]> git.proxmox.com Git - qemu.git/blob - block/qed.c
block/vdi: Fix wrong size in conditionally used memset, memcmp
[qemu.git] / block / qed.c
1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "trace.h"
16 #include "qed.h"
17
18 static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
19 {
20 QEDAIOCB *acb = (QEDAIOCB *)blockacb;
21 bool finished = false;
22
23 /* Wait for the request to finish */
24 acb->finished = &finished;
25 while (!finished) {
26 qemu_aio_wait();
27 }
28 }
29
30 static AIOPool qed_aio_pool = {
31 .aiocb_size = sizeof(QEDAIOCB),
32 .cancel = qed_aio_cancel,
33 };
34
35 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
36 const char *filename)
37 {
38 const QEDHeader *header = (const QEDHeader *)buf;
39
40 if (buf_size < sizeof(*header)) {
41 return 0;
42 }
43 if (le32_to_cpu(header->magic) != QED_MAGIC) {
44 return 0;
45 }
46 return 100;
47 }
48
49 /**
50 * Check whether an image format is raw
51 *
52 * @fmt: Backing file format, may be NULL
53 */
54 static bool qed_fmt_is_raw(const char *fmt)
55 {
56 return fmt && strcmp(fmt, "raw") == 0;
57 }
58
59 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
60 {
61 cpu->magic = le32_to_cpu(le->magic);
62 cpu->cluster_size = le32_to_cpu(le->cluster_size);
63 cpu->table_size = le32_to_cpu(le->table_size);
64 cpu->header_size = le32_to_cpu(le->header_size);
65 cpu->features = le64_to_cpu(le->features);
66 cpu->compat_features = le64_to_cpu(le->compat_features);
67 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
68 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
69 cpu->image_size = le64_to_cpu(le->image_size);
70 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
71 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
72 }
73
74 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
75 {
76 le->magic = cpu_to_le32(cpu->magic);
77 le->cluster_size = cpu_to_le32(cpu->cluster_size);
78 le->table_size = cpu_to_le32(cpu->table_size);
79 le->header_size = cpu_to_le32(cpu->header_size);
80 le->features = cpu_to_le64(cpu->features);
81 le->compat_features = cpu_to_le64(cpu->compat_features);
82 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
83 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
84 le->image_size = cpu_to_le64(cpu->image_size);
85 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
86 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
87 }
88
89 static int qed_write_header_sync(BDRVQEDState *s)
90 {
91 QEDHeader le;
92 int ret;
93
94 qed_header_cpu_to_le(&s->header, &le);
95 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
96 if (ret != sizeof(le)) {
97 return ret;
98 }
99 return 0;
100 }
101
102 typedef struct {
103 GenericCB gencb;
104 BDRVQEDState *s;
105 struct iovec iov;
106 QEMUIOVector qiov;
107 int nsectors;
108 uint8_t *buf;
109 } QEDWriteHeaderCB;
110
111 static void qed_write_header_cb(void *opaque, int ret)
112 {
113 QEDWriteHeaderCB *write_header_cb = opaque;
114
115 qemu_vfree(write_header_cb->buf);
116 gencb_complete(write_header_cb, ret);
117 }
118
119 static void qed_write_header_read_cb(void *opaque, int ret)
120 {
121 QEDWriteHeaderCB *write_header_cb = opaque;
122 BDRVQEDState *s = write_header_cb->s;
123 BlockDriverAIOCB *acb;
124
125 if (ret) {
126 qed_write_header_cb(write_header_cb, ret);
127 return;
128 }
129
130 /* Update header */
131 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
132
133 acb = bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
134 write_header_cb->nsectors, qed_write_header_cb,
135 write_header_cb);
136 if (!acb) {
137 qed_write_header_cb(write_header_cb, -EIO);
138 }
139 }
140
141 /**
142 * Update header in-place (does not rewrite backing filename or other strings)
143 *
144 * This function only updates known header fields in-place and does not affect
145 * extra data after the QED header.
146 */
147 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
148 void *opaque)
149 {
150 /* We must write full sectors for O_DIRECT but cannot necessarily generate
151 * the data following the header if an unrecognized compat feature is
152 * active. Therefore, first read the sectors containing the header, update
153 * them, and write back.
154 */
155
156 BlockDriverAIOCB *acb;
157 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
158 BDRV_SECTOR_SIZE;
159 size_t len = nsectors * BDRV_SECTOR_SIZE;
160 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
161 cb, opaque);
162
163 write_header_cb->s = s;
164 write_header_cb->nsectors = nsectors;
165 write_header_cb->buf = qemu_blockalign(s->bs, len);
166 write_header_cb->iov.iov_base = write_header_cb->buf;
167 write_header_cb->iov.iov_len = len;
168 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
169
170 acb = bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
171 qed_write_header_read_cb, write_header_cb);
172 if (!acb) {
173 qed_write_header_cb(write_header_cb, -EIO);
174 }
175 }
176
177 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
178 {
179 uint64_t table_entries;
180 uint64_t l2_size;
181
182 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
183 l2_size = table_entries * cluster_size;
184
185 return l2_size * table_entries;
186 }
187
188 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
189 {
190 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
191 cluster_size > QED_MAX_CLUSTER_SIZE) {
192 return false;
193 }
194 if (cluster_size & (cluster_size - 1)) {
195 return false; /* not power of 2 */
196 }
197 return true;
198 }
199
200 static bool qed_is_table_size_valid(uint32_t table_size)
201 {
202 if (table_size < QED_MIN_TABLE_SIZE ||
203 table_size > QED_MAX_TABLE_SIZE) {
204 return false;
205 }
206 if (table_size & (table_size - 1)) {
207 return false; /* not power of 2 */
208 }
209 return true;
210 }
211
212 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
213 uint32_t table_size)
214 {
215 if (image_size % BDRV_SECTOR_SIZE != 0) {
216 return false; /* not multiple of sector size */
217 }
218 if (image_size > qed_max_image_size(cluster_size, table_size)) {
219 return false; /* image is too large */
220 }
221 return true;
222 }
223
224 /**
225 * Read a string of known length from the image file
226 *
227 * @file: Image file
228 * @offset: File offset to start of string, in bytes
229 * @n: String length in bytes
230 * @buf: Destination buffer
231 * @buflen: Destination buffer length in bytes
232 * @ret: 0 on success, -errno on failure
233 *
234 * The string is NUL-terminated.
235 */
236 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
237 char *buf, size_t buflen)
238 {
239 int ret;
240 if (n >= buflen) {
241 return -EINVAL;
242 }
243 ret = bdrv_pread(file, offset, buf, n);
244 if (ret < 0) {
245 return ret;
246 }
247 buf[n] = '\0';
248 return 0;
249 }
250
251 /**
252 * Allocate new clusters
253 *
254 * @s: QED state
255 * @n: Number of contiguous clusters to allocate
256 * @ret: Offset of first allocated cluster
257 *
258 * This function only produces the offset where the new clusters should be
259 * written. It updates BDRVQEDState but does not make any changes to the image
260 * file.
261 */
262 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
263 {
264 uint64_t offset = s->file_size;
265 s->file_size += n * s->header.cluster_size;
266 return offset;
267 }
268
269 QEDTable *qed_alloc_table(BDRVQEDState *s)
270 {
271 /* Honor O_DIRECT memory alignment requirements */
272 return qemu_blockalign(s->bs,
273 s->header.cluster_size * s->header.table_size);
274 }
275
276 /**
277 * Allocate a new zeroed L2 table
278 */
279 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
280 {
281 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
282
283 l2_table->table = qed_alloc_table(s);
284 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
285
286 memset(l2_table->table->offsets, 0,
287 s->header.cluster_size * s->header.table_size);
288 return l2_table;
289 }
290
291 static void qed_aio_next_io(void *opaque, int ret);
292
293 static int bdrv_qed_open(BlockDriverState *bs, int flags)
294 {
295 BDRVQEDState *s = bs->opaque;
296 QEDHeader le_header;
297 int64_t file_size;
298 int ret;
299
300 s->bs = bs;
301 QSIMPLEQ_INIT(&s->allocating_write_reqs);
302
303 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
304 if (ret < 0) {
305 return ret;
306 }
307 ret = 0; /* ret should always be 0 or -errno */
308 qed_header_le_to_cpu(&le_header, &s->header);
309
310 if (s->header.magic != QED_MAGIC) {
311 return -EINVAL;
312 }
313 if (s->header.features & ~QED_FEATURE_MASK) {
314 return -ENOTSUP; /* image uses unsupported feature bits */
315 }
316 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
317 return -EINVAL;
318 }
319
320 /* Round down file size to the last cluster */
321 file_size = bdrv_getlength(bs->file);
322 if (file_size < 0) {
323 return file_size;
324 }
325 s->file_size = qed_start_of_cluster(s, file_size);
326
327 if (!qed_is_table_size_valid(s->header.table_size)) {
328 return -EINVAL;
329 }
330 if (!qed_is_image_size_valid(s->header.image_size,
331 s->header.cluster_size,
332 s->header.table_size)) {
333 return -EINVAL;
334 }
335 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
336 return -EINVAL;
337 }
338
339 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
340 sizeof(uint64_t);
341 s->l2_shift = ffs(s->header.cluster_size) - 1;
342 s->l2_mask = s->table_nelems - 1;
343 s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
344
345 if ((s->header.features & QED_F_BACKING_FILE)) {
346 if ((uint64_t)s->header.backing_filename_offset +
347 s->header.backing_filename_size >
348 s->header.cluster_size * s->header.header_size) {
349 return -EINVAL;
350 }
351
352 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
353 s->header.backing_filename_size, bs->backing_file,
354 sizeof(bs->backing_file));
355 if (ret < 0) {
356 return ret;
357 }
358
359 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
360 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
361 }
362 }
363
364 /* Reset unknown autoclear feature bits. This is a backwards
365 * compatibility mechanism that allows images to be opened by older
366 * programs, which "knock out" unknown feature bits. When an image is
367 * opened by a newer program again it can detect that the autoclear
368 * feature is no longer valid.
369 */
370 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
371 !bdrv_is_read_only(bs->file)) {
372 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
373
374 ret = qed_write_header_sync(s);
375 if (ret) {
376 return ret;
377 }
378
379 /* From here on only known autoclear feature bits are valid */
380 bdrv_flush(bs->file);
381 }
382
383 s->l1_table = qed_alloc_table(s);
384 qed_init_l2_cache(&s->l2_cache);
385
386 ret = qed_read_l1_table_sync(s);
387 if (ret) {
388 goto out;
389 }
390
391 /* If image was not closed cleanly, check consistency */
392 if (s->header.features & QED_F_NEED_CHECK) {
393 /* Read-only images cannot be fixed. There is no risk of corruption
394 * since write operations are not possible. Therefore, allow
395 * potentially inconsistent images to be opened read-only. This can
396 * aid data recovery from an otherwise inconsistent image.
397 */
398 if (!bdrv_is_read_only(bs->file)) {
399 BdrvCheckResult result = {0};
400
401 ret = qed_check(s, &result, true);
402 if (!ret && !result.corruptions && !result.check_errors) {
403 /* Ensure fixes reach storage before clearing check bit */
404 bdrv_flush(s->bs);
405
406 s->header.features &= ~QED_F_NEED_CHECK;
407 qed_write_header_sync(s);
408 }
409 }
410 }
411
412 out:
413 if (ret) {
414 qed_free_l2_cache(&s->l2_cache);
415 qemu_vfree(s->l1_table);
416 }
417 return ret;
418 }
419
420 static void bdrv_qed_close(BlockDriverState *bs)
421 {
422 BDRVQEDState *s = bs->opaque;
423
424 /* Ensure writes reach stable storage */
425 bdrv_flush(bs->file);
426
427 /* Clean shutdown, no check required on next open */
428 if (s->header.features & QED_F_NEED_CHECK) {
429 s->header.features &= ~QED_F_NEED_CHECK;
430 qed_write_header_sync(s);
431 }
432
433 qed_free_l2_cache(&s->l2_cache);
434 qemu_vfree(s->l1_table);
435 }
436
437 static int bdrv_qed_flush(BlockDriverState *bs)
438 {
439 return bdrv_flush(bs->file);
440 }
441
442 static int qed_create(const char *filename, uint32_t cluster_size,
443 uint64_t image_size, uint32_t table_size,
444 const char *backing_file, const char *backing_fmt)
445 {
446 QEDHeader header = {
447 .magic = QED_MAGIC,
448 .cluster_size = cluster_size,
449 .table_size = table_size,
450 .header_size = 1,
451 .features = 0,
452 .compat_features = 0,
453 .l1_table_offset = cluster_size,
454 .image_size = image_size,
455 };
456 QEDHeader le_header;
457 uint8_t *l1_table = NULL;
458 size_t l1_size = header.cluster_size * header.table_size;
459 int ret = 0;
460 BlockDriverState *bs = NULL;
461
462 ret = bdrv_create_file(filename, NULL);
463 if (ret < 0) {
464 return ret;
465 }
466
467 ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB);
468 if (ret < 0) {
469 return ret;
470 }
471
472 /* File must start empty and grow, check truncate is supported */
473 ret = bdrv_truncate(bs, 0);
474 if (ret < 0) {
475 goto out;
476 }
477
478 if (backing_file) {
479 header.features |= QED_F_BACKING_FILE;
480 header.backing_filename_offset = sizeof(le_header);
481 header.backing_filename_size = strlen(backing_file);
482
483 if (qed_fmt_is_raw(backing_fmt)) {
484 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
485 }
486 }
487
488 qed_header_cpu_to_le(&header, &le_header);
489 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
490 if (ret < 0) {
491 goto out;
492 }
493 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
494 header.backing_filename_size);
495 if (ret < 0) {
496 goto out;
497 }
498
499 l1_table = qemu_mallocz(l1_size);
500 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
501 if (ret < 0) {
502 goto out;
503 }
504
505 ret = 0; /* success */
506 out:
507 qemu_free(l1_table);
508 bdrv_delete(bs);
509 return ret;
510 }
511
512 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
513 {
514 uint64_t image_size = 0;
515 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
516 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
517 const char *backing_file = NULL;
518 const char *backing_fmt = NULL;
519
520 while (options && options->name) {
521 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
522 image_size = options->value.n;
523 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
524 backing_file = options->value.s;
525 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
526 backing_fmt = options->value.s;
527 } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
528 if (options->value.n) {
529 cluster_size = options->value.n;
530 }
531 } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
532 if (options->value.n) {
533 table_size = options->value.n;
534 }
535 }
536 options++;
537 }
538
539 if (!qed_is_cluster_size_valid(cluster_size)) {
540 fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
541 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
542 return -EINVAL;
543 }
544 if (!qed_is_table_size_valid(table_size)) {
545 fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
546 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
547 return -EINVAL;
548 }
549 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
550 fprintf(stderr, "QED image size must be a non-zero multiple of "
551 "cluster size and less than %" PRIu64 " bytes\n",
552 qed_max_image_size(cluster_size, table_size));
553 return -EINVAL;
554 }
555
556 return qed_create(filename, cluster_size, image_size, table_size,
557 backing_file, backing_fmt);
558 }
559
560 typedef struct {
561 int is_allocated;
562 int *pnum;
563 } QEDIsAllocatedCB;
564
565 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
566 {
567 QEDIsAllocatedCB *cb = opaque;
568 *cb->pnum = len / BDRV_SECTOR_SIZE;
569 cb->is_allocated = ret == QED_CLUSTER_FOUND;
570 }
571
572 static int bdrv_qed_is_allocated(BlockDriverState *bs, int64_t sector_num,
573 int nb_sectors, int *pnum)
574 {
575 BDRVQEDState *s = bs->opaque;
576 uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
577 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
578 QEDIsAllocatedCB cb = {
579 .is_allocated = -1,
580 .pnum = pnum,
581 };
582 QEDRequest request = { .l2_table = NULL };
583
584 async_context_push();
585
586 qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
587
588 while (cb.is_allocated == -1) {
589 qemu_aio_wait();
590 }
591
592 async_context_pop();
593
594 qed_unref_l2_cache_entry(request.l2_table);
595
596 return cb.is_allocated;
597 }
598
599 static int bdrv_qed_make_empty(BlockDriverState *bs)
600 {
601 return -ENOTSUP;
602 }
603
604 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
605 {
606 return acb->common.bs->opaque;
607 }
608
609 /**
610 * Read from the backing file or zero-fill if no backing file
611 *
612 * @s: QED state
613 * @pos: Byte position in device
614 * @qiov: Destination I/O vector
615 * @cb: Completion function
616 * @opaque: User data for completion function
617 *
618 * This function reads qiov->size bytes starting at pos from the backing file.
619 * If there is no backing file then zeroes are read.
620 */
621 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
622 QEMUIOVector *qiov,
623 BlockDriverCompletionFunc *cb, void *opaque)
624 {
625 BlockDriverAIOCB *aiocb;
626 uint64_t backing_length = 0;
627 size_t size;
628
629 /* If there is a backing file, get its length. Treat the absence of a
630 * backing file like a zero length backing file.
631 */
632 if (s->bs->backing_hd) {
633 int64_t l = bdrv_getlength(s->bs->backing_hd);
634 if (l < 0) {
635 cb(opaque, l);
636 return;
637 }
638 backing_length = l;
639 }
640
641 /* Zero all sectors if reading beyond the end of the backing file */
642 if (pos >= backing_length ||
643 pos + qiov->size > backing_length) {
644 qemu_iovec_memset(qiov, 0, qiov->size);
645 }
646
647 /* Complete now if there are no backing file sectors to read */
648 if (pos >= backing_length) {
649 cb(opaque, 0);
650 return;
651 }
652
653 /* If the read straddles the end of the backing file, shorten it */
654 size = MIN((uint64_t)backing_length - pos, qiov->size);
655
656 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING);
657 aiocb = bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
658 qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
659 if (!aiocb) {
660 cb(opaque, -EIO);
661 }
662 }
663
664 typedef struct {
665 GenericCB gencb;
666 BDRVQEDState *s;
667 QEMUIOVector qiov;
668 struct iovec iov;
669 uint64_t offset;
670 } CopyFromBackingFileCB;
671
672 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
673 {
674 CopyFromBackingFileCB *copy_cb = opaque;
675 qemu_vfree(copy_cb->iov.iov_base);
676 gencb_complete(&copy_cb->gencb, ret);
677 }
678
679 static void qed_copy_from_backing_file_write(void *opaque, int ret)
680 {
681 CopyFromBackingFileCB *copy_cb = opaque;
682 BDRVQEDState *s = copy_cb->s;
683 BlockDriverAIOCB *aiocb;
684
685 if (ret) {
686 qed_copy_from_backing_file_cb(copy_cb, ret);
687 return;
688 }
689
690 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
691 aiocb = bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
692 &copy_cb->qiov,
693 copy_cb->qiov.size / BDRV_SECTOR_SIZE,
694 qed_copy_from_backing_file_cb, copy_cb);
695 if (!aiocb) {
696 qed_copy_from_backing_file_cb(copy_cb, -EIO);
697 }
698 }
699
700 /**
701 * Copy data from backing file into the image
702 *
703 * @s: QED state
704 * @pos: Byte position in device
705 * @len: Number of bytes
706 * @offset: Byte offset in image file
707 * @cb: Completion function
708 * @opaque: User data for completion function
709 */
710 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
711 uint64_t len, uint64_t offset,
712 BlockDriverCompletionFunc *cb,
713 void *opaque)
714 {
715 CopyFromBackingFileCB *copy_cb;
716
717 /* Skip copy entirely if there is no work to do */
718 if (len == 0) {
719 cb(opaque, 0);
720 return;
721 }
722
723 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
724 copy_cb->s = s;
725 copy_cb->offset = offset;
726 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
727 copy_cb->iov.iov_len = len;
728 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
729
730 qed_read_backing_file(s, pos, &copy_cb->qiov,
731 qed_copy_from_backing_file_write, copy_cb);
732 }
733
734 /**
735 * Link one or more contiguous clusters into a table
736 *
737 * @s: QED state
738 * @table: L2 table
739 * @index: First cluster index
740 * @n: Number of contiguous clusters
741 * @cluster: First cluster byte offset in image file
742 */
743 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
744 unsigned int n, uint64_t cluster)
745 {
746 int i;
747 for (i = index; i < index + n; i++) {
748 table->offsets[i] = cluster;
749 cluster += s->header.cluster_size;
750 }
751 }
752
753 static void qed_aio_complete_bh(void *opaque)
754 {
755 QEDAIOCB *acb = opaque;
756 BlockDriverCompletionFunc *cb = acb->common.cb;
757 void *user_opaque = acb->common.opaque;
758 int ret = acb->bh_ret;
759 bool *finished = acb->finished;
760
761 qemu_bh_delete(acb->bh);
762 qemu_aio_release(acb);
763
764 /* Invoke callback */
765 cb(user_opaque, ret);
766
767 /* Signal cancel completion */
768 if (finished) {
769 *finished = true;
770 }
771 }
772
773 static void qed_aio_complete(QEDAIOCB *acb, int ret)
774 {
775 BDRVQEDState *s = acb_to_s(acb);
776
777 trace_qed_aio_complete(s, acb, ret);
778
779 /* Free resources */
780 qemu_iovec_destroy(&acb->cur_qiov);
781 qed_unref_l2_cache_entry(acb->request.l2_table);
782
783 /* Arrange for a bh to invoke the completion function */
784 acb->bh_ret = ret;
785 acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
786 qemu_bh_schedule(acb->bh);
787
788 /* Start next allocating write request waiting behind this one. Note that
789 * requests enqueue themselves when they first hit an unallocated cluster
790 * but they wait until the entire request is finished before waking up the
791 * next request in the queue. This ensures that we don't cycle through
792 * requests multiple times but rather finish one at a time completely.
793 */
794 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
795 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
796 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
797 if (acb) {
798 qed_aio_next_io(acb, 0);
799 }
800 }
801 }
802
803 /**
804 * Commit the current L2 table to the cache
805 */
806 static void qed_commit_l2_update(void *opaque, int ret)
807 {
808 QEDAIOCB *acb = opaque;
809 BDRVQEDState *s = acb_to_s(acb);
810 CachedL2Table *l2_table = acb->request.l2_table;
811
812 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
813
814 /* This is guaranteed to succeed because we just committed the entry to the
815 * cache.
816 */
817 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache,
818 l2_table->offset);
819 assert(acb->request.l2_table != NULL);
820
821 qed_aio_next_io(opaque, ret);
822 }
823
824 /**
825 * Update L1 table with new L2 table offset and write it out
826 */
827 static void qed_aio_write_l1_update(void *opaque, int ret)
828 {
829 QEDAIOCB *acb = opaque;
830 BDRVQEDState *s = acb_to_s(acb);
831 int index;
832
833 if (ret) {
834 qed_aio_complete(acb, ret);
835 return;
836 }
837
838 index = qed_l1_index(s, acb->cur_pos);
839 s->l1_table->offsets[index] = acb->request.l2_table->offset;
840
841 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
842 }
843
844 /**
845 * Update L2 table with new cluster offsets and write them out
846 */
847 static void qed_aio_write_l2_update(void *opaque, int ret)
848 {
849 QEDAIOCB *acb = opaque;
850 BDRVQEDState *s = acb_to_s(acb);
851 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
852 int index;
853
854 if (ret) {
855 goto err;
856 }
857
858 if (need_alloc) {
859 qed_unref_l2_cache_entry(acb->request.l2_table);
860 acb->request.l2_table = qed_new_l2_table(s);
861 }
862
863 index = qed_l2_index(s, acb->cur_pos);
864 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
865 acb->cur_cluster);
866
867 if (need_alloc) {
868 /* Write out the whole new L2 table */
869 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
870 qed_aio_write_l1_update, acb);
871 } else {
872 /* Write out only the updated part of the L2 table */
873 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
874 qed_aio_next_io, acb);
875 }
876 return;
877
878 err:
879 qed_aio_complete(acb, ret);
880 }
881
882 /**
883 * Flush new data clusters before updating the L2 table
884 *
885 * This flush is necessary when a backing file is in use. A crash during an
886 * allocating write could result in empty clusters in the image. If the write
887 * only touched a subregion of the cluster, then backing image sectors have
888 * been lost in the untouched region. The solution is to flush after writing a
889 * new data cluster and before updating the L2 table.
890 */
891 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
892 {
893 QEDAIOCB *acb = opaque;
894 BDRVQEDState *s = acb_to_s(acb);
895
896 if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update, opaque)) {
897 qed_aio_complete(acb, -EIO);
898 }
899 }
900
901 /**
902 * Write data to the image file
903 */
904 static void qed_aio_write_main(void *opaque, int ret)
905 {
906 QEDAIOCB *acb = opaque;
907 BDRVQEDState *s = acb_to_s(acb);
908 uint64_t offset = acb->cur_cluster +
909 qed_offset_into_cluster(s, acb->cur_pos);
910 BlockDriverCompletionFunc *next_fn;
911 BlockDriverAIOCB *file_acb;
912
913 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
914
915 if (ret) {
916 qed_aio_complete(acb, ret);
917 return;
918 }
919
920 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
921 next_fn = qed_aio_next_io;
922 } else {
923 if (s->bs->backing_hd) {
924 next_fn = qed_aio_write_flush_before_l2_update;
925 } else {
926 next_fn = qed_aio_write_l2_update;
927 }
928 }
929
930 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
931 file_acb = bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
932 &acb->cur_qiov,
933 acb->cur_qiov.size / BDRV_SECTOR_SIZE,
934 next_fn, acb);
935 if (!file_acb) {
936 qed_aio_complete(acb, -EIO);
937 }
938 }
939
940 /**
941 * Populate back untouched region of new data cluster
942 */
943 static void qed_aio_write_postfill(void *opaque, int ret)
944 {
945 QEDAIOCB *acb = opaque;
946 BDRVQEDState *s = acb_to_s(acb);
947 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
948 uint64_t len =
949 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
950 uint64_t offset = acb->cur_cluster +
951 qed_offset_into_cluster(s, acb->cur_pos) +
952 acb->cur_qiov.size;
953
954 if (ret) {
955 qed_aio_complete(acb, ret);
956 return;
957 }
958
959 trace_qed_aio_write_postfill(s, acb, start, len, offset);
960 qed_copy_from_backing_file(s, start, len, offset,
961 qed_aio_write_main, acb);
962 }
963
964 /**
965 * Populate front untouched region of new data cluster
966 */
967 static void qed_aio_write_prefill(void *opaque, int ret)
968 {
969 QEDAIOCB *acb = opaque;
970 BDRVQEDState *s = acb_to_s(acb);
971 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
972 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
973
974 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
975 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
976 qed_aio_write_postfill, acb);
977 }
978
979 /**
980 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
981 */
982 static bool qed_should_set_need_check(BDRVQEDState *s)
983 {
984 /* The flush before L2 update path ensures consistency */
985 if (s->bs->backing_hd) {
986 return false;
987 }
988
989 return !(s->header.features & QED_F_NEED_CHECK);
990 }
991
992 /**
993 * Write new data cluster
994 *
995 * @acb: Write request
996 * @len: Length in bytes
997 *
998 * This path is taken when writing to previously unallocated clusters.
999 */
1000 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1001 {
1002 BDRVQEDState *s = acb_to_s(acb);
1003
1004 /* Freeze this request if another allocating write is in progress */
1005 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1006 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1007 }
1008 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1009 return; /* wait for existing request to finish */
1010 }
1011
1012 acb->cur_nclusters = qed_bytes_to_clusters(s,
1013 qed_offset_into_cluster(s, acb->cur_pos) + len);
1014 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1015 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1016
1017 if (qed_should_set_need_check(s)) {
1018 s->header.features |= QED_F_NEED_CHECK;
1019 qed_write_header(s, qed_aio_write_prefill, acb);
1020 } else {
1021 qed_aio_write_prefill(acb, 0);
1022 }
1023 }
1024
1025 /**
1026 * Write data cluster in place
1027 *
1028 * @acb: Write request
1029 * @offset: Cluster offset in bytes
1030 * @len: Length in bytes
1031 *
1032 * This path is taken when writing to already allocated clusters.
1033 */
1034 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1035 {
1036 /* Calculate the I/O vector */
1037 acb->cur_cluster = offset;
1038 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1039
1040 /* Do the actual write */
1041 qed_aio_write_main(acb, 0);
1042 }
1043
1044 /**
1045 * Write data cluster
1046 *
1047 * @opaque: Write request
1048 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1049 * or -errno
1050 * @offset: Cluster offset in bytes
1051 * @len: Length in bytes
1052 *
1053 * Callback from qed_find_cluster().
1054 */
1055 static void qed_aio_write_data(void *opaque, int ret,
1056 uint64_t offset, size_t len)
1057 {
1058 QEDAIOCB *acb = opaque;
1059
1060 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1061
1062 acb->find_cluster_ret = ret;
1063
1064 switch (ret) {
1065 case QED_CLUSTER_FOUND:
1066 qed_aio_write_inplace(acb, offset, len);
1067 break;
1068
1069 case QED_CLUSTER_L2:
1070 case QED_CLUSTER_L1:
1071 qed_aio_write_alloc(acb, len);
1072 break;
1073
1074 default:
1075 qed_aio_complete(acb, ret);
1076 break;
1077 }
1078 }
1079
1080 /**
1081 * Read data cluster
1082 *
1083 * @opaque: Read request
1084 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1085 * or -errno
1086 * @offset: Cluster offset in bytes
1087 * @len: Length in bytes
1088 *
1089 * Callback from qed_find_cluster().
1090 */
1091 static void qed_aio_read_data(void *opaque, int ret,
1092 uint64_t offset, size_t len)
1093 {
1094 QEDAIOCB *acb = opaque;
1095 BDRVQEDState *s = acb_to_s(acb);
1096 BlockDriverState *bs = acb->common.bs;
1097 BlockDriverAIOCB *file_acb;
1098
1099 /* Adjust offset into cluster */
1100 offset += qed_offset_into_cluster(s, acb->cur_pos);
1101
1102 trace_qed_aio_read_data(s, acb, ret, offset, len);
1103
1104 if (ret < 0) {
1105 goto err;
1106 }
1107
1108 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1109
1110 /* Handle backing file and unallocated sparse hole reads */
1111 if (ret != QED_CLUSTER_FOUND) {
1112 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1113 qed_aio_next_io, acb);
1114 return;
1115 }
1116
1117 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1118 file_acb = bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1119 &acb->cur_qiov,
1120 acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1121 qed_aio_next_io, acb);
1122 if (!file_acb) {
1123 ret = -EIO;
1124 goto err;
1125 }
1126 return;
1127
1128 err:
1129 qed_aio_complete(acb, ret);
1130 }
1131
1132 /**
1133 * Begin next I/O or complete the request
1134 */
1135 static void qed_aio_next_io(void *opaque, int ret)
1136 {
1137 QEDAIOCB *acb = opaque;
1138 BDRVQEDState *s = acb_to_s(acb);
1139 QEDFindClusterFunc *io_fn =
1140 acb->is_write ? qed_aio_write_data : qed_aio_read_data;
1141
1142 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1143
1144 /* Handle I/O error */
1145 if (ret) {
1146 qed_aio_complete(acb, ret);
1147 return;
1148 }
1149
1150 acb->qiov_offset += acb->cur_qiov.size;
1151 acb->cur_pos += acb->cur_qiov.size;
1152 qemu_iovec_reset(&acb->cur_qiov);
1153
1154 /* Complete request */
1155 if (acb->cur_pos >= acb->end_pos) {
1156 qed_aio_complete(acb, 0);
1157 return;
1158 }
1159
1160 /* Find next cluster and start I/O */
1161 qed_find_cluster(s, &acb->request,
1162 acb->cur_pos, acb->end_pos - acb->cur_pos,
1163 io_fn, acb);
1164 }
1165
1166 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1167 int64_t sector_num,
1168 QEMUIOVector *qiov, int nb_sectors,
1169 BlockDriverCompletionFunc *cb,
1170 void *opaque, bool is_write)
1171 {
1172 QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque);
1173
1174 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1175 opaque, is_write);
1176
1177 acb->is_write = is_write;
1178 acb->finished = NULL;
1179 acb->qiov = qiov;
1180 acb->qiov_offset = 0;
1181 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1182 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1183 acb->request.l2_table = NULL;
1184 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1185
1186 /* Start request */
1187 qed_aio_next_io(acb, 0);
1188 return &acb->common;
1189 }
1190
1191 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1192 int64_t sector_num,
1193 QEMUIOVector *qiov, int nb_sectors,
1194 BlockDriverCompletionFunc *cb,
1195 void *opaque)
1196 {
1197 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, false);
1198 }
1199
1200 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1201 int64_t sector_num,
1202 QEMUIOVector *qiov, int nb_sectors,
1203 BlockDriverCompletionFunc *cb,
1204 void *opaque)
1205 {
1206 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, true);
1207 }
1208
1209 static BlockDriverAIOCB *bdrv_qed_aio_flush(BlockDriverState *bs,
1210 BlockDriverCompletionFunc *cb,
1211 void *opaque)
1212 {
1213 return bdrv_aio_flush(bs->file, cb, opaque);
1214 }
1215
1216 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1217 {
1218 return -ENOTSUP;
1219 }
1220
1221 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1222 {
1223 BDRVQEDState *s = bs->opaque;
1224 return s->header.image_size;
1225 }
1226
1227 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1228 {
1229 BDRVQEDState *s = bs->opaque;
1230
1231 memset(bdi, 0, sizeof(*bdi));
1232 bdi->cluster_size = s->header.cluster_size;
1233 return 0;
1234 }
1235
1236 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1237 const char *backing_file,
1238 const char *backing_fmt)
1239 {
1240 BDRVQEDState *s = bs->opaque;
1241 QEDHeader new_header, le_header;
1242 void *buffer;
1243 size_t buffer_len, backing_file_len;
1244 int ret;
1245
1246 /* Refuse to set backing filename if unknown compat feature bits are
1247 * active. If the image uses an unknown compat feature then we may not
1248 * know the layout of data following the header structure and cannot safely
1249 * add a new string.
1250 */
1251 if (backing_file && (s->header.compat_features &
1252 ~QED_COMPAT_FEATURE_MASK)) {
1253 return -ENOTSUP;
1254 }
1255
1256 memcpy(&new_header, &s->header, sizeof(new_header));
1257
1258 new_header.features &= ~(QED_F_BACKING_FILE |
1259 QED_F_BACKING_FORMAT_NO_PROBE);
1260
1261 /* Adjust feature flags */
1262 if (backing_file) {
1263 new_header.features |= QED_F_BACKING_FILE;
1264
1265 if (qed_fmt_is_raw(backing_fmt)) {
1266 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1267 }
1268 }
1269
1270 /* Calculate new header size */
1271 backing_file_len = 0;
1272
1273 if (backing_file) {
1274 backing_file_len = strlen(backing_file);
1275 }
1276
1277 buffer_len = sizeof(new_header);
1278 new_header.backing_filename_offset = buffer_len;
1279 new_header.backing_filename_size = backing_file_len;
1280 buffer_len += backing_file_len;
1281
1282 /* Make sure we can rewrite header without failing */
1283 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1284 return -ENOSPC;
1285 }
1286
1287 /* Prepare new header */
1288 buffer = qemu_malloc(buffer_len);
1289
1290 qed_header_cpu_to_le(&new_header, &le_header);
1291 memcpy(buffer, &le_header, sizeof(le_header));
1292 buffer_len = sizeof(le_header);
1293
1294 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1295 buffer_len += backing_file_len;
1296
1297 /* Write new header */
1298 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1299 qemu_free(buffer);
1300 if (ret == 0) {
1301 memcpy(&s->header, &new_header, sizeof(new_header));
1302 }
1303 return ret;
1304 }
1305
1306 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result)
1307 {
1308 BDRVQEDState *s = bs->opaque;
1309
1310 return qed_check(s, result, false);
1311 }
1312
1313 static QEMUOptionParameter qed_create_options[] = {
1314 {
1315 .name = BLOCK_OPT_SIZE,
1316 .type = OPT_SIZE,
1317 .help = "Virtual disk size (in bytes)"
1318 }, {
1319 .name = BLOCK_OPT_BACKING_FILE,
1320 .type = OPT_STRING,
1321 .help = "File name of a base image"
1322 }, {
1323 .name = BLOCK_OPT_BACKING_FMT,
1324 .type = OPT_STRING,
1325 .help = "Image format of the base image"
1326 }, {
1327 .name = BLOCK_OPT_CLUSTER_SIZE,
1328 .type = OPT_SIZE,
1329 .help = "Cluster size (in bytes)"
1330 }, {
1331 .name = BLOCK_OPT_TABLE_SIZE,
1332 .type = OPT_SIZE,
1333 .help = "L1/L2 table size (in clusters)"
1334 },
1335 { /* end of list */ }
1336 };
1337
1338 static BlockDriver bdrv_qed = {
1339 .format_name = "qed",
1340 .instance_size = sizeof(BDRVQEDState),
1341 .create_options = qed_create_options,
1342
1343 .bdrv_probe = bdrv_qed_probe,
1344 .bdrv_open = bdrv_qed_open,
1345 .bdrv_close = bdrv_qed_close,
1346 .bdrv_create = bdrv_qed_create,
1347 .bdrv_flush = bdrv_qed_flush,
1348 .bdrv_is_allocated = bdrv_qed_is_allocated,
1349 .bdrv_make_empty = bdrv_qed_make_empty,
1350 .bdrv_aio_readv = bdrv_qed_aio_readv,
1351 .bdrv_aio_writev = bdrv_qed_aio_writev,
1352 .bdrv_aio_flush = bdrv_qed_aio_flush,
1353 .bdrv_truncate = bdrv_qed_truncate,
1354 .bdrv_getlength = bdrv_qed_getlength,
1355 .bdrv_get_info = bdrv_qed_get_info,
1356 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1357 .bdrv_check = bdrv_qed_check,
1358 };
1359
1360 static void bdrv_qed_init(void)
1361 {
1362 bdrv_register(&bdrv_qed);
1363 }
1364
1365 block_init(bdrv_qed_init);