]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: Avoid that request_fn is invoked on a dead queue
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
aaf7c680 32#include <linux/ratelimit.h>
55782138
LZ
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/block.h>
1da177e4 36
8324aa91 37#include "blk.h"
5efd6113 38#include "blk-cgroup.h"
8324aa91 39
d07335e5 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 42EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 43
a73f730d
TH
44DEFINE_IDA(blk_queue_ida);
45
1da177e4
LT
46/*
47 * For the allocated request tables
48 */
5ece6c52 49static struct kmem_cache *request_cachep;
1da177e4
LT
50
51/*
52 * For queue allocation
53 */
6728cb0e 54struct kmem_cache *blk_requestq_cachep;
1da177e4 55
1da177e4
LT
56/*
57 * Controlling structure to kblockd
58 */
ff856bad 59static struct workqueue_struct *kblockd_workqueue;
1da177e4 60
26b8256e
JA
61static void drive_stat_acct(struct request *rq, int new_io)
62{
28f13702 63 struct hd_struct *part;
26b8256e 64 int rw = rq_data_dir(rq);
c9959059 65 int cpu;
26b8256e 66
c2553b58 67 if (!blk_do_io_stat(rq))
26b8256e
JA
68 return;
69
074a7aca 70 cpu = part_stat_lock();
c9959059 71
09e099d4
JM
72 if (!new_io) {
73 part = rq->part;
074a7aca 74 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 77 if (!hd_struct_try_get(part)) {
09e099d4
JM
78 /*
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
81 *
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
85 */
86 part = &rq->rq_disk->part0;
6c23a968 87 hd_struct_get(part);
09e099d4 88 }
074a7aca 89 part_round_stats(cpu, part);
316d315b 90 part_inc_in_flight(part, rw);
09e099d4 91 rq->part = part;
26b8256e 92 }
e71bf0d0 93
074a7aca 94 part_stat_unlock();
26b8256e
JA
95}
96
8324aa91 97void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
98{
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110}
111
1da177e4
LT
112/**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122{
123 struct backing_dev_info *ret = NULL;
165125e1 124 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129}
1da177e4
LT
130EXPORT_SYMBOL(blk_get_backing_dev_info);
131
2a4aa30c 132void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 133{
1afb20f3
FT
134 memset(rq, 0, sizeof(*rq));
135
1da177e4 136 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 137 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 138 rq->cpu = -1;
63a71386 139 rq->q = q;
a2dec7b3 140 rq->__sector = (sector_t) -1;
2e662b65
JA
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 143 rq->cmd = rq->__cmd;
e2494e1b 144 rq->cmd_len = BLK_MAX_CDB;
63a71386 145 rq->tag = -1;
1da177e4 146 rq->ref_count = 1;
b243ddcb 147 rq->start_time = jiffies;
9195291e 148 set_start_time_ns(rq);
09e099d4 149 rq->part = NULL;
1da177e4 150}
2a4aa30c 151EXPORT_SYMBOL(blk_rq_init);
1da177e4 152
5bb23a68
N
153static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
1da177e4 155{
143a87f4
TH
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
797e7dbb 160
143a87f4
TH
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
5bb23a68 165 }
797e7dbb 166
143a87f4
TH
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 169
143a87f4
TH
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
7ba1ba12 172
143a87f4
TH
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
7ba1ba12 175
143a87f4
TH
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
1da177e4 179}
1da177e4 180
1da177e4
LT
181void blk_dump_rq_flags(struct request *rq, char *msg)
182{
183 int bit;
184
6728cb0e 185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 rq->cmd_flags);
1da177e4 188
83096ebf
TH
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 194
33659ebb 195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 196 printk(KERN_INFO " cdb: ");
d34c87e4 197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201}
1da177e4
LT
202EXPORT_SYMBOL(blk_dump_rq_flags);
203
3cca6dc1 204static void blk_delay_work(struct work_struct *work)
1da177e4 205{
3cca6dc1 206 struct request_queue *q;
1da177e4 207
3cca6dc1
JA
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
24ecfbe2 210 __blk_run_queue(q);
3cca6dc1 211 spin_unlock_irq(q->queue_lock);
1da177e4 212}
1da177e4
LT
213
214/**
3cca6dc1
JA
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
1da177e4
LT
218 *
219 * Description:
3cca6dc1
JA
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
223 */
224void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 225{
4521cc4e
JA
226 queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 msecs_to_jiffies(msecs));
2ad8b1ef 228}
3cca6dc1 229EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 230
1da177e4
LT
231/**
232 * blk_start_queue - restart a previously stopped queue
165125e1 233 * @q: The &struct request_queue in question
1da177e4
LT
234 *
235 * Description:
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
239 **/
165125e1 240void blk_start_queue(struct request_queue *q)
1da177e4 241{
a038e253
PBG
242 WARN_ON(!irqs_disabled());
243
75ad23bc 244 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 245 __blk_run_queue(q);
1da177e4 246}
1da177e4
LT
247EXPORT_SYMBOL(blk_start_queue);
248
249/**
250 * blk_stop_queue - stop a queue
165125e1 251 * @q: The &struct request_queue in question
1da177e4
LT
252 *
253 * Description:
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
262 **/
165125e1 263void blk_stop_queue(struct request_queue *q)
1da177e4 264{
136b5721 265 cancel_delayed_work(&q->delay_work);
75ad23bc 266 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
267}
268EXPORT_SYMBOL(blk_stop_queue);
269
270/**
271 * blk_sync_queue - cancel any pending callbacks on a queue
272 * @q: the queue
273 *
274 * Description:
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
59c51591 279 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
280 * that its ->make_request_fn will not re-add plugging prior to calling
281 * this function.
282 *
da527770
VG
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 285 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 286 *
1da177e4
LT
287 */
288void blk_sync_queue(struct request_queue *q)
289{
70ed28b9 290 del_timer_sync(&q->timeout);
3cca6dc1 291 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
292}
293EXPORT_SYMBOL(blk_sync_queue);
294
c246e80d
BVA
295/**
296 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
297 * @q: The queue to run
298 *
299 * Description:
300 * Invoke request handling on a queue if there are any pending requests.
301 * May be used to restart request handling after a request has completed.
302 * This variant runs the queue whether or not the queue has been
303 * stopped. Must be called with the queue lock held and interrupts
304 * disabled. See also @blk_run_queue.
305 */
306inline void __blk_run_queue_uncond(struct request_queue *q)
307{
308 if (unlikely(blk_queue_dead(q)))
309 return;
310
311 q->request_fn(q);
312}
313
1da177e4 314/**
80a4b58e 315 * __blk_run_queue - run a single device queue
1da177e4 316 * @q: The queue to run
80a4b58e
JA
317 *
318 * Description:
319 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 320 * held and interrupts disabled.
1da177e4 321 */
24ecfbe2 322void __blk_run_queue(struct request_queue *q)
1da177e4 323{
a538cd03
TH
324 if (unlikely(blk_queue_stopped(q)))
325 return;
326
c246e80d 327 __blk_run_queue_uncond(q);
75ad23bc
NP
328}
329EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 330
24ecfbe2
CH
331/**
332 * blk_run_queue_async - run a single device queue in workqueue context
333 * @q: The queue to run
334 *
335 * Description:
336 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
337 * of us.
338 */
339void blk_run_queue_async(struct request_queue *q)
340{
e7c2f967
TH
341 if (likely(!blk_queue_stopped(q)))
342 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 343}
c21e6beb 344EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 345
75ad23bc
NP
346/**
347 * blk_run_queue - run a single device queue
348 * @q: The queue to run
80a4b58e
JA
349 *
350 * Description:
351 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 352 * May be used to restart queueing when a request has completed.
75ad23bc
NP
353 */
354void blk_run_queue(struct request_queue *q)
355{
356 unsigned long flags;
357
358 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 359 __blk_run_queue(q);
1da177e4
LT
360 spin_unlock_irqrestore(q->queue_lock, flags);
361}
362EXPORT_SYMBOL(blk_run_queue);
363
165125e1 364void blk_put_queue(struct request_queue *q)
483f4afc
AV
365{
366 kobject_put(&q->kobj);
367}
d86e0e83 368EXPORT_SYMBOL(blk_put_queue);
483f4afc 369
e3c78ca5 370/**
807592a4 371 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 372 * @q: queue to drain
c9a929dd 373 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 374 *
c9a929dd
TH
375 * Drain requests from @q. If @drain_all is set, all requests are drained.
376 * If not, only ELVPRIV requests are drained. The caller is responsible
377 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 378 */
807592a4
BVA
379static void __blk_drain_queue(struct request_queue *q, bool drain_all)
380 __releases(q->queue_lock)
381 __acquires(q->queue_lock)
e3c78ca5 382{
458f27a9
AH
383 int i;
384
807592a4
BVA
385 lockdep_assert_held(q->queue_lock);
386
e3c78ca5 387 while (true) {
481a7d64 388 bool drain = false;
e3c78ca5 389
b855b04a
TH
390 /*
391 * The caller might be trying to drain @q before its
392 * elevator is initialized.
393 */
394 if (q->elevator)
395 elv_drain_elevator(q);
396
5efd6113 397 blkcg_drain_queue(q);
e3c78ca5 398
4eabc941
TH
399 /*
400 * This function might be called on a queue which failed
b855b04a
TH
401 * driver init after queue creation or is not yet fully
402 * active yet. Some drivers (e.g. fd and loop) get unhappy
403 * in such cases. Kick queue iff dispatch queue has
404 * something on it and @q has request_fn set.
4eabc941 405 */
b855b04a 406 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 407 __blk_run_queue(q);
c9a929dd 408
8a5ecdd4 409 drain |= q->nr_rqs_elvpriv;
481a7d64
TH
410
411 /*
412 * Unfortunately, requests are queued at and tracked from
413 * multiple places and there's no single counter which can
414 * be drained. Check all the queues and counters.
415 */
416 if (drain_all) {
417 drain |= !list_empty(&q->queue_head);
418 for (i = 0; i < 2; i++) {
8a5ecdd4 419 drain |= q->nr_rqs[i];
481a7d64
TH
420 drain |= q->in_flight[i];
421 drain |= !list_empty(&q->flush_queue[i]);
422 }
423 }
e3c78ca5 424
481a7d64 425 if (!drain)
e3c78ca5 426 break;
807592a4
BVA
427
428 spin_unlock_irq(q->queue_lock);
429
e3c78ca5 430 msleep(10);
807592a4
BVA
431
432 spin_lock_irq(q->queue_lock);
e3c78ca5 433 }
458f27a9
AH
434
435 /*
436 * With queue marked dead, any woken up waiter will fail the
437 * allocation path, so the wakeup chaining is lost and we're
438 * left with hung waiters. We need to wake up those waiters.
439 */
440 if (q->request_fn) {
a051661c
TH
441 struct request_list *rl;
442
a051661c
TH
443 blk_queue_for_each_rl(rl, q)
444 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
445 wake_up_all(&rl->wait[i]);
458f27a9 446 }
e3c78ca5
TH
447}
448
d732580b
TH
449/**
450 * blk_queue_bypass_start - enter queue bypass mode
451 * @q: queue of interest
452 *
453 * In bypass mode, only the dispatch FIFO queue of @q is used. This
454 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 455 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
456 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
457 * inside queue or RCU read lock.
d732580b
TH
458 */
459void blk_queue_bypass_start(struct request_queue *q)
460{
b82d4b19
TH
461 bool drain;
462
d732580b 463 spin_lock_irq(q->queue_lock);
b82d4b19 464 drain = !q->bypass_depth++;
d732580b
TH
465 queue_flag_set(QUEUE_FLAG_BYPASS, q);
466 spin_unlock_irq(q->queue_lock);
467
b82d4b19 468 if (drain) {
807592a4
BVA
469 spin_lock_irq(q->queue_lock);
470 __blk_drain_queue(q, false);
471 spin_unlock_irq(q->queue_lock);
472
b82d4b19
TH
473 /* ensure blk_queue_bypass() is %true inside RCU read lock */
474 synchronize_rcu();
475 }
d732580b
TH
476}
477EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
478
479/**
480 * blk_queue_bypass_end - leave queue bypass mode
481 * @q: queue of interest
482 *
483 * Leave bypass mode and restore the normal queueing behavior.
484 */
485void blk_queue_bypass_end(struct request_queue *q)
486{
487 spin_lock_irq(q->queue_lock);
488 if (!--q->bypass_depth)
489 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
490 WARN_ON_ONCE(q->bypass_depth < 0);
491 spin_unlock_irq(q->queue_lock);
492}
493EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
494
c9a929dd
TH
495/**
496 * blk_cleanup_queue - shutdown a request queue
497 * @q: request queue to shutdown
498 *
c246e80d
BVA
499 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
500 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 501 */
6728cb0e 502void blk_cleanup_queue(struct request_queue *q)
483f4afc 503{
c9a929dd 504 spinlock_t *lock = q->queue_lock;
e3335de9 505
3f3299d5 506 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 507 mutex_lock(&q->sysfs_lock);
3f3299d5 508 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 509 spin_lock_irq(lock);
6ecf23af 510
80fd9979 511 /*
3f3299d5 512 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
513 * that, unlike blk_queue_bypass_start(), we aren't performing
514 * synchronize_rcu() after entering bypass mode to avoid the delay
515 * as some drivers create and destroy a lot of queues while
516 * probing. This is still safe because blk_release_queue() will be
517 * called only after the queue refcnt drops to zero and nothing,
518 * RCU or not, would be traversing the queue by then.
519 */
6ecf23af
TH
520 q->bypass_depth++;
521 queue_flag_set(QUEUE_FLAG_BYPASS, q);
522
c9a929dd
TH
523 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
524 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 525 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
526 spin_unlock_irq(lock);
527 mutex_unlock(&q->sysfs_lock);
528
c246e80d
BVA
529 /*
530 * Drain all requests queued before DYING marking. Set DEAD flag to
531 * prevent that q->request_fn() gets invoked after draining finished.
532 */
807592a4
BVA
533 spin_lock_irq(lock);
534 __blk_drain_queue(q, true);
c246e80d 535 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 536 spin_unlock_irq(lock);
c9a929dd
TH
537
538 /* @q won't process any more request, flush async actions */
539 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
540 blk_sync_queue(q);
541
5e5cfac0
AH
542 spin_lock_irq(lock);
543 if (q->queue_lock != &q->__queue_lock)
544 q->queue_lock = &q->__queue_lock;
545 spin_unlock_irq(lock);
546
c9a929dd 547 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
548 blk_put_queue(q);
549}
1da177e4
LT
550EXPORT_SYMBOL(blk_cleanup_queue);
551
5b788ce3
TH
552int blk_init_rl(struct request_list *rl, struct request_queue *q,
553 gfp_t gfp_mask)
1da177e4 554{
1abec4fd
MS
555 if (unlikely(rl->rq_pool))
556 return 0;
557
5b788ce3 558 rl->q = q;
1faa16d2
JA
559 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
560 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
561 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
562 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 563
1946089a 564 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 565 mempool_free_slab, request_cachep,
5b788ce3 566 gfp_mask, q->node);
1da177e4
LT
567 if (!rl->rq_pool)
568 return -ENOMEM;
569
570 return 0;
571}
572
5b788ce3
TH
573void blk_exit_rl(struct request_list *rl)
574{
575 if (rl->rq_pool)
576 mempool_destroy(rl->rq_pool);
577}
578
165125e1 579struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 580{
c304a51b 581 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
582}
583EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 584
165125e1 585struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 586{
165125e1 587 struct request_queue *q;
e0bf68dd 588 int err;
1946089a 589
8324aa91 590 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 591 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
592 if (!q)
593 return NULL;
594
00380a40 595 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d
TH
596 if (q->id < 0)
597 goto fail_q;
598
0989a025
JA
599 q->backing_dev_info.ra_pages =
600 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
601 q->backing_dev_info.state = 0;
602 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 603 q->backing_dev_info.name = "block";
5151412d 604 q->node = node_id;
0989a025 605
e0bf68dd 606 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
607 if (err)
608 goto fail_id;
e0bf68dd 609
31373d09
MG
610 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
611 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 612 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 613 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 614 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 615 INIT_LIST_HEAD(&q->icq_list);
4eef3049 616#ifdef CONFIG_BLK_CGROUP
e8989fae 617 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 618#endif
ae1b1539
TH
619 INIT_LIST_HEAD(&q->flush_queue[0]);
620 INIT_LIST_HEAD(&q->flush_queue[1]);
621 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 622 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 623
8324aa91 624 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 625
483f4afc 626 mutex_init(&q->sysfs_lock);
e7e72bf6 627 spin_lock_init(&q->__queue_lock);
483f4afc 628
c94a96ac
VG
629 /*
630 * By default initialize queue_lock to internal lock and driver can
631 * override it later if need be.
632 */
633 q->queue_lock = &q->__queue_lock;
634
b82d4b19
TH
635 /*
636 * A queue starts its life with bypass turned on to avoid
637 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
638 * init. The initial bypass will be finished when the queue is
639 * registered by blk_register_queue().
b82d4b19
TH
640 */
641 q->bypass_depth = 1;
642 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
643
5efd6113 644 if (blkcg_init_queue(q))
f51b802c
TH
645 goto fail_id;
646
1da177e4 647 return q;
a73f730d
TH
648
649fail_id:
650 ida_simple_remove(&blk_queue_ida, q->id);
651fail_q:
652 kmem_cache_free(blk_requestq_cachep, q);
653 return NULL;
1da177e4 654}
1946089a 655EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
656
657/**
658 * blk_init_queue - prepare a request queue for use with a block device
659 * @rfn: The function to be called to process requests that have been
660 * placed on the queue.
661 * @lock: Request queue spin lock
662 *
663 * Description:
664 * If a block device wishes to use the standard request handling procedures,
665 * which sorts requests and coalesces adjacent requests, then it must
666 * call blk_init_queue(). The function @rfn will be called when there
667 * are requests on the queue that need to be processed. If the device
668 * supports plugging, then @rfn may not be called immediately when requests
669 * are available on the queue, but may be called at some time later instead.
670 * Plugged queues are generally unplugged when a buffer belonging to one
671 * of the requests on the queue is needed, or due to memory pressure.
672 *
673 * @rfn is not required, or even expected, to remove all requests off the
674 * queue, but only as many as it can handle at a time. If it does leave
675 * requests on the queue, it is responsible for arranging that the requests
676 * get dealt with eventually.
677 *
678 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
679 * request queue; this lock will be taken also from interrupt context, so irq
680 * disabling is needed for it.
1da177e4 681 *
710027a4 682 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
683 * it didn't succeed.
684 *
685 * Note:
686 * blk_init_queue() must be paired with a blk_cleanup_queue() call
687 * when the block device is deactivated (such as at module unload).
688 **/
1946089a 689
165125e1 690struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 691{
c304a51b 692 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
693}
694EXPORT_SYMBOL(blk_init_queue);
695
165125e1 696struct request_queue *
1946089a
CL
697blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
698{
c86d1b8a 699 struct request_queue *uninit_q, *q;
1da177e4 700
c86d1b8a
MS
701 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
702 if (!uninit_q)
703 return NULL;
704
5151412d 705 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
706 if (!q)
707 blk_cleanup_queue(uninit_q);
708
709 return q;
01effb0d
MS
710}
711EXPORT_SYMBOL(blk_init_queue_node);
712
713struct request_queue *
714blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
715 spinlock_t *lock)
01effb0d 716{
1da177e4
LT
717 if (!q)
718 return NULL;
719
a051661c 720 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
8669aafd 721 return NULL;
1da177e4
LT
722
723 q->request_fn = rfn;
1da177e4 724 q->prep_rq_fn = NULL;
28018c24 725 q->unprep_rq_fn = NULL;
60ea8226 726 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
727
728 /* Override internal queue lock with supplied lock pointer */
729 if (lock)
730 q->queue_lock = lock;
1da177e4 731
f3b144aa
JA
732 /*
733 * This also sets hw/phys segments, boundary and size
734 */
c20e8de2 735 blk_queue_make_request(q, blk_queue_bio);
1da177e4 736
44ec9542
AS
737 q->sg_reserved_size = INT_MAX;
738
b82d4b19
TH
739 /* init elevator */
740 if (elevator_init(q, NULL))
741 return NULL;
b82d4b19 742 return q;
1da177e4 743}
5151412d 744EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 745
09ac46c4 746bool blk_get_queue(struct request_queue *q)
1da177e4 747{
3f3299d5 748 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
749 __blk_get_queue(q);
750 return true;
1da177e4
LT
751 }
752
09ac46c4 753 return false;
1da177e4 754}
d86e0e83 755EXPORT_SYMBOL(blk_get_queue);
1da177e4 756
5b788ce3 757static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 758{
f1f8cc94 759 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 760 elv_put_request(rl->q, rq);
f1f8cc94 761 if (rq->elv.icq)
11a3122f 762 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
763 }
764
5b788ce3 765 mempool_free(rq, rl->rq_pool);
1da177e4
LT
766}
767
1da177e4
LT
768/*
769 * ioc_batching returns true if the ioc is a valid batching request and
770 * should be given priority access to a request.
771 */
165125e1 772static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
773{
774 if (!ioc)
775 return 0;
776
777 /*
778 * Make sure the process is able to allocate at least 1 request
779 * even if the batch times out, otherwise we could theoretically
780 * lose wakeups.
781 */
782 return ioc->nr_batch_requests == q->nr_batching ||
783 (ioc->nr_batch_requests > 0
784 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
785}
786
787/*
788 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
789 * will cause the process to be a "batcher" on all queues in the system. This
790 * is the behaviour we want though - once it gets a wakeup it should be given
791 * a nice run.
792 */
165125e1 793static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
794{
795 if (!ioc || ioc_batching(q, ioc))
796 return;
797
798 ioc->nr_batch_requests = q->nr_batching;
799 ioc->last_waited = jiffies;
800}
801
5b788ce3 802static void __freed_request(struct request_list *rl, int sync)
1da177e4 803{
5b788ce3 804 struct request_queue *q = rl->q;
1da177e4 805
a051661c
TH
806 /*
807 * bdi isn't aware of blkcg yet. As all async IOs end up root
808 * blkcg anyway, just use root blkcg state.
809 */
810 if (rl == &q->root_rl &&
811 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 812 blk_clear_queue_congested(q, sync);
1da177e4 813
1faa16d2
JA
814 if (rl->count[sync] + 1 <= q->nr_requests) {
815 if (waitqueue_active(&rl->wait[sync]))
816 wake_up(&rl->wait[sync]);
1da177e4 817
5b788ce3 818 blk_clear_rl_full(rl, sync);
1da177e4
LT
819 }
820}
821
822/*
823 * A request has just been released. Account for it, update the full and
824 * congestion status, wake up any waiters. Called under q->queue_lock.
825 */
5b788ce3 826static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 827{
5b788ce3 828 struct request_queue *q = rl->q;
75eb6c37 829 int sync = rw_is_sync(flags);
1da177e4 830
8a5ecdd4 831 q->nr_rqs[sync]--;
1faa16d2 832 rl->count[sync]--;
75eb6c37 833 if (flags & REQ_ELVPRIV)
8a5ecdd4 834 q->nr_rqs_elvpriv--;
1da177e4 835
5b788ce3 836 __freed_request(rl, sync);
1da177e4 837
1faa16d2 838 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 839 __freed_request(rl, sync ^ 1);
1da177e4
LT
840}
841
9d5a4e94
MS
842/*
843 * Determine if elevator data should be initialized when allocating the
844 * request associated with @bio.
845 */
846static bool blk_rq_should_init_elevator(struct bio *bio)
847{
848 if (!bio)
849 return true;
850
851 /*
852 * Flush requests do not use the elevator so skip initialization.
853 * This allows a request to share the flush and elevator data.
854 */
855 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
856 return false;
857
858 return true;
859}
860
852c788f
TH
861/**
862 * rq_ioc - determine io_context for request allocation
863 * @bio: request being allocated is for this bio (can be %NULL)
864 *
865 * Determine io_context to use for request allocation for @bio. May return
866 * %NULL if %current->io_context doesn't exist.
867 */
868static struct io_context *rq_ioc(struct bio *bio)
869{
870#ifdef CONFIG_BLK_CGROUP
871 if (bio && bio->bi_ioc)
872 return bio->bi_ioc;
873#endif
874 return current->io_context;
875}
876
da8303c6 877/**
a06e05e6 878 * __get_request - get a free request
5b788ce3 879 * @rl: request list to allocate from
da8303c6
TH
880 * @rw_flags: RW and SYNC flags
881 * @bio: bio to allocate request for (can be %NULL)
882 * @gfp_mask: allocation mask
883 *
884 * Get a free request from @q. This function may fail under memory
885 * pressure or if @q is dead.
886 *
887 * Must be callled with @q->queue_lock held and,
888 * Returns %NULL on failure, with @q->queue_lock held.
889 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 890 */
5b788ce3 891static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 892 struct bio *bio, gfp_t gfp_mask)
1da177e4 893{
5b788ce3 894 struct request_queue *q = rl->q;
b679281a 895 struct request *rq;
7f4b35d1
TH
896 struct elevator_type *et = q->elevator->type;
897 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 898 struct io_cq *icq = NULL;
1faa16d2 899 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 900 int may_queue;
88ee5ef1 901
3f3299d5 902 if (unlikely(blk_queue_dying(q)))
da8303c6
TH
903 return NULL;
904
7749a8d4 905 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
906 if (may_queue == ELV_MQUEUE_NO)
907 goto rq_starved;
908
1faa16d2
JA
909 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
910 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
911 /*
912 * The queue will fill after this allocation, so set
913 * it as full, and mark this process as "batching".
914 * This process will be allowed to complete a batch of
915 * requests, others will be blocked.
916 */
5b788ce3 917 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 918 ioc_set_batching(q, ioc);
5b788ce3 919 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
920 } else {
921 if (may_queue != ELV_MQUEUE_MUST
922 && !ioc_batching(q, ioc)) {
923 /*
924 * The queue is full and the allocating
925 * process is not a "batcher", and not
926 * exempted by the IO scheduler
927 */
b679281a 928 return NULL;
88ee5ef1
JA
929 }
930 }
1da177e4 931 }
a051661c
TH
932 /*
933 * bdi isn't aware of blkcg yet. As all async IOs end up
934 * root blkcg anyway, just use root blkcg state.
935 */
936 if (rl == &q->root_rl)
937 blk_set_queue_congested(q, is_sync);
1da177e4
LT
938 }
939
082cf69e
JA
940 /*
941 * Only allow batching queuers to allocate up to 50% over the defined
942 * limit of requests, otherwise we could have thousands of requests
943 * allocated with any setting of ->nr_requests
944 */
1faa16d2 945 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 946 return NULL;
fd782a4a 947
8a5ecdd4 948 q->nr_rqs[is_sync]++;
1faa16d2
JA
949 rl->count[is_sync]++;
950 rl->starved[is_sync] = 0;
cb98fc8b 951
f1f8cc94
TH
952 /*
953 * Decide whether the new request will be managed by elevator. If
954 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
955 * prevent the current elevator from being destroyed until the new
956 * request is freed. This guarantees icq's won't be destroyed and
957 * makes creating new ones safe.
958 *
959 * Also, lookup icq while holding queue_lock. If it doesn't exist,
960 * it will be created after releasing queue_lock.
961 */
d732580b 962 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 963 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 964 q->nr_rqs_elvpriv++;
f1f8cc94
TH
965 if (et->icq_cache && ioc)
966 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 967 }
cb98fc8b 968
f253b86b
JA
969 if (blk_queue_io_stat(q))
970 rw_flags |= REQ_IO_STAT;
1da177e4
LT
971 spin_unlock_irq(q->queue_lock);
972
29e2b09a 973 /* allocate and init request */
5b788ce3 974 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 975 if (!rq)
b679281a 976 goto fail_alloc;
1da177e4 977
29e2b09a 978 blk_rq_init(q, rq);
a051661c 979 blk_rq_set_rl(rq, rl);
29e2b09a
TH
980 rq->cmd_flags = rw_flags | REQ_ALLOCED;
981
aaf7c680 982 /* init elvpriv */
29e2b09a 983 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 984 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
985 if (ioc)
986 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
987 if (!icq)
988 goto fail_elvpriv;
29e2b09a 989 }
aaf7c680
TH
990
991 rq->elv.icq = icq;
992 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
993 goto fail_elvpriv;
994
995 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
996 if (icq)
997 get_io_context(icq->ioc);
998 }
aaf7c680 999out:
88ee5ef1
JA
1000 /*
1001 * ioc may be NULL here, and ioc_batching will be false. That's
1002 * OK, if the queue is under the request limit then requests need
1003 * not count toward the nr_batch_requests limit. There will always
1004 * be some limit enforced by BLK_BATCH_TIME.
1005 */
1da177e4
LT
1006 if (ioc_batching(q, ioc))
1007 ioc->nr_batch_requests--;
6728cb0e 1008
1faa16d2 1009 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1010 return rq;
b679281a 1011
aaf7c680
TH
1012fail_elvpriv:
1013 /*
1014 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1015 * and may fail indefinitely under memory pressure and thus
1016 * shouldn't stall IO. Treat this request as !elvpriv. This will
1017 * disturb iosched and blkcg but weird is bettern than dead.
1018 */
1019 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1020 dev_name(q->backing_dev_info.dev));
1021
1022 rq->cmd_flags &= ~REQ_ELVPRIV;
1023 rq->elv.icq = NULL;
1024
1025 spin_lock_irq(q->queue_lock);
8a5ecdd4 1026 q->nr_rqs_elvpriv--;
aaf7c680
TH
1027 spin_unlock_irq(q->queue_lock);
1028 goto out;
1029
b679281a
TH
1030fail_alloc:
1031 /*
1032 * Allocation failed presumably due to memory. Undo anything we
1033 * might have messed up.
1034 *
1035 * Allocating task should really be put onto the front of the wait
1036 * queue, but this is pretty rare.
1037 */
1038 spin_lock_irq(q->queue_lock);
5b788ce3 1039 freed_request(rl, rw_flags);
b679281a
TH
1040
1041 /*
1042 * in the very unlikely event that allocation failed and no
1043 * requests for this direction was pending, mark us starved so that
1044 * freeing of a request in the other direction will notice
1045 * us. another possible fix would be to split the rq mempool into
1046 * READ and WRITE
1047 */
1048rq_starved:
1049 if (unlikely(rl->count[is_sync] == 0))
1050 rl->starved[is_sync] = 1;
1051 return NULL;
1da177e4
LT
1052}
1053
da8303c6 1054/**
a06e05e6 1055 * get_request - get a free request
da8303c6
TH
1056 * @q: request_queue to allocate request from
1057 * @rw_flags: RW and SYNC flags
1058 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1059 * @gfp_mask: allocation mask
da8303c6 1060 *
a06e05e6
TH
1061 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1062 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1063 *
da8303c6
TH
1064 * Must be callled with @q->queue_lock held and,
1065 * Returns %NULL on failure, with @q->queue_lock held.
1066 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1067 */
a06e05e6
TH
1068static struct request *get_request(struct request_queue *q, int rw_flags,
1069 struct bio *bio, gfp_t gfp_mask)
1da177e4 1070{
1faa16d2 1071 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1072 DEFINE_WAIT(wait);
a051661c 1073 struct request_list *rl;
1da177e4 1074 struct request *rq;
a051661c
TH
1075
1076 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1077retry:
a051661c 1078 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1079 if (rq)
1080 return rq;
1da177e4 1081
3f3299d5 1082 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1083 blk_put_rl(rl);
a06e05e6 1084 return NULL;
a051661c 1085 }
1da177e4 1086
a06e05e6
TH
1087 /* wait on @rl and retry */
1088 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1089 TASK_UNINTERRUPTIBLE);
1da177e4 1090
a06e05e6 1091 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1092
a06e05e6
TH
1093 spin_unlock_irq(q->queue_lock);
1094 io_schedule();
d6344532 1095
a06e05e6
TH
1096 /*
1097 * After sleeping, we become a "batching" process and will be able
1098 * to allocate at least one request, and up to a big batch of them
1099 * for a small period time. See ioc_batching, ioc_set_batching
1100 */
a06e05e6 1101 ioc_set_batching(q, current->io_context);
05caf8db 1102
a06e05e6
TH
1103 spin_lock_irq(q->queue_lock);
1104 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1105
a06e05e6 1106 goto retry;
1da177e4
LT
1107}
1108
165125e1 1109struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1110{
1111 struct request *rq;
1112
1113 BUG_ON(rw != READ && rw != WRITE);
1114
7f4b35d1
TH
1115 /* create ioc upfront */
1116 create_io_context(gfp_mask, q->node);
1117
d6344532 1118 spin_lock_irq(q->queue_lock);
a06e05e6 1119 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1120 if (!rq)
1121 spin_unlock_irq(q->queue_lock);
d6344532 1122 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1123
1124 return rq;
1125}
1da177e4
LT
1126EXPORT_SYMBOL(blk_get_request);
1127
dc72ef4a 1128/**
79eb63e9 1129 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1130 * @q: target request queue
79eb63e9
BH
1131 * @bio: The bio describing the memory mappings that will be submitted for IO.
1132 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1133 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1134 *
79eb63e9
BH
1135 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1136 * type commands. Where the struct request needs to be farther initialized by
1137 * the caller. It is passed a &struct bio, which describes the memory info of
1138 * the I/O transfer.
dc72ef4a 1139 *
79eb63e9
BH
1140 * The caller of blk_make_request must make sure that bi_io_vec
1141 * are set to describe the memory buffers. That bio_data_dir() will return
1142 * the needed direction of the request. (And all bio's in the passed bio-chain
1143 * are properly set accordingly)
1144 *
1145 * If called under none-sleepable conditions, mapped bio buffers must not
1146 * need bouncing, by calling the appropriate masked or flagged allocator,
1147 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1148 * BUG.
53674ac5
JA
1149 *
1150 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1151 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1152 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1153 * completion of a bio that hasn't been submitted yet, thus resulting in a
1154 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1155 * of bio_alloc(), as that avoids the mempool deadlock.
1156 * If possible a big IO should be split into smaller parts when allocation
1157 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1158 */
79eb63e9
BH
1159struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1160 gfp_t gfp_mask)
dc72ef4a 1161{
79eb63e9
BH
1162 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1163
1164 if (unlikely(!rq))
1165 return ERR_PTR(-ENOMEM);
1166
1167 for_each_bio(bio) {
1168 struct bio *bounce_bio = bio;
1169 int ret;
1170
1171 blk_queue_bounce(q, &bounce_bio);
1172 ret = blk_rq_append_bio(q, rq, bounce_bio);
1173 if (unlikely(ret)) {
1174 blk_put_request(rq);
1175 return ERR_PTR(ret);
1176 }
1177 }
1178
1179 return rq;
dc72ef4a 1180}
79eb63e9 1181EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1182
1da177e4
LT
1183/**
1184 * blk_requeue_request - put a request back on queue
1185 * @q: request queue where request should be inserted
1186 * @rq: request to be inserted
1187 *
1188 * Description:
1189 * Drivers often keep queueing requests until the hardware cannot accept
1190 * more, when that condition happens we need to put the request back
1191 * on the queue. Must be called with queue lock held.
1192 */
165125e1 1193void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1194{
242f9dcb
JA
1195 blk_delete_timer(rq);
1196 blk_clear_rq_complete(rq);
5f3ea37c 1197 trace_block_rq_requeue(q, rq);
2056a782 1198
1da177e4
LT
1199 if (blk_rq_tagged(rq))
1200 blk_queue_end_tag(q, rq);
1201
ba396a6c
JB
1202 BUG_ON(blk_queued_rq(rq));
1203
1da177e4
LT
1204 elv_requeue_request(q, rq);
1205}
1da177e4
LT
1206EXPORT_SYMBOL(blk_requeue_request);
1207
73c10101
JA
1208static void add_acct_request(struct request_queue *q, struct request *rq,
1209 int where)
1210{
1211 drive_stat_acct(rq, 1);
7eaceacc 1212 __elv_add_request(q, rq, where);
73c10101
JA
1213}
1214
074a7aca
TH
1215static void part_round_stats_single(int cpu, struct hd_struct *part,
1216 unsigned long now)
1217{
1218 if (now == part->stamp)
1219 return;
1220
316d315b 1221 if (part_in_flight(part)) {
074a7aca 1222 __part_stat_add(cpu, part, time_in_queue,
316d315b 1223 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1224 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1225 }
1226 part->stamp = now;
1227}
1228
1229/**
496aa8a9
RD
1230 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1231 * @cpu: cpu number for stats access
1232 * @part: target partition
1da177e4
LT
1233 *
1234 * The average IO queue length and utilisation statistics are maintained
1235 * by observing the current state of the queue length and the amount of
1236 * time it has been in this state for.
1237 *
1238 * Normally, that accounting is done on IO completion, but that can result
1239 * in more than a second's worth of IO being accounted for within any one
1240 * second, leading to >100% utilisation. To deal with that, we call this
1241 * function to do a round-off before returning the results when reading
1242 * /proc/diskstats. This accounts immediately for all queue usage up to
1243 * the current jiffies and restarts the counters again.
1244 */
c9959059 1245void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1246{
1247 unsigned long now = jiffies;
1248
074a7aca
TH
1249 if (part->partno)
1250 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1251 part_round_stats_single(cpu, part, now);
6f2576af 1252}
074a7aca 1253EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1254
1da177e4
LT
1255/*
1256 * queue lock must be held
1257 */
165125e1 1258void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1259{
1da177e4
LT
1260 if (unlikely(!q))
1261 return;
1262 if (unlikely(--req->ref_count))
1263 return;
1264
8922e16c
TH
1265 elv_completed_request(q, req);
1266
1cd96c24
BH
1267 /* this is a bio leak */
1268 WARN_ON(req->bio != NULL);
1269
1da177e4
LT
1270 /*
1271 * Request may not have originated from ll_rw_blk. if not,
1272 * it didn't come out of our reserved rq pools
1273 */
49171e5c 1274 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1275 unsigned int flags = req->cmd_flags;
a051661c 1276 struct request_list *rl = blk_rq_rl(req);
1da177e4 1277
1da177e4 1278 BUG_ON(!list_empty(&req->queuelist));
9817064b 1279 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4 1280
a051661c
TH
1281 blk_free_request(rl, req);
1282 freed_request(rl, flags);
1283 blk_put_rl(rl);
1da177e4
LT
1284 }
1285}
6e39b69e
MC
1286EXPORT_SYMBOL_GPL(__blk_put_request);
1287
1da177e4
LT
1288void blk_put_request(struct request *req)
1289{
8922e16c 1290 unsigned long flags;
165125e1 1291 struct request_queue *q = req->q;
8922e16c 1292
52a93ba8
FT
1293 spin_lock_irqsave(q->queue_lock, flags);
1294 __blk_put_request(q, req);
1295 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1296}
1da177e4
LT
1297EXPORT_SYMBOL(blk_put_request);
1298
66ac0280
CH
1299/**
1300 * blk_add_request_payload - add a payload to a request
1301 * @rq: request to update
1302 * @page: page backing the payload
1303 * @len: length of the payload.
1304 *
1305 * This allows to later add a payload to an already submitted request by
1306 * a block driver. The driver needs to take care of freeing the payload
1307 * itself.
1308 *
1309 * Note that this is a quite horrible hack and nothing but handling of
1310 * discard requests should ever use it.
1311 */
1312void blk_add_request_payload(struct request *rq, struct page *page,
1313 unsigned int len)
1314{
1315 struct bio *bio = rq->bio;
1316
1317 bio->bi_io_vec->bv_page = page;
1318 bio->bi_io_vec->bv_offset = 0;
1319 bio->bi_io_vec->bv_len = len;
1320
1321 bio->bi_size = len;
1322 bio->bi_vcnt = 1;
1323 bio->bi_phys_segments = 1;
1324
1325 rq->__data_len = rq->resid_len = len;
1326 rq->nr_phys_segments = 1;
1327 rq->buffer = bio_data(bio);
1328}
1329EXPORT_SYMBOL_GPL(blk_add_request_payload);
1330
73c10101
JA
1331static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1332 struct bio *bio)
1333{
1334 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1335
73c10101
JA
1336 if (!ll_back_merge_fn(q, req, bio))
1337 return false;
1338
1339 trace_block_bio_backmerge(q, bio);
1340
1341 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1342 blk_rq_set_mixed_merge(req);
1343
1344 req->biotail->bi_next = bio;
1345 req->biotail = bio;
1346 req->__data_len += bio->bi_size;
1347 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1348
1349 drive_stat_acct(req, 0);
1350 return true;
1351}
1352
1353static bool bio_attempt_front_merge(struct request_queue *q,
1354 struct request *req, struct bio *bio)
1355{
1356 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1357
73c10101
JA
1358 if (!ll_front_merge_fn(q, req, bio))
1359 return false;
1360
1361 trace_block_bio_frontmerge(q, bio);
1362
1363 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1364 blk_rq_set_mixed_merge(req);
1365
73c10101
JA
1366 bio->bi_next = req->bio;
1367 req->bio = bio;
1368
1369 /*
1370 * may not be valid. if the low level driver said
1371 * it didn't need a bounce buffer then it better
1372 * not touch req->buffer either...
1373 */
1374 req->buffer = bio_data(bio);
1375 req->__sector = bio->bi_sector;
1376 req->__data_len += bio->bi_size;
1377 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1378
1379 drive_stat_acct(req, 0);
1380 return true;
1381}
1382
bd87b589
TH
1383/**
1384 * attempt_plug_merge - try to merge with %current's plugged list
1385 * @q: request_queue new bio is being queued at
1386 * @bio: new bio being queued
1387 * @request_count: out parameter for number of traversed plugged requests
1388 *
1389 * Determine whether @bio being queued on @q can be merged with a request
1390 * on %current's plugged list. Returns %true if merge was successful,
1391 * otherwise %false.
1392 *
07c2bd37
TH
1393 * Plugging coalesces IOs from the same issuer for the same purpose without
1394 * going through @q->queue_lock. As such it's more of an issuing mechanism
1395 * than scheduling, and the request, while may have elvpriv data, is not
1396 * added on the elevator at this point. In addition, we don't have
1397 * reliable access to the elevator outside queue lock. Only check basic
1398 * merging parameters without querying the elevator.
73c10101 1399 */
bd87b589
TH
1400static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1401 unsigned int *request_count)
73c10101
JA
1402{
1403 struct blk_plug *plug;
1404 struct request *rq;
1405 bool ret = false;
1406
bd87b589 1407 plug = current->plug;
73c10101
JA
1408 if (!plug)
1409 goto out;
56ebdaf2 1410 *request_count = 0;
73c10101
JA
1411
1412 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1413 int el_ret;
1414
1b2e19f1
SL
1415 if (rq->q == q)
1416 (*request_count)++;
56ebdaf2 1417
07c2bd37 1418 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1419 continue;
1420
050c8ea8 1421 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1422 if (el_ret == ELEVATOR_BACK_MERGE) {
1423 ret = bio_attempt_back_merge(q, rq, bio);
1424 if (ret)
1425 break;
1426 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1427 ret = bio_attempt_front_merge(q, rq, bio);
1428 if (ret)
1429 break;
1430 }
1431 }
1432out:
1433 return ret;
1434}
1435
86db1e29 1436void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1437{
4aff5e23 1438 req->cmd_type = REQ_TYPE_FS;
52d9e675 1439
7b6d91da
CH
1440 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1441 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1442 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1443
52d9e675 1444 req->errors = 0;
a2dec7b3 1445 req->__sector = bio->bi_sector;
52d9e675 1446 req->ioprio = bio_prio(bio);
bc1c56fd 1447 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1448}
1449
5a7bbad2 1450void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1451{
5e00d1b5 1452 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1453 struct blk_plug *plug;
1454 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1455 struct request *req;
56ebdaf2 1456 unsigned int request_count = 0;
1da177e4 1457
1da177e4
LT
1458 /*
1459 * low level driver can indicate that it wants pages above a
1460 * certain limit bounced to low memory (ie for highmem, or even
1461 * ISA dma in theory)
1462 */
1463 blk_queue_bounce(q, &bio);
1464
4fed947c 1465 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1466 spin_lock_irq(q->queue_lock);
ae1b1539 1467 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1468 goto get_rq;
1469 }
1470
73c10101
JA
1471 /*
1472 * Check if we can merge with the plugged list before grabbing
1473 * any locks.
1474 */
bd87b589 1475 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1476 return;
1da177e4 1477
73c10101 1478 spin_lock_irq(q->queue_lock);
2056a782 1479
73c10101
JA
1480 el_ret = elv_merge(q, &req, bio);
1481 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1482 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1483 elv_bio_merged(q, req, bio);
73c10101
JA
1484 if (!attempt_back_merge(q, req))
1485 elv_merged_request(q, req, el_ret);
1486 goto out_unlock;
1487 }
1488 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1489 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1490 elv_bio_merged(q, req, bio);
73c10101
JA
1491 if (!attempt_front_merge(q, req))
1492 elv_merged_request(q, req, el_ret);
1493 goto out_unlock;
80a761fd 1494 }
1da177e4
LT
1495 }
1496
450991bc 1497get_rq:
7749a8d4
JA
1498 /*
1499 * This sync check and mask will be re-done in init_request_from_bio(),
1500 * but we need to set it earlier to expose the sync flag to the
1501 * rq allocator and io schedulers.
1502 */
1503 rw_flags = bio_data_dir(bio);
1504 if (sync)
7b6d91da 1505 rw_flags |= REQ_SYNC;
7749a8d4 1506
1da177e4 1507 /*
450991bc 1508 * Grab a free request. This is might sleep but can not fail.
d6344532 1509 * Returns with the queue unlocked.
450991bc 1510 */
a06e05e6 1511 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1512 if (unlikely(!req)) {
1513 bio_endio(bio, -ENODEV); /* @q is dead */
1514 goto out_unlock;
1515 }
d6344532 1516
450991bc
NP
1517 /*
1518 * After dropping the lock and possibly sleeping here, our request
1519 * may now be mergeable after it had proven unmergeable (above).
1520 * We don't worry about that case for efficiency. It won't happen
1521 * often, and the elevators are able to handle it.
1da177e4 1522 */
52d9e675 1523 init_request_from_bio(req, bio);
1da177e4 1524
9562ad9a 1525 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1526 req->cpu = raw_smp_processor_id();
73c10101
JA
1527
1528 plug = current->plug;
721a9602 1529 if (plug) {
dc6d36c9
JA
1530 /*
1531 * If this is the first request added after a plug, fire
1532 * of a plug trace. If others have been added before, check
1533 * if we have multiple devices in this plug. If so, make a
1534 * note to sort the list before dispatch.
1535 */
1536 if (list_empty(&plug->list))
1537 trace_block_plug(q);
3540d5e8
SL
1538 else {
1539 if (!plug->should_sort) {
1540 struct request *__rq;
73c10101 1541
3540d5e8
SL
1542 __rq = list_entry_rq(plug->list.prev);
1543 if (__rq->q != q)
1544 plug->should_sort = 1;
1545 }
019ceb7d 1546 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1547 blk_flush_plug_list(plug, false);
019ceb7d
SL
1548 trace_block_plug(q);
1549 }
73c10101 1550 }
73c10101
JA
1551 list_add_tail(&req->queuelist, &plug->list);
1552 drive_stat_acct(req, 1);
1553 } else {
1554 spin_lock_irq(q->queue_lock);
1555 add_acct_request(q, req, where);
24ecfbe2 1556 __blk_run_queue(q);
73c10101
JA
1557out_unlock:
1558 spin_unlock_irq(q->queue_lock);
1559 }
1da177e4 1560}
c20e8de2 1561EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1562
1563/*
1564 * If bio->bi_dev is a partition, remap the location
1565 */
1566static inline void blk_partition_remap(struct bio *bio)
1567{
1568 struct block_device *bdev = bio->bi_bdev;
1569
bf2de6f5 1570 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1571 struct hd_struct *p = bdev->bd_part;
1572
1da177e4
LT
1573 bio->bi_sector += p->start_sect;
1574 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1575
d07335e5
MS
1576 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1577 bdev->bd_dev,
1578 bio->bi_sector - p->start_sect);
1da177e4
LT
1579 }
1580}
1581
1da177e4
LT
1582static void handle_bad_sector(struct bio *bio)
1583{
1584 char b[BDEVNAME_SIZE];
1585
1586 printk(KERN_INFO "attempt to access beyond end of device\n");
1587 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1588 bdevname(bio->bi_bdev, b),
1589 bio->bi_rw,
1590 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1591 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1592
1593 set_bit(BIO_EOF, &bio->bi_flags);
1594}
1595
c17bb495
AM
1596#ifdef CONFIG_FAIL_MAKE_REQUEST
1597
1598static DECLARE_FAULT_ATTR(fail_make_request);
1599
1600static int __init setup_fail_make_request(char *str)
1601{
1602 return setup_fault_attr(&fail_make_request, str);
1603}
1604__setup("fail_make_request=", setup_fail_make_request);
1605
b2c9cd37 1606static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1607{
b2c9cd37 1608 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1609}
1610
1611static int __init fail_make_request_debugfs(void)
1612{
dd48c085
AM
1613 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1614 NULL, &fail_make_request);
1615
1616 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1617}
1618
1619late_initcall(fail_make_request_debugfs);
1620
1621#else /* CONFIG_FAIL_MAKE_REQUEST */
1622
b2c9cd37
AM
1623static inline bool should_fail_request(struct hd_struct *part,
1624 unsigned int bytes)
c17bb495 1625{
b2c9cd37 1626 return false;
c17bb495
AM
1627}
1628
1629#endif /* CONFIG_FAIL_MAKE_REQUEST */
1630
c07e2b41
JA
1631/*
1632 * Check whether this bio extends beyond the end of the device.
1633 */
1634static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1635{
1636 sector_t maxsector;
1637
1638 if (!nr_sectors)
1639 return 0;
1640
1641 /* Test device or partition size, when known. */
77304d2a 1642 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1643 if (maxsector) {
1644 sector_t sector = bio->bi_sector;
1645
1646 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1647 /*
1648 * This may well happen - the kernel calls bread()
1649 * without checking the size of the device, e.g., when
1650 * mounting a device.
1651 */
1652 handle_bad_sector(bio);
1653 return 1;
1654 }
1655 }
1656
1657 return 0;
1658}
1659
27a84d54
CH
1660static noinline_for_stack bool
1661generic_make_request_checks(struct bio *bio)
1da177e4 1662{
165125e1 1663 struct request_queue *q;
5a7bbad2 1664 int nr_sectors = bio_sectors(bio);
51fd77bd 1665 int err = -EIO;
5a7bbad2
CH
1666 char b[BDEVNAME_SIZE];
1667 struct hd_struct *part;
1da177e4
LT
1668
1669 might_sleep();
1da177e4 1670
c07e2b41
JA
1671 if (bio_check_eod(bio, nr_sectors))
1672 goto end_io;
1da177e4 1673
5a7bbad2
CH
1674 q = bdev_get_queue(bio->bi_bdev);
1675 if (unlikely(!q)) {
1676 printk(KERN_ERR
1677 "generic_make_request: Trying to access "
1678 "nonexistent block-device %s (%Lu)\n",
1679 bdevname(bio->bi_bdev, b),
1680 (long long) bio->bi_sector);
1681 goto end_io;
1682 }
c17bb495 1683
e2a60da7
MP
1684 if (likely(bio_is_rw(bio) &&
1685 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1686 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1687 bdevname(bio->bi_bdev, b),
1688 bio_sectors(bio),
1689 queue_max_hw_sectors(q));
1690 goto end_io;
1691 }
1da177e4 1692
5a7bbad2
CH
1693 part = bio->bi_bdev->bd_part;
1694 if (should_fail_request(part, bio->bi_size) ||
1695 should_fail_request(&part_to_disk(part)->part0,
1696 bio->bi_size))
1697 goto end_io;
2056a782 1698
5a7bbad2
CH
1699 /*
1700 * If this device has partitions, remap block n
1701 * of partition p to block n+start(p) of the disk.
1702 */
1703 blk_partition_remap(bio);
2056a782 1704
5a7bbad2
CH
1705 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1706 goto end_io;
a7384677 1707
5a7bbad2
CH
1708 if (bio_check_eod(bio, nr_sectors))
1709 goto end_io;
1e87901e 1710
5a7bbad2
CH
1711 /*
1712 * Filter flush bio's early so that make_request based
1713 * drivers without flush support don't have to worry
1714 * about them.
1715 */
1716 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1717 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1718 if (!nr_sectors) {
1719 err = 0;
51fd77bd
JA
1720 goto end_io;
1721 }
5a7bbad2 1722 }
5ddfe969 1723
5a7bbad2
CH
1724 if ((bio->bi_rw & REQ_DISCARD) &&
1725 (!blk_queue_discard(q) ||
e2a60da7 1726 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1727 err = -EOPNOTSUPP;
1728 goto end_io;
1729 }
01edede4 1730
4363ac7c 1731 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1732 err = -EOPNOTSUPP;
1733 goto end_io;
1734 }
01edede4 1735
7f4b35d1
TH
1736 /*
1737 * Various block parts want %current->io_context and lazy ioc
1738 * allocation ends up trading a lot of pain for a small amount of
1739 * memory. Just allocate it upfront. This may fail and block
1740 * layer knows how to live with it.
1741 */
1742 create_io_context(GFP_ATOMIC, q->node);
1743
bc16a4f9
TH
1744 if (blk_throtl_bio(q, bio))
1745 return false; /* throttled, will be resubmitted later */
27a84d54 1746
5a7bbad2 1747 trace_block_bio_queue(q, bio);
27a84d54 1748 return true;
a7384677
TH
1749
1750end_io:
1751 bio_endio(bio, err);
27a84d54 1752 return false;
1da177e4
LT
1753}
1754
27a84d54
CH
1755/**
1756 * generic_make_request - hand a buffer to its device driver for I/O
1757 * @bio: The bio describing the location in memory and on the device.
1758 *
1759 * generic_make_request() is used to make I/O requests of block
1760 * devices. It is passed a &struct bio, which describes the I/O that needs
1761 * to be done.
1762 *
1763 * generic_make_request() does not return any status. The
1764 * success/failure status of the request, along with notification of
1765 * completion, is delivered asynchronously through the bio->bi_end_io
1766 * function described (one day) else where.
1767 *
1768 * The caller of generic_make_request must make sure that bi_io_vec
1769 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1770 * set to describe the device address, and the
1771 * bi_end_io and optionally bi_private are set to describe how
1772 * completion notification should be signaled.
1773 *
1774 * generic_make_request and the drivers it calls may use bi_next if this
1775 * bio happens to be merged with someone else, and may resubmit the bio to
1776 * a lower device by calling into generic_make_request recursively, which
1777 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1778 */
1779void generic_make_request(struct bio *bio)
1780{
bddd87c7
AM
1781 struct bio_list bio_list_on_stack;
1782
27a84d54
CH
1783 if (!generic_make_request_checks(bio))
1784 return;
1785
1786 /*
1787 * We only want one ->make_request_fn to be active at a time, else
1788 * stack usage with stacked devices could be a problem. So use
1789 * current->bio_list to keep a list of requests submited by a
1790 * make_request_fn function. current->bio_list is also used as a
1791 * flag to say if generic_make_request is currently active in this
1792 * task or not. If it is NULL, then no make_request is active. If
1793 * it is non-NULL, then a make_request is active, and new requests
1794 * should be added at the tail
1795 */
bddd87c7 1796 if (current->bio_list) {
bddd87c7 1797 bio_list_add(current->bio_list, bio);
d89d8796
NB
1798 return;
1799 }
27a84d54 1800
d89d8796
NB
1801 /* following loop may be a bit non-obvious, and so deserves some
1802 * explanation.
1803 * Before entering the loop, bio->bi_next is NULL (as all callers
1804 * ensure that) so we have a list with a single bio.
1805 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1806 * we assign bio_list to a pointer to the bio_list_on_stack,
1807 * thus initialising the bio_list of new bios to be
27a84d54 1808 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1809 * through a recursive call to generic_make_request. If it
1810 * did, we find a non-NULL value in bio_list and re-enter the loop
1811 * from the top. In this case we really did just take the bio
bddd87c7 1812 * of the top of the list (no pretending) and so remove it from
27a84d54 1813 * bio_list, and call into ->make_request() again.
d89d8796
NB
1814 */
1815 BUG_ON(bio->bi_next);
bddd87c7
AM
1816 bio_list_init(&bio_list_on_stack);
1817 current->bio_list = &bio_list_on_stack;
d89d8796 1818 do {
27a84d54
CH
1819 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1820
1821 q->make_request_fn(q, bio);
1822
bddd87c7 1823 bio = bio_list_pop(current->bio_list);
d89d8796 1824 } while (bio);
bddd87c7 1825 current->bio_list = NULL; /* deactivate */
d89d8796 1826}
1da177e4
LT
1827EXPORT_SYMBOL(generic_make_request);
1828
1829/**
710027a4 1830 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1831 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1832 * @bio: The &struct bio which describes the I/O
1833 *
1834 * submit_bio() is very similar in purpose to generic_make_request(), and
1835 * uses that function to do most of the work. Both are fairly rough
710027a4 1836 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1837 *
1838 */
1839void submit_bio(int rw, struct bio *bio)
1840{
22e2c507 1841 bio->bi_rw |= rw;
1da177e4 1842
bf2de6f5
JA
1843 /*
1844 * If it's a regular read/write or a barrier with data attached,
1845 * go through the normal accounting stuff before submission.
1846 */
e2a60da7 1847 if (bio_has_data(bio)) {
4363ac7c
MP
1848 unsigned int count;
1849
1850 if (unlikely(rw & REQ_WRITE_SAME))
1851 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1852 else
1853 count = bio_sectors(bio);
1854
bf2de6f5
JA
1855 if (rw & WRITE) {
1856 count_vm_events(PGPGOUT, count);
1857 } else {
1858 task_io_account_read(bio->bi_size);
1859 count_vm_events(PGPGIN, count);
1860 }
1861
1862 if (unlikely(block_dump)) {
1863 char b[BDEVNAME_SIZE];
8dcbdc74 1864 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1865 current->comm, task_pid_nr(current),
bf2de6f5
JA
1866 (rw & WRITE) ? "WRITE" : "READ",
1867 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1868 bdevname(bio->bi_bdev, b),
1869 count);
bf2de6f5 1870 }
1da177e4
LT
1871 }
1872
1873 generic_make_request(bio);
1874}
1da177e4
LT
1875EXPORT_SYMBOL(submit_bio);
1876
82124d60
KU
1877/**
1878 * blk_rq_check_limits - Helper function to check a request for the queue limit
1879 * @q: the queue
1880 * @rq: the request being checked
1881 *
1882 * Description:
1883 * @rq may have been made based on weaker limitations of upper-level queues
1884 * in request stacking drivers, and it may violate the limitation of @q.
1885 * Since the block layer and the underlying device driver trust @rq
1886 * after it is inserted to @q, it should be checked against @q before
1887 * the insertion using this generic function.
1888 *
1889 * This function should also be useful for request stacking drivers
eef35c2d 1890 * in some cases below, so export this function.
82124d60
KU
1891 * Request stacking drivers like request-based dm may change the queue
1892 * limits while requests are in the queue (e.g. dm's table swapping).
1893 * Such request stacking drivers should check those requests agaist
1894 * the new queue limits again when they dispatch those requests,
1895 * although such checkings are also done against the old queue limits
1896 * when submitting requests.
1897 */
1898int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1899{
e2a60da7 1900 if (!rq_mergeable(rq))
3383977f
S
1901 return 0;
1902
f31dc1cd 1903 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1904 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1905 return -EIO;
1906 }
1907
1908 /*
1909 * queue's settings related to segment counting like q->bounce_pfn
1910 * may differ from that of other stacking queues.
1911 * Recalculate it to check the request correctly on this queue's
1912 * limitation.
1913 */
1914 blk_recalc_rq_segments(rq);
8a78362c 1915 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1916 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1917 return -EIO;
1918 }
1919
1920 return 0;
1921}
1922EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1923
1924/**
1925 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1926 * @q: the queue to submit the request
1927 * @rq: the request being queued
1928 */
1929int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1930{
1931 unsigned long flags;
4853abaa 1932 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1933
1934 if (blk_rq_check_limits(q, rq))
1935 return -EIO;
1936
b2c9cd37
AM
1937 if (rq->rq_disk &&
1938 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1939 return -EIO;
82124d60
KU
1940
1941 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 1942 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
1943 spin_unlock_irqrestore(q->queue_lock, flags);
1944 return -ENODEV;
1945 }
82124d60
KU
1946
1947 /*
1948 * Submitting request must be dequeued before calling this function
1949 * because it will be linked to another request_queue
1950 */
1951 BUG_ON(blk_queued_rq(rq));
1952
4853abaa
JM
1953 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1954 where = ELEVATOR_INSERT_FLUSH;
1955
1956 add_acct_request(q, rq, where);
e67b77c7
JM
1957 if (where == ELEVATOR_INSERT_FLUSH)
1958 __blk_run_queue(q);
82124d60
KU
1959 spin_unlock_irqrestore(q->queue_lock, flags);
1960
1961 return 0;
1962}
1963EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1964
80a761fd
TH
1965/**
1966 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1967 * @rq: request to examine
1968 *
1969 * Description:
1970 * A request could be merge of IOs which require different failure
1971 * handling. This function determines the number of bytes which
1972 * can be failed from the beginning of the request without
1973 * crossing into area which need to be retried further.
1974 *
1975 * Return:
1976 * The number of bytes to fail.
1977 *
1978 * Context:
1979 * queue_lock must be held.
1980 */
1981unsigned int blk_rq_err_bytes(const struct request *rq)
1982{
1983 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1984 unsigned int bytes = 0;
1985 struct bio *bio;
1986
1987 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1988 return blk_rq_bytes(rq);
1989
1990 /*
1991 * Currently the only 'mixing' which can happen is between
1992 * different fastfail types. We can safely fail portions
1993 * which have all the failfast bits that the first one has -
1994 * the ones which are at least as eager to fail as the first
1995 * one.
1996 */
1997 for (bio = rq->bio; bio; bio = bio->bi_next) {
1998 if ((bio->bi_rw & ff) != ff)
1999 break;
2000 bytes += bio->bi_size;
2001 }
2002
2003 /* this could lead to infinite loop */
2004 BUG_ON(blk_rq_bytes(rq) && !bytes);
2005 return bytes;
2006}
2007EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2008
bc58ba94
JA
2009static void blk_account_io_completion(struct request *req, unsigned int bytes)
2010{
c2553b58 2011 if (blk_do_io_stat(req)) {
bc58ba94
JA
2012 const int rw = rq_data_dir(req);
2013 struct hd_struct *part;
2014 int cpu;
2015
2016 cpu = part_stat_lock();
09e099d4 2017 part = req->part;
bc58ba94
JA
2018 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2019 part_stat_unlock();
2020 }
2021}
2022
2023static void blk_account_io_done(struct request *req)
2024{
bc58ba94 2025 /*
dd4c133f
TH
2026 * Account IO completion. flush_rq isn't accounted as a
2027 * normal IO on queueing nor completion. Accounting the
2028 * containing request is enough.
bc58ba94 2029 */
414b4ff5 2030 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2031 unsigned long duration = jiffies - req->start_time;
2032 const int rw = rq_data_dir(req);
2033 struct hd_struct *part;
2034 int cpu;
2035
2036 cpu = part_stat_lock();
09e099d4 2037 part = req->part;
bc58ba94
JA
2038
2039 part_stat_inc(cpu, part, ios[rw]);
2040 part_stat_add(cpu, part, ticks[rw], duration);
2041 part_round_stats(cpu, part);
316d315b 2042 part_dec_in_flight(part, rw);
bc58ba94 2043
6c23a968 2044 hd_struct_put(part);
bc58ba94
JA
2045 part_stat_unlock();
2046 }
2047}
2048
3bcddeac 2049/**
9934c8c0
TH
2050 * blk_peek_request - peek at the top of a request queue
2051 * @q: request queue to peek at
2052 *
2053 * Description:
2054 * Return the request at the top of @q. The returned request
2055 * should be started using blk_start_request() before LLD starts
2056 * processing it.
2057 *
2058 * Return:
2059 * Pointer to the request at the top of @q if available. Null
2060 * otherwise.
2061 *
2062 * Context:
2063 * queue_lock must be held.
2064 */
2065struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2066{
2067 struct request *rq;
2068 int ret;
2069
2070 while ((rq = __elv_next_request(q)) != NULL) {
2071 if (!(rq->cmd_flags & REQ_STARTED)) {
2072 /*
2073 * This is the first time the device driver
2074 * sees this request (possibly after
2075 * requeueing). Notify IO scheduler.
2076 */
33659ebb 2077 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2078 elv_activate_rq(q, rq);
2079
2080 /*
2081 * just mark as started even if we don't start
2082 * it, a request that has been delayed should
2083 * not be passed by new incoming requests
2084 */
2085 rq->cmd_flags |= REQ_STARTED;
2086 trace_block_rq_issue(q, rq);
2087 }
2088
2089 if (!q->boundary_rq || q->boundary_rq == rq) {
2090 q->end_sector = rq_end_sector(rq);
2091 q->boundary_rq = NULL;
2092 }
2093
2094 if (rq->cmd_flags & REQ_DONTPREP)
2095 break;
2096
2e46e8b2 2097 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2098 /*
2099 * make sure space for the drain appears we
2100 * know we can do this because max_hw_segments
2101 * has been adjusted to be one fewer than the
2102 * device can handle
2103 */
2104 rq->nr_phys_segments++;
2105 }
2106
2107 if (!q->prep_rq_fn)
2108 break;
2109
2110 ret = q->prep_rq_fn(q, rq);
2111 if (ret == BLKPREP_OK) {
2112 break;
2113 } else if (ret == BLKPREP_DEFER) {
2114 /*
2115 * the request may have been (partially) prepped.
2116 * we need to keep this request in the front to
2117 * avoid resource deadlock. REQ_STARTED will
2118 * prevent other fs requests from passing this one.
2119 */
2e46e8b2 2120 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2121 !(rq->cmd_flags & REQ_DONTPREP)) {
2122 /*
2123 * remove the space for the drain we added
2124 * so that we don't add it again
2125 */
2126 --rq->nr_phys_segments;
2127 }
2128
2129 rq = NULL;
2130 break;
2131 } else if (ret == BLKPREP_KILL) {
2132 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2133 /*
2134 * Mark this request as started so we don't trigger
2135 * any debug logic in the end I/O path.
2136 */
2137 blk_start_request(rq);
40cbbb78 2138 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2139 } else {
2140 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2141 break;
2142 }
2143 }
2144
2145 return rq;
2146}
9934c8c0 2147EXPORT_SYMBOL(blk_peek_request);
158dbda0 2148
9934c8c0 2149void blk_dequeue_request(struct request *rq)
158dbda0 2150{
9934c8c0
TH
2151 struct request_queue *q = rq->q;
2152
158dbda0
TH
2153 BUG_ON(list_empty(&rq->queuelist));
2154 BUG_ON(ELV_ON_HASH(rq));
2155
2156 list_del_init(&rq->queuelist);
2157
2158 /*
2159 * the time frame between a request being removed from the lists
2160 * and to it is freed is accounted as io that is in progress at
2161 * the driver side.
2162 */
9195291e 2163 if (blk_account_rq(rq)) {
0a7ae2ff 2164 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2165 set_io_start_time_ns(rq);
2166 }
158dbda0
TH
2167}
2168
9934c8c0
TH
2169/**
2170 * blk_start_request - start request processing on the driver
2171 * @req: request to dequeue
2172 *
2173 * Description:
2174 * Dequeue @req and start timeout timer on it. This hands off the
2175 * request to the driver.
2176 *
2177 * Block internal functions which don't want to start timer should
2178 * call blk_dequeue_request().
2179 *
2180 * Context:
2181 * queue_lock must be held.
2182 */
2183void blk_start_request(struct request *req)
2184{
2185 blk_dequeue_request(req);
2186
2187 /*
5f49f631
TH
2188 * We are now handing the request to the hardware, initialize
2189 * resid_len to full count and add the timeout handler.
9934c8c0 2190 */
5f49f631 2191 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2192 if (unlikely(blk_bidi_rq(req)))
2193 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2194
9934c8c0
TH
2195 blk_add_timer(req);
2196}
2197EXPORT_SYMBOL(blk_start_request);
2198
2199/**
2200 * blk_fetch_request - fetch a request from a request queue
2201 * @q: request queue to fetch a request from
2202 *
2203 * Description:
2204 * Return the request at the top of @q. The request is started on
2205 * return and LLD can start processing it immediately.
2206 *
2207 * Return:
2208 * Pointer to the request at the top of @q if available. Null
2209 * otherwise.
2210 *
2211 * Context:
2212 * queue_lock must be held.
2213 */
2214struct request *blk_fetch_request(struct request_queue *q)
2215{
2216 struct request *rq;
2217
2218 rq = blk_peek_request(q);
2219 if (rq)
2220 blk_start_request(rq);
2221 return rq;
2222}
2223EXPORT_SYMBOL(blk_fetch_request);
2224
3bcddeac 2225/**
2e60e022 2226 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2227 * @req: the request being processed
710027a4 2228 * @error: %0 for success, < %0 for error
8ebf9756 2229 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2230 *
2231 * Description:
8ebf9756
RD
2232 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2233 * the request structure even if @req doesn't have leftover.
2234 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2235 *
2236 * This special helper function is only for request stacking drivers
2237 * (e.g. request-based dm) so that they can handle partial completion.
2238 * Actual device drivers should use blk_end_request instead.
2239 *
2240 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2241 * %false return from this function.
3bcddeac
KU
2242 *
2243 * Return:
2e60e022
TH
2244 * %false - this request doesn't have any more data
2245 * %true - this request has more data
3bcddeac 2246 **/
2e60e022 2247bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2248{
5450d3e1 2249 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2250 struct bio *bio;
2251
2e60e022
TH
2252 if (!req->bio)
2253 return false;
2254
5f3ea37c 2255 trace_block_rq_complete(req->q, req);
2056a782 2256
1da177e4 2257 /*
6f41469c
TH
2258 * For fs requests, rq is just carrier of independent bio's
2259 * and each partial completion should be handled separately.
2260 * Reset per-request error on each partial completion.
2261 *
2262 * TODO: tj: This is too subtle. It would be better to let
2263 * low level drivers do what they see fit.
1da177e4 2264 */
33659ebb 2265 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2266 req->errors = 0;
2267
33659ebb
CH
2268 if (error && req->cmd_type == REQ_TYPE_FS &&
2269 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2270 char *error_type;
2271
2272 switch (error) {
2273 case -ENOLINK:
2274 error_type = "recoverable transport";
2275 break;
2276 case -EREMOTEIO:
2277 error_type = "critical target";
2278 break;
2279 case -EBADE:
2280 error_type = "critical nexus";
2281 break;
2282 case -EIO:
2283 default:
2284 error_type = "I/O";
2285 break;
2286 }
37d7b34f
YZ
2287 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2288 error_type, req->rq_disk ?
2289 req->rq_disk->disk_name : "?",
2290 (unsigned long long)blk_rq_pos(req));
2291
1da177e4
LT
2292 }
2293
bc58ba94 2294 blk_account_io_completion(req, nr_bytes);
d72d904a 2295
1da177e4
LT
2296 total_bytes = bio_nbytes = 0;
2297 while ((bio = req->bio) != NULL) {
2298 int nbytes;
2299
2300 if (nr_bytes >= bio->bi_size) {
2301 req->bio = bio->bi_next;
2302 nbytes = bio->bi_size;
5bb23a68 2303 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2304 next_idx = 0;
2305 bio_nbytes = 0;
2306 } else {
2307 int idx = bio->bi_idx + next_idx;
2308
af498d7f 2309 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2310 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2311 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2312 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2313 break;
2314 }
2315
2316 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2317 BIO_BUG_ON(nbytes > bio->bi_size);
2318
2319 /*
2320 * not a complete bvec done
2321 */
2322 if (unlikely(nbytes > nr_bytes)) {
2323 bio_nbytes += nr_bytes;
2324 total_bytes += nr_bytes;
2325 break;
2326 }
2327
2328 /*
2329 * advance to the next vector
2330 */
2331 next_idx++;
2332 bio_nbytes += nbytes;
2333 }
2334
2335 total_bytes += nbytes;
2336 nr_bytes -= nbytes;
2337
6728cb0e
JA
2338 bio = req->bio;
2339 if (bio) {
1da177e4
LT
2340 /*
2341 * end more in this run, or just return 'not-done'
2342 */
2343 if (unlikely(nr_bytes <= 0))
2344 break;
2345 }
2346 }
2347
2348 /*
2349 * completely done
2350 */
2e60e022
TH
2351 if (!req->bio) {
2352 /*
2353 * Reset counters so that the request stacking driver
2354 * can find how many bytes remain in the request
2355 * later.
2356 */
a2dec7b3 2357 req->__data_len = 0;
2e60e022
TH
2358 return false;
2359 }
1da177e4
LT
2360
2361 /*
2362 * if the request wasn't completed, update state
2363 */
2364 if (bio_nbytes) {
5bb23a68 2365 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2366 bio->bi_idx += next_idx;
2367 bio_iovec(bio)->bv_offset += nr_bytes;
2368 bio_iovec(bio)->bv_len -= nr_bytes;
2369 }
2370
a2dec7b3 2371 req->__data_len -= total_bytes;
2e46e8b2
TH
2372 req->buffer = bio_data(req->bio);
2373
2374 /* update sector only for requests with clear definition of sector */
e2a60da7 2375 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2376 req->__sector += total_bytes >> 9;
2e46e8b2 2377
80a761fd
TH
2378 /* mixed attributes always follow the first bio */
2379 if (req->cmd_flags & REQ_MIXED_MERGE) {
2380 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2381 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2382 }
2383
2e46e8b2
TH
2384 /*
2385 * If total number of sectors is less than the first segment
2386 * size, something has gone terribly wrong.
2387 */
2388 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2389 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2390 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2391 }
2392
2393 /* recalculate the number of segments */
1da177e4 2394 blk_recalc_rq_segments(req);
2e46e8b2 2395
2e60e022 2396 return true;
1da177e4 2397}
2e60e022 2398EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2399
2e60e022
TH
2400static bool blk_update_bidi_request(struct request *rq, int error,
2401 unsigned int nr_bytes,
2402 unsigned int bidi_bytes)
5efccd17 2403{
2e60e022
TH
2404 if (blk_update_request(rq, error, nr_bytes))
2405 return true;
5efccd17 2406
2e60e022
TH
2407 /* Bidi request must be completed as a whole */
2408 if (unlikely(blk_bidi_rq(rq)) &&
2409 blk_update_request(rq->next_rq, error, bidi_bytes))
2410 return true;
5efccd17 2411
e2e1a148
JA
2412 if (blk_queue_add_random(rq->q))
2413 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2414
2415 return false;
1da177e4
LT
2416}
2417
28018c24
JB
2418/**
2419 * blk_unprep_request - unprepare a request
2420 * @req: the request
2421 *
2422 * This function makes a request ready for complete resubmission (or
2423 * completion). It happens only after all error handling is complete,
2424 * so represents the appropriate moment to deallocate any resources
2425 * that were allocated to the request in the prep_rq_fn. The queue
2426 * lock is held when calling this.
2427 */
2428void blk_unprep_request(struct request *req)
2429{
2430 struct request_queue *q = req->q;
2431
2432 req->cmd_flags &= ~REQ_DONTPREP;
2433 if (q->unprep_rq_fn)
2434 q->unprep_rq_fn(q, req);
2435}
2436EXPORT_SYMBOL_GPL(blk_unprep_request);
2437
1da177e4
LT
2438/*
2439 * queue lock must be held
2440 */
2e60e022 2441static void blk_finish_request(struct request *req, int error)
1da177e4 2442{
b8286239
KU
2443 if (blk_rq_tagged(req))
2444 blk_queue_end_tag(req->q, req);
2445
ba396a6c 2446 BUG_ON(blk_queued_rq(req));
1da177e4 2447
33659ebb 2448 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2449 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2450
e78042e5
MA
2451 blk_delete_timer(req);
2452
28018c24
JB
2453 if (req->cmd_flags & REQ_DONTPREP)
2454 blk_unprep_request(req);
2455
2456
bc58ba94 2457 blk_account_io_done(req);
b8286239 2458
1da177e4 2459 if (req->end_io)
8ffdc655 2460 req->end_io(req, error);
b8286239
KU
2461 else {
2462 if (blk_bidi_rq(req))
2463 __blk_put_request(req->next_rq->q, req->next_rq);
2464
1da177e4 2465 __blk_put_request(req->q, req);
b8286239 2466 }
1da177e4
LT
2467}
2468
3b11313a 2469/**
2e60e022
TH
2470 * blk_end_bidi_request - Complete a bidi request
2471 * @rq: the request to complete
2472 * @error: %0 for success, < %0 for error
2473 * @nr_bytes: number of bytes to complete @rq
2474 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2475 *
2476 * Description:
e3a04fe3 2477 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2478 * Drivers that supports bidi can safely call this member for any
2479 * type of request, bidi or uni. In the later case @bidi_bytes is
2480 * just ignored.
336cdb40
KU
2481 *
2482 * Return:
2e60e022
TH
2483 * %false - we are done with this request
2484 * %true - still buffers pending for this request
a0cd1285 2485 **/
b1f74493 2486static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2487 unsigned int nr_bytes, unsigned int bidi_bytes)
2488{
336cdb40 2489 struct request_queue *q = rq->q;
2e60e022 2490 unsigned long flags;
32fab448 2491
2e60e022
TH
2492 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2493 return true;
32fab448 2494
336cdb40 2495 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2496 blk_finish_request(rq, error);
336cdb40
KU
2497 spin_unlock_irqrestore(q->queue_lock, flags);
2498
2e60e022 2499 return false;
32fab448
KU
2500}
2501
336cdb40 2502/**
2e60e022
TH
2503 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2504 * @rq: the request to complete
710027a4 2505 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2506 * @nr_bytes: number of bytes to complete @rq
2507 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2508 *
2509 * Description:
2e60e022
TH
2510 * Identical to blk_end_bidi_request() except that queue lock is
2511 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2512 *
2513 * Return:
2e60e022
TH
2514 * %false - we are done with this request
2515 * %true - still buffers pending for this request
336cdb40 2516 **/
4853abaa 2517bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2518 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2519{
2e60e022
TH
2520 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2521 return true;
336cdb40 2522
2e60e022 2523 blk_finish_request(rq, error);
336cdb40 2524
2e60e022 2525 return false;
336cdb40 2526}
e19a3ab0
KU
2527
2528/**
2529 * blk_end_request - Helper function for drivers to complete the request.
2530 * @rq: the request being processed
710027a4 2531 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2532 * @nr_bytes: number of bytes to complete
2533 *
2534 * Description:
2535 * Ends I/O on a number of bytes attached to @rq.
2536 * If @rq has leftover, sets it up for the next range of segments.
2537 *
2538 * Return:
b1f74493
FT
2539 * %false - we are done with this request
2540 * %true - still buffers pending for this request
e19a3ab0 2541 **/
b1f74493 2542bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2543{
b1f74493 2544 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2545}
56ad1740 2546EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2547
2548/**
b1f74493
FT
2549 * blk_end_request_all - Helper function for drives to finish the request.
2550 * @rq: the request to finish
8ebf9756 2551 * @error: %0 for success, < %0 for error
336cdb40
KU
2552 *
2553 * Description:
b1f74493
FT
2554 * Completely finish @rq.
2555 */
2556void blk_end_request_all(struct request *rq, int error)
336cdb40 2557{
b1f74493
FT
2558 bool pending;
2559 unsigned int bidi_bytes = 0;
336cdb40 2560
b1f74493
FT
2561 if (unlikely(blk_bidi_rq(rq)))
2562 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2563
b1f74493
FT
2564 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2565 BUG_ON(pending);
2566}
56ad1740 2567EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2568
b1f74493
FT
2569/**
2570 * blk_end_request_cur - Helper function to finish the current request chunk.
2571 * @rq: the request to finish the current chunk for
8ebf9756 2572 * @error: %0 for success, < %0 for error
b1f74493
FT
2573 *
2574 * Description:
2575 * Complete the current consecutively mapped chunk from @rq.
2576 *
2577 * Return:
2578 * %false - we are done with this request
2579 * %true - still buffers pending for this request
2580 */
2581bool blk_end_request_cur(struct request *rq, int error)
2582{
2583 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2584}
56ad1740 2585EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2586
80a761fd
TH
2587/**
2588 * blk_end_request_err - Finish a request till the next failure boundary.
2589 * @rq: the request to finish till the next failure boundary for
2590 * @error: must be negative errno
2591 *
2592 * Description:
2593 * Complete @rq till the next failure boundary.
2594 *
2595 * Return:
2596 * %false - we are done with this request
2597 * %true - still buffers pending for this request
2598 */
2599bool blk_end_request_err(struct request *rq, int error)
2600{
2601 WARN_ON(error >= 0);
2602 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2603}
2604EXPORT_SYMBOL_GPL(blk_end_request_err);
2605
e3a04fe3 2606/**
b1f74493
FT
2607 * __blk_end_request - Helper function for drivers to complete the request.
2608 * @rq: the request being processed
2609 * @error: %0 for success, < %0 for error
2610 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2611 *
2612 * Description:
b1f74493 2613 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2614 *
2615 * Return:
b1f74493
FT
2616 * %false - we are done with this request
2617 * %true - still buffers pending for this request
e3a04fe3 2618 **/
b1f74493 2619bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2620{
b1f74493 2621 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2622}
56ad1740 2623EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2624
32fab448 2625/**
b1f74493
FT
2626 * __blk_end_request_all - Helper function for drives to finish the request.
2627 * @rq: the request to finish
8ebf9756 2628 * @error: %0 for success, < %0 for error
32fab448
KU
2629 *
2630 * Description:
b1f74493 2631 * Completely finish @rq. Must be called with queue lock held.
32fab448 2632 */
b1f74493 2633void __blk_end_request_all(struct request *rq, int error)
32fab448 2634{
b1f74493
FT
2635 bool pending;
2636 unsigned int bidi_bytes = 0;
2637
2638 if (unlikely(blk_bidi_rq(rq)))
2639 bidi_bytes = blk_rq_bytes(rq->next_rq);
2640
2641 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2642 BUG_ON(pending);
32fab448 2643}
56ad1740 2644EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2645
e19a3ab0 2646/**
b1f74493
FT
2647 * __blk_end_request_cur - Helper function to finish the current request chunk.
2648 * @rq: the request to finish the current chunk for
8ebf9756 2649 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2650 *
2651 * Description:
b1f74493
FT
2652 * Complete the current consecutively mapped chunk from @rq. Must
2653 * be called with queue lock held.
e19a3ab0
KU
2654 *
2655 * Return:
b1f74493
FT
2656 * %false - we are done with this request
2657 * %true - still buffers pending for this request
2658 */
2659bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2660{
b1f74493 2661 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2662}
56ad1740 2663EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2664
80a761fd
TH
2665/**
2666 * __blk_end_request_err - Finish a request till the next failure boundary.
2667 * @rq: the request to finish till the next failure boundary for
2668 * @error: must be negative errno
2669 *
2670 * Description:
2671 * Complete @rq till the next failure boundary. Must be called
2672 * with queue lock held.
2673 *
2674 * Return:
2675 * %false - we are done with this request
2676 * %true - still buffers pending for this request
2677 */
2678bool __blk_end_request_err(struct request *rq, int error)
2679{
2680 WARN_ON(error >= 0);
2681 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2682}
2683EXPORT_SYMBOL_GPL(__blk_end_request_err);
2684
86db1e29
JA
2685void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2686 struct bio *bio)
1da177e4 2687{
a82afdfc 2688 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2689 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2690
fb2dce86
DW
2691 if (bio_has_data(bio)) {
2692 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2693 rq->buffer = bio_data(bio);
2694 }
a2dec7b3 2695 rq->__data_len = bio->bi_size;
1da177e4 2696 rq->bio = rq->biotail = bio;
1da177e4 2697
66846572
N
2698 if (bio->bi_bdev)
2699 rq->rq_disk = bio->bi_bdev->bd_disk;
2700}
1da177e4 2701
2d4dc890
IL
2702#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2703/**
2704 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2705 * @rq: the request to be flushed
2706 *
2707 * Description:
2708 * Flush all pages in @rq.
2709 */
2710void rq_flush_dcache_pages(struct request *rq)
2711{
2712 struct req_iterator iter;
2713 struct bio_vec *bvec;
2714
2715 rq_for_each_segment(bvec, rq, iter)
2716 flush_dcache_page(bvec->bv_page);
2717}
2718EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2719#endif
2720
ef9e3fac
KU
2721/**
2722 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2723 * @q : the queue of the device being checked
2724 *
2725 * Description:
2726 * Check if underlying low-level drivers of a device are busy.
2727 * If the drivers want to export their busy state, they must set own
2728 * exporting function using blk_queue_lld_busy() first.
2729 *
2730 * Basically, this function is used only by request stacking drivers
2731 * to stop dispatching requests to underlying devices when underlying
2732 * devices are busy. This behavior helps more I/O merging on the queue
2733 * of the request stacking driver and prevents I/O throughput regression
2734 * on burst I/O load.
2735 *
2736 * Return:
2737 * 0 - Not busy (The request stacking driver should dispatch request)
2738 * 1 - Busy (The request stacking driver should stop dispatching request)
2739 */
2740int blk_lld_busy(struct request_queue *q)
2741{
2742 if (q->lld_busy_fn)
2743 return q->lld_busy_fn(q);
2744
2745 return 0;
2746}
2747EXPORT_SYMBOL_GPL(blk_lld_busy);
2748
b0fd271d
KU
2749/**
2750 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2751 * @rq: the clone request to be cleaned up
2752 *
2753 * Description:
2754 * Free all bios in @rq for a cloned request.
2755 */
2756void blk_rq_unprep_clone(struct request *rq)
2757{
2758 struct bio *bio;
2759
2760 while ((bio = rq->bio) != NULL) {
2761 rq->bio = bio->bi_next;
2762
2763 bio_put(bio);
2764 }
2765}
2766EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2767
2768/*
2769 * Copy attributes of the original request to the clone request.
2770 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2771 */
2772static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2773{
2774 dst->cpu = src->cpu;
3a2edd0d 2775 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2776 dst->cmd_type = src->cmd_type;
2777 dst->__sector = blk_rq_pos(src);
2778 dst->__data_len = blk_rq_bytes(src);
2779 dst->nr_phys_segments = src->nr_phys_segments;
2780 dst->ioprio = src->ioprio;
2781 dst->extra_len = src->extra_len;
2782}
2783
2784/**
2785 * blk_rq_prep_clone - Helper function to setup clone request
2786 * @rq: the request to be setup
2787 * @rq_src: original request to be cloned
2788 * @bs: bio_set that bios for clone are allocated from
2789 * @gfp_mask: memory allocation mask for bio
2790 * @bio_ctr: setup function to be called for each clone bio.
2791 * Returns %0 for success, non %0 for failure.
2792 * @data: private data to be passed to @bio_ctr
2793 *
2794 * Description:
2795 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2796 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2797 * are not copied, and copying such parts is the caller's responsibility.
2798 * Also, pages which the original bios are pointing to are not copied
2799 * and the cloned bios just point same pages.
2800 * So cloned bios must be completed before original bios, which means
2801 * the caller must complete @rq before @rq_src.
2802 */
2803int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2804 struct bio_set *bs, gfp_t gfp_mask,
2805 int (*bio_ctr)(struct bio *, struct bio *, void *),
2806 void *data)
2807{
2808 struct bio *bio, *bio_src;
2809
2810 if (!bs)
2811 bs = fs_bio_set;
2812
2813 blk_rq_init(NULL, rq);
2814
2815 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2816 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2817 if (!bio)
2818 goto free_and_out;
2819
b0fd271d
KU
2820 if (bio_ctr && bio_ctr(bio, bio_src, data))
2821 goto free_and_out;
2822
2823 if (rq->bio) {
2824 rq->biotail->bi_next = bio;
2825 rq->biotail = bio;
2826 } else
2827 rq->bio = rq->biotail = bio;
2828 }
2829
2830 __blk_rq_prep_clone(rq, rq_src);
2831
2832 return 0;
2833
2834free_and_out:
2835 if (bio)
4254bba1 2836 bio_put(bio);
b0fd271d
KU
2837 blk_rq_unprep_clone(rq);
2838
2839 return -ENOMEM;
2840}
2841EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2842
18887ad9 2843int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2844{
2845 return queue_work(kblockd_workqueue, work);
2846}
1da177e4
LT
2847EXPORT_SYMBOL(kblockd_schedule_work);
2848
e43473b7
VG
2849int kblockd_schedule_delayed_work(struct request_queue *q,
2850 struct delayed_work *dwork, unsigned long delay)
2851{
2852 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2853}
2854EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2855
73c10101
JA
2856#define PLUG_MAGIC 0x91827364
2857
75df7136
SJ
2858/**
2859 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2860 * @plug: The &struct blk_plug that needs to be initialized
2861 *
2862 * Description:
2863 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2864 * pending I/O should the task end up blocking between blk_start_plug() and
2865 * blk_finish_plug(). This is important from a performance perspective, but
2866 * also ensures that we don't deadlock. For instance, if the task is blocking
2867 * for a memory allocation, memory reclaim could end up wanting to free a
2868 * page belonging to that request that is currently residing in our private
2869 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2870 * this kind of deadlock.
2871 */
73c10101
JA
2872void blk_start_plug(struct blk_plug *plug)
2873{
2874 struct task_struct *tsk = current;
2875
2876 plug->magic = PLUG_MAGIC;
2877 INIT_LIST_HEAD(&plug->list);
048c9374 2878 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2879 plug->should_sort = 0;
2880
2881 /*
2882 * If this is a nested plug, don't actually assign it. It will be
2883 * flushed on its own.
2884 */
2885 if (!tsk->plug) {
2886 /*
2887 * Store ordering should not be needed here, since a potential
2888 * preempt will imply a full memory barrier
2889 */
2890 tsk->plug = plug;
2891 }
2892}
2893EXPORT_SYMBOL(blk_start_plug);
2894
2895static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2896{
2897 struct request *rqa = container_of(a, struct request, queuelist);
2898 struct request *rqb = container_of(b, struct request, queuelist);
2899
975927b9
JM
2900 return !(rqa->q < rqb->q ||
2901 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
2902}
2903
49cac01e
JA
2904/*
2905 * If 'from_schedule' is true, then postpone the dispatch of requests
2906 * until a safe kblockd context. We due this to avoid accidental big
2907 * additional stack usage in driver dispatch, in places where the originally
2908 * plugger did not intend it.
2909 */
f6603783 2910static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2911 bool from_schedule)
99e22598 2912 __releases(q->queue_lock)
94b5eb28 2913{
49cac01e 2914 trace_block_unplug(q, depth, !from_schedule);
99e22598 2915
8ba61435 2916 /*
3f3299d5 2917 * Don't mess with a dying queue.
8ba61435 2918 */
3f3299d5 2919 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2920 spin_unlock(q->queue_lock);
2921 return;
2922 }
2923
99e22598
JA
2924 /*
2925 * If we are punting this to kblockd, then we can safely drop
2926 * the queue_lock before waking kblockd (which needs to take
2927 * this lock).
2928 */
2929 if (from_schedule) {
2930 spin_unlock(q->queue_lock);
24ecfbe2 2931 blk_run_queue_async(q);
99e22598 2932 } else {
24ecfbe2 2933 __blk_run_queue(q);
99e22598
JA
2934 spin_unlock(q->queue_lock);
2935 }
2936
94b5eb28
JA
2937}
2938
74018dc3 2939static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
2940{
2941 LIST_HEAD(callbacks);
2942
2a7d5559
SL
2943 while (!list_empty(&plug->cb_list)) {
2944 list_splice_init(&plug->cb_list, &callbacks);
048c9374 2945
2a7d5559
SL
2946 while (!list_empty(&callbacks)) {
2947 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
2948 struct blk_plug_cb,
2949 list);
2a7d5559 2950 list_del(&cb->list);
74018dc3 2951 cb->callback(cb, from_schedule);
2a7d5559 2952 }
048c9374
N
2953 }
2954}
2955
9cbb1750
N
2956struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2957 int size)
2958{
2959 struct blk_plug *plug = current->plug;
2960 struct blk_plug_cb *cb;
2961
2962 if (!plug)
2963 return NULL;
2964
2965 list_for_each_entry(cb, &plug->cb_list, list)
2966 if (cb->callback == unplug && cb->data == data)
2967 return cb;
2968
2969 /* Not currently on the callback list */
2970 BUG_ON(size < sizeof(*cb));
2971 cb = kzalloc(size, GFP_ATOMIC);
2972 if (cb) {
2973 cb->data = data;
2974 cb->callback = unplug;
2975 list_add(&cb->list, &plug->cb_list);
2976 }
2977 return cb;
2978}
2979EXPORT_SYMBOL(blk_check_plugged);
2980
49cac01e 2981void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2982{
2983 struct request_queue *q;
2984 unsigned long flags;
2985 struct request *rq;
109b8129 2986 LIST_HEAD(list);
94b5eb28 2987 unsigned int depth;
73c10101
JA
2988
2989 BUG_ON(plug->magic != PLUG_MAGIC);
2990
74018dc3 2991 flush_plug_callbacks(plug, from_schedule);
73c10101
JA
2992 if (list_empty(&plug->list))
2993 return;
2994
109b8129
N
2995 list_splice_init(&plug->list, &list);
2996
2997 if (plug->should_sort) {
2998 list_sort(NULL, &list, plug_rq_cmp);
2999 plug->should_sort = 0;
3000 }
73c10101
JA
3001
3002 q = NULL;
94b5eb28 3003 depth = 0;
18811272
JA
3004
3005 /*
3006 * Save and disable interrupts here, to avoid doing it for every
3007 * queue lock we have to take.
3008 */
73c10101 3009 local_irq_save(flags);
109b8129
N
3010 while (!list_empty(&list)) {
3011 rq = list_entry_rq(list.next);
73c10101 3012 list_del_init(&rq->queuelist);
73c10101
JA
3013 BUG_ON(!rq->q);
3014 if (rq->q != q) {
99e22598
JA
3015 /*
3016 * This drops the queue lock
3017 */
3018 if (q)
49cac01e 3019 queue_unplugged(q, depth, from_schedule);
73c10101 3020 q = rq->q;
94b5eb28 3021 depth = 0;
73c10101
JA
3022 spin_lock(q->queue_lock);
3023 }
8ba61435
TH
3024
3025 /*
3026 * Short-circuit if @q is dead
3027 */
3f3299d5 3028 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3029 __blk_end_request_all(rq, -ENODEV);
3030 continue;
3031 }
3032
73c10101
JA
3033 /*
3034 * rq is already accounted, so use raw insert
3035 */
401a18e9
JA
3036 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3037 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3038 else
3039 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3040
3041 depth++;
73c10101
JA
3042 }
3043
99e22598
JA
3044 /*
3045 * This drops the queue lock
3046 */
3047 if (q)
49cac01e 3048 queue_unplugged(q, depth, from_schedule);
73c10101 3049
73c10101
JA
3050 local_irq_restore(flags);
3051}
73c10101
JA
3052
3053void blk_finish_plug(struct blk_plug *plug)
3054{
f6603783 3055 blk_flush_plug_list(plug, false);
73c10101 3056
88b996cd
CH
3057 if (plug == current->plug)
3058 current->plug = NULL;
73c10101 3059}
88b996cd 3060EXPORT_SYMBOL(blk_finish_plug);
73c10101 3061
1da177e4
LT
3062int __init blk_dev_init(void)
3063{
9eb55b03
NK
3064 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3065 sizeof(((struct request *)0)->cmd_flags));
3066
89b90be2
TH
3067 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3068 kblockd_workqueue = alloc_workqueue("kblockd",
3069 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3070 if (!kblockd_workqueue)
3071 panic("Failed to create kblockd\n");
3072
3073 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3074 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3075
8324aa91 3076 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3077 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3078
d38ecf93 3079 return 0;
1da177e4 3080}