]> git.proxmox.com Git - qemu.git/blob - block/qed.c
bdrv: Use "Error" for opening images
[qemu.git] / block / qed.c
1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "qemu/timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qapi/qmp/qerror.h"
19 #include "migration/migration.h"
20
21 static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
22 {
23 QEDAIOCB *acb = (QEDAIOCB *)blockacb;
24 bool finished = false;
25
26 /* Wait for the request to finish */
27 acb->finished = &finished;
28 while (!finished) {
29 qemu_aio_wait();
30 }
31 }
32
33 static const AIOCBInfo qed_aiocb_info = {
34 .aiocb_size = sizeof(QEDAIOCB),
35 .cancel = qed_aio_cancel,
36 };
37
38 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
39 const char *filename)
40 {
41 const QEDHeader *header = (const QEDHeader *)buf;
42
43 if (buf_size < sizeof(*header)) {
44 return 0;
45 }
46 if (le32_to_cpu(header->magic) != QED_MAGIC) {
47 return 0;
48 }
49 return 100;
50 }
51
52 /**
53 * Check whether an image format is raw
54 *
55 * @fmt: Backing file format, may be NULL
56 */
57 static bool qed_fmt_is_raw(const char *fmt)
58 {
59 return fmt && strcmp(fmt, "raw") == 0;
60 }
61
62 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
63 {
64 cpu->magic = le32_to_cpu(le->magic);
65 cpu->cluster_size = le32_to_cpu(le->cluster_size);
66 cpu->table_size = le32_to_cpu(le->table_size);
67 cpu->header_size = le32_to_cpu(le->header_size);
68 cpu->features = le64_to_cpu(le->features);
69 cpu->compat_features = le64_to_cpu(le->compat_features);
70 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
71 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
72 cpu->image_size = le64_to_cpu(le->image_size);
73 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
74 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
75 }
76
77 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
78 {
79 le->magic = cpu_to_le32(cpu->magic);
80 le->cluster_size = cpu_to_le32(cpu->cluster_size);
81 le->table_size = cpu_to_le32(cpu->table_size);
82 le->header_size = cpu_to_le32(cpu->header_size);
83 le->features = cpu_to_le64(cpu->features);
84 le->compat_features = cpu_to_le64(cpu->compat_features);
85 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
86 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
87 le->image_size = cpu_to_le64(cpu->image_size);
88 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
89 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
90 }
91
92 int qed_write_header_sync(BDRVQEDState *s)
93 {
94 QEDHeader le;
95 int ret;
96
97 qed_header_cpu_to_le(&s->header, &le);
98 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
99 if (ret != sizeof(le)) {
100 return ret;
101 }
102 return 0;
103 }
104
105 typedef struct {
106 GenericCB gencb;
107 BDRVQEDState *s;
108 struct iovec iov;
109 QEMUIOVector qiov;
110 int nsectors;
111 uint8_t *buf;
112 } QEDWriteHeaderCB;
113
114 static void qed_write_header_cb(void *opaque, int ret)
115 {
116 QEDWriteHeaderCB *write_header_cb = opaque;
117
118 qemu_vfree(write_header_cb->buf);
119 gencb_complete(write_header_cb, ret);
120 }
121
122 static void qed_write_header_read_cb(void *opaque, int ret)
123 {
124 QEDWriteHeaderCB *write_header_cb = opaque;
125 BDRVQEDState *s = write_header_cb->s;
126
127 if (ret) {
128 qed_write_header_cb(write_header_cb, ret);
129 return;
130 }
131
132 /* Update header */
133 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
134
135 bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136 write_header_cb->nsectors, qed_write_header_cb,
137 write_header_cb);
138 }
139
140 /**
141 * Update header in-place (does not rewrite backing filename or other strings)
142 *
143 * This function only updates known header fields in-place and does not affect
144 * extra data after the QED header.
145 */
146 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
147 void *opaque)
148 {
149 /* We must write full sectors for O_DIRECT but cannot necessarily generate
150 * the data following the header if an unrecognized compat feature is
151 * active. Therefore, first read the sectors containing the header, update
152 * them, and write back.
153 */
154
155 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
156 BDRV_SECTOR_SIZE;
157 size_t len = nsectors * BDRV_SECTOR_SIZE;
158 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
159 cb, opaque);
160
161 write_header_cb->s = s;
162 write_header_cb->nsectors = nsectors;
163 write_header_cb->buf = qemu_blockalign(s->bs, len);
164 write_header_cb->iov.iov_base = write_header_cb->buf;
165 write_header_cb->iov.iov_len = len;
166 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
167
168 bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
169 qed_write_header_read_cb, write_header_cb);
170 }
171
172 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
173 {
174 uint64_t table_entries;
175 uint64_t l2_size;
176
177 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
178 l2_size = table_entries * cluster_size;
179
180 return l2_size * table_entries;
181 }
182
183 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
184 {
185 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
186 cluster_size > QED_MAX_CLUSTER_SIZE) {
187 return false;
188 }
189 if (cluster_size & (cluster_size - 1)) {
190 return false; /* not power of 2 */
191 }
192 return true;
193 }
194
195 static bool qed_is_table_size_valid(uint32_t table_size)
196 {
197 if (table_size < QED_MIN_TABLE_SIZE ||
198 table_size > QED_MAX_TABLE_SIZE) {
199 return false;
200 }
201 if (table_size & (table_size - 1)) {
202 return false; /* not power of 2 */
203 }
204 return true;
205 }
206
207 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
208 uint32_t table_size)
209 {
210 if (image_size % BDRV_SECTOR_SIZE != 0) {
211 return false; /* not multiple of sector size */
212 }
213 if (image_size > qed_max_image_size(cluster_size, table_size)) {
214 return false; /* image is too large */
215 }
216 return true;
217 }
218
219 /**
220 * Read a string of known length from the image file
221 *
222 * @file: Image file
223 * @offset: File offset to start of string, in bytes
224 * @n: String length in bytes
225 * @buf: Destination buffer
226 * @buflen: Destination buffer length in bytes
227 * @ret: 0 on success, -errno on failure
228 *
229 * The string is NUL-terminated.
230 */
231 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
232 char *buf, size_t buflen)
233 {
234 int ret;
235 if (n >= buflen) {
236 return -EINVAL;
237 }
238 ret = bdrv_pread(file, offset, buf, n);
239 if (ret < 0) {
240 return ret;
241 }
242 buf[n] = '\0';
243 return 0;
244 }
245
246 /**
247 * Allocate new clusters
248 *
249 * @s: QED state
250 * @n: Number of contiguous clusters to allocate
251 * @ret: Offset of first allocated cluster
252 *
253 * This function only produces the offset where the new clusters should be
254 * written. It updates BDRVQEDState but does not make any changes to the image
255 * file.
256 */
257 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
258 {
259 uint64_t offset = s->file_size;
260 s->file_size += n * s->header.cluster_size;
261 return offset;
262 }
263
264 QEDTable *qed_alloc_table(BDRVQEDState *s)
265 {
266 /* Honor O_DIRECT memory alignment requirements */
267 return qemu_blockalign(s->bs,
268 s->header.cluster_size * s->header.table_size);
269 }
270
271 /**
272 * Allocate a new zeroed L2 table
273 */
274 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
275 {
276 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
277
278 l2_table->table = qed_alloc_table(s);
279 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
280
281 memset(l2_table->table->offsets, 0,
282 s->header.cluster_size * s->header.table_size);
283 return l2_table;
284 }
285
286 static void qed_aio_next_io(void *opaque, int ret);
287
288 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
289 {
290 assert(!s->allocating_write_reqs_plugged);
291
292 s->allocating_write_reqs_plugged = true;
293 }
294
295 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
296 {
297 QEDAIOCB *acb;
298
299 assert(s->allocating_write_reqs_plugged);
300
301 s->allocating_write_reqs_plugged = false;
302
303 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
304 if (acb) {
305 qed_aio_next_io(acb, 0);
306 }
307 }
308
309 static void qed_finish_clear_need_check(void *opaque, int ret)
310 {
311 /* Do nothing */
312 }
313
314 static void qed_flush_after_clear_need_check(void *opaque, int ret)
315 {
316 BDRVQEDState *s = opaque;
317
318 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
319
320 /* No need to wait until flush completes */
321 qed_unplug_allocating_write_reqs(s);
322 }
323
324 static void qed_clear_need_check(void *opaque, int ret)
325 {
326 BDRVQEDState *s = opaque;
327
328 if (ret) {
329 qed_unplug_allocating_write_reqs(s);
330 return;
331 }
332
333 s->header.features &= ~QED_F_NEED_CHECK;
334 qed_write_header(s, qed_flush_after_clear_need_check, s);
335 }
336
337 static void qed_need_check_timer_cb(void *opaque)
338 {
339 BDRVQEDState *s = opaque;
340
341 /* The timer should only fire when allocating writes have drained */
342 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
343
344 trace_qed_need_check_timer_cb(s);
345
346 qed_plug_allocating_write_reqs(s);
347
348 /* Ensure writes are on disk before clearing flag */
349 bdrv_aio_flush(s->bs, qed_clear_need_check, s);
350 }
351
352 static void qed_start_need_check_timer(BDRVQEDState *s)
353 {
354 trace_qed_start_need_check_timer(s);
355
356 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
357 * migration.
358 */
359 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
360 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
361 }
362
363 /* It's okay to call this multiple times or when no timer is started */
364 static void qed_cancel_need_check_timer(BDRVQEDState *s)
365 {
366 trace_qed_cancel_need_check_timer(s);
367 timer_del(s->need_check_timer);
368 }
369
370 static void bdrv_qed_rebind(BlockDriverState *bs)
371 {
372 BDRVQEDState *s = bs->opaque;
373 s->bs = bs;
374 }
375
376 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
377 Error **errp)
378 {
379 BDRVQEDState *s = bs->opaque;
380 QEDHeader le_header;
381 int64_t file_size;
382 int ret;
383
384 s->bs = bs;
385 QSIMPLEQ_INIT(&s->allocating_write_reqs);
386
387 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
388 if (ret < 0) {
389 return ret;
390 }
391 qed_header_le_to_cpu(&le_header, &s->header);
392
393 if (s->header.magic != QED_MAGIC) {
394 return -EMEDIUMTYPE;
395 }
396 if (s->header.features & ~QED_FEATURE_MASK) {
397 /* image uses unsupported feature bits */
398 char buf[64];
399 snprintf(buf, sizeof(buf), "%" PRIx64,
400 s->header.features & ~QED_FEATURE_MASK);
401 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
402 bs->device_name, "QED", buf);
403 return -ENOTSUP;
404 }
405 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
406 return -EINVAL;
407 }
408
409 /* Round down file size to the last cluster */
410 file_size = bdrv_getlength(bs->file);
411 if (file_size < 0) {
412 return file_size;
413 }
414 s->file_size = qed_start_of_cluster(s, file_size);
415
416 if (!qed_is_table_size_valid(s->header.table_size)) {
417 return -EINVAL;
418 }
419 if (!qed_is_image_size_valid(s->header.image_size,
420 s->header.cluster_size,
421 s->header.table_size)) {
422 return -EINVAL;
423 }
424 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
425 return -EINVAL;
426 }
427
428 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
429 sizeof(uint64_t);
430 s->l2_shift = ffs(s->header.cluster_size) - 1;
431 s->l2_mask = s->table_nelems - 1;
432 s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
433
434 if ((s->header.features & QED_F_BACKING_FILE)) {
435 if ((uint64_t)s->header.backing_filename_offset +
436 s->header.backing_filename_size >
437 s->header.cluster_size * s->header.header_size) {
438 return -EINVAL;
439 }
440
441 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
442 s->header.backing_filename_size, bs->backing_file,
443 sizeof(bs->backing_file));
444 if (ret < 0) {
445 return ret;
446 }
447
448 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
449 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
450 }
451 }
452
453 /* Reset unknown autoclear feature bits. This is a backwards
454 * compatibility mechanism that allows images to be opened by older
455 * programs, which "knock out" unknown feature bits. When an image is
456 * opened by a newer program again it can detect that the autoclear
457 * feature is no longer valid.
458 */
459 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
460 !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) {
461 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
462
463 ret = qed_write_header_sync(s);
464 if (ret) {
465 return ret;
466 }
467
468 /* From here on only known autoclear feature bits are valid */
469 bdrv_flush(bs->file);
470 }
471
472 s->l1_table = qed_alloc_table(s);
473 qed_init_l2_cache(&s->l2_cache);
474
475 ret = qed_read_l1_table_sync(s);
476 if (ret) {
477 goto out;
478 }
479
480 /* If image was not closed cleanly, check consistency */
481 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
482 /* Read-only images cannot be fixed. There is no risk of corruption
483 * since write operations are not possible. Therefore, allow
484 * potentially inconsistent images to be opened read-only. This can
485 * aid data recovery from an otherwise inconsistent image.
486 */
487 if (!bdrv_is_read_only(bs->file) &&
488 !(flags & BDRV_O_INCOMING)) {
489 BdrvCheckResult result = {0};
490
491 ret = qed_check(s, &result, true);
492 if (ret) {
493 goto out;
494 }
495 }
496 }
497
498 s->need_check_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
499 qed_need_check_timer_cb, s);
500
501 out:
502 if (ret) {
503 qed_free_l2_cache(&s->l2_cache);
504 qemu_vfree(s->l1_table);
505 }
506 return ret;
507 }
508
509 /* We have nothing to do for QED reopen, stubs just return
510 * success */
511 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
512 BlockReopenQueue *queue, Error **errp)
513 {
514 return 0;
515 }
516
517 static void bdrv_qed_close(BlockDriverState *bs)
518 {
519 BDRVQEDState *s = bs->opaque;
520
521 qed_cancel_need_check_timer(s);
522 timer_free(s->need_check_timer);
523
524 /* Ensure writes reach stable storage */
525 bdrv_flush(bs->file);
526
527 /* Clean shutdown, no check required on next open */
528 if (s->header.features & QED_F_NEED_CHECK) {
529 s->header.features &= ~QED_F_NEED_CHECK;
530 qed_write_header_sync(s);
531 }
532
533 qed_free_l2_cache(&s->l2_cache);
534 qemu_vfree(s->l1_table);
535 }
536
537 static int qed_create(const char *filename, uint32_t cluster_size,
538 uint64_t image_size, uint32_t table_size,
539 const char *backing_file, const char *backing_fmt)
540 {
541 QEDHeader header = {
542 .magic = QED_MAGIC,
543 .cluster_size = cluster_size,
544 .table_size = table_size,
545 .header_size = 1,
546 .features = 0,
547 .compat_features = 0,
548 .l1_table_offset = cluster_size,
549 .image_size = image_size,
550 };
551 QEDHeader le_header;
552 uint8_t *l1_table = NULL;
553 size_t l1_size = header.cluster_size * header.table_size;
554 int ret = 0;
555 BlockDriverState *bs = NULL;
556
557 ret = bdrv_create_file(filename, NULL);
558 if (ret < 0) {
559 return ret;
560 }
561
562 ret = bdrv_file_open(&bs, filename, NULL, BDRV_O_RDWR | BDRV_O_CACHE_WB);
563 if (ret < 0) {
564 return ret;
565 }
566
567 /* File must start empty and grow, check truncate is supported */
568 ret = bdrv_truncate(bs, 0);
569 if (ret < 0) {
570 goto out;
571 }
572
573 if (backing_file) {
574 header.features |= QED_F_BACKING_FILE;
575 header.backing_filename_offset = sizeof(le_header);
576 header.backing_filename_size = strlen(backing_file);
577
578 if (qed_fmt_is_raw(backing_fmt)) {
579 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
580 }
581 }
582
583 qed_header_cpu_to_le(&header, &le_header);
584 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
585 if (ret < 0) {
586 goto out;
587 }
588 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
589 header.backing_filename_size);
590 if (ret < 0) {
591 goto out;
592 }
593
594 l1_table = g_malloc0(l1_size);
595 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
596 if (ret < 0) {
597 goto out;
598 }
599
600 ret = 0; /* success */
601 out:
602 g_free(l1_table);
603 bdrv_unref(bs);
604 return ret;
605 }
606
607 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
608 {
609 uint64_t image_size = 0;
610 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
611 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
612 const char *backing_file = NULL;
613 const char *backing_fmt = NULL;
614
615 while (options && options->name) {
616 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
617 image_size = options->value.n;
618 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
619 backing_file = options->value.s;
620 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
621 backing_fmt = options->value.s;
622 } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
623 if (options->value.n) {
624 cluster_size = options->value.n;
625 }
626 } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
627 if (options->value.n) {
628 table_size = options->value.n;
629 }
630 }
631 options++;
632 }
633
634 if (!qed_is_cluster_size_valid(cluster_size)) {
635 fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
636 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
637 return -EINVAL;
638 }
639 if (!qed_is_table_size_valid(table_size)) {
640 fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
641 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
642 return -EINVAL;
643 }
644 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
645 fprintf(stderr, "QED image size must be a non-zero multiple of "
646 "cluster size and less than %" PRIu64 " bytes\n",
647 qed_max_image_size(cluster_size, table_size));
648 return -EINVAL;
649 }
650
651 return qed_create(filename, cluster_size, image_size, table_size,
652 backing_file, backing_fmt);
653 }
654
655 typedef struct {
656 BlockDriverState *bs;
657 Coroutine *co;
658 uint64_t pos;
659 int64_t status;
660 int *pnum;
661 } QEDIsAllocatedCB;
662
663 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
664 {
665 QEDIsAllocatedCB *cb = opaque;
666 BDRVQEDState *s = cb->bs->opaque;
667 *cb->pnum = len / BDRV_SECTOR_SIZE;
668 switch (ret) {
669 case QED_CLUSTER_FOUND:
670 offset |= qed_offset_into_cluster(s, cb->pos);
671 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
672 break;
673 case QED_CLUSTER_ZERO:
674 cb->status = BDRV_BLOCK_ZERO;
675 break;
676 case QED_CLUSTER_L2:
677 case QED_CLUSTER_L1:
678 cb->status = 0;
679 break;
680 default:
681 assert(ret < 0);
682 cb->status = ret;
683 break;
684 }
685
686 if (cb->co) {
687 qemu_coroutine_enter(cb->co, NULL);
688 }
689 }
690
691 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
692 int64_t sector_num,
693 int nb_sectors, int *pnum)
694 {
695 BDRVQEDState *s = bs->opaque;
696 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
697 QEDIsAllocatedCB cb = {
698 .bs = bs,
699 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
700 .status = BDRV_BLOCK_OFFSET_MASK,
701 .pnum = pnum,
702 };
703 QEDRequest request = { .l2_table = NULL };
704
705 qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb);
706
707 /* Now sleep if the callback wasn't invoked immediately */
708 while (cb.status == BDRV_BLOCK_OFFSET_MASK) {
709 cb.co = qemu_coroutine_self();
710 qemu_coroutine_yield();
711 }
712
713 qed_unref_l2_cache_entry(request.l2_table);
714
715 return cb.status;
716 }
717
718 static int bdrv_qed_make_empty(BlockDriverState *bs)
719 {
720 return -ENOTSUP;
721 }
722
723 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
724 {
725 return acb->common.bs->opaque;
726 }
727
728 /**
729 * Read from the backing file or zero-fill if no backing file
730 *
731 * @s: QED state
732 * @pos: Byte position in device
733 * @qiov: Destination I/O vector
734 * @cb: Completion function
735 * @opaque: User data for completion function
736 *
737 * This function reads qiov->size bytes starting at pos from the backing file.
738 * If there is no backing file then zeroes are read.
739 */
740 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
741 QEMUIOVector *qiov,
742 BlockDriverCompletionFunc *cb, void *opaque)
743 {
744 uint64_t backing_length = 0;
745 size_t size;
746
747 /* If there is a backing file, get its length. Treat the absence of a
748 * backing file like a zero length backing file.
749 */
750 if (s->bs->backing_hd) {
751 int64_t l = bdrv_getlength(s->bs->backing_hd);
752 if (l < 0) {
753 cb(opaque, l);
754 return;
755 }
756 backing_length = l;
757 }
758
759 /* Zero all sectors if reading beyond the end of the backing file */
760 if (pos >= backing_length ||
761 pos + qiov->size > backing_length) {
762 qemu_iovec_memset(qiov, 0, 0, qiov->size);
763 }
764
765 /* Complete now if there are no backing file sectors to read */
766 if (pos >= backing_length) {
767 cb(opaque, 0);
768 return;
769 }
770
771 /* If the read straddles the end of the backing file, shorten it */
772 size = MIN((uint64_t)backing_length - pos, qiov->size);
773
774 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
775 bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
776 qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
777 }
778
779 typedef struct {
780 GenericCB gencb;
781 BDRVQEDState *s;
782 QEMUIOVector qiov;
783 struct iovec iov;
784 uint64_t offset;
785 } CopyFromBackingFileCB;
786
787 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
788 {
789 CopyFromBackingFileCB *copy_cb = opaque;
790 qemu_vfree(copy_cb->iov.iov_base);
791 gencb_complete(&copy_cb->gencb, ret);
792 }
793
794 static void qed_copy_from_backing_file_write(void *opaque, int ret)
795 {
796 CopyFromBackingFileCB *copy_cb = opaque;
797 BDRVQEDState *s = copy_cb->s;
798
799 if (ret) {
800 qed_copy_from_backing_file_cb(copy_cb, ret);
801 return;
802 }
803
804 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
805 bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
806 &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
807 qed_copy_from_backing_file_cb, copy_cb);
808 }
809
810 /**
811 * Copy data from backing file into the image
812 *
813 * @s: QED state
814 * @pos: Byte position in device
815 * @len: Number of bytes
816 * @offset: Byte offset in image file
817 * @cb: Completion function
818 * @opaque: User data for completion function
819 */
820 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
821 uint64_t len, uint64_t offset,
822 BlockDriverCompletionFunc *cb,
823 void *opaque)
824 {
825 CopyFromBackingFileCB *copy_cb;
826
827 /* Skip copy entirely if there is no work to do */
828 if (len == 0) {
829 cb(opaque, 0);
830 return;
831 }
832
833 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
834 copy_cb->s = s;
835 copy_cb->offset = offset;
836 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
837 copy_cb->iov.iov_len = len;
838 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
839
840 qed_read_backing_file(s, pos, &copy_cb->qiov,
841 qed_copy_from_backing_file_write, copy_cb);
842 }
843
844 /**
845 * Link one or more contiguous clusters into a table
846 *
847 * @s: QED state
848 * @table: L2 table
849 * @index: First cluster index
850 * @n: Number of contiguous clusters
851 * @cluster: First cluster offset
852 *
853 * The cluster offset may be an allocated byte offset in the image file, the
854 * zero cluster marker, or the unallocated cluster marker.
855 */
856 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
857 unsigned int n, uint64_t cluster)
858 {
859 int i;
860 for (i = index; i < index + n; i++) {
861 table->offsets[i] = cluster;
862 if (!qed_offset_is_unalloc_cluster(cluster) &&
863 !qed_offset_is_zero_cluster(cluster)) {
864 cluster += s->header.cluster_size;
865 }
866 }
867 }
868
869 static void qed_aio_complete_bh(void *opaque)
870 {
871 QEDAIOCB *acb = opaque;
872 BlockDriverCompletionFunc *cb = acb->common.cb;
873 void *user_opaque = acb->common.opaque;
874 int ret = acb->bh_ret;
875 bool *finished = acb->finished;
876
877 qemu_bh_delete(acb->bh);
878 qemu_aio_release(acb);
879
880 /* Invoke callback */
881 cb(user_opaque, ret);
882
883 /* Signal cancel completion */
884 if (finished) {
885 *finished = true;
886 }
887 }
888
889 static void qed_aio_complete(QEDAIOCB *acb, int ret)
890 {
891 BDRVQEDState *s = acb_to_s(acb);
892
893 trace_qed_aio_complete(s, acb, ret);
894
895 /* Free resources */
896 qemu_iovec_destroy(&acb->cur_qiov);
897 qed_unref_l2_cache_entry(acb->request.l2_table);
898
899 /* Free the buffer we may have allocated for zero writes */
900 if (acb->flags & QED_AIOCB_ZERO) {
901 qemu_vfree(acb->qiov->iov[0].iov_base);
902 acb->qiov->iov[0].iov_base = NULL;
903 }
904
905 /* Arrange for a bh to invoke the completion function */
906 acb->bh_ret = ret;
907 acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
908 qemu_bh_schedule(acb->bh);
909
910 /* Start next allocating write request waiting behind this one. Note that
911 * requests enqueue themselves when they first hit an unallocated cluster
912 * but they wait until the entire request is finished before waking up the
913 * next request in the queue. This ensures that we don't cycle through
914 * requests multiple times but rather finish one at a time completely.
915 */
916 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
917 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
918 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
919 if (acb) {
920 qed_aio_next_io(acb, 0);
921 } else if (s->header.features & QED_F_NEED_CHECK) {
922 qed_start_need_check_timer(s);
923 }
924 }
925 }
926
927 /**
928 * Commit the current L2 table to the cache
929 */
930 static void qed_commit_l2_update(void *opaque, int ret)
931 {
932 QEDAIOCB *acb = opaque;
933 BDRVQEDState *s = acb_to_s(acb);
934 CachedL2Table *l2_table = acb->request.l2_table;
935 uint64_t l2_offset = l2_table->offset;
936
937 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
938
939 /* This is guaranteed to succeed because we just committed the entry to the
940 * cache.
941 */
942 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
943 assert(acb->request.l2_table != NULL);
944
945 qed_aio_next_io(opaque, ret);
946 }
947
948 /**
949 * Update L1 table with new L2 table offset and write it out
950 */
951 static void qed_aio_write_l1_update(void *opaque, int ret)
952 {
953 QEDAIOCB *acb = opaque;
954 BDRVQEDState *s = acb_to_s(acb);
955 int index;
956
957 if (ret) {
958 qed_aio_complete(acb, ret);
959 return;
960 }
961
962 index = qed_l1_index(s, acb->cur_pos);
963 s->l1_table->offsets[index] = acb->request.l2_table->offset;
964
965 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
966 }
967
968 /**
969 * Update L2 table with new cluster offsets and write them out
970 */
971 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
972 {
973 BDRVQEDState *s = acb_to_s(acb);
974 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
975 int index;
976
977 if (ret) {
978 goto err;
979 }
980
981 if (need_alloc) {
982 qed_unref_l2_cache_entry(acb->request.l2_table);
983 acb->request.l2_table = qed_new_l2_table(s);
984 }
985
986 index = qed_l2_index(s, acb->cur_pos);
987 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
988 offset);
989
990 if (need_alloc) {
991 /* Write out the whole new L2 table */
992 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
993 qed_aio_write_l1_update, acb);
994 } else {
995 /* Write out only the updated part of the L2 table */
996 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
997 qed_aio_next_io, acb);
998 }
999 return;
1000
1001 err:
1002 qed_aio_complete(acb, ret);
1003 }
1004
1005 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1006 {
1007 QEDAIOCB *acb = opaque;
1008 qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1009 }
1010
1011 /**
1012 * Flush new data clusters before updating the L2 table
1013 *
1014 * This flush is necessary when a backing file is in use. A crash during an
1015 * allocating write could result in empty clusters in the image. If the write
1016 * only touched a subregion of the cluster, then backing image sectors have
1017 * been lost in the untouched region. The solution is to flush after writing a
1018 * new data cluster and before updating the L2 table.
1019 */
1020 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1021 {
1022 QEDAIOCB *acb = opaque;
1023 BDRVQEDState *s = acb_to_s(acb);
1024
1025 if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) {
1026 qed_aio_complete(acb, -EIO);
1027 }
1028 }
1029
1030 /**
1031 * Write data to the image file
1032 */
1033 static void qed_aio_write_main(void *opaque, int ret)
1034 {
1035 QEDAIOCB *acb = opaque;
1036 BDRVQEDState *s = acb_to_s(acb);
1037 uint64_t offset = acb->cur_cluster +
1038 qed_offset_into_cluster(s, acb->cur_pos);
1039 BlockDriverCompletionFunc *next_fn;
1040
1041 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1042
1043 if (ret) {
1044 qed_aio_complete(acb, ret);
1045 return;
1046 }
1047
1048 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1049 next_fn = qed_aio_next_io;
1050 } else {
1051 if (s->bs->backing_hd) {
1052 next_fn = qed_aio_write_flush_before_l2_update;
1053 } else {
1054 next_fn = qed_aio_write_l2_update_cb;
1055 }
1056 }
1057
1058 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1059 bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1060 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1061 next_fn, acb);
1062 }
1063
1064 /**
1065 * Populate back untouched region of new data cluster
1066 */
1067 static void qed_aio_write_postfill(void *opaque, int ret)
1068 {
1069 QEDAIOCB *acb = opaque;
1070 BDRVQEDState *s = acb_to_s(acb);
1071 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1072 uint64_t len =
1073 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1074 uint64_t offset = acb->cur_cluster +
1075 qed_offset_into_cluster(s, acb->cur_pos) +
1076 acb->cur_qiov.size;
1077
1078 if (ret) {
1079 qed_aio_complete(acb, ret);
1080 return;
1081 }
1082
1083 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1084 qed_copy_from_backing_file(s, start, len, offset,
1085 qed_aio_write_main, acb);
1086 }
1087
1088 /**
1089 * Populate front untouched region of new data cluster
1090 */
1091 static void qed_aio_write_prefill(void *opaque, int ret)
1092 {
1093 QEDAIOCB *acb = opaque;
1094 BDRVQEDState *s = acb_to_s(acb);
1095 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1096 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1097
1098 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1099 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1100 qed_aio_write_postfill, acb);
1101 }
1102
1103 /**
1104 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1105 */
1106 static bool qed_should_set_need_check(BDRVQEDState *s)
1107 {
1108 /* The flush before L2 update path ensures consistency */
1109 if (s->bs->backing_hd) {
1110 return false;
1111 }
1112
1113 return !(s->header.features & QED_F_NEED_CHECK);
1114 }
1115
1116 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1117 {
1118 QEDAIOCB *acb = opaque;
1119
1120 if (ret) {
1121 qed_aio_complete(acb, ret);
1122 return;
1123 }
1124
1125 qed_aio_write_l2_update(acb, 0, 1);
1126 }
1127
1128 /**
1129 * Write new data cluster
1130 *
1131 * @acb: Write request
1132 * @len: Length in bytes
1133 *
1134 * This path is taken when writing to previously unallocated clusters.
1135 */
1136 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1137 {
1138 BDRVQEDState *s = acb_to_s(acb);
1139 BlockDriverCompletionFunc *cb;
1140
1141 /* Cancel timer when the first allocating request comes in */
1142 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1143 qed_cancel_need_check_timer(s);
1144 }
1145
1146 /* Freeze this request if another allocating write is in progress */
1147 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1148 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1149 }
1150 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1151 s->allocating_write_reqs_plugged) {
1152 return; /* wait for existing request to finish */
1153 }
1154
1155 acb->cur_nclusters = qed_bytes_to_clusters(s,
1156 qed_offset_into_cluster(s, acb->cur_pos) + len);
1157 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1158
1159 if (acb->flags & QED_AIOCB_ZERO) {
1160 /* Skip ahead if the clusters are already zero */
1161 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1162 qed_aio_next_io(acb, 0);
1163 return;
1164 }
1165
1166 cb = qed_aio_write_zero_cluster;
1167 } else {
1168 cb = qed_aio_write_prefill;
1169 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1170 }
1171
1172 if (qed_should_set_need_check(s)) {
1173 s->header.features |= QED_F_NEED_CHECK;
1174 qed_write_header(s, cb, acb);
1175 } else {
1176 cb(acb, 0);
1177 }
1178 }
1179
1180 /**
1181 * Write data cluster in place
1182 *
1183 * @acb: Write request
1184 * @offset: Cluster offset in bytes
1185 * @len: Length in bytes
1186 *
1187 * This path is taken when writing to already allocated clusters.
1188 */
1189 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1190 {
1191 /* Allocate buffer for zero writes */
1192 if (acb->flags & QED_AIOCB_ZERO) {
1193 struct iovec *iov = acb->qiov->iov;
1194
1195 if (!iov->iov_base) {
1196 iov->iov_base = qemu_blockalign(acb->common.bs, iov->iov_len);
1197 memset(iov->iov_base, 0, iov->iov_len);
1198 }
1199 }
1200
1201 /* Calculate the I/O vector */
1202 acb->cur_cluster = offset;
1203 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1204
1205 /* Do the actual write */
1206 qed_aio_write_main(acb, 0);
1207 }
1208
1209 /**
1210 * Write data cluster
1211 *
1212 * @opaque: Write request
1213 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1214 * or -errno
1215 * @offset: Cluster offset in bytes
1216 * @len: Length in bytes
1217 *
1218 * Callback from qed_find_cluster().
1219 */
1220 static void qed_aio_write_data(void *opaque, int ret,
1221 uint64_t offset, size_t len)
1222 {
1223 QEDAIOCB *acb = opaque;
1224
1225 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1226
1227 acb->find_cluster_ret = ret;
1228
1229 switch (ret) {
1230 case QED_CLUSTER_FOUND:
1231 qed_aio_write_inplace(acb, offset, len);
1232 break;
1233
1234 case QED_CLUSTER_L2:
1235 case QED_CLUSTER_L1:
1236 case QED_CLUSTER_ZERO:
1237 qed_aio_write_alloc(acb, len);
1238 break;
1239
1240 default:
1241 qed_aio_complete(acb, ret);
1242 break;
1243 }
1244 }
1245
1246 /**
1247 * Read data cluster
1248 *
1249 * @opaque: Read request
1250 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1251 * or -errno
1252 * @offset: Cluster offset in bytes
1253 * @len: Length in bytes
1254 *
1255 * Callback from qed_find_cluster().
1256 */
1257 static void qed_aio_read_data(void *opaque, int ret,
1258 uint64_t offset, size_t len)
1259 {
1260 QEDAIOCB *acb = opaque;
1261 BDRVQEDState *s = acb_to_s(acb);
1262 BlockDriverState *bs = acb->common.bs;
1263
1264 /* Adjust offset into cluster */
1265 offset += qed_offset_into_cluster(s, acb->cur_pos);
1266
1267 trace_qed_aio_read_data(s, acb, ret, offset, len);
1268
1269 if (ret < 0) {
1270 goto err;
1271 }
1272
1273 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1274
1275 /* Handle zero cluster and backing file reads */
1276 if (ret == QED_CLUSTER_ZERO) {
1277 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1278 qed_aio_next_io(acb, 0);
1279 return;
1280 } else if (ret != QED_CLUSTER_FOUND) {
1281 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1282 qed_aio_next_io, acb);
1283 return;
1284 }
1285
1286 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1287 bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1288 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1289 qed_aio_next_io, acb);
1290 return;
1291
1292 err:
1293 qed_aio_complete(acb, ret);
1294 }
1295
1296 /**
1297 * Begin next I/O or complete the request
1298 */
1299 static void qed_aio_next_io(void *opaque, int ret)
1300 {
1301 QEDAIOCB *acb = opaque;
1302 BDRVQEDState *s = acb_to_s(acb);
1303 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1304 qed_aio_write_data : qed_aio_read_data;
1305
1306 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1307
1308 /* Handle I/O error */
1309 if (ret) {
1310 qed_aio_complete(acb, ret);
1311 return;
1312 }
1313
1314 acb->qiov_offset += acb->cur_qiov.size;
1315 acb->cur_pos += acb->cur_qiov.size;
1316 qemu_iovec_reset(&acb->cur_qiov);
1317
1318 /* Complete request */
1319 if (acb->cur_pos >= acb->end_pos) {
1320 qed_aio_complete(acb, 0);
1321 return;
1322 }
1323
1324 /* Find next cluster and start I/O */
1325 qed_find_cluster(s, &acb->request,
1326 acb->cur_pos, acb->end_pos - acb->cur_pos,
1327 io_fn, acb);
1328 }
1329
1330 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1331 int64_t sector_num,
1332 QEMUIOVector *qiov, int nb_sectors,
1333 BlockDriverCompletionFunc *cb,
1334 void *opaque, int flags)
1335 {
1336 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1337
1338 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1339 opaque, flags);
1340
1341 acb->flags = flags;
1342 acb->finished = NULL;
1343 acb->qiov = qiov;
1344 acb->qiov_offset = 0;
1345 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1346 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1347 acb->request.l2_table = NULL;
1348 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1349
1350 /* Start request */
1351 qed_aio_next_io(acb, 0);
1352 return &acb->common;
1353 }
1354
1355 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1356 int64_t sector_num,
1357 QEMUIOVector *qiov, int nb_sectors,
1358 BlockDriverCompletionFunc *cb,
1359 void *opaque)
1360 {
1361 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1362 }
1363
1364 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1365 int64_t sector_num,
1366 QEMUIOVector *qiov, int nb_sectors,
1367 BlockDriverCompletionFunc *cb,
1368 void *opaque)
1369 {
1370 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1371 opaque, QED_AIOCB_WRITE);
1372 }
1373
1374 typedef struct {
1375 Coroutine *co;
1376 int ret;
1377 bool done;
1378 } QEDWriteZeroesCB;
1379
1380 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1381 {
1382 QEDWriteZeroesCB *cb = opaque;
1383
1384 cb->done = true;
1385 cb->ret = ret;
1386 if (cb->co) {
1387 qemu_coroutine_enter(cb->co, NULL);
1388 }
1389 }
1390
1391 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1392 int64_t sector_num,
1393 int nb_sectors)
1394 {
1395 BlockDriverAIOCB *blockacb;
1396 BDRVQEDState *s = bs->opaque;
1397 QEDWriteZeroesCB cb = { .done = false };
1398 QEMUIOVector qiov;
1399 struct iovec iov;
1400
1401 /* Refuse if there are untouched backing file sectors */
1402 if (bs->backing_hd) {
1403 if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) {
1404 return -ENOTSUP;
1405 }
1406 if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) {
1407 return -ENOTSUP;
1408 }
1409 }
1410
1411 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1412 * then it will be allocated during request processing.
1413 */
1414 iov.iov_base = NULL,
1415 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1416
1417 qemu_iovec_init_external(&qiov, &iov, 1);
1418 blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1419 qed_co_write_zeroes_cb, &cb,
1420 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1421 if (!blockacb) {
1422 return -EIO;
1423 }
1424 if (!cb.done) {
1425 cb.co = qemu_coroutine_self();
1426 qemu_coroutine_yield();
1427 }
1428 assert(cb.done);
1429 return cb.ret;
1430 }
1431
1432 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1433 {
1434 BDRVQEDState *s = bs->opaque;
1435 uint64_t old_image_size;
1436 int ret;
1437
1438 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1439 s->header.table_size)) {
1440 return -EINVAL;
1441 }
1442
1443 /* Shrinking is currently not supported */
1444 if ((uint64_t)offset < s->header.image_size) {
1445 return -ENOTSUP;
1446 }
1447
1448 old_image_size = s->header.image_size;
1449 s->header.image_size = offset;
1450 ret = qed_write_header_sync(s);
1451 if (ret < 0) {
1452 s->header.image_size = old_image_size;
1453 }
1454 return ret;
1455 }
1456
1457 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1458 {
1459 BDRVQEDState *s = bs->opaque;
1460 return s->header.image_size;
1461 }
1462
1463 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1464 {
1465 BDRVQEDState *s = bs->opaque;
1466
1467 memset(bdi, 0, sizeof(*bdi));
1468 bdi->cluster_size = s->header.cluster_size;
1469 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1470 return 0;
1471 }
1472
1473 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1474 const char *backing_file,
1475 const char *backing_fmt)
1476 {
1477 BDRVQEDState *s = bs->opaque;
1478 QEDHeader new_header, le_header;
1479 void *buffer;
1480 size_t buffer_len, backing_file_len;
1481 int ret;
1482
1483 /* Refuse to set backing filename if unknown compat feature bits are
1484 * active. If the image uses an unknown compat feature then we may not
1485 * know the layout of data following the header structure and cannot safely
1486 * add a new string.
1487 */
1488 if (backing_file && (s->header.compat_features &
1489 ~QED_COMPAT_FEATURE_MASK)) {
1490 return -ENOTSUP;
1491 }
1492
1493 memcpy(&new_header, &s->header, sizeof(new_header));
1494
1495 new_header.features &= ~(QED_F_BACKING_FILE |
1496 QED_F_BACKING_FORMAT_NO_PROBE);
1497
1498 /* Adjust feature flags */
1499 if (backing_file) {
1500 new_header.features |= QED_F_BACKING_FILE;
1501
1502 if (qed_fmt_is_raw(backing_fmt)) {
1503 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1504 }
1505 }
1506
1507 /* Calculate new header size */
1508 backing_file_len = 0;
1509
1510 if (backing_file) {
1511 backing_file_len = strlen(backing_file);
1512 }
1513
1514 buffer_len = sizeof(new_header);
1515 new_header.backing_filename_offset = buffer_len;
1516 new_header.backing_filename_size = backing_file_len;
1517 buffer_len += backing_file_len;
1518
1519 /* Make sure we can rewrite header without failing */
1520 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1521 return -ENOSPC;
1522 }
1523
1524 /* Prepare new header */
1525 buffer = g_malloc(buffer_len);
1526
1527 qed_header_cpu_to_le(&new_header, &le_header);
1528 memcpy(buffer, &le_header, sizeof(le_header));
1529 buffer_len = sizeof(le_header);
1530
1531 if (backing_file) {
1532 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1533 buffer_len += backing_file_len;
1534 }
1535
1536 /* Write new header */
1537 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1538 g_free(buffer);
1539 if (ret == 0) {
1540 memcpy(&s->header, &new_header, sizeof(new_header));
1541 }
1542 return ret;
1543 }
1544
1545 static void bdrv_qed_invalidate_cache(BlockDriverState *bs)
1546 {
1547 BDRVQEDState *s = bs->opaque;
1548
1549 bdrv_qed_close(bs);
1550 memset(s, 0, sizeof(BDRVQEDState));
1551 bdrv_qed_open(bs, NULL, bs->open_flags, NULL);
1552 }
1553
1554 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1555 BdrvCheckMode fix)
1556 {
1557 BDRVQEDState *s = bs->opaque;
1558
1559 return qed_check(s, result, !!fix);
1560 }
1561
1562 static QEMUOptionParameter qed_create_options[] = {
1563 {
1564 .name = BLOCK_OPT_SIZE,
1565 .type = OPT_SIZE,
1566 .help = "Virtual disk size (in bytes)"
1567 }, {
1568 .name = BLOCK_OPT_BACKING_FILE,
1569 .type = OPT_STRING,
1570 .help = "File name of a base image"
1571 }, {
1572 .name = BLOCK_OPT_BACKING_FMT,
1573 .type = OPT_STRING,
1574 .help = "Image format of the base image"
1575 }, {
1576 .name = BLOCK_OPT_CLUSTER_SIZE,
1577 .type = OPT_SIZE,
1578 .help = "Cluster size (in bytes)",
1579 .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1580 }, {
1581 .name = BLOCK_OPT_TABLE_SIZE,
1582 .type = OPT_SIZE,
1583 .help = "L1/L2 table size (in clusters)"
1584 },
1585 { /* end of list */ }
1586 };
1587
1588 static BlockDriver bdrv_qed = {
1589 .format_name = "qed",
1590 .instance_size = sizeof(BDRVQEDState),
1591 .create_options = qed_create_options,
1592
1593 .bdrv_probe = bdrv_qed_probe,
1594 .bdrv_rebind = bdrv_qed_rebind,
1595 .bdrv_open = bdrv_qed_open,
1596 .bdrv_close = bdrv_qed_close,
1597 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1598 .bdrv_create = bdrv_qed_create,
1599 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1600 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1601 .bdrv_make_empty = bdrv_qed_make_empty,
1602 .bdrv_aio_readv = bdrv_qed_aio_readv,
1603 .bdrv_aio_writev = bdrv_qed_aio_writev,
1604 .bdrv_co_write_zeroes = bdrv_qed_co_write_zeroes,
1605 .bdrv_truncate = bdrv_qed_truncate,
1606 .bdrv_getlength = bdrv_qed_getlength,
1607 .bdrv_get_info = bdrv_qed_get_info,
1608 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1609 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
1610 .bdrv_check = bdrv_qed_check,
1611 };
1612
1613 static void bdrv_qed_init(void)
1614 {
1615 bdrv_register(&bdrv_qed);
1616 }
1617
1618 block_init(bdrv_qed_init);