]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block, cfq: restructure io_cq creation path for io_context interface cleanup
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
55782138
LZ
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/block.h>
1da177e4 35
8324aa91
JA
36#include "blk.h"
37
d07335e5 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 41
a73f730d
TH
42DEFINE_IDA(blk_queue_ida);
43
1da177e4
LT
44/*
45 * For the allocated request tables
46 */
5ece6c52 47static struct kmem_cache *request_cachep;
1da177e4
LT
48
49/*
50 * For queue allocation
51 */
6728cb0e 52struct kmem_cache *blk_requestq_cachep;
1da177e4 53
1da177e4
LT
54/*
55 * Controlling structure to kblockd
56 */
ff856bad 57static struct workqueue_struct *kblockd_workqueue;
1da177e4 58
26b8256e
JA
59static void drive_stat_acct(struct request *rq, int new_io)
60{
28f13702 61 struct hd_struct *part;
26b8256e 62 int rw = rq_data_dir(rq);
c9959059 63 int cpu;
26b8256e 64
c2553b58 65 if (!blk_do_io_stat(rq))
26b8256e
JA
66 return;
67
074a7aca 68 cpu = part_stat_lock();
c9959059 69
09e099d4
JM
70 if (!new_io) {
71 part = rq->part;
074a7aca 72 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
73 } else {
74 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 75 if (!hd_struct_try_get(part)) {
09e099d4
JM
76 /*
77 * The partition is already being removed,
78 * the request will be accounted on the disk only
79 *
80 * We take a reference on disk->part0 although that
81 * partition will never be deleted, so we can treat
82 * it as any other partition.
83 */
84 part = &rq->rq_disk->part0;
6c23a968 85 hd_struct_get(part);
09e099d4 86 }
074a7aca 87 part_round_stats(cpu, part);
316d315b 88 part_inc_in_flight(part, rw);
09e099d4 89 rq->part = part;
26b8256e 90 }
e71bf0d0 91
074a7aca 92 part_stat_unlock();
26b8256e
JA
93}
94
8324aa91 95void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
96{
97 int nr;
98
99 nr = q->nr_requests - (q->nr_requests / 8) + 1;
100 if (nr > q->nr_requests)
101 nr = q->nr_requests;
102 q->nr_congestion_on = nr;
103
104 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
105 if (nr < 1)
106 nr = 1;
107 q->nr_congestion_off = nr;
108}
109
1da177e4
LT
110/**
111 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
112 * @bdev: device
113 *
114 * Locates the passed device's request queue and returns the address of its
115 * backing_dev_info
116 *
117 * Will return NULL if the request queue cannot be located.
118 */
119struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
120{
121 struct backing_dev_info *ret = NULL;
165125e1 122 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
123
124 if (q)
125 ret = &q->backing_dev_info;
126 return ret;
127}
1da177e4
LT
128EXPORT_SYMBOL(blk_get_backing_dev_info);
129
2a4aa30c 130void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 131{
1afb20f3
FT
132 memset(rq, 0, sizeof(*rq));
133
1da177e4 134 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 135 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 136 rq->cpu = -1;
63a71386 137 rq->q = q;
a2dec7b3 138 rq->__sector = (sector_t) -1;
2e662b65
JA
139 INIT_HLIST_NODE(&rq->hash);
140 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 141 rq->cmd = rq->__cmd;
e2494e1b 142 rq->cmd_len = BLK_MAX_CDB;
63a71386 143 rq->tag = -1;
1da177e4 144 rq->ref_count = 1;
b243ddcb 145 rq->start_time = jiffies;
9195291e 146 set_start_time_ns(rq);
09e099d4 147 rq->part = NULL;
1da177e4 148}
2a4aa30c 149EXPORT_SYMBOL(blk_rq_init);
1da177e4 150
5bb23a68
N
151static void req_bio_endio(struct request *rq, struct bio *bio,
152 unsigned int nbytes, int error)
1da177e4 153{
143a87f4
TH
154 if (error)
155 clear_bit(BIO_UPTODATE, &bio->bi_flags);
156 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
157 error = -EIO;
797e7dbb 158
143a87f4
TH
159 if (unlikely(nbytes > bio->bi_size)) {
160 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
161 __func__, nbytes, bio->bi_size);
162 nbytes = bio->bi_size;
5bb23a68 163 }
797e7dbb 164
143a87f4
TH
165 if (unlikely(rq->cmd_flags & REQ_QUIET))
166 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 167
143a87f4
TH
168 bio->bi_size -= nbytes;
169 bio->bi_sector += (nbytes >> 9);
7ba1ba12 170
143a87f4
TH
171 if (bio_integrity(bio))
172 bio_integrity_advance(bio, nbytes);
7ba1ba12 173
143a87f4
TH
174 /* don't actually finish bio if it's part of flush sequence */
175 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
176 bio_endio(bio, error);
1da177e4 177}
1da177e4 178
1da177e4
LT
179void blk_dump_rq_flags(struct request *rq, char *msg)
180{
181 int bit;
182
6728cb0e 183 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
184 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
185 rq->cmd_flags);
1da177e4 186
83096ebf
TH
187 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
188 (unsigned long long)blk_rq_pos(rq),
189 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 190 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 191 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 192
33659ebb 193 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 194 printk(KERN_INFO " cdb: ");
d34c87e4 195 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
196 printk("%02x ", rq->cmd[bit]);
197 printk("\n");
198 }
199}
1da177e4
LT
200EXPORT_SYMBOL(blk_dump_rq_flags);
201
3cca6dc1 202static void blk_delay_work(struct work_struct *work)
1da177e4 203{
3cca6dc1 204 struct request_queue *q;
1da177e4 205
3cca6dc1
JA
206 q = container_of(work, struct request_queue, delay_work.work);
207 spin_lock_irq(q->queue_lock);
24ecfbe2 208 __blk_run_queue(q);
3cca6dc1 209 spin_unlock_irq(q->queue_lock);
1da177e4 210}
1da177e4
LT
211
212/**
3cca6dc1
JA
213 * blk_delay_queue - restart queueing after defined interval
214 * @q: The &struct request_queue in question
215 * @msecs: Delay in msecs
1da177e4
LT
216 *
217 * Description:
3cca6dc1
JA
218 * Sometimes queueing needs to be postponed for a little while, to allow
219 * resources to come back. This function will make sure that queueing is
220 * restarted around the specified time.
221 */
222void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 223{
4521cc4e
JA
224 queue_delayed_work(kblockd_workqueue, &q->delay_work,
225 msecs_to_jiffies(msecs));
2ad8b1ef 226}
3cca6dc1 227EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 228
1da177e4
LT
229/**
230 * blk_start_queue - restart a previously stopped queue
165125e1 231 * @q: The &struct request_queue in question
1da177e4
LT
232 *
233 * Description:
234 * blk_start_queue() will clear the stop flag on the queue, and call
235 * the request_fn for the queue if it was in a stopped state when
236 * entered. Also see blk_stop_queue(). Queue lock must be held.
237 **/
165125e1 238void blk_start_queue(struct request_queue *q)
1da177e4 239{
a038e253
PBG
240 WARN_ON(!irqs_disabled());
241
75ad23bc 242 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 243 __blk_run_queue(q);
1da177e4 244}
1da177e4
LT
245EXPORT_SYMBOL(blk_start_queue);
246
247/**
248 * blk_stop_queue - stop a queue
165125e1 249 * @q: The &struct request_queue in question
1da177e4
LT
250 *
251 * Description:
252 * The Linux block layer assumes that a block driver will consume all
253 * entries on the request queue when the request_fn strategy is called.
254 * Often this will not happen, because of hardware limitations (queue
255 * depth settings). If a device driver gets a 'queue full' response,
256 * or if it simply chooses not to queue more I/O at one point, it can
257 * call this function to prevent the request_fn from being called until
258 * the driver has signalled it's ready to go again. This happens by calling
259 * blk_start_queue() to restart queue operations. Queue lock must be held.
260 **/
165125e1 261void blk_stop_queue(struct request_queue *q)
1da177e4 262{
ad3d9d7e 263 __cancel_delayed_work(&q->delay_work);
75ad23bc 264 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
265}
266EXPORT_SYMBOL(blk_stop_queue);
267
268/**
269 * blk_sync_queue - cancel any pending callbacks on a queue
270 * @q: the queue
271 *
272 * Description:
273 * The block layer may perform asynchronous callback activity
274 * on a queue, such as calling the unplug function after a timeout.
275 * A block device may call blk_sync_queue to ensure that any
276 * such activity is cancelled, thus allowing it to release resources
59c51591 277 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
278 * that its ->make_request_fn will not re-add plugging prior to calling
279 * this function.
280 *
da527770
VG
281 * This function does not cancel any asynchronous activity arising
282 * out of elevator or throttling code. That would require elevaotor_exit()
283 * and blk_throtl_exit() to be called with queue lock initialized.
284 *
1da177e4
LT
285 */
286void blk_sync_queue(struct request_queue *q)
287{
70ed28b9 288 del_timer_sync(&q->timeout);
3cca6dc1 289 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
290}
291EXPORT_SYMBOL(blk_sync_queue);
292
293/**
80a4b58e 294 * __blk_run_queue - run a single device queue
1da177e4 295 * @q: The queue to run
80a4b58e
JA
296 *
297 * Description:
298 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 299 * held and interrupts disabled.
1da177e4 300 */
24ecfbe2 301void __blk_run_queue(struct request_queue *q)
1da177e4 302{
a538cd03
TH
303 if (unlikely(blk_queue_stopped(q)))
304 return;
305
c21e6beb 306 q->request_fn(q);
75ad23bc
NP
307}
308EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 309
24ecfbe2
CH
310/**
311 * blk_run_queue_async - run a single device queue in workqueue context
312 * @q: The queue to run
313 *
314 * Description:
315 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
316 * of us.
317 */
318void blk_run_queue_async(struct request_queue *q)
319{
3ec717b7
SL
320 if (likely(!blk_queue_stopped(q))) {
321 __cancel_delayed_work(&q->delay_work);
24ecfbe2 322 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 323 }
24ecfbe2 324}
c21e6beb 325EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 326
75ad23bc
NP
327/**
328 * blk_run_queue - run a single device queue
329 * @q: The queue to run
80a4b58e
JA
330 *
331 * Description:
332 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 333 * May be used to restart queueing when a request has completed.
75ad23bc
NP
334 */
335void blk_run_queue(struct request_queue *q)
336{
337 unsigned long flags;
338
339 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 340 __blk_run_queue(q);
1da177e4
LT
341 spin_unlock_irqrestore(q->queue_lock, flags);
342}
343EXPORT_SYMBOL(blk_run_queue);
344
165125e1 345void blk_put_queue(struct request_queue *q)
483f4afc
AV
346{
347 kobject_put(&q->kobj);
348}
d86e0e83 349EXPORT_SYMBOL(blk_put_queue);
483f4afc 350
e3c78ca5
TH
351/**
352 * blk_drain_queue - drain requests from request_queue
353 * @q: queue to drain
c9a929dd 354 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 355 *
c9a929dd
TH
356 * Drain requests from @q. If @drain_all is set, all requests are drained.
357 * If not, only ELVPRIV requests are drained. The caller is responsible
358 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 359 */
c9a929dd 360void blk_drain_queue(struct request_queue *q, bool drain_all)
e3c78ca5
TH
361{
362 while (true) {
481a7d64
TH
363 bool drain = false;
364 int i;
e3c78ca5
TH
365
366 spin_lock_irq(q->queue_lock);
367
368 elv_drain_elevator(q);
c9a929dd
TH
369 if (drain_all)
370 blk_throtl_drain(q);
e3c78ca5
TH
371
372 __blk_run_queue(q);
c9a929dd 373
481a7d64
TH
374 drain |= q->rq.elvpriv;
375
376 /*
377 * Unfortunately, requests are queued at and tracked from
378 * multiple places and there's no single counter which can
379 * be drained. Check all the queues and counters.
380 */
381 if (drain_all) {
382 drain |= !list_empty(&q->queue_head);
383 for (i = 0; i < 2; i++) {
384 drain |= q->rq.count[i];
385 drain |= q->in_flight[i];
386 drain |= !list_empty(&q->flush_queue[i]);
387 }
388 }
e3c78ca5
TH
389
390 spin_unlock_irq(q->queue_lock);
391
481a7d64 392 if (!drain)
e3c78ca5
TH
393 break;
394 msleep(10);
395 }
396}
397
c9a929dd
TH
398/**
399 * blk_cleanup_queue - shutdown a request queue
400 * @q: request queue to shutdown
401 *
402 * Mark @q DEAD, drain all pending requests, destroy and put it. All
403 * future requests will be failed immediately with -ENODEV.
c94a96ac 404 */
6728cb0e 405void blk_cleanup_queue(struct request_queue *q)
483f4afc 406{
c9a929dd 407 spinlock_t *lock = q->queue_lock;
e3335de9 408
c9a929dd 409 /* mark @q DEAD, no new request or merges will be allowed afterwards */
483f4afc 410 mutex_lock(&q->sysfs_lock);
75ad23bc 411 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
c9a929dd
TH
412
413 spin_lock_irq(lock);
414 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
415 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
416 queue_flag_set(QUEUE_FLAG_DEAD, q);
483f4afc 417
777eb1bf
HR
418 if (q->queue_lock != &q->__queue_lock)
419 q->queue_lock = &q->__queue_lock;
da527770 420
c9a929dd
TH
421 spin_unlock_irq(lock);
422 mutex_unlock(&q->sysfs_lock);
423
6dd9ad7d
TH
424 /*
425 * Drain all requests queued before DEAD marking. The caller might
426 * be trying to tear down @q before its elevator is initialized, in
427 * which case we don't want to call into draining.
428 */
429 if (q->elevator)
430 blk_drain_queue(q, true);
c9a929dd
TH
431
432 /* @q won't process any more request, flush async actions */
433 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
434 blk_sync_queue(q);
435
436 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
437 blk_put_queue(q);
438}
1da177e4
LT
439EXPORT_SYMBOL(blk_cleanup_queue);
440
165125e1 441static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
442{
443 struct request_list *rl = &q->rq;
444
1abec4fd
MS
445 if (unlikely(rl->rq_pool))
446 return 0;
447
1faa16d2
JA
448 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
449 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 450 rl->elvpriv = 0;
1faa16d2
JA
451 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
452 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 453
1946089a
CL
454 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
455 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
456
457 if (!rl->rq_pool)
458 return -ENOMEM;
459
460 return 0;
461}
462
165125e1 463struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 464{
1946089a
CL
465 return blk_alloc_queue_node(gfp_mask, -1);
466}
467EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 468
165125e1 469struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 470{
165125e1 471 struct request_queue *q;
e0bf68dd 472 int err;
1946089a 473
8324aa91 474 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 475 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
476 if (!q)
477 return NULL;
478
a73f730d
TH
479 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
480 if (q->id < 0)
481 goto fail_q;
482
0989a025
JA
483 q->backing_dev_info.ra_pages =
484 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
485 q->backing_dev_info.state = 0;
486 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 487 q->backing_dev_info.name = "block";
0989a025 488
e0bf68dd 489 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
490 if (err)
491 goto fail_id;
e0bf68dd 492
a73f730d
TH
493 if (blk_throtl_init(q))
494 goto fail_id;
e43473b7 495
31373d09
MG
496 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
497 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb
JA
498 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
499 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 500 INIT_LIST_HEAD(&q->icq_list);
ae1b1539
TH
501 INIT_LIST_HEAD(&q->flush_queue[0]);
502 INIT_LIST_HEAD(&q->flush_queue[1]);
503 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 504 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 505
8324aa91 506 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 507
483f4afc 508 mutex_init(&q->sysfs_lock);
e7e72bf6 509 spin_lock_init(&q->__queue_lock);
483f4afc 510
c94a96ac
VG
511 /*
512 * By default initialize queue_lock to internal lock and driver can
513 * override it later if need be.
514 */
515 q->queue_lock = &q->__queue_lock;
516
1da177e4 517 return q;
a73f730d
TH
518
519fail_id:
520 ida_simple_remove(&blk_queue_ida, q->id);
521fail_q:
522 kmem_cache_free(blk_requestq_cachep, q);
523 return NULL;
1da177e4 524}
1946089a 525EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
526
527/**
528 * blk_init_queue - prepare a request queue for use with a block device
529 * @rfn: The function to be called to process requests that have been
530 * placed on the queue.
531 * @lock: Request queue spin lock
532 *
533 * Description:
534 * If a block device wishes to use the standard request handling procedures,
535 * which sorts requests and coalesces adjacent requests, then it must
536 * call blk_init_queue(). The function @rfn will be called when there
537 * are requests on the queue that need to be processed. If the device
538 * supports plugging, then @rfn may not be called immediately when requests
539 * are available on the queue, but may be called at some time later instead.
540 * Plugged queues are generally unplugged when a buffer belonging to one
541 * of the requests on the queue is needed, or due to memory pressure.
542 *
543 * @rfn is not required, or even expected, to remove all requests off the
544 * queue, but only as many as it can handle at a time. If it does leave
545 * requests on the queue, it is responsible for arranging that the requests
546 * get dealt with eventually.
547 *
548 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
549 * request queue; this lock will be taken also from interrupt context, so irq
550 * disabling is needed for it.
1da177e4 551 *
710027a4 552 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
553 * it didn't succeed.
554 *
555 * Note:
556 * blk_init_queue() must be paired with a blk_cleanup_queue() call
557 * when the block device is deactivated (such as at module unload).
558 **/
1946089a 559
165125e1 560struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 561{
1946089a
CL
562 return blk_init_queue_node(rfn, lock, -1);
563}
564EXPORT_SYMBOL(blk_init_queue);
565
165125e1 566struct request_queue *
1946089a
CL
567blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
568{
c86d1b8a 569 struct request_queue *uninit_q, *q;
1da177e4 570
c86d1b8a
MS
571 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
572 if (!uninit_q)
573 return NULL;
574
575 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
576 if (!q)
577 blk_cleanup_queue(uninit_q);
578
579 return q;
01effb0d
MS
580}
581EXPORT_SYMBOL(blk_init_queue_node);
582
583struct request_queue *
584blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
585 spinlock_t *lock)
586{
587 return blk_init_allocated_queue_node(q, rfn, lock, -1);
588}
589EXPORT_SYMBOL(blk_init_allocated_queue);
590
591struct request_queue *
592blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
593 spinlock_t *lock, int node_id)
594{
1da177e4
LT
595 if (!q)
596 return NULL;
597
1946089a 598 q->node = node_id;
c86d1b8a 599 if (blk_init_free_list(q))
8669aafd 600 return NULL;
1da177e4
LT
601
602 q->request_fn = rfn;
1da177e4 603 q->prep_rq_fn = NULL;
28018c24 604 q->unprep_rq_fn = NULL;
bc58ba94 605 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
606
607 /* Override internal queue lock with supplied lock pointer */
608 if (lock)
609 q->queue_lock = lock;
1da177e4 610
f3b144aa
JA
611 /*
612 * This also sets hw/phys segments, boundary and size
613 */
c20e8de2 614 blk_queue_make_request(q, blk_queue_bio);
1da177e4 615
44ec9542
AS
616 q->sg_reserved_size = INT_MAX;
617
1da177e4
LT
618 /*
619 * all done
620 */
621 if (!elevator_init(q, NULL)) {
622 blk_queue_congestion_threshold(q);
623 return q;
624 }
625
1da177e4
LT
626 return NULL;
627}
01effb0d 628EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 629
09ac46c4 630bool blk_get_queue(struct request_queue *q)
1da177e4 631{
34f6055c 632 if (likely(!blk_queue_dead(q))) {
09ac46c4
TH
633 __blk_get_queue(q);
634 return true;
1da177e4
LT
635 }
636
09ac46c4 637 return false;
1da177e4 638}
d86e0e83 639EXPORT_SYMBOL(blk_get_queue);
1da177e4 640
165125e1 641static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 642{
4aff5e23 643 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 644 elv_put_request(q, rq);
1da177e4
LT
645 mempool_free(rq, q->rq.rq_pool);
646}
647
1ea25ecb 648static struct request *
75eb6c37 649blk_alloc_request(struct request_queue *q, unsigned int flags, gfp_t gfp_mask)
1da177e4
LT
650{
651 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
652
653 if (!rq)
654 return NULL;
655
2a4aa30c 656 blk_rq_init(q, rq);
1afb20f3 657
42dad764 658 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 659
75eb6c37
TH
660 if ((flags & REQ_ELVPRIV) &&
661 unlikely(elv_set_request(q, rq, gfp_mask))) {
662 mempool_free(rq, q->rq.rq_pool);
663 return NULL;
cb98fc8b 664 }
1da177e4 665
cb98fc8b 666 return rq;
1da177e4
LT
667}
668
669/*
670 * ioc_batching returns true if the ioc is a valid batching request and
671 * should be given priority access to a request.
672 */
165125e1 673static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
674{
675 if (!ioc)
676 return 0;
677
678 /*
679 * Make sure the process is able to allocate at least 1 request
680 * even if the batch times out, otherwise we could theoretically
681 * lose wakeups.
682 */
683 return ioc->nr_batch_requests == q->nr_batching ||
684 (ioc->nr_batch_requests > 0
685 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
686}
687
688/*
689 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
690 * will cause the process to be a "batcher" on all queues in the system. This
691 * is the behaviour we want though - once it gets a wakeup it should be given
692 * a nice run.
693 */
165125e1 694static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
695{
696 if (!ioc || ioc_batching(q, ioc))
697 return;
698
699 ioc->nr_batch_requests = q->nr_batching;
700 ioc->last_waited = jiffies;
701}
702
1faa16d2 703static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
704{
705 struct request_list *rl = &q->rq;
706
1faa16d2
JA
707 if (rl->count[sync] < queue_congestion_off_threshold(q))
708 blk_clear_queue_congested(q, sync);
1da177e4 709
1faa16d2
JA
710 if (rl->count[sync] + 1 <= q->nr_requests) {
711 if (waitqueue_active(&rl->wait[sync]))
712 wake_up(&rl->wait[sync]);
1da177e4 713
1faa16d2 714 blk_clear_queue_full(q, sync);
1da177e4
LT
715 }
716}
717
718/*
719 * A request has just been released. Account for it, update the full and
720 * congestion status, wake up any waiters. Called under q->queue_lock.
721 */
75eb6c37 722static void freed_request(struct request_queue *q, unsigned int flags)
1da177e4
LT
723{
724 struct request_list *rl = &q->rq;
75eb6c37 725 int sync = rw_is_sync(flags);
1da177e4 726
1faa16d2 727 rl->count[sync]--;
75eb6c37 728 if (flags & REQ_ELVPRIV)
cb98fc8b 729 rl->elvpriv--;
1da177e4 730
1faa16d2 731 __freed_request(q, sync);
1da177e4 732
1faa16d2
JA
733 if (unlikely(rl->starved[sync ^ 1]))
734 __freed_request(q, sync ^ 1);
1da177e4
LT
735}
736
9d5a4e94
MS
737/*
738 * Determine if elevator data should be initialized when allocating the
739 * request associated with @bio.
740 */
741static bool blk_rq_should_init_elevator(struct bio *bio)
742{
743 if (!bio)
744 return true;
745
746 /*
747 * Flush requests do not use the elevator so skip initialization.
748 * This allows a request to share the flush and elevator data.
749 */
750 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
751 return false;
752
753 return true;
754}
755
da8303c6
TH
756/**
757 * get_request - get a free request
758 * @q: request_queue to allocate request from
759 * @rw_flags: RW and SYNC flags
760 * @bio: bio to allocate request for (can be %NULL)
761 * @gfp_mask: allocation mask
762 *
763 * Get a free request from @q. This function may fail under memory
764 * pressure or if @q is dead.
765 *
766 * Must be callled with @q->queue_lock held and,
767 * Returns %NULL on failure, with @q->queue_lock held.
768 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 769 */
165125e1 770static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 771 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
772{
773 struct request *rq = NULL;
774 struct request_list *rl = &q->rq;
f2dbd76a 775 struct io_context *ioc;
1faa16d2 776 const bool is_sync = rw_is_sync(rw_flags) != 0;
f2dbd76a 777 bool retried = false;
75eb6c37 778 int may_queue;
f2dbd76a
TH
779retry:
780 ioc = current->io_context;
88ee5ef1 781
34f6055c 782 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
783 return NULL;
784
7749a8d4 785 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
786 if (may_queue == ELV_MQUEUE_NO)
787 goto rq_starved;
788
1faa16d2
JA
789 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
790 if (rl->count[is_sync]+1 >= q->nr_requests) {
f2dbd76a
TH
791 /*
792 * We want ioc to record batching state. If it's
793 * not already there, creating a new one requires
794 * dropping queue_lock, which in turn requires
795 * retesting conditions to avoid queue hang.
796 */
797 if (!ioc && !retried) {
798 spin_unlock_irq(q->queue_lock);
799 create_io_context(current, gfp_mask, q->node);
800 spin_lock_irq(q->queue_lock);
801 retried = true;
802 goto retry;
803 }
804
88ee5ef1
JA
805 /*
806 * The queue will fill after this allocation, so set
807 * it as full, and mark this process as "batching".
808 * This process will be allowed to complete a batch of
809 * requests, others will be blocked.
810 */
1faa16d2 811 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 812 ioc_set_batching(q, ioc);
1faa16d2 813 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
814 } else {
815 if (may_queue != ELV_MQUEUE_MUST
816 && !ioc_batching(q, ioc)) {
817 /*
818 * The queue is full and the allocating
819 * process is not a "batcher", and not
820 * exempted by the IO scheduler
821 */
822 goto out;
823 }
824 }
1da177e4 825 }
1faa16d2 826 blk_set_queue_congested(q, is_sync);
1da177e4
LT
827 }
828
082cf69e
JA
829 /*
830 * Only allow batching queuers to allocate up to 50% over the defined
831 * limit of requests, otherwise we could have thousands of requests
832 * allocated with any setting of ->nr_requests
833 */
1faa16d2 834 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 835 goto out;
fd782a4a 836
1faa16d2
JA
837 rl->count[is_sync]++;
838 rl->starved[is_sync] = 0;
cb98fc8b 839
75eb6c37
TH
840 if (blk_rq_should_init_elevator(bio) &&
841 !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
842 rw_flags |= REQ_ELVPRIV;
843 rl->elvpriv++;
9d5a4e94 844 }
cb98fc8b 845
f253b86b
JA
846 if (blk_queue_io_stat(q))
847 rw_flags |= REQ_IO_STAT;
1da177e4
LT
848 spin_unlock_irq(q->queue_lock);
849
75eb6c37 850 rq = blk_alloc_request(q, rw_flags, gfp_mask);
88ee5ef1 851 if (unlikely(!rq)) {
1da177e4
LT
852 /*
853 * Allocation failed presumably due to memory. Undo anything
854 * we might have messed up.
855 *
856 * Allocating task should really be put onto the front of the
857 * wait queue, but this is pretty rare.
858 */
859 spin_lock_irq(q->queue_lock);
75eb6c37 860 freed_request(q, rw_flags);
1da177e4
LT
861
862 /*
863 * in the very unlikely event that allocation failed and no
864 * requests for this direction was pending, mark us starved
865 * so that freeing of a request in the other direction will
866 * notice us. another possible fix would be to split the
867 * rq mempool into READ and WRITE
868 */
869rq_starved:
1faa16d2
JA
870 if (unlikely(rl->count[is_sync] == 0))
871 rl->starved[is_sync] = 1;
1da177e4 872
1da177e4
LT
873 goto out;
874 }
875
88ee5ef1
JA
876 /*
877 * ioc may be NULL here, and ioc_batching will be false. That's
878 * OK, if the queue is under the request limit then requests need
879 * not count toward the nr_batch_requests limit. There will always
880 * be some limit enforced by BLK_BATCH_TIME.
881 */
1da177e4
LT
882 if (ioc_batching(q, ioc))
883 ioc->nr_batch_requests--;
6728cb0e 884
1faa16d2 885 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 886out:
1da177e4
LT
887 return rq;
888}
889
da8303c6
TH
890/**
891 * get_request_wait - get a free request with retry
892 * @q: request_queue to allocate request from
893 * @rw_flags: RW and SYNC flags
894 * @bio: bio to allocate request for (can be %NULL)
895 *
896 * Get a free request from @q. This function keeps retrying under memory
897 * pressure and fails iff @q is dead.
d6344532 898 *
da8303c6
TH
899 * Must be callled with @q->queue_lock held and,
900 * Returns %NULL on failure, with @q->queue_lock held.
901 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 902 */
165125e1 903static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 904 struct bio *bio)
1da177e4 905{
1faa16d2 906 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
907 struct request *rq;
908
7749a8d4 909 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
910 while (!rq) {
911 DEFINE_WAIT(wait);
1da177e4
LT
912 struct request_list *rl = &q->rq;
913
34f6055c 914 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
915 return NULL;
916
1faa16d2 917 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
918 TASK_UNINTERRUPTIBLE);
919
1faa16d2 920 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 921
05caf8db
ZY
922 spin_unlock_irq(q->queue_lock);
923 io_schedule();
1da177e4 924
05caf8db
ZY
925 /*
926 * After sleeping, we become a "batching" process and
927 * will be able to allocate at least one request, and
928 * up to a big batch of them for a small period time.
929 * See ioc_batching, ioc_set_batching
930 */
f2dbd76a
TH
931 create_io_context(current, GFP_NOIO, q->node);
932 ioc_set_batching(q, current->io_context);
d6344532 933
05caf8db 934 spin_lock_irq(q->queue_lock);
1faa16d2 935 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
936
937 rq = get_request(q, rw_flags, bio, GFP_NOIO);
938 };
1da177e4
LT
939
940 return rq;
941}
942
165125e1 943struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
944{
945 struct request *rq;
946
947 BUG_ON(rw != READ && rw != WRITE);
948
d6344532 949 spin_lock_irq(q->queue_lock);
da8303c6 950 if (gfp_mask & __GFP_WAIT)
22e2c507 951 rq = get_request_wait(q, rw, NULL);
da8303c6 952 else
22e2c507 953 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
954 if (!rq)
955 spin_unlock_irq(q->queue_lock);
d6344532 956 /* q->queue_lock is unlocked at this point */
1da177e4
LT
957
958 return rq;
959}
1da177e4
LT
960EXPORT_SYMBOL(blk_get_request);
961
dc72ef4a 962/**
79eb63e9 963 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 964 * @q: target request queue
79eb63e9
BH
965 * @bio: The bio describing the memory mappings that will be submitted for IO.
966 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 967 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 968 *
79eb63e9
BH
969 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
970 * type commands. Where the struct request needs to be farther initialized by
971 * the caller. It is passed a &struct bio, which describes the memory info of
972 * the I/O transfer.
dc72ef4a 973 *
79eb63e9
BH
974 * The caller of blk_make_request must make sure that bi_io_vec
975 * are set to describe the memory buffers. That bio_data_dir() will return
976 * the needed direction of the request. (And all bio's in the passed bio-chain
977 * are properly set accordingly)
978 *
979 * If called under none-sleepable conditions, mapped bio buffers must not
980 * need bouncing, by calling the appropriate masked or flagged allocator,
981 * suitable for the target device. Otherwise the call to blk_queue_bounce will
982 * BUG.
53674ac5
JA
983 *
984 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
985 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
986 * anything but the first bio in the chain. Otherwise you risk waiting for IO
987 * completion of a bio that hasn't been submitted yet, thus resulting in a
988 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
989 * of bio_alloc(), as that avoids the mempool deadlock.
990 * If possible a big IO should be split into smaller parts when allocation
991 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 992 */
79eb63e9
BH
993struct request *blk_make_request(struct request_queue *q, struct bio *bio,
994 gfp_t gfp_mask)
dc72ef4a 995{
79eb63e9
BH
996 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
997
998 if (unlikely(!rq))
999 return ERR_PTR(-ENOMEM);
1000
1001 for_each_bio(bio) {
1002 struct bio *bounce_bio = bio;
1003 int ret;
1004
1005 blk_queue_bounce(q, &bounce_bio);
1006 ret = blk_rq_append_bio(q, rq, bounce_bio);
1007 if (unlikely(ret)) {
1008 blk_put_request(rq);
1009 return ERR_PTR(ret);
1010 }
1011 }
1012
1013 return rq;
dc72ef4a 1014}
79eb63e9 1015EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1016
1da177e4
LT
1017/**
1018 * blk_requeue_request - put a request back on queue
1019 * @q: request queue where request should be inserted
1020 * @rq: request to be inserted
1021 *
1022 * Description:
1023 * Drivers often keep queueing requests until the hardware cannot accept
1024 * more, when that condition happens we need to put the request back
1025 * on the queue. Must be called with queue lock held.
1026 */
165125e1 1027void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1028{
242f9dcb
JA
1029 blk_delete_timer(rq);
1030 blk_clear_rq_complete(rq);
5f3ea37c 1031 trace_block_rq_requeue(q, rq);
2056a782 1032
1da177e4
LT
1033 if (blk_rq_tagged(rq))
1034 blk_queue_end_tag(q, rq);
1035
ba396a6c
JB
1036 BUG_ON(blk_queued_rq(rq));
1037
1da177e4
LT
1038 elv_requeue_request(q, rq);
1039}
1da177e4
LT
1040EXPORT_SYMBOL(blk_requeue_request);
1041
73c10101
JA
1042static void add_acct_request(struct request_queue *q, struct request *rq,
1043 int where)
1044{
1045 drive_stat_acct(rq, 1);
7eaceacc 1046 __elv_add_request(q, rq, where);
73c10101
JA
1047}
1048
074a7aca
TH
1049static void part_round_stats_single(int cpu, struct hd_struct *part,
1050 unsigned long now)
1051{
1052 if (now == part->stamp)
1053 return;
1054
316d315b 1055 if (part_in_flight(part)) {
074a7aca 1056 __part_stat_add(cpu, part, time_in_queue,
316d315b 1057 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1058 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1059 }
1060 part->stamp = now;
1061}
1062
1063/**
496aa8a9
RD
1064 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1065 * @cpu: cpu number for stats access
1066 * @part: target partition
1da177e4
LT
1067 *
1068 * The average IO queue length and utilisation statistics are maintained
1069 * by observing the current state of the queue length and the amount of
1070 * time it has been in this state for.
1071 *
1072 * Normally, that accounting is done on IO completion, but that can result
1073 * in more than a second's worth of IO being accounted for within any one
1074 * second, leading to >100% utilisation. To deal with that, we call this
1075 * function to do a round-off before returning the results when reading
1076 * /proc/diskstats. This accounts immediately for all queue usage up to
1077 * the current jiffies and restarts the counters again.
1078 */
c9959059 1079void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1080{
1081 unsigned long now = jiffies;
1082
074a7aca
TH
1083 if (part->partno)
1084 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1085 part_round_stats_single(cpu, part, now);
6f2576af 1086}
074a7aca 1087EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1088
1da177e4
LT
1089/*
1090 * queue lock must be held
1091 */
165125e1 1092void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1093{
1da177e4
LT
1094 if (unlikely(!q))
1095 return;
1096 if (unlikely(--req->ref_count))
1097 return;
1098
8922e16c
TH
1099 elv_completed_request(q, req);
1100
1cd96c24
BH
1101 /* this is a bio leak */
1102 WARN_ON(req->bio != NULL);
1103
1da177e4
LT
1104 /*
1105 * Request may not have originated from ll_rw_blk. if not,
1106 * it didn't come out of our reserved rq pools
1107 */
49171e5c 1108 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1109 unsigned int flags = req->cmd_flags;
1da177e4 1110
1da177e4 1111 BUG_ON(!list_empty(&req->queuelist));
9817064b 1112 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1113
1114 blk_free_request(q, req);
75eb6c37 1115 freed_request(q, flags);
1da177e4
LT
1116 }
1117}
6e39b69e
MC
1118EXPORT_SYMBOL_GPL(__blk_put_request);
1119
1da177e4
LT
1120void blk_put_request(struct request *req)
1121{
8922e16c 1122 unsigned long flags;
165125e1 1123 struct request_queue *q = req->q;
8922e16c 1124
52a93ba8
FT
1125 spin_lock_irqsave(q->queue_lock, flags);
1126 __blk_put_request(q, req);
1127 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1128}
1da177e4
LT
1129EXPORT_SYMBOL(blk_put_request);
1130
66ac0280
CH
1131/**
1132 * blk_add_request_payload - add a payload to a request
1133 * @rq: request to update
1134 * @page: page backing the payload
1135 * @len: length of the payload.
1136 *
1137 * This allows to later add a payload to an already submitted request by
1138 * a block driver. The driver needs to take care of freeing the payload
1139 * itself.
1140 *
1141 * Note that this is a quite horrible hack and nothing but handling of
1142 * discard requests should ever use it.
1143 */
1144void blk_add_request_payload(struct request *rq, struct page *page,
1145 unsigned int len)
1146{
1147 struct bio *bio = rq->bio;
1148
1149 bio->bi_io_vec->bv_page = page;
1150 bio->bi_io_vec->bv_offset = 0;
1151 bio->bi_io_vec->bv_len = len;
1152
1153 bio->bi_size = len;
1154 bio->bi_vcnt = 1;
1155 bio->bi_phys_segments = 1;
1156
1157 rq->__data_len = rq->resid_len = len;
1158 rq->nr_phys_segments = 1;
1159 rq->buffer = bio_data(bio);
1160}
1161EXPORT_SYMBOL_GPL(blk_add_request_payload);
1162
73c10101
JA
1163static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1164 struct bio *bio)
1165{
1166 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1167
73c10101
JA
1168 if (!ll_back_merge_fn(q, req, bio))
1169 return false;
1170
1171 trace_block_bio_backmerge(q, bio);
1172
1173 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1174 blk_rq_set_mixed_merge(req);
1175
1176 req->biotail->bi_next = bio;
1177 req->biotail = bio;
1178 req->__data_len += bio->bi_size;
1179 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1180
1181 drive_stat_acct(req, 0);
95cf3dd9 1182 elv_bio_merged(q, req, bio);
73c10101
JA
1183 return true;
1184}
1185
1186static bool bio_attempt_front_merge(struct request_queue *q,
1187 struct request *req, struct bio *bio)
1188{
1189 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1190
73c10101
JA
1191 if (!ll_front_merge_fn(q, req, bio))
1192 return false;
1193
1194 trace_block_bio_frontmerge(q, bio);
1195
1196 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1197 blk_rq_set_mixed_merge(req);
1198
73c10101
JA
1199 bio->bi_next = req->bio;
1200 req->bio = bio;
1201
1202 /*
1203 * may not be valid. if the low level driver said
1204 * it didn't need a bounce buffer then it better
1205 * not touch req->buffer either...
1206 */
1207 req->buffer = bio_data(bio);
1208 req->__sector = bio->bi_sector;
1209 req->__data_len += bio->bi_size;
1210 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1211
1212 drive_stat_acct(req, 0);
95cf3dd9 1213 elv_bio_merged(q, req, bio);
73c10101
JA
1214 return true;
1215}
1216
bd87b589
TH
1217/**
1218 * attempt_plug_merge - try to merge with %current's plugged list
1219 * @q: request_queue new bio is being queued at
1220 * @bio: new bio being queued
1221 * @request_count: out parameter for number of traversed plugged requests
1222 *
1223 * Determine whether @bio being queued on @q can be merged with a request
1224 * on %current's plugged list. Returns %true if merge was successful,
1225 * otherwise %false.
1226 *
1227 * This function is called without @q->queue_lock; however, elevator is
1228 * accessed iff there already are requests on the plugged list which in
1229 * turn guarantees validity of the elevator.
1230 *
1231 * Note that, on successful merge, elevator operation
1232 * elevator_bio_merged_fn() will be called without queue lock. Elevator
1233 * must be ready for this.
73c10101 1234 */
bd87b589
TH
1235static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1236 unsigned int *request_count)
73c10101
JA
1237{
1238 struct blk_plug *plug;
1239 struct request *rq;
1240 bool ret = false;
1241
bd87b589 1242 plug = current->plug;
73c10101
JA
1243 if (!plug)
1244 goto out;
56ebdaf2 1245 *request_count = 0;
73c10101
JA
1246
1247 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1248 int el_ret;
1249
56ebdaf2
SL
1250 (*request_count)++;
1251
73c10101
JA
1252 if (rq->q != q)
1253 continue;
1254
1255 el_ret = elv_try_merge(rq, bio);
1256 if (el_ret == ELEVATOR_BACK_MERGE) {
1257 ret = bio_attempt_back_merge(q, rq, bio);
1258 if (ret)
1259 break;
1260 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1261 ret = bio_attempt_front_merge(q, rq, bio);
1262 if (ret)
1263 break;
1264 }
1265 }
1266out:
1267 return ret;
1268}
1269
86db1e29 1270void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1271{
4aff5e23 1272 req->cmd_type = REQ_TYPE_FS;
52d9e675 1273
7b6d91da
CH
1274 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1275 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1276 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1277
52d9e675 1278 req->errors = 0;
a2dec7b3 1279 req->__sector = bio->bi_sector;
52d9e675 1280 req->ioprio = bio_prio(bio);
bc1c56fd 1281 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1282}
1283
5a7bbad2 1284void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1285{
5e00d1b5 1286 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1287 struct blk_plug *plug;
1288 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1289 struct request *req;
56ebdaf2 1290 unsigned int request_count = 0;
1da177e4 1291
1da177e4
LT
1292 /*
1293 * low level driver can indicate that it wants pages above a
1294 * certain limit bounced to low memory (ie for highmem, or even
1295 * ISA dma in theory)
1296 */
1297 blk_queue_bounce(q, &bio);
1298
4fed947c 1299 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1300 spin_lock_irq(q->queue_lock);
ae1b1539 1301 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1302 goto get_rq;
1303 }
1304
73c10101
JA
1305 /*
1306 * Check if we can merge with the plugged list before grabbing
1307 * any locks.
1308 */
bd87b589 1309 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1310 return;
1da177e4 1311
73c10101 1312 spin_lock_irq(q->queue_lock);
2056a782 1313
73c10101
JA
1314 el_ret = elv_merge(q, &req, bio);
1315 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101
JA
1316 if (bio_attempt_back_merge(q, req, bio)) {
1317 if (!attempt_back_merge(q, req))
1318 elv_merged_request(q, req, el_ret);
1319 goto out_unlock;
1320 }
1321 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101
JA
1322 if (bio_attempt_front_merge(q, req, bio)) {
1323 if (!attempt_front_merge(q, req))
1324 elv_merged_request(q, req, el_ret);
1325 goto out_unlock;
80a761fd 1326 }
1da177e4
LT
1327 }
1328
450991bc 1329get_rq:
7749a8d4
JA
1330 /*
1331 * This sync check and mask will be re-done in init_request_from_bio(),
1332 * but we need to set it earlier to expose the sync flag to the
1333 * rq allocator and io schedulers.
1334 */
1335 rw_flags = bio_data_dir(bio);
1336 if (sync)
7b6d91da 1337 rw_flags |= REQ_SYNC;
7749a8d4 1338
1da177e4 1339 /*
450991bc 1340 * Grab a free request. This is might sleep but can not fail.
d6344532 1341 * Returns with the queue unlocked.
450991bc 1342 */
7749a8d4 1343 req = get_request_wait(q, rw_flags, bio);
da8303c6
TH
1344 if (unlikely(!req)) {
1345 bio_endio(bio, -ENODEV); /* @q is dead */
1346 goto out_unlock;
1347 }
d6344532 1348
450991bc
NP
1349 /*
1350 * After dropping the lock and possibly sleeping here, our request
1351 * may now be mergeable after it had proven unmergeable (above).
1352 * We don't worry about that case for efficiency. It won't happen
1353 * often, and the elevators are able to handle it.
1da177e4 1354 */
52d9e675 1355 init_request_from_bio(req, bio);
1da177e4 1356
9562ad9a 1357 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1358 req->cpu = raw_smp_processor_id();
73c10101
JA
1359
1360 plug = current->plug;
721a9602 1361 if (plug) {
dc6d36c9
JA
1362 /*
1363 * If this is the first request added after a plug, fire
1364 * of a plug trace. If others have been added before, check
1365 * if we have multiple devices in this plug. If so, make a
1366 * note to sort the list before dispatch.
1367 */
1368 if (list_empty(&plug->list))
1369 trace_block_plug(q);
3540d5e8
SL
1370 else {
1371 if (!plug->should_sort) {
1372 struct request *__rq;
73c10101 1373
3540d5e8
SL
1374 __rq = list_entry_rq(plug->list.prev);
1375 if (__rq->q != q)
1376 plug->should_sort = 1;
1377 }
019ceb7d 1378 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1379 blk_flush_plug_list(plug, false);
019ceb7d
SL
1380 trace_block_plug(q);
1381 }
73c10101 1382 }
73c10101
JA
1383 list_add_tail(&req->queuelist, &plug->list);
1384 drive_stat_acct(req, 1);
1385 } else {
1386 spin_lock_irq(q->queue_lock);
1387 add_acct_request(q, req, where);
24ecfbe2 1388 __blk_run_queue(q);
73c10101
JA
1389out_unlock:
1390 spin_unlock_irq(q->queue_lock);
1391 }
1da177e4 1392}
c20e8de2 1393EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1394
1395/*
1396 * If bio->bi_dev is a partition, remap the location
1397 */
1398static inline void blk_partition_remap(struct bio *bio)
1399{
1400 struct block_device *bdev = bio->bi_bdev;
1401
bf2de6f5 1402 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1403 struct hd_struct *p = bdev->bd_part;
1404
1da177e4
LT
1405 bio->bi_sector += p->start_sect;
1406 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1407
d07335e5
MS
1408 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1409 bdev->bd_dev,
1410 bio->bi_sector - p->start_sect);
1da177e4
LT
1411 }
1412}
1413
1da177e4
LT
1414static void handle_bad_sector(struct bio *bio)
1415{
1416 char b[BDEVNAME_SIZE];
1417
1418 printk(KERN_INFO "attempt to access beyond end of device\n");
1419 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1420 bdevname(bio->bi_bdev, b),
1421 bio->bi_rw,
1422 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1423 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1424
1425 set_bit(BIO_EOF, &bio->bi_flags);
1426}
1427
c17bb495
AM
1428#ifdef CONFIG_FAIL_MAKE_REQUEST
1429
1430static DECLARE_FAULT_ATTR(fail_make_request);
1431
1432static int __init setup_fail_make_request(char *str)
1433{
1434 return setup_fault_attr(&fail_make_request, str);
1435}
1436__setup("fail_make_request=", setup_fail_make_request);
1437
b2c9cd37 1438static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1439{
b2c9cd37 1440 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1441}
1442
1443static int __init fail_make_request_debugfs(void)
1444{
dd48c085
AM
1445 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1446 NULL, &fail_make_request);
1447
1448 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1449}
1450
1451late_initcall(fail_make_request_debugfs);
1452
1453#else /* CONFIG_FAIL_MAKE_REQUEST */
1454
b2c9cd37
AM
1455static inline bool should_fail_request(struct hd_struct *part,
1456 unsigned int bytes)
c17bb495 1457{
b2c9cd37 1458 return false;
c17bb495
AM
1459}
1460
1461#endif /* CONFIG_FAIL_MAKE_REQUEST */
1462
c07e2b41
JA
1463/*
1464 * Check whether this bio extends beyond the end of the device.
1465 */
1466static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1467{
1468 sector_t maxsector;
1469
1470 if (!nr_sectors)
1471 return 0;
1472
1473 /* Test device or partition size, when known. */
77304d2a 1474 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1475 if (maxsector) {
1476 sector_t sector = bio->bi_sector;
1477
1478 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1479 /*
1480 * This may well happen - the kernel calls bread()
1481 * without checking the size of the device, e.g., when
1482 * mounting a device.
1483 */
1484 handle_bad_sector(bio);
1485 return 1;
1486 }
1487 }
1488
1489 return 0;
1490}
1491
27a84d54
CH
1492static noinline_for_stack bool
1493generic_make_request_checks(struct bio *bio)
1da177e4 1494{
165125e1 1495 struct request_queue *q;
5a7bbad2 1496 int nr_sectors = bio_sectors(bio);
51fd77bd 1497 int err = -EIO;
5a7bbad2
CH
1498 char b[BDEVNAME_SIZE];
1499 struct hd_struct *part;
1da177e4
LT
1500
1501 might_sleep();
1da177e4 1502
c07e2b41
JA
1503 if (bio_check_eod(bio, nr_sectors))
1504 goto end_io;
1da177e4 1505
5a7bbad2
CH
1506 q = bdev_get_queue(bio->bi_bdev);
1507 if (unlikely(!q)) {
1508 printk(KERN_ERR
1509 "generic_make_request: Trying to access "
1510 "nonexistent block-device %s (%Lu)\n",
1511 bdevname(bio->bi_bdev, b),
1512 (long long) bio->bi_sector);
1513 goto end_io;
1514 }
c17bb495 1515
5a7bbad2
CH
1516 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1517 nr_sectors > queue_max_hw_sectors(q))) {
1518 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1519 bdevname(bio->bi_bdev, b),
1520 bio_sectors(bio),
1521 queue_max_hw_sectors(q));
1522 goto end_io;
1523 }
1da177e4 1524
5a7bbad2
CH
1525 part = bio->bi_bdev->bd_part;
1526 if (should_fail_request(part, bio->bi_size) ||
1527 should_fail_request(&part_to_disk(part)->part0,
1528 bio->bi_size))
1529 goto end_io;
2056a782 1530
5a7bbad2
CH
1531 /*
1532 * If this device has partitions, remap block n
1533 * of partition p to block n+start(p) of the disk.
1534 */
1535 blk_partition_remap(bio);
2056a782 1536
5a7bbad2
CH
1537 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1538 goto end_io;
a7384677 1539
5a7bbad2
CH
1540 if (bio_check_eod(bio, nr_sectors))
1541 goto end_io;
1e87901e 1542
5a7bbad2
CH
1543 /*
1544 * Filter flush bio's early so that make_request based
1545 * drivers without flush support don't have to worry
1546 * about them.
1547 */
1548 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1549 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1550 if (!nr_sectors) {
1551 err = 0;
51fd77bd
JA
1552 goto end_io;
1553 }
5a7bbad2 1554 }
5ddfe969 1555
5a7bbad2
CH
1556 if ((bio->bi_rw & REQ_DISCARD) &&
1557 (!blk_queue_discard(q) ||
1558 ((bio->bi_rw & REQ_SECURE) &&
1559 !blk_queue_secdiscard(q)))) {
1560 err = -EOPNOTSUPP;
1561 goto end_io;
1562 }
01edede4 1563
bc16a4f9
TH
1564 if (blk_throtl_bio(q, bio))
1565 return false; /* throttled, will be resubmitted later */
27a84d54 1566
5a7bbad2 1567 trace_block_bio_queue(q, bio);
27a84d54 1568 return true;
a7384677
TH
1569
1570end_io:
1571 bio_endio(bio, err);
27a84d54 1572 return false;
1da177e4
LT
1573}
1574
27a84d54
CH
1575/**
1576 * generic_make_request - hand a buffer to its device driver for I/O
1577 * @bio: The bio describing the location in memory and on the device.
1578 *
1579 * generic_make_request() is used to make I/O requests of block
1580 * devices. It is passed a &struct bio, which describes the I/O that needs
1581 * to be done.
1582 *
1583 * generic_make_request() does not return any status. The
1584 * success/failure status of the request, along with notification of
1585 * completion, is delivered asynchronously through the bio->bi_end_io
1586 * function described (one day) else where.
1587 *
1588 * The caller of generic_make_request must make sure that bi_io_vec
1589 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1590 * set to describe the device address, and the
1591 * bi_end_io and optionally bi_private are set to describe how
1592 * completion notification should be signaled.
1593 *
1594 * generic_make_request and the drivers it calls may use bi_next if this
1595 * bio happens to be merged with someone else, and may resubmit the bio to
1596 * a lower device by calling into generic_make_request recursively, which
1597 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1598 */
1599void generic_make_request(struct bio *bio)
1600{
bddd87c7
AM
1601 struct bio_list bio_list_on_stack;
1602
27a84d54
CH
1603 if (!generic_make_request_checks(bio))
1604 return;
1605
1606 /*
1607 * We only want one ->make_request_fn to be active at a time, else
1608 * stack usage with stacked devices could be a problem. So use
1609 * current->bio_list to keep a list of requests submited by a
1610 * make_request_fn function. current->bio_list is also used as a
1611 * flag to say if generic_make_request is currently active in this
1612 * task or not. If it is NULL, then no make_request is active. If
1613 * it is non-NULL, then a make_request is active, and new requests
1614 * should be added at the tail
1615 */
bddd87c7 1616 if (current->bio_list) {
bddd87c7 1617 bio_list_add(current->bio_list, bio);
d89d8796
NB
1618 return;
1619 }
27a84d54 1620
d89d8796
NB
1621 /* following loop may be a bit non-obvious, and so deserves some
1622 * explanation.
1623 * Before entering the loop, bio->bi_next is NULL (as all callers
1624 * ensure that) so we have a list with a single bio.
1625 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1626 * we assign bio_list to a pointer to the bio_list_on_stack,
1627 * thus initialising the bio_list of new bios to be
27a84d54 1628 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1629 * through a recursive call to generic_make_request. If it
1630 * did, we find a non-NULL value in bio_list and re-enter the loop
1631 * from the top. In this case we really did just take the bio
bddd87c7 1632 * of the top of the list (no pretending) and so remove it from
27a84d54 1633 * bio_list, and call into ->make_request() again.
d89d8796
NB
1634 */
1635 BUG_ON(bio->bi_next);
bddd87c7
AM
1636 bio_list_init(&bio_list_on_stack);
1637 current->bio_list = &bio_list_on_stack;
d89d8796 1638 do {
27a84d54
CH
1639 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1640
1641 q->make_request_fn(q, bio);
1642
bddd87c7 1643 bio = bio_list_pop(current->bio_list);
d89d8796 1644 } while (bio);
bddd87c7 1645 current->bio_list = NULL; /* deactivate */
d89d8796 1646}
1da177e4
LT
1647EXPORT_SYMBOL(generic_make_request);
1648
1649/**
710027a4 1650 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1651 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1652 * @bio: The &struct bio which describes the I/O
1653 *
1654 * submit_bio() is very similar in purpose to generic_make_request(), and
1655 * uses that function to do most of the work. Both are fairly rough
710027a4 1656 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1657 *
1658 */
1659void submit_bio(int rw, struct bio *bio)
1660{
1661 int count = bio_sectors(bio);
1662
22e2c507 1663 bio->bi_rw |= rw;
1da177e4 1664
bf2de6f5
JA
1665 /*
1666 * If it's a regular read/write or a barrier with data attached,
1667 * go through the normal accounting stuff before submission.
1668 */
3ffb52e7 1669 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1670 if (rw & WRITE) {
1671 count_vm_events(PGPGOUT, count);
1672 } else {
1673 task_io_account_read(bio->bi_size);
1674 count_vm_events(PGPGIN, count);
1675 }
1676
1677 if (unlikely(block_dump)) {
1678 char b[BDEVNAME_SIZE];
8dcbdc74 1679 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1680 current->comm, task_pid_nr(current),
bf2de6f5
JA
1681 (rw & WRITE) ? "WRITE" : "READ",
1682 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1683 bdevname(bio->bi_bdev, b),
1684 count);
bf2de6f5 1685 }
1da177e4
LT
1686 }
1687
1688 generic_make_request(bio);
1689}
1da177e4
LT
1690EXPORT_SYMBOL(submit_bio);
1691
82124d60
KU
1692/**
1693 * blk_rq_check_limits - Helper function to check a request for the queue limit
1694 * @q: the queue
1695 * @rq: the request being checked
1696 *
1697 * Description:
1698 * @rq may have been made based on weaker limitations of upper-level queues
1699 * in request stacking drivers, and it may violate the limitation of @q.
1700 * Since the block layer and the underlying device driver trust @rq
1701 * after it is inserted to @q, it should be checked against @q before
1702 * the insertion using this generic function.
1703 *
1704 * This function should also be useful for request stacking drivers
eef35c2d 1705 * in some cases below, so export this function.
82124d60
KU
1706 * Request stacking drivers like request-based dm may change the queue
1707 * limits while requests are in the queue (e.g. dm's table swapping).
1708 * Such request stacking drivers should check those requests agaist
1709 * the new queue limits again when they dispatch those requests,
1710 * although such checkings are also done against the old queue limits
1711 * when submitting requests.
1712 */
1713int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1714{
3383977f
S
1715 if (rq->cmd_flags & REQ_DISCARD)
1716 return 0;
1717
ae03bf63
MP
1718 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1719 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1720 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1721 return -EIO;
1722 }
1723
1724 /*
1725 * queue's settings related to segment counting like q->bounce_pfn
1726 * may differ from that of other stacking queues.
1727 * Recalculate it to check the request correctly on this queue's
1728 * limitation.
1729 */
1730 blk_recalc_rq_segments(rq);
8a78362c 1731 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1732 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1733 return -EIO;
1734 }
1735
1736 return 0;
1737}
1738EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1739
1740/**
1741 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1742 * @q: the queue to submit the request
1743 * @rq: the request being queued
1744 */
1745int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1746{
1747 unsigned long flags;
4853abaa 1748 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1749
1750 if (blk_rq_check_limits(q, rq))
1751 return -EIO;
1752
b2c9cd37
AM
1753 if (rq->rq_disk &&
1754 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1755 return -EIO;
82124d60
KU
1756
1757 spin_lock_irqsave(q->queue_lock, flags);
8ba61435
TH
1758 if (unlikely(blk_queue_dead(q))) {
1759 spin_unlock_irqrestore(q->queue_lock, flags);
1760 return -ENODEV;
1761 }
82124d60
KU
1762
1763 /*
1764 * Submitting request must be dequeued before calling this function
1765 * because it will be linked to another request_queue
1766 */
1767 BUG_ON(blk_queued_rq(rq));
1768
4853abaa
JM
1769 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1770 where = ELEVATOR_INSERT_FLUSH;
1771
1772 add_acct_request(q, rq, where);
e67b77c7
JM
1773 if (where == ELEVATOR_INSERT_FLUSH)
1774 __blk_run_queue(q);
82124d60
KU
1775 spin_unlock_irqrestore(q->queue_lock, flags);
1776
1777 return 0;
1778}
1779EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1780
80a761fd
TH
1781/**
1782 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1783 * @rq: request to examine
1784 *
1785 * Description:
1786 * A request could be merge of IOs which require different failure
1787 * handling. This function determines the number of bytes which
1788 * can be failed from the beginning of the request without
1789 * crossing into area which need to be retried further.
1790 *
1791 * Return:
1792 * The number of bytes to fail.
1793 *
1794 * Context:
1795 * queue_lock must be held.
1796 */
1797unsigned int blk_rq_err_bytes(const struct request *rq)
1798{
1799 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1800 unsigned int bytes = 0;
1801 struct bio *bio;
1802
1803 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1804 return blk_rq_bytes(rq);
1805
1806 /*
1807 * Currently the only 'mixing' which can happen is between
1808 * different fastfail types. We can safely fail portions
1809 * which have all the failfast bits that the first one has -
1810 * the ones which are at least as eager to fail as the first
1811 * one.
1812 */
1813 for (bio = rq->bio; bio; bio = bio->bi_next) {
1814 if ((bio->bi_rw & ff) != ff)
1815 break;
1816 bytes += bio->bi_size;
1817 }
1818
1819 /* this could lead to infinite loop */
1820 BUG_ON(blk_rq_bytes(rq) && !bytes);
1821 return bytes;
1822}
1823EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1824
bc58ba94
JA
1825static void blk_account_io_completion(struct request *req, unsigned int bytes)
1826{
c2553b58 1827 if (blk_do_io_stat(req)) {
bc58ba94
JA
1828 const int rw = rq_data_dir(req);
1829 struct hd_struct *part;
1830 int cpu;
1831
1832 cpu = part_stat_lock();
09e099d4 1833 part = req->part;
bc58ba94
JA
1834 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1835 part_stat_unlock();
1836 }
1837}
1838
1839static void blk_account_io_done(struct request *req)
1840{
bc58ba94 1841 /*
dd4c133f
TH
1842 * Account IO completion. flush_rq isn't accounted as a
1843 * normal IO on queueing nor completion. Accounting the
1844 * containing request is enough.
bc58ba94 1845 */
414b4ff5 1846 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1847 unsigned long duration = jiffies - req->start_time;
1848 const int rw = rq_data_dir(req);
1849 struct hd_struct *part;
1850 int cpu;
1851
1852 cpu = part_stat_lock();
09e099d4 1853 part = req->part;
bc58ba94
JA
1854
1855 part_stat_inc(cpu, part, ios[rw]);
1856 part_stat_add(cpu, part, ticks[rw], duration);
1857 part_round_stats(cpu, part);
316d315b 1858 part_dec_in_flight(part, rw);
bc58ba94 1859
6c23a968 1860 hd_struct_put(part);
bc58ba94
JA
1861 part_stat_unlock();
1862 }
1863}
1864
3bcddeac 1865/**
9934c8c0
TH
1866 * blk_peek_request - peek at the top of a request queue
1867 * @q: request queue to peek at
1868 *
1869 * Description:
1870 * Return the request at the top of @q. The returned request
1871 * should be started using blk_start_request() before LLD starts
1872 * processing it.
1873 *
1874 * Return:
1875 * Pointer to the request at the top of @q if available. Null
1876 * otherwise.
1877 *
1878 * Context:
1879 * queue_lock must be held.
1880 */
1881struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1882{
1883 struct request *rq;
1884 int ret;
1885
1886 while ((rq = __elv_next_request(q)) != NULL) {
1887 if (!(rq->cmd_flags & REQ_STARTED)) {
1888 /*
1889 * This is the first time the device driver
1890 * sees this request (possibly after
1891 * requeueing). Notify IO scheduler.
1892 */
33659ebb 1893 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1894 elv_activate_rq(q, rq);
1895
1896 /*
1897 * just mark as started even if we don't start
1898 * it, a request that has been delayed should
1899 * not be passed by new incoming requests
1900 */
1901 rq->cmd_flags |= REQ_STARTED;
1902 trace_block_rq_issue(q, rq);
1903 }
1904
1905 if (!q->boundary_rq || q->boundary_rq == rq) {
1906 q->end_sector = rq_end_sector(rq);
1907 q->boundary_rq = NULL;
1908 }
1909
1910 if (rq->cmd_flags & REQ_DONTPREP)
1911 break;
1912
2e46e8b2 1913 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1914 /*
1915 * make sure space for the drain appears we
1916 * know we can do this because max_hw_segments
1917 * has been adjusted to be one fewer than the
1918 * device can handle
1919 */
1920 rq->nr_phys_segments++;
1921 }
1922
1923 if (!q->prep_rq_fn)
1924 break;
1925
1926 ret = q->prep_rq_fn(q, rq);
1927 if (ret == BLKPREP_OK) {
1928 break;
1929 } else if (ret == BLKPREP_DEFER) {
1930 /*
1931 * the request may have been (partially) prepped.
1932 * we need to keep this request in the front to
1933 * avoid resource deadlock. REQ_STARTED will
1934 * prevent other fs requests from passing this one.
1935 */
2e46e8b2 1936 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1937 !(rq->cmd_flags & REQ_DONTPREP)) {
1938 /*
1939 * remove the space for the drain we added
1940 * so that we don't add it again
1941 */
1942 --rq->nr_phys_segments;
1943 }
1944
1945 rq = NULL;
1946 break;
1947 } else if (ret == BLKPREP_KILL) {
1948 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1949 /*
1950 * Mark this request as started so we don't trigger
1951 * any debug logic in the end I/O path.
1952 */
1953 blk_start_request(rq);
40cbbb78 1954 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1955 } else {
1956 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1957 break;
1958 }
1959 }
1960
1961 return rq;
1962}
9934c8c0 1963EXPORT_SYMBOL(blk_peek_request);
158dbda0 1964
9934c8c0 1965void blk_dequeue_request(struct request *rq)
158dbda0 1966{
9934c8c0
TH
1967 struct request_queue *q = rq->q;
1968
158dbda0
TH
1969 BUG_ON(list_empty(&rq->queuelist));
1970 BUG_ON(ELV_ON_HASH(rq));
1971
1972 list_del_init(&rq->queuelist);
1973
1974 /*
1975 * the time frame between a request being removed from the lists
1976 * and to it is freed is accounted as io that is in progress at
1977 * the driver side.
1978 */
9195291e 1979 if (blk_account_rq(rq)) {
0a7ae2ff 1980 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1981 set_io_start_time_ns(rq);
1982 }
158dbda0
TH
1983}
1984
9934c8c0
TH
1985/**
1986 * blk_start_request - start request processing on the driver
1987 * @req: request to dequeue
1988 *
1989 * Description:
1990 * Dequeue @req and start timeout timer on it. This hands off the
1991 * request to the driver.
1992 *
1993 * Block internal functions which don't want to start timer should
1994 * call blk_dequeue_request().
1995 *
1996 * Context:
1997 * queue_lock must be held.
1998 */
1999void blk_start_request(struct request *req)
2000{
2001 blk_dequeue_request(req);
2002
2003 /*
5f49f631
TH
2004 * We are now handing the request to the hardware, initialize
2005 * resid_len to full count and add the timeout handler.
9934c8c0 2006 */
5f49f631 2007 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2008 if (unlikely(blk_bidi_rq(req)))
2009 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2010
9934c8c0
TH
2011 blk_add_timer(req);
2012}
2013EXPORT_SYMBOL(blk_start_request);
2014
2015/**
2016 * blk_fetch_request - fetch a request from a request queue
2017 * @q: request queue to fetch a request from
2018 *
2019 * Description:
2020 * Return the request at the top of @q. The request is started on
2021 * return and LLD can start processing it immediately.
2022 *
2023 * Return:
2024 * Pointer to the request at the top of @q if available. Null
2025 * otherwise.
2026 *
2027 * Context:
2028 * queue_lock must be held.
2029 */
2030struct request *blk_fetch_request(struct request_queue *q)
2031{
2032 struct request *rq;
2033
2034 rq = blk_peek_request(q);
2035 if (rq)
2036 blk_start_request(rq);
2037 return rq;
2038}
2039EXPORT_SYMBOL(blk_fetch_request);
2040
3bcddeac 2041/**
2e60e022 2042 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2043 * @req: the request being processed
710027a4 2044 * @error: %0 for success, < %0 for error
8ebf9756 2045 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2046 *
2047 * Description:
8ebf9756
RD
2048 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2049 * the request structure even if @req doesn't have leftover.
2050 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2051 *
2052 * This special helper function is only for request stacking drivers
2053 * (e.g. request-based dm) so that they can handle partial completion.
2054 * Actual device drivers should use blk_end_request instead.
2055 *
2056 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2057 * %false return from this function.
3bcddeac
KU
2058 *
2059 * Return:
2e60e022
TH
2060 * %false - this request doesn't have any more data
2061 * %true - this request has more data
3bcddeac 2062 **/
2e60e022 2063bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2064{
5450d3e1 2065 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2066 struct bio *bio;
2067
2e60e022
TH
2068 if (!req->bio)
2069 return false;
2070
5f3ea37c 2071 trace_block_rq_complete(req->q, req);
2056a782 2072
1da177e4 2073 /*
6f41469c
TH
2074 * For fs requests, rq is just carrier of independent bio's
2075 * and each partial completion should be handled separately.
2076 * Reset per-request error on each partial completion.
2077 *
2078 * TODO: tj: This is too subtle. It would be better to let
2079 * low level drivers do what they see fit.
1da177e4 2080 */
33659ebb 2081 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2082 req->errors = 0;
2083
33659ebb
CH
2084 if (error && req->cmd_type == REQ_TYPE_FS &&
2085 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2086 char *error_type;
2087
2088 switch (error) {
2089 case -ENOLINK:
2090 error_type = "recoverable transport";
2091 break;
2092 case -EREMOTEIO:
2093 error_type = "critical target";
2094 break;
2095 case -EBADE:
2096 error_type = "critical nexus";
2097 break;
2098 case -EIO:
2099 default:
2100 error_type = "I/O";
2101 break;
2102 }
2103 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2104 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2105 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2106 }
2107
bc58ba94 2108 blk_account_io_completion(req, nr_bytes);
d72d904a 2109
1da177e4
LT
2110 total_bytes = bio_nbytes = 0;
2111 while ((bio = req->bio) != NULL) {
2112 int nbytes;
2113
2114 if (nr_bytes >= bio->bi_size) {
2115 req->bio = bio->bi_next;
2116 nbytes = bio->bi_size;
5bb23a68 2117 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2118 next_idx = 0;
2119 bio_nbytes = 0;
2120 } else {
2121 int idx = bio->bi_idx + next_idx;
2122
af498d7f 2123 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2124 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2125 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2126 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2127 break;
2128 }
2129
2130 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2131 BIO_BUG_ON(nbytes > bio->bi_size);
2132
2133 /*
2134 * not a complete bvec done
2135 */
2136 if (unlikely(nbytes > nr_bytes)) {
2137 bio_nbytes += nr_bytes;
2138 total_bytes += nr_bytes;
2139 break;
2140 }
2141
2142 /*
2143 * advance to the next vector
2144 */
2145 next_idx++;
2146 bio_nbytes += nbytes;
2147 }
2148
2149 total_bytes += nbytes;
2150 nr_bytes -= nbytes;
2151
6728cb0e
JA
2152 bio = req->bio;
2153 if (bio) {
1da177e4
LT
2154 /*
2155 * end more in this run, or just return 'not-done'
2156 */
2157 if (unlikely(nr_bytes <= 0))
2158 break;
2159 }
2160 }
2161
2162 /*
2163 * completely done
2164 */
2e60e022
TH
2165 if (!req->bio) {
2166 /*
2167 * Reset counters so that the request stacking driver
2168 * can find how many bytes remain in the request
2169 * later.
2170 */
a2dec7b3 2171 req->__data_len = 0;
2e60e022
TH
2172 return false;
2173 }
1da177e4
LT
2174
2175 /*
2176 * if the request wasn't completed, update state
2177 */
2178 if (bio_nbytes) {
5bb23a68 2179 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2180 bio->bi_idx += next_idx;
2181 bio_iovec(bio)->bv_offset += nr_bytes;
2182 bio_iovec(bio)->bv_len -= nr_bytes;
2183 }
2184
a2dec7b3 2185 req->__data_len -= total_bytes;
2e46e8b2
TH
2186 req->buffer = bio_data(req->bio);
2187
2188 /* update sector only for requests with clear definition of sector */
33659ebb 2189 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2190 req->__sector += total_bytes >> 9;
2e46e8b2 2191
80a761fd
TH
2192 /* mixed attributes always follow the first bio */
2193 if (req->cmd_flags & REQ_MIXED_MERGE) {
2194 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2195 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2196 }
2197
2e46e8b2
TH
2198 /*
2199 * If total number of sectors is less than the first segment
2200 * size, something has gone terribly wrong.
2201 */
2202 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2203 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2204 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2205 }
2206
2207 /* recalculate the number of segments */
1da177e4 2208 blk_recalc_rq_segments(req);
2e46e8b2 2209
2e60e022 2210 return true;
1da177e4 2211}
2e60e022 2212EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2213
2e60e022
TH
2214static bool blk_update_bidi_request(struct request *rq, int error,
2215 unsigned int nr_bytes,
2216 unsigned int bidi_bytes)
5efccd17 2217{
2e60e022
TH
2218 if (blk_update_request(rq, error, nr_bytes))
2219 return true;
5efccd17 2220
2e60e022
TH
2221 /* Bidi request must be completed as a whole */
2222 if (unlikely(blk_bidi_rq(rq)) &&
2223 blk_update_request(rq->next_rq, error, bidi_bytes))
2224 return true;
5efccd17 2225
e2e1a148
JA
2226 if (blk_queue_add_random(rq->q))
2227 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2228
2229 return false;
1da177e4
LT
2230}
2231
28018c24
JB
2232/**
2233 * blk_unprep_request - unprepare a request
2234 * @req: the request
2235 *
2236 * This function makes a request ready for complete resubmission (or
2237 * completion). It happens only after all error handling is complete,
2238 * so represents the appropriate moment to deallocate any resources
2239 * that were allocated to the request in the prep_rq_fn. The queue
2240 * lock is held when calling this.
2241 */
2242void blk_unprep_request(struct request *req)
2243{
2244 struct request_queue *q = req->q;
2245
2246 req->cmd_flags &= ~REQ_DONTPREP;
2247 if (q->unprep_rq_fn)
2248 q->unprep_rq_fn(q, req);
2249}
2250EXPORT_SYMBOL_GPL(blk_unprep_request);
2251
1da177e4
LT
2252/*
2253 * queue lock must be held
2254 */
2e60e022 2255static void blk_finish_request(struct request *req, int error)
1da177e4 2256{
b8286239
KU
2257 if (blk_rq_tagged(req))
2258 blk_queue_end_tag(req->q, req);
2259
ba396a6c 2260 BUG_ON(blk_queued_rq(req));
1da177e4 2261
33659ebb 2262 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2263 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2264
e78042e5
MA
2265 blk_delete_timer(req);
2266
28018c24
JB
2267 if (req->cmd_flags & REQ_DONTPREP)
2268 blk_unprep_request(req);
2269
2270
bc58ba94 2271 blk_account_io_done(req);
b8286239 2272
1da177e4 2273 if (req->end_io)
8ffdc655 2274 req->end_io(req, error);
b8286239
KU
2275 else {
2276 if (blk_bidi_rq(req))
2277 __blk_put_request(req->next_rq->q, req->next_rq);
2278
1da177e4 2279 __blk_put_request(req->q, req);
b8286239 2280 }
1da177e4
LT
2281}
2282
3b11313a 2283/**
2e60e022
TH
2284 * blk_end_bidi_request - Complete a bidi request
2285 * @rq: the request to complete
2286 * @error: %0 for success, < %0 for error
2287 * @nr_bytes: number of bytes to complete @rq
2288 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2289 *
2290 * Description:
e3a04fe3 2291 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2292 * Drivers that supports bidi can safely call this member for any
2293 * type of request, bidi or uni. In the later case @bidi_bytes is
2294 * just ignored.
336cdb40
KU
2295 *
2296 * Return:
2e60e022
TH
2297 * %false - we are done with this request
2298 * %true - still buffers pending for this request
a0cd1285 2299 **/
b1f74493 2300static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2301 unsigned int nr_bytes, unsigned int bidi_bytes)
2302{
336cdb40 2303 struct request_queue *q = rq->q;
2e60e022 2304 unsigned long flags;
32fab448 2305
2e60e022
TH
2306 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2307 return true;
32fab448 2308
336cdb40 2309 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2310 blk_finish_request(rq, error);
336cdb40
KU
2311 spin_unlock_irqrestore(q->queue_lock, flags);
2312
2e60e022 2313 return false;
32fab448
KU
2314}
2315
336cdb40 2316/**
2e60e022
TH
2317 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2318 * @rq: the request to complete
710027a4 2319 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2320 * @nr_bytes: number of bytes to complete @rq
2321 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2322 *
2323 * Description:
2e60e022
TH
2324 * Identical to blk_end_bidi_request() except that queue lock is
2325 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2326 *
2327 * Return:
2e60e022
TH
2328 * %false - we are done with this request
2329 * %true - still buffers pending for this request
336cdb40 2330 **/
4853abaa 2331bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2332 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2333{
2e60e022
TH
2334 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2335 return true;
336cdb40 2336
2e60e022 2337 blk_finish_request(rq, error);
336cdb40 2338
2e60e022 2339 return false;
336cdb40 2340}
e19a3ab0
KU
2341
2342/**
2343 * blk_end_request - Helper function for drivers to complete the request.
2344 * @rq: the request being processed
710027a4 2345 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2346 * @nr_bytes: number of bytes to complete
2347 *
2348 * Description:
2349 * Ends I/O on a number of bytes attached to @rq.
2350 * If @rq has leftover, sets it up for the next range of segments.
2351 *
2352 * Return:
b1f74493
FT
2353 * %false - we are done with this request
2354 * %true - still buffers pending for this request
e19a3ab0 2355 **/
b1f74493 2356bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2357{
b1f74493 2358 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2359}
56ad1740 2360EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2361
2362/**
b1f74493
FT
2363 * blk_end_request_all - Helper function for drives to finish the request.
2364 * @rq: the request to finish
8ebf9756 2365 * @error: %0 for success, < %0 for error
336cdb40
KU
2366 *
2367 * Description:
b1f74493
FT
2368 * Completely finish @rq.
2369 */
2370void blk_end_request_all(struct request *rq, int error)
336cdb40 2371{
b1f74493
FT
2372 bool pending;
2373 unsigned int bidi_bytes = 0;
336cdb40 2374
b1f74493
FT
2375 if (unlikely(blk_bidi_rq(rq)))
2376 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2377
b1f74493
FT
2378 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2379 BUG_ON(pending);
2380}
56ad1740 2381EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2382
b1f74493
FT
2383/**
2384 * blk_end_request_cur - Helper function to finish the current request chunk.
2385 * @rq: the request to finish the current chunk for
8ebf9756 2386 * @error: %0 for success, < %0 for error
b1f74493
FT
2387 *
2388 * Description:
2389 * Complete the current consecutively mapped chunk from @rq.
2390 *
2391 * Return:
2392 * %false - we are done with this request
2393 * %true - still buffers pending for this request
2394 */
2395bool blk_end_request_cur(struct request *rq, int error)
2396{
2397 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2398}
56ad1740 2399EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2400
80a761fd
TH
2401/**
2402 * blk_end_request_err - Finish a request till the next failure boundary.
2403 * @rq: the request to finish till the next failure boundary for
2404 * @error: must be negative errno
2405 *
2406 * Description:
2407 * Complete @rq till the next failure boundary.
2408 *
2409 * Return:
2410 * %false - we are done with this request
2411 * %true - still buffers pending for this request
2412 */
2413bool blk_end_request_err(struct request *rq, int error)
2414{
2415 WARN_ON(error >= 0);
2416 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2417}
2418EXPORT_SYMBOL_GPL(blk_end_request_err);
2419
e3a04fe3 2420/**
b1f74493
FT
2421 * __blk_end_request - Helper function for drivers to complete the request.
2422 * @rq: the request being processed
2423 * @error: %0 for success, < %0 for error
2424 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2425 *
2426 * Description:
b1f74493 2427 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2428 *
2429 * Return:
b1f74493
FT
2430 * %false - we are done with this request
2431 * %true - still buffers pending for this request
e3a04fe3 2432 **/
b1f74493 2433bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2434{
b1f74493 2435 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2436}
56ad1740 2437EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2438
32fab448 2439/**
b1f74493
FT
2440 * __blk_end_request_all - Helper function for drives to finish the request.
2441 * @rq: the request to finish
8ebf9756 2442 * @error: %0 for success, < %0 for error
32fab448
KU
2443 *
2444 * Description:
b1f74493 2445 * Completely finish @rq. Must be called with queue lock held.
32fab448 2446 */
b1f74493 2447void __blk_end_request_all(struct request *rq, int error)
32fab448 2448{
b1f74493
FT
2449 bool pending;
2450 unsigned int bidi_bytes = 0;
2451
2452 if (unlikely(blk_bidi_rq(rq)))
2453 bidi_bytes = blk_rq_bytes(rq->next_rq);
2454
2455 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2456 BUG_ON(pending);
32fab448 2457}
56ad1740 2458EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2459
e19a3ab0 2460/**
b1f74493
FT
2461 * __blk_end_request_cur - Helper function to finish the current request chunk.
2462 * @rq: the request to finish the current chunk for
8ebf9756 2463 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2464 *
2465 * Description:
b1f74493
FT
2466 * Complete the current consecutively mapped chunk from @rq. Must
2467 * be called with queue lock held.
e19a3ab0
KU
2468 *
2469 * Return:
b1f74493
FT
2470 * %false - we are done with this request
2471 * %true - still buffers pending for this request
2472 */
2473bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2474{
b1f74493 2475 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2476}
56ad1740 2477EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2478
80a761fd
TH
2479/**
2480 * __blk_end_request_err - Finish a request till the next failure boundary.
2481 * @rq: the request to finish till the next failure boundary for
2482 * @error: must be negative errno
2483 *
2484 * Description:
2485 * Complete @rq till the next failure boundary. Must be called
2486 * with queue lock held.
2487 *
2488 * Return:
2489 * %false - we are done with this request
2490 * %true - still buffers pending for this request
2491 */
2492bool __blk_end_request_err(struct request *rq, int error)
2493{
2494 WARN_ON(error >= 0);
2495 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2496}
2497EXPORT_SYMBOL_GPL(__blk_end_request_err);
2498
86db1e29
JA
2499void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2500 struct bio *bio)
1da177e4 2501{
a82afdfc 2502 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2503 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2504
fb2dce86
DW
2505 if (bio_has_data(bio)) {
2506 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2507 rq->buffer = bio_data(bio);
2508 }
a2dec7b3 2509 rq->__data_len = bio->bi_size;
1da177e4 2510 rq->bio = rq->biotail = bio;
1da177e4 2511
66846572
N
2512 if (bio->bi_bdev)
2513 rq->rq_disk = bio->bi_bdev->bd_disk;
2514}
1da177e4 2515
2d4dc890
IL
2516#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2517/**
2518 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2519 * @rq: the request to be flushed
2520 *
2521 * Description:
2522 * Flush all pages in @rq.
2523 */
2524void rq_flush_dcache_pages(struct request *rq)
2525{
2526 struct req_iterator iter;
2527 struct bio_vec *bvec;
2528
2529 rq_for_each_segment(bvec, rq, iter)
2530 flush_dcache_page(bvec->bv_page);
2531}
2532EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2533#endif
2534
ef9e3fac
KU
2535/**
2536 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2537 * @q : the queue of the device being checked
2538 *
2539 * Description:
2540 * Check if underlying low-level drivers of a device are busy.
2541 * If the drivers want to export their busy state, they must set own
2542 * exporting function using blk_queue_lld_busy() first.
2543 *
2544 * Basically, this function is used only by request stacking drivers
2545 * to stop dispatching requests to underlying devices when underlying
2546 * devices are busy. This behavior helps more I/O merging on the queue
2547 * of the request stacking driver and prevents I/O throughput regression
2548 * on burst I/O load.
2549 *
2550 * Return:
2551 * 0 - Not busy (The request stacking driver should dispatch request)
2552 * 1 - Busy (The request stacking driver should stop dispatching request)
2553 */
2554int blk_lld_busy(struct request_queue *q)
2555{
2556 if (q->lld_busy_fn)
2557 return q->lld_busy_fn(q);
2558
2559 return 0;
2560}
2561EXPORT_SYMBOL_GPL(blk_lld_busy);
2562
b0fd271d
KU
2563/**
2564 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2565 * @rq: the clone request to be cleaned up
2566 *
2567 * Description:
2568 * Free all bios in @rq for a cloned request.
2569 */
2570void blk_rq_unprep_clone(struct request *rq)
2571{
2572 struct bio *bio;
2573
2574 while ((bio = rq->bio) != NULL) {
2575 rq->bio = bio->bi_next;
2576
2577 bio_put(bio);
2578 }
2579}
2580EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2581
2582/*
2583 * Copy attributes of the original request to the clone request.
2584 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2585 */
2586static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2587{
2588 dst->cpu = src->cpu;
3a2edd0d 2589 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2590 dst->cmd_type = src->cmd_type;
2591 dst->__sector = blk_rq_pos(src);
2592 dst->__data_len = blk_rq_bytes(src);
2593 dst->nr_phys_segments = src->nr_phys_segments;
2594 dst->ioprio = src->ioprio;
2595 dst->extra_len = src->extra_len;
2596}
2597
2598/**
2599 * blk_rq_prep_clone - Helper function to setup clone request
2600 * @rq: the request to be setup
2601 * @rq_src: original request to be cloned
2602 * @bs: bio_set that bios for clone are allocated from
2603 * @gfp_mask: memory allocation mask for bio
2604 * @bio_ctr: setup function to be called for each clone bio.
2605 * Returns %0 for success, non %0 for failure.
2606 * @data: private data to be passed to @bio_ctr
2607 *
2608 * Description:
2609 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2610 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2611 * are not copied, and copying such parts is the caller's responsibility.
2612 * Also, pages which the original bios are pointing to are not copied
2613 * and the cloned bios just point same pages.
2614 * So cloned bios must be completed before original bios, which means
2615 * the caller must complete @rq before @rq_src.
2616 */
2617int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2618 struct bio_set *bs, gfp_t gfp_mask,
2619 int (*bio_ctr)(struct bio *, struct bio *, void *),
2620 void *data)
2621{
2622 struct bio *bio, *bio_src;
2623
2624 if (!bs)
2625 bs = fs_bio_set;
2626
2627 blk_rq_init(NULL, rq);
2628
2629 __rq_for_each_bio(bio_src, rq_src) {
2630 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2631 if (!bio)
2632 goto free_and_out;
2633
2634 __bio_clone(bio, bio_src);
2635
2636 if (bio_integrity(bio_src) &&
7878cba9 2637 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2638 goto free_and_out;
2639
2640 if (bio_ctr && bio_ctr(bio, bio_src, data))
2641 goto free_and_out;
2642
2643 if (rq->bio) {
2644 rq->biotail->bi_next = bio;
2645 rq->biotail = bio;
2646 } else
2647 rq->bio = rq->biotail = bio;
2648 }
2649
2650 __blk_rq_prep_clone(rq, rq_src);
2651
2652 return 0;
2653
2654free_and_out:
2655 if (bio)
2656 bio_free(bio, bs);
2657 blk_rq_unprep_clone(rq);
2658
2659 return -ENOMEM;
2660}
2661EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2662
18887ad9 2663int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2664{
2665 return queue_work(kblockd_workqueue, work);
2666}
1da177e4
LT
2667EXPORT_SYMBOL(kblockd_schedule_work);
2668
e43473b7
VG
2669int kblockd_schedule_delayed_work(struct request_queue *q,
2670 struct delayed_work *dwork, unsigned long delay)
2671{
2672 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2673}
2674EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2675
73c10101
JA
2676#define PLUG_MAGIC 0x91827364
2677
75df7136
SJ
2678/**
2679 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2680 * @plug: The &struct blk_plug that needs to be initialized
2681 *
2682 * Description:
2683 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2684 * pending I/O should the task end up blocking between blk_start_plug() and
2685 * blk_finish_plug(). This is important from a performance perspective, but
2686 * also ensures that we don't deadlock. For instance, if the task is blocking
2687 * for a memory allocation, memory reclaim could end up wanting to free a
2688 * page belonging to that request that is currently residing in our private
2689 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2690 * this kind of deadlock.
2691 */
73c10101
JA
2692void blk_start_plug(struct blk_plug *plug)
2693{
2694 struct task_struct *tsk = current;
2695
2696 plug->magic = PLUG_MAGIC;
2697 INIT_LIST_HEAD(&plug->list);
048c9374 2698 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2699 plug->should_sort = 0;
2700
2701 /*
2702 * If this is a nested plug, don't actually assign it. It will be
2703 * flushed on its own.
2704 */
2705 if (!tsk->plug) {
2706 /*
2707 * Store ordering should not be needed here, since a potential
2708 * preempt will imply a full memory barrier
2709 */
2710 tsk->plug = plug;
2711 }
2712}
2713EXPORT_SYMBOL(blk_start_plug);
2714
2715static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2716{
2717 struct request *rqa = container_of(a, struct request, queuelist);
2718 struct request *rqb = container_of(b, struct request, queuelist);
2719
f83e8261 2720 return !(rqa->q <= rqb->q);
73c10101
JA
2721}
2722
49cac01e
JA
2723/*
2724 * If 'from_schedule' is true, then postpone the dispatch of requests
2725 * until a safe kblockd context. We due this to avoid accidental big
2726 * additional stack usage in driver dispatch, in places where the originally
2727 * plugger did not intend it.
2728 */
f6603783 2729static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2730 bool from_schedule)
99e22598 2731 __releases(q->queue_lock)
94b5eb28 2732{
49cac01e 2733 trace_block_unplug(q, depth, !from_schedule);
99e22598 2734
8ba61435
TH
2735 /*
2736 * Don't mess with dead queue.
2737 */
2738 if (unlikely(blk_queue_dead(q))) {
2739 spin_unlock(q->queue_lock);
2740 return;
2741 }
2742
99e22598
JA
2743 /*
2744 * If we are punting this to kblockd, then we can safely drop
2745 * the queue_lock before waking kblockd (which needs to take
2746 * this lock).
2747 */
2748 if (from_schedule) {
2749 spin_unlock(q->queue_lock);
24ecfbe2 2750 blk_run_queue_async(q);
99e22598 2751 } else {
24ecfbe2 2752 __blk_run_queue(q);
99e22598
JA
2753 spin_unlock(q->queue_lock);
2754 }
2755
94b5eb28
JA
2756}
2757
048c9374
N
2758static void flush_plug_callbacks(struct blk_plug *plug)
2759{
2760 LIST_HEAD(callbacks);
2761
2762 if (list_empty(&plug->cb_list))
2763 return;
2764
2765 list_splice_init(&plug->cb_list, &callbacks);
2766
2767 while (!list_empty(&callbacks)) {
2768 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2769 struct blk_plug_cb,
2770 list);
2771 list_del(&cb->list);
2772 cb->callback(cb);
2773 }
2774}
2775
49cac01e 2776void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2777{
2778 struct request_queue *q;
2779 unsigned long flags;
2780 struct request *rq;
109b8129 2781 LIST_HEAD(list);
94b5eb28 2782 unsigned int depth;
73c10101
JA
2783
2784 BUG_ON(plug->magic != PLUG_MAGIC);
2785
048c9374 2786 flush_plug_callbacks(plug);
73c10101
JA
2787 if (list_empty(&plug->list))
2788 return;
2789
109b8129
N
2790 list_splice_init(&plug->list, &list);
2791
2792 if (plug->should_sort) {
2793 list_sort(NULL, &list, plug_rq_cmp);
2794 plug->should_sort = 0;
2795 }
73c10101
JA
2796
2797 q = NULL;
94b5eb28 2798 depth = 0;
18811272
JA
2799
2800 /*
2801 * Save and disable interrupts here, to avoid doing it for every
2802 * queue lock we have to take.
2803 */
73c10101 2804 local_irq_save(flags);
109b8129
N
2805 while (!list_empty(&list)) {
2806 rq = list_entry_rq(list.next);
73c10101 2807 list_del_init(&rq->queuelist);
73c10101
JA
2808 BUG_ON(!rq->q);
2809 if (rq->q != q) {
99e22598
JA
2810 /*
2811 * This drops the queue lock
2812 */
2813 if (q)
49cac01e 2814 queue_unplugged(q, depth, from_schedule);
73c10101 2815 q = rq->q;
94b5eb28 2816 depth = 0;
73c10101
JA
2817 spin_lock(q->queue_lock);
2818 }
8ba61435
TH
2819
2820 /*
2821 * Short-circuit if @q is dead
2822 */
2823 if (unlikely(blk_queue_dead(q))) {
2824 __blk_end_request_all(rq, -ENODEV);
2825 continue;
2826 }
2827
73c10101
JA
2828 /*
2829 * rq is already accounted, so use raw insert
2830 */
401a18e9
JA
2831 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2832 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2833 else
2834 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2835
2836 depth++;
73c10101
JA
2837 }
2838
99e22598
JA
2839 /*
2840 * This drops the queue lock
2841 */
2842 if (q)
49cac01e 2843 queue_unplugged(q, depth, from_schedule);
73c10101 2844
73c10101
JA
2845 local_irq_restore(flags);
2846}
73c10101
JA
2847
2848void blk_finish_plug(struct blk_plug *plug)
2849{
f6603783 2850 blk_flush_plug_list(plug, false);
73c10101 2851
88b996cd
CH
2852 if (plug == current->plug)
2853 current->plug = NULL;
73c10101 2854}
88b996cd 2855EXPORT_SYMBOL(blk_finish_plug);
73c10101 2856
1da177e4
LT
2857int __init blk_dev_init(void)
2858{
9eb55b03
NK
2859 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2860 sizeof(((struct request *)0)->cmd_flags));
2861
89b90be2
TH
2862 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2863 kblockd_workqueue = alloc_workqueue("kblockd",
2864 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2865 if (!kblockd_workqueue)
2866 panic("Failed to create kblockd\n");
2867
2868 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2869 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2870
8324aa91 2871 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2872 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2873
d38ecf93 2874 return 0;
1da177e4 2875}