]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
nvme: precedence bug in nvme_pr_clear()
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
55782138
LZ
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/block.h>
1da177e4 39
8324aa91 40#include "blk.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 48
a73f730d
TH
49DEFINE_IDA(blk_queue_ida);
50
1da177e4
LT
51/*
52 * For the allocated request tables
53 */
d674d414 54struct kmem_cache *request_cachep;
1da177e4
LT
55
56/*
57 * For queue allocation
58 */
6728cb0e 59struct kmem_cache *blk_requestq_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4 65
d40f75a0
TH
66static void blk_clear_congested(struct request_list *rl, int sync)
67{
d40f75a0
TH
68#ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70#else
482cf79c
TH
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
77#endif
78}
79
80static void blk_set_congested(struct request_list *rl, int sync)
81{
d40f75a0
TH
82#ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84#else
482cf79c
TH
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
88#endif
89}
90
8324aa91 91void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
92{
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104}
105
1da177e4
LT
106/**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
1da177e4
LT
113 */
114struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115{
165125e1 116 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 117
ff9ea323 118 return &q->backing_dev_info;
1da177e4 119}
1da177e4
LT
120EXPORT_SYMBOL(blk_get_backing_dev_info);
121
2a4aa30c 122void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 123{
1afb20f3
FT
124 memset(rq, 0, sizeof(*rq));
125
1da177e4 126 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 127 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 128 rq->cpu = -1;
63a71386 129 rq->q = q;
a2dec7b3 130 rq->__sector = (sector_t) -1;
2e662b65
JA
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 133 rq->cmd = rq->__cmd;
e2494e1b 134 rq->cmd_len = BLK_MAX_CDB;
63a71386 135 rq->tag = -1;
b243ddcb 136 rq->start_time = jiffies;
9195291e 137 set_start_time_ns(rq);
09e099d4 138 rq->part = NULL;
1da177e4 139}
2a4aa30c 140EXPORT_SYMBOL(blk_rq_init);
1da177e4 141
5bb23a68
N
142static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
1da177e4 144{
78d8e58a 145 if (error)
4246a0b6 146 bio->bi_error = error;
797e7dbb 147
143a87f4 148 if (unlikely(rq->cmd_flags & REQ_QUIET))
b7c44ed9 149 bio_set_flag(bio, BIO_QUIET);
08bafc03 150
f79ea416 151 bio_advance(bio, nbytes);
7ba1ba12 152
143a87f4 153 /* don't actually finish bio if it's part of flush sequence */
78d8e58a 154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
4246a0b6 155 bio_endio(bio);
1da177e4 156}
1da177e4 157
1da177e4
LT
158void blk_dump_rq_flags(struct request *rq, char *msg)
159{
160 int bit;
161
5953316d 162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 164 (unsigned long long) rq->cmd_flags);
1da177e4 165
83096ebf
TH
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 171
33659ebb 172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 173 printk(KERN_INFO " cdb: ");
d34c87e4 174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178}
1da177e4
LT
179EXPORT_SYMBOL(blk_dump_rq_flags);
180
3cca6dc1 181static void blk_delay_work(struct work_struct *work)
1da177e4 182{
3cca6dc1 183 struct request_queue *q;
1da177e4 184
3cca6dc1
JA
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
24ecfbe2 187 __blk_run_queue(q);
3cca6dc1 188 spin_unlock_irq(q->queue_lock);
1da177e4 189}
1da177e4
LT
190
191/**
3cca6dc1
JA
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
1da177e4
LT
195 *
196 * Description:
3cca6dc1
JA
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
70460571 199 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
200 */
201void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 202{
70460571
BVA
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
2ad8b1ef 206}
3cca6dc1 207EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 208
1da177e4
LT
209/**
210 * blk_start_queue - restart a previously stopped queue
165125e1 211 * @q: The &struct request_queue in question
1da177e4
LT
212 *
213 * Description:
214 * blk_start_queue() will clear the stop flag on the queue, and call
215 * the request_fn for the queue if it was in a stopped state when
216 * entered. Also see blk_stop_queue(). Queue lock must be held.
217 **/
165125e1 218void blk_start_queue(struct request_queue *q)
1da177e4 219{
a038e253
PBG
220 WARN_ON(!irqs_disabled());
221
75ad23bc 222 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 223 __blk_run_queue(q);
1da177e4 224}
1da177e4
LT
225EXPORT_SYMBOL(blk_start_queue);
226
227/**
228 * blk_stop_queue - stop a queue
165125e1 229 * @q: The &struct request_queue in question
1da177e4
LT
230 *
231 * Description:
232 * The Linux block layer assumes that a block driver will consume all
233 * entries on the request queue when the request_fn strategy is called.
234 * Often this will not happen, because of hardware limitations (queue
235 * depth settings). If a device driver gets a 'queue full' response,
236 * or if it simply chooses not to queue more I/O at one point, it can
237 * call this function to prevent the request_fn from being called until
238 * the driver has signalled it's ready to go again. This happens by calling
239 * blk_start_queue() to restart queue operations. Queue lock must be held.
240 **/
165125e1 241void blk_stop_queue(struct request_queue *q)
1da177e4 242{
136b5721 243 cancel_delayed_work(&q->delay_work);
75ad23bc 244 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
245}
246EXPORT_SYMBOL(blk_stop_queue);
247
248/**
249 * blk_sync_queue - cancel any pending callbacks on a queue
250 * @q: the queue
251 *
252 * Description:
253 * The block layer may perform asynchronous callback activity
254 * on a queue, such as calling the unplug function after a timeout.
255 * A block device may call blk_sync_queue to ensure that any
256 * such activity is cancelled, thus allowing it to release resources
59c51591 257 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
258 * that its ->make_request_fn will not re-add plugging prior to calling
259 * this function.
260 *
da527770 261 * This function does not cancel any asynchronous activity arising
da3dae54 262 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 263 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 264 *
1da177e4
LT
265 */
266void blk_sync_queue(struct request_queue *q)
267{
70ed28b9 268 del_timer_sync(&q->timeout);
f04c1fe7
ML
269
270 if (q->mq_ops) {
271 struct blk_mq_hw_ctx *hctx;
272 int i;
273
70f4db63
CH
274 queue_for_each_hw_ctx(q, hctx, i) {
275 cancel_delayed_work_sync(&hctx->run_work);
276 cancel_delayed_work_sync(&hctx->delay_work);
277 }
f04c1fe7
ML
278 } else {
279 cancel_delayed_work_sync(&q->delay_work);
280 }
1da177e4
LT
281}
282EXPORT_SYMBOL(blk_sync_queue);
283
c246e80d
BVA
284/**
285 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
286 * @q: The queue to run
287 *
288 * Description:
289 * Invoke request handling on a queue if there are any pending requests.
290 * May be used to restart request handling after a request has completed.
291 * This variant runs the queue whether or not the queue has been
292 * stopped. Must be called with the queue lock held and interrupts
293 * disabled. See also @blk_run_queue.
294 */
295inline void __blk_run_queue_uncond(struct request_queue *q)
296{
297 if (unlikely(blk_queue_dead(q)))
298 return;
299
24faf6f6
BVA
300 /*
301 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
302 * the queue lock internally. As a result multiple threads may be
303 * running such a request function concurrently. Keep track of the
304 * number of active request_fn invocations such that blk_drain_queue()
305 * can wait until all these request_fn calls have finished.
306 */
307 q->request_fn_active++;
c246e80d 308 q->request_fn(q);
24faf6f6 309 q->request_fn_active--;
c246e80d 310}
a7928c15 311EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 312
1da177e4 313/**
80a4b58e 314 * __blk_run_queue - run a single device queue
1da177e4 315 * @q: The queue to run
80a4b58e
JA
316 *
317 * Description:
318 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 319 * held and interrupts disabled.
1da177e4 320 */
24ecfbe2 321void __blk_run_queue(struct request_queue *q)
1da177e4 322{
a538cd03
TH
323 if (unlikely(blk_queue_stopped(q)))
324 return;
325
c246e80d 326 __blk_run_queue_uncond(q);
75ad23bc
NP
327}
328EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 329
24ecfbe2
CH
330/**
331 * blk_run_queue_async - run a single device queue in workqueue context
332 * @q: The queue to run
333 *
334 * Description:
335 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 336 * of us. The caller must hold the queue lock.
24ecfbe2
CH
337 */
338void blk_run_queue_async(struct request_queue *q)
339{
70460571 340 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 341 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 342}
c21e6beb 343EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 344
75ad23bc
NP
345/**
346 * blk_run_queue - run a single device queue
347 * @q: The queue to run
80a4b58e
JA
348 *
349 * Description:
350 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 351 * May be used to restart queueing when a request has completed.
75ad23bc
NP
352 */
353void blk_run_queue(struct request_queue *q)
354{
355 unsigned long flags;
356
357 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 358 __blk_run_queue(q);
1da177e4
LT
359 spin_unlock_irqrestore(q->queue_lock, flags);
360}
361EXPORT_SYMBOL(blk_run_queue);
362
165125e1 363void blk_put_queue(struct request_queue *q)
483f4afc
AV
364{
365 kobject_put(&q->kobj);
366}
d86e0e83 367EXPORT_SYMBOL(blk_put_queue);
483f4afc 368
e3c78ca5 369/**
807592a4 370 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 371 * @q: queue to drain
c9a929dd 372 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 373 *
c9a929dd
TH
374 * Drain requests from @q. If @drain_all is set, all requests are drained.
375 * If not, only ELVPRIV requests are drained. The caller is responsible
376 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 377 */
807592a4
BVA
378static void __blk_drain_queue(struct request_queue *q, bool drain_all)
379 __releases(q->queue_lock)
380 __acquires(q->queue_lock)
e3c78ca5 381{
458f27a9
AH
382 int i;
383
807592a4
BVA
384 lockdep_assert_held(q->queue_lock);
385
e3c78ca5 386 while (true) {
481a7d64 387 bool drain = false;
e3c78ca5 388
b855b04a
TH
389 /*
390 * The caller might be trying to drain @q before its
391 * elevator is initialized.
392 */
393 if (q->elevator)
394 elv_drain_elevator(q);
395
5efd6113 396 blkcg_drain_queue(q);
e3c78ca5 397
4eabc941
TH
398 /*
399 * This function might be called on a queue which failed
b855b04a
TH
400 * driver init after queue creation or is not yet fully
401 * active yet. Some drivers (e.g. fd and loop) get unhappy
402 * in such cases. Kick queue iff dispatch queue has
403 * something on it and @q has request_fn set.
4eabc941 404 */
b855b04a 405 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 406 __blk_run_queue(q);
c9a929dd 407
8a5ecdd4 408 drain |= q->nr_rqs_elvpriv;
24faf6f6 409 drain |= q->request_fn_active;
481a7d64
TH
410
411 /*
412 * Unfortunately, requests are queued at and tracked from
413 * multiple places and there's no single counter which can
414 * be drained. Check all the queues and counters.
415 */
416 if (drain_all) {
e97c293c 417 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
418 drain |= !list_empty(&q->queue_head);
419 for (i = 0; i < 2; i++) {
8a5ecdd4 420 drain |= q->nr_rqs[i];
481a7d64 421 drain |= q->in_flight[i];
7c94e1c1
ML
422 if (fq)
423 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
424 }
425 }
e3c78ca5 426
481a7d64 427 if (!drain)
e3c78ca5 428 break;
807592a4
BVA
429
430 spin_unlock_irq(q->queue_lock);
431
e3c78ca5 432 msleep(10);
807592a4
BVA
433
434 spin_lock_irq(q->queue_lock);
e3c78ca5 435 }
458f27a9
AH
436
437 /*
438 * With queue marked dead, any woken up waiter will fail the
439 * allocation path, so the wakeup chaining is lost and we're
440 * left with hung waiters. We need to wake up those waiters.
441 */
442 if (q->request_fn) {
a051661c
TH
443 struct request_list *rl;
444
a051661c
TH
445 blk_queue_for_each_rl(rl, q)
446 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
447 wake_up_all(&rl->wait[i]);
458f27a9 448 }
e3c78ca5
TH
449}
450
d732580b
TH
451/**
452 * blk_queue_bypass_start - enter queue bypass mode
453 * @q: queue of interest
454 *
455 * In bypass mode, only the dispatch FIFO queue of @q is used. This
456 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 457 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
458 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
459 * inside queue or RCU read lock.
d732580b
TH
460 */
461void blk_queue_bypass_start(struct request_queue *q)
462{
463 spin_lock_irq(q->queue_lock);
776687bc 464 q->bypass_depth++;
d732580b
TH
465 queue_flag_set(QUEUE_FLAG_BYPASS, q);
466 spin_unlock_irq(q->queue_lock);
467
776687bc
TH
468 /*
469 * Queues start drained. Skip actual draining till init is
470 * complete. This avoids lenghty delays during queue init which
471 * can happen many times during boot.
472 */
473 if (blk_queue_init_done(q)) {
807592a4
BVA
474 spin_lock_irq(q->queue_lock);
475 __blk_drain_queue(q, false);
476 spin_unlock_irq(q->queue_lock);
477
b82d4b19
TH
478 /* ensure blk_queue_bypass() is %true inside RCU read lock */
479 synchronize_rcu();
480 }
d732580b
TH
481}
482EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
483
484/**
485 * blk_queue_bypass_end - leave queue bypass mode
486 * @q: queue of interest
487 *
488 * Leave bypass mode and restore the normal queueing behavior.
489 */
490void blk_queue_bypass_end(struct request_queue *q)
491{
492 spin_lock_irq(q->queue_lock);
493 if (!--q->bypass_depth)
494 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
495 WARN_ON_ONCE(q->bypass_depth < 0);
496 spin_unlock_irq(q->queue_lock);
497}
498EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
499
aed3ea94
JA
500void blk_set_queue_dying(struct request_queue *q)
501{
502 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
503
504 if (q->mq_ops)
505 blk_mq_wake_waiters(q);
506 else {
507 struct request_list *rl;
508
509 blk_queue_for_each_rl(rl, q) {
510 if (rl->rq_pool) {
511 wake_up(&rl->wait[BLK_RW_SYNC]);
512 wake_up(&rl->wait[BLK_RW_ASYNC]);
513 }
514 }
515 }
516}
517EXPORT_SYMBOL_GPL(blk_set_queue_dying);
518
c9a929dd
TH
519/**
520 * blk_cleanup_queue - shutdown a request queue
521 * @q: request queue to shutdown
522 *
c246e80d
BVA
523 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
524 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 525 */
6728cb0e 526void blk_cleanup_queue(struct request_queue *q)
483f4afc 527{
c9a929dd 528 spinlock_t *lock = q->queue_lock;
e3335de9 529
3f3299d5 530 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 531 mutex_lock(&q->sysfs_lock);
aed3ea94 532 blk_set_queue_dying(q);
c9a929dd 533 spin_lock_irq(lock);
6ecf23af 534
80fd9979 535 /*
3f3299d5 536 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
537 * that, unlike blk_queue_bypass_start(), we aren't performing
538 * synchronize_rcu() after entering bypass mode to avoid the delay
539 * as some drivers create and destroy a lot of queues while
540 * probing. This is still safe because blk_release_queue() will be
541 * called only after the queue refcnt drops to zero and nothing,
542 * RCU or not, would be traversing the queue by then.
543 */
6ecf23af
TH
544 q->bypass_depth++;
545 queue_flag_set(QUEUE_FLAG_BYPASS, q);
546
c9a929dd
TH
547 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
548 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 549 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
550 spin_unlock_irq(lock);
551 mutex_unlock(&q->sysfs_lock);
552
c246e80d
BVA
553 /*
554 * Drain all requests queued before DYING marking. Set DEAD flag to
555 * prevent that q->request_fn() gets invoked after draining finished.
556 */
3ef28e83
DW
557 blk_freeze_queue(q);
558 spin_lock_irq(lock);
559 if (!q->mq_ops)
43a5e4e2 560 __blk_drain_queue(q, true);
c246e80d 561 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 562 spin_unlock_irq(lock);
c9a929dd 563
5a48fc14
DW
564 /* for synchronous bio-based driver finish in-flight integrity i/o */
565 blk_flush_integrity();
566
c9a929dd
TH
567 /* @q won't process any more request, flush async actions */
568 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
569 blk_sync_queue(q);
570
45a9c9d9
BVA
571 if (q->mq_ops)
572 blk_mq_free_queue(q);
3ef28e83 573 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 574
5e5cfac0
AH
575 spin_lock_irq(lock);
576 if (q->queue_lock != &q->__queue_lock)
577 q->queue_lock = &q->__queue_lock;
578 spin_unlock_irq(lock);
579
b02176f3 580 bdi_unregister(&q->backing_dev_info);
6cd18e71 581
c9a929dd 582 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
583 blk_put_queue(q);
584}
1da177e4
LT
585EXPORT_SYMBOL(blk_cleanup_queue);
586
271508db
DR
587/* Allocate memory local to the request queue */
588static void *alloc_request_struct(gfp_t gfp_mask, void *data)
589{
590 int nid = (int)(long)data;
591 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
592}
593
594static void free_request_struct(void *element, void *unused)
595{
596 kmem_cache_free(request_cachep, element);
597}
598
5b788ce3
TH
599int blk_init_rl(struct request_list *rl, struct request_queue *q,
600 gfp_t gfp_mask)
1da177e4 601{
1abec4fd
MS
602 if (unlikely(rl->rq_pool))
603 return 0;
604
5b788ce3 605 rl->q = q;
1faa16d2
JA
606 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
607 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
608 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
609 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 610
271508db
DR
611 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
612 free_request_struct,
613 (void *)(long)q->node, gfp_mask,
614 q->node);
1da177e4
LT
615 if (!rl->rq_pool)
616 return -ENOMEM;
617
618 return 0;
619}
620
5b788ce3
TH
621void blk_exit_rl(struct request_list *rl)
622{
623 if (rl->rq_pool)
624 mempool_destroy(rl->rq_pool);
625}
626
165125e1 627struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 628{
c304a51b 629 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
630}
631EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 632
6f3b0e8b 633int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
634{
635 while (true) {
636 int ret;
637
638 if (percpu_ref_tryget_live(&q->q_usage_counter))
639 return 0;
640
6f3b0e8b 641 if (nowait)
3ef28e83
DW
642 return -EBUSY;
643
644 ret = wait_event_interruptible(q->mq_freeze_wq,
645 !atomic_read(&q->mq_freeze_depth) ||
646 blk_queue_dying(q));
647 if (blk_queue_dying(q))
648 return -ENODEV;
649 if (ret)
650 return ret;
651 }
652}
653
654void blk_queue_exit(struct request_queue *q)
655{
656 percpu_ref_put(&q->q_usage_counter);
657}
658
659static void blk_queue_usage_counter_release(struct percpu_ref *ref)
660{
661 struct request_queue *q =
662 container_of(ref, struct request_queue, q_usage_counter);
663
664 wake_up_all(&q->mq_freeze_wq);
665}
666
165125e1 667struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 668{
165125e1 669 struct request_queue *q;
e0bf68dd 670 int err;
1946089a 671
8324aa91 672 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 673 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
674 if (!q)
675 return NULL;
676
00380a40 677 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 678 if (q->id < 0)
3d2936f4 679 goto fail_q;
a73f730d 680
54efd50b
KO
681 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
682 if (!q->bio_split)
683 goto fail_id;
684
0989a025
JA
685 q->backing_dev_info.ra_pages =
686 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
89e9b9e0 687 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
d993831f 688 q->backing_dev_info.name = "block";
5151412d 689 q->node = node_id;
0989a025 690
e0bf68dd 691 err = bdi_init(&q->backing_dev_info);
a73f730d 692 if (err)
54efd50b 693 goto fail_split;
e0bf68dd 694
31373d09
MG
695 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
696 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 697 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 698 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 699 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 700 INIT_LIST_HEAD(&q->icq_list);
4eef3049 701#ifdef CONFIG_BLK_CGROUP
e8989fae 702 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 703#endif
3cca6dc1 704 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 705
8324aa91 706 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 707
483f4afc 708 mutex_init(&q->sysfs_lock);
e7e72bf6 709 spin_lock_init(&q->__queue_lock);
483f4afc 710
c94a96ac
VG
711 /*
712 * By default initialize queue_lock to internal lock and driver can
713 * override it later if need be.
714 */
715 q->queue_lock = &q->__queue_lock;
716
b82d4b19
TH
717 /*
718 * A queue starts its life with bypass turned on to avoid
719 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
720 * init. The initial bypass will be finished when the queue is
721 * registered by blk_register_queue().
b82d4b19
TH
722 */
723 q->bypass_depth = 1;
724 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
725
320ae51f
JA
726 init_waitqueue_head(&q->mq_freeze_wq);
727
3ef28e83
DW
728 /*
729 * Init percpu_ref in atomic mode so that it's faster to shutdown.
730 * See blk_register_queue() for details.
731 */
732 if (percpu_ref_init(&q->q_usage_counter,
733 blk_queue_usage_counter_release,
734 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 735 goto fail_bdi;
f51b802c 736
3ef28e83
DW
737 if (blkcg_init_queue(q))
738 goto fail_ref;
739
1da177e4 740 return q;
a73f730d 741
3ef28e83
DW
742fail_ref:
743 percpu_ref_exit(&q->q_usage_counter);
fff4996b
MP
744fail_bdi:
745 bdi_destroy(&q->backing_dev_info);
54efd50b
KO
746fail_split:
747 bioset_free(q->bio_split);
a73f730d
TH
748fail_id:
749 ida_simple_remove(&blk_queue_ida, q->id);
750fail_q:
751 kmem_cache_free(blk_requestq_cachep, q);
752 return NULL;
1da177e4 753}
1946089a 754EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
755
756/**
757 * blk_init_queue - prepare a request queue for use with a block device
758 * @rfn: The function to be called to process requests that have been
759 * placed on the queue.
760 * @lock: Request queue spin lock
761 *
762 * Description:
763 * If a block device wishes to use the standard request handling procedures,
764 * which sorts requests and coalesces adjacent requests, then it must
765 * call blk_init_queue(). The function @rfn will be called when there
766 * are requests on the queue that need to be processed. If the device
767 * supports plugging, then @rfn may not be called immediately when requests
768 * are available on the queue, but may be called at some time later instead.
769 * Plugged queues are generally unplugged when a buffer belonging to one
770 * of the requests on the queue is needed, or due to memory pressure.
771 *
772 * @rfn is not required, or even expected, to remove all requests off the
773 * queue, but only as many as it can handle at a time. If it does leave
774 * requests on the queue, it is responsible for arranging that the requests
775 * get dealt with eventually.
776 *
777 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
778 * request queue; this lock will be taken also from interrupt context, so irq
779 * disabling is needed for it.
1da177e4 780 *
710027a4 781 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
782 * it didn't succeed.
783 *
784 * Note:
785 * blk_init_queue() must be paired with a blk_cleanup_queue() call
786 * when the block device is deactivated (such as at module unload).
787 **/
1946089a 788
165125e1 789struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 790{
c304a51b 791 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
792}
793EXPORT_SYMBOL(blk_init_queue);
794
165125e1 795struct request_queue *
1946089a
CL
796blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
797{
c86d1b8a 798 struct request_queue *uninit_q, *q;
1da177e4 799
c86d1b8a
MS
800 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
801 if (!uninit_q)
802 return NULL;
803
5151412d 804 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 805 if (!q)
7982e90c 806 blk_cleanup_queue(uninit_q);
18741986 807
7982e90c 808 return q;
01effb0d
MS
809}
810EXPORT_SYMBOL(blk_init_queue_node);
811
dece1635 812static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 813
01effb0d
MS
814struct request_queue *
815blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
816 spinlock_t *lock)
01effb0d 817{
1da177e4
LT
818 if (!q)
819 return NULL;
820
f70ced09 821 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 822 if (!q->fq)
7982e90c
MS
823 return NULL;
824
a051661c 825 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 826 goto fail;
1da177e4
LT
827
828 q->request_fn = rfn;
1da177e4 829 q->prep_rq_fn = NULL;
28018c24 830 q->unprep_rq_fn = NULL;
60ea8226 831 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
832
833 /* Override internal queue lock with supplied lock pointer */
834 if (lock)
835 q->queue_lock = lock;
1da177e4 836
f3b144aa
JA
837 /*
838 * This also sets hw/phys segments, boundary and size
839 */
c20e8de2 840 blk_queue_make_request(q, blk_queue_bio);
1da177e4 841
44ec9542
AS
842 q->sg_reserved_size = INT_MAX;
843
eb1c160b
TS
844 /* Protect q->elevator from elevator_change */
845 mutex_lock(&q->sysfs_lock);
846
b82d4b19 847 /* init elevator */
eb1c160b
TS
848 if (elevator_init(q, NULL)) {
849 mutex_unlock(&q->sysfs_lock);
708f04d2 850 goto fail;
eb1c160b
TS
851 }
852
853 mutex_unlock(&q->sysfs_lock);
854
b82d4b19 855 return q;
708f04d2
DJ
856
857fail:
ba483388 858 blk_free_flush_queue(q->fq);
708f04d2 859 return NULL;
1da177e4 860}
5151412d 861EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 862
09ac46c4 863bool blk_get_queue(struct request_queue *q)
1da177e4 864{
3f3299d5 865 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
866 __blk_get_queue(q);
867 return true;
1da177e4
LT
868 }
869
09ac46c4 870 return false;
1da177e4 871}
d86e0e83 872EXPORT_SYMBOL(blk_get_queue);
1da177e4 873
5b788ce3 874static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 875{
f1f8cc94 876 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 877 elv_put_request(rl->q, rq);
f1f8cc94 878 if (rq->elv.icq)
11a3122f 879 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
880 }
881
5b788ce3 882 mempool_free(rq, rl->rq_pool);
1da177e4
LT
883}
884
1da177e4
LT
885/*
886 * ioc_batching returns true if the ioc is a valid batching request and
887 * should be given priority access to a request.
888 */
165125e1 889static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
890{
891 if (!ioc)
892 return 0;
893
894 /*
895 * Make sure the process is able to allocate at least 1 request
896 * even if the batch times out, otherwise we could theoretically
897 * lose wakeups.
898 */
899 return ioc->nr_batch_requests == q->nr_batching ||
900 (ioc->nr_batch_requests > 0
901 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
902}
903
904/*
905 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
906 * will cause the process to be a "batcher" on all queues in the system. This
907 * is the behaviour we want though - once it gets a wakeup it should be given
908 * a nice run.
909 */
165125e1 910static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
911{
912 if (!ioc || ioc_batching(q, ioc))
913 return;
914
915 ioc->nr_batch_requests = q->nr_batching;
916 ioc->last_waited = jiffies;
917}
918
5b788ce3 919static void __freed_request(struct request_list *rl, int sync)
1da177e4 920{
5b788ce3 921 struct request_queue *q = rl->q;
1da177e4 922
d40f75a0
TH
923 if (rl->count[sync] < queue_congestion_off_threshold(q))
924 blk_clear_congested(rl, sync);
1da177e4 925
1faa16d2
JA
926 if (rl->count[sync] + 1 <= q->nr_requests) {
927 if (waitqueue_active(&rl->wait[sync]))
928 wake_up(&rl->wait[sync]);
1da177e4 929
5b788ce3 930 blk_clear_rl_full(rl, sync);
1da177e4
LT
931 }
932}
933
934/*
935 * A request has just been released. Account for it, update the full and
936 * congestion status, wake up any waiters. Called under q->queue_lock.
937 */
5b788ce3 938static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 939{
5b788ce3 940 struct request_queue *q = rl->q;
75eb6c37 941 int sync = rw_is_sync(flags);
1da177e4 942
8a5ecdd4 943 q->nr_rqs[sync]--;
1faa16d2 944 rl->count[sync]--;
75eb6c37 945 if (flags & REQ_ELVPRIV)
8a5ecdd4 946 q->nr_rqs_elvpriv--;
1da177e4 947
5b788ce3 948 __freed_request(rl, sync);
1da177e4 949
1faa16d2 950 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 951 __freed_request(rl, sync ^ 1);
1da177e4
LT
952}
953
e3a2b3f9
JA
954int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
955{
956 struct request_list *rl;
d40f75a0 957 int on_thresh, off_thresh;
e3a2b3f9
JA
958
959 spin_lock_irq(q->queue_lock);
960 q->nr_requests = nr;
961 blk_queue_congestion_threshold(q);
d40f75a0
TH
962 on_thresh = queue_congestion_on_threshold(q);
963 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 964
d40f75a0
TH
965 blk_queue_for_each_rl(rl, q) {
966 if (rl->count[BLK_RW_SYNC] >= on_thresh)
967 blk_set_congested(rl, BLK_RW_SYNC);
968 else if (rl->count[BLK_RW_SYNC] < off_thresh)
969 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 970
d40f75a0
TH
971 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
972 blk_set_congested(rl, BLK_RW_ASYNC);
973 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
974 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 975
e3a2b3f9
JA
976 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
977 blk_set_rl_full(rl, BLK_RW_SYNC);
978 } else {
979 blk_clear_rl_full(rl, BLK_RW_SYNC);
980 wake_up(&rl->wait[BLK_RW_SYNC]);
981 }
982
983 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
984 blk_set_rl_full(rl, BLK_RW_ASYNC);
985 } else {
986 blk_clear_rl_full(rl, BLK_RW_ASYNC);
987 wake_up(&rl->wait[BLK_RW_ASYNC]);
988 }
989 }
990
991 spin_unlock_irq(q->queue_lock);
992 return 0;
993}
994
9d5a4e94
MS
995/*
996 * Determine if elevator data should be initialized when allocating the
997 * request associated with @bio.
998 */
999static bool blk_rq_should_init_elevator(struct bio *bio)
1000{
1001 if (!bio)
1002 return true;
1003
1004 /*
1005 * Flush requests do not use the elevator so skip initialization.
1006 * This allows a request to share the flush and elevator data.
1007 */
1008 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1009 return false;
1010
1011 return true;
1012}
1013
852c788f
TH
1014/**
1015 * rq_ioc - determine io_context for request allocation
1016 * @bio: request being allocated is for this bio (can be %NULL)
1017 *
1018 * Determine io_context to use for request allocation for @bio. May return
1019 * %NULL if %current->io_context doesn't exist.
1020 */
1021static struct io_context *rq_ioc(struct bio *bio)
1022{
1023#ifdef CONFIG_BLK_CGROUP
1024 if (bio && bio->bi_ioc)
1025 return bio->bi_ioc;
1026#endif
1027 return current->io_context;
1028}
1029
da8303c6 1030/**
a06e05e6 1031 * __get_request - get a free request
5b788ce3 1032 * @rl: request list to allocate from
da8303c6
TH
1033 * @rw_flags: RW and SYNC flags
1034 * @bio: bio to allocate request for (can be %NULL)
1035 * @gfp_mask: allocation mask
1036 *
1037 * Get a free request from @q. This function may fail under memory
1038 * pressure or if @q is dead.
1039 *
da3dae54 1040 * Must be called with @q->queue_lock held and,
a492f075
JL
1041 * Returns ERR_PTR on failure, with @q->queue_lock held.
1042 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1043 */
5b788ce3 1044static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 1045 struct bio *bio, gfp_t gfp_mask)
1da177e4 1046{
5b788ce3 1047 struct request_queue *q = rl->q;
b679281a 1048 struct request *rq;
7f4b35d1
TH
1049 struct elevator_type *et = q->elevator->type;
1050 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1051 struct io_cq *icq = NULL;
1faa16d2 1052 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 1053 int may_queue;
88ee5ef1 1054
3f3299d5 1055 if (unlikely(blk_queue_dying(q)))
a492f075 1056 return ERR_PTR(-ENODEV);
da8303c6 1057
7749a8d4 1058 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
1059 if (may_queue == ELV_MQUEUE_NO)
1060 goto rq_starved;
1061
1faa16d2
JA
1062 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1063 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1064 /*
1065 * The queue will fill after this allocation, so set
1066 * it as full, and mark this process as "batching".
1067 * This process will be allowed to complete a batch of
1068 * requests, others will be blocked.
1069 */
5b788ce3 1070 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1071 ioc_set_batching(q, ioc);
5b788ce3 1072 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1073 } else {
1074 if (may_queue != ELV_MQUEUE_MUST
1075 && !ioc_batching(q, ioc)) {
1076 /*
1077 * The queue is full and the allocating
1078 * process is not a "batcher", and not
1079 * exempted by the IO scheduler
1080 */
a492f075 1081 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1082 }
1083 }
1da177e4 1084 }
d40f75a0 1085 blk_set_congested(rl, is_sync);
1da177e4
LT
1086 }
1087
082cf69e
JA
1088 /*
1089 * Only allow batching queuers to allocate up to 50% over the defined
1090 * limit of requests, otherwise we could have thousands of requests
1091 * allocated with any setting of ->nr_requests
1092 */
1faa16d2 1093 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1094 return ERR_PTR(-ENOMEM);
fd782a4a 1095
8a5ecdd4 1096 q->nr_rqs[is_sync]++;
1faa16d2
JA
1097 rl->count[is_sync]++;
1098 rl->starved[is_sync] = 0;
cb98fc8b 1099
f1f8cc94
TH
1100 /*
1101 * Decide whether the new request will be managed by elevator. If
1102 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1103 * prevent the current elevator from being destroyed until the new
1104 * request is freed. This guarantees icq's won't be destroyed and
1105 * makes creating new ones safe.
1106 *
1107 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1108 * it will be created after releasing queue_lock.
1109 */
d732580b 1110 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 1111 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 1112 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1113 if (et->icq_cache && ioc)
1114 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1115 }
cb98fc8b 1116
f253b86b
JA
1117 if (blk_queue_io_stat(q))
1118 rw_flags |= REQ_IO_STAT;
1da177e4
LT
1119 spin_unlock_irq(q->queue_lock);
1120
29e2b09a 1121 /* allocate and init request */
5b788ce3 1122 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1123 if (!rq)
b679281a 1124 goto fail_alloc;
1da177e4 1125
29e2b09a 1126 blk_rq_init(q, rq);
a051661c 1127 blk_rq_set_rl(rq, rl);
29e2b09a
TH
1128 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1129
aaf7c680 1130 /* init elvpriv */
29e2b09a 1131 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 1132 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1133 if (ioc)
1134 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1135 if (!icq)
1136 goto fail_elvpriv;
29e2b09a 1137 }
aaf7c680
TH
1138
1139 rq->elv.icq = icq;
1140 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1141 goto fail_elvpriv;
1142
1143 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1144 if (icq)
1145 get_io_context(icq->ioc);
1146 }
aaf7c680 1147out:
88ee5ef1
JA
1148 /*
1149 * ioc may be NULL here, and ioc_batching will be false. That's
1150 * OK, if the queue is under the request limit then requests need
1151 * not count toward the nr_batch_requests limit. There will always
1152 * be some limit enforced by BLK_BATCH_TIME.
1153 */
1da177e4
LT
1154 if (ioc_batching(q, ioc))
1155 ioc->nr_batch_requests--;
6728cb0e 1156
1faa16d2 1157 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1158 return rq;
b679281a 1159
aaf7c680
TH
1160fail_elvpriv:
1161 /*
1162 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1163 * and may fail indefinitely under memory pressure and thus
1164 * shouldn't stall IO. Treat this request as !elvpriv. This will
1165 * disturb iosched and blkcg but weird is bettern than dead.
1166 */
7b2b10e0
RE
1167 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1168 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680
TH
1169
1170 rq->cmd_flags &= ~REQ_ELVPRIV;
1171 rq->elv.icq = NULL;
1172
1173 spin_lock_irq(q->queue_lock);
8a5ecdd4 1174 q->nr_rqs_elvpriv--;
aaf7c680
TH
1175 spin_unlock_irq(q->queue_lock);
1176 goto out;
1177
b679281a
TH
1178fail_alloc:
1179 /*
1180 * Allocation failed presumably due to memory. Undo anything we
1181 * might have messed up.
1182 *
1183 * Allocating task should really be put onto the front of the wait
1184 * queue, but this is pretty rare.
1185 */
1186 spin_lock_irq(q->queue_lock);
5b788ce3 1187 freed_request(rl, rw_flags);
b679281a
TH
1188
1189 /*
1190 * in the very unlikely event that allocation failed and no
1191 * requests for this direction was pending, mark us starved so that
1192 * freeing of a request in the other direction will notice
1193 * us. another possible fix would be to split the rq mempool into
1194 * READ and WRITE
1195 */
1196rq_starved:
1197 if (unlikely(rl->count[is_sync] == 0))
1198 rl->starved[is_sync] = 1;
a492f075 1199 return ERR_PTR(-ENOMEM);
1da177e4
LT
1200}
1201
da8303c6 1202/**
a06e05e6 1203 * get_request - get a free request
da8303c6
TH
1204 * @q: request_queue to allocate request from
1205 * @rw_flags: RW and SYNC flags
1206 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1207 * @gfp_mask: allocation mask
da8303c6 1208 *
d0164adc
MG
1209 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1210 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1211 *
da3dae54 1212 * Must be called with @q->queue_lock held and,
a492f075
JL
1213 * Returns ERR_PTR on failure, with @q->queue_lock held.
1214 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1215 */
a06e05e6
TH
1216static struct request *get_request(struct request_queue *q, int rw_flags,
1217 struct bio *bio, gfp_t gfp_mask)
1da177e4 1218{
1faa16d2 1219 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1220 DEFINE_WAIT(wait);
a051661c 1221 struct request_list *rl;
1da177e4 1222 struct request *rq;
a051661c
TH
1223
1224 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1225retry:
a051661c 1226 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a492f075 1227 if (!IS_ERR(rq))
a06e05e6 1228 return rq;
1da177e4 1229
d0164adc 1230 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1231 blk_put_rl(rl);
a492f075 1232 return rq;
a051661c 1233 }
1da177e4 1234
a06e05e6
TH
1235 /* wait on @rl and retry */
1236 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1237 TASK_UNINTERRUPTIBLE);
1da177e4 1238
a06e05e6 1239 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1240
a06e05e6
TH
1241 spin_unlock_irq(q->queue_lock);
1242 io_schedule();
d6344532 1243
a06e05e6
TH
1244 /*
1245 * After sleeping, we become a "batching" process and will be able
1246 * to allocate at least one request, and up to a big batch of them
1247 * for a small period time. See ioc_batching, ioc_set_batching
1248 */
a06e05e6 1249 ioc_set_batching(q, current->io_context);
05caf8db 1250
a06e05e6
TH
1251 spin_lock_irq(q->queue_lock);
1252 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1253
a06e05e6 1254 goto retry;
1da177e4
LT
1255}
1256
320ae51f
JA
1257static struct request *blk_old_get_request(struct request_queue *q, int rw,
1258 gfp_t gfp_mask)
1da177e4
LT
1259{
1260 struct request *rq;
1261
1262 BUG_ON(rw != READ && rw != WRITE);
1263
7f4b35d1
TH
1264 /* create ioc upfront */
1265 create_io_context(gfp_mask, q->node);
1266
d6344532 1267 spin_lock_irq(q->queue_lock);
a06e05e6 1268 rq = get_request(q, rw, NULL, gfp_mask);
a492f075 1269 if (IS_ERR(rq))
da8303c6 1270 spin_unlock_irq(q->queue_lock);
d6344532 1271 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1272
1273 return rq;
1274}
320ae51f
JA
1275
1276struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1277{
1278 if (q->mq_ops)
6f3b0e8b
CH
1279 return blk_mq_alloc_request(q, rw,
1280 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1281 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1282 else
1283 return blk_old_get_request(q, rw, gfp_mask);
1284}
1da177e4
LT
1285EXPORT_SYMBOL(blk_get_request);
1286
dc72ef4a 1287/**
79eb63e9 1288 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1289 * @q: target request queue
79eb63e9
BH
1290 * @bio: The bio describing the memory mappings that will be submitted for IO.
1291 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1292 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1293 *
79eb63e9
BH
1294 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1295 * type commands. Where the struct request needs to be farther initialized by
1296 * the caller. It is passed a &struct bio, which describes the memory info of
1297 * the I/O transfer.
dc72ef4a 1298 *
79eb63e9
BH
1299 * The caller of blk_make_request must make sure that bi_io_vec
1300 * are set to describe the memory buffers. That bio_data_dir() will return
1301 * the needed direction of the request. (And all bio's in the passed bio-chain
1302 * are properly set accordingly)
1303 *
1304 * If called under none-sleepable conditions, mapped bio buffers must not
1305 * need bouncing, by calling the appropriate masked or flagged allocator,
1306 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1307 * BUG.
53674ac5
JA
1308 *
1309 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
d0164adc
MG
1310 * given to how you allocate bios. In particular, you cannot use
1311 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1312 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1313 * thus resulting in a deadlock. Alternatively bios should be allocated using
1314 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
53674ac5
JA
1315 * If possible a big IO should be split into smaller parts when allocation
1316 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1317 */
79eb63e9
BH
1318struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1319 gfp_t gfp_mask)
dc72ef4a 1320{
79eb63e9
BH
1321 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1322
a492f075
JL
1323 if (IS_ERR(rq))
1324 return rq;
79eb63e9 1325
f27b087b
JA
1326 blk_rq_set_block_pc(rq);
1327
79eb63e9
BH
1328 for_each_bio(bio) {
1329 struct bio *bounce_bio = bio;
1330 int ret;
1331
1332 blk_queue_bounce(q, &bounce_bio);
1333 ret = blk_rq_append_bio(q, rq, bounce_bio);
1334 if (unlikely(ret)) {
1335 blk_put_request(rq);
1336 return ERR_PTR(ret);
1337 }
1338 }
1339
1340 return rq;
dc72ef4a 1341}
79eb63e9 1342EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1343
f27b087b 1344/**
da3dae54 1345 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1346 * @rq: request to be initialized
1347 *
1348 */
1349void blk_rq_set_block_pc(struct request *rq)
1350{
1351 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1352 rq->__data_len = 0;
1353 rq->__sector = (sector_t) -1;
1354 rq->bio = rq->biotail = NULL;
1355 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1356}
1357EXPORT_SYMBOL(blk_rq_set_block_pc);
1358
1da177e4
LT
1359/**
1360 * blk_requeue_request - put a request back on queue
1361 * @q: request queue where request should be inserted
1362 * @rq: request to be inserted
1363 *
1364 * Description:
1365 * Drivers often keep queueing requests until the hardware cannot accept
1366 * more, when that condition happens we need to put the request back
1367 * on the queue. Must be called with queue lock held.
1368 */
165125e1 1369void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1370{
242f9dcb
JA
1371 blk_delete_timer(rq);
1372 blk_clear_rq_complete(rq);
5f3ea37c 1373 trace_block_rq_requeue(q, rq);
2056a782 1374
125c99bc 1375 if (rq->cmd_flags & REQ_QUEUED)
1da177e4
LT
1376 blk_queue_end_tag(q, rq);
1377
ba396a6c
JB
1378 BUG_ON(blk_queued_rq(rq));
1379
1da177e4
LT
1380 elv_requeue_request(q, rq);
1381}
1da177e4
LT
1382EXPORT_SYMBOL(blk_requeue_request);
1383
73c10101
JA
1384static void add_acct_request(struct request_queue *q, struct request *rq,
1385 int where)
1386{
320ae51f 1387 blk_account_io_start(rq, true);
7eaceacc 1388 __elv_add_request(q, rq, where);
73c10101
JA
1389}
1390
074a7aca
TH
1391static void part_round_stats_single(int cpu, struct hd_struct *part,
1392 unsigned long now)
1393{
7276d02e
JA
1394 int inflight;
1395
074a7aca
TH
1396 if (now == part->stamp)
1397 return;
1398
7276d02e
JA
1399 inflight = part_in_flight(part);
1400 if (inflight) {
074a7aca 1401 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1402 inflight * (now - part->stamp));
074a7aca
TH
1403 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1404 }
1405 part->stamp = now;
1406}
1407
1408/**
496aa8a9
RD
1409 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1410 * @cpu: cpu number for stats access
1411 * @part: target partition
1da177e4
LT
1412 *
1413 * The average IO queue length and utilisation statistics are maintained
1414 * by observing the current state of the queue length and the amount of
1415 * time it has been in this state for.
1416 *
1417 * Normally, that accounting is done on IO completion, but that can result
1418 * in more than a second's worth of IO being accounted for within any one
1419 * second, leading to >100% utilisation. To deal with that, we call this
1420 * function to do a round-off before returning the results when reading
1421 * /proc/diskstats. This accounts immediately for all queue usage up to
1422 * the current jiffies and restarts the counters again.
1423 */
c9959059 1424void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1425{
1426 unsigned long now = jiffies;
1427
074a7aca
TH
1428 if (part->partno)
1429 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1430 part_round_stats_single(cpu, part, now);
6f2576af 1431}
074a7aca 1432EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1433
47fafbc7 1434#ifdef CONFIG_PM
c8158819
LM
1435static void blk_pm_put_request(struct request *rq)
1436{
1437 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1438 pm_runtime_mark_last_busy(rq->q->dev);
1439}
1440#else
1441static inline void blk_pm_put_request(struct request *rq) {}
1442#endif
1443
1da177e4
LT
1444/*
1445 * queue lock must be held
1446 */
165125e1 1447void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1448{
1da177e4
LT
1449 if (unlikely(!q))
1450 return;
1da177e4 1451
6f5ba581
CH
1452 if (q->mq_ops) {
1453 blk_mq_free_request(req);
1454 return;
1455 }
1456
c8158819
LM
1457 blk_pm_put_request(req);
1458
8922e16c
TH
1459 elv_completed_request(q, req);
1460
1cd96c24
BH
1461 /* this is a bio leak */
1462 WARN_ON(req->bio != NULL);
1463
1da177e4
LT
1464 /*
1465 * Request may not have originated from ll_rw_blk. if not,
1466 * it didn't come out of our reserved rq pools
1467 */
49171e5c 1468 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1469 unsigned int flags = req->cmd_flags;
a051661c 1470 struct request_list *rl = blk_rq_rl(req);
1da177e4 1471
1da177e4 1472 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1473 BUG_ON(ELV_ON_HASH(req));
1da177e4 1474
a051661c
TH
1475 blk_free_request(rl, req);
1476 freed_request(rl, flags);
1477 blk_put_rl(rl);
1da177e4
LT
1478 }
1479}
6e39b69e
MC
1480EXPORT_SYMBOL_GPL(__blk_put_request);
1481
1da177e4
LT
1482void blk_put_request(struct request *req)
1483{
165125e1 1484 struct request_queue *q = req->q;
8922e16c 1485
320ae51f
JA
1486 if (q->mq_ops)
1487 blk_mq_free_request(req);
1488 else {
1489 unsigned long flags;
1490
1491 spin_lock_irqsave(q->queue_lock, flags);
1492 __blk_put_request(q, req);
1493 spin_unlock_irqrestore(q->queue_lock, flags);
1494 }
1da177e4 1495}
1da177e4
LT
1496EXPORT_SYMBOL(blk_put_request);
1497
66ac0280
CH
1498/**
1499 * blk_add_request_payload - add a payload to a request
1500 * @rq: request to update
1501 * @page: page backing the payload
1502 * @len: length of the payload.
1503 *
1504 * This allows to later add a payload to an already submitted request by
1505 * a block driver. The driver needs to take care of freeing the payload
1506 * itself.
1507 *
1508 * Note that this is a quite horrible hack and nothing but handling of
1509 * discard requests should ever use it.
1510 */
1511void blk_add_request_payload(struct request *rq, struct page *page,
1512 unsigned int len)
1513{
1514 struct bio *bio = rq->bio;
1515
1516 bio->bi_io_vec->bv_page = page;
1517 bio->bi_io_vec->bv_offset = 0;
1518 bio->bi_io_vec->bv_len = len;
1519
4f024f37 1520 bio->bi_iter.bi_size = len;
66ac0280
CH
1521 bio->bi_vcnt = 1;
1522 bio->bi_phys_segments = 1;
1523
1524 rq->__data_len = rq->resid_len = len;
1525 rq->nr_phys_segments = 1;
66ac0280
CH
1526}
1527EXPORT_SYMBOL_GPL(blk_add_request_payload);
1528
320ae51f
JA
1529bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1530 struct bio *bio)
73c10101
JA
1531{
1532 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1533
73c10101
JA
1534 if (!ll_back_merge_fn(q, req, bio))
1535 return false;
1536
8c1cf6bb 1537 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1538
1539 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1540 blk_rq_set_mixed_merge(req);
1541
1542 req->biotail->bi_next = bio;
1543 req->biotail = bio;
4f024f37 1544 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1545 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1546
320ae51f 1547 blk_account_io_start(req, false);
73c10101
JA
1548 return true;
1549}
1550
320ae51f
JA
1551bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1552 struct bio *bio)
73c10101
JA
1553{
1554 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1555
73c10101
JA
1556 if (!ll_front_merge_fn(q, req, bio))
1557 return false;
1558
8c1cf6bb 1559 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1560
1561 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1562 blk_rq_set_mixed_merge(req);
1563
73c10101
JA
1564 bio->bi_next = req->bio;
1565 req->bio = bio;
1566
4f024f37
KO
1567 req->__sector = bio->bi_iter.bi_sector;
1568 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1569 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1570
320ae51f 1571 blk_account_io_start(req, false);
73c10101
JA
1572 return true;
1573}
1574
bd87b589 1575/**
320ae51f 1576 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1577 * @q: request_queue new bio is being queued at
1578 * @bio: new bio being queued
1579 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1580 * @same_queue_rq: pointer to &struct request that gets filled in when
1581 * another request associated with @q is found on the plug list
1582 * (optional, may be %NULL)
bd87b589
TH
1583 *
1584 * Determine whether @bio being queued on @q can be merged with a request
1585 * on %current's plugged list. Returns %true if merge was successful,
1586 * otherwise %false.
1587 *
07c2bd37
TH
1588 * Plugging coalesces IOs from the same issuer for the same purpose without
1589 * going through @q->queue_lock. As such it's more of an issuing mechanism
1590 * than scheduling, and the request, while may have elvpriv data, is not
1591 * added on the elevator at this point. In addition, we don't have
1592 * reliable access to the elevator outside queue lock. Only check basic
1593 * merging parameters without querying the elevator.
da41a589
RE
1594 *
1595 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1596 */
320ae51f 1597bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1598 unsigned int *request_count,
1599 struct request **same_queue_rq)
73c10101
JA
1600{
1601 struct blk_plug *plug;
1602 struct request *rq;
1603 bool ret = false;
92f399c7 1604 struct list_head *plug_list;
73c10101 1605
bd87b589 1606 plug = current->plug;
73c10101
JA
1607 if (!plug)
1608 goto out;
56ebdaf2 1609 *request_count = 0;
73c10101 1610
92f399c7
SL
1611 if (q->mq_ops)
1612 plug_list = &plug->mq_list;
1613 else
1614 plug_list = &plug->list;
1615
1616 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1617 int el_ret;
1618
5b3f341f 1619 if (rq->q == q) {
1b2e19f1 1620 (*request_count)++;
5b3f341f
SL
1621 /*
1622 * Only blk-mq multiple hardware queues case checks the
1623 * rq in the same queue, there should be only one such
1624 * rq in a queue
1625 **/
1626 if (same_queue_rq)
1627 *same_queue_rq = rq;
1628 }
56ebdaf2 1629
07c2bd37 1630 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1631 continue;
1632
050c8ea8 1633 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1634 if (el_ret == ELEVATOR_BACK_MERGE) {
1635 ret = bio_attempt_back_merge(q, rq, bio);
1636 if (ret)
1637 break;
1638 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1639 ret = bio_attempt_front_merge(q, rq, bio);
1640 if (ret)
1641 break;
1642 }
1643 }
1644out:
1645 return ret;
1646}
1647
0809e3ac
JM
1648unsigned int blk_plug_queued_count(struct request_queue *q)
1649{
1650 struct blk_plug *plug;
1651 struct request *rq;
1652 struct list_head *plug_list;
1653 unsigned int ret = 0;
1654
1655 plug = current->plug;
1656 if (!plug)
1657 goto out;
1658
1659 if (q->mq_ops)
1660 plug_list = &plug->mq_list;
1661 else
1662 plug_list = &plug->list;
1663
1664 list_for_each_entry(rq, plug_list, queuelist) {
1665 if (rq->q == q)
1666 ret++;
1667 }
1668out:
1669 return ret;
1670}
1671
86db1e29 1672void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1673{
4aff5e23 1674 req->cmd_type = REQ_TYPE_FS;
52d9e675 1675
7b6d91da
CH
1676 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1677 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1678 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1679
52d9e675 1680 req->errors = 0;
4f024f37 1681 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1682 req->ioprio = bio_prio(bio);
bc1c56fd 1683 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1684}
1685
dece1635 1686static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1687{
5e00d1b5 1688 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1689 struct blk_plug *plug;
1690 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1691 struct request *req;
56ebdaf2 1692 unsigned int request_count = 0;
1da177e4 1693
54efd50b
KO
1694 blk_queue_split(q, &bio, q->bio_split);
1695
1da177e4
LT
1696 /*
1697 * low level driver can indicate that it wants pages above a
1698 * certain limit bounced to low memory (ie for highmem, or even
1699 * ISA dma in theory)
1700 */
1701 blk_queue_bounce(q, &bio);
1702
ffecfd1a 1703 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1704 bio->bi_error = -EIO;
1705 bio_endio(bio);
dece1635 1706 return BLK_QC_T_NONE;
ffecfd1a
DW
1707 }
1708
4fed947c 1709 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1710 spin_lock_irq(q->queue_lock);
ae1b1539 1711 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1712 goto get_rq;
1713 }
1714
73c10101
JA
1715 /*
1716 * Check if we can merge with the plugged list before grabbing
1717 * any locks.
1718 */
0809e3ac
JM
1719 if (!blk_queue_nomerges(q)) {
1720 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1721 return BLK_QC_T_NONE;
0809e3ac
JM
1722 } else
1723 request_count = blk_plug_queued_count(q);
1da177e4 1724
73c10101 1725 spin_lock_irq(q->queue_lock);
2056a782 1726
73c10101
JA
1727 el_ret = elv_merge(q, &req, bio);
1728 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1729 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1730 elv_bio_merged(q, req, bio);
73c10101
JA
1731 if (!attempt_back_merge(q, req))
1732 elv_merged_request(q, req, el_ret);
1733 goto out_unlock;
1734 }
1735 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1736 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1737 elv_bio_merged(q, req, bio);
73c10101
JA
1738 if (!attempt_front_merge(q, req))
1739 elv_merged_request(q, req, el_ret);
1740 goto out_unlock;
80a761fd 1741 }
1da177e4
LT
1742 }
1743
450991bc 1744get_rq:
7749a8d4
JA
1745 /*
1746 * This sync check and mask will be re-done in init_request_from_bio(),
1747 * but we need to set it earlier to expose the sync flag to the
1748 * rq allocator and io schedulers.
1749 */
1750 rw_flags = bio_data_dir(bio);
1751 if (sync)
7b6d91da 1752 rw_flags |= REQ_SYNC;
7749a8d4 1753
1da177e4 1754 /*
450991bc 1755 * Grab a free request. This is might sleep but can not fail.
d6344532 1756 * Returns with the queue unlocked.
450991bc 1757 */
a06e05e6 1758 req = get_request(q, rw_flags, bio, GFP_NOIO);
a492f075 1759 if (IS_ERR(req)) {
4246a0b6
CH
1760 bio->bi_error = PTR_ERR(req);
1761 bio_endio(bio);
da8303c6
TH
1762 goto out_unlock;
1763 }
d6344532 1764
450991bc
NP
1765 /*
1766 * After dropping the lock and possibly sleeping here, our request
1767 * may now be mergeable after it had proven unmergeable (above).
1768 * We don't worry about that case for efficiency. It won't happen
1769 * often, and the elevators are able to handle it.
1da177e4 1770 */
52d9e675 1771 init_request_from_bio(req, bio);
1da177e4 1772
9562ad9a 1773 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1774 req->cpu = raw_smp_processor_id();
73c10101
JA
1775
1776 plug = current->plug;
721a9602 1777 if (plug) {
dc6d36c9
JA
1778 /*
1779 * If this is the first request added after a plug, fire
7aef2e78 1780 * of a plug trace.
dc6d36c9 1781 */
7aef2e78 1782 if (!request_count)
dc6d36c9 1783 trace_block_plug(q);
3540d5e8 1784 else {
019ceb7d 1785 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1786 blk_flush_plug_list(plug, false);
019ceb7d
SL
1787 trace_block_plug(q);
1788 }
73c10101 1789 }
73c10101 1790 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1791 blk_account_io_start(req, true);
73c10101
JA
1792 } else {
1793 spin_lock_irq(q->queue_lock);
1794 add_acct_request(q, req, where);
24ecfbe2 1795 __blk_run_queue(q);
73c10101
JA
1796out_unlock:
1797 spin_unlock_irq(q->queue_lock);
1798 }
dece1635
JA
1799
1800 return BLK_QC_T_NONE;
1da177e4
LT
1801}
1802
1803/*
1804 * If bio->bi_dev is a partition, remap the location
1805 */
1806static inline void blk_partition_remap(struct bio *bio)
1807{
1808 struct block_device *bdev = bio->bi_bdev;
1809
bf2de6f5 1810 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1811 struct hd_struct *p = bdev->bd_part;
1812
4f024f37 1813 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1814 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1815
d07335e5
MS
1816 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1817 bdev->bd_dev,
4f024f37 1818 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1819 }
1820}
1821
1da177e4
LT
1822static void handle_bad_sector(struct bio *bio)
1823{
1824 char b[BDEVNAME_SIZE];
1825
1826 printk(KERN_INFO "attempt to access beyond end of device\n");
1827 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1828 bdevname(bio->bi_bdev, b),
1829 bio->bi_rw,
f73a1c7d 1830 (unsigned long long)bio_end_sector(bio),
77304d2a 1831 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1832}
1833
c17bb495
AM
1834#ifdef CONFIG_FAIL_MAKE_REQUEST
1835
1836static DECLARE_FAULT_ATTR(fail_make_request);
1837
1838static int __init setup_fail_make_request(char *str)
1839{
1840 return setup_fault_attr(&fail_make_request, str);
1841}
1842__setup("fail_make_request=", setup_fail_make_request);
1843
b2c9cd37 1844static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1845{
b2c9cd37 1846 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1847}
1848
1849static int __init fail_make_request_debugfs(void)
1850{
dd48c085
AM
1851 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1852 NULL, &fail_make_request);
1853
21f9fcd8 1854 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1855}
1856
1857late_initcall(fail_make_request_debugfs);
1858
1859#else /* CONFIG_FAIL_MAKE_REQUEST */
1860
b2c9cd37
AM
1861static inline bool should_fail_request(struct hd_struct *part,
1862 unsigned int bytes)
c17bb495 1863{
b2c9cd37 1864 return false;
c17bb495
AM
1865}
1866
1867#endif /* CONFIG_FAIL_MAKE_REQUEST */
1868
c07e2b41
JA
1869/*
1870 * Check whether this bio extends beyond the end of the device.
1871 */
1872static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1873{
1874 sector_t maxsector;
1875
1876 if (!nr_sectors)
1877 return 0;
1878
1879 /* Test device or partition size, when known. */
77304d2a 1880 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1881 if (maxsector) {
4f024f37 1882 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1883
1884 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1885 /*
1886 * This may well happen - the kernel calls bread()
1887 * without checking the size of the device, e.g., when
1888 * mounting a device.
1889 */
1890 handle_bad_sector(bio);
1891 return 1;
1892 }
1893 }
1894
1895 return 0;
1896}
1897
27a84d54
CH
1898static noinline_for_stack bool
1899generic_make_request_checks(struct bio *bio)
1da177e4 1900{
165125e1 1901 struct request_queue *q;
5a7bbad2 1902 int nr_sectors = bio_sectors(bio);
51fd77bd 1903 int err = -EIO;
5a7bbad2
CH
1904 char b[BDEVNAME_SIZE];
1905 struct hd_struct *part;
1da177e4
LT
1906
1907 might_sleep();
1da177e4 1908
c07e2b41
JA
1909 if (bio_check_eod(bio, nr_sectors))
1910 goto end_io;
1da177e4 1911
5a7bbad2
CH
1912 q = bdev_get_queue(bio->bi_bdev);
1913 if (unlikely(!q)) {
1914 printk(KERN_ERR
1915 "generic_make_request: Trying to access "
1916 "nonexistent block-device %s (%Lu)\n",
1917 bdevname(bio->bi_bdev, b),
4f024f37 1918 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1919 goto end_io;
1920 }
c17bb495 1921
5a7bbad2 1922 part = bio->bi_bdev->bd_part;
4f024f37 1923 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1924 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1925 bio->bi_iter.bi_size))
5a7bbad2 1926 goto end_io;
2056a782 1927
5a7bbad2
CH
1928 /*
1929 * If this device has partitions, remap block n
1930 * of partition p to block n+start(p) of the disk.
1931 */
1932 blk_partition_remap(bio);
2056a782 1933
5a7bbad2
CH
1934 if (bio_check_eod(bio, nr_sectors))
1935 goto end_io;
1e87901e 1936
5a7bbad2
CH
1937 /*
1938 * Filter flush bio's early so that make_request based
1939 * drivers without flush support don't have to worry
1940 * about them.
1941 */
1942 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1943 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1944 if (!nr_sectors) {
1945 err = 0;
51fd77bd
JA
1946 goto end_io;
1947 }
5a7bbad2 1948 }
5ddfe969 1949
5a7bbad2
CH
1950 if ((bio->bi_rw & REQ_DISCARD) &&
1951 (!blk_queue_discard(q) ||
e2a60da7 1952 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1953 err = -EOPNOTSUPP;
1954 goto end_io;
1955 }
01edede4 1956
4363ac7c 1957 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1958 err = -EOPNOTSUPP;
1959 goto end_io;
1960 }
01edede4 1961
7f4b35d1
TH
1962 /*
1963 * Various block parts want %current->io_context and lazy ioc
1964 * allocation ends up trading a lot of pain for a small amount of
1965 * memory. Just allocate it upfront. This may fail and block
1966 * layer knows how to live with it.
1967 */
1968 create_io_context(GFP_ATOMIC, q->node);
1969
ae118896
TH
1970 if (!blkcg_bio_issue_check(q, bio))
1971 return false;
27a84d54 1972
5a7bbad2 1973 trace_block_bio_queue(q, bio);
27a84d54 1974 return true;
a7384677
TH
1975
1976end_io:
4246a0b6
CH
1977 bio->bi_error = err;
1978 bio_endio(bio);
27a84d54 1979 return false;
1da177e4
LT
1980}
1981
27a84d54
CH
1982/**
1983 * generic_make_request - hand a buffer to its device driver for I/O
1984 * @bio: The bio describing the location in memory and on the device.
1985 *
1986 * generic_make_request() is used to make I/O requests of block
1987 * devices. It is passed a &struct bio, which describes the I/O that needs
1988 * to be done.
1989 *
1990 * generic_make_request() does not return any status. The
1991 * success/failure status of the request, along with notification of
1992 * completion, is delivered asynchronously through the bio->bi_end_io
1993 * function described (one day) else where.
1994 *
1995 * The caller of generic_make_request must make sure that bi_io_vec
1996 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1997 * set to describe the device address, and the
1998 * bi_end_io and optionally bi_private are set to describe how
1999 * completion notification should be signaled.
2000 *
2001 * generic_make_request and the drivers it calls may use bi_next if this
2002 * bio happens to be merged with someone else, and may resubmit the bio to
2003 * a lower device by calling into generic_make_request recursively, which
2004 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2005 */
dece1635 2006blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2007{
bddd87c7 2008 struct bio_list bio_list_on_stack;
dece1635 2009 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2010
27a84d54 2011 if (!generic_make_request_checks(bio))
dece1635 2012 goto out;
27a84d54
CH
2013
2014 /*
2015 * We only want one ->make_request_fn to be active at a time, else
2016 * stack usage with stacked devices could be a problem. So use
2017 * current->bio_list to keep a list of requests submited by a
2018 * make_request_fn function. current->bio_list is also used as a
2019 * flag to say if generic_make_request is currently active in this
2020 * task or not. If it is NULL, then no make_request is active. If
2021 * it is non-NULL, then a make_request is active, and new requests
2022 * should be added at the tail
2023 */
bddd87c7 2024 if (current->bio_list) {
bddd87c7 2025 bio_list_add(current->bio_list, bio);
dece1635 2026 goto out;
d89d8796 2027 }
27a84d54 2028
d89d8796
NB
2029 /* following loop may be a bit non-obvious, and so deserves some
2030 * explanation.
2031 * Before entering the loop, bio->bi_next is NULL (as all callers
2032 * ensure that) so we have a list with a single bio.
2033 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2034 * we assign bio_list to a pointer to the bio_list_on_stack,
2035 * thus initialising the bio_list of new bios to be
27a84d54 2036 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2037 * through a recursive call to generic_make_request. If it
2038 * did, we find a non-NULL value in bio_list and re-enter the loop
2039 * from the top. In this case we really did just take the bio
bddd87c7 2040 * of the top of the list (no pretending) and so remove it from
27a84d54 2041 * bio_list, and call into ->make_request() again.
d89d8796
NB
2042 */
2043 BUG_ON(bio->bi_next);
bddd87c7
AM
2044 bio_list_init(&bio_list_on_stack);
2045 current->bio_list = &bio_list_on_stack;
d89d8796 2046 do {
27a84d54
CH
2047 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2048
6f3b0e8b 2049 if (likely(blk_queue_enter(q, false) == 0)) {
dece1635 2050 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2051
2052 blk_queue_exit(q);
27a84d54 2053
3ef28e83
DW
2054 bio = bio_list_pop(current->bio_list);
2055 } else {
2056 struct bio *bio_next = bio_list_pop(current->bio_list);
2057
2058 bio_io_error(bio);
2059 bio = bio_next;
2060 }
d89d8796 2061 } while (bio);
bddd87c7 2062 current->bio_list = NULL; /* deactivate */
dece1635
JA
2063
2064out:
2065 return ret;
d89d8796 2066}
1da177e4
LT
2067EXPORT_SYMBOL(generic_make_request);
2068
2069/**
710027a4 2070 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2071 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2072 * @bio: The &struct bio which describes the I/O
2073 *
2074 * submit_bio() is very similar in purpose to generic_make_request(), and
2075 * uses that function to do most of the work. Both are fairly rough
710027a4 2076 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2077 *
2078 */
dece1635 2079blk_qc_t submit_bio(int rw, struct bio *bio)
1da177e4 2080{
22e2c507 2081 bio->bi_rw |= rw;
1da177e4 2082
bf2de6f5
JA
2083 /*
2084 * If it's a regular read/write or a barrier with data attached,
2085 * go through the normal accounting stuff before submission.
2086 */
e2a60da7 2087 if (bio_has_data(bio)) {
4363ac7c
MP
2088 unsigned int count;
2089
2090 if (unlikely(rw & REQ_WRITE_SAME))
2091 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2092 else
2093 count = bio_sectors(bio);
2094
bf2de6f5
JA
2095 if (rw & WRITE) {
2096 count_vm_events(PGPGOUT, count);
2097 } else {
4f024f37 2098 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2099 count_vm_events(PGPGIN, count);
2100 }
2101
2102 if (unlikely(block_dump)) {
2103 char b[BDEVNAME_SIZE];
8dcbdc74 2104 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2105 current->comm, task_pid_nr(current),
bf2de6f5 2106 (rw & WRITE) ? "WRITE" : "READ",
4f024f37 2107 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2108 bdevname(bio->bi_bdev, b),
2109 count);
bf2de6f5 2110 }
1da177e4
LT
2111 }
2112
dece1635 2113 return generic_make_request(bio);
1da177e4 2114}
1da177e4
LT
2115EXPORT_SYMBOL(submit_bio);
2116
82124d60
KU
2117/**
2118 * blk_rq_check_limits - Helper function to check a request for the queue limit
2119 * @q: the queue
2120 * @rq: the request being checked
2121 *
2122 * Description:
2123 * @rq may have been made based on weaker limitations of upper-level queues
2124 * in request stacking drivers, and it may violate the limitation of @q.
2125 * Since the block layer and the underlying device driver trust @rq
2126 * after it is inserted to @q, it should be checked against @q before
2127 * the insertion using this generic function.
2128 *
2129 * This function should also be useful for request stacking drivers
eef35c2d 2130 * in some cases below, so export this function.
82124d60
KU
2131 * Request stacking drivers like request-based dm may change the queue
2132 * limits while requests are in the queue (e.g. dm's table swapping).
e227867f 2133 * Such request stacking drivers should check those requests against
82124d60
KU
2134 * the new queue limits again when they dispatch those requests,
2135 * although such checkings are also done against the old queue limits
2136 * when submitting requests.
2137 */
2138int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2139{
e2a60da7 2140 if (!rq_mergeable(rq))
3383977f
S
2141 return 0;
2142
f31dc1cd 2143 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
2144 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2145 return -EIO;
2146 }
2147
2148 /*
2149 * queue's settings related to segment counting like q->bounce_pfn
2150 * may differ from that of other stacking queues.
2151 * Recalculate it to check the request correctly on this queue's
2152 * limitation.
2153 */
2154 blk_recalc_rq_segments(rq);
8a78362c 2155 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2156 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2157 return -EIO;
2158 }
2159
2160 return 0;
2161}
2162EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2163
2164/**
2165 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2166 * @q: the queue to submit the request
2167 * @rq: the request being queued
2168 */
2169int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2170{
2171 unsigned long flags;
4853abaa 2172 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
2173
2174 if (blk_rq_check_limits(q, rq))
2175 return -EIO;
2176
b2c9cd37
AM
2177 if (rq->rq_disk &&
2178 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2179 return -EIO;
82124d60 2180
7fb4898e
KB
2181 if (q->mq_ops) {
2182 if (blk_queue_io_stat(q))
2183 blk_account_io_start(rq, true);
2184 blk_mq_insert_request(rq, false, true, true);
2185 return 0;
2186 }
2187
82124d60 2188 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2189 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2190 spin_unlock_irqrestore(q->queue_lock, flags);
2191 return -ENODEV;
2192 }
82124d60
KU
2193
2194 /*
2195 * Submitting request must be dequeued before calling this function
2196 * because it will be linked to another request_queue
2197 */
2198 BUG_ON(blk_queued_rq(rq));
2199
4853abaa
JM
2200 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2201 where = ELEVATOR_INSERT_FLUSH;
2202
2203 add_acct_request(q, rq, where);
e67b77c7
JM
2204 if (where == ELEVATOR_INSERT_FLUSH)
2205 __blk_run_queue(q);
82124d60
KU
2206 spin_unlock_irqrestore(q->queue_lock, flags);
2207
2208 return 0;
2209}
2210EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2211
80a761fd
TH
2212/**
2213 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2214 * @rq: request to examine
2215 *
2216 * Description:
2217 * A request could be merge of IOs which require different failure
2218 * handling. This function determines the number of bytes which
2219 * can be failed from the beginning of the request without
2220 * crossing into area which need to be retried further.
2221 *
2222 * Return:
2223 * The number of bytes to fail.
2224 *
2225 * Context:
2226 * queue_lock must be held.
2227 */
2228unsigned int blk_rq_err_bytes(const struct request *rq)
2229{
2230 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2231 unsigned int bytes = 0;
2232 struct bio *bio;
2233
2234 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2235 return blk_rq_bytes(rq);
2236
2237 /*
2238 * Currently the only 'mixing' which can happen is between
2239 * different fastfail types. We can safely fail portions
2240 * which have all the failfast bits that the first one has -
2241 * the ones which are at least as eager to fail as the first
2242 * one.
2243 */
2244 for (bio = rq->bio; bio; bio = bio->bi_next) {
2245 if ((bio->bi_rw & ff) != ff)
2246 break;
4f024f37 2247 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2248 }
2249
2250 /* this could lead to infinite loop */
2251 BUG_ON(blk_rq_bytes(rq) && !bytes);
2252 return bytes;
2253}
2254EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2255
320ae51f 2256void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2257{
c2553b58 2258 if (blk_do_io_stat(req)) {
bc58ba94
JA
2259 const int rw = rq_data_dir(req);
2260 struct hd_struct *part;
2261 int cpu;
2262
2263 cpu = part_stat_lock();
09e099d4 2264 part = req->part;
bc58ba94
JA
2265 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2266 part_stat_unlock();
2267 }
2268}
2269
320ae51f 2270void blk_account_io_done(struct request *req)
bc58ba94 2271{
bc58ba94 2272 /*
dd4c133f
TH
2273 * Account IO completion. flush_rq isn't accounted as a
2274 * normal IO on queueing nor completion. Accounting the
2275 * containing request is enough.
bc58ba94 2276 */
414b4ff5 2277 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2278 unsigned long duration = jiffies - req->start_time;
2279 const int rw = rq_data_dir(req);
2280 struct hd_struct *part;
2281 int cpu;
2282
2283 cpu = part_stat_lock();
09e099d4 2284 part = req->part;
bc58ba94
JA
2285
2286 part_stat_inc(cpu, part, ios[rw]);
2287 part_stat_add(cpu, part, ticks[rw], duration);
2288 part_round_stats(cpu, part);
316d315b 2289 part_dec_in_flight(part, rw);
bc58ba94 2290
6c23a968 2291 hd_struct_put(part);
bc58ba94
JA
2292 part_stat_unlock();
2293 }
2294}
2295
47fafbc7 2296#ifdef CONFIG_PM
c8158819
LM
2297/*
2298 * Don't process normal requests when queue is suspended
2299 * or in the process of suspending/resuming
2300 */
2301static struct request *blk_pm_peek_request(struct request_queue *q,
2302 struct request *rq)
2303{
2304 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2305 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2306 return NULL;
2307 else
2308 return rq;
2309}
2310#else
2311static inline struct request *blk_pm_peek_request(struct request_queue *q,
2312 struct request *rq)
2313{
2314 return rq;
2315}
2316#endif
2317
320ae51f
JA
2318void blk_account_io_start(struct request *rq, bool new_io)
2319{
2320 struct hd_struct *part;
2321 int rw = rq_data_dir(rq);
2322 int cpu;
2323
2324 if (!blk_do_io_stat(rq))
2325 return;
2326
2327 cpu = part_stat_lock();
2328
2329 if (!new_io) {
2330 part = rq->part;
2331 part_stat_inc(cpu, part, merges[rw]);
2332 } else {
2333 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2334 if (!hd_struct_try_get(part)) {
2335 /*
2336 * The partition is already being removed,
2337 * the request will be accounted on the disk only
2338 *
2339 * We take a reference on disk->part0 although that
2340 * partition will never be deleted, so we can treat
2341 * it as any other partition.
2342 */
2343 part = &rq->rq_disk->part0;
2344 hd_struct_get(part);
2345 }
2346 part_round_stats(cpu, part);
2347 part_inc_in_flight(part, rw);
2348 rq->part = part;
2349 }
2350
2351 part_stat_unlock();
2352}
2353
3bcddeac 2354/**
9934c8c0
TH
2355 * blk_peek_request - peek at the top of a request queue
2356 * @q: request queue to peek at
2357 *
2358 * Description:
2359 * Return the request at the top of @q. The returned request
2360 * should be started using blk_start_request() before LLD starts
2361 * processing it.
2362 *
2363 * Return:
2364 * Pointer to the request at the top of @q if available. Null
2365 * otherwise.
2366 *
2367 * Context:
2368 * queue_lock must be held.
2369 */
2370struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2371{
2372 struct request *rq;
2373 int ret;
2374
2375 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2376
2377 rq = blk_pm_peek_request(q, rq);
2378 if (!rq)
2379 break;
2380
158dbda0
TH
2381 if (!(rq->cmd_flags & REQ_STARTED)) {
2382 /*
2383 * This is the first time the device driver
2384 * sees this request (possibly after
2385 * requeueing). Notify IO scheduler.
2386 */
33659ebb 2387 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2388 elv_activate_rq(q, rq);
2389
2390 /*
2391 * just mark as started even if we don't start
2392 * it, a request that has been delayed should
2393 * not be passed by new incoming requests
2394 */
2395 rq->cmd_flags |= REQ_STARTED;
2396 trace_block_rq_issue(q, rq);
2397 }
2398
2399 if (!q->boundary_rq || q->boundary_rq == rq) {
2400 q->end_sector = rq_end_sector(rq);
2401 q->boundary_rq = NULL;
2402 }
2403
2404 if (rq->cmd_flags & REQ_DONTPREP)
2405 break;
2406
2e46e8b2 2407 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2408 /*
2409 * make sure space for the drain appears we
2410 * know we can do this because max_hw_segments
2411 * has been adjusted to be one fewer than the
2412 * device can handle
2413 */
2414 rq->nr_phys_segments++;
2415 }
2416
2417 if (!q->prep_rq_fn)
2418 break;
2419
2420 ret = q->prep_rq_fn(q, rq);
2421 if (ret == BLKPREP_OK) {
2422 break;
2423 } else if (ret == BLKPREP_DEFER) {
2424 /*
2425 * the request may have been (partially) prepped.
2426 * we need to keep this request in the front to
2427 * avoid resource deadlock. REQ_STARTED will
2428 * prevent other fs requests from passing this one.
2429 */
2e46e8b2 2430 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2431 !(rq->cmd_flags & REQ_DONTPREP)) {
2432 /*
2433 * remove the space for the drain we added
2434 * so that we don't add it again
2435 */
2436 --rq->nr_phys_segments;
2437 }
2438
2439 rq = NULL;
2440 break;
2441 } else if (ret == BLKPREP_KILL) {
2442 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2443 /*
2444 * Mark this request as started so we don't trigger
2445 * any debug logic in the end I/O path.
2446 */
2447 blk_start_request(rq);
40cbbb78 2448 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2449 } else {
2450 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2451 break;
2452 }
2453 }
2454
2455 return rq;
2456}
9934c8c0 2457EXPORT_SYMBOL(blk_peek_request);
158dbda0 2458
9934c8c0 2459void blk_dequeue_request(struct request *rq)
158dbda0 2460{
9934c8c0
TH
2461 struct request_queue *q = rq->q;
2462
158dbda0
TH
2463 BUG_ON(list_empty(&rq->queuelist));
2464 BUG_ON(ELV_ON_HASH(rq));
2465
2466 list_del_init(&rq->queuelist);
2467
2468 /*
2469 * the time frame between a request being removed from the lists
2470 * and to it is freed is accounted as io that is in progress at
2471 * the driver side.
2472 */
9195291e 2473 if (blk_account_rq(rq)) {
0a7ae2ff 2474 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2475 set_io_start_time_ns(rq);
2476 }
158dbda0
TH
2477}
2478
9934c8c0
TH
2479/**
2480 * blk_start_request - start request processing on the driver
2481 * @req: request to dequeue
2482 *
2483 * Description:
2484 * Dequeue @req and start timeout timer on it. This hands off the
2485 * request to the driver.
2486 *
2487 * Block internal functions which don't want to start timer should
2488 * call blk_dequeue_request().
2489 *
2490 * Context:
2491 * queue_lock must be held.
2492 */
2493void blk_start_request(struct request *req)
2494{
2495 blk_dequeue_request(req);
2496
2497 /*
5f49f631
TH
2498 * We are now handing the request to the hardware, initialize
2499 * resid_len to full count and add the timeout handler.
9934c8c0 2500 */
5f49f631 2501 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2502 if (unlikely(blk_bidi_rq(req)))
2503 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2504
4912aa6c 2505 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2506 blk_add_timer(req);
2507}
2508EXPORT_SYMBOL(blk_start_request);
2509
2510/**
2511 * blk_fetch_request - fetch a request from a request queue
2512 * @q: request queue to fetch a request from
2513 *
2514 * Description:
2515 * Return the request at the top of @q. The request is started on
2516 * return and LLD can start processing it immediately.
2517 *
2518 * Return:
2519 * Pointer to the request at the top of @q if available. Null
2520 * otherwise.
2521 *
2522 * Context:
2523 * queue_lock must be held.
2524 */
2525struct request *blk_fetch_request(struct request_queue *q)
2526{
2527 struct request *rq;
2528
2529 rq = blk_peek_request(q);
2530 if (rq)
2531 blk_start_request(rq);
2532 return rq;
2533}
2534EXPORT_SYMBOL(blk_fetch_request);
2535
3bcddeac 2536/**
2e60e022 2537 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2538 * @req: the request being processed
710027a4 2539 * @error: %0 for success, < %0 for error
8ebf9756 2540 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2541 *
2542 * Description:
8ebf9756
RD
2543 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2544 * the request structure even if @req doesn't have leftover.
2545 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2546 *
2547 * This special helper function is only for request stacking drivers
2548 * (e.g. request-based dm) so that they can handle partial completion.
2549 * Actual device drivers should use blk_end_request instead.
2550 *
2551 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2552 * %false return from this function.
3bcddeac
KU
2553 *
2554 * Return:
2e60e022
TH
2555 * %false - this request doesn't have any more data
2556 * %true - this request has more data
3bcddeac 2557 **/
2e60e022 2558bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2559{
f79ea416 2560 int total_bytes;
1da177e4 2561
4a0efdc9
HR
2562 trace_block_rq_complete(req->q, req, nr_bytes);
2563
2e60e022
TH
2564 if (!req->bio)
2565 return false;
2566
1da177e4 2567 /*
6f41469c
TH
2568 * For fs requests, rq is just carrier of independent bio's
2569 * and each partial completion should be handled separately.
2570 * Reset per-request error on each partial completion.
2571 *
2572 * TODO: tj: This is too subtle. It would be better to let
2573 * low level drivers do what they see fit.
1da177e4 2574 */
33659ebb 2575 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2576 req->errors = 0;
2577
33659ebb
CH
2578 if (error && req->cmd_type == REQ_TYPE_FS &&
2579 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2580 char *error_type;
2581
2582 switch (error) {
2583 case -ENOLINK:
2584 error_type = "recoverable transport";
2585 break;
2586 case -EREMOTEIO:
2587 error_type = "critical target";
2588 break;
2589 case -EBADE:
2590 error_type = "critical nexus";
2591 break;
d1ffc1f8
HR
2592 case -ETIMEDOUT:
2593 error_type = "timeout";
2594 break;
a9d6ceb8
HR
2595 case -ENOSPC:
2596 error_type = "critical space allocation";
2597 break;
7e782af5
HR
2598 case -ENODATA:
2599 error_type = "critical medium";
2600 break;
79775567
HR
2601 case -EIO:
2602 default:
2603 error_type = "I/O";
2604 break;
2605 }
ef3ecb66
RE
2606 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2607 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2608 req->rq_disk->disk_name : "?",
2609 (unsigned long long)blk_rq_pos(req));
2610
1da177e4
LT
2611 }
2612
bc58ba94 2613 blk_account_io_completion(req, nr_bytes);
d72d904a 2614
f79ea416
KO
2615 total_bytes = 0;
2616 while (req->bio) {
2617 struct bio *bio = req->bio;
4f024f37 2618 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2619
4f024f37 2620 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2621 req->bio = bio->bi_next;
1da177e4 2622
f79ea416 2623 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2624
f79ea416
KO
2625 total_bytes += bio_bytes;
2626 nr_bytes -= bio_bytes;
1da177e4 2627
f79ea416
KO
2628 if (!nr_bytes)
2629 break;
1da177e4
LT
2630 }
2631
2632 /*
2633 * completely done
2634 */
2e60e022
TH
2635 if (!req->bio) {
2636 /*
2637 * Reset counters so that the request stacking driver
2638 * can find how many bytes remain in the request
2639 * later.
2640 */
a2dec7b3 2641 req->__data_len = 0;
2e60e022
TH
2642 return false;
2643 }
1da177e4 2644
a2dec7b3 2645 req->__data_len -= total_bytes;
2e46e8b2
TH
2646
2647 /* update sector only for requests with clear definition of sector */
e2a60da7 2648 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2649 req->__sector += total_bytes >> 9;
2e46e8b2 2650
80a761fd
TH
2651 /* mixed attributes always follow the first bio */
2652 if (req->cmd_flags & REQ_MIXED_MERGE) {
2653 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2654 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2655 }
2656
2e46e8b2
TH
2657 /*
2658 * If total number of sectors is less than the first segment
2659 * size, something has gone terribly wrong.
2660 */
2661 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2662 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2663 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2664 }
2665
2666 /* recalculate the number of segments */
1da177e4 2667 blk_recalc_rq_segments(req);
2e46e8b2 2668
2e60e022 2669 return true;
1da177e4 2670}
2e60e022 2671EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2672
2e60e022
TH
2673static bool blk_update_bidi_request(struct request *rq, int error,
2674 unsigned int nr_bytes,
2675 unsigned int bidi_bytes)
5efccd17 2676{
2e60e022
TH
2677 if (blk_update_request(rq, error, nr_bytes))
2678 return true;
5efccd17 2679
2e60e022
TH
2680 /* Bidi request must be completed as a whole */
2681 if (unlikely(blk_bidi_rq(rq)) &&
2682 blk_update_request(rq->next_rq, error, bidi_bytes))
2683 return true;
5efccd17 2684
e2e1a148
JA
2685 if (blk_queue_add_random(rq->q))
2686 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2687
2688 return false;
1da177e4
LT
2689}
2690
28018c24
JB
2691/**
2692 * blk_unprep_request - unprepare a request
2693 * @req: the request
2694 *
2695 * This function makes a request ready for complete resubmission (or
2696 * completion). It happens only after all error handling is complete,
2697 * so represents the appropriate moment to deallocate any resources
2698 * that were allocated to the request in the prep_rq_fn. The queue
2699 * lock is held when calling this.
2700 */
2701void blk_unprep_request(struct request *req)
2702{
2703 struct request_queue *q = req->q;
2704
2705 req->cmd_flags &= ~REQ_DONTPREP;
2706 if (q->unprep_rq_fn)
2707 q->unprep_rq_fn(q, req);
2708}
2709EXPORT_SYMBOL_GPL(blk_unprep_request);
2710
1da177e4
LT
2711/*
2712 * queue lock must be held
2713 */
12120077 2714void blk_finish_request(struct request *req, int error)
1da177e4 2715{
125c99bc 2716 if (req->cmd_flags & REQ_QUEUED)
b8286239
KU
2717 blk_queue_end_tag(req->q, req);
2718
ba396a6c 2719 BUG_ON(blk_queued_rq(req));
1da177e4 2720
33659ebb 2721 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2722 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2723
e78042e5
MA
2724 blk_delete_timer(req);
2725
28018c24
JB
2726 if (req->cmd_flags & REQ_DONTPREP)
2727 blk_unprep_request(req);
2728
bc58ba94 2729 blk_account_io_done(req);
b8286239 2730
1da177e4 2731 if (req->end_io)
8ffdc655 2732 req->end_io(req, error);
b8286239
KU
2733 else {
2734 if (blk_bidi_rq(req))
2735 __blk_put_request(req->next_rq->q, req->next_rq);
2736
1da177e4 2737 __blk_put_request(req->q, req);
b8286239 2738 }
1da177e4 2739}
12120077 2740EXPORT_SYMBOL(blk_finish_request);
1da177e4 2741
3b11313a 2742/**
2e60e022
TH
2743 * blk_end_bidi_request - Complete a bidi request
2744 * @rq: the request to complete
2745 * @error: %0 for success, < %0 for error
2746 * @nr_bytes: number of bytes to complete @rq
2747 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2748 *
2749 * Description:
e3a04fe3 2750 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2751 * Drivers that supports bidi can safely call this member for any
2752 * type of request, bidi or uni. In the later case @bidi_bytes is
2753 * just ignored.
336cdb40
KU
2754 *
2755 * Return:
2e60e022
TH
2756 * %false - we are done with this request
2757 * %true - still buffers pending for this request
a0cd1285 2758 **/
b1f74493 2759static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2760 unsigned int nr_bytes, unsigned int bidi_bytes)
2761{
336cdb40 2762 struct request_queue *q = rq->q;
2e60e022 2763 unsigned long flags;
32fab448 2764
2e60e022
TH
2765 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2766 return true;
32fab448 2767
336cdb40 2768 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2769 blk_finish_request(rq, error);
336cdb40
KU
2770 spin_unlock_irqrestore(q->queue_lock, flags);
2771
2e60e022 2772 return false;
32fab448
KU
2773}
2774
336cdb40 2775/**
2e60e022
TH
2776 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2777 * @rq: the request to complete
710027a4 2778 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2779 * @nr_bytes: number of bytes to complete @rq
2780 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2781 *
2782 * Description:
2e60e022
TH
2783 * Identical to blk_end_bidi_request() except that queue lock is
2784 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2785 *
2786 * Return:
2e60e022
TH
2787 * %false - we are done with this request
2788 * %true - still buffers pending for this request
336cdb40 2789 **/
4853abaa 2790bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2791 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2792{
2e60e022
TH
2793 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2794 return true;
336cdb40 2795
2e60e022 2796 blk_finish_request(rq, error);
336cdb40 2797
2e60e022 2798 return false;
336cdb40 2799}
e19a3ab0
KU
2800
2801/**
2802 * blk_end_request - Helper function for drivers to complete the request.
2803 * @rq: the request being processed
710027a4 2804 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2805 * @nr_bytes: number of bytes to complete
2806 *
2807 * Description:
2808 * Ends I/O on a number of bytes attached to @rq.
2809 * If @rq has leftover, sets it up for the next range of segments.
2810 *
2811 * Return:
b1f74493
FT
2812 * %false - we are done with this request
2813 * %true - still buffers pending for this request
e19a3ab0 2814 **/
b1f74493 2815bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2816{
b1f74493 2817 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2818}
56ad1740 2819EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2820
2821/**
b1f74493
FT
2822 * blk_end_request_all - Helper function for drives to finish the request.
2823 * @rq: the request to finish
8ebf9756 2824 * @error: %0 for success, < %0 for error
336cdb40
KU
2825 *
2826 * Description:
b1f74493
FT
2827 * Completely finish @rq.
2828 */
2829void blk_end_request_all(struct request *rq, int error)
336cdb40 2830{
b1f74493
FT
2831 bool pending;
2832 unsigned int bidi_bytes = 0;
336cdb40 2833
b1f74493
FT
2834 if (unlikely(blk_bidi_rq(rq)))
2835 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2836
b1f74493
FT
2837 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2838 BUG_ON(pending);
2839}
56ad1740 2840EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2841
b1f74493
FT
2842/**
2843 * blk_end_request_cur - Helper function to finish the current request chunk.
2844 * @rq: the request to finish the current chunk for
8ebf9756 2845 * @error: %0 for success, < %0 for error
b1f74493
FT
2846 *
2847 * Description:
2848 * Complete the current consecutively mapped chunk from @rq.
2849 *
2850 * Return:
2851 * %false - we are done with this request
2852 * %true - still buffers pending for this request
2853 */
2854bool blk_end_request_cur(struct request *rq, int error)
2855{
2856 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2857}
56ad1740 2858EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2859
80a761fd
TH
2860/**
2861 * blk_end_request_err - Finish a request till the next failure boundary.
2862 * @rq: the request to finish till the next failure boundary for
2863 * @error: must be negative errno
2864 *
2865 * Description:
2866 * Complete @rq till the next failure boundary.
2867 *
2868 * Return:
2869 * %false - we are done with this request
2870 * %true - still buffers pending for this request
2871 */
2872bool blk_end_request_err(struct request *rq, int error)
2873{
2874 WARN_ON(error >= 0);
2875 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2876}
2877EXPORT_SYMBOL_GPL(blk_end_request_err);
2878
e3a04fe3 2879/**
b1f74493
FT
2880 * __blk_end_request - Helper function for drivers to complete the request.
2881 * @rq: the request being processed
2882 * @error: %0 for success, < %0 for error
2883 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2884 *
2885 * Description:
b1f74493 2886 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2887 *
2888 * Return:
b1f74493
FT
2889 * %false - we are done with this request
2890 * %true - still buffers pending for this request
e3a04fe3 2891 **/
b1f74493 2892bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2893{
b1f74493 2894 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2895}
56ad1740 2896EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2897
32fab448 2898/**
b1f74493
FT
2899 * __blk_end_request_all - Helper function for drives to finish the request.
2900 * @rq: the request to finish
8ebf9756 2901 * @error: %0 for success, < %0 for error
32fab448
KU
2902 *
2903 * Description:
b1f74493 2904 * Completely finish @rq. Must be called with queue lock held.
32fab448 2905 */
b1f74493 2906void __blk_end_request_all(struct request *rq, int error)
32fab448 2907{
b1f74493
FT
2908 bool pending;
2909 unsigned int bidi_bytes = 0;
2910
2911 if (unlikely(blk_bidi_rq(rq)))
2912 bidi_bytes = blk_rq_bytes(rq->next_rq);
2913
2914 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2915 BUG_ON(pending);
32fab448 2916}
56ad1740 2917EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2918
e19a3ab0 2919/**
b1f74493
FT
2920 * __blk_end_request_cur - Helper function to finish the current request chunk.
2921 * @rq: the request to finish the current chunk for
8ebf9756 2922 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2923 *
2924 * Description:
b1f74493
FT
2925 * Complete the current consecutively mapped chunk from @rq. Must
2926 * be called with queue lock held.
e19a3ab0
KU
2927 *
2928 * Return:
b1f74493
FT
2929 * %false - we are done with this request
2930 * %true - still buffers pending for this request
2931 */
2932bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2933{
b1f74493 2934 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2935}
56ad1740 2936EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2937
80a761fd
TH
2938/**
2939 * __blk_end_request_err - Finish a request till the next failure boundary.
2940 * @rq: the request to finish till the next failure boundary for
2941 * @error: must be negative errno
2942 *
2943 * Description:
2944 * Complete @rq till the next failure boundary. Must be called
2945 * with queue lock held.
2946 *
2947 * Return:
2948 * %false - we are done with this request
2949 * %true - still buffers pending for this request
2950 */
2951bool __blk_end_request_err(struct request *rq, int error)
2952{
2953 WARN_ON(error >= 0);
2954 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2955}
2956EXPORT_SYMBOL_GPL(__blk_end_request_err);
2957
86db1e29
JA
2958void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2959 struct bio *bio)
1da177e4 2960{
a82afdfc 2961 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2962 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2963
b4f42e28 2964 if (bio_has_data(bio))
fb2dce86 2965 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2966
4f024f37 2967 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2968 rq->bio = rq->biotail = bio;
1da177e4 2969
66846572
N
2970 if (bio->bi_bdev)
2971 rq->rq_disk = bio->bi_bdev->bd_disk;
2972}
1da177e4 2973
2d4dc890
IL
2974#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2975/**
2976 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2977 * @rq: the request to be flushed
2978 *
2979 * Description:
2980 * Flush all pages in @rq.
2981 */
2982void rq_flush_dcache_pages(struct request *rq)
2983{
2984 struct req_iterator iter;
7988613b 2985 struct bio_vec bvec;
2d4dc890
IL
2986
2987 rq_for_each_segment(bvec, rq, iter)
7988613b 2988 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2989}
2990EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2991#endif
2992
ef9e3fac
KU
2993/**
2994 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2995 * @q : the queue of the device being checked
2996 *
2997 * Description:
2998 * Check if underlying low-level drivers of a device are busy.
2999 * If the drivers want to export their busy state, they must set own
3000 * exporting function using blk_queue_lld_busy() first.
3001 *
3002 * Basically, this function is used only by request stacking drivers
3003 * to stop dispatching requests to underlying devices when underlying
3004 * devices are busy. This behavior helps more I/O merging on the queue
3005 * of the request stacking driver and prevents I/O throughput regression
3006 * on burst I/O load.
3007 *
3008 * Return:
3009 * 0 - Not busy (The request stacking driver should dispatch request)
3010 * 1 - Busy (The request stacking driver should stop dispatching request)
3011 */
3012int blk_lld_busy(struct request_queue *q)
3013{
3014 if (q->lld_busy_fn)
3015 return q->lld_busy_fn(q);
3016
3017 return 0;
3018}
3019EXPORT_SYMBOL_GPL(blk_lld_busy);
3020
78d8e58a
MS
3021/**
3022 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3023 * @rq: the clone request to be cleaned up
3024 *
3025 * Description:
3026 * Free all bios in @rq for a cloned request.
3027 */
3028void blk_rq_unprep_clone(struct request *rq)
3029{
3030 struct bio *bio;
3031
3032 while ((bio = rq->bio) != NULL) {
3033 rq->bio = bio->bi_next;
3034
3035 bio_put(bio);
3036 }
3037}
3038EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3039
3040/*
3041 * Copy attributes of the original request to the clone request.
3042 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3043 */
3044static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3045{
3046 dst->cpu = src->cpu;
78d8e58a 3047 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
3048 dst->cmd_type = src->cmd_type;
3049 dst->__sector = blk_rq_pos(src);
3050 dst->__data_len = blk_rq_bytes(src);
3051 dst->nr_phys_segments = src->nr_phys_segments;
3052 dst->ioprio = src->ioprio;
3053 dst->extra_len = src->extra_len;
78d8e58a
MS
3054}
3055
3056/**
3057 * blk_rq_prep_clone - Helper function to setup clone request
3058 * @rq: the request to be setup
3059 * @rq_src: original request to be cloned
3060 * @bs: bio_set that bios for clone are allocated from
3061 * @gfp_mask: memory allocation mask for bio
3062 * @bio_ctr: setup function to be called for each clone bio.
3063 * Returns %0 for success, non %0 for failure.
3064 * @data: private data to be passed to @bio_ctr
3065 *
3066 * Description:
3067 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3068 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3069 * are not copied, and copying such parts is the caller's responsibility.
3070 * Also, pages which the original bios are pointing to are not copied
3071 * and the cloned bios just point same pages.
3072 * So cloned bios must be completed before original bios, which means
3073 * the caller must complete @rq before @rq_src.
3074 */
3075int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3076 struct bio_set *bs, gfp_t gfp_mask,
3077 int (*bio_ctr)(struct bio *, struct bio *, void *),
3078 void *data)
3079{
3080 struct bio *bio, *bio_src;
3081
3082 if (!bs)
3083 bs = fs_bio_set;
3084
3085 __rq_for_each_bio(bio_src, rq_src) {
3086 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3087 if (!bio)
3088 goto free_and_out;
3089
3090 if (bio_ctr && bio_ctr(bio, bio_src, data))
3091 goto free_and_out;
3092
3093 if (rq->bio) {
3094 rq->biotail->bi_next = bio;
3095 rq->biotail = bio;
3096 } else
3097 rq->bio = rq->biotail = bio;
3098 }
3099
3100 __blk_rq_prep_clone(rq, rq_src);
3101
3102 return 0;
3103
3104free_and_out:
3105 if (bio)
3106 bio_put(bio);
3107 blk_rq_unprep_clone(rq);
3108
3109 return -ENOMEM;
b0fd271d
KU
3110}
3111EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3112
59c3d45e 3113int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3114{
3115 return queue_work(kblockd_workqueue, work);
3116}
1da177e4
LT
3117EXPORT_SYMBOL(kblockd_schedule_work);
3118
59c3d45e
JA
3119int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3120 unsigned long delay)
e43473b7
VG
3121{
3122 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3123}
3124EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3125
8ab14595
JA
3126int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3127 unsigned long delay)
3128{
3129 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3130}
3131EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3132
75df7136
SJ
3133/**
3134 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3135 * @plug: The &struct blk_plug that needs to be initialized
3136 *
3137 * Description:
3138 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3139 * pending I/O should the task end up blocking between blk_start_plug() and
3140 * blk_finish_plug(). This is important from a performance perspective, but
3141 * also ensures that we don't deadlock. For instance, if the task is blocking
3142 * for a memory allocation, memory reclaim could end up wanting to free a
3143 * page belonging to that request that is currently residing in our private
3144 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3145 * this kind of deadlock.
3146 */
73c10101
JA
3147void blk_start_plug(struct blk_plug *plug)
3148{
3149 struct task_struct *tsk = current;
3150
dd6cf3e1
SL
3151 /*
3152 * If this is a nested plug, don't actually assign it.
3153 */
3154 if (tsk->plug)
3155 return;
3156
73c10101 3157 INIT_LIST_HEAD(&plug->list);
320ae51f 3158 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3159 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3160 /*
dd6cf3e1
SL
3161 * Store ordering should not be needed here, since a potential
3162 * preempt will imply a full memory barrier
73c10101 3163 */
dd6cf3e1 3164 tsk->plug = plug;
73c10101
JA
3165}
3166EXPORT_SYMBOL(blk_start_plug);
3167
3168static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3169{
3170 struct request *rqa = container_of(a, struct request, queuelist);
3171 struct request *rqb = container_of(b, struct request, queuelist);
3172
975927b9
JM
3173 return !(rqa->q < rqb->q ||
3174 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3175}
3176
49cac01e
JA
3177/*
3178 * If 'from_schedule' is true, then postpone the dispatch of requests
3179 * until a safe kblockd context. We due this to avoid accidental big
3180 * additional stack usage in driver dispatch, in places where the originally
3181 * plugger did not intend it.
3182 */
f6603783 3183static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3184 bool from_schedule)
99e22598 3185 __releases(q->queue_lock)
94b5eb28 3186{
49cac01e 3187 trace_block_unplug(q, depth, !from_schedule);
99e22598 3188
70460571 3189 if (from_schedule)
24ecfbe2 3190 blk_run_queue_async(q);
70460571 3191 else
24ecfbe2 3192 __blk_run_queue(q);
70460571 3193 spin_unlock(q->queue_lock);
94b5eb28
JA
3194}
3195
74018dc3 3196static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3197{
3198 LIST_HEAD(callbacks);
3199
2a7d5559
SL
3200 while (!list_empty(&plug->cb_list)) {
3201 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3202
2a7d5559
SL
3203 while (!list_empty(&callbacks)) {
3204 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3205 struct blk_plug_cb,
3206 list);
2a7d5559 3207 list_del(&cb->list);
74018dc3 3208 cb->callback(cb, from_schedule);
2a7d5559 3209 }
048c9374
N
3210 }
3211}
3212
9cbb1750
N
3213struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3214 int size)
3215{
3216 struct blk_plug *plug = current->plug;
3217 struct blk_plug_cb *cb;
3218
3219 if (!plug)
3220 return NULL;
3221
3222 list_for_each_entry(cb, &plug->cb_list, list)
3223 if (cb->callback == unplug && cb->data == data)
3224 return cb;
3225
3226 /* Not currently on the callback list */
3227 BUG_ON(size < sizeof(*cb));
3228 cb = kzalloc(size, GFP_ATOMIC);
3229 if (cb) {
3230 cb->data = data;
3231 cb->callback = unplug;
3232 list_add(&cb->list, &plug->cb_list);
3233 }
3234 return cb;
3235}
3236EXPORT_SYMBOL(blk_check_plugged);
3237
49cac01e 3238void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3239{
3240 struct request_queue *q;
3241 unsigned long flags;
3242 struct request *rq;
109b8129 3243 LIST_HEAD(list);
94b5eb28 3244 unsigned int depth;
73c10101 3245
74018dc3 3246 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3247
3248 if (!list_empty(&plug->mq_list))
3249 blk_mq_flush_plug_list(plug, from_schedule);
3250
73c10101
JA
3251 if (list_empty(&plug->list))
3252 return;
3253
109b8129
N
3254 list_splice_init(&plug->list, &list);
3255
422765c2 3256 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3257
3258 q = NULL;
94b5eb28 3259 depth = 0;
18811272
JA
3260
3261 /*
3262 * Save and disable interrupts here, to avoid doing it for every
3263 * queue lock we have to take.
3264 */
73c10101 3265 local_irq_save(flags);
109b8129
N
3266 while (!list_empty(&list)) {
3267 rq = list_entry_rq(list.next);
73c10101 3268 list_del_init(&rq->queuelist);
73c10101
JA
3269 BUG_ON(!rq->q);
3270 if (rq->q != q) {
99e22598
JA
3271 /*
3272 * This drops the queue lock
3273 */
3274 if (q)
49cac01e 3275 queue_unplugged(q, depth, from_schedule);
73c10101 3276 q = rq->q;
94b5eb28 3277 depth = 0;
73c10101
JA
3278 spin_lock(q->queue_lock);
3279 }
8ba61435
TH
3280
3281 /*
3282 * Short-circuit if @q is dead
3283 */
3f3299d5 3284 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3285 __blk_end_request_all(rq, -ENODEV);
3286 continue;
3287 }
3288
73c10101
JA
3289 /*
3290 * rq is already accounted, so use raw insert
3291 */
401a18e9
JA
3292 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3293 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3294 else
3295 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3296
3297 depth++;
73c10101
JA
3298 }
3299
99e22598
JA
3300 /*
3301 * This drops the queue lock
3302 */
3303 if (q)
49cac01e 3304 queue_unplugged(q, depth, from_schedule);
73c10101 3305
73c10101
JA
3306 local_irq_restore(flags);
3307}
73c10101
JA
3308
3309void blk_finish_plug(struct blk_plug *plug)
3310{
dd6cf3e1
SL
3311 if (plug != current->plug)
3312 return;
f6603783 3313 blk_flush_plug_list(plug, false);
73c10101 3314
dd6cf3e1 3315 current->plug = NULL;
73c10101 3316}
88b996cd 3317EXPORT_SYMBOL(blk_finish_plug);
73c10101 3318
05229bee
JA
3319bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3320{
3321 struct blk_plug *plug;
3322 long state;
3323
3324 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3325 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3326 return false;
3327
3328 plug = current->plug;
3329 if (plug)
3330 blk_flush_plug_list(plug, false);
3331
3332 state = current->state;
3333 while (!need_resched()) {
3334 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3335 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3336 int ret;
3337
3338 hctx->poll_invoked++;
3339
3340 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3341 if (ret > 0) {
3342 hctx->poll_success++;
3343 set_current_state(TASK_RUNNING);
3344 return true;
3345 }
3346
3347 if (signal_pending_state(state, current))
3348 set_current_state(TASK_RUNNING);
3349
3350 if (current->state == TASK_RUNNING)
3351 return true;
3352 if (ret < 0)
3353 break;
3354 cpu_relax();
3355 }
3356
3357 return false;
3358}
3359
47fafbc7 3360#ifdef CONFIG_PM
6c954667
LM
3361/**
3362 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3363 * @q: the queue of the device
3364 * @dev: the device the queue belongs to
3365 *
3366 * Description:
3367 * Initialize runtime-PM-related fields for @q and start auto suspend for
3368 * @dev. Drivers that want to take advantage of request-based runtime PM
3369 * should call this function after @dev has been initialized, and its
3370 * request queue @q has been allocated, and runtime PM for it can not happen
3371 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3372 * cases, driver should call this function before any I/O has taken place.
3373 *
3374 * This function takes care of setting up using auto suspend for the device,
3375 * the autosuspend delay is set to -1 to make runtime suspend impossible
3376 * until an updated value is either set by user or by driver. Drivers do
3377 * not need to touch other autosuspend settings.
3378 *
3379 * The block layer runtime PM is request based, so only works for drivers
3380 * that use request as their IO unit instead of those directly use bio's.
3381 */
3382void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3383{
3384 q->dev = dev;
3385 q->rpm_status = RPM_ACTIVE;
3386 pm_runtime_set_autosuspend_delay(q->dev, -1);
3387 pm_runtime_use_autosuspend(q->dev);
3388}
3389EXPORT_SYMBOL(blk_pm_runtime_init);
3390
3391/**
3392 * blk_pre_runtime_suspend - Pre runtime suspend check
3393 * @q: the queue of the device
3394 *
3395 * Description:
3396 * This function will check if runtime suspend is allowed for the device
3397 * by examining if there are any requests pending in the queue. If there
3398 * are requests pending, the device can not be runtime suspended; otherwise,
3399 * the queue's status will be updated to SUSPENDING and the driver can
3400 * proceed to suspend the device.
3401 *
3402 * For the not allowed case, we mark last busy for the device so that
3403 * runtime PM core will try to autosuspend it some time later.
3404 *
3405 * This function should be called near the start of the device's
3406 * runtime_suspend callback.
3407 *
3408 * Return:
3409 * 0 - OK to runtime suspend the device
3410 * -EBUSY - Device should not be runtime suspended
3411 */
3412int blk_pre_runtime_suspend(struct request_queue *q)
3413{
3414 int ret = 0;
3415
3416 spin_lock_irq(q->queue_lock);
3417 if (q->nr_pending) {
3418 ret = -EBUSY;
3419 pm_runtime_mark_last_busy(q->dev);
3420 } else {
3421 q->rpm_status = RPM_SUSPENDING;
3422 }
3423 spin_unlock_irq(q->queue_lock);
3424 return ret;
3425}
3426EXPORT_SYMBOL(blk_pre_runtime_suspend);
3427
3428/**
3429 * blk_post_runtime_suspend - Post runtime suspend processing
3430 * @q: the queue of the device
3431 * @err: return value of the device's runtime_suspend function
3432 *
3433 * Description:
3434 * Update the queue's runtime status according to the return value of the
3435 * device's runtime suspend function and mark last busy for the device so
3436 * that PM core will try to auto suspend the device at a later time.
3437 *
3438 * This function should be called near the end of the device's
3439 * runtime_suspend callback.
3440 */
3441void blk_post_runtime_suspend(struct request_queue *q, int err)
3442{
3443 spin_lock_irq(q->queue_lock);
3444 if (!err) {
3445 q->rpm_status = RPM_SUSPENDED;
3446 } else {
3447 q->rpm_status = RPM_ACTIVE;
3448 pm_runtime_mark_last_busy(q->dev);
3449 }
3450 spin_unlock_irq(q->queue_lock);
3451}
3452EXPORT_SYMBOL(blk_post_runtime_suspend);
3453
3454/**
3455 * blk_pre_runtime_resume - Pre runtime resume processing
3456 * @q: the queue of the device
3457 *
3458 * Description:
3459 * Update the queue's runtime status to RESUMING in preparation for the
3460 * runtime resume of the device.
3461 *
3462 * This function should be called near the start of the device's
3463 * runtime_resume callback.
3464 */
3465void blk_pre_runtime_resume(struct request_queue *q)
3466{
3467 spin_lock_irq(q->queue_lock);
3468 q->rpm_status = RPM_RESUMING;
3469 spin_unlock_irq(q->queue_lock);
3470}
3471EXPORT_SYMBOL(blk_pre_runtime_resume);
3472
3473/**
3474 * blk_post_runtime_resume - Post runtime resume processing
3475 * @q: the queue of the device
3476 * @err: return value of the device's runtime_resume function
3477 *
3478 * Description:
3479 * Update the queue's runtime status according to the return value of the
3480 * device's runtime_resume function. If it is successfully resumed, process
3481 * the requests that are queued into the device's queue when it is resuming
3482 * and then mark last busy and initiate autosuspend for it.
3483 *
3484 * This function should be called near the end of the device's
3485 * runtime_resume callback.
3486 */
3487void blk_post_runtime_resume(struct request_queue *q, int err)
3488{
3489 spin_lock_irq(q->queue_lock);
3490 if (!err) {
3491 q->rpm_status = RPM_ACTIVE;
3492 __blk_run_queue(q);
3493 pm_runtime_mark_last_busy(q->dev);
c60855cd 3494 pm_request_autosuspend(q->dev);
6c954667
LM
3495 } else {
3496 q->rpm_status = RPM_SUSPENDED;
3497 }
3498 spin_unlock_irq(q->queue_lock);
3499}
3500EXPORT_SYMBOL(blk_post_runtime_resume);
3501#endif
3502
1da177e4
LT
3503int __init blk_dev_init(void)
3504{
9eb55b03 3505 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
0762b23d 3506 FIELD_SIZEOF(struct request, cmd_flags));
9eb55b03 3507
89b90be2
TH
3508 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3509 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3510 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3511 if (!kblockd_workqueue)
3512 panic("Failed to create kblockd\n");
3513
3514 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3515 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3516
c2789bd4 3517 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3518 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3519
d38ecf93 3520 return 0;
1da177e4 3521}