]> git.proxmox.com Git - qemu.git/blob - block/qcow2-cluster.c
qcow2: Fix error handling in l2_allocate
[qemu.git] / block / qcow2-cluster.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include <zlib.h>
26
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
30
31 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size)
32 {
33 BDRVQcowState *s = bs->opaque;
34 int new_l1_size, new_l1_size2, ret, i;
35 uint64_t *new_l1_table;
36 int64_t new_l1_table_offset;
37 uint8_t data[12];
38
39 new_l1_size = s->l1_size;
40 if (min_size <= new_l1_size)
41 return 0;
42 if (new_l1_size == 0) {
43 new_l1_size = 1;
44 }
45 while (min_size > new_l1_size) {
46 new_l1_size = (new_l1_size * 3 + 1) / 2;
47 }
48 #ifdef DEBUG_ALLOC2
49 printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
50 #endif
51
52 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
53 new_l1_table = qemu_mallocz(align_offset(new_l1_size2, 512));
54 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
55
56 /* write new table (align to cluster) */
57 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
58 if (new_l1_table_offset < 0) {
59 qemu_free(new_l1_table);
60 return new_l1_table_offset;
61 }
62
63 for(i = 0; i < s->l1_size; i++)
64 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
65 ret = bdrv_pwrite(s->hd, new_l1_table_offset, new_l1_table, new_l1_size2);
66 if (ret != new_l1_size2)
67 goto fail;
68 for(i = 0; i < s->l1_size; i++)
69 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
70
71 /* set new table */
72 cpu_to_be32w((uint32_t*)data, new_l1_size);
73 cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
74 ret = bdrv_pwrite(s->hd, offsetof(QCowHeader, l1_size), data,sizeof(data));
75 if (ret != sizeof(data)) {
76 goto fail;
77 }
78 qemu_free(s->l1_table);
79 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
80 s->l1_table_offset = new_l1_table_offset;
81 s->l1_table = new_l1_table;
82 s->l1_size = new_l1_size;
83 return 0;
84 fail:
85 qemu_free(new_l1_table);
86 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
87 return ret < 0 ? ret : -EIO;
88 }
89
90 void qcow2_l2_cache_reset(BlockDriverState *bs)
91 {
92 BDRVQcowState *s = bs->opaque;
93
94 memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
95 memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
96 memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
97 }
98
99 static inline int l2_cache_new_entry(BlockDriverState *bs)
100 {
101 BDRVQcowState *s = bs->opaque;
102 uint32_t min_count;
103 int min_index, i;
104
105 /* find a new entry in the least used one */
106 min_index = 0;
107 min_count = 0xffffffff;
108 for(i = 0; i < L2_CACHE_SIZE; i++) {
109 if (s->l2_cache_counts[i] < min_count) {
110 min_count = s->l2_cache_counts[i];
111 min_index = i;
112 }
113 }
114 return min_index;
115 }
116
117 /*
118 * seek_l2_table
119 *
120 * seek l2_offset in the l2_cache table
121 * if not found, return NULL,
122 * if found,
123 * increments the l2 cache hit count of the entry,
124 * if counter overflow, divide by two all counters
125 * return the pointer to the l2 cache entry
126 *
127 */
128
129 static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
130 {
131 int i, j;
132
133 for(i = 0; i < L2_CACHE_SIZE; i++) {
134 if (l2_offset == s->l2_cache_offsets[i]) {
135 /* increment the hit count */
136 if (++s->l2_cache_counts[i] == 0xffffffff) {
137 for(j = 0; j < L2_CACHE_SIZE; j++) {
138 s->l2_cache_counts[j] >>= 1;
139 }
140 }
141 return s->l2_cache + (i << s->l2_bits);
142 }
143 }
144 return NULL;
145 }
146
147 /*
148 * l2_load
149 *
150 * Loads a L2 table into memory. If the table is in the cache, the cache
151 * is used; otherwise the L2 table is loaded from the image file.
152 *
153 * Returns a pointer to the L2 table on success, or NULL if the read from
154 * the image file failed.
155 */
156
157 static uint64_t *l2_load(BlockDriverState *bs, uint64_t l2_offset)
158 {
159 BDRVQcowState *s = bs->opaque;
160 int min_index;
161 uint64_t *l2_table;
162
163 /* seek if the table for the given offset is in the cache */
164
165 l2_table = seek_l2_table(s, l2_offset);
166 if (l2_table != NULL)
167 return l2_table;
168
169 /* not found: load a new entry in the least used one */
170
171 min_index = l2_cache_new_entry(bs);
172 l2_table = s->l2_cache + (min_index << s->l2_bits);
173 if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
174 s->l2_size * sizeof(uint64_t))
175 return NULL;
176 s->l2_cache_offsets[min_index] = l2_offset;
177 s->l2_cache_counts[min_index] = 1;
178
179 return l2_table;
180 }
181
182 /*
183 * Writes one sector of the L1 table to the disk (can't update single entries
184 * and we really don't want bdrv_pread to perform a read-modify-write)
185 */
186 #define L1_ENTRIES_PER_SECTOR (512 / 8)
187 static int write_l1_entry(BDRVQcowState *s, int l1_index)
188 {
189 uint64_t buf[L1_ENTRIES_PER_SECTOR];
190 int l1_start_index;
191 int i;
192
193 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
194 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
195 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
196 }
197
198 if (bdrv_pwrite(s->hd, s->l1_table_offset + 8 * l1_start_index,
199 buf, sizeof(buf)) != sizeof(buf))
200 {
201 return -1;
202 }
203
204 return 0;
205 }
206
207 /*
208 * l2_allocate
209 *
210 * Allocate a new l2 entry in the file. If l1_index points to an already
211 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
212 * table) copy the contents of the old L2 table into the newly allocated one.
213 * Otherwise the new table is initialized with zeros.
214 *
215 */
216
217 static uint64_t *l2_allocate(BlockDriverState *bs, int l1_index)
218 {
219 BDRVQcowState *s = bs->opaque;
220 int min_index;
221 uint64_t old_l2_offset;
222 uint64_t *l2_table;
223 int64_t l2_offset;
224
225 old_l2_offset = s->l1_table[l1_index];
226
227 /* allocate a new l2 entry */
228
229 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
230 if (l2_offset < 0) {
231 return NULL;
232 }
233
234 /* allocate a new entry in the l2 cache */
235
236 min_index = l2_cache_new_entry(bs);
237 l2_table = s->l2_cache + (min_index << s->l2_bits);
238
239 if (old_l2_offset == 0) {
240 /* if there was no old l2 table, clear the new table */
241 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
242 } else {
243 /* if there was an old l2 table, read it from the disk */
244 if (bdrv_pread(s->hd, old_l2_offset,
245 l2_table, s->l2_size * sizeof(uint64_t)) !=
246 s->l2_size * sizeof(uint64_t))
247 goto fail;
248 }
249 /* write the l2 table to the file */
250 if (bdrv_pwrite(s->hd, l2_offset,
251 l2_table, s->l2_size * sizeof(uint64_t)) !=
252 s->l2_size * sizeof(uint64_t))
253 goto fail;
254
255 /* update the L1 entry */
256 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
257 if (write_l1_entry(s, l1_index) < 0) {
258 goto fail;
259 }
260
261 /* update the l2 cache entry */
262
263 s->l2_cache_offsets[min_index] = l2_offset;
264 s->l2_cache_counts[min_index] = 1;
265
266 return l2_table;
267
268 fail:
269 qcow2_l2_cache_reset(bs);
270 return NULL;
271 }
272
273 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
274 uint64_t *l2_table, uint64_t start, uint64_t mask)
275 {
276 int i;
277 uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
278
279 if (!offset)
280 return 0;
281
282 for (i = start; i < start + nb_clusters; i++)
283 if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
284 break;
285
286 return (i - start);
287 }
288
289 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
290 {
291 int i = 0;
292
293 while(nb_clusters-- && l2_table[i] == 0)
294 i++;
295
296 return i;
297 }
298
299 /* The crypt function is compatible with the linux cryptoloop
300 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
301 supported */
302 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
303 uint8_t *out_buf, const uint8_t *in_buf,
304 int nb_sectors, int enc,
305 const AES_KEY *key)
306 {
307 union {
308 uint64_t ll[2];
309 uint8_t b[16];
310 } ivec;
311 int i;
312
313 for(i = 0; i < nb_sectors; i++) {
314 ivec.ll[0] = cpu_to_le64(sector_num);
315 ivec.ll[1] = 0;
316 AES_cbc_encrypt(in_buf, out_buf, 512, key,
317 ivec.b, enc);
318 sector_num++;
319 in_buf += 512;
320 out_buf += 512;
321 }
322 }
323
324
325 static int qcow_read(BlockDriverState *bs, int64_t sector_num,
326 uint8_t *buf, int nb_sectors)
327 {
328 BDRVQcowState *s = bs->opaque;
329 int ret, index_in_cluster, n, n1;
330 uint64_t cluster_offset;
331
332 while (nb_sectors > 0) {
333 n = nb_sectors;
334 cluster_offset = qcow2_get_cluster_offset(bs, sector_num << 9, &n);
335 index_in_cluster = sector_num & (s->cluster_sectors - 1);
336 if (!cluster_offset) {
337 if (bs->backing_hd) {
338 /* read from the base image */
339 n1 = qcow2_backing_read1(bs->backing_hd, sector_num, buf, n);
340 if (n1 > 0) {
341 ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
342 if (ret < 0)
343 return -1;
344 }
345 } else {
346 memset(buf, 0, 512 * n);
347 }
348 } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
349 if (qcow2_decompress_cluster(s, cluster_offset) < 0)
350 return -1;
351 memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
352 } else {
353 ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
354 if (ret != n * 512)
355 return -1;
356 if (s->crypt_method) {
357 qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0,
358 &s->aes_decrypt_key);
359 }
360 }
361 nb_sectors -= n;
362 sector_num += n;
363 buf += n * 512;
364 }
365 return 0;
366 }
367
368 static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
369 uint64_t cluster_offset, int n_start, int n_end)
370 {
371 BDRVQcowState *s = bs->opaque;
372 int n, ret;
373
374 n = n_end - n_start;
375 if (n <= 0)
376 return 0;
377 ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
378 if (ret < 0)
379 return ret;
380 if (s->crypt_method) {
381 qcow2_encrypt_sectors(s, start_sect + n_start,
382 s->cluster_data,
383 s->cluster_data, n, 1,
384 &s->aes_encrypt_key);
385 }
386 ret = bdrv_write(s->hd, (cluster_offset >> 9) + n_start,
387 s->cluster_data, n);
388 if (ret < 0)
389 return ret;
390 return 0;
391 }
392
393
394 /*
395 * get_cluster_offset
396 *
397 * For a given offset of the disk image, return cluster offset in
398 * qcow2 file.
399 *
400 * on entry, *num is the number of contiguous clusters we'd like to
401 * access following offset.
402 *
403 * on exit, *num is the number of contiguous clusters we can read.
404 *
405 * Return 1, if the offset is found
406 * Return 0, otherwise.
407 *
408 */
409
410 uint64_t qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
411 int *num)
412 {
413 BDRVQcowState *s = bs->opaque;
414 unsigned int l1_index, l2_index;
415 uint64_t l2_offset, *l2_table, cluster_offset;
416 int l1_bits, c;
417 unsigned int index_in_cluster, nb_clusters;
418 uint64_t nb_available, nb_needed;
419
420 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
421 nb_needed = *num + index_in_cluster;
422
423 l1_bits = s->l2_bits + s->cluster_bits;
424
425 /* compute how many bytes there are between the offset and
426 * the end of the l1 entry
427 */
428
429 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
430
431 /* compute the number of available sectors */
432
433 nb_available = (nb_available >> 9) + index_in_cluster;
434
435 if (nb_needed > nb_available) {
436 nb_needed = nb_available;
437 }
438
439 cluster_offset = 0;
440
441 /* seek the the l2 offset in the l1 table */
442
443 l1_index = offset >> l1_bits;
444 if (l1_index >= s->l1_size)
445 goto out;
446
447 l2_offset = s->l1_table[l1_index];
448
449 /* seek the l2 table of the given l2 offset */
450
451 if (!l2_offset)
452 goto out;
453
454 /* load the l2 table in memory */
455
456 l2_offset &= ~QCOW_OFLAG_COPIED;
457 l2_table = l2_load(bs, l2_offset);
458 if (l2_table == NULL)
459 return 0;
460
461 /* find the cluster offset for the given disk offset */
462
463 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
464 cluster_offset = be64_to_cpu(l2_table[l2_index]);
465 nb_clusters = size_to_clusters(s, nb_needed << 9);
466
467 if (!cluster_offset) {
468 /* how many empty clusters ? */
469 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
470 } else {
471 /* how many allocated clusters ? */
472 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
473 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
474 }
475
476 nb_available = (c * s->cluster_sectors);
477 out:
478 if (nb_available > nb_needed)
479 nb_available = nb_needed;
480
481 *num = nb_available - index_in_cluster;
482
483 return cluster_offset & ~QCOW_OFLAG_COPIED;
484 }
485
486 /*
487 * get_cluster_table
488 *
489 * for a given disk offset, load (and allocate if needed)
490 * the l2 table.
491 *
492 * the l2 table offset in the qcow2 file and the cluster index
493 * in the l2 table are given to the caller.
494 *
495 * Returns 0 on success, -errno in failure case
496 */
497 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
498 uint64_t **new_l2_table,
499 uint64_t *new_l2_offset,
500 int *new_l2_index)
501 {
502 BDRVQcowState *s = bs->opaque;
503 unsigned int l1_index, l2_index;
504 uint64_t l2_offset, *l2_table;
505 int ret;
506
507 /* seek the the l2 offset in the l1 table */
508
509 l1_index = offset >> (s->l2_bits + s->cluster_bits);
510 if (l1_index >= s->l1_size) {
511 ret = qcow2_grow_l1_table(bs, l1_index + 1);
512 if (ret < 0) {
513 return ret;
514 }
515 }
516 l2_offset = s->l1_table[l1_index];
517
518 /* seek the l2 table of the given l2 offset */
519
520 if (l2_offset & QCOW_OFLAG_COPIED) {
521 /* load the l2 table in memory */
522 l2_offset &= ~QCOW_OFLAG_COPIED;
523 l2_table = l2_load(bs, l2_offset);
524 if (l2_table == NULL) {
525 return -EIO;
526 }
527 } else {
528 if (l2_offset)
529 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
530 l2_table = l2_allocate(bs, l1_index);
531 if (l2_table == NULL) {
532 return -EIO;
533 }
534 l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
535 }
536
537 /* find the cluster offset for the given disk offset */
538
539 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
540
541 *new_l2_table = l2_table;
542 *new_l2_offset = l2_offset;
543 *new_l2_index = l2_index;
544
545 return 0;
546 }
547
548 /*
549 * alloc_compressed_cluster_offset
550 *
551 * For a given offset of the disk image, return cluster offset in
552 * qcow2 file.
553 *
554 * If the offset is not found, allocate a new compressed cluster.
555 *
556 * Return the cluster offset if successful,
557 * Return 0, otherwise.
558 *
559 */
560
561 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
562 uint64_t offset,
563 int compressed_size)
564 {
565 BDRVQcowState *s = bs->opaque;
566 int l2_index, ret;
567 uint64_t l2_offset, *l2_table;
568 int64_t cluster_offset;
569 int nb_csectors;
570
571 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
572 if (ret < 0) {
573 return 0;
574 }
575
576 cluster_offset = be64_to_cpu(l2_table[l2_index]);
577 if (cluster_offset & QCOW_OFLAG_COPIED)
578 return cluster_offset & ~QCOW_OFLAG_COPIED;
579
580 if (cluster_offset)
581 qcow2_free_any_clusters(bs, cluster_offset, 1);
582
583 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
584 if (cluster_offset < 0) {
585 return 0;
586 }
587
588 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
589 (cluster_offset >> 9);
590
591 cluster_offset |= QCOW_OFLAG_COMPRESSED |
592 ((uint64_t)nb_csectors << s->csize_shift);
593
594 /* update L2 table */
595
596 /* compressed clusters never have the copied flag */
597
598 l2_table[l2_index] = cpu_to_be64(cluster_offset);
599 if (bdrv_pwrite(s->hd,
600 l2_offset + l2_index * sizeof(uint64_t),
601 l2_table + l2_index,
602 sizeof(uint64_t)) != sizeof(uint64_t))
603 return 0;
604
605 return cluster_offset;
606 }
607
608 /*
609 * Write L2 table updates to disk, writing whole sectors to avoid a
610 * read-modify-write in bdrv_pwrite
611 */
612 #define L2_ENTRIES_PER_SECTOR (512 / 8)
613 static int write_l2_entries(BDRVQcowState *s, uint64_t *l2_table,
614 uint64_t l2_offset, int l2_index, int num)
615 {
616 int l2_start_index = l2_index & ~(L1_ENTRIES_PER_SECTOR - 1);
617 int start_offset = (8 * l2_index) & ~511;
618 int end_offset = (8 * (l2_index + num) + 511) & ~511;
619 size_t len = end_offset - start_offset;
620
621 if (bdrv_pwrite(s->hd, l2_offset + start_offset, &l2_table[l2_start_index],
622 len) != len)
623 {
624 return -1;
625 }
626
627 return 0;
628 }
629
630 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
631 {
632 BDRVQcowState *s = bs->opaque;
633 int i, j = 0, l2_index, ret;
634 uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
635 uint64_t cluster_offset = m->cluster_offset;
636
637 if (m->nb_clusters == 0)
638 return 0;
639
640 old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
641
642 /* copy content of unmodified sectors */
643 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
644 if (m->n_start) {
645 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
646 if (ret < 0)
647 goto err;
648 }
649
650 if (m->nb_available & (s->cluster_sectors - 1)) {
651 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
652 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
653 m->nb_available - end, s->cluster_sectors);
654 if (ret < 0)
655 goto err;
656 }
657
658 /* update L2 table */
659 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index);
660 if (ret < 0) {
661 goto err;
662 }
663
664 for (i = 0; i < m->nb_clusters; i++) {
665 /* if two concurrent writes happen to the same unallocated cluster
666 * each write allocates separate cluster and writes data concurrently.
667 * The first one to complete updates l2 table with pointer to its
668 * cluster the second one has to do RMW (which is done above by
669 * copy_sectors()), update l2 table with its cluster pointer and free
670 * old cluster. This is what this loop does */
671 if(l2_table[l2_index + i] != 0)
672 old_cluster[j++] = l2_table[l2_index + i];
673
674 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
675 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
676 }
677
678 ret = write_l2_entries(s, l2_table, l2_offset, l2_index, m->nb_clusters);
679 if (ret < 0) {
680 qcow2_l2_cache_reset(bs);
681 goto err;
682 }
683
684 for (i = 0; i < j; i++)
685 qcow2_free_any_clusters(bs,
686 be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
687
688 ret = 0;
689 err:
690 qemu_free(old_cluster);
691 return ret;
692 }
693
694 /*
695 * alloc_cluster_offset
696 *
697 * For a given offset of the disk image, return cluster offset in qcow2 file.
698 * If the offset is not found, allocate a new cluster.
699 *
700 * If the cluster was already allocated, m->nb_clusters is set to 0,
701 * m->depends_on is set to NULL and the other fields in m are meaningless.
702 *
703 * If the cluster is newly allocated, m->nb_clusters is set to the number of
704 * contiguous clusters that have been allocated. This may be 0 if the request
705 * conflict with another write request in flight; in this case, m->depends_on
706 * is set and the remaining fields of m are meaningless.
707 *
708 * If m->nb_clusters is non-zero, the other fields of m are valid and contain
709 * information about the first allocated cluster.
710 *
711 * Return 0 on success and -errno in error cases
712 */
713 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
714 int n_start, int n_end, int *num, QCowL2Meta *m)
715 {
716 BDRVQcowState *s = bs->opaque;
717 int l2_index, ret;
718 uint64_t l2_offset, *l2_table;
719 int64_t cluster_offset;
720 unsigned int nb_clusters, i = 0;
721 QCowL2Meta *old_alloc;
722
723 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
724 if (ret < 0) {
725 return ret;
726 }
727
728 nb_clusters = size_to_clusters(s, n_end << 9);
729
730 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
731
732 cluster_offset = be64_to_cpu(l2_table[l2_index]);
733
734 /* We keep all QCOW_OFLAG_COPIED clusters */
735
736 if (cluster_offset & QCOW_OFLAG_COPIED) {
737 nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
738 &l2_table[l2_index], 0, 0);
739
740 cluster_offset &= ~QCOW_OFLAG_COPIED;
741 m->nb_clusters = 0;
742 m->depends_on = NULL;
743
744 goto out;
745 }
746
747 /* for the moment, multiple compressed clusters are not managed */
748
749 if (cluster_offset & QCOW_OFLAG_COMPRESSED)
750 nb_clusters = 1;
751
752 /* how many available clusters ? */
753
754 while (i < nb_clusters) {
755 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
756 &l2_table[l2_index], i, 0);
757 if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
758 break;
759 }
760
761 i += count_contiguous_free_clusters(nb_clusters - i,
762 &l2_table[l2_index + i]);
763 if (i >= nb_clusters) {
764 break;
765 }
766
767 cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
768
769 if ((cluster_offset & QCOW_OFLAG_COPIED) ||
770 (cluster_offset & QCOW_OFLAG_COMPRESSED))
771 break;
772 }
773 assert(i <= nb_clusters);
774 nb_clusters = i;
775
776 /*
777 * Check if there already is an AIO write request in flight which allocates
778 * the same cluster. In this case we need to wait until the previous
779 * request has completed and updated the L2 table accordingly.
780 */
781 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
782
783 uint64_t end_offset = offset + nb_clusters * s->cluster_size;
784 uint64_t old_offset = old_alloc->offset;
785 uint64_t old_end_offset = old_alloc->offset +
786 old_alloc->nb_clusters * s->cluster_size;
787
788 if (end_offset < old_offset || offset > old_end_offset) {
789 /* No intersection */
790 } else {
791 if (offset < old_offset) {
792 /* Stop at the start of a running allocation */
793 nb_clusters = (old_offset - offset) >> s->cluster_bits;
794 } else {
795 nb_clusters = 0;
796 }
797
798 if (nb_clusters == 0) {
799 /* Set dependency and wait for a callback */
800 m->depends_on = old_alloc;
801 m->nb_clusters = 0;
802 *num = 0;
803 return 0;
804 }
805 }
806 }
807
808 if (!nb_clusters) {
809 abort();
810 }
811
812 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
813
814 /* allocate a new cluster */
815
816 cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
817 if (cluster_offset < 0) {
818 QLIST_REMOVE(m, next_in_flight);
819 return cluster_offset;
820 }
821
822 /* save info needed for meta data update */
823 m->offset = offset;
824 m->n_start = n_start;
825 m->nb_clusters = nb_clusters;
826
827 out:
828 m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
829 m->cluster_offset = cluster_offset;
830
831 *num = m->nb_available - n_start;
832
833 return 0;
834 }
835
836 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
837 const uint8_t *buf, int buf_size)
838 {
839 z_stream strm1, *strm = &strm1;
840 int ret, out_len;
841
842 memset(strm, 0, sizeof(*strm));
843
844 strm->next_in = (uint8_t *)buf;
845 strm->avail_in = buf_size;
846 strm->next_out = out_buf;
847 strm->avail_out = out_buf_size;
848
849 ret = inflateInit2(strm, -12);
850 if (ret != Z_OK)
851 return -1;
852 ret = inflate(strm, Z_FINISH);
853 out_len = strm->next_out - out_buf;
854 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
855 out_len != out_buf_size) {
856 inflateEnd(strm);
857 return -1;
858 }
859 inflateEnd(strm);
860 return 0;
861 }
862
863 int qcow2_decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset)
864 {
865 int ret, csize, nb_csectors, sector_offset;
866 uint64_t coffset;
867
868 coffset = cluster_offset & s->cluster_offset_mask;
869 if (s->cluster_cache_offset != coffset) {
870 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
871 sector_offset = coffset & 511;
872 csize = nb_csectors * 512 - sector_offset;
873 ret = bdrv_read(s->hd, coffset >> 9, s->cluster_data, nb_csectors);
874 if (ret < 0) {
875 return -1;
876 }
877 if (decompress_buffer(s->cluster_cache, s->cluster_size,
878 s->cluster_data + sector_offset, csize) < 0) {
879 return -1;
880 }
881 s->cluster_cache_offset = coffset;
882 }
883 return 0;
884 }