]> git.proxmox.com Git - qemu.git/blob - block/qed.c
qed: remove unneeded variable assignment
[qemu.git] / block / qed.c
1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "qemu-timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qerror.h"
19
20 static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
21 {
22 QEDAIOCB *acb = (QEDAIOCB *)blockacb;
23 bool finished = false;
24
25 /* Wait for the request to finish */
26 acb->finished = &finished;
27 while (!finished) {
28 qemu_aio_wait();
29 }
30 }
31
32 static AIOPool qed_aio_pool = {
33 .aiocb_size = sizeof(QEDAIOCB),
34 .cancel = qed_aio_cancel,
35 };
36
37 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
38 const char *filename)
39 {
40 const QEDHeader *header = (const QEDHeader *)buf;
41
42 if (buf_size < sizeof(*header)) {
43 return 0;
44 }
45 if (le32_to_cpu(header->magic) != QED_MAGIC) {
46 return 0;
47 }
48 return 100;
49 }
50
51 /**
52 * Check whether an image format is raw
53 *
54 * @fmt: Backing file format, may be NULL
55 */
56 static bool qed_fmt_is_raw(const char *fmt)
57 {
58 return fmt && strcmp(fmt, "raw") == 0;
59 }
60
61 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
62 {
63 cpu->magic = le32_to_cpu(le->magic);
64 cpu->cluster_size = le32_to_cpu(le->cluster_size);
65 cpu->table_size = le32_to_cpu(le->table_size);
66 cpu->header_size = le32_to_cpu(le->header_size);
67 cpu->features = le64_to_cpu(le->features);
68 cpu->compat_features = le64_to_cpu(le->compat_features);
69 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
70 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
71 cpu->image_size = le64_to_cpu(le->image_size);
72 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
73 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
74 }
75
76 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
77 {
78 le->magic = cpu_to_le32(cpu->magic);
79 le->cluster_size = cpu_to_le32(cpu->cluster_size);
80 le->table_size = cpu_to_le32(cpu->table_size);
81 le->header_size = cpu_to_le32(cpu->header_size);
82 le->features = cpu_to_le64(cpu->features);
83 le->compat_features = cpu_to_le64(cpu->compat_features);
84 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
85 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
86 le->image_size = cpu_to_le64(cpu->image_size);
87 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
88 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
89 }
90
91 static int qed_write_header_sync(BDRVQEDState *s)
92 {
93 QEDHeader le;
94 int ret;
95
96 qed_header_cpu_to_le(&s->header, &le);
97 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
98 if (ret != sizeof(le)) {
99 return ret;
100 }
101 return 0;
102 }
103
104 typedef struct {
105 GenericCB gencb;
106 BDRVQEDState *s;
107 struct iovec iov;
108 QEMUIOVector qiov;
109 int nsectors;
110 uint8_t *buf;
111 } QEDWriteHeaderCB;
112
113 static void qed_write_header_cb(void *opaque, int ret)
114 {
115 QEDWriteHeaderCB *write_header_cb = opaque;
116
117 qemu_vfree(write_header_cb->buf);
118 gencb_complete(write_header_cb, ret);
119 }
120
121 static void qed_write_header_read_cb(void *opaque, int ret)
122 {
123 QEDWriteHeaderCB *write_header_cb = opaque;
124 BDRVQEDState *s = write_header_cb->s;
125 BlockDriverAIOCB *acb;
126
127 if (ret) {
128 qed_write_header_cb(write_header_cb, ret);
129 return;
130 }
131
132 /* Update header */
133 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
134
135 acb = bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136 write_header_cb->nsectors, qed_write_header_cb,
137 write_header_cb);
138 if (!acb) {
139 qed_write_header_cb(write_header_cb, -EIO);
140 }
141 }
142
143 /**
144 * Update header in-place (does not rewrite backing filename or other strings)
145 *
146 * This function only updates known header fields in-place and does not affect
147 * extra data after the QED header.
148 */
149 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
150 void *opaque)
151 {
152 /* We must write full sectors for O_DIRECT but cannot necessarily generate
153 * the data following the header if an unrecognized compat feature is
154 * active. Therefore, first read the sectors containing the header, update
155 * them, and write back.
156 */
157
158 BlockDriverAIOCB *acb;
159 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
160 BDRV_SECTOR_SIZE;
161 size_t len = nsectors * BDRV_SECTOR_SIZE;
162 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
163 cb, opaque);
164
165 write_header_cb->s = s;
166 write_header_cb->nsectors = nsectors;
167 write_header_cb->buf = qemu_blockalign(s->bs, len);
168 write_header_cb->iov.iov_base = write_header_cb->buf;
169 write_header_cb->iov.iov_len = len;
170 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
171
172 acb = bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
173 qed_write_header_read_cb, write_header_cb);
174 if (!acb) {
175 qed_write_header_cb(write_header_cb, -EIO);
176 }
177 }
178
179 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
180 {
181 uint64_t table_entries;
182 uint64_t l2_size;
183
184 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
185 l2_size = table_entries * cluster_size;
186
187 return l2_size * table_entries;
188 }
189
190 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
191 {
192 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
193 cluster_size > QED_MAX_CLUSTER_SIZE) {
194 return false;
195 }
196 if (cluster_size & (cluster_size - 1)) {
197 return false; /* not power of 2 */
198 }
199 return true;
200 }
201
202 static bool qed_is_table_size_valid(uint32_t table_size)
203 {
204 if (table_size < QED_MIN_TABLE_SIZE ||
205 table_size > QED_MAX_TABLE_SIZE) {
206 return false;
207 }
208 if (table_size & (table_size - 1)) {
209 return false; /* not power of 2 */
210 }
211 return true;
212 }
213
214 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
215 uint32_t table_size)
216 {
217 if (image_size % BDRV_SECTOR_SIZE != 0) {
218 return false; /* not multiple of sector size */
219 }
220 if (image_size > qed_max_image_size(cluster_size, table_size)) {
221 return false; /* image is too large */
222 }
223 return true;
224 }
225
226 /**
227 * Read a string of known length from the image file
228 *
229 * @file: Image file
230 * @offset: File offset to start of string, in bytes
231 * @n: String length in bytes
232 * @buf: Destination buffer
233 * @buflen: Destination buffer length in bytes
234 * @ret: 0 on success, -errno on failure
235 *
236 * The string is NUL-terminated.
237 */
238 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
239 char *buf, size_t buflen)
240 {
241 int ret;
242 if (n >= buflen) {
243 return -EINVAL;
244 }
245 ret = bdrv_pread(file, offset, buf, n);
246 if (ret < 0) {
247 return ret;
248 }
249 buf[n] = '\0';
250 return 0;
251 }
252
253 /**
254 * Allocate new clusters
255 *
256 * @s: QED state
257 * @n: Number of contiguous clusters to allocate
258 * @ret: Offset of first allocated cluster
259 *
260 * This function only produces the offset where the new clusters should be
261 * written. It updates BDRVQEDState but does not make any changes to the image
262 * file.
263 */
264 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
265 {
266 uint64_t offset = s->file_size;
267 s->file_size += n * s->header.cluster_size;
268 return offset;
269 }
270
271 QEDTable *qed_alloc_table(BDRVQEDState *s)
272 {
273 /* Honor O_DIRECT memory alignment requirements */
274 return qemu_blockalign(s->bs,
275 s->header.cluster_size * s->header.table_size);
276 }
277
278 /**
279 * Allocate a new zeroed L2 table
280 */
281 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
282 {
283 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
284
285 l2_table->table = qed_alloc_table(s);
286 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
287
288 memset(l2_table->table->offsets, 0,
289 s->header.cluster_size * s->header.table_size);
290 return l2_table;
291 }
292
293 static void qed_aio_next_io(void *opaque, int ret);
294
295 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
296 {
297 assert(!s->allocating_write_reqs_plugged);
298
299 s->allocating_write_reqs_plugged = true;
300 }
301
302 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
303 {
304 QEDAIOCB *acb;
305
306 assert(s->allocating_write_reqs_plugged);
307
308 s->allocating_write_reqs_plugged = false;
309
310 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
311 if (acb) {
312 qed_aio_next_io(acb, 0);
313 }
314 }
315
316 static void qed_finish_clear_need_check(void *opaque, int ret)
317 {
318 /* Do nothing */
319 }
320
321 static void qed_flush_after_clear_need_check(void *opaque, int ret)
322 {
323 BDRVQEDState *s = opaque;
324
325 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
326
327 /* No need to wait until flush completes */
328 qed_unplug_allocating_write_reqs(s);
329 }
330
331 static void qed_clear_need_check(void *opaque, int ret)
332 {
333 BDRVQEDState *s = opaque;
334
335 if (ret) {
336 qed_unplug_allocating_write_reqs(s);
337 return;
338 }
339
340 s->header.features &= ~QED_F_NEED_CHECK;
341 qed_write_header(s, qed_flush_after_clear_need_check, s);
342 }
343
344 static void qed_need_check_timer_cb(void *opaque)
345 {
346 BDRVQEDState *s = opaque;
347
348 /* The timer should only fire when allocating writes have drained */
349 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
350
351 trace_qed_need_check_timer_cb(s);
352
353 qed_plug_allocating_write_reqs(s);
354
355 /* Ensure writes are on disk before clearing flag */
356 bdrv_aio_flush(s->bs, qed_clear_need_check, s);
357 }
358
359 static void qed_start_need_check_timer(BDRVQEDState *s)
360 {
361 trace_qed_start_need_check_timer(s);
362
363 /* Use vm_clock so we don't alter the image file while suspended for
364 * migration.
365 */
366 qemu_mod_timer(s->need_check_timer, qemu_get_clock_ns(vm_clock) +
367 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
368 }
369
370 /* It's okay to call this multiple times or when no timer is started */
371 static void qed_cancel_need_check_timer(BDRVQEDState *s)
372 {
373 trace_qed_cancel_need_check_timer(s);
374 qemu_del_timer(s->need_check_timer);
375 }
376
377 static int bdrv_qed_open(BlockDriverState *bs, int flags)
378 {
379 BDRVQEDState *s = bs->opaque;
380 QEDHeader le_header;
381 int64_t file_size;
382 int ret;
383
384 s->bs = bs;
385 QSIMPLEQ_INIT(&s->allocating_write_reqs);
386
387 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
388 if (ret < 0) {
389 return ret;
390 }
391 qed_header_le_to_cpu(&le_header, &s->header);
392
393 if (s->header.magic != QED_MAGIC) {
394 return -EINVAL;
395 }
396 if (s->header.features & ~QED_FEATURE_MASK) {
397 /* image uses unsupported feature bits */
398 char buf[64];
399 snprintf(buf, sizeof(buf), "%" PRIx64,
400 s->header.features & ~QED_FEATURE_MASK);
401 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
402 bs->device_name, "QED", buf);
403 return -ENOTSUP;
404 }
405 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
406 return -EINVAL;
407 }
408
409 /* Round down file size to the last cluster */
410 file_size = bdrv_getlength(bs->file);
411 if (file_size < 0) {
412 return file_size;
413 }
414 s->file_size = qed_start_of_cluster(s, file_size);
415
416 if (!qed_is_table_size_valid(s->header.table_size)) {
417 return -EINVAL;
418 }
419 if (!qed_is_image_size_valid(s->header.image_size,
420 s->header.cluster_size,
421 s->header.table_size)) {
422 return -EINVAL;
423 }
424 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
425 return -EINVAL;
426 }
427
428 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
429 sizeof(uint64_t);
430 s->l2_shift = ffs(s->header.cluster_size) - 1;
431 s->l2_mask = s->table_nelems - 1;
432 s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
433
434 if ((s->header.features & QED_F_BACKING_FILE)) {
435 if ((uint64_t)s->header.backing_filename_offset +
436 s->header.backing_filename_size >
437 s->header.cluster_size * s->header.header_size) {
438 return -EINVAL;
439 }
440
441 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
442 s->header.backing_filename_size, bs->backing_file,
443 sizeof(bs->backing_file));
444 if (ret < 0) {
445 return ret;
446 }
447
448 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
449 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
450 }
451 }
452
453 /* Reset unknown autoclear feature bits. This is a backwards
454 * compatibility mechanism that allows images to be opened by older
455 * programs, which "knock out" unknown feature bits. When an image is
456 * opened by a newer program again it can detect that the autoclear
457 * feature is no longer valid.
458 */
459 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
460 !bdrv_is_read_only(bs->file)) {
461 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
462
463 ret = qed_write_header_sync(s);
464 if (ret) {
465 return ret;
466 }
467
468 /* From here on only known autoclear feature bits are valid */
469 bdrv_flush(bs->file);
470 }
471
472 s->l1_table = qed_alloc_table(s);
473 qed_init_l2_cache(&s->l2_cache);
474
475 ret = qed_read_l1_table_sync(s);
476 if (ret) {
477 goto out;
478 }
479
480 /* If image was not closed cleanly, check consistency */
481 if (s->header.features & QED_F_NEED_CHECK) {
482 /* Read-only images cannot be fixed. There is no risk of corruption
483 * since write operations are not possible. Therefore, allow
484 * potentially inconsistent images to be opened read-only. This can
485 * aid data recovery from an otherwise inconsistent image.
486 */
487 if (!bdrv_is_read_only(bs->file)) {
488 BdrvCheckResult result = {0};
489
490 ret = qed_check(s, &result, true);
491 if (ret) {
492 goto out;
493 }
494 if (!result.corruptions && !result.check_errors) {
495 /* Ensure fixes reach storage before clearing check bit */
496 bdrv_flush(s->bs);
497
498 s->header.features &= ~QED_F_NEED_CHECK;
499 qed_write_header_sync(s);
500 }
501 }
502 }
503
504 s->need_check_timer = qemu_new_timer_ns(vm_clock,
505 qed_need_check_timer_cb, s);
506
507 out:
508 if (ret) {
509 qed_free_l2_cache(&s->l2_cache);
510 qemu_vfree(s->l1_table);
511 }
512 return ret;
513 }
514
515 static void bdrv_qed_close(BlockDriverState *bs)
516 {
517 BDRVQEDState *s = bs->opaque;
518
519 qed_cancel_need_check_timer(s);
520 qemu_free_timer(s->need_check_timer);
521
522 /* Ensure writes reach stable storage */
523 bdrv_flush(bs->file);
524
525 /* Clean shutdown, no check required on next open */
526 if (s->header.features & QED_F_NEED_CHECK) {
527 s->header.features &= ~QED_F_NEED_CHECK;
528 qed_write_header_sync(s);
529 }
530
531 qed_free_l2_cache(&s->l2_cache);
532 qemu_vfree(s->l1_table);
533 }
534
535 static int bdrv_qed_flush(BlockDriverState *bs)
536 {
537 return bdrv_flush(bs->file);
538 }
539
540 static int qed_create(const char *filename, uint32_t cluster_size,
541 uint64_t image_size, uint32_t table_size,
542 const char *backing_file, const char *backing_fmt)
543 {
544 QEDHeader header = {
545 .magic = QED_MAGIC,
546 .cluster_size = cluster_size,
547 .table_size = table_size,
548 .header_size = 1,
549 .features = 0,
550 .compat_features = 0,
551 .l1_table_offset = cluster_size,
552 .image_size = image_size,
553 };
554 QEDHeader le_header;
555 uint8_t *l1_table = NULL;
556 size_t l1_size = header.cluster_size * header.table_size;
557 int ret = 0;
558 BlockDriverState *bs = NULL;
559
560 ret = bdrv_create_file(filename, NULL);
561 if (ret < 0) {
562 return ret;
563 }
564
565 ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB);
566 if (ret < 0) {
567 return ret;
568 }
569
570 /* File must start empty and grow, check truncate is supported */
571 ret = bdrv_truncate(bs, 0);
572 if (ret < 0) {
573 goto out;
574 }
575
576 if (backing_file) {
577 header.features |= QED_F_BACKING_FILE;
578 header.backing_filename_offset = sizeof(le_header);
579 header.backing_filename_size = strlen(backing_file);
580
581 if (qed_fmt_is_raw(backing_fmt)) {
582 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
583 }
584 }
585
586 qed_header_cpu_to_le(&header, &le_header);
587 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
588 if (ret < 0) {
589 goto out;
590 }
591 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
592 header.backing_filename_size);
593 if (ret < 0) {
594 goto out;
595 }
596
597 l1_table = g_malloc0(l1_size);
598 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
599 if (ret < 0) {
600 goto out;
601 }
602
603 ret = 0; /* success */
604 out:
605 g_free(l1_table);
606 bdrv_delete(bs);
607 return ret;
608 }
609
610 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
611 {
612 uint64_t image_size = 0;
613 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
614 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
615 const char *backing_file = NULL;
616 const char *backing_fmt = NULL;
617
618 while (options && options->name) {
619 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
620 image_size = options->value.n;
621 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
622 backing_file = options->value.s;
623 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
624 backing_fmt = options->value.s;
625 } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
626 if (options->value.n) {
627 cluster_size = options->value.n;
628 }
629 } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
630 if (options->value.n) {
631 table_size = options->value.n;
632 }
633 }
634 options++;
635 }
636
637 if (!qed_is_cluster_size_valid(cluster_size)) {
638 fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
639 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
640 return -EINVAL;
641 }
642 if (!qed_is_table_size_valid(table_size)) {
643 fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
644 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
645 return -EINVAL;
646 }
647 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
648 fprintf(stderr, "QED image size must be a non-zero multiple of "
649 "cluster size and less than %" PRIu64 " bytes\n",
650 qed_max_image_size(cluster_size, table_size));
651 return -EINVAL;
652 }
653
654 return qed_create(filename, cluster_size, image_size, table_size,
655 backing_file, backing_fmt);
656 }
657
658 typedef struct {
659 int is_allocated;
660 int *pnum;
661 } QEDIsAllocatedCB;
662
663 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
664 {
665 QEDIsAllocatedCB *cb = opaque;
666 *cb->pnum = len / BDRV_SECTOR_SIZE;
667 cb->is_allocated = (ret == QED_CLUSTER_FOUND || ret == QED_CLUSTER_ZERO);
668 }
669
670 static int bdrv_qed_is_allocated(BlockDriverState *bs, int64_t sector_num,
671 int nb_sectors, int *pnum)
672 {
673 BDRVQEDState *s = bs->opaque;
674 uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
675 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
676 QEDIsAllocatedCB cb = {
677 .is_allocated = -1,
678 .pnum = pnum,
679 };
680 QEDRequest request = { .l2_table = NULL };
681
682 qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
683
684 while (cb.is_allocated == -1) {
685 qemu_aio_wait();
686 }
687
688 qed_unref_l2_cache_entry(request.l2_table);
689
690 return cb.is_allocated;
691 }
692
693 static int bdrv_qed_make_empty(BlockDriverState *bs)
694 {
695 return -ENOTSUP;
696 }
697
698 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
699 {
700 return acb->common.bs->opaque;
701 }
702
703 /**
704 * Read from the backing file or zero-fill if no backing file
705 *
706 * @s: QED state
707 * @pos: Byte position in device
708 * @qiov: Destination I/O vector
709 * @cb: Completion function
710 * @opaque: User data for completion function
711 *
712 * This function reads qiov->size bytes starting at pos from the backing file.
713 * If there is no backing file then zeroes are read.
714 */
715 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
716 QEMUIOVector *qiov,
717 BlockDriverCompletionFunc *cb, void *opaque)
718 {
719 BlockDriverAIOCB *aiocb;
720 uint64_t backing_length = 0;
721 size_t size;
722
723 /* If there is a backing file, get its length. Treat the absence of a
724 * backing file like a zero length backing file.
725 */
726 if (s->bs->backing_hd) {
727 int64_t l = bdrv_getlength(s->bs->backing_hd);
728 if (l < 0) {
729 cb(opaque, l);
730 return;
731 }
732 backing_length = l;
733 }
734
735 /* Zero all sectors if reading beyond the end of the backing file */
736 if (pos >= backing_length ||
737 pos + qiov->size > backing_length) {
738 qemu_iovec_memset(qiov, 0, qiov->size);
739 }
740
741 /* Complete now if there are no backing file sectors to read */
742 if (pos >= backing_length) {
743 cb(opaque, 0);
744 return;
745 }
746
747 /* If the read straddles the end of the backing file, shorten it */
748 size = MIN((uint64_t)backing_length - pos, qiov->size);
749
750 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING);
751 aiocb = bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
752 qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
753 if (!aiocb) {
754 cb(opaque, -EIO);
755 }
756 }
757
758 typedef struct {
759 GenericCB gencb;
760 BDRVQEDState *s;
761 QEMUIOVector qiov;
762 struct iovec iov;
763 uint64_t offset;
764 } CopyFromBackingFileCB;
765
766 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
767 {
768 CopyFromBackingFileCB *copy_cb = opaque;
769 qemu_vfree(copy_cb->iov.iov_base);
770 gencb_complete(&copy_cb->gencb, ret);
771 }
772
773 static void qed_copy_from_backing_file_write(void *opaque, int ret)
774 {
775 CopyFromBackingFileCB *copy_cb = opaque;
776 BDRVQEDState *s = copy_cb->s;
777 BlockDriverAIOCB *aiocb;
778
779 if (ret) {
780 qed_copy_from_backing_file_cb(copy_cb, ret);
781 return;
782 }
783
784 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
785 aiocb = bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
786 &copy_cb->qiov,
787 copy_cb->qiov.size / BDRV_SECTOR_SIZE,
788 qed_copy_from_backing_file_cb, copy_cb);
789 if (!aiocb) {
790 qed_copy_from_backing_file_cb(copy_cb, -EIO);
791 }
792 }
793
794 /**
795 * Copy data from backing file into the image
796 *
797 * @s: QED state
798 * @pos: Byte position in device
799 * @len: Number of bytes
800 * @offset: Byte offset in image file
801 * @cb: Completion function
802 * @opaque: User data for completion function
803 */
804 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
805 uint64_t len, uint64_t offset,
806 BlockDriverCompletionFunc *cb,
807 void *opaque)
808 {
809 CopyFromBackingFileCB *copy_cb;
810
811 /* Skip copy entirely if there is no work to do */
812 if (len == 0) {
813 cb(opaque, 0);
814 return;
815 }
816
817 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
818 copy_cb->s = s;
819 copy_cb->offset = offset;
820 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
821 copy_cb->iov.iov_len = len;
822 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
823
824 qed_read_backing_file(s, pos, &copy_cb->qiov,
825 qed_copy_from_backing_file_write, copy_cb);
826 }
827
828 /**
829 * Link one or more contiguous clusters into a table
830 *
831 * @s: QED state
832 * @table: L2 table
833 * @index: First cluster index
834 * @n: Number of contiguous clusters
835 * @cluster: First cluster offset
836 *
837 * The cluster offset may be an allocated byte offset in the image file, the
838 * zero cluster marker, or the unallocated cluster marker.
839 */
840 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
841 unsigned int n, uint64_t cluster)
842 {
843 int i;
844 for (i = index; i < index + n; i++) {
845 table->offsets[i] = cluster;
846 if (!qed_offset_is_unalloc_cluster(cluster) &&
847 !qed_offset_is_zero_cluster(cluster)) {
848 cluster += s->header.cluster_size;
849 }
850 }
851 }
852
853 static void qed_aio_complete_bh(void *opaque)
854 {
855 QEDAIOCB *acb = opaque;
856 BlockDriverCompletionFunc *cb = acb->common.cb;
857 void *user_opaque = acb->common.opaque;
858 int ret = acb->bh_ret;
859 bool *finished = acb->finished;
860
861 qemu_bh_delete(acb->bh);
862 qemu_aio_release(acb);
863
864 /* Invoke callback */
865 cb(user_opaque, ret);
866
867 /* Signal cancel completion */
868 if (finished) {
869 *finished = true;
870 }
871 }
872
873 static void qed_aio_complete(QEDAIOCB *acb, int ret)
874 {
875 BDRVQEDState *s = acb_to_s(acb);
876
877 trace_qed_aio_complete(s, acb, ret);
878
879 /* Free resources */
880 qemu_iovec_destroy(&acb->cur_qiov);
881 qed_unref_l2_cache_entry(acb->request.l2_table);
882
883 /* Arrange for a bh to invoke the completion function */
884 acb->bh_ret = ret;
885 acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
886 qemu_bh_schedule(acb->bh);
887
888 /* Start next allocating write request waiting behind this one. Note that
889 * requests enqueue themselves when they first hit an unallocated cluster
890 * but they wait until the entire request is finished before waking up the
891 * next request in the queue. This ensures that we don't cycle through
892 * requests multiple times but rather finish one at a time completely.
893 */
894 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
895 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
896 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
897 if (acb) {
898 qed_aio_next_io(acb, 0);
899 } else if (s->header.features & QED_F_NEED_CHECK) {
900 qed_start_need_check_timer(s);
901 }
902 }
903 }
904
905 /**
906 * Commit the current L2 table to the cache
907 */
908 static void qed_commit_l2_update(void *opaque, int ret)
909 {
910 QEDAIOCB *acb = opaque;
911 BDRVQEDState *s = acb_to_s(acb);
912 CachedL2Table *l2_table = acb->request.l2_table;
913 uint64_t l2_offset = l2_table->offset;
914
915 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
916
917 /* This is guaranteed to succeed because we just committed the entry to the
918 * cache.
919 */
920 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
921 assert(acb->request.l2_table != NULL);
922
923 qed_aio_next_io(opaque, ret);
924 }
925
926 /**
927 * Update L1 table with new L2 table offset and write it out
928 */
929 static void qed_aio_write_l1_update(void *opaque, int ret)
930 {
931 QEDAIOCB *acb = opaque;
932 BDRVQEDState *s = acb_to_s(acb);
933 int index;
934
935 if (ret) {
936 qed_aio_complete(acb, ret);
937 return;
938 }
939
940 index = qed_l1_index(s, acb->cur_pos);
941 s->l1_table->offsets[index] = acb->request.l2_table->offset;
942
943 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
944 }
945
946 /**
947 * Update L2 table with new cluster offsets and write them out
948 */
949 static void qed_aio_write_l2_update(void *opaque, int ret)
950 {
951 QEDAIOCB *acb = opaque;
952 BDRVQEDState *s = acb_to_s(acb);
953 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
954 int index;
955
956 if (ret) {
957 goto err;
958 }
959
960 if (need_alloc) {
961 qed_unref_l2_cache_entry(acb->request.l2_table);
962 acb->request.l2_table = qed_new_l2_table(s);
963 }
964
965 index = qed_l2_index(s, acb->cur_pos);
966 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
967 acb->cur_cluster);
968
969 if (need_alloc) {
970 /* Write out the whole new L2 table */
971 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
972 qed_aio_write_l1_update, acb);
973 } else {
974 /* Write out only the updated part of the L2 table */
975 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
976 qed_aio_next_io, acb);
977 }
978 return;
979
980 err:
981 qed_aio_complete(acb, ret);
982 }
983
984 /**
985 * Flush new data clusters before updating the L2 table
986 *
987 * This flush is necessary when a backing file is in use. A crash during an
988 * allocating write could result in empty clusters in the image. If the write
989 * only touched a subregion of the cluster, then backing image sectors have
990 * been lost in the untouched region. The solution is to flush after writing a
991 * new data cluster and before updating the L2 table.
992 */
993 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
994 {
995 QEDAIOCB *acb = opaque;
996 BDRVQEDState *s = acb_to_s(acb);
997
998 if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update, opaque)) {
999 qed_aio_complete(acb, -EIO);
1000 }
1001 }
1002
1003 /**
1004 * Write data to the image file
1005 */
1006 static void qed_aio_write_main(void *opaque, int ret)
1007 {
1008 QEDAIOCB *acb = opaque;
1009 BDRVQEDState *s = acb_to_s(acb);
1010 uint64_t offset = acb->cur_cluster +
1011 qed_offset_into_cluster(s, acb->cur_pos);
1012 BlockDriverCompletionFunc *next_fn;
1013 BlockDriverAIOCB *file_acb;
1014
1015 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1016
1017 if (ret) {
1018 qed_aio_complete(acb, ret);
1019 return;
1020 }
1021
1022 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1023 next_fn = qed_aio_next_io;
1024 } else {
1025 if (s->bs->backing_hd) {
1026 next_fn = qed_aio_write_flush_before_l2_update;
1027 } else {
1028 next_fn = qed_aio_write_l2_update;
1029 }
1030 }
1031
1032 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1033 file_acb = bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1034 &acb->cur_qiov,
1035 acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1036 next_fn, acb);
1037 if (!file_acb) {
1038 qed_aio_complete(acb, -EIO);
1039 }
1040 }
1041
1042 /**
1043 * Populate back untouched region of new data cluster
1044 */
1045 static void qed_aio_write_postfill(void *opaque, int ret)
1046 {
1047 QEDAIOCB *acb = opaque;
1048 BDRVQEDState *s = acb_to_s(acb);
1049 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1050 uint64_t len =
1051 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1052 uint64_t offset = acb->cur_cluster +
1053 qed_offset_into_cluster(s, acb->cur_pos) +
1054 acb->cur_qiov.size;
1055
1056 if (ret) {
1057 qed_aio_complete(acb, ret);
1058 return;
1059 }
1060
1061 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1062 qed_copy_from_backing_file(s, start, len, offset,
1063 qed_aio_write_main, acb);
1064 }
1065
1066 /**
1067 * Populate front untouched region of new data cluster
1068 */
1069 static void qed_aio_write_prefill(void *opaque, int ret)
1070 {
1071 QEDAIOCB *acb = opaque;
1072 BDRVQEDState *s = acb_to_s(acb);
1073 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1074 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1075
1076 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1077 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1078 qed_aio_write_postfill, acb);
1079 }
1080
1081 /**
1082 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1083 */
1084 static bool qed_should_set_need_check(BDRVQEDState *s)
1085 {
1086 /* The flush before L2 update path ensures consistency */
1087 if (s->bs->backing_hd) {
1088 return false;
1089 }
1090
1091 return !(s->header.features & QED_F_NEED_CHECK);
1092 }
1093
1094 /**
1095 * Write new data cluster
1096 *
1097 * @acb: Write request
1098 * @len: Length in bytes
1099 *
1100 * This path is taken when writing to previously unallocated clusters.
1101 */
1102 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1103 {
1104 BDRVQEDState *s = acb_to_s(acb);
1105
1106 /* Cancel timer when the first allocating request comes in */
1107 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1108 qed_cancel_need_check_timer(s);
1109 }
1110
1111 /* Freeze this request if another allocating write is in progress */
1112 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1113 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1114 }
1115 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1116 s->allocating_write_reqs_plugged) {
1117 return; /* wait for existing request to finish */
1118 }
1119
1120 acb->cur_nclusters = qed_bytes_to_clusters(s,
1121 qed_offset_into_cluster(s, acb->cur_pos) + len);
1122 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1123 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1124
1125 if (qed_should_set_need_check(s)) {
1126 s->header.features |= QED_F_NEED_CHECK;
1127 qed_write_header(s, qed_aio_write_prefill, acb);
1128 } else {
1129 qed_aio_write_prefill(acb, 0);
1130 }
1131 }
1132
1133 /**
1134 * Write data cluster in place
1135 *
1136 * @acb: Write request
1137 * @offset: Cluster offset in bytes
1138 * @len: Length in bytes
1139 *
1140 * This path is taken when writing to already allocated clusters.
1141 */
1142 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1143 {
1144 /* Calculate the I/O vector */
1145 acb->cur_cluster = offset;
1146 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1147
1148 /* Do the actual write */
1149 qed_aio_write_main(acb, 0);
1150 }
1151
1152 /**
1153 * Write data cluster
1154 *
1155 * @opaque: Write request
1156 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1157 * or -errno
1158 * @offset: Cluster offset in bytes
1159 * @len: Length in bytes
1160 *
1161 * Callback from qed_find_cluster().
1162 */
1163 static void qed_aio_write_data(void *opaque, int ret,
1164 uint64_t offset, size_t len)
1165 {
1166 QEDAIOCB *acb = opaque;
1167
1168 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1169
1170 acb->find_cluster_ret = ret;
1171
1172 switch (ret) {
1173 case QED_CLUSTER_FOUND:
1174 qed_aio_write_inplace(acb, offset, len);
1175 break;
1176
1177 case QED_CLUSTER_L2:
1178 case QED_CLUSTER_L1:
1179 case QED_CLUSTER_ZERO:
1180 qed_aio_write_alloc(acb, len);
1181 break;
1182
1183 default:
1184 qed_aio_complete(acb, ret);
1185 break;
1186 }
1187 }
1188
1189 /**
1190 * Read data cluster
1191 *
1192 * @opaque: Read request
1193 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1194 * or -errno
1195 * @offset: Cluster offset in bytes
1196 * @len: Length in bytes
1197 *
1198 * Callback from qed_find_cluster().
1199 */
1200 static void qed_aio_read_data(void *opaque, int ret,
1201 uint64_t offset, size_t len)
1202 {
1203 QEDAIOCB *acb = opaque;
1204 BDRVQEDState *s = acb_to_s(acb);
1205 BlockDriverState *bs = acb->common.bs;
1206 BlockDriverAIOCB *file_acb;
1207
1208 /* Adjust offset into cluster */
1209 offset += qed_offset_into_cluster(s, acb->cur_pos);
1210
1211 trace_qed_aio_read_data(s, acb, ret, offset, len);
1212
1213 if (ret < 0) {
1214 goto err;
1215 }
1216
1217 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1218
1219 /* Handle zero cluster and backing file reads */
1220 if (ret == QED_CLUSTER_ZERO) {
1221 qemu_iovec_memset(&acb->cur_qiov, 0, acb->cur_qiov.size);
1222 qed_aio_next_io(acb, 0);
1223 return;
1224 } else if (ret != QED_CLUSTER_FOUND) {
1225 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1226 qed_aio_next_io, acb);
1227 return;
1228 }
1229
1230 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1231 file_acb = bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1232 &acb->cur_qiov,
1233 acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1234 qed_aio_next_io, acb);
1235 if (!file_acb) {
1236 ret = -EIO;
1237 goto err;
1238 }
1239 return;
1240
1241 err:
1242 qed_aio_complete(acb, ret);
1243 }
1244
1245 /**
1246 * Begin next I/O or complete the request
1247 */
1248 static void qed_aio_next_io(void *opaque, int ret)
1249 {
1250 QEDAIOCB *acb = opaque;
1251 BDRVQEDState *s = acb_to_s(acb);
1252 QEDFindClusterFunc *io_fn =
1253 acb->is_write ? qed_aio_write_data : qed_aio_read_data;
1254
1255 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1256
1257 /* Handle I/O error */
1258 if (ret) {
1259 qed_aio_complete(acb, ret);
1260 return;
1261 }
1262
1263 acb->qiov_offset += acb->cur_qiov.size;
1264 acb->cur_pos += acb->cur_qiov.size;
1265 qemu_iovec_reset(&acb->cur_qiov);
1266
1267 /* Complete request */
1268 if (acb->cur_pos >= acb->end_pos) {
1269 qed_aio_complete(acb, 0);
1270 return;
1271 }
1272
1273 /* Find next cluster and start I/O */
1274 qed_find_cluster(s, &acb->request,
1275 acb->cur_pos, acb->end_pos - acb->cur_pos,
1276 io_fn, acb);
1277 }
1278
1279 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1280 int64_t sector_num,
1281 QEMUIOVector *qiov, int nb_sectors,
1282 BlockDriverCompletionFunc *cb,
1283 void *opaque, bool is_write)
1284 {
1285 QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque);
1286
1287 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1288 opaque, is_write);
1289
1290 acb->is_write = is_write;
1291 acb->finished = NULL;
1292 acb->qiov = qiov;
1293 acb->qiov_offset = 0;
1294 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1295 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1296 acb->request.l2_table = NULL;
1297 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1298
1299 /* Start request */
1300 qed_aio_next_io(acb, 0);
1301 return &acb->common;
1302 }
1303
1304 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1305 int64_t sector_num,
1306 QEMUIOVector *qiov, int nb_sectors,
1307 BlockDriverCompletionFunc *cb,
1308 void *opaque)
1309 {
1310 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, false);
1311 }
1312
1313 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1314 int64_t sector_num,
1315 QEMUIOVector *qiov, int nb_sectors,
1316 BlockDriverCompletionFunc *cb,
1317 void *opaque)
1318 {
1319 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, true);
1320 }
1321
1322 static BlockDriverAIOCB *bdrv_qed_aio_flush(BlockDriverState *bs,
1323 BlockDriverCompletionFunc *cb,
1324 void *opaque)
1325 {
1326 return bdrv_aio_flush(bs->file, cb, opaque);
1327 }
1328
1329 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1330 {
1331 BDRVQEDState *s = bs->opaque;
1332 uint64_t old_image_size;
1333 int ret;
1334
1335 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1336 s->header.table_size)) {
1337 return -EINVAL;
1338 }
1339
1340 /* Shrinking is currently not supported */
1341 if ((uint64_t)offset < s->header.image_size) {
1342 return -ENOTSUP;
1343 }
1344
1345 old_image_size = s->header.image_size;
1346 s->header.image_size = offset;
1347 ret = qed_write_header_sync(s);
1348 if (ret < 0) {
1349 s->header.image_size = old_image_size;
1350 }
1351 return ret;
1352 }
1353
1354 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1355 {
1356 BDRVQEDState *s = bs->opaque;
1357 return s->header.image_size;
1358 }
1359
1360 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1361 {
1362 BDRVQEDState *s = bs->opaque;
1363
1364 memset(bdi, 0, sizeof(*bdi));
1365 bdi->cluster_size = s->header.cluster_size;
1366 return 0;
1367 }
1368
1369 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1370 const char *backing_file,
1371 const char *backing_fmt)
1372 {
1373 BDRVQEDState *s = bs->opaque;
1374 QEDHeader new_header, le_header;
1375 void *buffer;
1376 size_t buffer_len, backing_file_len;
1377 int ret;
1378
1379 /* Refuse to set backing filename if unknown compat feature bits are
1380 * active. If the image uses an unknown compat feature then we may not
1381 * know the layout of data following the header structure and cannot safely
1382 * add a new string.
1383 */
1384 if (backing_file && (s->header.compat_features &
1385 ~QED_COMPAT_FEATURE_MASK)) {
1386 return -ENOTSUP;
1387 }
1388
1389 memcpy(&new_header, &s->header, sizeof(new_header));
1390
1391 new_header.features &= ~(QED_F_BACKING_FILE |
1392 QED_F_BACKING_FORMAT_NO_PROBE);
1393
1394 /* Adjust feature flags */
1395 if (backing_file) {
1396 new_header.features |= QED_F_BACKING_FILE;
1397
1398 if (qed_fmt_is_raw(backing_fmt)) {
1399 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1400 }
1401 }
1402
1403 /* Calculate new header size */
1404 backing_file_len = 0;
1405
1406 if (backing_file) {
1407 backing_file_len = strlen(backing_file);
1408 }
1409
1410 buffer_len = sizeof(new_header);
1411 new_header.backing_filename_offset = buffer_len;
1412 new_header.backing_filename_size = backing_file_len;
1413 buffer_len += backing_file_len;
1414
1415 /* Make sure we can rewrite header without failing */
1416 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1417 return -ENOSPC;
1418 }
1419
1420 /* Prepare new header */
1421 buffer = g_malloc(buffer_len);
1422
1423 qed_header_cpu_to_le(&new_header, &le_header);
1424 memcpy(buffer, &le_header, sizeof(le_header));
1425 buffer_len = sizeof(le_header);
1426
1427 if (backing_file) {
1428 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1429 buffer_len += backing_file_len;
1430 }
1431
1432 /* Write new header */
1433 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1434 g_free(buffer);
1435 if (ret == 0) {
1436 memcpy(&s->header, &new_header, sizeof(new_header));
1437 }
1438 return ret;
1439 }
1440
1441 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result)
1442 {
1443 BDRVQEDState *s = bs->opaque;
1444
1445 return qed_check(s, result, false);
1446 }
1447
1448 static QEMUOptionParameter qed_create_options[] = {
1449 {
1450 .name = BLOCK_OPT_SIZE,
1451 .type = OPT_SIZE,
1452 .help = "Virtual disk size (in bytes)"
1453 }, {
1454 .name = BLOCK_OPT_BACKING_FILE,
1455 .type = OPT_STRING,
1456 .help = "File name of a base image"
1457 }, {
1458 .name = BLOCK_OPT_BACKING_FMT,
1459 .type = OPT_STRING,
1460 .help = "Image format of the base image"
1461 }, {
1462 .name = BLOCK_OPT_CLUSTER_SIZE,
1463 .type = OPT_SIZE,
1464 .help = "Cluster size (in bytes)",
1465 .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1466 }, {
1467 .name = BLOCK_OPT_TABLE_SIZE,
1468 .type = OPT_SIZE,
1469 .help = "L1/L2 table size (in clusters)"
1470 },
1471 { /* end of list */ }
1472 };
1473
1474 static BlockDriver bdrv_qed = {
1475 .format_name = "qed",
1476 .instance_size = sizeof(BDRVQEDState),
1477 .create_options = qed_create_options,
1478
1479 .bdrv_probe = bdrv_qed_probe,
1480 .bdrv_open = bdrv_qed_open,
1481 .bdrv_close = bdrv_qed_close,
1482 .bdrv_create = bdrv_qed_create,
1483 .bdrv_flush = bdrv_qed_flush,
1484 .bdrv_is_allocated = bdrv_qed_is_allocated,
1485 .bdrv_make_empty = bdrv_qed_make_empty,
1486 .bdrv_aio_readv = bdrv_qed_aio_readv,
1487 .bdrv_aio_writev = bdrv_qed_aio_writev,
1488 .bdrv_aio_flush = bdrv_qed_aio_flush,
1489 .bdrv_truncate = bdrv_qed_truncate,
1490 .bdrv_getlength = bdrv_qed_getlength,
1491 .bdrv_get_info = bdrv_qed_get_info,
1492 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1493 .bdrv_check = bdrv_qed_check,
1494 };
1495
1496 static void bdrv_qed_init(void)
1497 {
1498 bdrv_register(&bdrv_qed);
1499 }
1500
1501 block_init(bdrv_qed_init);