]> git.proxmox.com Git - qemu.git/blob - block/qcow2-cluster.c
qcow2: Really use cache=unsafe for image creation
[qemu.git] / block / qcow2-cluster.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include <zlib.h>
26
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
30
31 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
32 {
33 BDRVQcowState *s = bs->opaque;
34 int new_l1_size, new_l1_size2, ret, i;
35 uint64_t *new_l1_table;
36 int64_t new_l1_table_offset;
37 uint8_t data[12];
38
39 if (min_size <= s->l1_size)
40 return 0;
41
42 if (exact_size) {
43 new_l1_size = min_size;
44 } else {
45 /* Bump size up to reduce the number of times we have to grow */
46 new_l1_size = s->l1_size;
47 if (new_l1_size == 0) {
48 new_l1_size = 1;
49 }
50 while (min_size > new_l1_size) {
51 new_l1_size = (new_l1_size * 3 + 1) / 2;
52 }
53 }
54
55 #ifdef DEBUG_ALLOC2
56 printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
57 #endif
58
59 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
60 new_l1_table = qemu_mallocz(align_offset(new_l1_size2, 512));
61 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
62
63 /* write new table (align to cluster) */
64 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
65 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
66 if (new_l1_table_offset < 0) {
67 qemu_free(new_l1_table);
68 return new_l1_table_offset;
69 }
70
71 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
72 if (ret < 0) {
73 return ret;
74 }
75
76 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
77 for(i = 0; i < s->l1_size; i++)
78 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
79 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
80 if (ret < 0)
81 goto fail;
82 for(i = 0; i < s->l1_size; i++)
83 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
84
85 /* set new table */
86 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
87 cpu_to_be32w((uint32_t*)data, new_l1_size);
88 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
89 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
90 if (ret < 0) {
91 goto fail;
92 }
93 qemu_free(s->l1_table);
94 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
95 s->l1_table_offset = new_l1_table_offset;
96 s->l1_table = new_l1_table;
97 s->l1_size = new_l1_size;
98 return 0;
99 fail:
100 qemu_free(new_l1_table);
101 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
102 return ret;
103 }
104
105 /*
106 * l2_load
107 *
108 * Loads a L2 table into memory. If the table is in the cache, the cache
109 * is used; otherwise the L2 table is loaded from the image file.
110 *
111 * Returns a pointer to the L2 table on success, or NULL if the read from
112 * the image file failed.
113 */
114
115 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
116 uint64_t **l2_table)
117 {
118 BDRVQcowState *s = bs->opaque;
119 int ret;
120
121 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
122
123 return ret;
124 }
125
126 /*
127 * Writes one sector of the L1 table to the disk (can't update single entries
128 * and we really don't want bdrv_pread to perform a read-modify-write)
129 */
130 #define L1_ENTRIES_PER_SECTOR (512 / 8)
131 static int write_l1_entry(BlockDriverState *bs, int l1_index)
132 {
133 BDRVQcowState *s = bs->opaque;
134 uint64_t buf[L1_ENTRIES_PER_SECTOR];
135 int l1_start_index;
136 int i, ret;
137
138 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
139 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
140 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
141 }
142
143 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
144 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
145 buf, sizeof(buf));
146 if (ret < 0) {
147 return ret;
148 }
149
150 return 0;
151 }
152
153 /*
154 * l2_allocate
155 *
156 * Allocate a new l2 entry in the file. If l1_index points to an already
157 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
158 * table) copy the contents of the old L2 table into the newly allocated one.
159 * Otherwise the new table is initialized with zeros.
160 *
161 */
162
163 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
164 {
165 BDRVQcowState *s = bs->opaque;
166 uint64_t old_l2_offset;
167 uint64_t *l2_table;
168 int64_t l2_offset;
169 int ret;
170
171 old_l2_offset = s->l1_table[l1_index];
172
173 /* allocate a new l2 entry */
174
175 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
176 if (l2_offset < 0) {
177 return l2_offset;
178 }
179
180 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
181 if (ret < 0) {
182 goto fail;
183 }
184
185 /* allocate a new entry in the l2 cache */
186
187 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
188 if (ret < 0) {
189 return ret;
190 }
191
192 l2_table = *table;
193
194 if (old_l2_offset == 0) {
195 /* if there was no old l2 table, clear the new table */
196 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
197 } else {
198 uint64_t* old_table;
199
200 /* if there was an old l2 table, read it from the disk */
201 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
202 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_offset,
203 (void**) &old_table);
204 if (ret < 0) {
205 goto fail;
206 }
207
208 memcpy(l2_table, old_table, s->cluster_size);
209
210 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
211 if (ret < 0) {
212 goto fail;
213 }
214 }
215
216 /* write the l2 table to the file */
217 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
218
219 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
220 ret = qcow2_cache_flush(bs, s->l2_table_cache);
221 if (ret < 0) {
222 goto fail;
223 }
224
225 /* update the L1 entry */
226 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
227 ret = write_l1_entry(bs, l1_index);
228 if (ret < 0) {
229 goto fail;
230 }
231
232 *table = l2_table;
233 return 0;
234
235 fail:
236 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
237 s->l1_table[l1_index] = old_l2_offset;
238 return ret;
239 }
240
241 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
242 uint64_t *l2_table, uint64_t start, uint64_t mask)
243 {
244 int i;
245 uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
246
247 if (!offset)
248 return 0;
249
250 for (i = start; i < start + nb_clusters; i++)
251 if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
252 break;
253
254 return (i - start);
255 }
256
257 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
258 {
259 int i = 0;
260
261 while(nb_clusters-- && l2_table[i] == 0)
262 i++;
263
264 return i;
265 }
266
267 /* The crypt function is compatible with the linux cryptoloop
268 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
269 supported */
270 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
271 uint8_t *out_buf, const uint8_t *in_buf,
272 int nb_sectors, int enc,
273 const AES_KEY *key)
274 {
275 union {
276 uint64_t ll[2];
277 uint8_t b[16];
278 } ivec;
279 int i;
280
281 for(i = 0; i < nb_sectors; i++) {
282 ivec.ll[0] = cpu_to_le64(sector_num);
283 ivec.ll[1] = 0;
284 AES_cbc_encrypt(in_buf, out_buf, 512, key,
285 ivec.b, enc);
286 sector_num++;
287 in_buf += 512;
288 out_buf += 512;
289 }
290 }
291
292
293 static int qcow2_read(BlockDriverState *bs, int64_t sector_num,
294 uint8_t *buf, int nb_sectors)
295 {
296 BDRVQcowState *s = bs->opaque;
297 int ret, index_in_cluster, n, n1;
298 uint64_t cluster_offset;
299 struct iovec iov;
300 QEMUIOVector qiov;
301
302 while (nb_sectors > 0) {
303 n = nb_sectors;
304
305 ret = qcow2_get_cluster_offset(bs, sector_num << 9, &n,
306 &cluster_offset);
307 if (ret < 0) {
308 return ret;
309 }
310
311 index_in_cluster = sector_num & (s->cluster_sectors - 1);
312 if (!cluster_offset) {
313 if (bs->backing_hd) {
314 /* read from the base image */
315 iov.iov_base = buf;
316 iov.iov_len = n * 512;
317 qemu_iovec_init_external(&qiov, &iov, 1);
318
319 n1 = qcow2_backing_read1(bs->backing_hd, &qiov, sector_num, n);
320 if (n1 > 0) {
321 BLKDBG_EVENT(bs->file, BLKDBG_READ_BACKING);
322 ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
323 if (ret < 0)
324 return -1;
325 }
326 } else {
327 memset(buf, 0, 512 * n);
328 }
329 } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
330 if (qcow2_decompress_cluster(bs, cluster_offset) < 0)
331 return -1;
332 memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
333 } else {
334 BLKDBG_EVENT(bs->file, BLKDBG_READ);
335 ret = bdrv_pread(bs->file, cluster_offset + index_in_cluster * 512, buf, n * 512);
336 if (ret != n * 512)
337 return -1;
338 if (s->crypt_method) {
339 qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0,
340 &s->aes_decrypt_key);
341 }
342 }
343 nb_sectors -= n;
344 sector_num += n;
345 buf += n * 512;
346 }
347 return 0;
348 }
349
350 static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
351 uint64_t cluster_offset, int n_start, int n_end)
352 {
353 BDRVQcowState *s = bs->opaque;
354 int n, ret;
355
356 n = n_end - n_start;
357 if (n <= 0)
358 return 0;
359 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
360 ret = qcow2_read(bs, start_sect + n_start, s->cluster_data, n);
361 if (ret < 0)
362 return ret;
363 if (s->crypt_method) {
364 qcow2_encrypt_sectors(s, start_sect + n_start,
365 s->cluster_data,
366 s->cluster_data, n, 1,
367 &s->aes_encrypt_key);
368 }
369 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
370 ret = bdrv_write(bs->file, (cluster_offset >> 9) + n_start,
371 s->cluster_data, n);
372 if (ret < 0)
373 return ret;
374 return 0;
375 }
376
377
378 /*
379 * get_cluster_offset
380 *
381 * For a given offset of the disk image, find the cluster offset in
382 * qcow2 file. The offset is stored in *cluster_offset.
383 *
384 * on entry, *num is the number of contiguous clusters we'd like to
385 * access following offset.
386 *
387 * on exit, *num is the number of contiguous clusters we can read.
388 *
389 * Return 0, if the offset is found
390 * Return -errno, otherwise.
391 *
392 */
393
394 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
395 int *num, uint64_t *cluster_offset)
396 {
397 BDRVQcowState *s = bs->opaque;
398 unsigned int l1_index, l2_index;
399 uint64_t l2_offset, *l2_table;
400 int l1_bits, c;
401 unsigned int index_in_cluster, nb_clusters;
402 uint64_t nb_available, nb_needed;
403 int ret;
404
405 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
406 nb_needed = *num + index_in_cluster;
407
408 l1_bits = s->l2_bits + s->cluster_bits;
409
410 /* compute how many bytes there are between the offset and
411 * the end of the l1 entry
412 */
413
414 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
415
416 /* compute the number of available sectors */
417
418 nb_available = (nb_available >> 9) + index_in_cluster;
419
420 if (nb_needed > nb_available) {
421 nb_needed = nb_available;
422 }
423
424 *cluster_offset = 0;
425
426 /* seek the the l2 offset in the l1 table */
427
428 l1_index = offset >> l1_bits;
429 if (l1_index >= s->l1_size)
430 goto out;
431
432 l2_offset = s->l1_table[l1_index];
433
434 /* seek the l2 table of the given l2 offset */
435
436 if (!l2_offset)
437 goto out;
438
439 /* load the l2 table in memory */
440
441 l2_offset &= ~QCOW_OFLAG_COPIED;
442 ret = l2_load(bs, l2_offset, &l2_table);
443 if (ret < 0) {
444 return ret;
445 }
446
447 /* find the cluster offset for the given disk offset */
448
449 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
450 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
451 nb_clusters = size_to_clusters(s, nb_needed << 9);
452
453 if (!*cluster_offset) {
454 /* how many empty clusters ? */
455 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
456 } else {
457 /* how many allocated clusters ? */
458 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
459 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
460 }
461
462 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
463
464 nb_available = (c * s->cluster_sectors);
465 out:
466 if (nb_available > nb_needed)
467 nb_available = nb_needed;
468
469 *num = nb_available - index_in_cluster;
470
471 *cluster_offset &=~QCOW_OFLAG_COPIED;
472 return 0;
473 }
474
475 /*
476 * get_cluster_table
477 *
478 * for a given disk offset, load (and allocate if needed)
479 * the l2 table.
480 *
481 * the l2 table offset in the qcow2 file and the cluster index
482 * in the l2 table are given to the caller.
483 *
484 * Returns 0 on success, -errno in failure case
485 */
486 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
487 uint64_t **new_l2_table,
488 uint64_t *new_l2_offset,
489 int *new_l2_index)
490 {
491 BDRVQcowState *s = bs->opaque;
492 unsigned int l1_index, l2_index;
493 uint64_t l2_offset;
494 uint64_t *l2_table = NULL;
495 int ret;
496
497 /* seek the the l2 offset in the l1 table */
498
499 l1_index = offset >> (s->l2_bits + s->cluster_bits);
500 if (l1_index >= s->l1_size) {
501 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
502 if (ret < 0) {
503 return ret;
504 }
505 }
506 l2_offset = s->l1_table[l1_index];
507
508 /* seek the l2 table of the given l2 offset */
509
510 if (l2_offset & QCOW_OFLAG_COPIED) {
511 /* load the l2 table in memory */
512 l2_offset &= ~QCOW_OFLAG_COPIED;
513 ret = l2_load(bs, l2_offset, &l2_table);
514 if (ret < 0) {
515 return ret;
516 }
517 } else {
518 /* FIXME Order */
519 if (l2_offset)
520 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
521 ret = l2_allocate(bs, l1_index, &l2_table);
522 if (ret < 0) {
523 return ret;
524 }
525 l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
526 }
527
528 /* find the cluster offset for the given disk offset */
529
530 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
531
532 *new_l2_table = l2_table;
533 *new_l2_offset = l2_offset;
534 *new_l2_index = l2_index;
535
536 return 0;
537 }
538
539 /*
540 * alloc_compressed_cluster_offset
541 *
542 * For a given offset of the disk image, return cluster offset in
543 * qcow2 file.
544 *
545 * If the offset is not found, allocate a new compressed cluster.
546 *
547 * Return the cluster offset if successful,
548 * Return 0, otherwise.
549 *
550 */
551
552 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
553 uint64_t offset,
554 int compressed_size)
555 {
556 BDRVQcowState *s = bs->opaque;
557 int l2_index, ret;
558 uint64_t l2_offset, *l2_table;
559 int64_t cluster_offset;
560 int nb_csectors;
561
562 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
563 if (ret < 0) {
564 return 0;
565 }
566
567 cluster_offset = be64_to_cpu(l2_table[l2_index]);
568 if (cluster_offset & QCOW_OFLAG_COPIED)
569 return cluster_offset & ~QCOW_OFLAG_COPIED;
570
571 if (cluster_offset)
572 qcow2_free_any_clusters(bs, cluster_offset, 1);
573
574 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
575 if (cluster_offset < 0) {
576 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
577 return 0;
578 }
579
580 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
581 (cluster_offset >> 9);
582
583 cluster_offset |= QCOW_OFLAG_COMPRESSED |
584 ((uint64_t)nb_csectors << s->csize_shift);
585
586 /* update L2 table */
587
588 /* compressed clusters never have the copied flag */
589
590 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
591 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
592 l2_table[l2_index] = cpu_to_be64(cluster_offset);
593 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
594 if (ret < 0) {
595 return 0;
596 }
597
598 return cluster_offset;
599 }
600
601 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
602 {
603 BDRVQcowState *s = bs->opaque;
604 int i, j = 0, l2_index, ret;
605 uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
606 uint64_t cluster_offset = m->cluster_offset;
607 bool cow = false;
608
609 if (m->nb_clusters == 0)
610 return 0;
611
612 old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
613
614 /* copy content of unmodified sectors */
615 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
616 if (m->n_start) {
617 cow = true;
618 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
619 if (ret < 0)
620 goto err;
621 }
622
623 if (m->nb_available & (s->cluster_sectors - 1)) {
624 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
625 cow = true;
626 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
627 m->nb_available - end, s->cluster_sectors);
628 if (ret < 0)
629 goto err;
630 }
631
632 /*
633 * Update L2 table.
634 *
635 * Before we update the L2 table to actually point to the new cluster, we
636 * need to be sure that the refcounts have been increased and COW was
637 * handled.
638 */
639 if (cow) {
640 qcow2_cache_depends_on_flush(s->l2_table_cache);
641 }
642
643 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
644 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index);
645 if (ret < 0) {
646 goto err;
647 }
648 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
649
650 for (i = 0; i < m->nb_clusters; i++) {
651 /* if two concurrent writes happen to the same unallocated cluster
652 * each write allocates separate cluster and writes data concurrently.
653 * The first one to complete updates l2 table with pointer to its
654 * cluster the second one has to do RMW (which is done above by
655 * copy_sectors()), update l2 table with its cluster pointer and free
656 * old cluster. This is what this loop does */
657 if(l2_table[l2_index + i] != 0)
658 old_cluster[j++] = l2_table[l2_index + i];
659
660 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
661 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
662 }
663
664
665 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
666 if (ret < 0) {
667 goto err;
668 }
669
670 /*
671 * If this was a COW, we need to decrease the refcount of the old cluster.
672 * Also flush bs->file to get the right order for L2 and refcount update.
673 */
674 if (j != 0) {
675 for (i = 0; i < j; i++) {
676 qcow2_free_any_clusters(bs,
677 be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
678 }
679 }
680
681 ret = 0;
682 err:
683 qemu_free(old_cluster);
684 return ret;
685 }
686
687 /*
688 * alloc_cluster_offset
689 *
690 * For a given offset of the disk image, return cluster offset in qcow2 file.
691 * If the offset is not found, allocate a new cluster.
692 *
693 * If the cluster was already allocated, m->nb_clusters is set to 0,
694 * m->depends_on is set to NULL and the other fields in m are meaningless.
695 *
696 * If the cluster is newly allocated, m->nb_clusters is set to the number of
697 * contiguous clusters that have been allocated. This may be 0 if the request
698 * conflict with another write request in flight; in this case, m->depends_on
699 * is set and the remaining fields of m are meaningless.
700 *
701 * If m->nb_clusters is non-zero, the other fields of m are valid and contain
702 * information about the first allocated cluster.
703 *
704 * Return 0 on success and -errno in error cases
705 */
706 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
707 int n_start, int n_end, int *num, QCowL2Meta *m)
708 {
709 BDRVQcowState *s = bs->opaque;
710 int l2_index, ret;
711 uint64_t l2_offset, *l2_table;
712 int64_t cluster_offset;
713 unsigned int nb_clusters, i = 0;
714 QCowL2Meta *old_alloc;
715
716 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
717 if (ret < 0) {
718 return ret;
719 }
720
721 nb_clusters = size_to_clusters(s, n_end << 9);
722
723 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
724
725 cluster_offset = be64_to_cpu(l2_table[l2_index]);
726
727 /* We keep all QCOW_OFLAG_COPIED clusters */
728
729 if (cluster_offset & QCOW_OFLAG_COPIED) {
730 nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
731 &l2_table[l2_index], 0, 0);
732
733 cluster_offset &= ~QCOW_OFLAG_COPIED;
734 m->nb_clusters = 0;
735 m->depends_on = NULL;
736
737 goto out;
738 }
739
740 /* for the moment, multiple compressed clusters are not managed */
741
742 if (cluster_offset & QCOW_OFLAG_COMPRESSED)
743 nb_clusters = 1;
744
745 /* how many available clusters ? */
746
747 while (i < nb_clusters) {
748 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
749 &l2_table[l2_index], i, 0);
750 if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
751 break;
752 }
753
754 i += count_contiguous_free_clusters(nb_clusters - i,
755 &l2_table[l2_index + i]);
756 if (i >= nb_clusters) {
757 break;
758 }
759
760 cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
761
762 if ((cluster_offset & QCOW_OFLAG_COPIED) ||
763 (cluster_offset & QCOW_OFLAG_COMPRESSED))
764 break;
765 }
766 assert(i <= nb_clusters);
767 nb_clusters = i;
768
769 /*
770 * Check if there already is an AIO write request in flight which allocates
771 * the same cluster. In this case we need to wait until the previous
772 * request has completed and updated the L2 table accordingly.
773 */
774 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
775
776 uint64_t end_offset = offset + nb_clusters * s->cluster_size;
777 uint64_t old_offset = old_alloc->offset;
778 uint64_t old_end_offset = old_alloc->offset +
779 old_alloc->nb_clusters * s->cluster_size;
780
781 if (end_offset < old_offset || offset > old_end_offset) {
782 /* No intersection */
783 } else {
784 if (offset < old_offset) {
785 /* Stop at the start of a running allocation */
786 nb_clusters = (old_offset - offset) >> s->cluster_bits;
787 } else {
788 nb_clusters = 0;
789 }
790
791 if (nb_clusters == 0) {
792 /* Set dependency and wait for a callback */
793 m->depends_on = old_alloc;
794 m->nb_clusters = 0;
795 *num = 0;
796 ret = 0;
797 goto fail;
798 }
799 }
800 }
801
802 if (!nb_clusters) {
803 abort();
804 }
805
806 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
807
808 /* allocate a new cluster */
809
810 cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
811 if (cluster_offset < 0) {
812 QLIST_REMOVE(m, next_in_flight);
813 ret = cluster_offset;
814 goto fail;
815 }
816
817 /* save info needed for meta data update */
818 m->offset = offset;
819 m->n_start = n_start;
820 m->nb_clusters = nb_clusters;
821
822 out:
823 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
824 if (ret < 0) {
825 return ret;
826 }
827
828 m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
829 m->cluster_offset = cluster_offset;
830
831 *num = m->nb_available - n_start;
832
833 return 0;
834
835 fail:
836 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
837 return ret;
838 }
839
840 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
841 const uint8_t *buf, int buf_size)
842 {
843 z_stream strm1, *strm = &strm1;
844 int ret, out_len;
845
846 memset(strm, 0, sizeof(*strm));
847
848 strm->next_in = (uint8_t *)buf;
849 strm->avail_in = buf_size;
850 strm->next_out = out_buf;
851 strm->avail_out = out_buf_size;
852
853 ret = inflateInit2(strm, -12);
854 if (ret != Z_OK)
855 return -1;
856 ret = inflate(strm, Z_FINISH);
857 out_len = strm->next_out - out_buf;
858 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
859 out_len != out_buf_size) {
860 inflateEnd(strm);
861 return -1;
862 }
863 inflateEnd(strm);
864 return 0;
865 }
866
867 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
868 {
869 BDRVQcowState *s = bs->opaque;
870 int ret, csize, nb_csectors, sector_offset;
871 uint64_t coffset;
872
873 coffset = cluster_offset & s->cluster_offset_mask;
874 if (s->cluster_cache_offset != coffset) {
875 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
876 sector_offset = coffset & 511;
877 csize = nb_csectors * 512 - sector_offset;
878 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
879 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
880 if (ret < 0) {
881 return -1;
882 }
883 if (decompress_buffer(s->cluster_cache, s->cluster_size,
884 s->cluster_data + sector_offset, csize) < 0) {
885 return -1;
886 }
887 s->cluster_cache_offset = coffset;
888 }
889 return 0;
890 }
891
892 /*
893 * This discards as many clusters of nb_clusters as possible at once (i.e.
894 * all clusters in the same L2 table) and returns the number of discarded
895 * clusters.
896 */
897 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
898 unsigned int nb_clusters)
899 {
900 BDRVQcowState *s = bs->opaque;
901 uint64_t l2_offset, *l2_table;
902 int l2_index;
903 int ret;
904 int i;
905
906 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
907 if (ret < 0) {
908 return ret;
909 }
910
911 /* Limit nb_clusters to one L2 table */
912 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
913
914 for (i = 0; i < nb_clusters; i++) {
915 uint64_t old_offset;
916
917 old_offset = be64_to_cpu(l2_table[l2_index + i]);
918 old_offset &= ~QCOW_OFLAG_COPIED;
919
920 if (old_offset == 0) {
921 continue;
922 }
923
924 /* First remove L2 entries */
925 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
926 l2_table[l2_index + i] = cpu_to_be64(0);
927
928 /* Then decrease the refcount */
929 qcow2_free_any_clusters(bs, old_offset, 1);
930 }
931
932 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
933 if (ret < 0) {
934 return ret;
935 }
936
937 return nb_clusters;
938 }
939
940 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
941 int nb_sectors)
942 {
943 BDRVQcowState *s = bs->opaque;
944 uint64_t end_offset;
945 unsigned int nb_clusters;
946 int ret;
947
948 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
949
950 /* Round start up and end down */
951 offset = align_offset(offset, s->cluster_size);
952 end_offset &= ~(s->cluster_size - 1);
953
954 if (offset > end_offset) {
955 return 0;
956 }
957
958 nb_clusters = size_to_clusters(s, end_offset - offset);
959
960 /* Each L2 table is handled by its own loop iteration */
961 while (nb_clusters > 0) {
962 ret = discard_single_l2(bs, offset, nb_clusters);
963 if (ret < 0) {
964 return ret;
965 }
966
967 nb_clusters -= ret;
968 offset += (ret * s->cluster_size);
969 }
970
971 return 0;
972 }