {
d89d8796 1593 __generic_make_request(bio);
bddd87c7 1594 bio = bio_list_pop(current->bio_list);
d89d8796 1595 } while (bio);
bddd87c7 1596 current->bio_list = NULL; /* deactivate */
d89d8796 1597}
1da177e4
LT
1598EXPORT_SYMBOL(generic_make_request);
1599
1600/**
710027a4 1601 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1602 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1603 * @bio: The &struct bio which describes the I/O
1604 *
1605 * submit_bio() is very similar in purpose to generic_make_request(), and
1606 * uses that function to do most of the work. Both are fairly rough
710027a4 1607 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1608 *
1609 */
1610void submit_bio(int rw, struct bio *bio)
1611{
1612 int count = bio_sectors(bio);
1613
22e2c507 1614 bio->bi_rw |= rw;
1da177e4 1615
bf2de6f5
JA
1616 /*
1617 * If it's a regular read/write or a barrier with data attached,
1618 * go through the normal accounting stuff before submission.
1619 */
3ffb52e7 1620 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1621 if (rw & WRITE) {
1622 count_vm_events(PGPGOUT, count);
1623 } else {
1624 task_io_account_read(bio->bi_size);
1625 count_vm_events(PGPGIN, count);
1626 }
1627
1628 if (unlikely(block_dump)) {
1629 char b[BDEVNAME_SIZE];
8dcbdc74 1630 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1631 current->comm, task_pid_nr(current),
bf2de6f5
JA
1632 (rw & WRITE) ? "WRITE" : "READ",
1633 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1634 bdevname(bio->bi_bdev, b),
1635 count);
bf2de6f5 1636 }
1da177e4
LT
1637 }
1638
1639 generic_make_request(bio);
1640}
1da177e4
LT
1641EXPORT_SYMBOL(submit_bio);
1642
82124d60
KU
1643/**
1644 * blk_rq_check_limits - Helper function to check a request for the queue limit
1645 * @q: the queue
1646 * @rq: the request being checked
1647 *
1648 * Description:
1649 * @rq may have been made based on weaker limitations of upper-level queues
1650 * in request stacking drivers, and it may violate the limitation of @q.
1651 * Since the block layer and the underlying device driver trust @rq
1652 * after it is inserted to @q, it should be checked against @q before
1653 * the insertion using this generic function.
1654 *
1655 * This function should also be useful for request stacking drivers
eef35c2d 1656 * in some cases below, so export this function.
82124d60
KU
1657 * Request stacking drivers like request-based dm may change the queue
1658 * limits while requests are in the queue (e.g. dm's table swapping).
1659 * Such request stacking drivers should check those requests agaist
1660 * the new queue limits again when they dispatch those requests,
1661 * although such checkings are also done against the old queue limits
1662 * when submitting requests.
1663 */
1664int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1665{
3383977f
S
1666 if (rq->cmd_flags & REQ_DISCARD)
1667 return 0;
1668
ae03bf63
MP
1669 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1670 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1671 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1672 return -EIO;
1673 }
1674
1675 /*
1676 * queue's settings related to segment counting like q->bounce_pfn
1677 * may differ from that of other stacking queues.
1678 * Recalculate it to check the request correctly on this queue's
1679 * limitation.
1680 */
1681 blk_recalc_rq_segments(rq);
8a78362c 1682 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1683 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1684 return -EIO;
1685 }
1686
1687 return 0;
1688}
1689EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1690
1691/**
1692 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1693 * @q: the queue to submit the request
1694 * @rq: the request being queued
1695 */
1696int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1697{
1698 unsigned long flags;
1699
1700 if (blk_rq_check_limits(q, rq))
1701 return -EIO;
1702
1703#ifdef CONFIG_FAIL_MAKE_REQUEST
1704 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1705 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1706 return -EIO;
1707#endif
1708
1709 spin_lock_irqsave(q->queue_lock, flags);
1710
1711 /*
1712 * Submitting request must be dequeued before calling this function
1713 * because it will be linked to another request_queue
1714 */
1715 BUG_ON(blk_queued_rq(rq));
1716
73c10101 1717 add_acct_request(q, rq, ELEVATOR_INSERT_BACK);
82124d60
KU
1718 spin_unlock_irqrestore(q->queue_lock, flags);
1719
1720 return 0;
1721}
1722EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1723
80a761fd
TH
1724/**
1725 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1726 * @rq: request to examine
1727 *
1728 * Description:
1729 * A request could be merge of IOs which require different failure
1730 * handling. This function determines the number of bytes which
1731 * can be failed from the beginning of the request without
1732 * crossing into area which need to be retried further.
1733 *
1734 * Return:
1735 * The number of bytes to fail.
1736 *
1737 * Context:
1738 * queue_lock must be held.
1739 */
1740unsigned int blk_rq_err_bytes(const struct request *rq)
1741{
1742 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1743 unsigned int bytes = 0;
1744 struct bio *bio;
1745
1746 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1747 return blk_rq_bytes(rq);
1748
1749 /*
1750 * Currently the only 'mixing' which can happen is between
1751 * different fastfail types. We can safely fail portions
1752 * which have all the failfast bits that the first one has -
1753 * the ones which are at least as eager to fail as the first
1754 * one.
1755 */
1756 for (bio = rq->bio; bio; bio = bio->bi_next) {
1757 if ((bio->bi_rw & ff) != ff)
1758 break;
1759 bytes += bio->bi_size;
1760 }
1761
1762 /* this could lead to infinite loop */
1763 BUG_ON(blk_rq_bytes(rq) && !bytes);
1764 return bytes;
1765}
1766EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1767
bc58ba94
JA
1768static void blk_account_io_completion(struct request *req, unsigned int bytes)
1769{
c2553b58 1770 if (blk_do_io_stat(req)) {
bc58ba94
JA
1771 const int rw = rq_data_dir(req);
1772 struct hd_struct *part;
1773 int cpu;
1774
1775 cpu = part_stat_lock();
09e099d4 1776 part = req->part;
bc58ba94
JA
1777 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1778 part_stat_unlock();
1779 }
1780}
1781
1782static void blk_account_io_done(struct request *req)
1783{
bc58ba94 1784 /*
dd4c133f
TH
1785 * Account IO completion. flush_rq isn't accounted as a
1786 * normal IO on queueing nor completion. Accounting the
1787 * containing request is enough.
bc58ba94 1788 */
414b4ff5 1789 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1790 unsigned long duration = jiffies - req->start_time;
1791 const int rw = rq_data_dir(req);
1792 struct hd_struct *part;
1793 int cpu;
1794
1795 cpu = part_stat_lock();
09e099d4 1796 part = req->part;
bc58ba94
JA
1797
1798 part_stat_inc(cpu, part, ios[rw]);
1799 part_stat_add(cpu, part, ticks[rw], duration);
1800 part_round_stats(cpu, part);
316d315b 1801 part_dec_in_flight(part, rw);
bc58ba94 1802
6c23a968 1803 hd_struct_put(part);
bc58ba94
JA
1804 part_stat_unlock();
1805 }
1806}
1807
3bcddeac 1808/**
9934c8c0
TH
1809 * blk_peek_request - peek at the top of a request queue
1810 * @q: request queue to peek at
1811 *
1812 * Description:
1813 * Return the request at the top of @q. The returned request
1814 * should be started using blk_start_request() before LLD starts
1815 * processing it.
1816 *
1817 * Return:
1818 * Pointer to the request at the top of @q if available. Null
1819 * otherwise.
1820 *
1821 * Context:
1822 * queue_lock must be held.
1823 */
1824struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1825{
1826 struct request *rq;
1827 int ret;
1828
1829 while ((rq = __elv_next_request(q)) != NULL) {
1830 if (!(rq->cmd_flags & REQ_STARTED)) {
1831 /*
1832 * This is the first time the device driver
1833 * sees this request (possibly after
1834 * requeueing). Notify IO scheduler.
1835 */
33659ebb 1836 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1837 elv_activate_rq(q, rq);
1838
1839 /*
1840 * just mark as started even if we don't start
1841 * it, a request that has been delayed should
1842 * not be passed by new incoming requests
1843 */
1844 rq->cmd_flags |= REQ_STARTED;
1845 trace_block_rq_issue(q, rq);
1846 }
1847
1848 if (!q->boundary_rq || q->boundary_rq == rq) {
1849 q->end_sector = rq_end_sector(rq);
1850 q->boundary_rq = NULL;
1851 }
1852
1853 if (rq->cmd_flags & REQ_DONTPREP)
1854 break;
1855
2e46e8b2 1856 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1857 /*
1858 * make sure space for the drain appears we
1859 * know we can do this because max_hw_segments
1860 * has been adjusted to be one fewer than the
1861 * device can handle
1862 */
1863 rq->nr_phys_segments++;
1864 }
1865
1866 if (!q->prep_rq_fn)
1867 break;
1868
1869 ret = q->prep_rq_fn(q, rq);
1870 if (ret == BLKPREP_OK) {
1871 break;
1872 } else if (ret == BLKPREP_DEFER) {
1873 /*
1874 * the request may have been (partially) prepped.
1875 * we need to keep this request in the front to
1876 * avoid resource deadlock. REQ_STARTED will
1877 * prevent other fs requests from passing this one.
1878 */
2e46e8b2 1879 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1880 !(rq->cmd_flags & REQ_DONTPREP)) {
1881 /*
1882 * remove the space for the drain we added
1883 * so that we don't add it again
1884 */
1885 --rq->nr_phys_segments;
1886 }
1887
1888 rq = NULL;
1889 break;
1890 } else if (ret == BLKPREP_KILL) {
1891 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1892 /*
1893 * Mark this request as started so we don't trigger
1894 * any debug logic in the end I/O path.
1895 */
1896 blk_start_request(rq);
40cbbb78 1897 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1898 } else {
1899 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1900 break;
1901 }
1902 }
1903
1904 return rq;
1905}
9934c8c0 1906EXPORT_SYMBOL(blk_peek_request);
158dbda0 1907
9934c8c0 1908void blk_dequeue_request(struct request *rq)
158dbda0 1909{
9934c8c0
TH
1910 struct request_queue *q = rq->q;
1911
158dbda0
TH
1912 BUG_ON(list_empty(&rq->queuelist));
1913 BUG_ON(ELV_ON_HASH(rq));
1914
1915 list_del_init(&rq->queuelist);
1916
1917 /*
1918 * the time frame between a request being removed from the lists
1919 * and to it is freed is accounted as io that is in progress at
1920 * the driver side.
1921 */
9195291e 1922 if (blk_account_rq(rq)) {
0a7ae2ff 1923 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1924 set_io_start_time_ns(rq);
1925 }
158dbda0
TH
1926}
1927
9934c8c0
TH
1928/**
1929 * blk_start_request - start request processing on the driver
1930 * @req: request to dequeue
1931 *
1932 * Description:
1933 * Dequeue @req and start timeout timer on it. This hands off the
1934 * request to the driver.
1935 *
1936 * Block internal functions which don't want to start timer should
1937 * call blk_dequeue_request().
1938 *
1939 * Context:
1940 * queue_lock must be held.
1941 */
1942void blk_start_request(struct request *req)
1943{
1944 blk_dequeue_request(req);
1945
1946 /*
5f49f631
TH
1947 * We are now handing the request to the hardware, initialize
1948 * resid_len to full count and add the timeout handler.
9934c8c0 1949 */
5f49f631 1950 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1951 if (unlikely(blk_bidi_rq(req)))
1952 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1953
9934c8c0
TH
1954 blk_add_timer(req);
1955}
1956EXPORT_SYMBOL(blk_start_request);
1957
1958/**
1959 * blk_fetch_request - fetch a request from a request queue
1960 * @q: request queue to fetch a request from
1961 *
1962 * Description:
1963 * Return the request at the top of @q. The request is started on
1964 * return and LLD can start processing it immediately.
1965 *
1966 * Return:
1967 * Pointer to the request at the top of @q if available. Null
1968 * otherwise.
1969 *
1970 * Context:
1971 * queue_lock must be held.
1972 */
1973struct request *blk_fetch_request(struct request_queue *q)
1974{
1975 struct request *rq;
1976
1977 rq = blk_peek_request(q);
1978 if (rq)
1979 blk_start_request(rq);
1980 return rq;
1981}
1982EXPORT_SYMBOL(blk_fetch_request);
1983
3bcddeac 1984/**
2e60e022 1985 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1986 * @req: the request being processed
710027a4 1987 * @error: %0 for success, < %0 for error
8ebf9756 1988 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1989 *
1990 * Description:
8ebf9756
RD
1991 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1992 * the request structure even if @req doesn't have leftover.
1993 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1994 *
1995 * This special helper function is only for request stacking drivers
1996 * (e.g. request-based dm) so that they can handle partial completion.
1997 * Actual device drivers should use blk_end_request instead.
1998 *
1999 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2000 * %false return from this function.
3bcddeac
KU
2001 *
2002 * Return:
2e60e022
TH
2003 * %false - this request doesn't have any more data
2004 * %true - this request has more data
3bcddeac 2005 **/
2e60e022 2006bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2007{
5450d3e1 2008 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2009 struct bio *bio;
2010
2e60e022
TH
2011 if (!req->bio)
2012 return false;
2013
5f3ea37c 2014 trace_block_rq_complete(req->q, req);
2056a782 2015
1da177e4 2016 /*
6f41469c
TH
2017 * For fs requests, rq is just carrier of independent bio's
2018 * and each partial completion should be handled separately.
2019 * Reset per-request error on each partial completion.
2020 *
2021 * TODO: tj: This is too subtle. It would be better to let
2022 * low level drivers do what they see fit.
1da177e4 2023 */
33659ebb 2024 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2025 req->errors = 0;
2026
33659ebb
CH
2027 if (error && req->cmd_type == REQ_TYPE_FS &&
2028 !(req->cmd_flags & REQ_QUIET)) {
6728cb0e 2029 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 2030 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 2031 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2032 }
2033
bc58ba94 2034 blk_account_io_completion(req, nr_bytes);
d72d904a 2035
1da177e4
LT
2036 total_bytes = bio_nbytes = 0;
2037 while ((bio = req->bio) != NULL) {
2038 int nbytes;
2039
2040 if (nr_bytes >= bio->bi_size) {
2041 req->bio = bio->bi_next;
2042 nbytes = bio->bi_size;
5bb23a68 2043 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2044 next_idx = 0;
2045 bio_nbytes = 0;
2046 } else {
2047 int idx = bio->bi_idx + next_idx;
2048
af498d7f 2049 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2050 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2051 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2052 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2053 break;
2054 }
2055
2056 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2057 BIO_BUG_ON(nbytes > bio->bi_size);
2058
2059 /*
2060 * not a complete bvec done
2061 */
2062 if (unlikely(nbytes > nr_bytes)) {
2063 bio_nbytes += nr_bytes;
2064 total_bytes += nr_bytes;
2065 break;
2066 }
2067
2068 /*
2069 * advance to the next vector
2070 */
2071 next_idx++;
2072 bio_nbytes += nbytes;
2073 }
2074
2075 total_bytes += nbytes;
2076 nr_bytes -= nbytes;
2077
6728cb0e
JA
2078 bio = req->bio;
2079 if (bio) {
1da177e4
LT
2080 /*
2081 * end more in this run, or just return 'not-done'
2082 */
2083 if (unlikely(nr_bytes <= 0))
2084 break;
2085 }
2086 }
2087
2088 /*
2089 * completely done
2090 */
2e60e022
TH
2091 if (!req->bio) {
2092 /*
2093 * Reset counters so that the request stacking driver
2094 * can find how many bytes remain in the request
2095 * later.
2096 */
a2dec7b3 2097 req->__data_len = 0;
2e60e022
TH
2098 return false;
2099 }
1da177e4
LT
2100
2101 /*
2102 * if the request wasn't completed, update state
2103 */
2104 if (bio_nbytes) {
5bb23a68 2105 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2106 bio->bi_idx += next_idx;
2107 bio_iovec(bio)->bv_offset += nr_bytes;
2108 bio_iovec(bio)->bv_len -= nr_bytes;
2109 }
2110
a2dec7b3 2111 req->__data_len -= total_bytes;
2e46e8b2
TH
2112 req->buffer = bio_data(req->bio);
2113
2114 /* update sector only for requests with clear definition of sector */
33659ebb 2115 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2116 req->__sector += total_bytes >> 9;
2e46e8b2 2117
80a761fd
TH
2118 /* mixed attributes always follow the first bio */
2119 if (req->cmd_flags & REQ_MIXED_MERGE) {
2120 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2121 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2122 }
2123
2e46e8b2
TH
2124 /*
2125 * If total number of sectors is less than the first segment
2126 * size, something has gone terribly wrong.
2127 */
2128 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2129 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2130 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2131 }
2132
2133 /* recalculate the number of segments */
1da177e4 2134 blk_recalc_rq_segments(req);
2e46e8b2 2135
2e60e022 2136 return true;
1da177e4 2137}
2e60e022 2138EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2139
2e60e022
TH
2140static bool blk_update_bidi_request(struct request *rq, int error,
2141 unsigned int nr_bytes,
2142 unsigned int bidi_bytes)
5efccd17 2143{
2e60e022
TH
2144 if (blk_update_request(rq, error, nr_bytes))
2145 return true;
5efccd17 2146
2e60e022
TH
2147 /* Bidi request must be completed as a whole */
2148 if (unlikely(blk_bidi_rq(rq)) &&
2149 blk_update_request(rq->next_rq, error, bidi_bytes))
2150 return true;
5efccd17 2151
e2e1a148
JA
2152 if (blk_queue_add_random(rq->q))
2153 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2154
2155 return false;
1da177e4
LT
2156}
2157
28018c24
JB
2158/**
2159 * blk_unprep_request - unprepare a request
2160 * @req: the request
2161 *
2162 * This function makes a request ready for complete resubmission (or
2163 * completion). It happens only after all error handling is complete,
2164 * so represents the appropriate moment to deallocate any resources
2165 * that were allocated to the request in the prep_rq_fn. The queue
2166 * lock is held when calling this.
2167 */
2168void blk_unprep_request(struct request *req)
2169{
2170 struct request_queue *q = req->q;
2171
2172 req->cmd_flags &= ~REQ_DONTPREP;
2173 if (q->unprep_rq_fn)
2174 q->unprep_rq_fn(q, req);
2175}
2176EXPORT_SYMBOL_GPL(blk_unprep_request);
2177
1da177e4
LT
2178/*
2179 * queue lock must be held
2180 */
2e60e022 2181static void blk_finish_request(struct request *req, int error)
1da177e4 2182{
b8286239
KU
2183 if (blk_rq_tagged(req))
2184 blk_queue_end_tag(req->q, req);
2185
ba396a6c 2186 BUG_ON(blk_queued_rq(req));
1da177e4 2187
33659ebb 2188 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2189 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2190
e78042e5
MA
2191 blk_delete_timer(req);
2192
28018c24
JB
2193 if (req->cmd_flags & REQ_DONTPREP)
2194 blk_unprep_request(req);
2195
2196
bc58ba94 2197 blk_account_io_done(req);
b8286239 2198
1da177e4 2199 if (req->end_io)
8ffdc655 2200 req->end_io(req, error);
b8286239
KU
2201 else {
2202 if (blk_bidi_rq(req))
2203 __blk_put_request(req->next_rq->q, req->next_rq);
2204
1da177e4 2205 __blk_put_request(req->q, req);
b8286239 2206 }
1da177e4
LT
2207}
2208
3b11313a 2209/**
2e60e022
TH
2210 * blk_end_bidi_request - Complete a bidi request
2211 * @rq: the request to complete
2212 * @error: %0 for success, < %0 for error
2213 * @nr_bytes: number of bytes to complete @rq
2214 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2215 *
2216 * Description:
e3a04fe3 2217 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2218 * Drivers that supports bidi can safely call this member for any
2219 * type of request, bidi or uni. In the later case @bidi_bytes is
2220 * just ignored.
336cdb40
KU
2221 *
2222 * Return:
2e60e022
TH
2223 * %false - we are done with this request
2224 * %true - still buffers pending for this request
a0cd1285 2225 **/
b1f74493 2226static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2227 unsigned int nr_bytes, unsigned int bidi_bytes)
2228{
336cdb40 2229 struct request_queue *q = rq->q;
2e60e022 2230 unsigned long flags;
32fab448 2231
2e60e022
TH
2232 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2233 return true;
32fab448 2234
336cdb40 2235 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2236 blk_finish_request(rq, error);
336cdb40
KU
2237 spin_unlock_irqrestore(q->queue_lock, flags);
2238
2e60e022 2239 return false;
32fab448
KU
2240}
2241
336cdb40 2242/**
2e60e022
TH
2243 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2244 * @rq: the request to complete
710027a4 2245 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2246 * @nr_bytes: number of bytes to complete @rq
2247 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2248 *
2249 * Description:
2e60e022
TH
2250 * Identical to blk_end_bidi_request() except that queue lock is
2251 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2252 *
2253 * Return:
2e60e022
TH
2254 * %false - we are done with this request
2255 * %true - still buffers pending for this request
336cdb40 2256 **/
b1f74493
FT
2257static bool __blk_end_bidi_request(struct request *rq, int error,
2258 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2259{
2e60e022
TH
2260 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2261 return true;
336cdb40 2262
2e60e022 2263 blk_finish_request(rq, error);
336cdb40 2264
2e60e022 2265 return false;
336cdb40 2266}
e19a3ab0
KU
2267
2268/**
2269 * blk_end_request - Helper function for drivers to complete the request.
2270 * @rq: the request being processed
710027a4 2271 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2272 * @nr_bytes: number of bytes to complete
2273 *
2274 * Description:
2275 * Ends I/O on a number of bytes attached to @rq.
2276 * If @rq has leftover, sets it up for the next range of segments.
2277 *
2278 * Return:
b1f74493
FT
2279 * %false - we are done with this request
2280 * %true - still buffers pending for this request
e19a3ab0 2281 **/
b1f74493 2282bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2283{
b1f74493 2284 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2285}
56ad1740 2286EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2287
2288/**
b1f74493
FT
2289 * blk_end_request_all - Helper function for drives to finish the request.
2290 * @rq: the request to finish
8ebf9756 2291 * @error: %0 for success, < %0 for error
336cdb40
KU
2292 *
2293 * Description:
b1f74493
FT
2294 * Completely finish @rq.
2295 */
2296void blk_end_request_all(struct request *rq, int error)
336cdb40 2297{
b1f74493
FT
2298 bool pending;
2299 unsigned int bidi_bytes = 0;
336cdb40 2300
b1f74493
FT
2301 if (unlikely(blk_bidi_rq(rq)))
2302 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2303
b1f74493
FT
2304 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2305 BUG_ON(pending);
2306}
56ad1740 2307EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2308
b1f74493
FT
2309/**
2310 * blk_end_request_cur - Helper function to finish the current request chunk.
2311 * @rq: the request to finish the current chunk for
8ebf9756 2312 * @error: %0 for success, < %0 for error
b1f74493
FT
2313 *
2314 * Description:
2315 * Complete the current consecutively mapped chunk from @rq.
2316 *
2317 * Return:
2318 * %false - we are done with this request
2319 * %true - still buffers pending for this request
2320 */
2321bool blk_end_request_cur(struct request *rq, int error)
2322{
2323 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2324}
56ad1740 2325EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2326
80a761fd
TH
2327/**
2328 * blk_end_request_err - Finish a request till the next failure boundary.
2329 * @rq: the request to finish till the next failure boundary for
2330 * @error: must be negative errno
2331 *
2332 * Description:
2333 * Complete @rq till the next failure boundary.
2334 *
2335 * Return:
2336 * %false - we are done with this request
2337 * %true - still buffers pending for this request
2338 */
2339bool blk_end_request_err(struct request *rq, int error)
2340{
2341 WARN_ON(error >= 0);
2342 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2343}
2344EXPORT_SYMBOL_GPL(blk_end_request_err);
2345
e3a04fe3 2346/**
b1f74493
FT
2347 * __blk_end_request - Helper function for drivers to complete the request.
2348 * @rq: the request being processed
2349 * @error: %0 for success, < %0 for error
2350 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2351 *
2352 * Description:
b1f74493 2353 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2354 *
2355 * Return:
b1f74493
FT
2356 * %false - we are done with this request
2357 * %true - still buffers pending for this request
e3a04fe3 2358 **/
b1f74493 2359bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2360{
b1f74493 2361 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2362}
56ad1740 2363EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2364
32fab448 2365/**
b1f74493
FT
2366 * __blk_end_request_all - Helper function for drives to finish the request.
2367 * @rq: the request to finish
8ebf9756 2368 * @error: %0 for success, < %0 for error
32fab448
KU
2369 *
2370 * Description:
b1f74493 2371 * Completely finish @rq. Must be called with queue lock held.
32fab448 2372 */
b1f74493 2373void __blk_end_request_all(struct request *rq, int error)
32fab448 2374{
b1f74493
FT
2375 bool pending;
2376 unsigned int bidi_bytes = 0;
2377
2378 if (unlikely(blk_bidi_rq(rq)))
2379 bidi_bytes = blk_rq_bytes(rq->next_rq);
2380
2381 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2382 BUG_ON(pending);
32fab448 2383}
56ad1740 2384EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2385
e19a3ab0 2386/**
b1f74493
FT
2387 * __blk_end_request_cur - Helper function to finish the current request chunk.
2388 * @rq: the request to finish the current chunk for
8ebf9756 2389 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2390 *
2391 * Description:
b1f74493
FT
2392 * Complete the current consecutively mapped chunk from @rq. Must
2393 * be called with queue lock held.
e19a3ab0
KU
2394 *
2395 * Return:
b1f74493
FT
2396 * %false - we are done with this request
2397 * %true - still buffers pending for this request
2398 */
2399bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2400{
b1f74493 2401 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2402}
56ad1740 2403EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2404
80a761fd
TH
2405/**
2406 * __blk_end_request_err - Finish a request till the next failure boundary.
2407 * @rq: the request to finish till the next failure boundary for
2408 * @error: must be negative errno
2409 *
2410 * Description:
2411 * Complete @rq till the next failure boundary. Must be called
2412 * with queue lock held.
2413 *
2414 * Return:
2415 * %false - we are done with this request
2416 * %true - still buffers pending for this request
2417 */
2418bool __blk_end_request_err(struct request *rq, int error)
2419{
2420 WARN_ON(error >= 0);
2421 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2422}
2423EXPORT_SYMBOL_GPL(__blk_end_request_err);
2424
86db1e29
JA
2425void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2426 struct bio *bio)
1da177e4 2427{
a82afdfc 2428 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2429 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2430
fb2dce86
DW
2431 if (bio_has_data(bio)) {
2432 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2433 rq->buffer = bio_data(bio);
2434 }
a2dec7b3 2435 rq->__data_len = bio->bi_size;
1da177e4 2436 rq->bio = rq->biotail = bio;
1da177e4 2437
66846572
N
2438 if (bio->bi_bdev)
2439 rq->rq_disk = bio->bi_bdev->bd_disk;
2440}
1da177e4 2441
2d4dc890
IL
2442#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2443/**
2444 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2445 * @rq: the request to be flushed
2446 *
2447 * Description:
2448 * Flush all pages in @rq.
2449 */
2450void rq_flush_dcache_pages(struct request *rq)
2451{
2452 struct req_iterator iter;
2453 struct bio_vec *bvec;
2454
2455 rq_for_each_segment(bvec, rq, iter)
2456 flush_dcache_page(bvec->bv_page);
2457}
2458EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2459#endif
2460
ef9e3fac
KU
2461/**
2462 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2463 * @q : the queue of the device being checked
2464 *
2465 * Description:
2466 * Check if underlying low-level drivers of a device are busy.
2467 * If the drivers want to export their busy state, they must set own
2468 * exporting function using blk_queue_lld_busy() first.
2469 *
2470 * Basically, this function is used only by request stacking drivers
2471 * to stop dispatching requests to underlying devices when underlying
2472 * devices are busy. This behavior helps more I/O merging on the queue
2473 * of the request stacking driver and prevents I/O throughput regression
2474 * on burst I/O load.
2475 *
2476 * Return:
2477 * 0 - Not busy (The request stacking driver should dispatch request)
2478 * 1 - Busy (The request stacking driver should stop dispatching request)
2479 */
2480int blk_lld_busy(struct request_queue *q)
2481{
2482 if (q->lld_busy_fn)
2483 return q->lld_busy_fn(q);
2484
2485 return 0;
2486}
2487EXPORT_SYMBOL_GPL(blk_lld_busy);
2488
b0fd271d
KU
2489/**
2490 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2491 * @rq: the clone request to be cleaned up
2492 *
2493 * Description:
2494 * Free all bios in @rq for a cloned request.
2495 */
2496void blk_rq_unprep_clone(struct request *rq)
2497{
2498 struct bio *bio;
2499
2500 while ((bio = rq->bio) != NULL) {
2501 rq->bio = bio->bi_next;
2502
2503 bio_put(bio);
2504 }
2505}
2506EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2507
2508/*
2509 * Copy attributes of the original request to the clone request.
2510 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2511 */
2512static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2513{
2514 dst->cpu = src->cpu;
3a2edd0d 2515 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2516 dst->cmd_type = src->cmd_type;
2517 dst->__sector = blk_rq_pos(src);
2518 dst->__data_len = blk_rq_bytes(src);
2519 dst->nr_phys_segments = src->nr_phys_segments;
2520 dst->ioprio = src->ioprio;
2521 dst->extra_len = src->extra_len;
2522}
2523
2524/**
2525 * blk_rq_prep_clone - Helper function to setup clone request
2526 * @rq: the request to be setup
2527 * @rq_src: original request to be cloned
2528 * @bs: bio_set that bios for clone are allocated from
2529 * @gfp_mask: memory allocation mask for bio
2530 * @bio_ctr: setup function to be called for each clone bio.
2531 * Returns %0 for success, non %0 for failure.
2532 * @data: private data to be passed to @bio_ctr
2533 *
2534 * Description:
2535 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2536 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2537 * are not copied, and copying such parts is the caller's responsibility.
2538 * Also, pages which the original bios are pointing to are not copied
2539 * and the cloned bios just point same pages.
2540 * So cloned bios must be completed before original bios, which means
2541 * the caller must complete @rq before @rq_src.
2542 */
2543int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2544 struct bio_set *bs, gfp_t gfp_mask,
2545 int (*bio_ctr)(struct bio *, struct bio *, void *),
2546 void *data)
2547{
2548 struct bio *bio, *bio_src;
2549
2550 if (!bs)
2551 bs = fs_bio_set;
2552
2553 blk_rq_init(NULL, rq);
2554
2555 __rq_for_each_bio(bio_src, rq_src) {
2556 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2557 if (!bio)
2558 goto free_and_out;
2559
2560 __bio_clone(bio, bio_src);
2561
2562 if (bio_integrity(bio_src) &&
7878cba9 2563 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2564 goto free_and_out;
2565
2566 if (bio_ctr && bio_ctr(bio, bio_src, data))
2567 goto free_and_out;
2568
2569 if (rq->bio) {
2570 rq->biotail->bi_next = bio;
2571 rq->biotail = bio;
2572 } else
2573 rq->bio = rq->biotail = bio;
2574 }
2575
2576 __blk_rq_prep_clone(rq, rq_src);
2577
2578 return 0;
2579
2580free_and_out:
2581 if (bio)
2582 bio_free(bio, bs);
2583 blk_rq_unprep_clone(rq);
2584
2585 return -ENOMEM;
2586}
2587EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2588
18887ad9 2589int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2590{
2591 return queue_work(kblockd_workqueue, work);
2592}
1da177e4
LT
2593EXPORT_SYMBOL(kblockd_schedule_work);
2594
e43473b7
VG
2595int kblockd_schedule_delayed_work(struct request_queue *q,
2596 struct delayed_work *dwork, unsigned long delay)
2597{
2598 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2599}
2600EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2601
73c10101
JA
2602#define PLUG_MAGIC 0x91827364
2603
2604void blk_start_plug(struct blk_plug *plug)
2605{
2606 struct task_struct *tsk = current;
2607
2608 plug->magic = PLUG_MAGIC;
2609 INIT_LIST_HEAD(&plug->list);
2610 plug->should_sort = 0;
2611
2612 /*
2613 * If this is a nested plug, don't actually assign it. It will be
2614 * flushed on its own.
2615 */
2616 if (!tsk->plug) {
2617 /*
2618 * Store ordering should not be needed here, since a potential
2619 * preempt will imply a full memory barrier
2620 */
2621 tsk->plug = plug;
2622 }
2623}
2624EXPORT_SYMBOL(blk_start_plug);
2625
2626static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2627{
2628 struct request *rqa = container_of(a, struct request, queuelist);
2629 struct request *rqb = container_of(b, struct request, queuelist);
2630
2631 return !(rqa->q == rqb->q);
2632}
2633
2634static void flush_plug_list(struct blk_plug *plug)
2635{
2636 struct request_queue *q;
2637 unsigned long flags;
2638 struct request *rq;
2639
2640 BUG_ON(plug->magic != PLUG_MAGIC);
2641
2642 if (list_empty(&plug->list))
2643 return;
2644
2645 if (plug->should_sort)
2646 list_sort(NULL, &plug->list, plug_rq_cmp);
2647
2648 q = NULL;
2649 local_irq_save(flags);
2650 while (!list_empty(&plug->list)) {
2651 rq = list_entry_rq(plug->list.next);
2652 list_del_init(&rq->queuelist);
2653 BUG_ON(!(rq->cmd_flags & REQ_ON_PLUG));
2654 BUG_ON(!rq->q);
2655 if (rq->q != q) {
2656 if (q) {
2657 __blk_run_queue(q);
2658 spin_unlock(q->queue_lock);
2659 }
2660 q = rq->q;
2661 spin_lock(q->queue_lock);
2662 }
2663 rq->cmd_flags &= ~REQ_ON_PLUG;
2664
2665 /*
2666 * rq is already accounted, so use raw insert
2667 */
7eaceacc 2668 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT);
73c10101
JA
2669 }
2670
2671 if (q) {
2672 __blk_run_queue(q);
2673 spin_unlock(q->queue_lock);
2674 }
2675
2676 BUG_ON(!list_empty(&plug->list));
2677 local_irq_restore(flags);
2678}
2679
2680static void __blk_finish_plug(struct task_struct *tsk, struct blk_plug *plug)
2681{
2682 flush_plug_list(plug);
2683
2684 if (plug == tsk->plug)
2685 tsk->plug = NULL;
2686}
2687
2688void blk_finish_plug(struct blk_plug *plug)
2689{
2690 if (plug)
2691 __blk_finish_plug(current, plug);
2692}
2693EXPORT_SYMBOL(blk_finish_plug);
2694
2695void __blk_flush_plug(struct task_struct *tsk, struct blk_plug *plug)
2696{
2697 __blk_finish_plug(tsk, plug);
2698 tsk->plug = plug;
2699}
2700EXPORT_SYMBOL(__blk_flush_plug);
2701
1da177e4
LT
2702int __init blk_dev_init(void)
2703{
9eb55b03
NK
2704 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2705 sizeof(((struct request *)0)->cmd_flags));
2706
89b90be2
TH
2707 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2708 kblockd_workqueue = alloc_workqueue("kblockd",
2709 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2710 if (!kblockd_workqueue)
2711 panic("Failed to create kblockd\n");
2712
2713 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2714 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2715
8324aa91 2716 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2717 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2718
d38ecf93 2719 return 0;
1da177e4 2720}