]> git.proxmox.com Git - qemu.git/blob - block/qcow2-cluster.c
qcow2: Ignore reserved bits in count_contiguous_clusters()
[qemu.git] / block / qcow2-cluster.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include <zlib.h>
26
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
31
32 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
33 {
34 BDRVQcowState *s = bs->opaque;
35 int new_l1_size, new_l1_size2, ret, i;
36 uint64_t *new_l1_table;
37 int64_t new_l1_table_offset;
38 uint8_t data[12];
39
40 if (min_size <= s->l1_size)
41 return 0;
42
43 if (exact_size) {
44 new_l1_size = min_size;
45 } else {
46 /* Bump size up to reduce the number of times we have to grow */
47 new_l1_size = s->l1_size;
48 if (new_l1_size == 0) {
49 new_l1_size = 1;
50 }
51 while (min_size > new_l1_size) {
52 new_l1_size = (new_l1_size * 3 + 1) / 2;
53 }
54 }
55
56 #ifdef DEBUG_ALLOC2
57 fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
58 #endif
59
60 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
61 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
62 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
63
64 /* write new table (align to cluster) */
65 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
66 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
67 if (new_l1_table_offset < 0) {
68 g_free(new_l1_table);
69 return new_l1_table_offset;
70 }
71
72 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
73 if (ret < 0) {
74 goto fail;
75 }
76
77 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
78 for(i = 0; i < s->l1_size; i++)
79 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
80 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
81 if (ret < 0)
82 goto fail;
83 for(i = 0; i < s->l1_size; i++)
84 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
85
86 /* set new table */
87 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
88 cpu_to_be32w((uint32_t*)data, new_l1_size);
89 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
90 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
91 if (ret < 0) {
92 goto fail;
93 }
94 g_free(s->l1_table);
95 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
96 s->l1_table_offset = new_l1_table_offset;
97 s->l1_table = new_l1_table;
98 s->l1_size = new_l1_size;
99 return 0;
100 fail:
101 g_free(new_l1_table);
102 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
103 return ret;
104 }
105
106 /*
107 * l2_load
108 *
109 * Loads a L2 table into memory. If the table is in the cache, the cache
110 * is used; otherwise the L2 table is loaded from the image file.
111 *
112 * Returns a pointer to the L2 table on success, or NULL if the read from
113 * the image file failed.
114 */
115
116 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
117 uint64_t **l2_table)
118 {
119 BDRVQcowState *s = bs->opaque;
120 int ret;
121
122 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
123
124 return ret;
125 }
126
127 /*
128 * Writes one sector of the L1 table to the disk (can't update single entries
129 * and we really don't want bdrv_pread to perform a read-modify-write)
130 */
131 #define L1_ENTRIES_PER_SECTOR (512 / 8)
132 static int write_l1_entry(BlockDriverState *bs, int l1_index)
133 {
134 BDRVQcowState *s = bs->opaque;
135 uint64_t buf[L1_ENTRIES_PER_SECTOR];
136 int l1_start_index;
137 int i, ret;
138
139 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
140 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
141 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
142 }
143
144 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
145 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
146 buf, sizeof(buf));
147 if (ret < 0) {
148 return ret;
149 }
150
151 return 0;
152 }
153
154 /*
155 * l2_allocate
156 *
157 * Allocate a new l2 entry in the file. If l1_index points to an already
158 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
159 * table) copy the contents of the old L2 table into the newly allocated one.
160 * Otherwise the new table is initialized with zeros.
161 *
162 */
163
164 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
165 {
166 BDRVQcowState *s = bs->opaque;
167 uint64_t old_l2_offset;
168 uint64_t *l2_table;
169 int64_t l2_offset;
170 int ret;
171
172 old_l2_offset = s->l1_table[l1_index];
173
174 trace_qcow2_l2_allocate(bs, l1_index);
175
176 /* allocate a new l2 entry */
177
178 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
179 if (l2_offset < 0) {
180 return l2_offset;
181 }
182
183 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
184 if (ret < 0) {
185 goto fail;
186 }
187
188 /* allocate a new entry in the l2 cache */
189
190 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
191 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
192 if (ret < 0) {
193 return ret;
194 }
195
196 l2_table = *table;
197
198 if (old_l2_offset == 0) {
199 /* if there was no old l2 table, clear the new table */
200 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
201 } else {
202 uint64_t* old_table;
203
204 /* if there was an old l2 table, read it from the disk */
205 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
206 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_offset,
207 (void**) &old_table);
208 if (ret < 0) {
209 goto fail;
210 }
211
212 memcpy(l2_table, old_table, s->cluster_size);
213
214 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
215 if (ret < 0) {
216 goto fail;
217 }
218 }
219
220 /* write the l2 table to the file */
221 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
222
223 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
224 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
225 ret = qcow2_cache_flush(bs, s->l2_table_cache);
226 if (ret < 0) {
227 goto fail;
228 }
229
230 /* update the L1 entry */
231 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
232 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
233 ret = write_l1_entry(bs, l1_index);
234 if (ret < 0) {
235 goto fail;
236 }
237
238 *table = l2_table;
239 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
240 return 0;
241
242 fail:
243 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
244 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
245 s->l1_table[l1_index] = old_l2_offset;
246 return ret;
247 }
248
249 /*
250 * Checks how many clusters in a given L2 table are contiguous in the image
251 * file. As soon as one of the flags in the bitmask stop_flags changes compared
252 * to the first cluster, the search is stopped and the cluster is not counted
253 * as contiguous. (This allows it, for example, to stop at the first compressed
254 * cluster which may require a different handling)
255 */
256 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
257 uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
258 {
259 int i;
260 uint64_t mask = stop_flags | L2E_OFFSET_MASK;
261 uint64_t offset = be64_to_cpu(l2_table[0]) & mask;
262
263 if (!offset)
264 return 0;
265
266 for (i = start; i < start + nb_clusters; i++) {
267 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
268 if (offset + (uint64_t) i * cluster_size != l2_entry) {
269 break;
270 }
271 }
272
273 return (i - start);
274 }
275
276 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
277 {
278 int i;
279
280 for (i = 0; i < nb_clusters; i++) {
281 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
282
283 if (type != QCOW2_CLUSTER_UNALLOCATED) {
284 break;
285 }
286 }
287
288 return i;
289 }
290
291 /* The crypt function is compatible with the linux cryptoloop
292 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
293 supported */
294 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
295 uint8_t *out_buf, const uint8_t *in_buf,
296 int nb_sectors, int enc,
297 const AES_KEY *key)
298 {
299 union {
300 uint64_t ll[2];
301 uint8_t b[16];
302 } ivec;
303 int i;
304
305 for(i = 0; i < nb_sectors; i++) {
306 ivec.ll[0] = cpu_to_le64(sector_num);
307 ivec.ll[1] = 0;
308 AES_cbc_encrypt(in_buf, out_buf, 512, key,
309 ivec.b, enc);
310 sector_num++;
311 in_buf += 512;
312 out_buf += 512;
313 }
314 }
315
316 static int coroutine_fn copy_sectors(BlockDriverState *bs,
317 uint64_t start_sect,
318 uint64_t cluster_offset,
319 int n_start, int n_end)
320 {
321 BDRVQcowState *s = bs->opaque;
322 QEMUIOVector qiov;
323 struct iovec iov;
324 int n, ret;
325
326 /*
327 * If this is the last cluster and it is only partially used, we must only
328 * copy until the end of the image, or bdrv_check_request will fail for the
329 * bdrv_read/write calls below.
330 */
331 if (start_sect + n_end > bs->total_sectors) {
332 n_end = bs->total_sectors - start_sect;
333 }
334
335 n = n_end - n_start;
336 if (n <= 0) {
337 return 0;
338 }
339
340 iov.iov_len = n * BDRV_SECTOR_SIZE;
341 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
342
343 qemu_iovec_init_external(&qiov, &iov, 1);
344
345 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
346
347 /* Call .bdrv_co_readv() directly instead of using the public block-layer
348 * interface. This avoids double I/O throttling and request tracking,
349 * which can lead to deadlock when block layer copy-on-read is enabled.
350 */
351 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
352 if (ret < 0) {
353 goto out;
354 }
355
356 if (s->crypt_method) {
357 qcow2_encrypt_sectors(s, start_sect + n_start,
358 iov.iov_base, iov.iov_base, n, 1,
359 &s->aes_encrypt_key);
360 }
361
362 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
363 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
364 if (ret < 0) {
365 goto out;
366 }
367
368 ret = 0;
369 out:
370 qemu_vfree(iov.iov_base);
371 return ret;
372 }
373
374
375 /*
376 * get_cluster_offset
377 *
378 * For a given offset of the disk image, find the cluster offset in
379 * qcow2 file. The offset is stored in *cluster_offset.
380 *
381 * on entry, *num is the number of contiguous sectors we'd like to
382 * access following offset.
383 *
384 * on exit, *num is the number of contiguous sectors we can read.
385 *
386 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
387 * cases.
388 */
389 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
390 int *num, uint64_t *cluster_offset)
391 {
392 BDRVQcowState *s = bs->opaque;
393 unsigned int l1_index, l2_index;
394 uint64_t l2_offset, *l2_table;
395 int l1_bits, c;
396 unsigned int index_in_cluster, nb_clusters;
397 uint64_t nb_available, nb_needed;
398 int ret;
399
400 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
401 nb_needed = *num + index_in_cluster;
402
403 l1_bits = s->l2_bits + s->cluster_bits;
404
405 /* compute how many bytes there are between the offset and
406 * the end of the l1 entry
407 */
408
409 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
410
411 /* compute the number of available sectors */
412
413 nb_available = (nb_available >> 9) + index_in_cluster;
414
415 if (nb_needed > nb_available) {
416 nb_needed = nb_available;
417 }
418
419 *cluster_offset = 0;
420
421 /* seek the the l2 offset in the l1 table */
422
423 l1_index = offset >> l1_bits;
424 if (l1_index >= s->l1_size) {
425 ret = QCOW2_CLUSTER_UNALLOCATED;
426 goto out;
427 }
428
429 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
430 if (!l2_offset) {
431 ret = QCOW2_CLUSTER_UNALLOCATED;
432 goto out;
433 }
434
435 /* load the l2 table in memory */
436
437 ret = l2_load(bs, l2_offset, &l2_table);
438 if (ret < 0) {
439 return ret;
440 }
441
442 /* find the cluster offset for the given disk offset */
443
444 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
445 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
446 nb_clusters = size_to_clusters(s, nb_needed << 9);
447
448 ret = qcow2_get_cluster_type(*cluster_offset);
449 switch (ret) {
450 case QCOW2_CLUSTER_COMPRESSED:
451 /* Compressed clusters can only be processed one by one */
452 c = 1;
453 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
454 break;
455 case QCOW2_CLUSTER_UNALLOCATED:
456 /* how many empty clusters ? */
457 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
458 *cluster_offset = 0;
459 break;
460 case QCOW2_CLUSTER_NORMAL:
461 /* how many allocated clusters ? */
462 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
463 &l2_table[l2_index], 0, QCOW_OFLAG_COMPRESSED);
464 *cluster_offset &= L2E_OFFSET_MASK;
465 break;
466 }
467
468 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
469
470 nb_available = (c * s->cluster_sectors);
471
472 out:
473 if (nb_available > nb_needed)
474 nb_available = nb_needed;
475
476 *num = nb_available - index_in_cluster;
477
478 return ret;
479 }
480
481 /*
482 * get_cluster_table
483 *
484 * for a given disk offset, load (and allocate if needed)
485 * the l2 table.
486 *
487 * the l2 table offset in the qcow2 file and the cluster index
488 * in the l2 table are given to the caller.
489 *
490 * Returns 0 on success, -errno in failure case
491 */
492 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
493 uint64_t **new_l2_table,
494 int *new_l2_index)
495 {
496 BDRVQcowState *s = bs->opaque;
497 unsigned int l1_index, l2_index;
498 uint64_t l2_offset;
499 uint64_t *l2_table = NULL;
500 int ret;
501
502 /* seek the the l2 offset in the l1 table */
503
504 l1_index = offset >> (s->l2_bits + s->cluster_bits);
505 if (l1_index >= s->l1_size) {
506 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
507 if (ret < 0) {
508 return ret;
509 }
510 }
511 l2_offset = s->l1_table[l1_index];
512
513 /* seek the l2 table of the given l2 offset */
514
515 if (l2_offset & QCOW_OFLAG_COPIED) {
516 /* load the l2 table in memory */
517 l2_offset &= ~QCOW_OFLAG_COPIED;
518 ret = l2_load(bs, l2_offset, &l2_table);
519 if (ret < 0) {
520 return ret;
521 }
522 } else {
523 /* First allocate a new L2 table (and do COW if needed) */
524 ret = l2_allocate(bs, l1_index, &l2_table);
525 if (ret < 0) {
526 return ret;
527 }
528
529 /* Then decrease the refcount of the old table */
530 if (l2_offset) {
531 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
532 }
533 l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
534 }
535
536 /* find the cluster offset for the given disk offset */
537
538 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
539
540 *new_l2_table = l2_table;
541 *new_l2_index = l2_index;
542
543 return 0;
544 }
545
546 /*
547 * alloc_compressed_cluster_offset
548 *
549 * For a given offset of the disk image, return cluster offset in
550 * qcow2 file.
551 *
552 * If the offset is not found, allocate a new compressed cluster.
553 *
554 * Return the cluster offset if successful,
555 * Return 0, otherwise.
556 *
557 */
558
559 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
560 uint64_t offset,
561 int compressed_size)
562 {
563 BDRVQcowState *s = bs->opaque;
564 int l2_index, ret;
565 uint64_t *l2_table;
566 int64_t cluster_offset;
567 int nb_csectors;
568
569 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
570 if (ret < 0) {
571 return 0;
572 }
573
574 cluster_offset = be64_to_cpu(l2_table[l2_index]);
575 if (cluster_offset & QCOW_OFLAG_COPIED) {
576 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
577 return 0;
578 }
579
580 if (cluster_offset)
581 qcow2_free_any_clusters(bs, cluster_offset, 1);
582
583 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
584 if (cluster_offset < 0) {
585 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
586 return 0;
587 }
588
589 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
590 (cluster_offset >> 9);
591
592 cluster_offset |= QCOW_OFLAG_COMPRESSED |
593 ((uint64_t)nb_csectors << s->csize_shift);
594
595 /* update L2 table */
596
597 /* compressed clusters never have the copied flag */
598
599 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
600 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
601 l2_table[l2_index] = cpu_to_be64(cluster_offset);
602 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
603 if (ret < 0) {
604 return 0;
605 }
606
607 return cluster_offset;
608 }
609
610 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
611 {
612 BDRVQcowState *s = bs->opaque;
613 int i, j = 0, l2_index, ret;
614 uint64_t *old_cluster, start_sect, *l2_table;
615 uint64_t cluster_offset = m->alloc_offset;
616 bool cow = false;
617
618 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
619
620 if (m->nb_clusters == 0)
621 return 0;
622
623 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
624
625 /* copy content of unmodified sectors */
626 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
627 if (m->n_start) {
628 cow = true;
629 qemu_co_mutex_unlock(&s->lock);
630 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
631 qemu_co_mutex_lock(&s->lock);
632 if (ret < 0)
633 goto err;
634 }
635
636 if (m->nb_available & (s->cluster_sectors - 1)) {
637 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
638 cow = true;
639 qemu_co_mutex_unlock(&s->lock);
640 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
641 m->nb_available - end, s->cluster_sectors);
642 qemu_co_mutex_lock(&s->lock);
643 if (ret < 0)
644 goto err;
645 }
646
647 /*
648 * Update L2 table.
649 *
650 * Before we update the L2 table to actually point to the new cluster, we
651 * need to be sure that the refcounts have been increased and COW was
652 * handled.
653 */
654 if (cow) {
655 qcow2_cache_depends_on_flush(s->l2_table_cache);
656 }
657
658 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
659 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
660 if (ret < 0) {
661 goto err;
662 }
663 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
664
665 for (i = 0; i < m->nb_clusters; i++) {
666 /* if two concurrent writes happen to the same unallocated cluster
667 * each write allocates separate cluster and writes data concurrently.
668 * The first one to complete updates l2 table with pointer to its
669 * cluster the second one has to do RMW (which is done above by
670 * copy_sectors()), update l2 table with its cluster pointer and free
671 * old cluster. This is what this loop does */
672 if(l2_table[l2_index + i] != 0)
673 old_cluster[j++] = l2_table[l2_index + i];
674
675 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
676 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
677 }
678
679
680 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
681 if (ret < 0) {
682 goto err;
683 }
684
685 /*
686 * If this was a COW, we need to decrease the refcount of the old cluster.
687 * Also flush bs->file to get the right order for L2 and refcount update.
688 */
689 if (j != 0) {
690 for (i = 0; i < j; i++) {
691 qcow2_free_any_clusters(bs,
692 be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
693 }
694 }
695
696 ret = 0;
697 err:
698 g_free(old_cluster);
699 return ret;
700 }
701
702 /*
703 * Returns the number of contiguous clusters that can be used for an allocating
704 * write, but require COW to be performed (this includes yet unallocated space,
705 * which must copy from the backing file)
706 */
707 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
708 uint64_t *l2_table, int l2_index)
709 {
710 int i = 0;
711 uint64_t cluster_offset;
712
713 while (i < nb_clusters) {
714 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
715 &l2_table[l2_index], i,
716 QCOW_OFLAG_COPIED | QCOW_OFLAG_COMPRESSED);
717 if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
718 break;
719 }
720
721 i += count_contiguous_free_clusters(nb_clusters - i,
722 &l2_table[l2_index + i]);
723 if (i >= nb_clusters) {
724 break;
725 }
726
727 cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
728
729 if ((cluster_offset & QCOW_OFLAG_COPIED) ||
730 (cluster_offset & QCOW_OFLAG_COMPRESSED))
731 break;
732 }
733
734 assert(i <= nb_clusters);
735 return i;
736 }
737
738 /*
739 * Allocates new clusters for the given guest_offset.
740 *
741 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
742 * contain the number of clusters that have been allocated and are contiguous
743 * in the image file.
744 *
745 * If *host_offset is non-zero, it specifies the offset in the image file at
746 * which the new clusters must start. *nb_clusters can be 0 on return in this
747 * case if the cluster at host_offset is already in use. If *host_offset is
748 * zero, the clusters can be allocated anywhere in the image file.
749 *
750 * *host_offset is updated to contain the offset into the image file at which
751 * the first allocated cluster starts.
752 *
753 * Return 0 on success and -errno in error cases. -EAGAIN means that the
754 * function has been waiting for another request and the allocation must be
755 * restarted, but the whole request should not be failed.
756 */
757 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
758 uint64_t *host_offset, unsigned int *nb_clusters, uint64_t *l2_table)
759 {
760 BDRVQcowState *s = bs->opaque;
761 int64_t cluster_offset;
762 QCowL2Meta *old_alloc;
763
764 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
765 *host_offset, *nb_clusters);
766
767 /*
768 * Check if there already is an AIO write request in flight which allocates
769 * the same cluster. In this case we need to wait until the previous
770 * request has completed and updated the L2 table accordingly.
771 */
772 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
773
774 uint64_t start = guest_offset >> s->cluster_bits;
775 uint64_t end = start + *nb_clusters;
776 uint64_t old_start = old_alloc->offset >> s->cluster_bits;
777 uint64_t old_end = old_start + old_alloc->nb_clusters;
778
779 if (end < old_start || start > old_end) {
780 /* No intersection */
781 } else {
782 if (start < old_start) {
783 /* Stop at the start of a running allocation */
784 *nb_clusters = old_start - start;
785 } else {
786 *nb_clusters = 0;
787 }
788
789 if (*nb_clusters == 0) {
790 /* Wait for the dependency to complete. We need to recheck
791 * the free/allocated clusters when we continue. */
792 qemu_co_mutex_unlock(&s->lock);
793 qemu_co_queue_wait(&old_alloc->dependent_requests);
794 qemu_co_mutex_lock(&s->lock);
795 return -EAGAIN;
796 }
797 }
798 }
799
800 if (!*nb_clusters) {
801 abort();
802 }
803
804 /* Allocate new clusters */
805 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
806 if (*host_offset == 0) {
807 cluster_offset = qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
808 } else {
809 cluster_offset = *host_offset;
810 *nb_clusters = qcow2_alloc_clusters_at(bs, cluster_offset, *nb_clusters);
811 }
812
813 if (cluster_offset < 0) {
814 return cluster_offset;
815 }
816 *host_offset = cluster_offset;
817 return 0;
818 }
819
820 /*
821 * alloc_cluster_offset
822 *
823 * For a given offset on the virtual disk, find the cluster offset in qcow2
824 * file. If the offset is not found, allocate a new cluster.
825 *
826 * If the cluster was already allocated, m->nb_clusters is set to 0 and
827 * other fields in m are meaningless.
828 *
829 * If the cluster is newly allocated, m->nb_clusters is set to the number of
830 * contiguous clusters that have been allocated. In this case, the other
831 * fields of m are valid and contain information about the first allocated
832 * cluster.
833 *
834 * If the request conflicts with another write request in flight, the coroutine
835 * is queued and will be reentered when the dependency has completed.
836 *
837 * Return 0 on success and -errno in error cases
838 */
839 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
840 int n_start, int n_end, int *num, QCowL2Meta *m)
841 {
842 BDRVQcowState *s = bs->opaque;
843 int l2_index, ret, sectors;
844 uint64_t *l2_table;
845 unsigned int nb_clusters, keep_clusters;
846 uint64_t cluster_offset;
847
848 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
849 n_start, n_end);
850
851 /* Find L2 entry for the first involved cluster */
852 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
853 if (ret < 0) {
854 return ret;
855 }
856
857 /*
858 * Calculate the number of clusters to look for. We stop at L2 table
859 * boundaries to keep things simple.
860 */
861 again:
862 nb_clusters = MIN(size_to_clusters(s, n_end << BDRV_SECTOR_BITS),
863 s->l2_size - l2_index);
864
865 cluster_offset = be64_to_cpu(l2_table[l2_index]);
866
867 /*
868 * Check how many clusters are already allocated and don't need COW, and how
869 * many need a new allocation.
870 */
871 if (cluster_offset & QCOW_OFLAG_COPIED) {
872 /* We keep all QCOW_OFLAG_COPIED clusters */
873 keep_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
874 &l2_table[l2_index], 0,
875 QCOW_OFLAG_COPIED);
876 assert(keep_clusters <= nb_clusters);
877 nb_clusters -= keep_clusters;
878 } else {
879 /* For the moment, overwrite compressed clusters one by one */
880 if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
881 nb_clusters = 1;
882 } else {
883 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
884 }
885
886 keep_clusters = 0;
887 cluster_offset = 0;
888 }
889
890 cluster_offset &= ~QCOW_OFLAG_COPIED;
891
892 /* If there is something left to allocate, do that now */
893 *m = (QCowL2Meta) {
894 .cluster_offset = cluster_offset,
895 .nb_clusters = 0,
896 };
897 qemu_co_queue_init(&m->dependent_requests);
898
899 if (nb_clusters > 0) {
900 uint64_t alloc_offset;
901 uint64_t alloc_cluster_offset;
902 uint64_t keep_bytes = keep_clusters * s->cluster_size;
903
904 /* Calculate start and size of allocation */
905 alloc_offset = offset + keep_bytes;
906
907 if (keep_clusters == 0) {
908 alloc_cluster_offset = 0;
909 } else {
910 alloc_cluster_offset = cluster_offset + keep_bytes;
911 }
912
913 /* Allocate, if necessary at a given offset in the image file */
914 ret = do_alloc_cluster_offset(bs, alloc_offset, &alloc_cluster_offset,
915 &nb_clusters, l2_table);
916 if (ret == -EAGAIN) {
917 goto again;
918 } else if (ret < 0) {
919 goto fail;
920 }
921
922 /* save info needed for meta data update */
923 if (nb_clusters > 0) {
924 int requested_sectors = n_end - keep_clusters * s->cluster_sectors;
925 int avail_sectors = (keep_clusters + nb_clusters)
926 << (s->cluster_bits - BDRV_SECTOR_BITS);
927
928 *m = (QCowL2Meta) {
929 .cluster_offset = keep_clusters == 0 ?
930 alloc_cluster_offset : cluster_offset,
931 .alloc_offset = alloc_cluster_offset,
932 .offset = alloc_offset,
933 .n_start = keep_clusters == 0 ? n_start : 0,
934 .nb_clusters = nb_clusters,
935 .nb_available = MIN(requested_sectors, avail_sectors),
936 };
937 qemu_co_queue_init(&m->dependent_requests);
938 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
939 }
940 }
941
942 /* Some cleanup work */
943 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
944 if (ret < 0) {
945 goto fail_put;
946 }
947
948 sectors = (keep_clusters + nb_clusters) << (s->cluster_bits - 9);
949 if (sectors > n_end) {
950 sectors = n_end;
951 }
952
953 assert(sectors > n_start);
954 *num = sectors - n_start;
955
956 return 0;
957
958 fail:
959 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
960 fail_put:
961 if (m->nb_clusters > 0) {
962 QLIST_REMOVE(m, next_in_flight);
963 }
964 return ret;
965 }
966
967 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
968 const uint8_t *buf, int buf_size)
969 {
970 z_stream strm1, *strm = &strm1;
971 int ret, out_len;
972
973 memset(strm, 0, sizeof(*strm));
974
975 strm->next_in = (uint8_t *)buf;
976 strm->avail_in = buf_size;
977 strm->next_out = out_buf;
978 strm->avail_out = out_buf_size;
979
980 ret = inflateInit2(strm, -12);
981 if (ret != Z_OK)
982 return -1;
983 ret = inflate(strm, Z_FINISH);
984 out_len = strm->next_out - out_buf;
985 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
986 out_len != out_buf_size) {
987 inflateEnd(strm);
988 return -1;
989 }
990 inflateEnd(strm);
991 return 0;
992 }
993
994 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
995 {
996 BDRVQcowState *s = bs->opaque;
997 int ret, csize, nb_csectors, sector_offset;
998 uint64_t coffset;
999
1000 coffset = cluster_offset & s->cluster_offset_mask;
1001 if (s->cluster_cache_offset != coffset) {
1002 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1003 sector_offset = coffset & 511;
1004 csize = nb_csectors * 512 - sector_offset;
1005 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1006 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1007 if (ret < 0) {
1008 return ret;
1009 }
1010 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1011 s->cluster_data + sector_offset, csize) < 0) {
1012 return -EIO;
1013 }
1014 s->cluster_cache_offset = coffset;
1015 }
1016 return 0;
1017 }
1018
1019 /*
1020 * This discards as many clusters of nb_clusters as possible at once (i.e.
1021 * all clusters in the same L2 table) and returns the number of discarded
1022 * clusters.
1023 */
1024 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1025 unsigned int nb_clusters)
1026 {
1027 BDRVQcowState *s = bs->opaque;
1028 uint64_t *l2_table;
1029 int l2_index;
1030 int ret;
1031 int i;
1032
1033 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1034 if (ret < 0) {
1035 return ret;
1036 }
1037
1038 /* Limit nb_clusters to one L2 table */
1039 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1040
1041 for (i = 0; i < nb_clusters; i++) {
1042 uint64_t old_offset;
1043
1044 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1045 old_offset &= ~QCOW_OFLAG_COPIED;
1046
1047 if (old_offset == 0) {
1048 continue;
1049 }
1050
1051 /* First remove L2 entries */
1052 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1053 l2_table[l2_index + i] = cpu_to_be64(0);
1054
1055 /* Then decrease the refcount */
1056 qcow2_free_any_clusters(bs, old_offset, 1);
1057 }
1058
1059 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1060 if (ret < 0) {
1061 return ret;
1062 }
1063
1064 return nb_clusters;
1065 }
1066
1067 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1068 int nb_sectors)
1069 {
1070 BDRVQcowState *s = bs->opaque;
1071 uint64_t end_offset;
1072 unsigned int nb_clusters;
1073 int ret;
1074
1075 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1076
1077 /* Round start up and end down */
1078 offset = align_offset(offset, s->cluster_size);
1079 end_offset &= ~(s->cluster_size - 1);
1080
1081 if (offset > end_offset) {
1082 return 0;
1083 }
1084
1085 nb_clusters = size_to_clusters(s, end_offset - offset);
1086
1087 /* Each L2 table is handled by its own loop iteration */
1088 while (nb_clusters > 0) {
1089 ret = discard_single_l2(bs, offset, nb_clusters);
1090 if (ret < 0) {
1091 return ret;
1092 }
1093
1094 nb_clusters -= ret;
1095 offset += (ret * s->cluster_size);
1096 }
1097
1098 return 0;
1099 }